diff --git a/doc/changes/devel.rst b/doc/changes/devel.rst index eeb06c3d7be..81e16e8658e 100644 --- a/doc/changes/devel.rst +++ b/doc/changes/devel.rst @@ -29,6 +29,7 @@ Enhancements - Added public :func:`mne.io.write_info` to complement :func:`mne.io.read_info` (:gh:`11918` by `Eric Larson`_) - Added option ``remove_dc`` to to :meth:`Raw.compute_psd() `, :meth:`Epochs.compute_psd() `, and :meth:`Evoked.compute_psd() `, to allow skipping DC removal when computing Welch or multitaper spectra (:gh:`11769` by `Nikolai Chapochnikov`_) - Add the possibility to provide a float between 0 and 1 as ``n_grad``, ``n_mag`` and ``n_eeg`` in `~mne.compute_proj_raw`, `~mne.compute_proj_epochs` and `~mne.compute_proj_evoked` to select the number of vectors based on the cumulative explained variance (:gh:`11919` by `Mathieu Scheltienne`_) +- Add extracting all time courses in a label using :func:`mne.extract_label_time_course` without applying an aggregation function (like ``mean``) (:gh:`12001` by `Hamza Abdelhedi`_) - Added support for Artinis fNIRS data files to :func:`mne.io.read_raw_snirf` (:gh:`11926` by `Robert Luke`_) - Add helpful error messages when using methods on empty :class:`mne.Epochs`-objects (:gh:`11306` by `Martin Schulz`_) - Add support for passing a :class:`python:dict` as ``sensor_color`` to specify per-channel-type colors in :func:`mne.viz.plot_alignment` (:gh:`12067` by `Eric Larson`_) diff --git a/mne/source_estimate.py b/mne/source_estimate.py index 3f0674210ca..211d109222c 100644 --- a/mne/source_estimate.py +++ b/mne/source_estimate.py @@ -3240,6 +3240,7 @@ def _pca_flip(flip, data): "mean_flip": lambda flip, data: np.mean(flip * data, axis=0), "max": lambda flip, data: np.max(np.abs(data), axis=0), "pca_flip": _pca_flip, + None: lambda flip, data: data, # Return Identity: Preserves all vertices. } @@ -3494,7 +3495,7 @@ def _volume_labels(src, labels, mri_resolution): def _get_default_label_modes(): - return sorted(_label_funcs.keys()) + ["auto"] + return sorted(_label_funcs.keys(), key=lambda x: (x is None, x)) + ["auto"] def _get_allowed_label_modes(stc): @@ -3572,7 +3573,12 @@ def _gen_extract_label_time_course( ) # do the extraction - label_tc = np.zeros((n_labels,) + stc.data.shape[1:], dtype=stc.data.dtype) + if mode is None: + # prepopulate an empty list for easy array-like index-based assignment + label_tc = [None] * max(len(label_vertidx), len(src_flip)) + else: + # For other modes, initialize the label_tc array + label_tc = np.zeros((n_labels,) + stc.data.shape[1:], dtype=stc.data.dtype) for i, (vertidx, flip) in enumerate(zip(label_vertidx, src_flip)): if vertidx is not None: if isinstance(vertidx, sparse.csr_matrix): @@ -3585,15 +3591,13 @@ def _gen_extract_label_time_course( this_data = stc.data[vertidx] label_tc[i] = func(flip, this_data) - # extract label time series for the vol src space (only mean supported) - offset = nvert[:-n_mean].sum() # effectively :2 or :0 - for i, nv in enumerate(nvert[2:]): - if nv != 0: - v2 = offset + nv - label_tc[n_mode + i] = np.mean(stc.data[offset:v2], axis=0) - offset = v2 - - # this is a generator! + if mode is not None: + offset = nvert[:-n_mean].sum() # effectively :2 or :0 + for i, nv in enumerate(nvert[2:]): + if nv != 0: + v2 = offset + nv + label_tc[n_mode + i] = np.mean(stc.data[offset:v2], axis=0) + offset = v2 yield label_tc diff --git a/mne/tests/test_source_estimate.py b/mne/tests/test_source_estimate.py index 5e0373f718e..9b78113127c 100644 --- a/mne/tests/test_source_estimate.py +++ b/mne/tests/test_source_estimate.py @@ -678,12 +678,24 @@ def test_extract_label_time_course(kind, vector): label_tcs = dict(mean=np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))) label_tcs["max"] = label_tcs["mean"] + label_tcs[None] = label_tcs["mean"] # compute the mean with sign flip label_tcs["mean_flip"] = np.zeros_like(label_tcs["mean"]) for i, label in enumerate(labels): label_tcs["mean_flip"][i] = i * np.mean(label_sign_flip(label, src[:2])) + # compute pca_flip + label_flip = [] + for i, label in enumerate(labels): + this_flip = i * label_sign_flip(label, src[:2]) + label_flip.append(this_flip) + # compute pca_flip + label_tcs["pca_flip"] = np.zeros_like(label_tcs["mean"]) + for i, (label, flip) in enumerate(zip(labels, label_flip)): + sign = np.sign(np.dot(np.full((flip.shape[0]), i), flip)) + label_tcs["pca_flip"][i] = sign * label_tcs["mean"][i] + # generate some stc's with known data stcs = list() pad = (((0, 0), (2, 0), (0, 0)), "constant") @@ -734,7 +746,7 @@ def test_extract_label_time_course(kind, vector): assert_array_equal(arr[1:], vol_means_t) # test the different modes - modes = ["mean", "mean_flip", "pca_flip", "max", "auto"] + modes = ["mean", "mean_flip", "pca_flip", "max", "auto", None] for mode in modes: if vector and mode not in ("mean", "max", "auto"): @@ -748,18 +760,36 @@ def test_extract_label_time_course(kind, vector): ] assert len(label_tc) == n_stcs assert len(label_tc_method) == n_stcs - for tc1, tc2 in zip(label_tc, label_tc_method): - assert tc1.shape == (n_labels + len(vol_means),) + end_shape - assert tc2.shape == (n_labels + len(vol_means),) + end_shape - assert_allclose(tc1, tc2, rtol=1e-8, atol=1e-16) + for j, (tc1, tc2) in enumerate(zip(label_tc, label_tc_method)): + if mode is None: + assert all(arr.shape[1] == tc1[0].shape[1] for arr in tc1) + assert all(arr.shape[1] == tc2[0].shape[1] for arr in tc2) + assert (len(tc1), tc1[0].shape[1]) == (n_labels,) + end_shape + assert (len(tc2), tc2[0].shape[1]) == (n_labels,) + end_shape + for arr1, arr2 in zip(tc1, tc2): # list of arrays + assert_allclose(arr1, arr2, rtol=1e-8, atol=1e-16) + else: + assert tc1.shape == (n_labels + len(vol_means),) + end_shape + assert tc2.shape == (n_labels + len(vol_means),) + end_shape + assert_allclose(tc1, tc2, rtol=1e-8, atol=1e-16) if mode == "auto": use_mode = "mean" if vector else "mean_flip" else: use_mode = mode - # XXX we don't check pca_flip, probably should someday... - if use_mode in ("mean", "max", "mean_flip"): + if mode == "pca_flip": + for arr1, arr2 in zip(tc1, label_tcs[use_mode]): + assert_array_almost_equal(arr1, arr2) + elif use_mode is None: + for arr1, arr2 in zip( + tc1[:n_labels], label_tcs[use_mode] + ): # list of arrays + assert_allclose( + arr1, np.tile(arr2, (arr1.shape[0], 1)), rtol=1e-8, atol=1e-16 + ) + elif use_mode in ("mean", "max", "mean_flip"): assert_array_almost_equal(tc1[:n_labels], label_tcs[use_mode]) - assert_array_almost_equal(tc1[n_labels:], vol_means_t) + if mode is not None: + assert_array_almost_equal(tc1[n_labels:], vol_means_t) # test label with very few vertices (check SVD conditionals) label = Label(vertices=src[0]["vertno"][:2], hemi="lh") diff --git a/mne/utils/docs.py b/mne/utils/docs.py index f1e8369c5a5..ef311f30a71 100644 --- a/mne/utils/docs.py +++ b/mne/utils/docs.py @@ -1203,6 +1203,9 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75): - ``'auto'`` (default) Uses ``'mean_flip'`` when a standard source estimate is applied, and ``'mean'`` when a vector source estimate is supplied. +- ``None`` + No aggregation is performed, and an array of shape ``(n_vertices, n_times)`` is + returned. .. versionadded:: 0.21 Support for ``'auto'``, vector, and volume source estimates.