diff --git a/mlx/distributed/distributed.cpp b/mlx/distributed/distributed.cpp index 34d9583fa..1cd3fab4f 100644 --- a/mlx/distributed/distributed.cpp +++ b/mlx/distributed/distributed.cpp @@ -60,6 +60,10 @@ class EmptyGroup : public GroupImpl { throw std::runtime_error( "Communication not implemented in an empty distributed group."); } + void barrier() override { + throw std::runtime_error( + "Barrier not implemented in an empty distributed group."); + } }; } // namespace detail @@ -80,6 +84,10 @@ Group Group::split(int color, int key /* = -1 */) const { return Group(group_->split(color, key)); } +void Group::barrier() { + return group_->barrier(); +} + Group init(bool strict /* = false */) { auto init_group = [strict]() { auto default_group = mpi::init(strict); diff --git a/mlx/distributed/distributed.h b/mlx/distributed/distributed.h index c06d10756..78f4a9c38 100644 --- a/mlx/distributed/distributed.h +++ b/mlx/distributed/distributed.h @@ -41,6 +41,8 @@ struct Group { return group_; } + void barrier(); + private: std::shared_ptr group_{nullptr}; }; diff --git a/mlx/distributed/distributed_impl.h b/mlx/distributed/distributed_impl.h index fdcbf777d..db98688e3 100644 --- a/mlx/distributed/distributed_impl.h +++ b/mlx/distributed/distributed_impl.h @@ -19,6 +19,7 @@ class GroupImpl { virtual void all_gather(const array& input, array& output) = 0; virtual void send(const array& input, int dst) = 0; virtual void recv(array& out, int src) = 0; + virtual void barrier() = 0; }; /* Return the communication stream. */ diff --git a/mlx/distributed/mpi/mpi.cpp b/mlx/distributed/mpi/mpi.cpp index b233df1b5..9e6539b98 100644 --- a/mlx/distributed/mpi/mpi.cpp +++ b/mlx/distributed/mpi/mpi.cpp @@ -74,6 +74,7 @@ struct MPIWrapper { LOAD_SYMBOL(MPI_Allgather, all_gather); LOAD_SYMBOL(MPI_Send, send); LOAD_SYMBOL(MPI_Recv, recv); + LOAD_SYMBOL(MPI_Barrier, barrier); LOAD_SYMBOL(MPI_Type_contiguous, mpi_type_contiguous); LOAD_SYMBOL(MPI_Type_commit, mpi_type_commit); LOAD_SYMBOL(MPI_Op_create, mpi_op_create); @@ -198,6 +199,7 @@ struct MPIWrapper { int (*comm_free)(MPI_Comm*); int (*send)(const void*, int, MPI_Datatype, int, int, MPI_Comm); int (*recv)(void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Status*); + int (*barrier)(MPI_Comm); // Objects MPI_Comm comm_world_; @@ -319,6 +321,10 @@ class MPIGroup : public GroupImpl { &status); } + void barrier() override { + mpi().barrier(comm_); + } + private: MPI_Comm comm_; bool global_; diff --git a/python/mlx/nn/layers/__init__.py b/python/mlx/nn/layers/__init__.py index c1d89fed9..26f77917f 100644 --- a/python/mlx/nn/layers/__init__.py +++ b/python/mlx/nn/layers/__init__.py @@ -60,6 +60,12 @@ ConvTranspose2d, ConvTranspose3d, ) +from mlx.nn.layers.distributed import ( + AllToShardedLinear, + QuantizedAllToShardedLinear, + QuantizedShardedToAllLinear, + ShardedToAllLinear, +) from mlx.nn.layers.dropout import Dropout, Dropout2d, Dropout3d from mlx.nn.layers.embedding import Embedding from mlx.nn.layers.linear import Bilinear, Identity, Linear diff --git a/python/mlx/nn/layers/distributed.py b/python/mlx/nn/layers/distributed.py new file mode 100644 index 000000000..f1cef52e6 --- /dev/null +++ b/python/mlx/nn/layers/distributed.py @@ -0,0 +1,456 @@ +# Copyright © 2024 Apple Inc. + +import math +from functools import lru_cache +from typing import Optional + +import mlx.core as mx +from mlx.nn.layers.base import Module + + +@lru_cache +def sum_gradients(group): + if group.size() == 1: + return lambda x: x + + @mx.custom_function + def f(x): + return x + + @f.vjp + def f(x, dx, _): + return mx.distributed.all_sum(dx, group=group) + + return f + + +class AllToShardedLinear(Module): + """Each member of the group applies part of the affine transformation such + that the result is sharded across the group. + + The gradients are automatically aggregated from each member of the group. + + Args: + input_dims (int): The dimensionality of the input features + output_dims (int): The dimensionality of the output features + bias (bool, optional): If set to ``False`` the the layer will not use a + bias. Default is ``True``. + group (mx.distributed.Group, optional): The sharding will happen across + this group. If not set then the global group is used. Default is + ``None``. + """ + + def __init__( + self, + input_dims: int, + output_dims: int, + bias: bool = True, + group: Optional[mx.distributed.Group] = None, + ): + super().__init__() + + # Initialize the parameters + scale = math.sqrt(1.0 / input_dims) + self.group = group or mx.distributed.init() + N = self.group.size() + + if (output_dims % N) != 0: + raise ValueError( + f"Cannot shard the output of size {output_dims} across {N} devices." + ) + + self.weight = mx.random.uniform( + low=-scale, + high=scale, + shape=(output_dims // N, input_dims), + ) + if bias: + self.bias = mx.random.uniform( + low=-scale, + high=scale, + shape=(output_dims // N,), + ) + + def _extra_repr(self) -> str: + out_dims, in_dims = self.weight.shape + N = self.group.size() + out_dims *= N + return f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}" + + def __call__(self, x: mx.array) -> mx.array: + # Aggregate the gradients coming from each shard + if self.group.size() > 1: + x = sum_gradients(self.group)(x) + + # Compute the affine projection + if "bias" in self: + x = mx.addmm(self["bias"], x, self["weight"].T) + else: + x = x @ self["weight"].T + return x + + @classmethod + def from_linear( + cls, linear_layer: Module, group: Optional[mx.distributed.Group] = None + ): + group = group or mx.distributed.init() + N = group.size() + r = group.rank() + output_dims, input_dims = linear_layer.weight.shape + step = output_dims // N + + sl = cls(input_dims, output_dims, False, group) + # The multiplication with 1.0 forces a copy, perhaps change to + # something better when available. + sl.weight = linear_layer.weight[r * step : (r + 1) * step] * 1 + if "bias" in linear_layer: + sl.bias = linear_layer.bias[r * step : (r + 1) * step] * 1 + + return sl + + +class ShardedToAllLinear(Module): + """Each member of the group applies part of the affine transformation and + then aggregates the results. + + All nodes will have the same exact result after this layer. + + :class:`ShardedToAllLinear` provides a classmethod :meth:`from_linear` to + convert linear layers to sharded :obj:`ShardedToAllLinear` layers. + + Args: + input_dims (int): The dimensionality of the input features + output_dims (int): The dimensionality of the output features + bias (bool, optional): If set to ``False`` the the layer will not use a + bias. Default is ``True``. + group (mx.distributed.Group, optional): The sharding will happen across + this group. If not set then the global group is used. Default is + ``None``. + """ + + def __init__( + self, + input_dims: int, + output_dims: int, + bias: bool = True, + group: Optional[mx.distributed.Group] = None, + ): + super().__init__() + + # Initialize the parameters + scale = math.sqrt(1.0 / input_dims) + self.group = group or mx.distributed.init() + N = self.group.size() + + if (input_dims % N) != 0: + raise ValueError( + f"The input of size {input_dims} cannot be sharded across {N} devices." + ) + + self.weight = mx.random.uniform( + low=-scale, + high=scale, + shape=(output_dims, input_dims // N), + ) + if bias: + self.bias = mx.random.uniform( + low=-scale, + high=scale, + shape=(output_dims,), + ) + + def _extra_repr(self) -> str: + N = self.group.size() + out_dims, in_dims = self.weight.shape + in_dims *= N + return f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}" + + def __call__(self, x: mx.array) -> mx.array: + if self.group.size() > 1: + # Perform the local projection and aggregate the results + x = x @ self["weight"].T + x = mx.distributed.all_sum(x, group=self.group) + + # Add the bias if we have one + if "bias" in self: + x = x + self["bias"] + else: + # Normal linear layer as we are not in a distributed setting. + if "bias" in self: + x = mx.addmm(self["bias"], x, self["weight"].T) + else: + x = x @ self["weight"].T + return x + + @classmethod + def from_linear( + cls, linear_layer: Module, group: Optional[mx.distributed.Group] = None + ): + group = group or mx.distributed.init() + N = group.size() + r = group.rank() + output_dims, input_dims = linear_layer.weight.shape + step = input_dims // N + + sl = cls(input_dims, output_dims, False, group) + # The multiplication with 1.0 forces a copy, perhaps change to + # something better when available. + sl.weight = linear_layer.weight[:, r * step : (r + 1) * step] * 1 + if "bias" in linear_layer: + sl.bias = linear_layer.bias + + return sl + + +class QuantizedAllToShardedLinear(Module): + """Each member of the group applies part of the affine transformation with + a quantized matrix such that the result is sharded across the group. + + It is the quantized equivalent of :class:`mlx.nn.AllToShardedLinear`. + Similar to :class:`mlx.nn.QuantizedLinear` its parameters are frozen and + will not be included in any gradient computation. + + Args: + input_dims (int): The dimensionality of the input features. + output_dims (int): The dimensionality of the output features. + bias (bool, optional): If set to ``False`` then the layer will not use + a bias. Default: ``True``. + group_size (int, optional): The group size to use for the quantized + weight. See :func:`~mlx.core.quantize`. Default: ``64``. + bits (int, optional): The bit width to use for the quantized weight. + See :func:`~mlx.core.quantize`. Default: ``4``. + group (mx.distributed.Group, optional): The sharding will happen across + this group. If not set then the global group is used. Default is + ``None``. + """ + + def __init__( + self, + input_dims: int, + output_dims: int, + bias: bool = True, + group_size: int = 64, + bits: int = 4, + group: Optional[mx.distributed.Group] = None, + ): + super().__init__() + + # Quantization config + self.group_size = group_size + self.bits = bits + + # Initialize the quantized weight + scale = math.sqrt(1.0 / input_dims) + self.group = group or mx.distributed.init() + N = self.group.size() + + if (output_dims % N) != 0: + raise ValueError( + f"Cannot shard the output of size {output_dims} across {N} devices." + ) + + weight = mx.random.uniform( + low=-scale, + high=scale, + shape=(output_dims // N, input_dims), + ) + self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits) + + # And bias if needed + if bias: + self.bias = mx.zeros((output_dims // N,)) + + # Freeze this model's parameters + self.freeze() + + def unfreeze(self, *args, **kwargs): + """Wrap unfreeze so that we unfreeze any layers we might contain but + our parameters will remain frozen.""" + super().unfreeze(*args, **kwargs) + self.freeze(recurse=False) + + def _extra_repr(self) -> str: + out_dims, in_dims = self.weight.shape + in_dims *= 32 // self.bits + out_dims *= self.group.size() + return ( + f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}, " + f"group_size={self.group_size}, bits={self.bits}" + ) + + def __call__(self, x: mx.array) -> mx.array: + # Aggregate the gradients coming from each shard + if self.group.size() > 1: + x = sum_gradients(self.group)(x) + + x = mx.quantized_matmul( + x, + self["weight"], + scales=self["scales"], + biases=self["biases"], + transpose=True, + group_size=self.group_size, + bits=self.bits, + ) + if "bias" in self: + x = x + self["bias"] + return x + + @classmethod + def from_quantized_linear( + cls, + quantized_linear_layer: Module, + group: Optional[mx.distributed.Group] = None, + ): + group = group or mx.distributed.init() + N = group.size() + r = group.rank() + output_dims, input_dims = quantized_linear_layer.weight.shape + input_dims *= 32 // quantized_linear_layer.bits + step = output_dims // N + + sl = cls( + input_dims, + output_dims, + False, + group_size=quantized_linear_layer.group_size, + bits=quantized_linear_layer.bits, + group=group, + ) + sl.weight = quantized_linear_layer.weight[r * step : (r + 1) * step] * 1 + sl.scales = quantized_linear_layer.scales[r * step : (r + 1) * step] * 1 + sl.biases = quantized_linear_layer.biases[r * step : (r + 1) * step] * 1 + if "bias" in quantized_linear_layer: + sl.bias = quantized_linear_layer.bias[r * step : (r + 1) * step] * 1 + + return sl + + +class QuantizedShardedToAllLinear(Module): + """Each member of the group applies part of the affine transformation using + the quantized matrix and then aggregates the results. + + All nodes will have the same exact result after this layer. + + It is the quantized equivalent of :class:`mlx.nn.ShardedToAllLinear`. + Similar to :class:`mlx.nn.QuantizedLinear` its parameters are frozen and + will not be included in any gradient computation. + + Args: + input_dims (int): The dimensionality of the input features. + output_dims (int): The dimensionality of the output features. + bias (bool, optional): If set to ``False`` then the layer will not use + a bias. Default: ``True``. + group_size (int, optional): The group size to use for the quantized + weight. See :func:`~mlx.core.quantize`. Default: ``64``. + bits (int, optional): The bit width to use for the quantized weight. + See :func:`~mlx.core.quantize`. Default: ``4``. + group (mx.distributed.Group, optional): The sharding will happen across + this group. If not set then the global group is used. Default is + ``None``. + """ + + def __init__( + self, + input_dims: int, + output_dims: int, + bias: bool = True, + group_size: int = 64, + bits: int = 4, + group: Optional[mx.distributed.Group] = None, + ): + super().__init__() + + # Quantization config + self.group_size = group_size + self.bits = bits + + # Initialize the quantized weight + scale = math.sqrt(1.0 / input_dims) + self.group = group or mx.distributed.init() + N = self.group.size() + + if (input_dims % N) != 0: + raise ValueError( + f"The input of size {input_dims} cannot be sharded across {N} devices." + ) + + weight = mx.random.uniform( + low=-scale, + high=scale, + shape=(output_dims, input_dims // N), + ) + self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits) + + # And bias if needed + if bias: + self.bias = mx.zeros((output_dims,)) + + # Freeze this model's parameters + self.freeze() + + def unfreeze(self, *args, **kwargs): + """Wrap unfreeze so that we unfreeze any layers we might contain but + our parameters will remain frozen.""" + super().unfreeze(*args, **kwargs) + self.freeze(recurse=False) + + def _extra_repr(self) -> str: + out_dims, in_dims = self.weight.shape + in_dims *= (32 // self.bits) * self.group.size() + return ( + f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}, " + f"group_size={self.group_size}, bits={self.bits}" + ) + + def __call__(self, x: mx.array) -> mx.array: + x = mx.quantized_matmul( + x, + self["weight"], + scales=self["scales"], + biases=self["biases"], + transpose=True, + group_size=self.group_size, + bits=self.bits, + ) + if self.group.size() > 1: + x = mx.distributed.all_sum(x, group=self.group) + if "bias" in self: + x = x + self["bias"] + return x + + @classmethod + def from_quantized_linear( + cls, + quantized_linear_layer: Module, + group: Optional[mx.distributed.Group] = None, + ): + group = group or mx.distributed.init() + N = group.size() + r = group.rank() + output_dims, input_dims = quantized_linear_layer.weight.shape + step = input_dims // N + step_grouped = quantized_linear_layer.scales.shape[1] // N + input_dims *= (32 // quantized_linear_layer.bits) * N + + sl = cls( + input_dims, + output_dims, + False, + group_size=quantized_linear_layer.group_size, + bits=quantized_linear_layer.bits, + group=group, + ) + sl.weight = quantized_linear_layer.weight[:, r * step : (r + 1) * step] * 1 + sl.scales = ( + quantized_linear_layer.scales[:, r * step_grouped : (r + 1) * step_grouped] + * 1 + ) + sl.biases = ( + quantized_linear_layer.biases[:, r * step_grouped : (r + 1) * step_grouped] + * 1 + ) + if "bias" in quantized_linear_layer: + sl.bias = quantized_linear_layer.bias + + return sl diff --git a/python/src/distributed.cpp b/python/src/distributed.cpp index f0459b8d3..02eb9a101 100644 --- a/python/src/distributed.cpp +++ b/python/src/distributed.cpp @@ -45,7 +45,11 @@ void init_distributed(nb::module_& parent_module) { color (int): A value to group processes into subgroups. key (int, optional): A key to optionally change the rank ordering of the processes. - )pbdoc"); + )pbdoc") + .def( + "barrier", + &mx::distributed::Group::barrier, + "Make a synhronization point for all nodes in the group"); m.def( "is_available",