Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

Dev weight sharing (#568) #576

Merged
merged 4 commits into from
Jan 8, 2019
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 73 additions & 0 deletions docs/AdvancedNAS.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Tutorial for Advanced Neural Architecture Search
Currently many of the NAS algorithms leverage the technique of **weight sharing** among trials to accelerate its training process. For example, [ENAS][1] delivers 1000x effiency with '_parameter sharing between child models_', compared with the previous [NASNet][2] algorithm. Other NAS algorithms such as [DARTS][3], [Network Morphism][4], and [Evolution][5] is also leveraging, or has the potential to leverage weight sharing.
leckie-chn marked this conversation as resolved.
Show resolved Hide resolved

This is a tutorial on how to enable weight sharing in NNI.

## Weight Sharing among trials
Currently we recommend sharing weights through NFS (Network File System), which supports sharing files across machines, and is light-weighted, (relatively) efficient. We also welcome contributions from the community on more efficient techniques.

### NFS Setup
In NFS, files are physically stored on a server machine, and trials on the client machine can read/write those files in the same way that they access local files.

#### Install NFS on server machine
First, install NFS server:
```bash
sudo apt-get install nfs-kernel-server
```
Suppose `/tmp/nni/shared` is used as the physical storage, then run:
```bash
sudo mkdir -p /tmp/nni/shared
sudo echo "/tmp/nni/shared *(rw,sync,no_subtree_check,no_root_squash)" >> /etc/exports
sudo service nfs-kernel-server restart
```
You can check if the above directory is successfully exported by NFS using `sudo showmount -e localhost`

#### Install NFS on client machine
First, install NFS client:
```bash
sudo apt-get install nfs-common
```
Then create & mount the mounted directory of shared files:
```bash
sudo mkdir -p /mnt/nfs/nni/
sudo mount -t nfs 10.10.10.10:/tmp/nni/shared /mnt/nfs/nni
```
where `10.10.10.10` should be replaced by the real IP of NFS server machine in practice.

### Weight Sharing through NFS file
With the NFS setup, trial code can share model weight through loading & saving files. For example, in tensorflow:
```python
# save models
saver = tf.train.Saver()
saver.save(sess, os.path.join(params['save_path'], 'model.ckpt'))
leckie-chn marked this conversation as resolved.
Show resolved Hide resolved
# load models
tf.init_from_checkpoint(params['restore_path'])
```
where `'save_path'` and `'restore_path'` in hyper-parameter can be managed by the tuner.

## Asynchornous Dispatcher Mode for trial dependency control
The feature of weight sharing enables trials from different machines, in which most of the time **read after write** consistency must be assured. After all, the child model should not load parent model before parent trial finishes training. To deal with this, users can enable **asynchronous dispatcher mode** with `multiThread: true` in `config.yml` in NNI, where the dispatcher assign a tuner thread each time a `NEW_TRIAL` request comes in, and the tuner thread can decide when to submit a new trial by blocking and unblocking the thread itself. For example:
```python
def generate_parameters(self, parameter_id):
self.thread_lock.acquire()
indiv = # configuration for a new trial
self.events[parameter_id] = threading.Event()
self.thread_lock.release()
if indiv.parent_id is not None:
self.events[indiv.parent_id].wait()

def receive_trial_result(self, parameter_id, parameters, reward):
self.thread_lock.acquire()
# code for processing trial results
self.thread_lock.release()
self.events[parameter_id].set()
```

## Examples
For details, please refer to this [simple weight sharing example](../test/async_sharing_test). We also provided a [practice example](../examples/trials/weight_sharing/ga_squad) for reading comprehension, based on previous [ga_squad](../examples/trials/ga_squad) example.

[1]: https://arxiv.org/abs/1802.03268
[2]: https://arxiv.org/abs/1707.07012
[3]: https://arxiv.org/abs/1806.09055
[4]: https://arxiv.org/abs/1806.10282
[5]: https://arxiv.org/abs/1703.01041
6 changes: 3 additions & 3 deletions examples/trials/ga_squad/trial.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ def train_with_graph(graph, qp_pairs, dev_qp_pairs):
answers = generate_predict_json(
position1, position2, ids, contexts)
if save_path is not None:
with open(save_path + 'epoch%d.prediction' % epoch, 'w') as file:
with open(os.path.join(save_path, 'epoch%d.prediction' % epoch), 'w') as file:
json.dump(answers, file)
else:
answers = json.dumps(answers)
Expand All @@ -359,8 +359,8 @@ def train_with_graph(graph, qp_pairs, dev_qp_pairs):
bestacc = acc

if save_path is not None:
saver.save(sess, save_path + 'epoch%d.model' % epoch)
with open(save_path + 'epoch%d.score' % epoch, 'wb') as file:
saver.save(os.path.join(sess, save_path + 'epoch%d.model' % epoch))
with open(os.path.join(save_path, 'epoch%d.score' % epoch), 'wb') as file:
pickle.dump(
(position1, position2, ids, contexts), file)
logger.debug('epoch %d acc %g bestacc %g' %
Expand Down
171 changes: 171 additions & 0 deletions examples/trials/weight_sharing/ga_squad/attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import math

import tensorflow as tf
from tensorflow.python.ops.rnn_cell_impl import RNNCell


def _get_variable(variable_dict, name, shape, initializer=None, dtype=tf.float32):
if name not in variable_dict:
variable_dict[name] = tf.get_variable(
name=name, shape=shape, initializer=initializer, dtype=dtype)
return variable_dict[name]


class DotAttention:
'''
DotAttention
'''

def __init__(self, name,
hidden_dim,
is_vanilla=True,
is_identity_transform=False,
need_padding=False):
self._name = '/'.join([name, 'dot_att'])
self._hidden_dim = hidden_dim
self._is_identity_transform = is_identity_transform
self._need_padding = need_padding
self._is_vanilla = is_vanilla
self._var = {}

@property
def is_identity_transform(self):
return self._is_identity_transform

@property
def is_vanilla(self):
return self._is_vanilla

@property
def need_padding(self):
return self._need_padding

@property
def hidden_dim(self):
return self._hidden_dim

@property
def name(self):
return self._name

@property
def var(self):
return self._var

def _get_var(self, name, shape, initializer=None):
with tf.variable_scope(self.name):
return _get_variable(self.var, name, shape, initializer)

def _define_params(self, src_dim, tgt_dim):
hidden_dim = self.hidden_dim
self._get_var('W', [src_dim, hidden_dim])
if not self.is_vanilla:
self._get_var('V', [src_dim, hidden_dim])
if self.need_padding:
self._get_var('V_s', [src_dim, src_dim])
self._get_var('V_t', [tgt_dim, tgt_dim])
if not self.is_identity_transform:
self._get_var('T', [tgt_dim, src_dim])
self._get_var('U', [tgt_dim, hidden_dim])
self._get_var('b', [1, hidden_dim])
self._get_var('v', [hidden_dim, 1])

def get_pre_compute(self, s):
'''
:param s: [src_sequence, batch_size, src_dim]
:return: [src_sequence, batch_size. hidden_dim]
'''
hidden_dim = self.hidden_dim
src_dim = s.get_shape().as_list()[-1]
assert src_dim is not None, 'src dim must be defined'
W = self._get_var('W', shape=[src_dim, hidden_dim])
b = self._get_var('b', shape=[1, hidden_dim])
return tf.tensordot(s, W, [[2], [0]]) + b

def get_prob(self, src, tgt, mask, pre_compute, return_logits=False):
'''
:param s: [src_sequence_length, batch_size, src_dim]
:param h: [batch_size, tgt_dim] or [tgt_sequence_length, batch_size, tgt_dim]
:param mask: [src_sequence_length, batch_size]\
or [tgt_sequence_length, src_sequence_length, batch_sizse]
:param pre_compute: [src_sequence_length, batch_size, hidden_dim]
:return: [src_sequence_length, batch_size]\
or [tgt_sequence_length, src_sequence_length, batch_size]
'''
s_shape = src.get_shape().as_list()
h_shape = tgt.get_shape().as_list()
src_dim = s_shape[-1]
tgt_dim = h_shape[-1]
assert src_dim is not None, 'src dimension must be defined'
assert tgt_dim is not None, 'tgt dimension must be defined'

self._define_params(src_dim, tgt_dim)

if len(h_shape) == 2:
tgt = tf.expand_dims(tgt, 0)
if pre_compute is None:
pre_compute = self.get_pre_compute(src)

buf0 = pre_compute
buf1 = tf.tensordot(tgt, self.var['U'], axes=[[2], [0]])
buf2 = tf.tanh(tf.expand_dims(buf0, 0) + tf.expand_dims(buf1, 1))

if not self.is_vanilla:
xh1 = tgt
xh2 = tgt
s1 = src
if self.need_padding:
xh1 = tf.tensordot(xh1, self.var['V_t'], 1)
xh2 = tf.tensordot(xh2, self.var['S_t'], 1)
s1 = tf.tensordot(s1, self.var['V_s'], 1)
if not self.is_identity_transform:
xh1 = tf.tensordot(xh1, self.var['T'], 1)
xh2 = tf.tensordot(xh2, self.var['T'], 1)
buf3 = tf.expand_dims(s1, 0) * tf.expand_dims(xh1, 1)
buf3 = tf.tanh(tf.tensordot(buf3, self.var['V'], axes=[[3], [0]]))
buf = tf.reshape(tf.tanh(buf2 + buf3), shape=tf.shape(buf3))
else:
buf = buf2
v = self.var['v']
e = tf.tensordot(buf, v, [[3], [0]])
e = tf.squeeze(e, axis=[3])
tmp = tf.reshape(e + (mask - 1) * 10000.0, shape=tf.shape(e))
prob = tf.nn.softmax(tmp, 1)
if len(h_shape) == 2:
prob = tf.squeeze(prob, axis=[0])
tmp = tf.squeeze(tmp, axis=[0])
if return_logits:
return prob, tmp
return prob

def get_att(self, s, prob):
'''
:param s: [src_sequence_length, batch_size, src_dim]
:param prob: [src_sequence_length, batch_size]\
or [tgt_sequence_length, src_sequence_length, batch_size]
:return: [batch_size, src_dim] or [tgt_sequence_length, batch_size, src_dim]
'''
buf = s * tf.expand_dims(prob, axis=-1)
att = tf.reduce_sum(buf, axis=-3)
return att
31 changes: 31 additions & 0 deletions examples/trials/weight_sharing/ga_squad/config_remote.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
authorName: default
experimentName: ga_squad_weight_sharing
trialConcurrency: 2
maxExecDuration: 1h
maxTrialNum: 200
#choice: local, remote, pai
trainingServicePlatform: remote
#choice: true, false
useAnnotation: false
multiThread: true
tuner:
codeDir: ../../../tuners/weight_sharing/ga_customer_tuner
classFileName: customer_tuner.py
className: CustomerTuner
classArgs:
optimize_mode: maximize
population_size: 32
save_dir_root: /mnt/nfs/nni/ga_squad
trial:
command: python3 trial.py --input_file /mnt/nfs/nni/train-v1.1.json --dev_file /mnt/nfs/nni/dev-v1.1.json --max_epoch 1 --embedding_file /mnt/nfs/nni/glove.6B.300d.txt
codeDir: .
gpuNum: 1
machineList:
- ip: remote-ip-0
port: 8022
username: root
passwd: screencast
- ip: remote-ip-1
port: 8022
username: root
passwd: screencast
Loading