diff --git a/.travis.yml b/.travis.yml index cacba8fbb21..b966cc6a3cb 100644 --- a/.travis.yml +++ b/.travis.yml @@ -26,15 +26,15 @@ matrix: script: - export PATH="$HOME/miniconda/bin:$PATH" - yapf -dr modin/pandas - - flake8 . + - flake8 --max-line-length=88 . install: - ./.travis/install-dependencies.sh script: - export PATH="$HOME/miniconda/bin:$PATH" - - - python -m pytest modin/pandas/test/test_dataframe.py - - python -m pytest modin/pandas/test/test_concat.py - - python -m pytest modin/pandas/test/test_io.py - - python -m pytest modin/pandas/test/test_groupby.py + - if [[ "$PYTHON" == "2.7" ]]; then python .travis/strip-type-hints.py; fi + - python -m pytest --disable-pytest-warnings modin/pandas/test/test_dataframe.py + - python -m pytest --disable-pytest-warnings modin/pandas/test/test_concat.py + - python -m pytest --disable-pytest-warnings modin/pandas/test/test_io.py + - python -m pytest --disable-pytest-warnings modin/pandas/test/test_groupby.py diff --git a/.travis/install-dependencies.sh b/.travis/install-dependencies.sh index 405c726ba8a..d91af1d9887 100755 --- a/.travis/install-dependencies.sh +++ b/.travis/install-dependencies.sh @@ -1,16 +1,57 @@ #!/usr/bin/env bash +set -e +set -x -if [[ "$PYTHON" == "2.7" ]]; then + +ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd) +echo "PYTHON is $PYTHON" + +platform="unknown" +unamestr="$(uname)" +if [[ "$unamestr" == "Linux" ]]; then + echo "Platform is linux." + platform="linux" +elif [[ "$unamestr" == "Darwin" ]]; then + echo "Platform is macosx." + platform="macosx" +else + echo "Unrecognized platform." + exit 1 +fi + +if [[ "$PYTHON" == "2.7" ]] && [[ "$platform" == "linux" ]]; then wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O miniconda.sh -nv bash miniconda.sh -b -p $HOME/miniconda export PATH="$HOME/miniconda/bin:$PATH" -elif [[ "$PYTHON" == "3.6" ]] || [[ "$LINT" == "1" ]]; then +elif [[ "$PYTHON" == "3.6" ]] && [[ "$platform" == "linux" ]]; then wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh -nv bash miniconda.sh -b -p $HOME/miniconda export PATH="$HOME/miniconda/bin:$PATH" conda install -y python==3.6.5 + +elif [[ "$PYTHON" == "2.7" ]] && [[ "$platform" == "macosx" ]]; then + wget https://repo.continuum.io/miniconda/Miniconda2-latest-MacOSX-x86_64.sh -O miniconda.sh -nv + bash miniconda.sh -b -p $HOME/miniconda + export PATH="$HOME/miniconda/bin:$PATH" + +elif [[ "$PYTHON" == "3.6" ]] && [[ "$platform" == "macosx" ]]; then + wget https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -O miniconda.sh -nv + bash miniconda.sh -b -p $HOME/miniconda + export PATH="$HOME/miniconda/bin:$PATH" + conda install -y python==3.6.5 + +elif [[ "$LINT" == "1" ]]; then + wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh -nv + bash miniconda.sh -b -p $HOME/miniconda + export PATH="$HOME/miniconda/bin:$PATH" + conda install -y python==3.6.5 + +else + echo "Unrecognized environment." + exit 1 fi pip install -r requirements.txt pip install -q pytest flake8 flake8-comprehensions yapf feather-format lxml openpyxl xlrd numpy + diff --git a/.travis/strip-type-hints.py b/.travis/strip-type-hints.py new file mode 100644 index 00000000000..308d80cd9fa --- /dev/null +++ b/.travis/strip-type-hints.py @@ -0,0 +1,22 @@ +from strip_hints import strip_file_to_string +import os +import fnmatch + + +# From https://stackoverflow.com/questions/2186525/use-a-glob-to-find-files-recursively-in-python # noqa: E501 +def find_files(directory, pattern): + for root, dirs, files in os.walk(directory): + for basename in files: + if fnmatch.fnmatch(basename, pattern): + filename = os.path.join(root, basename) + yield filename + + +# Go up to modin root +modin_path = os.path.relpath("../") + +for path in find_files(modin_path, '*.py'): + string = strip_file_to_string(path, to_empty=False, no_ast=False, + no_colon_move=False, only_assigns_and_defs=False) + with open(path, 'w') as f: + f.write(string) diff --git a/modin/__init__.py b/modin/__init__.py index a8f0507a64e..40a6bd47928 100644 --- a/modin/__init__.py +++ b/modin/__init__.py @@ -19,10 +19,30 @@ def _execute_cmd_in_temp_env(cmd): try: git_revision = _execute_cmd_in_temp_env(['git', 'rev-parse', 'HEAD']) - return git_revision.strip().decode('ascii') + return git_revision.strip().decode() except OSError: return "Unknown" +def get_execution_engine(): + # In the future, when there are multiple engines and different ways of + # backing the DataFrame, there will have to be some changed logic here to + # decide these things. In the meantime, we will use the currently supported + # execution engine + backing (Pandas + Ray). + return "Ray" + + +def get_partition_format(): + # See note above about engine + backing. + return "Pandas" + + __git_revision__ = git_version() __version__ = "0.1.2" +__execution_engine__ = get_execution_engine() +__partition_format__ = get_partition_format() + +# We don't want these used outside of this file. +del git_version +del get_execution_engine +del get_partition_format diff --git a/modin/data_management/__init__.py b/modin/data_management/__init__.py new file mode 100644 index 00000000000..e69de29bb2d diff --git a/modin/data_management/data_manager.py b/modin/data_management/data_manager.py new file mode 100644 index 00000000000..8aab730f22f --- /dev/null +++ b/modin/data_management/data_manager.py @@ -0,0 +1,2486 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import pandas + +from pandas.compat import string_types +from pandas.core.dtypes.cast import find_common_type +from pandas.core.dtypes.common import (_get_dtype_from_object, is_list_like, + is_numeric_dtype, + is_datetime_or_timedelta_dtype) +from pandas.core.index import _ensure_index + +from .partitioning.partition_collections import BlockPartitions + + +class PandasDataManager(object): + """This class implements the logic necessary for operating on partitions + with a Pandas backend. This logic is specific to Pandas.""" + + def __init__(self, + block_partitions_object: BlockPartitions, + index: pandas.Index, + columns: pandas.Index, + dtypes=None): + assert isinstance(block_partitions_object, BlockPartitions) + self.data = block_partitions_object + self.index = index + self.columns = columns + if dtypes is not None: + self._dtype_cache = dtypes + + def __constructor__(self, + block_paritions_object, + index, + columns, + dtypes=None): + """By default, constructor method will invoke an init""" + return type(self)(block_paritions_object, index, columns, dtypes) + + # Index, columns and dtypes objects + _dtype_cache = None + + def _get_dtype(self): + if self._dtype_cache is None: + + map_func = self._prepare_method(lambda df: df.dtypes) + + def dtype_builder(df): + return df.apply( + lambda row: find_common_type(row.values), axis=0) + + self._dtype_cache = self.data.full_reduce(map_func, dtype_builder, + 0) + self._dtype_cache.index = self.columns + return self._dtype_cache + + def _set_dtype(self, dtypes): + self._dtype_cache = dtypes + + dtypes = property(_get_dtype, _set_dtype) + + # These objects are currently not distributed. + _index_cache = None + _columns_cache = None + + def _get_index(self): + return self._index_cache + + def _get_columns(self): + return self._columns_cache + + def _validate_set_axis(self, new_labels, old_labels): + new_labels = _ensure_index(new_labels) + old_len = len(old_labels) + new_len = len(new_labels) + if old_len != new_len: + raise ValueError( + 'Length mismatch: Expected axis has %d elements, ' + 'new values have %d elements' % (old_len, new_len)) + return new_labels + + def _set_index(self, new_index): + if self._index_cache is None: + self._index_cache = _ensure_index(new_index) + else: + new_index = self._validate_set_axis(new_index, self._index_cache) + self._index_cache = new_index + + def _set_columns(self, new_columns): + if self._columns_cache is None: + self._columns_cache = _ensure_index(new_columns) + else: + new_columns = self._validate_set_axis(new_columns, + self._columns_cache) + self._columns_cache = new_columns + + columns = property(_get_columns, _set_columns) + index = property(_get_index, _set_index) + + # END Index, columns, and dtypes objects + + def compute_index(self, axis, data_object, compute_diff=True): + """Computes the index after a number of rows have been removed. + + Note: In order for this to be used properly, the indexes must not be + changed before you compute this. + + Args: + axis: The axis to extract the index from. + data_object: The new data object to extract the index from. + compute_diff: True to use `self` to compute the index from self + rather than data_object. This is used when the dimension of the + index may have changed, but the deleted rows/columns are + unknown. + + Returns: + A new pandas.Index object. + """ + + def pandas_index_extraction(df, axis): + if not axis: + return df.index + else: + try: + return df.columns + except AttributeError: + return pandas.Index([]) + + index_obj = self.index if not axis else self.columns + old_blocks = self.data if compute_diff else None + new_indices = data_object.get_indices( + axis=axis, + index_func=lambda df: pandas_index_extraction(df, axis), + old_blocks=old_blocks) + + return index_obj[new_indices] if compute_diff else new_indices + + # END Index and columns objects + + # Internal methods + # These methods are for building the correct answer in a modular way. + # Please be careful when changing these! + def _prepare_method(self, pandas_func, **kwargs): + """Prepares methods given various metadata. + Args: + pandas_func: The function to prepare. + + Returns + Helper function which handles potential transpose. + """ + if self._is_transposed: + + def helper(df, internal_indices=[]): + return pandas_func(df.T, **kwargs) + else: + + def helper(df, internal_indices=[]): + return pandas_func(df, **kwargs) + + return helper + + def numeric_columns(self): + """Returns the numeric columns of the Manager. + + Returns: + List of index names. + """ + columns = [] + for col, dtype in zip(self.columns, self.dtypes): + if is_numeric_dtype(dtype): + columns.append(col) + return columns + + def numeric_function_clean_dataframe(self, axis): + """Preprocesses numeric functions to clean dataframe and pick numeric indices. + + Args: + axis: '0' if columns and '1' if rows. + + Returns: + Tuple with return value(if any), indices to apply func to & cleaned Manager. + """ + result = None + data_manager = self + + # If no numeric columns and over columns, then return empty Series + if not axis and len(self.index) == 0: + result = pandas.Series(dtype=np.float64) + + nonnumeric = [ + col for col, dtype in zip(self.columns, self.dtypes) + if not is_numeric_dtype(dtype) + ] + if len(nonnumeric) == len(self.columns): + # If over rows and no numeric columns, return this + result = pandas.Series([np.NaN for _ in self.index]) + else: + data_manager = self.drop(columns=nonnumeric) + + return result, data_manager + + # END Internal methods + + # Metadata modification methods + def add_prefix(self, prefix): + new_column_names = self.columns.map(lambda x: str(prefix) + str(x)) + return self.__constructor__(self.data, self.index, new_column_names, + self._dtype_cache) + + def add_suffix(self, suffix): + new_column_names = self.columns.map(lambda x: str(x) + str(suffix)) + return self.__constructor__(self.data, self.index, new_column_names, + self._dtype_cache) + + # END Metadata modification methods + + # Copy + # For copy, we don't want a situation where we modify the metadata of the + # copies if we end up modifying something here. We copy all of the metadata + # to prevent that. + def copy(self): + return self.__constructor__(self.data.copy(), self.index.copy(), + self.columns.copy(), self._dtype_cache) + + # Append/Concat/Join (Not Merge) + # The append/concat/join operations should ideally never trigger remote + # compute. These operations should only ever be manipulations of the + # metadata of the resulting object. It should just be a simple matter of + # appending the other object's blocks and adding np.nan columns for the new + # columns, if needed. If new columns are added, some compute may be + # required, though it can be delayed. + # + # Currently this computation is not delayed, and it may make a copy of the + # DataFrame in memory. This can be problematic and should be fixed in the + # future. TODO (devin-petersohn): Delay reindexing + def _join_index_objects(self, axis, other_index, how, sort=True): + """Joins a pair of index objects (columns or rows) by a given strategy. + + Args: + axis: The axis index object to join (0 for columns, 1 for index). + other_index: The other_index to join on. + how: The type of join to join to make (e.g. right, left). + + Returns: + Joined indices. + """ + if isinstance(other_index, list): + joined_obj = self.columns if not axis else self.index + # TODO: revisit for performance + for obj in other_index: + joined_obj = joined_obj.join(obj, how=how) + + return joined_obj + if not axis: + return self.columns.join(other_index, how=how, sort=sort) + else: + return self.index.join(other_index, how=how, sort=sort) + + def join(self, other, **kwargs): + """Joins a list or two objects together + + Args: + other: The other object(s) to join on. + + Returns: + Joined objects. + """ + if isinstance(other, list): + return self._join_list_of_managers(other, **kwargs) + else: + return self._join_data_manager(other, **kwargs) + + def concat(self, axis, other, **kwargs): + """Concatenates two objects together. + + Args: + axis: The axis index object to join (0 for columns, 1 for index). + other: The other_index to concat with. + + Returns: + Concatenated objects. + """ + return self._append_list_of_managers(other, axis, **kwargs) + + def _append_list_of_managers(self, others, axis, **kwargs): + if not isinstance(others, list): + others = [others] + assert all(isinstance(other, type(self)) for other in others), \ + "Different Manager objects are being used. This is not allowed" + + sort = kwargs.get("sort", None) + join = kwargs.get("join", "outer") + ignore_index = kwargs.get("ignore_index", False) + + # Concatenating two managers requires aligning their indices. After the + # indices are aligned, it should just be a simple concatenation of the + # `BlockPartitions` objects. This should not require remote compute. + joined_axis = self._join_index_objects( + axis, + [other.columns if axis == 0 else other.index for other in others], + join, + sort=sort) + + # Since we are concatenating a list of managers, we will align all of + # the indices based on the `joined_axis` computed above. + to_append = [ + other.reindex(axis ^ 1, joined_axis).data for other in others + ] + new_self = self.reindex(axis ^ 1, joined_axis).data + new_data = new_self.concat(axis, to_append) + + if axis == 0: + # The indices will be appended to form the final index. + # If `ignore_index` is true, we create a RangeIndex that is the + # length of all of the index objects combined. This is the same + # behavior as pandas. + new_index = self.index.append([ + other.index for other in others + ]) if not ignore_index else pandas.RangeIndex( + len(self.index) + sum(len(other.index) for other in others)) + return self.__constructor__(new_data, new_index, joined_axis) + else: + # The columns will be appended to form the final columns. + new_columns = self.columns.append( + [other.columns for other in others]) + return self.__constructor__(new_data, joined_axis, new_columns) + + def _join_data_manager(self, other, **kwargs): + assert isinstance(other, type(self)), \ + "This method is for data manager objects only" + + # Uses join's default value (though should not revert to default) + how = kwargs.get("how", "left") + sort = kwargs.get("sort", False) + lsuffix = kwargs.get("lsuffix", "") + rsuffix = kwargs.get("rsuffix", "") + + joined_index = self._join_index_objects(1, other.index, how, sort=sort) + + to_join = other.reindex(0, joined_index).data + new_self = self.reindex(0, joined_index).data + + new_data = new_self.concat(1, to_join) + + # We are using proxy DataFrame objects to build the columns based on + # the `lsuffix` and `rsuffix`. + self_proxy = pandas.DataFrame(columns=self.columns) + other_proxy = pandas.DataFrame(columns=other.columns) + new_columns = self_proxy.join( + other_proxy, lsuffix=lsuffix, rsuffix=rsuffix).columns + + return self.__constructor__(new_data, joined_index, new_columns) + + def _join_list_of_managers(self, others, **kwargs): + assert isinstance(others, list), \ + "This method is for lists of DataManager objects only" + assert all(isinstance(other, type(self)) for other in others), \ + "Different Manager objects are being used. This is not allowed" + + # Uses join's default value (though should not revert to default) + how = kwargs.get("how", "left") + sort = kwargs.get("sort", False) + lsuffix = kwargs.get("lsuffix", "") + rsuffix = kwargs.get("rsuffix", "") + + joined_index = self._join_index_objects( + 1, [other.index for other in others], how, sort=sort) + + to_join = [other.reindex(0, joined_index).data for other in others] + new_self = self.reindex(0, joined_index).data + + new_data = new_self.concat(1, to_join) + + # This stage is to efficiently get the resulting columns, including the + # suffixes. + self_proxy = pandas.DataFrame(columns=self.columns) + others_proxy = [ + pandas.DataFrame(columns=other.columns) for other in others + ] + new_columns = self_proxy.join( + others_proxy, lsuffix=lsuffix, rsuffix=rsuffix).columns + + return self.__constructor__(new_data, joined_index, new_columns) + + # END Append/Concat/Join + + # Inter-Data operations (e.g. add, sub) + # These operations require two DataFrames and will change the shape of the + # data if the index objects don't match. An outer join + op is performed, + # such that columns/rows that don't have an index on the other DataFrame + # result in NaN values. + def inter_manager_operations(self, other, how_to_join, func): + """Inter-data operations (e.g. add, sub). + + Args: + other: The other Manager for the operation. + how_to_join: The type of join to join to make (e.g. right, outer). + + Returns: + New DataManager with new data and index. + """ + assert isinstance(other, type(self)), \ + "Must have the same DataManager subclass to perform this operation" + + joined_index = self._join_index_objects( + 1, other.index, how_to_join, sort=False) + new_columns = self._join_index_objects( + 0, other.columns, how_to_join, sort=False) + + reindexed_other = other.reindex(0, joined_index).data + reindexed_self = self.reindex(0, joined_index).data + + # THere is an interesting serialization anomaly that happens if we do + # not use the columns in `inter_data_op_builder` from here (e.g. if we + # pass them in). Passing them in can cause problems, so we will just + # use them from here. + self_cols = self.columns + other_cols = other.columns + + def inter_data_op_builder(left, right, self_cols, other_cols, func): + left.columns = self_cols + right.columns = other_cols + result = func(left, right) + result.columns = pandas.RangeIndex(len(result.columns)) + return result + + new_data = reindexed_self.inter_data_operation( + 1, + lambda l, r: inter_data_op_builder(l, r, self_cols, other_cols, func), + reindexed_other) + + return self.__constructor__(new_data, joined_index, new_columns) + + def _inter_df_op_handler(self, func, other, **kwargs): + """Helper method for inter-manager and scalar operations. + + Args: + func: The function to use on the Manager/scalar. + other: The other Manager/scalar. + + Returns: + New DataManager with new data and index. + """ + axis = kwargs.get("axis", 0) + + if isinstance(other, type(self)): + return self.inter_manager_operations( + other, "outer", lambda x, y: func(x, y, **kwargs)) + else: + return self.scalar_operations(axis, other, + lambda df: func(df, other, **kwargs)) + + def add(self, other, **kwargs): + """Adds this manager with other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with added data and new index. + """ + # TODO: need to write a prepare_function for inter_df operations + func = pandas.DataFrame.add + return self._inter_df_op_handler(func, other, **kwargs) + + def div(self, other, **kwargs): + """Divides this manager with other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with divided data and new index. + """ + func = pandas.DataFrame.div + return self._inter_df_op_handler(func, other, **kwargs) + + def eq(self, other, **kwargs): + """Compares equality (==) with other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with compared data and index. + """ + func = pandas.DataFrame.eq + return self._inter_df_op_handler(func, other, **kwargs) + + def floordiv(self, other, **kwargs): + """Floordivs this manager with other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with floordiv-ed data and index. + """ + func = pandas.DataFrame.floordiv + return self._inter_df_op_handler(func, other, **kwargs) + + def ge(self, other, **kwargs): + """Compares this manager >= than other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with compared data and index. + """ + func = pandas.DataFrame.ge + return self._inter_df_op_handler(func, other, **kwargs) + + def gt(self, other, **kwargs): + """Compares this manager > than other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with compared data and index. + """ + func = pandas.DataFrame.gt + return self._inter_df_op_handler(func, other, **kwargs) + + def le(self, other, **kwargs): + """Compares this manager < than other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with compared data and index. + """ + func = pandas.DataFrame.le + return self._inter_df_op_handler(func, other, **kwargs) + + def lt(self, other, **kwargs): + """Compares this manager <= than other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with compared data and index. + """ + func = pandas.DataFrame.lt + return self._inter_df_op_handler(func, other, **kwargs) + + def mod(self, other, **kwargs): + """Mods this manager against other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with mod-ed data and index. + """ + func = pandas.DataFrame.mod + return self._inter_df_op_handler(func, other, **kwargs) + + def mul(self, other, **kwargs): + """Multiplies this manager against other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with multiplied data and index. + """ + func = pandas.DataFrame.mul + return self._inter_df_op_handler(func, other, **kwargs) + + def ne(self, other, **kwargs): + """Compares this manager != to other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with compared data and index. + """ + func = pandas.DataFrame.ne + return self._inter_df_op_handler(func, other, **kwargs) + + def pow(self, other, **kwargs): + """Exponential power of this manager to other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with pow-ed data and index. + """ + func = pandas.DataFrame.pow + return self._inter_df_op_handler(func, other, **kwargs) + + def rdiv(self, other, **kwargs): + """Divides other object (manager or scalar) with this manager. + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with divided data and new index. + """ + func = pandas.DataFrame.rdiv + return self._inter_df_op_handler(func, other, **kwargs) + + def rpow(self, other, **kwargs): + """Exponential power of other object (manager or scalar) to this manager. + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with pow-ed data and new index. + """ + func = pandas.DataFrame.rpow + return self._inter_df_op_handler(func, other, **kwargs) + + def rsub(self, other, **kwargs): + """Subtracts other object (manager or scalar) from this manager. + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with subtracted data and new index. + """ + func = pandas.DataFrame.rsub + return self._inter_df_op_handler(func, other, **kwargs) + + def sub(self, other, **kwargs): + """Subtracts this manager from other object (manager or scalar). + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with subtracted data and new index. + """ + func = pandas.DataFrame.sub + return self._inter_df_op_handler(func, other, **kwargs) + + def truediv(self, other, **kwargs): + """Divides this manager with other object (manager or scalar). + Functionally same as div + + Args: + other: The other object (manager or scalar). + + Returns: + New DataManager with divided data and new index. + """ + func = pandas.DataFrame.truediv + return self._inter_df_op_handler(func, other, **kwargs) + + def update(self, other, **kwargs): + """Uses other manager to update corresponding values in this manager. + + Args: + other: The other manager. + + Returns: + New DataManager with updated data and index. + """ + assert isinstance(other, type(self)), \ + "Must have the same DataManager subclass to perform this operation" + + def update_builder(df, other, **kwargs): + df.update(other, **kwargs) + return df + + return self._inter_df_op_handler(update_builder, other, **kwargs) + + def where(self, cond, other, **kwargs): + """Gets values from this manager where cond is true else from other. + + Args: + cond: Condition on which to evaluate values. + + Returns: + New DataManager with updated data and index. + """ + + assert isinstance(cond, type(self)), \ + "Must have the same DataManager subclass to perform this operation" + + if isinstance(other, type(self)): + # Note: Currently we are doing this with two maps across the entire + # data. This can be done with a single map, but it will take a + # modification in the `BlockPartition` class. + # If this were in one pass it would be ~2x faster. + # TODO (devin-petersohn) rewrite this to take one pass. + def where_builder_first_pass(cond, other, **kwargs): + return cond.where(cond, other, **kwargs) + + def where_builder_second_pass(df, new_other, **kwargs): + return df.where(new_other.eq(True), new_other, **kwargs) + + # We are required to perform this reindexing on everything to + # shuffle the data together + reindexed_cond = cond.reindex(0, self.index).data + reindexed_other = other.reindex(0, self.index).data + reindexed_self = self.reindex(0, self.index).data + + first_pass = reindexed_cond.inter_data_operation( + 1, lambda l, r: where_builder_first_pass(l, r, **kwargs), + reindexed_other) + final_pass = reindexed_self.inter_data_operation( + 1, lambda l, r: where_builder_second_pass(l, r, **kwargs), + first_pass) + return self.__constructor__(final_pass, self.index, self.columns) + else: + axis = kwargs.get("axis", 0) + # Rather than serializing and passing in the index/columns, we will + # just change this index to match the internal index. + if isinstance(other, pandas.Series): + other.index = [i for i in range(len(other))] + + def where_builder_series(df, cond, other, **kwargs): + return df.where(cond, other, **kwargs) + + reindexed_self = self.reindex( + axis, self.index if not axis else self.columns).data + reindexed_cond = cond.reindex( + axis, self.index if not axis else self.columns).data + + new_data = reindexed_self.inter_data_operation( + axis, lambda l, r: where_builder_series(l, r, other, **kwargs), + reindexed_cond) + return self.__constructor__(new_data, self.index, self.columns) + + # END Inter-Data operations + + # Single Manager scalar operations (e.g. add to scalar, list of scalars) + def scalar_operations(self, axis, scalar, func): + """Handler for mapping scalar operations across a Manager. + + Args: + axis: The axis index object to execute the function on. + scalar: The scalar value to map. + func: The function to use on the Manager with the scalar. + + Returns: + New DataManager with updated data and new index. + """ + if isinstance(scalar, list): + + new_data = self.map_across_full_axis(axis, func) + return self.__constructor__(new_data, self.index, self.columns) + else: + return self.map_partitions(func) + + # END Single Manager scalar operations + + # Reindex/reset_index (may shuffle data) + def reindex(self, axis, labels, **kwargs): + """Fits a new index for this Manger. + + Args: + axis: The axis index object to target the reindex on. + labels: New labels to conform 'axis' on to. + + Returns: + New DataManager with updated data and new index. + """ + + # To reindex, we need a function that will be shipped to each of the + # partitions. + def reindex_builer(df, axis, old_labels, new_labels, **kwargs): + if axis: + df.columns = old_labels + new_df = df.reindex(columns=new_labels, **kwargs) + # reset the internal columns back to a RangeIndex + new_df.columns = pandas.RangeIndex(len(new_df.columns)) + return new_df + else: + df.index = old_labels + new_df = df.reindex(index=new_labels, **kwargs) + # reset the internal index back to a RangeIndex + new_df.reset_index(inplace=True, drop=True) + return new_df + + old_labels = self.columns if axis else self.index + + new_index = self.index if axis else labels + new_columns = labels if axis else self.columns + + func = self._prepare_method( + lambda df: reindex_builer(df, axis, old_labels, labels, **kwargs)) + + # The reindex can just be mapped over the axis we are modifying. This + # is for simplicity in implementation. We specify num_splits here + # because if we are repartitioning we should (in the future). + # Additionally this operation is often followed by an operation that + # assumes identical partitioning. Internally, we *may* change the + # partitioning during a map across a full axis. + new_data = self.map_across_full_axis(axis, func) + return self.__constructor__(new_data, new_index, new_columns) + + def reset_index(self, **kwargs): + """Removes all levels from index and sets a default level_0 index. + + Returns: + New DataManager with updated data and reset index. + """ + drop = kwargs.get("drop", False) + new_index = pandas.RangeIndex(len(self.index)) + + if not drop: + new_column_name = "index" if "index" not in self.columns else "level_0" + new_columns = self.columns.insert(0, new_column_name) + result = self.insert(0, new_column_name, self.index) + return self.__constructor__(result.data, new_index, new_columns) + else: + # The copies here are to ensure that we do not give references to + # this object for the purposes of updates. + return self.__constructor__(self.data.copy(), new_index, + self.columns.copy(), self._dtype_cache) + + # END Reindex/reset_index + + # Transpose + # For transpose, we aren't going to immediately copy everything. Since the + # actual transpose operation is very fast, we will just do it before any + # operation that gets called on the transposed data. See _prepare_method + # for how the transpose is applied. + # + # Our invariants assume that the blocks are transposed, but not the + # data inside. Sometimes we have to reverse this transposition of blocks + # for simplicity of implementation. + # + # _is_transposed, 0 for False or non-transposed, 1 for True or transposed. + _is_transposed = 0 + + def transpose(self, *args, **kwargs): + """Transposes this DataManager. + + Returns: + Transposed new DataManager. + """ + new_data = self.data.transpose(*args, **kwargs) + # Switch the index and columns and transpose the + new_manager = self.__constructor__(new_data, self.columns, self.index) + # It is possible that this is already transposed + new_manager._is_transposed = self._is_transposed ^ 1 + return new_manager + + # END Transpose + + # Full Reduce operations + # + # These operations result in a reduced dimensionality of data. + # Currently, this means a Pandas Series will be returned, but in the future + # we will implement a Distributed Series, and this will be returned + # instead. + def full_reduce(self, axis, map_func, reduce_func=None, + numeric_only=False): + """Apply function that will reduce the data to a Pandas Series. + + Args: + axis: 0 for columns and 1 for rows. Default is 0. + map_func: Callable function to map the dataframe. + reduce_func: Callable function to reduce the dataframe. If none, + then apply map_func twice. + numeric_only: Apply only over the numeric rows. + + Return: + Returns Pandas Series containing the results from map_func and reduce_func. + """ + if numeric_only: + result, data_manager = self.numeric_function_clean_dataframe(axis) + if result is not None: + return result + else: + data_manager = self + if reduce_func is None: + reduce_func = map_func + + # The XOR here will ensure that we reduce over the correct axis that + # exists on the internal partitions. We flip the axis + result = data_manager.data.full_reduce(map_func, reduce_func, + axis ^ self._is_transposed) + if not axis: + result.index = data_manager.columns + else: + result.index = data_manager.index + return result + + def count(self, **kwargs): + """Counts the number of non-NaN objects for each column or row. + + Return: + Pandas series containing counts of non-NaN objects from each column or row. + """ + axis = kwargs.get("axis", 0) + numeric_only = kwargs.get("numeric_only", False) + map_func = self._prepare_method(pandas.DataFrame.count, **kwargs) + reduce_func = self._prepare_method(pandas.DataFrame.sum, **kwargs) + return self.full_reduce(axis, map_func, reduce_func, numeric_only) + + def max(self, **kwargs): + """Returns the maximum value for each column or row. + + Return: + Pandas series with the maximum values from each column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + numeric_only = True if axis else kwargs.get("numeric_only", False) + func = self._prepare_method(pandas.DataFrame.max, **kwargs) + return self.full_reduce(axis, func, numeric_only=numeric_only) + + def mean(self, **kwargs): + """Returns the mean for each numerical column or row. + + Return: + Pandas series containing the mean from each numerical column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + func = self._prepare_method(pandas.DataFrame.mean, **kwargs) + return self.full_reduce(axis, func, numeric_only=True) + + def min(self, **kwargs): + """Returns the minimum from each column or row. + + Return: + Pandas series with the minimum value from each column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + numeric_only = True if axis else kwargs.get("numeric_only", False) + func = self._prepare_method(pandas.DataFrame.min, **kwargs) + return self.full_reduce(axis, func, numeric_only=numeric_only) + + def prod(self, **kwargs): + """Returns the product of each numerical column or row. + + Return: + Pandas series with the product of each numerical column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + func = self._prepare_method(pandas.DataFrame.prod, **kwargs) + return self.full_reduce(axis, func, numeric_only=True) + + def sum(self, **kwargs): + """Returns the sum of each numerical column or row. + + Return: + Pandas series with the sum of each numerical column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + numeric_only = True if axis else kwargs.get("numeric_only", False) + func = self._prepare_method(pandas.DataFrame.sum, **kwargs) + return self.full_reduce(axis, func, numeric_only=numeric_only) + + # END Full Reduce operations + + # Map partitions operations + # These operations are operations that apply a function to every partition. + def map_partitions(self, func, new_dtypes=None): + return self.__constructor__( + self.data.map_across_blocks(func), self.index, self.columns, + new_dtypes) + + def abs(self): + func = self._prepare_method(pandas.DataFrame.abs) + new_dtypes = pandas.Series([np.dtype('float64') for _ in self.columns], + index=self.columns) + return self.map_partitions(func, new_dtypes=new_dtypes) + + def applymap(self, func): + remote_func = self._prepare_method( + pandas.DataFrame.applymap, func=func) + return self.map_partitions(remote_func) + + def isin(self, **kwargs): + func = self._prepare_method(pandas.DataFrame.isin, **kwargs) + new_dtypes = pandas.Series([np.dtype('bool') for _ in self.columns], + index=self.columns) + return self.map_partitions(func, new_dtypes=new_dtypes) + + def isna(self): + func = self._prepare_method(pandas.DataFrame.isna) + new_dtypes = pandas.Series([np.dtype('bool') for _ in self.columns], + index=self.columns) + return self.map_partitions(func, new_dtypes=new_dtypes) + + def isnull(self): + func = self._prepare_method(pandas.DataFrame.isnull) + new_dtypes = pandas.Series([np.dtype('bool') for _ in self.columns], + index=self.columns) + return self.map_partitions(func, new_dtypes=new_dtypes) + + def negative(self, **kwargs): + func = self._prepare_method(pandas.DataFrame.__neg__, **kwargs) + return self.map_partitions(func) + + def notna(self): + func = self._prepare_method(pandas.DataFrame.notna) + new_dtypes = pandas.Series([np.dtype('bool') for _ in self.columns], + index=self.columns) + return self.map_partitions(func, new_dtypes=new_dtypes) + + def notnull(self): + func = self._prepare_method(pandas.DataFrame.notnull) + new_dtypes = pandas.Series([np.dtype('bool') for _ in self.columns], + index=self.columns) + return self.map_partitions(func, new_dtypes=new_dtypes) + + def round(self, **kwargs): + func = self._prepare_method(pandas.DataFrame.round, **kwargs) + return self.map_partitions(func, new_dtypes=self._dtype_cache) + + # END Map partitions operations + + # Map partitions across select indices + def astype(self, col_dtypes, **kwargs): + """Converts columns dtypes to given dtypes. + + Args: + col_dtypes: Dictionary of {col: dtype,...} where col is the column + name and dtype is a numpy dtype. + + Returns: + DataFrame with updated dtypes. + """ + # Group indices to update by dtype for less map operations + dtype_indices = {} + columns = col_dtypes.keys() + numeric_indices = list(self.columns.get_indexer_for(columns)) + + # Create Series for the updated dtypes + new_dtypes = self.dtypes.copy() + + for i, column in enumerate(columns): + + dtype = col_dtypes[column] + if dtype != self.dtypes[column]: + # Only add dtype only if different + if dtype in dtype_indices.keys(): + dtype_indices[dtype].append(numeric_indices[i]) + else: + dtype_indices[dtype] = [numeric_indices[i]] + + # Update the new dtype series to the proper pandas dtype + new_dtype = np.dtype(dtype) + if dtype != np.int32 and new_dtype == np.int32: + new_dtype = np.dtype('int64') + elif dtype != np.float32 and new_dtype == np.float32: + new_dtype = np.dtype('float64') + new_dtypes[column] = new_dtype + + # Update partitions for each dtype that is updated + new_data = self.data + for dtype in dtype_indices.keys(): + + def astype(df, internal_indices=[]): + block_dtypes = {} + for ind in internal_indices: + block_dtypes[df.columns[ind]] = dtype + return df.astype(block_dtypes) + + new_data = new_data.apply_func_to_select_indices( + 0, astype, dtype_indices[dtype], keep_remaining=True) + + return self.__constructor__(new_data, self.index, self.columns, + new_dtypes) + + # END Map partitions across select indices + + # Column/Row partitions reduce operations + # + # These operations result in a reduced dimensionality of data. + # Currently, this means a Pandas Series will be returned, but in the future + # we will implement a Distributed Series, and this will be returned + # instead. + def full_axis_reduce(self, func, axis): + """Applies map that reduce Manager to series but require knowledge of full axis. + + Args: + func: Function to reduce the Manager by. This function takes in a Manager. + + Return: + Pandas series containing the reduced data. + """ + result = self.data.map_across_full_axis(axis, func).to_pandas( + self._is_transposed) + + if not axis: + result.index = self.columns + else: + result.index = self.index + + return result + + def all(self, **kwargs): + """Returns whether all the elements are true, potentially over an axis. + + Return: + Pandas Series containing boolean values. + """ + axis = kwargs.get("axis", 0) + func = self._prepare_method(pandas.DataFrame.all, **kwargs) + return self.full_axis_reduce(func, axis) + + def any(self, **kwargs): + """Returns whether any element is true over the requested axis. + + Return: + Pandas Series containing boolean values. + """ + axis = kwargs.get("axis", 0) + func = self._prepare_method(pandas.DataFrame.any, **kwargs) + return self.full_axis_reduce(func, axis) + + def first_valid_index(self): + """Returns index of first non-NaN/NULL value. + + Return: + Scalar of index name. + """ + + # It may be possible to incrementally check each partition, but this + # computation is fairly cheap. + def first_valid_index_builder(df): + df.index = pandas.RangeIndex(len(df.index)) + return df.apply(lambda df: df.first_valid_index()) + + func = self._prepare_method(first_valid_index_builder) + # We get the minimum from each column, then take the min of that to get + # first_valid_index. + first_result = self.full_axis_reduce(func, 0) + + return self.index[first_result.min()] + + def _post_process_idx_ops(self, axis, intermediate_result): + """Converts internal index to external index. + + Args: + axis: 0 for columns and 1 for rows. Defaults to 0. + intermediate_result: Internal index of self.data. + + Returns: + External index of the intermediate_result. + """ + index = self.index if not axis else self.columns + result = intermediate_result.apply(lambda x: index[x]) + return result + + def idxmax(self, **kwargs): + """Returns the first occurance of the maximum over requested axis. + + Returns: + Series containing the maximum of each column or axis. + """ + + # The reason for the special treatment with idxmax/min is because we + # need to communicate the row number back here. + def idxmax_builder(df, **kwargs): + df.index = pandas.RangeIndex(len(df.index)) + return df.idxmax(**kwargs) + + axis = kwargs.get("axis", 0) + func = self._prepare_method(idxmax_builder, **kwargs) + max_result = self.full_axis_reduce(func, axis) + # Because our internal partitions don't track the external index, we + # have to do a conversion. + return self._post_process_idx_ops(axis, max_result) + + def idxmin(self, **kwargs): + """Returns the first occurance of the minimum over requested axis. + + Returns: + Series containing the minimum of each column or axis. + """ + + # The reason for the special treatment with idxmax/min is because we + # need to communicate the row number back here. + def idxmin_builder(df, **kwargs): + df.index = pandas.RangeIndex(len(df.index)) + return df.idxmin(**kwargs) + + axis = kwargs.get("axis", 0) + func = self._prepare_method(idxmin_builder, **kwargs) + min_result = self.full_axis_reduce(func, axis) + # Because our internal partitions don't track the external index, we + # have to do a conversion. + return self._post_process_idx_ops(axis, min_result) + + def last_valid_index(self): + """Returns index of last non-NaN/NULL value. + + Return: + Scalar of index name. + """ + + def last_valid_index_builder(df): + df.index = pandas.RangeIndex(len(df.index)) + return df.apply(lambda df: df.last_valid_index()) + + func = self._prepare_method(last_valid_index_builder) + # We get the maximum from each column, then take the max of that to get + # last_valid_index. + first_result = self.full_axis_reduce(func, 0) + + return self.index[first_result.max()] + + def memory_usage(self, **kwargs): + """Returns the memory usage of each column. + + Returns: + Series containing the memory usage of each column. + """ + + def memory_usage_builder(df, **kwargs): + return df.memory_usage(index=False, deep=deep) + + deep = kwargs.get('deep', False) + func = self._prepare_method(memory_usage_builder, **kwargs) + return self.full_axis_reduce(func, 0) + + def nunique(self, **kwargs): + """Returns the number of unique items over each column or row. + + Returns: + Series of ints indexed by column or index names. + """ + axis = kwargs.get("axis", 0) + func = self._prepare_method(pandas.DataFrame.nunique, **kwargs) + return self.full_axis_reduce(func, axis) + + def to_datetime(self, **kwargs): + """Converts the Manager to a Series of DateTime objects. + + Returns: + Series of DateTime objects. + """ + columns = self.columns + + def to_datetime_builder(df, **kwargs): + df.columns = columns + return pandas.to_datetime(df, **kwargs) + + func = self._prepare_method(to_datetime_builder, **kwargs) + return self.full_axis_reduce(func, 1) + + # END Column/Row partitions reduce operations + + # Column/Row partitions reduce operations over select indices + # + # These operations result in a reduced dimensionality of data. + # Currently, this means a Pandas Series will be returned, but in the future + # we will implement a Distributed Series, and this will be returned + # instead. + def full_axis_reduce_along_select_indices(self, + func, + axis, + index, + pandas_result=True): + """Reduce Manger along select indices using function that needs full axis. + + Args: + func: Callable that reduces Manager to Series using full knowledge of an + axis. + axis: 0 for columns and 1 for rows. Defaults to 0. + index: Index of the resulting series. + pandas_result: Return the result as a Pandas Series instead of raw data. + + Returns: + Either a Pandas Series with index or BlockPartitions object. + """ + # Convert indices to numeric indices + old_index = self.index if axis else self.columns + numeric_indices = [ + i for i, name in enumerate(old_index) if name in index + ] + result = self.data.apply_func_to_select_indices_along_full_axis( + axis, func, numeric_indices) + + if pandas_result: + result = result.to_pandas(self._is_transposed) + result.index = index + return result + + def describe(self, **kwargs): + """Generates descriptive statistics. + + Returns: + DataFrame object containing the descriptive statistics of the DataFrame. + """ + # Only describe numeric if there are numeric + # Otherwise, describe all + new_index = self.numeric_columns() + if len(new_index) != 0: + numeric = True + else: + numeric = False + # If no numeric dtypes, then do all + new_index = self.columns + + def describe_builder(df, **kwargs): + return pandas.DataFrame.describe(df, **kwargs) + + # Apply describe and update indices, columns, and dtypes + func = self._prepare_method(describe_builder, **kwargs) + new_data = self.full_axis_reduce_along_select_indices( + func, 0, new_index, False) + new_index = self.compute_index(0, new_data, False) + new_columns = self.compute_index(1, new_data, True) + if numeric: + new_dtypes = pandas.Series([np.float64 for _ in new_columns], + index=new_columns) + else: + new_dtypes = pandas.Series([np.object for _ in new_columns], + index=new_columns) + + return self.__constructor__(new_data, new_index, new_columns, + new_dtypes) + + def median(self, **kwargs): + """Returns median of each column or row. + + Returns: + Series containing the median of each column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + + result, data_manager = self.numeric_function_clean_dataframe(axis) + if result is not None: + return result + + def median_builder(df, **kwargs): + return pandas.DataFrame.median(df, **kwargs) + + func = self._prepare_method(median_builder, **kwargs) + return data_manager.full_axis_reduce(func, axis) + + def skew(self, **kwargs): + """Returns skew of each column or row. + + Returns: + Series containing the skew of each column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + + result, data_manager = self.numeric_function_clean_dataframe(axis) + if result is not None: + return result + + def skew_builder(df, **kwargs): + return pandas.DataFrame.skew(df, **kwargs) + + func = self._prepare_method(skew_builder, **kwargs) + return data_manager.full_axis_reduce(func, axis) + + def std(self, **kwargs): + """Returns standard deviation of each column or row. + + Returns: + Series containing the standard deviation of each column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + + result, data_manager = self.numeric_function_clean_dataframe(axis) + if result is not None: + return result + + def std_builder(df, **kwargs): + return pandas.DataFrame.std(df, **kwargs) + + func = self._prepare_method(std_builder, **kwargs) + return data_manager.full_axis_reduce(func, axis) + + def var(self, **kwargs): + """Returns varience of each column or row. + + Returns: + Series containing the varience of each column or row. + """ + # Pandas default is 0 (though not mentioned in docs) + axis = kwargs.get("axis", 0) + + result, data_manager = self.numeric_function_clean_dataframe(axis) + if result is not None: + return result + + func = data_manager._prepare_method(pandas.DataFrame.var, **kwargs) + return data_manager.full_axis_reduce(func, axis) + + def quantile_for_single_value(self, **kwargs): + """Returns quantile of each column or row. + + Returns: + Series containing the quantile of each column or row. + """ + axis = kwargs.get("axis", 0) + q = kwargs.get("q", 0.5) + numeric_only = kwargs.get("numeric_only", True) + assert type(q) is float + + if numeric_only: + result, data_manager = self.numeric_function_clean_dataframe(axis) + if result is not None: + return result + else: + data_manager = self + + def quantile_builder(df, **kwargs): + try: + return pandas.DataFrame.quantile(df, **kwargs) + except ValueError: + return pandas.Series() + + func = self._prepare_method(quantile_builder, **kwargs) + result = data_manager.full_axis_reduce(func, axis) + result.name = q + return result + + # END Column/Row partitions reduce operations over select indices + + # Map across rows/columns + # These operations require some global knowledge of the full column/row + # that is being operated on. This means that we have to put all of that + # data in the same place. + def map_across_full_axis(self, axis, func): + return self.data.map_across_full_axis(axis, func) + + def _cumulative_builder(self, func, **kwargs): + axis = kwargs.get("axis", 0) + func = self._prepare_method(func, **kwargs) + new_data = self.map_across_full_axis(axis, func) + return self.__constructor__(new_data, self.index, self.columns, + self._dtype_cache) + + def cumsum(self, **kwargs): + return self._cumulative_builder(pandas.DataFrame.cumsum, **kwargs) + + def cummax(self, **kwargs): + return self._cumulative_builder(pandas.DataFrame.cummax, **kwargs) + + def cummin(self, **kwargs): + return self._cumulative_builder(pandas.DataFrame.cummin, **kwargs) + + def cumprod(self, **kwargs): + return self._cumulative_builder(pandas.DataFrame.cumprod, **kwargs) + + def diff(self, **kwargs): + + axis = kwargs.get("axis", 0) + + func = self._prepare_method(pandas.DataFrame.diff, **kwargs) + new_data = self.map_across_full_axis(axis, func) + + return self.__constructor__(new_data, self.index, self.columns) + + def dropna(self, **kwargs): + """Returns a new DataManager with null values dropped along given axis. + + Return: + a new DataManager + """ + axis = kwargs.get("axis", 0) + subset = kwargs.get("subset") + thresh = kwargs.get("thresh") + how = kwargs.get("how", "any") + # We need to subset the axis that we care about with `subset`. This + # will be used to determine the number of values that are NA. + if subset is not None: + if not axis: + compute_na = self.getitem_column_array(subset) + else: + compute_na = self.getitem_row_array(subset) + else: + compute_na = self + + if not isinstance(axis, list): + axis = [axis] + # We are building this dictionary first to determine which columns + # and rows to drop. This way we do not drop some columns before we + # know which rows need to be dropped. + if thresh is not None: + # Count the number of NA values and specify which are higher than + # thresh. + drop_values = { + ax ^ 1: compute_na.isna().sum(axis=ax ^ 1) > thresh + for ax in axis + } + else: + drop_values = { + ax ^ 1: getattr(compute_na.isna(), how)(axis=ax ^ 1) + for ax in axis + } + + if 0 not in drop_values: + drop_values[0] = None + + if 1 not in drop_values: + drop_values[1] = None + + rm_from_index = [obj for obj in compute_na.index[drop_values[1]] + ] if drop_values[1] is not None else None + rm_from_columns = [ + obj for obj in compute_na.columns[drop_values[0]] + ] if drop_values[0] is not None else None + else: + rm_from_index = compute_na.index[ + drop_values[1]] if drop_values[1] is not None else None + rm_from_columns = compute_na.columns[ + drop_values[0]] if drop_values[0] is not None else None + + return self.drop(index=rm_from_index, columns=rm_from_columns) + + def eval(self, expr, **kwargs): + """Returns a new DataManager with expr evaluated on columns. + + Args: + expr: The string expression to evaluate. + + Returns: + A new PandasDataManager with new columns after applying expr. + """ + inplace = kwargs.get("inplace", False) + + columns = self.index if self._is_transposed else self.columns + index = self.columns if self._is_transposed else self.index + + # Make a copy of columns and eval on the copy to determine if result type is + # series or not + columns_copy = pandas.DataFrame(columns=self.columns) + columns_copy = columns_copy.eval(expr, inplace=False, **kwargs) + expect_series = isinstance(columns_copy, pandas.Series) + + # if there is no assignment, then we simply save the results + # in the first column + if expect_series: + if inplace: + raise ValueError( + "Cannot operate inplace if there is no assignment") + else: + expr = "{0} = {1}".format(columns[0], expr) + + def eval_builder(df, **kwargs): + df.columns = columns + result = df.eval(expr, inplace=False, **kwargs) + result.columns = pandas.RangeIndex(0, len(result.columns)) + return result + + func = self._prepare_method(eval_builder, **kwargs) + new_data = self.map_across_full_axis(1, func) + + if expect_series: + result = new_data.to_pandas()[0] + result.name = columns_copy.name + result.index = index + return result + else: + columns = columns_copy.columns + return self.__constructor__(new_data, self.index, columns) + + def mode(self, **kwargs): + """Returns a new DataManager with modes calculated for each label along given axis. + + Returns: + A new PandasDataManager with modes calculated. + """ + axis = kwargs.get("axis", 0) + func = self._prepare_method(pandas.DataFrame.mode, **kwargs) + new_data = self.map_across_full_axis(axis, func) + + counts = self.__constructor__(new_data, self.index, + self.columns).notnull().sum(axis=axis) + max_count = counts.max() + + new_index = pandas.RangeIndex(max_count) if not axis else self.index + new_columns = self.columns if not axis else pandas.RangeIndex( + max_count) + + # We have to reindex the DataFrame so that all of the partitions are + # matching in shape. The next steps ensure this happens. + final_labels = new_index if not axis else new_columns + # We build these intermediate objects to avoid depending directly on + # the underlying implementation. + final_data = self.__constructor__( + new_data, new_index, new_columns).map_across_full_axis( + axis, lambda df: df.reindex(axis=axis, labels=final_labels)) + return self.__constructor__(final_data, new_index, new_columns, + self._dtype_cache) + + def fillna(self, **kwargs): + """Replaces NaN values with the method provided. + + Returns: + A new PandasDataManager with null values filled. + """ + axis = kwargs.get("axis", 0) + value = kwargs.get("value") + + if isinstance(value, dict): + value = kwargs.pop("value") + + if axis == 0: + index = self.columns + else: + index = self.index + value = { + idx: value[key] + for key in value for idx in index.get_indexer_for([key]) + } + + def fillna_dict_builder(df, func_dict={}): + return df.fillna(value=func_dict, **kwargs) + + new_data = self.data.apply_func_to_select_indices( + axis, fillna_dict_builder, value, keep_remaining=True) + return self.__constructor__(new_data, self.index, self.columns) + else: + func = self._prepare_method(pandas.DataFrame.fillna, **kwargs) + new_data = self.map_across_full_axis(axis, func) + return self.__constructor__(new_data, self.index, self.columns) + + def query(self, expr, **kwargs): + """Query columns of the DataManager with a boolean expression. + + Args: + expr: Boolean expression to query the columns with. + + Returns: + DataManager containing the rows where the boolean expression is satisfied. + """ + columns = self.columns + + def query_builder(df, **kwargs): + # This is required because of an Arrow limitation + # TODO revisit for Arrow error + df = df.copy() + df.index = pandas.RangeIndex(len(df)) + df.columns = columns + df.query(expr, inplace=True, **kwargs) + df.columns = pandas.RangeIndex(len(df.columns)) + return df + + func = self._prepare_method(query_builder, **kwargs) + new_data = self.map_across_full_axis(1, func) + # Query removes rows, so we need to update the index + new_index = self.compute_index(0, new_data, True) + + return self.__constructor__(new_data, new_index, self.columns, + self.dtypes) + + def rank(self, **kwargs): + """Computes numerical rank along axis. Equal values are set to the average. + + Returns: + DataManager containing the ranks of the values along an axis. + """ + axis = kwargs.get("axis", 0) + numeric_only = True if axis else kwargs.get("numeric_only", False) + + func = self._prepare_method(pandas.DataFrame.rank, **kwargs) + new_data = self.map_across_full_axis(axis, func) + + # Since we assume no knowledge of internal state, we get the columns + # from the internal partitions. + if numeric_only: + new_columns = self.compute_index(1, new_data, True) + else: + new_columns = self.columns + new_dtypes = pandas.Series([np.float64 for _ in new_columns], + index=new_columns) + return self.__constructor__(new_data, self.index, new_columns, + new_dtypes) + + # END Map across rows/columns + + # Map across rows/columns + # These operations require some global knowledge of the full column/row + # that is being operated on. This means that we have to put all of that + # data in the same place. + def map_across_full_axis_select_indices(self, + axis, + func, + indices, + keep_remaining=False): + """Maps function to select indices along full axis. + + Args: + axis: 0 for columns and 1 for rows. + func: Callable mapping function over the BlockParitions. + indices: indices along axis to map over. + keep_remaining: True if keep indices where function was not applied. + + Returns: + BlockPartitions containing the result of mapping func over axis on indices. + """ + return self.data.apply_func_to_select_indices_along_full_axis( + axis, func, indices, keep_remaining) + + def quantile_for_list_of_values(self, **kwargs): + """Returns Manager containing quantiles along an axis for numeric columns. + + Returns: + DataManager containing quantiles of original DataManager along an axis. + """ + axis = kwargs.get("axis", 0) + q = kwargs.get("q") + numeric_only = kwargs.get("numeric_only", True) + assert isinstance(q, (pandas.Series, np.ndarray, pandas.Index, list)) + + if numeric_only: + new_columns = self.numeric_columns() + else: + new_columns = [ + col for col, dtype in zip(self.columns, self.dtypes) + if (is_numeric_dtype(dtype) + or is_datetime_or_timedelta_dtype(dtype)) + ] + if axis: + # If along rows, then drop the nonnumeric columns, record the index, and + # take transpose. We have to do this because if we don't, the result is all + # in one column for some reason. + nonnumeric = [ + col for col, dtype in zip(self.columns, self.dtypes) + if not is_numeric_dtype(dtype) + ] + data_manager = self.drop(columns=nonnumeric) + new_columns = data_manager.index + numeric_indices = list( + data_manager.index.get_indexer_for(new_columns)) + data_manager = data_manager.transpose() + kwargs.pop("axis") + else: + data_manager = self + numeric_indices = list(self.columns.get_indexer_for(new_columns)) + + def quantile_builder(df, internal_indices=[], **kwargs): + return pandas.DataFrame.quantile(df, **kwargs) + + func = self._prepare_method(quantile_builder, **kwargs) + q_index = pandas.Float64Index(q) + new_data = data_manager.map_across_full_axis_select_indices( + 0, func, numeric_indices) + return self.__constructor__(new_data, q_index, new_columns) + + # END Map across rows/columns + + # Head/Tail/Front/Back + def head(self, n): + """Returns the first n rows. + + Args: + n: Integer containing the number of rows to return. + + Returns: + DataManager containing the first n rows of the original DataManager. + """ + # We grab the front if it is transposed and flag as transposed so that + # we are not physically updating the data from this manager. This + # allows the implementation to stay modular and reduces data copying. + if self._is_transposed: + # Transpose the blocks back to their original orientation first to + # ensure that we extract the correct data on each node. The index + # on a transposed manager is already set to the correct value, so + # we need to only take the head of that instead of re-transposing. + result = self.__constructor__( + self.data.transpose().take(1, n).transpose(), self.index[:n], + self.columns, self._dtype_cache) + result._is_transposed = True + else: + result = self.__constructor__( + self.data.take(0, n), self.index[:n], self.columns, + self._dtype_cache) + return result + + def tail(self, n): + """Returns the last n rows. + + Args: + n: Integer containing the number of rows to return. + + Returns: + DataManager containing the last n rows of the original DataManager. + """ + # See head for an explanation of the transposed behavior + if self._is_transposed: + result = self.__constructor__( + self.data.transpose().take(1, -n).transpose(), self.index[-n:], + self.columns, self._dtype_cache) + result._is_transposed = True + else: + result = self.__constructor__( + self.data.take(0, -n), self.index[-n:], self.columns, + self._dtype_cache) + + return result + + def front(self, n): + """Returns the first n columns. + + Args: + n: Integer containing the number of columns to return. + + Returns: + DataManager containing the first n columns of the original DataManager. + """ + # See head for an explanation of the transposed behavior + if self._is_transposed: + result = self.__constructor__( + self.data.transpose().take(0, n).transpose(), self.index, + self.columns[:n], self.dtypes[:n]) + result._is_transposed = True + else: + result = self.__constructor__( + self.data.take(1, n), self.index, self.columns[:n], + self.dtypes[:n]) + return result + + def back(self, n): + """Returns the last n columns. + + Args: + n: Integer containing the number of columns to return. + + Returns: + DataManager containing the last n columns of the original DataManager. + """ + # See head for an explanation of the transposed behavior + if self._is_transposed: + result = self.__constructor__( + self.data.transpose().take(0, -n).transpose(), self.index, + self.columns[-n:], self.dtypes[-n:]) + result._is_transposed = True + else: + result = self.__constructor__( + self.data.take(1, -n), self.index, self.columns[-n:], + self.dtypes[-n:]) + return result + + # End Head/Tail/Front/Back + + # Data Management Methods + def free(self): + """In the future, this will hopefully trigger a cleanup of this object. + """ + # TODO create a way to clean up this object. + return + + # END Data Management Methods + + # To/From Pandas + def to_pandas(self): + """Converts Modin DataFrame to Pandas DataFrame. + + Returns: + Pandas DataFrame of the DataManager. + """ + df = self.data.to_pandas(is_transposed=self._is_transposed) + df.index = self.index + df.columns = self.columns + return df + + @classmethod + def from_pandas(cls, df, block_partitions_cls): + """Improve simple Pandas DataFrame to an advanced and superior Modin DataFrame. + + Args: + cls: DataManger object to convert the DataFrame to. + df: Pandas DataFrame object. + block_partitions_cls: BlockParitions object to store partitions + + Returns: + Returns DataManager containing data from the Pandas DataFrame. + """ + new_index = df.index + new_columns = df.columns + new_dtypes = df.dtypes + + new_data = block_partitions_cls.from_pandas(df) + + return cls(new_data, new_index, new_columns, dtypes=new_dtypes) + + # __getitem__ methods + def getitem_single_key(self, key): + """Get item for a single target index. + + Args: + key: Target index by which to retrieve data. + + Returns: + A new PandasDataManager. + """ + numeric_index = self.columns.get_indexer_for([key]) + + new_data = self.getitem_column_array([key]) + if len(numeric_index) > 1: + return new_data + else: + # This is the case that we are returning a single Series. + # We do this post processing because everything is treated a a list + # from here on, and that will result in a DataFrame. + return new_data.to_pandas()[key] + + def getitem_column_array(self, key): + """Get column data for target labels. + + Args: + key: Target labels by which to retrieve data. + + Returns: + A new PandasDataManager. + """ + # Convert to list for type checking + numeric_indices = list(self.columns.get_indexer_for(key)) + + # Internal indices is left blank and the internal + # `apply_func_to_select_indices` will do the conversion and pass it in. + def getitem(df, internal_indices=[]): + return df.iloc[:, internal_indices] + + result = self.data.apply_func_to_select_indices( + 0, getitem, numeric_indices, keep_remaining=False) + + # We can't just set the columns to key here because there may be + # multiple instances of a key. + new_columns = self.columns[numeric_indices] + new_dtypes = self.dtypes[numeric_indices] + return self.__constructor__(result, self.index, new_columns, + new_dtypes) + + def getitem_row_array(self, key): + """Get row data for target labels. + + Args: + key: Target labels by which to retrieve data. + + Returns: + A new PandasDataManager. + """ + # Convert to list for type checking + numeric_indices = list(self.index.get_indexer_for(key)) + + def getitem(df, internal_indices=[]): + return df.iloc[internal_indices] + + result = self.data.apply_func_to_select_indices( + 1, getitem, numeric_indices, keep_remaining=False) + # We can't just set the index to key here because there may be multiple + # instances of a key. + new_index = self.index[numeric_indices] + return self.__constructor__(result, new_index, self.columns, + self._dtype_cache) + + # END __getitem__ methods + + # __delitem__ and drop + # These will change the shape of the resulting data. + def delitem(self, key): + return self.drop(columns=[key]) + + def drop(self, index=None, columns=None): + """Remove row data for target index and columns. + + Args: + index: Target index to drop. + columns: Target columns to drop. + + Returns: + A new PandasDataManager. + """ + if index is None: + new_data = self.data + new_index = self.index + else: + + def delitem(df, internal_indices=[]): + return df.drop(index=df.index[internal_indices]) + + numeric_indices = list(self.index.get_indexer_for(index)) + new_data = self.data.apply_func_to_select_indices( + 1, delitem, numeric_indices, keep_remaining=True) + # We can't use self.index.drop with duplicate keys because in Pandas + # it throws an error. + new_index = [ + self.index[i] for i in range(len(self.index)) + if i not in numeric_indices + ] + + if columns is None: + new_columns = self.columns + new_dtypes = self.dtypes + else: + + def delitem(df, internal_indices=[]): + return df.drop(columns=df.columns[internal_indices]) + + numeric_indices = list(self.columns.get_indexer_for(columns)) + new_data = new_data.apply_func_to_select_indices( + 0, delitem, numeric_indices, keep_remaining=True) + # We can't use self.columns.drop with duplicate keys because in Pandas + # it throws an error. + new_columns = [ + self.columns[i] for i in range(len(self.columns)) + if i not in numeric_indices + ] + new_dtypes = self.dtypes.drop(columns) + return self.__constructor__(new_data, new_index, new_columns, + new_dtypes) + + # END __delitem__ and drop + + # Insert + # This method changes the shape of the resulting data. In Pandas, this + # operation is always inplace, but this object is immutable, so we just + # return a new one from here and let the front end handle the inplace + # update. + def insert(self, loc, column, value): + """Insert new column data. + + Args: + loc: Insertion index. + column: Column labels to insert. + value: Dtype object values to insert. + + Returns: + A new PandasDataManager with new data inserted. + """ + + def insert(df, internal_indices=[]): + internal_idx = internal_indices[0] + df.insert(internal_idx, internal_idx, value, allow_duplicates=True) + return df + + new_data = self.data.apply_func_to_select_indices_along_full_axis( + 0, insert, loc, keep_remaining=True) + new_columns = self.columns.insert(loc, column) + + # Because a Pandas Series does not allow insert, we make a DataFrame + # and insert the new dtype that way. + temp_dtypes = pandas.DataFrame(self.dtypes).T + temp_dtypes.insert(loc, column, _get_dtype_from_object(value)) + new_dtypes = temp_dtypes.iloc[0] + + return self.__constructor__(new_data, self.index, new_columns, + new_dtypes) + + # END Insert + + # UDF (apply and agg) methods + # There is a wide range of behaviors that are supported, so a lot of the + # logic can get a bit convoluted. + def apply(self, func, axis, *args, **kwargs): + """Apply func across given axis. + + Args: + func: The function to apply. + axis: Target axis to apply the function along. + + Returns: + A new PandasDataManager. + """ + if callable(func): + return self._callable_func(func, axis, *args, **kwargs) + elif isinstance(func, dict): + return self._dict_func(func, axis, *args, **kwargs) + elif is_list_like(func): + return self._list_like_func(func, axis, *args, **kwargs) + else: + pass + + def _post_process_apply(self, result_data, axis, try_scale=True): + """Recompute the index after applying function. + + Args: + result_data: a BlockPartitions object. + axis: Target axis along which function was applied. + + Returns: + A new PandasDataManager. + """ + if try_scale: + try: + index = self.compute_index(0, result_data, True) + except IndexError: + index = self.compute_index(0, result_data, False) + try: + columns = self.compute_index(1, result_data, True) + except IndexError: + columns = self.compute_index(1, result_data, False) + else: + if not axis: + index = self.compute_index(0, result_data, False) + columns = self.columns + else: + index = self.index + columns = self.compute_index(1, result_data, False) + # `apply` and `aggregate` can return a Series or a DataFrame object, + # and since we need to handle each of those differently, we have to add + # this logic here. + if len(columns) == 0: + series_result = result_data.to_pandas(False) + if not axis and len(series_result) == len( + self.columns) and len(index) != len(series_result): + index = self.columns + elif axis and len(series_result) == len( + self.index) and len(index) != len(series_result): + index = self.index + + series_result.index = index + return series_result + + return self.__constructor__(result_data, index, columns) + + def _dict_func(self, func, axis, *args, **kwargs): + """Apply function to certain indices across given axis. + + Args: + func: The function to apply. + axis: Target axis to apply the function along. + + Returns: + A new PandasDataManager. + """ + if "axis" not in kwargs: + kwargs["axis"] = axis + + if axis == 0: + index = self.columns + else: + index = self.index + + func = { + idx: func[key] + for key in func for idx in index.get_indexer_for([key]) + } + + def dict_apply_builder(df, func_dict={}): + return df.apply(func_dict, *args, **kwargs) + + result_data = self.data.apply_func_to_select_indices_along_full_axis( + axis, dict_apply_builder, func, keep_remaining=False) + + full_result = self._post_process_apply(result_data, axis) + + # The columns can get weird because we did not broadcast them to the + # partitions and we do not have any guarantee that they are correct + # until here. Fortunately, the keys of the function will tell us what + # the columns are. + if isinstance(full_result, pandas.Series): + full_result.index = [self.columns[idx] for idx in func] + return full_result + + def _list_like_func(self, func, axis, *args, **kwargs): + """Apply list-like function across given axis. + + Args: + func: The function to apply. + axis: Target axis to apply the function along. + + Returns: + A new PandasDataManager. + """ + func_prepared = self._prepare_method( + lambda df: df.apply(func, *args, **kwargs)) + new_data = self.map_across_full_axis(axis, func_prepared) + + # When the function is list-like, the function names become the index + new_index = [ + f if isinstance(f, string_types) else f.__name__ for f in func + ] + return self.__constructor__(new_data, new_index, self.columns) + + def _callable_func(self, func, axis, *args, **kwargs): + """Apply callable functions across given axis. + + Args: + func: The functions to apply. + axis: Target axis to apply the function along. + + Returns: + A new PandasDataManager. + """ + + def callable_apply_builder(df, func, axis, index, *args, **kwargs): + if not axis: + df.index = index + df.columns = pandas.RangeIndex(len(df.columns)) + else: + df.columns = index + df.index = pandas.RangeIndex(len(df.index)) + + result = df.apply(func, axis=axis, *args, **kwargs) + return result + + index = self.index if not axis else self.columns + + func_prepared = self._prepare_method( + lambda df: callable_apply_builder(df, func, axis, index, *args, **kwargs) + ) + result_data = self.map_across_full_axis(axis, func_prepared) + return self._post_process_apply(result_data, axis) + + # END UDF + + # Manual Partitioning methods (e.g. merge, groupby) + # These methods require some sort of manual partitioning due to their + # nature. They require certain data to exist on the same partition, and + # after the shuffle, there should be only a local map required. + def _manual_repartition(self, axis, repartition_func, **kwargs): + """This method applies all manual partitioning functions. + + Args: + axis: The axis to shuffle data along. + repartition_func: The function used to repartition data. + + Returns: + A `BlockPartitions` object. + """ + func = self._prepare_method(repartition_func, **kwargs) + return self.data.manual_shuffle(axis, func) + + def groupby_agg(self, by, axis, agg_func, groupby_args, agg_args): + remote_index = self.index if not axis else self.columns + + def groupby_agg_builder(df): + if not axis: + df.index = remote_index + else: + df.columns = remote_index + return agg_func( + df.groupby(by=by, axis=axis, **groupby_args), **agg_args) + + func_prepared = self._prepare_method( + lambda df: groupby_agg_builder(df)) + result_data = self.map_across_full_axis(axis, func_prepared) + return self._post_process_apply(result_data, axis, try_scale=False) + + # END Manual Partitioning methods + + def get_dummies(self, columns, **kwargs): + """Convert categorical variables to dummy variables for certain columns. + + Args: + columns: The columns to convert. + + Returns: + A new PandasDataManager. + """ + cls = type(self) + + # `columns` as None does not mean all columns, by default it means only + # non-numeric columns. + if columns is None: + columns = [ + c for c in self.columns if not is_numeric_dtype(self.dtypes[c]) + ] + + # If we aren't computing any dummies, there is no need for any + # remote compute. + if len(columns) == 0: + return self.copy() + elif not is_list_like(columns): + columns = [columns] + + # We have to do one of two things in order to ensure the final columns + # are correct. Our first option is to map over the data and assign the + # columns in a separate pass. That is what we have chosen to do here. + # This is not as efficient, but it requires less information from the + # lower layers and does not break any of our internal requirements. The + # second option is that we assign the columns as a part of the + # `get_dummies` call. This requires knowledge of the length of each + # partition, and breaks some of our assumptions and separation of + # concerns. + def set_columns(df, columns): + df.columns = columns + return df + + set_cols = self.columns + columns_applied = self.map_across_full_axis( + 1, lambda df: set_columns(df, set_cols)) + + # In some cases, we are mapping across all of the data. It is more + # efficient if we are mapping over all of the data to do it this way + # than it would be to reuse the code for specific columns. + if len(columns) == len(self.columns): + + def get_dummies_builder(df): + if df is not None: + if not df.empty: + return pandas.get_dummies(df, **kwargs) + else: + return pandas.DataFrame([]) + + func = self._prepare_method(lambda df: get_dummies_builder(df)) + new_data = columns_applied.map_across_full_axis(0, func) + untouched_data = None + else: + + def get_dummies_builder(df, internal_indices=[]): + return pandas.get_dummies( + df.iloc[:, internal_indices], columns=None, **kwargs) + + numeric_indices = list(self.columns.get_indexer_for(columns)) + new_data = columns_applied.apply_func_to_select_indices_along_full_axis( + 0, get_dummies_builder, numeric_indices, keep_remaining=False) + untouched_data = self.drop(columns=columns) + + # Since we set the columns in the beginning, we can just extract them + # here. There is fortunately no required extra steps for a correct + # column index. + final_columns = self.compute_index(1, new_data, False) + + # If we mapped over all the data we are done. If not, we need to + # prepend the `new_data` with the raw data from the columns that were + # not selected. + if len(columns) != len(self.columns): + new_data = untouched_data.data.concat(1, new_data) + final_columns = untouched_data.columns.append( + pandas.Index(final_columns)) + + return cls(new_data, self.index, final_columns) + + # Indexing + def view(self, index=None, columns=None): + index_map_series = pandas.Series( + np.arange(len(self.index)), index=self.index) + column_map_series = pandas.Series( + np.arange(len(self.columns)), index=self.columns) + + if index is not None: + index_map_series = index_map_series.reindex(index) + if columns is not None: + column_map_series = column_map_series.reindex(columns) + + return PandasDataManagerView(self.data, index_map_series.index, + column_map_series.index, self.dtypes, + index_map_series, column_map_series) + + def squeeze(self, ndim=0, axis=None): + squeezed = self.data.to_pandas().squeeze() + + if ndim == 1: + squeezed = pandas.Series(squeezed) + scaler_axis = self.index if axis == 0 else self.columns + non_scaler_axis = self.index if axis == 1 else self.columns + + squeezed.name = scaler_axis[0] + squeezed.index = non_scaler_axis + + return squeezed + + def write_items(self, row_numeric_index, col_numeric_index, + broadcasted_items): + def iloc_mut(partition, row_internal_indices, col_internal_indices, + item): + partition = partition.copy() + partition.iloc[row_internal_indices, col_internal_indices] = item + return partition + + mutated_blk_partitions = self.data.apply_func_to_indices_both_axis( + func=iloc_mut, + row_indices=row_numeric_index, + col_indices=col_numeric_index, + mutate=True, + item_to_distribute=broadcasted_items) + self.data = mutated_blk_partitions + + def global_idx_to_numeric_idx(self, axis, indices): + """ + Note: this function involves making copies of the index in memory. + + Args: + axis: Axis to extract indices. + indices: Indices to convert to numerical. + + Returns: + An Index object. + """ + assert axis in ['row', 'col', 'columns'] + if axis == 'row': + return pandas.Index( + pandas.Series(np.arange(len(self.index)), + index=self.index).loc[indices].values) + elif axis in ['col', 'columns']: + return pandas.Index( + pandas.Series( + np.arange(len(self.columns)), + index=self.columns).loc[indices].values) + + def enlarge_partitions(self, new_row_labels=None, new_col_labels=None): + new_data = self.data.enlarge_partitions( + len(new_row_labels), len(new_col_labels)) + concated_index = self.index.append(type( + self.index)(new_row_labels)) if new_row_labels else self.index + concated_columns = self.columns.append( + type(self.columns)( + new_col_labels)) if new_col_labels else self.columns + return self.__constructor__(new_data, concated_index, concated_columns) + + +class PandasDataManagerView(PandasDataManager): + """ + This class represent a view of the PandasDataManager + + In particular, the following constraints are broken: + - (len(self.index), len(self.columns)) != self.data.shape + """ + + def __init__(self, + block_partitions_object: BlockPartitions, + index: pandas.Index, + columns: pandas.Index, + dtypes=None, + index_map_series: pandas.Series = None, + columns_map_series: pandas.Series = None): + """ + Args: + index_map_series: a Pandas Series Object mapping user-facing index to + numeric index. + columns_map_series: a Pandas Series Object mapping user-facing index to + numeric index. + """ + assert index_map_series is not None + assert columns_map_series is not None + assert index.equals(index_map_series.index) + assert columns.equals(columns_map_series.index) + + self.index_map = index_map_series + self.columns_map = columns_map_series + self.is_view = True + + PandasDataManager.__init__(self, block_partitions_object, index, + columns, dtypes) + + def __constructor__(self, + block_partitions_object: BlockPartitions, + index: pandas.Index, + columns: pandas.Index, + dtypes=None): + new_index_map = self.index_map.reindex(index) + new_columns_map = self.columns_map.reindex(columns) + + return type(self)(block_partitions_object, index, columns, dtypes, + new_index_map, new_columns_map) + + def _get_data(self) -> BlockPartitions: + """Perform the map step + + Returns: + A BlockPartitions object. + """ + + def iloc(partition, row_internal_indices, col_internal_indices): + return partition.iloc[row_internal_indices, col_internal_indices] + + masked_data = self.parent_data.apply_func_to_indices_both_axis( + func=iloc, + row_indices=self.index_map.values, + col_indices=self.columns_map.values, + lazy=True, + keep_remaining=False) + return masked_data + + def _set_data(self, new_data): + """Note this setter will be called by the + `super(PandasDataManagerView).__init__` function + """ + self.parent_data = new_data + + data = property(_get_data, _set_data) + + def global_idx_to_numeric_idx(self, axis, indices): + assert axis in ['row', 'col', 'columns'] + if axis == 'row': + return self.index_map.loc[indices].index + elif axis in ['col', 'columns']: + return self.columns_map.loc[indices].index diff --git a/modin/data_management/factories.py b/modin/data_management/factories.py new file mode 100644 index 00000000000..fea12f12b7b --- /dev/null +++ b/modin/data_management/factories.py @@ -0,0 +1,37 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import sys + +from .. import __execution_engine__ as execution_engine +from .. import __partition_format__ as partition_format +from .data_manager import PandasDataManager +from .partitioning.partition_collections import RayBlockPartitions + + +class BaseFactory(object): + @classmethod + def _determine_engine(cls): + factory_name = \ + partition_format + "Backed" + execution_engine + "Factory" + + return getattr(sys.modules[__name__], factory_name) + + @classmethod + def build_manager(cls): + return cls._determine_engine().build_manager() + + @classmethod + def from_pandas(cls, df): + return cls._determine_engine()._from_pandas(df) + + @classmethod + def _from_pandas(cls, df): + return cls.data_mgr_cls.from_pandas(df, cls.block_partitions_cls) + + +class PandasBackedRayFactory(BaseFactory): + + data_mgr_cls = PandasDataManager + block_partitions_cls = RayBlockPartitions diff --git a/modin/data_management/partitioning/README.md b/modin/data_management/partitioning/README.md new file mode 100644 index 00000000000..38d8523b54f --- /dev/null +++ b/modin/data_management/partitioning/README.md @@ -0,0 +1,13 @@ +## Implementation Note + +### Object Hierarchy + +- `remote_partition.py` contains `RemotePartition` interface and its implementations. +- `partition_collections.py` contains `BlockPartitions` interface and its implementations. + - `BlockPartitions` manages 2D-array of `RemotePartition` object +- `axis_partition.py` contains `AxisPartition` and with the following hierarchy: + ``` + AxisPartition -> RayAxisPartition -> {RayColumnPartition, RayRowPartition} + ``` + - `AxisPartition` is a high level view onto BlockPartitions' data. It is more + convient to operate on `AxisPartition` sometimes. \ No newline at end of file diff --git a/modin/data_management/partitioning/__init__.py b/modin/data_management/partitioning/__init__.py new file mode 100644 index 00000000000..e69de29bb2d diff --git a/modin/data_management/partitioning/axis_partition.py b/modin/data_management/partitioning/axis_partition.py new file mode 100644 index 00000000000..dc8e760647c --- /dev/null +++ b/modin/data_management/partitioning/axis_partition.py @@ -0,0 +1,240 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import pandas +import ray + +from .remote_partition import RayRemotePartition +from .utils import compute_chunksize + + +class AxisPartition(object): + """This abstract class represents the Parent class for any + `ColumnPartition` or `RowPartition` class. This class is intended to + simplify the way that operations are performed + + Note 0: The procedures that use this class and its methods assume that + they have some global knowledge about the entire axis. This may + require the implementation to use concatenation or append on the + list of block partitions in this object. + + Note 1: The `BlockPartitions` object that controls these objects + (through the API exposed here) has an invariant that requires that + this object is never returned from a function. It assumes that + there will always be `RemotePartition` object stored and structures + itself accordingly. + + The only abstract method needed to implement is the `apply` method. + """ + + def apply(self, func, num_splits=None, other_axis_partition=None, + **kwargs): + """Applies a function to a full axis. + + Note: The procedures that invoke this method assume full axis + knowledge. Implement this method accordingly. + + Important: You must return a list of `RemotePartition` objects from + this method. See Note 1 for this class above for more information. + + Args: + func: The function to apply. This will be preprocessed according to + the corresponding `RemotePartitions` object. + num_splits: The number of objects to return, the number of splits + for the resulting object. It is up to this method to choose the + splitting at this time. + other_axis_partition: Another `AxisPartition` object to be applied + to func. This is for operations that are between datasets. + + Returns: + A list of `RemotePartition` objects. + """ + raise NotImplementedError("Must be implemented in children classes") + + def shuffle(self, func, num_splits=None, **kwargs): + """Shuffle the order of the data in this axis based on the `func`. + + Args: + func: + num_splits: + kwargs: + + Returns: + A list of `RemotePartition` objects. + """ + raise NotImplementedError("Must be implemented in children classes") + + +class RayAxisPartition(AxisPartition): + def __init__(self, list_of_blocks): + # Unwrap from RemotePartition object for ease of use + self.list_of_blocks = [obj.oid for obj in list_of_blocks] + + def apply(self, func, num_splits=None, other_axis_partition=None, + **kwargs): + """Applies func to the object in the plasma store. + + See notes in Parent class about this method. + + Args: + func: The function to apply. + num_splits: The number of times to split the result object. + other_axis_partition: Another `RayAxisPartition` object to apply to + func with this one. + + Returns: + A list of `RayRemotePartition` objects. + """ + if num_splits is None: + num_splits = len(self.list_of_blocks) + + if other_axis_partition is not None: + return [ + RayRemotePartition(obj) + for obj in deploy_ray_func_between_two_axis_partitions._submit( + args=(self.axis, func, num_splits, + len(self.list_of_blocks), kwargs) + + tuple(self.list_of_blocks + + other_axis_partition.list_of_blocks), + num_return_vals=num_splits) + ] + + args = [self.axis, func, num_splits, kwargs] + args.extend(self.list_of_blocks) + return [ + RayRemotePartition(obj) for obj in deploy_ray_axis_func._submit( + args, num_return_vals=num_splits) + ] + + def shuffle(self, func, num_splits=None, **kwargs): + """Shuffle the order of the data in this axis based on the `func`. + + Extends `AxisPartition.shuffle`. + + :param func: + :param num_splits: + :param kwargs: + :return: + """ + if num_splits is None: + num_splits = len(self.list_of_blocks) + + args = [self.axis, func, num_splits, kwargs] + args.extend(self.list_of_blocks) + return [ + RayRemotePartition(obj) for obj in deploy_ray_axis_func._submit( + args, num_return_vals=num_splits) + ] + + +class RayColumnPartition(RayAxisPartition): + """The column partition implementation for Ray. All of the implementation + for this class is in the parent class, and this class defines the axis + to perform the computation over. + """ + axis = 0 + + +class RayRowPartition(RayAxisPartition): + """The row partition implementation for Ray. All of the implementation + for this class is in the parent class, and this class defines the axis + to perform the computation over. + """ + axis = 1 + + +def split_result_of_axis_func_pandas(axis, num_splits, result): + """Split the Pandas result evenly based on the provided number of splits. + + Args: + axis: The axis to split across. + num_splits: The number of even splits to create. + result: The result of the computation. This should be a Pandas + DataFrame. + + Returns: + A list of Pandas DataFrames. + """ + # We do this to restore block partitioning + if axis == 0 or type(result) is pandas.Series: + chunksize = compute_chunksize(len(result), num_splits) + return [ + result.iloc[chunksize * i:chunksize * (i + 1)] + for i in range(num_splits) + ] + else: + chunksize = compute_chunksize(len(result.columns), num_splits) + return [ + result.iloc[:, chunksize * i:chunksize * (i + 1)] + for i in range(num_splits) + ] + + +@ray.remote +def deploy_ray_axis_func(axis, func, num_splits, kwargs, *partitions): + """Deploy a function along a full axis in Ray. + + Args: + axis: The axis to perform the function along. + func: The function to perform. + num_splits: The number of splits to return + (see `split_result_of_axis_func_pandas`) + kwargs: A dictionary of keyword arguments. + partitions: All partitions that make up the full axis (row or column) + + Returns: + A list of Pandas DataFrames. + """ + dataframe = pandas.concat(partitions, axis=axis, copy=False) + result = func(dataframe, **kwargs) + return split_result_of_axis_func_pandas(axis, num_splits, result) + + +@ray.remote +def deploy_ray_func_between_two_axis_partitions( + axis, func, num_splits, len_of_left, kwargs, *partitions): + """Deploy a function along a full axis between two data sets in Ray. + + Args: + axis: The axis to perform the function along. + func: The function to perform. + num_splits: The number of splits to return + (see `split_result_of_axis_func_pandas`). + len_of_left: The number of values in `partitions` that belong to the + left data set. + kwargs: A dictionary of keyword arguments. + partitions: All partitions that make up the full axis (row or column) + for both data sets. + + Returns: + A list of Pandas DataFrames. + """ + lt_frame = pandas.concat( + list(partitions[:len_of_left]), axis=axis, copy=False) + rt_frame = pandas.concat( + list(partitions[len_of_left:]), axis=axis, copy=False) + + result = func(lt_frame, rt_frame, **kwargs) + return split_result_of_axis_func_pandas(axis, num_splits, result) + + +@ray.remote +def deploy_ray_shuffle_func(axis, func, numsplits, kwargs, *partitions): + """Deploy a function that defines the partitions along this axis. + + Args: + axis: + func: + numsplits: + kwargs: + partitions: + + Returns: + A list of Pandas DataFrames. + """ + dataframe = pandas.concat(partitions, axis=axis, copy=False) + result = func(dataframe, numsplits=numsplits, **kwargs) + + assert isinstance(result, list) + return result diff --git a/modin/data_management/partitioning/partition_collections.py b/modin/data_management/partitioning/partition_collections.py new file mode 100644 index 00000000000..9a7ba70451c --- /dev/null +++ b/modin/data_management/partitioning/partition_collections.py @@ -0,0 +1,971 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from typing import Tuple + +import numpy as np +import ray +import pandas + +from .remote_partition import RayRemotePartition +from .axis_partition import RayColumnPartition, RayRowPartition +from .utils import compute_chunksize, _get_nan_block_id + + +class BlockPartitions(object): + """Abstract Class that manages a set of `RemotePartition` objects, and + structures them into a 2D numpy array. This object will interact with + each of these objects through the `RemotePartition` API. + + Note: See the Abstract Methods and Fields section immediately below this + for a list of requirements for subclassing this object. + """ + + # Abstract Methods and Fields: Must implement in children classes + # In some cases, there you may be able to use the same implementation for + # some of these abstract methods, but for the sake of generality they are + # treated differently. + def __init__(self, partitions): + """Init must accept a parameter `partitions` that is a 2D numpy array + of type `_partition_class` (defined below). This method will be + called from a factory. + + Args: + partitions: A 2D numpy array of the type defined in + `_partition_class`. + """ + raise NotImplementedError("Must be implemented in children classes") + + # Partition class is the class to use for storing each partition. It must + # extend the `RemotePartition` class. + _partition_class = None + + def preprocess_func(self, map_func): + """Preprocess a function to be applied to `RemotePartition` objects. + + Note: If your `RemotePartition` objects assume that a function provided + is serialized or wrapped or in some other format, this is the place + to add that logic. It is possible that this can also just return + `map_func` if the `apply` method of the `RemotePartition` object + you are using does not require any modification to a given + function. + + Args: + map_func: The function to be preprocessed. + + Returns + The preprocessed version of the `map_func` provided. Note: This + does not require any specific format, only that the + `RemotePartition.apply` method will recognize it (For the subclass + being used). + """ + return self._partition_class.preprocess_func(map_func) + + @property + def column_partitions(self): + """A list of `AxisPartition` objects, represents column partitions. + + Note: Each value in this list will an `AxisPartition` object. + `AxisPartition` is located in the `remote_partition.py` file. + + Returns a list of `AxisPartition` objects. + """ + raise NotImplementedError("Must be implemented in children classes") + + @property + def row_partitions(self): + """A list of `AxisPartition` objects. + + Note: Each value in this list will be an `AxisPartition` object. + `AxisPartition` is located in the `remote_partition.py` file. + + Returns a list of `AxisPartition` objects. + """ + raise NotImplementedError("Must be implemented in children classes") + + # END Abstract Methods + + # Lengths of the blocks + _lengths_cache = None + + # These are set up as properties so that we only use them when we need + # them. We also do not want to trigger this computation on object creation. + @property + def block_lengths(self): + """Gets the lengths of the blocks. + + Note: This works with the property structure `_lengths_cache` to avoid + having to recompute these values each time they are needed. + """ + if self._lengths_cache is None: + # The first column will have the correct lengths. We have an + # invariant that requires that all blocks be the same length in a + # row of blocks. + self._lengths_cache = [ + obj.length().get() for obj in self.partitions.T[0] + ] + return self._lengths_cache + + # Widths of the blocks + _widths_cache = None + + @property + def block_widths(self): + """Gets the widths of the blocks. + + Note: This works with the property structure `_widths_cache` to avoid + having to recompute these values each time they are needed. + """ + if self._widths_cache is None: + # The first column will have the correct lengths. We have an + # invariant that requires that all blocks be the same width in a + # column of blocks. + self._widths_cache = [ + obj.width().get() for obj in self.partitions[0] + ] + return self._widths_cache + + @property + def shape(self) -> Tuple[int, int]: + return int(np.sum(self.block_lengths)), int(np.sum(self.block_widths)) + + def full_reduce(self, map_func, reduce_func, axis): + """Perform a full reduce on the data. + + Note: This follows the 2-phase reduce paradigm, where each partition + performs a local reduction (map_func), then partitions are brought + together and the final reduction occurs. + Args: + map_func: The function that will be performed on all partitions. + This is the local reduction on each partition. + reduce_func: The final reduction function. This can differ from the + `map_func` + axis: The axis to perform this operation along + (0 - index, 1 - columns) + Returns: + A Pandas Series + """ + mapped_parts = self.map_across_blocks(map_func).partitions + + if reduce_func is None: + reduce_func = map_func + # For now we return a pandas.Series until ours gets implemented. + # We have to build the intermediate frame based on the axis passed, + # thus axis=axis and axis=axis ^ 1 + # + # This currently requires special treatment because of the intermediate + # DataFrame. The individual partitions return Series objects, and those + # cannot be concatenated the correct way without casting them as + # DataFrames. + full_frame = pandas.concat([ + pandas.concat( + [pandas.DataFrame(part.get()).T for part in row_of_parts], + axis=axis ^ 1) for row_of_parts in mapped_parts + ], + axis=axis) + + # Transpose because operations where axis == 1 assume that the + # operation is performed across the other axis + if axis == 1: + full_frame = full_frame.T + + return reduce_func(full_frame) + + def map_across_blocks(self, map_func): + """Applies `map_func` to every partition. + + Args: + map_func: The function to apply. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + # For the subclasses, because we never return this abstract type + cls = type(self) + + preprocessed_map_func = self.preprocess_func(map_func) + new_partitions = np.array( + [[part.apply(preprocessed_map_func) for part in row_of_parts] + for row_of_parts in self.partitions]) + return cls(new_partitions) + + def lazy_map_across_blocks(self, map_func, kwargs): + cls = type(self) + preprocessed_map_func = self.preprocess_func(map_func) + new_partitions = np.array([[ + part.add_to_apply_calls(preprocessed_map_func, kwargs) + for part in row_of_parts + ] for row_of_parts in self.partitions]) + return cls(new_partitions) + + def map_across_full_axis(self, axis, map_func): + """Applies `map_func` to every partition. + + Note: This method should be used in the case that `map_func` relies on + some global information about the axis. + + Args: + axis: The axis to perform the map across (0 - index, 1 - columns). + map_func: The function to apply. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + # Since we are already splitting the DataFrame back up after an + # operation, we will just use this time to compute the number of + # partitions as best we can right now. + num_splits = cls._compute_num_partitions() + + preprocessed_map_func = self.preprocess_func(map_func) + partitions = self.column_partitions if not axis else self.row_partitions + result_blocks = np.array([ + part.apply(preprocessed_map_func, num_splits) + for part in partitions + ]) + # If we are mapping over columns, they are returned to use the same as + # rows, so we need to transpose the returned 2D numpy array to return + # the structure to the correct order. + return cls(result_blocks.T) if not axis else cls(result_blocks) + + def take(self, axis, n): + """Take the first (or last) n rows or columns from the blocks + + Note: Axis = 0 will be equivalent to `head` or `tail` + Axis = 1 will be equivalent to `front` or `back` + + Args: + axis: The axis to extract (0 for extracting rows, 1 for extracting columns) + n: The number of rows or columns to extract, negative denotes to extract + from the bottom of the object + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + + # These are the partitions that we will extract over + if not axis: + partitions = self.partitions + bin_lengths = self.block_lengths + else: + partitions = self.partitions.T + bin_lengths = self.block_widths + + if n < 0: + reversed_bins = bin_lengths + reversed_bins.reverse() + length_bins = np.cumsum(reversed_bins) + n *= -1 + idx = int(np.digitize(n, length_bins)) + if idx > 0: + remaining = int(n - length_bins[idx - 1]) + else: + remaining = n + # In this case, we require no remote compute. This is much faster. + if remaining == 0: + result = partitions[-idx:] + else: + # Reverse for ease of iteration and then re-reverse at the end + partitions = partitions[::-1] + # We build this iloc to avoid creating a bunch of helper methods. + # This code creates slice objects to be passed to `iloc` to grab + # the last n rows or columns depending on axis. + slice_obj = slice(-remaining, None) if axis == 0 else ( + slice(None), slice(-remaining, None)) + func = self.preprocess_func(lambda df: df.iloc[slice_obj]) + # We use idx + 1 here because the loop is not inclusive, and we + # need to iterate through idx. + result = np.array([ + partitions[i] if i != idx else + [obj.apply(func) for obj in partitions[i]] + for i in range(idx + 1) + ])[::-1] + else: + length_bins = np.cumsum(bin_lengths) + idx = int(np.digitize(n, length_bins)) + if idx > 0: + remaining = int(n - length_bins[idx - 1]) + else: + remaining = n + # In this case, we require no remote compute. This is much faster. + if remaining == 0: + result = partitions[:idx] + else: + # We build this iloc to avoid creating a bunch of helper methods. + # This code creates slice objects to be passed to `iloc` to grab + # the first n rows or columns depending on axis. + slice_obj = slice(remaining) if axis == 0 else ( + slice(None), slice(remaining)) + func = self.preprocess_func(lambda df: df.iloc[slice_obj]) + # See note above about idx + 1 + result = np.array([ + partitions[i] if i != idx else + [obj.apply(func) for obj in partitions[i]] + for i in range(idx + 1) + ]) + + return cls(result.T) if axis else cls(result) + + def concat(self, axis, other_blocks): + """Concatenate the blocks with another set of blocks. + + Note: Assumes that the blocks are already the same shape on the + dimension being concatenated. A ValueError will be thrown if this + condition is not met. + + Args: + axis: The axis to concatenate to. + other_blocks: the other blocks to be concatenated. This is a + BlockPartitions object. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + if type(other_blocks) is list: + other_blocks = [blocks.partitions for blocks in other_blocks] + return cls( + np.concatenate([self.partitions] + other_blocks, axis=axis)) + else: + return cls( + np.append(self.partitions, other_blocks.partitions, axis=axis)) + + def copy(self): + """Create a copy of this object. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + return cls(self.partitions.copy()) + + def transpose(self, *args, **kwargs): + """Transpose the blocks stored in this object. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + return cls(self.partitions.T) + + def to_pandas(self, is_transposed=False): + """Convert this object into a Pandas DataFrame from the partitions. + + Args: + is_transposed: A flag for telling this object that the external + representation is transposed, but not the internal. + + Returns: + A Pandas DataFrame + """ + # In the case this is transposed, it is easier to just temporarily + # transpose back then transpose after the conversion. The performance + # is the same as if we individually transposed the blocks and + # concatenated them, but the code is much smaller. + if is_transposed: + return self.transpose().to_pandas(False).T + else: + retrieved_objects = [[obj.to_pandas() for obj in part] + for part in self.partitions] + if all( + isinstance(part, pandas.Series) + for row in retrieved_objects for part in row): + axis = 0 + retrieved_objects = np.array(retrieved_objects).T + elif all( + isinstance(part, pandas.DataFrame) + for row in retrieved_objects for part in row): + axis = 1 + else: + raise ValueError( + "Some partitions contain Series and some contain DataFrames" + ) + df_rows = [ + pandas.concat([part for part in row], axis=axis) + for row in retrieved_objects + ] + + if len(df_rows) == 0: + return pandas.DataFrame() + else: + return pandas.concat(df_rows) + + @classmethod + def from_pandas(cls, df): + num_splits = cls._compute_num_partitions() + put_func = cls._partition_class.put + + row_chunksize = max(1, compute_chunksize(len(df), num_splits)) + col_chunksize = max(1, compute_chunksize(len(df.columns), num_splits)) + + # Each chunk must have a RangeIndex that spans its length and width + # according to our invariant. + def chunk_builder(i, j): + chunk = df.iloc[i:i + row_chunksize, j:j + col_chunksize] + chunk.index = pandas.RangeIndex(len(chunk.index)) + chunk.columns = pandas.RangeIndex(len(chunk.columns)) + return put_func(chunk) + + parts = [[ + chunk_builder(i, j) + for j in range(0, len(df.columns), col_chunksize) + ] for i in range(0, len(df), row_chunksize)] + + return cls(np.array(parts)) + + def get_indices(self, axis=0, index_func=None, old_blocks=None): + """This gets the internal indices stored in the partitions. + + Note: These are the global indices of the object. This is mostly useful + when you have deleted rows/columns internally, but do not know + which ones were deleted. + + Args: + axis: This axis to extract the labels. (0 - index, 1 - columns). + index_func: The function to be used to extract the function. + old_blocks: An optional previous object that this object was + created from. This is used to compute the correct offsets. + + Returns: + A Pandas Index object. + """ + assert callable(index_func), \ + "Must tell this function how to extract index" + + if axis == 0: + func = self.preprocess_func(index_func) + # We grab the first column of blocks and extract the indices + new_indices = [ + idx.apply(func).get() for idx in self.partitions.T[0] + ] + # This is important because sometimes we have resized the data. The new + # sizes will not be valid if we are trying to compute the index on a + # new object that has a different length. + if old_blocks is not None: + cumulative_block_lengths = np.array( + old_blocks.block_lengths).cumsum() + else: + cumulative_block_lengths = np.array( + self.block_lengths).cumsum() + else: + func = self.preprocess_func(index_func) + new_indices = [idx.apply(func).get() for idx in self.partitions[0]] + + if old_blocks is not None: + cumulative_block_lengths = np.array( + old_blocks.block_widths).cumsum() + else: + cumulative_block_lengths = np.array(self.block_widths).cumsum() + + full_indices = new_indices[0] + + if old_blocks is not None: + for i in range(len(new_indices)): + # If the length is 0 there is nothing to append. + if i == 0 or len(new_indices[i]) == 0: + continue + # The try-except here is intended to catch issues where we are + # trying to get a string index out of the internal index. + try: + append_val = new_indices[i] + cumulative_block_lengths[i - + 1] + except TypeError: + append_val = new_indices[i] + + full_indices = full_indices.append(append_val) + else: + full_indices = full_indices.append(new_indices[1:]) + + return full_indices + + @classmethod + def _compute_num_partitions(cls): + """Currently, this method returns the default. In the future it will + estimate the optimal number of partitions. + + :return: + """ + from ...pandas import DEFAULT_NPARTITIONS + return DEFAULT_NPARTITIONS + + # Extracting rows/columns + def _get_blocks_containing_index(self, axis, index): + """Convert a global index to a block index and local index. + + Note: This method is primarily used to convert a global index into a + partition index (along the axis provided) and local index (useful + for `iloc` or similar operations. + + Args: + axis: The axis along which to get the indices + (0 - columns, 1 - rows) + index: The global index to convert. + + Returns: + A tuple containing (block index and internal index). + """ + if not axis: + cumulative_column_widths = np.array(self.block_widths).cumsum() + block_idx = int(np.digitize(index, cumulative_column_widths)) + # Compute the internal index based on the previous lengths. This + # is a global index, so we must subtract the lengths first. + internal_idx = index if not block_idx else index - cumulative_column_widths[ + block_idx - 1] + return block_idx, internal_idx + else: + cumulative_row_lengths = np.array(self.block_lengths).cumsum() + block_idx = int(np.digitize(index, cumulative_row_lengths)) + # See note above about internal index + internal_idx = index if not block_idx else index - cumulative_row_lengths[ + block_idx - 1] + return block_idx, internal_idx + + def _get_dict_of_block_index(self, axis, indices): + """Convert indices to a dict of block index to internal index mapping. + + Note: See `_get_blocks_containing_index` for primary usage. This method + accepts a list of indices rather than just a single value, and uses + `_get_blocks_containing_index`. + + Args: + axis: The axis along which to get the indices + (0 - columns, 1 - rows) + indices: A list of global indices to convert. + + Returns + A dictionary of {block index: list of local indices}. + """ + # Get the internal index and create a dictionary so we only have to + # travel to each partition once. + all_partitions_and_idx = [ + self._get_blocks_containing_index(axis, i) for i in indices + ] + partitions_dict = {} + + for part_idx, internal_idx in all_partitions_and_idx: + if part_idx not in partitions_dict: + partitions_dict[part_idx] = [internal_idx] + else: + partitions_dict[part_idx].append(internal_idx) + + return partitions_dict + + def _apply_func_to_list_of_partitions(self, func, partitions, **kwargs): + """Applies a function to a list of remote partitions. + + Note: The main use for this is to preprocess the func. + + Args: + func: The func to apply + partitions: The list of partitions + + Returns: + A list of RemotePartition objects. + """ + preprocessed_func = self.preprocess_func(func) + return [obj.apply(preprocessed_func, **kwargs) for obj in partitions] + + def apply_func_to_select_indices(self, + axis, + func, + indices, + keep_remaining=False): + """Applies a function to select indices. + + Note: Your internal function must take a kwarg `internal_indices` for + this to work correctly. This prevents information leakage of the + internal index to the external representation. + + Args: + axis: The axis to apply the func over. + func: The function to apply to these indices. + indices: The indices to apply the function to. + keep_remaining: Whether or not to keep the other partitions. + Some operations may want to drop the remaining partitions and + keep only the results. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + + # Handling dictionaries has to be done differently, but we still want + # to figure out the partitions that need to be applied to, so we will + # store the dictionary in a separate variable and assign `indices` to + # the keys to handle it the same as we normally would. + if isinstance(indices, dict): + dict_indices = indices + indices = list(indices.keys()) + else: + dict_indices = None + + if not isinstance(indices, list): + indices = [indices] + + partitions_dict = self._get_dict_of_block_index(axis, indices) + + if not axis: + partitions_for_apply = self.partitions.T + else: + partitions_for_apply = self.partitions + + # We may have a command to perform different functions on different + # columns at the same time. We attempt to handle this as efficiently as + # possible here. Functions that use this in the dictionary format must + # accept a keyword argument `func_dict`. + if dict_indices is not None: + if not keep_remaining: + result = np.array([ + self._apply_func_to_list_of_partitions( + func, + partitions_for_apply[i], + func_dict={ + idx: dict_indices[idx] + for idx in partitions_dict[i] + }) for i in partitions_dict + ]) + else: + result = np.array([ + partitions_for_apply[i] if i not in partitions_dict else + self._apply_func_to_list_of_partitions( + func, + partitions_for_apply[i], + func_dict={ + idx: dict_indices[i] + for idx in partitions_dict[i] + }) for i in range(len(partitions_for_apply)) + ]) + else: + if not keep_remaining: + # We are passing internal indices in here. In order for func to + # actually be able to use this information, it must be able to take in + # the internal indices. This might mean an iloc in the case of Pandas + # or some other way to index into the internal representation. + result = np.array([ + self._apply_func_to_list_of_partitions( + func, + partitions_for_apply[i], + internal_indices=partitions_dict[i]) + for i in partitions_dict + ]) + else: + # The difference here is that we modify a subset and return the + # remaining (non-updated) blocks in their original position. + result = np.array([ + partitions_for_apply[i] if i not in partitions_dict else + self._apply_func_to_list_of_partitions( + func, + partitions_for_apply[i], + internal_indices=partitions_dict[i]) + for i in range(len(partitions_for_apply)) + ]) + + return cls(result.T) if not axis else cls(result) + + def apply_func_to_select_indices_along_full_axis(self, + axis, + func, + indices, + keep_remaining=False): + """Applies a function to a select subset of full columns/rows. + + Note: This should be used when you need to apply a function that relies + on some global information for the entire column/row, but only need + to apply a function to a subset. + + Important: For your func to operate directly on the indices provided, + it must use `internal_indices` as a keyword argument. + + Args: + axis: The axis to apply the function over (0 - rows, 1 - columns) + func: The function to apply. + indices: The global indices to apply the func to. + keep_remaining: Whether or not to keep the other partitions. + Some operations may want to drop the remaining partitions and + keep only the results. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + if isinstance(indices, dict): + dict_indices = indices + indices = list(indices.keys()) + else: + dict_indices = None + + if not isinstance(indices, list): + indices = [indices] + + partitions_dict = self._get_dict_of_block_index(axis, indices) + preprocessed_func = self.preprocess_func(func) + + # Since we might be keeping the remaining blocks that are not modified, + # we have to also keep the block_partitions object in the correct + # direction (transpose for columns). + if not axis: + partitions_for_apply = self.column_partitions + partitions_for_remaining = self.partitions.T + else: + partitions_for_apply = self.row_partitions + partitions_for_remaining = self.partitions + + # We may have a command to perform different functions on different + # columns at the same time. We attempt to handle this as efficiently as + # possible here. Functions that use this in the dictionary format must + # accept a keyword argument `func_dict`. + if dict_indices is not None: + if not keep_remaining: + result = np.array([ + partitions_for_apply[i].apply( + preprocessed_func, + func_dict={ + idx: dict_indices[idx] + for idx in partitions_dict[i] + }) for i in partitions_dict + ]) + else: + result = np.array([ + partitions_for_remaining[i] if i not in partitions_dict + else self._apply_func_to_list_of_partitions( + preprocessed_func, + partitions_for_apply[i], + func_dict={ + idx: dict_indices[idx] + for idx in partitions_dict[i] + }) for i in range(len(partitions_for_apply)) + ]) + else: + if not keep_remaining: + # See notes in `apply_func_to_select_indices` + result = np.array([ + partitions_for_apply[i].apply( + preprocessed_func, internal_indices=partitions_dict[i]) + for i in partitions_dict + ]) + else: + # See notes in `apply_func_to_select_indices` + result = np.array([ + partitions_for_remaining[i] if i not in partitions_dict + else partitions_for_apply[i].apply( + preprocessed_func, internal_indices=partitions_dict[i]) + for i in range(len(partitions_for_remaining)) + ]) + + return cls(result.T) if not axis else cls(result) + + def apply_func_to_indices_both_axis(self, + func, + row_indices, + col_indices, + lazy=False, + keep_remaining=True, + mutate=False, + item_to_distribute=None): + """ + Apply a function to along both axis + + Important: For your func to operate directly on the indices provided, + it must use `row_internal_indices, col_internal_indices` as keyword + arguments. + """ + cls = type(self) + + if not mutate: + partition_copy = self.partitions.copy() + else: + partition_copy = self.partitions + + operation_mask = np.full(self.partitions.shape, False) + + row_position_counter = 0 + for row_blk_idx, row_internal_idx in self._get_dict_of_block_index( + 1, row_indices).items(): + col_position_counter = 0 + for col_blk_idx, col_internal_idx in self._get_dict_of_block_index( + 0, col_indices).items(): + remote_part = partition_copy[row_blk_idx, col_blk_idx] + + if item_to_distribute is not None: + item = item_to_distribute[ + row_position_counter:row_position_counter + + len(row_internal_idx), col_position_counter: + col_position_counter + len(col_internal_idx)] + item = {'item': item} + else: + item = {} + + if lazy: + result = remote_part.add_to_apply_calls( + func, + row_internal_indices=row_internal_idx, + col_internal_indices=col_internal_idx, + **item) + else: + result = remote_part.apply( + func, + row_internal_indices=row_internal_idx, + col_internal_indices=col_internal_idx, + **item) + + partition_copy[row_blk_idx, col_blk_idx] = result + operation_mask[row_blk_idx, col_blk_idx] = True + + col_position_counter += len(col_internal_idx) + row_position_counter += len(row_internal_idx) + + column_idx = np.where(np.any(operation_mask, axis=0))[0] + row_idx = np.where(np.any(operation_mask, axis=1))[0] + if not keep_remaining: + partition_copy = partition_copy[row_idx][:, column_idx] + + return cls(partition_copy) + + def inter_data_operation(self, axis, func, other): + """Apply a function that requires two BlockPartitions objects. + + Args: + axis: The axis to apply the function over (0 - rows, 1 - columns) + func: The function to apply + other: The other BlockPartitions object to apply func to. + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + + if axis: + partitions = self.row_partitions + other_partitions = other.row_partitions + else: + partitions = self.column_partitions + other_partitions = other.column_partitions + + func = self.preprocess_func(func) + + result = np.array([ + partitions[i].apply( + func, + num_splits=cls._compute_num_partitions(), + other_axis_partition=other_partitions[i]) + for i in range(len(partitions)) + ]) + return cls(result) if axis else cls(result.T) + + def manual_shuffle(self, axis, shuffle_func): + """Shuffle the partitions based on the `shuffle_func`. + + Args: + axis: + shuffle_func: + + Returns: + A new BlockPartitions object, the type of object that called this. + """ + cls = type(self) + + if axis: + partitions = self.row_partitions + else: + partitions = self.column_partitions + + func = self.preprocess_func(shuffle_func) + result = np.array([ + part.shuffle(func, num_splits=cls._compute_num_partitions()) + for part in partitions + ]) + return cls(result) if axis else cls(result.T) + + def __getitem__(self, key): + cls = type(self) + return cls(self.partitions[key]) + + def __len__(self): + return sum(self.block_lengths) + + def enlarge_partitions(self, n_rows=None, n_cols=None): + data = self.partitions + block_partitions_cls = type(self) + + if n_rows: + n_cols_lst = self.block_widths + nan_oids_lst = [ + self._partition_class( + _get_nan_block_id(self._partition_class, n_rows, n_cols_)) + for n_cols_ in n_cols_lst + ] + new_chunk = block_partitions_cls(np.array([nan_oids_lst])) + data = self.concat(axis=0, other_blocks=new_chunk) + + if n_cols: + n_rows_lst = self.block_lengths + nan_oids_lst = [ + self._partition_class( + _get_nan_block_id(self._partition_class, n_rows_, n_cols)) + for n_rows_ in n_rows_lst + ] + new_chunk = block_partitions_cls(np.array([nan_oids_lst]).T) + data = self.concat(axis=1, other_blocks=new_chunk) + + return data + + +class RayBlockPartitions(BlockPartitions): + """This method implements the interface in `BlockPartitions`.""" + + # This object uses RayRemotePartition objects as the underlying store. + _partition_class = RayRemotePartition + + def __init__(self, partitions): + self.partitions = partitions + + # We override these for performance reasons. + # Lengths of the blocks + _lengths_cache = None + + # These are set up as properties so that we only use them when we need + # them. We also do not want to trigger this computation on object creation. + @property + def block_lengths(self): + """Gets the lengths of the blocks. + + Note: This works with the property structure `_lengths_cache` to avoid + having to recompute these values each time they are needed. + """ + if self._lengths_cache is None: + # The first column will have the correct lengths. We have an + # invariant that requires that all blocks be the same length in a + # row of blocks. + self._lengths_cache = ray.get( + [obj.length().oid for obj in self.partitions.T[0]]) + return self._lengths_cache + + # Widths of the blocks + _widths_cache = None + + @property + def block_widths(self): + """Gets the widths of the blocks. + + Note: This works with the property structure `_widths_cache` to avoid + having to recompute these values each time they are needed. + """ + if self._widths_cache is None: + # The first column will have the correct lengths. We have an + # invariant that requires that all blocks be the same width in a + # column of blocks. + self._widths_cache = ray.get( + [obj.width().oid for obj in self.partitions[0]]) + return self._widths_cache + + @property + def column_partitions(self): + """A list of `RayColumnPartition` objects.""" + return [RayColumnPartition(col) for col in self.partitions.T] + + @property + def row_partitions(self): + """A list of `RayRowPartition` objects.""" + return [RayRowPartition(row) for row in self.partitions] diff --git a/modin/data_management/partitioning/remote_partition.py b/modin/data_management/partitioning/remote_partition.py new file mode 100644 index 00000000000..9e94e26abfa --- /dev/null +++ b/modin/data_management/partitioning/remote_partition.py @@ -0,0 +1,283 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import pandas +import ray + + +class RemotePartition(object): + """This abstract class holds the data and metadata for a single partition. + The methods required for implementing this abstract class are listed in + the section immediately following this. + + The API exposed by the children of this object is used in + `BlockPartitions`. + + Note: These objects are treated as immutable by `BlockPartitions` + subclasses. There is no logic for updating inplace. + """ + + # Abstract methods and fields. These must be implemented in order to + # properly subclass this object. There are also some abstract classmethods + # to implement. + def get(self): + """Return the object wrapped by this one to the original format. + + Note: This is the opposite of the classmethod `put`. + E.g. if you assign `x = RemotePartition.put(1)`, `x.get()` should + always return 1. + + Returns: + The object that was `put`. + """ + raise NotImplementedError("Must be implemented in child class") + + def apply(self, func, **kwargs): + """Apply some callable function to the data in this partition. + + Note: It is up to the implementation how kwargs are handled. They are + an important part of many implementations. As of right now, they + are not serialized. + + Args: + func: The lambda to apply (may already be correctly formatted) + + Returns: + A new `RemotePartition` containing the object that has had `func` + applied to it. + """ + raise NotImplementedError("Must be implemented in child class") + + def add_to_apply_calls(self, func, **kwargs): + """Add the function to the apply function call stack. + + This function will be executed when apply is called. It will be executed + in the order inserted; apply's func operates the last and return + """ + raise NotImplementedError("Must be implemented in child class") + + def to_pandas(self): + """Convert the object stored in this partition to a Pandas DataFrame. + + Note: If the underlying object is a Pandas DataFrame, this will likely + only need to call `get` + + Returns: + A Pandas DataFrame. + """ + raise NotImplementedError("Must be implemented in child class") + + @classmethod + def put(cls, obj): + """A factory classmethod to format a given object. + + Args: + obj: An object. + + Returns: + A `RemotePartitions` object. + """ + raise NotImplementedError("Must be implemented in child class") + + @classmethod + def preprocess_func(cls, func): + """Preprocess a function before an `apply` call. + + Note: This is a classmethod because the definition of how to preprocess + should be class-wide. Also, we may want to use this before we + deploy a preprocessed function to multiple `RemotePartition` + objects. + + Args: + func: The function to preprocess. + + Returns: + An object that can be accepted by `apply`. + """ + raise NotImplementedError("Must be implemented in child class") + + @classmethod + def length_extraction_fn(cls): + """The function to compute the length of the object in this partition. + + Returns: + A callable function. + """ + raise NotImplementedError("Must be implemented in child class") + + @classmethod + def width_extraction_fn(cls): + """The function to compute the width of the object in this partition. + + Returns: + A callable function. + """ + raise NotImplementedError("Must be implemented in child class") + + _length_cache = None + _width_cache = None + + def length(self): + if self._length_cache is None: + cls = type(self) + func = cls.length_extraction_fn() + preprocessed_func = cls.preprocess_func(func) + + self._length_cache = self.apply(preprocessed_func) + return self._length_cache + + def width(self): + if self._width_cache is None: + cls = type(self) + func = cls.width_extraction_fn() + preprocessed_func = cls.preprocess_func(func) + + self._width_cache = self.apply(preprocessed_func) + return self._width_cache + + @classmethod + def empty(cls): + raise NotImplementedError("To be implemented in the child class!") + + +class RayRemotePartition(RemotePartition): + def __init__(self, object_id): + assert type(object_id) is ray.ObjectID + + self.oid = object_id + self.call_queue = [] + + def get(self): + """Gets the object out of the plasma store. + + Returns: + The object from the plasma store. + """ + if len(self.call_queue): + return self.apply(lambda x: x).get() + + return ray.get(self.oid) + + def apply(self, func, **kwargs): + """Apply a function to the object stored in this partition. + + Note: It does not matter if func is callable or an ObjectID. Ray will + handle it correctly either way. The keyword arguments are sent as a + dictionary. + + Args: + func: The function to apply. + + Returns: + A RayRemotePartition object. + """ + oid = self.oid + self.call_queue.append((func, kwargs)) + + def call_queue_closure(oid_obj, call_queues): + + for func, kwargs in call_queues: + if isinstance(func, ray.ObjectID): + func = ray.get(func) + if isinstance(kwargs, ray.ObjectID): + kwargs = ray.get(kwargs) + + oid_obj = func(oid_obj, **kwargs) + + return oid_obj + + oid = deploy_ray_func.remote( + call_queue_closure, oid, kwargs={'call_queues': self.call_queue}) + self.call_queue = [] + + return RayRemotePartition(oid) + + def add_to_apply_calls(self, func, **kwargs): + self.call_queue.append((func, kwargs)) + return self + + def __copy__(self): + return RayRemotePartition(object_id=self.oid) + + def to_pandas(self): + """Convert the object stored in this partition to a Pandas DataFrame. + + Returns: + A Pandas DataFrame. + """ + dataframe = self.get() + assert type(dataframe) is pandas.DataFrame or type( + dataframe) is pandas.Series + + return dataframe + + @classmethod + def put(cls, obj): + """Put an object in the Plasma store and wrap it in this object. + + Args: + obj: The object to be put. + + Returns: + A `RayRemotePartition` object. + """ + return RayRemotePartition(ray.put(obj)) + + @classmethod + def preprocess_func(cls, func): + """Put a callable function into the plasma store for use in `apply`. + + Args: + func: The function to preprocess. + + Returns: + A ray.ObjectID. + """ + return ray.put(func) + + @classmethod + def length_extraction_fn(cls): + return length_fn_pandas + + @classmethod + def width_extraction_fn(cls): + return width_fn_pandas + + @classmethod + def empty(cls): + return cls.put(pandas.DataFrame()) + + +def length_fn_pandas(df): + assert isinstance(df, (pandas.DataFrame, pandas.Series)) + return len(df) + + +def width_fn_pandas(df): + assert isinstance(df, (pandas.DataFrame, pandas.Series)) + if isinstance(df, pandas.DataFrame): + return len(df.columns) + else: + return 1 + + +@ray.remote +def deploy_ray_func(func, partition, kwargs): + """Deploy a function to a partition in Ray. + + Args: + func: The function to apply. + partition: The partition to apply the function to. + kwargs: A dictionary of keyword arguments for the function. + + Returns: + The result of the function. + """ + try: + return func(partition, **kwargs) + # Sometimes Arrow forces us to make a copy of an object before we operate + # on it. We don't want the error to propagate to the user, and we want to + # avoid copying unless we absolutely have to. + except ValueError: + return func(partition.copy(), **kwargs) diff --git a/modin/data_management/partitioning/utils.py b/modin/data_management/partitioning/utils.py new file mode 100644 index 00000000000..c47be187193 --- /dev/null +++ b/modin/data_management/partitioning/utils.py @@ -0,0 +1,35 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import pandas + + +def compute_chunksize(length, num_splits): + # We do this to avoid zeros and having an extremely large last partition + return length // num_splits if length % num_splits == 0 \ + else length // num_splits + 1 + + +def _get_nan_block_id(partition_class, n_row=1, n_col=1, transpose=False): + """A memory efficient way to get a block of NaNs. + + Args: + partition_class (RemotePartition): The class to use to put the object + in the remote format. + n_row(int): The number of rows. + n_col(int): The number of columns. + transpose(bool): If true, swap rows and columns. + Returns: + ObjectID of the NaN block. + """ + global _NAN_BLOCKS + if transpose: + n_row, n_col = n_col, n_row + shape = (n_row, n_col) + if shape not in _NAN_BLOCKS: + arr = np.tile(np.array(np.NaN), shape) + # TODO Not use pandas.DataFrame here, but something more general. + _NAN_BLOCKS[shape] = partition_class.put(pandas.DataFrame(data=arr)) + return _NAN_BLOCKS[shape] diff --git a/modin/pandas/__init__.py b/modin/pandas/__init__.py index 5f7b6758556..8b1aebcb53a 100644 --- a/modin/pandas/__init__.py +++ b/modin/pandas/__init__.py @@ -14,6 +14,16 @@ import ray from .. import __git_revision__, __version__ +from .concat import concat +from .dataframe import DataFrame +from .datetimes import to_datetime +from .io import (read_csv, read_parquet, read_json, read_html, read_clipboard, + read_excel, read_hdf, read_feather, read_msgpack, read_stata, + read_sas, read_pickle, read_sql) +from .reshape import get_dummies + +# Set this so that Pandas doesn't try to multithread by itself +os.environ['OMP_NUM_THREADS'] = "1" try: if threading.current_thread().name == "MainThread": @@ -24,32 +34,8 @@ except AssertionError: pass -# Set this so that Pandas doesn't try to multithread by itself -os.environ['OMP_NUM_THREADS'] = "1" - num_cpus = ray.global_state.cluster_resources()['CPU'] -DEFAULT_NPARTITIONS = int(num_cpus) - - -def set_npartition_default(n): - global DEFAULT_NPARTITIONS - DEFAULT_NPARTITIONS = n - - -def get_npartitions(): - return DEFAULT_NPARTITIONS - - -# We import these file after above two function -# because they depend on npartitions. -from .concat import concat # noqa: 402 -from .dataframe import DataFrame # noqa: 402 -from .datetimes import to_datetime # noqa: 402 -from .io import ( # noqa: 402 - read_csv, read_parquet, read_json, read_html, read_clipboard, read_excel, - read_hdf, read_feather, read_msgpack, read_stata, read_sas, read_pickle, - read_sql) -from .reshape import get_dummies # noqa: 402 +DEFAULT_NPARTITIONS = max(4, int(num_cpus)) __all__ = [ "DataFrame", "Series", "read_csv", "read_parquet", "read_json", diff --git a/modin/pandas/concat.py b/modin/pandas/concat.py index 0781e34257e..d6bc52ab867 100644 --- a/modin/pandas/concat.py +++ b/modin/pandas/concat.py @@ -4,10 +4,7 @@ import pandas -import numpy as np - from .dataframe import DataFrame -from .utils import _reindex_helper def concat(objs, @@ -65,89 +62,25 @@ def concat(objs, raise ValueError("Only can inner (intersect) or outer (union) join the" " other axis") - # We need this in a list because we use it later. - all_index, all_columns = list( - zip(*[(obj.index, obj.columns) for obj in objs])) - - def series_to_df(series, columns): - df = pandas.DataFrame(series) - df.columns = columns - return DataFrame(df) - - # Pandas puts all of the Series in a single column named 0. This is - # true regardless of the existence of another column named 0 in the - # concat. - if axis == 0: - objs = [ - series_to_df(obj, [0]) if isinstance(obj, pandas.Series) else obj - for obj in objs - ] - else: - # Pandas starts the count at 0 so this will increment the names as - # long as there's a new nameless Series being added. - def name_incrementer(i): - val = i[0] - i[0] += 1 - return val - - i = [0] - objs = [ - series_to_df( - obj, obj.name if obj.name is not None else name_incrementer(i)) - if isinstance(obj, pandas.Series) else obj for obj in objs - ] - - # Using concat on the columns and index is fast because they're empty, - # and it forces the error checking. It also puts the columns in the - # correct order for us. - final_index = \ - pandas.concat([pandas.DataFrame(index=idx) for idx in all_index], - axis=axis, join=join, join_axes=join_axes, - ignore_index=ignore_index, keys=keys, levels=levels, - names=names, verify_integrity=verify_integrity, - copy=False).index - final_columns = \ - pandas.concat([pandas.DataFrame(columns=col) - for col in all_columns], - axis=axis, join=join, join_axes=join_axes, - ignore_index=ignore_index, keys=keys, levels=levels, - names=names, verify_integrity=verify_integrity, - copy=False).columns - - # Put all of the DataFrames into Ray format - # TODO just partition the DataFrames instead of building a new Ray DF. + # We have the weird Series and axis check because, when concatenating a + # dataframe to a series on axis=0, pandas ignores the name of the series, + # and this check aims to mirror that (possibly buggy) functionality objs = [ - DataFrame(obj) if isinstance(obj, (pandas.DataFrame, - pandas.Series)) else obj + obj if isinstance(obj, DataFrame) else DataFrame(obj.rename()) + if isinstance(obj, pandas.Series) and axis == 0 else DataFrame(obj) for obj in objs ] - - # Here we reuse all_columns/index so we don't have to materialize objects - # from remote memory built in the previous line. In the future, we won't be - # building new DataFrames, rather just partitioning the DataFrames. - if axis == 0: - new_blocks = np.array([ - _reindex_helper._submit( - args=tuple([ - all_columns[i], final_columns, axis, - len(objs[0]._block_partitions) - ] + part.tolist()), - num_return_vals=len(objs[0]._block_partitions)) - for i in range(len(objs)) for part in objs[i]._block_partitions - ]) - else: - # Transposing the columns is necessary because the remote task treats - # everything like rows and returns in row-major format. Luckily, this - # operation is cheap in numpy. - new_blocks = np.array([ - _reindex_helper._submit( - args=tuple([ - all_index[i], final_index, axis, - len(objs[0]._block_partitions.T) - ] + part.tolist()), - num_return_vals=len(objs[0]._block_partitions.T)) - for i in range(len(objs)) for part in objs[i]._block_partitions.T - ]).T - - return DataFrame( - block_partitions=new_blocks, columns=final_columns, index=final_index) + df = objs[0] + objs = [obj._data_manager for obj in objs] + new_manager = df._data_manager.concat( + axis, + objs[1:], + join=join, + join_axes=None, + ignore_index=False, + keys=None, + levels=None, + names=None, + verify_integrity=False, + copy=True) + return DataFrame(data_manager=new_manager) diff --git a/modin/pandas/dataframe.py b/modin/pandas/dataframe.py index 53feafa2d8d..757679320ff 100644 --- a/modin/pandas/dataframe.py +++ b/modin/pandas/dataframe.py @@ -4,36 +4,25 @@ import pandas from pandas.api.types import is_scalar -from pandas.compat import lzip, to_str, string_types, cPickle as pkl +from pandas.compat import to_str, string_types, cPickle as pkl import pandas.core.common as com -from pandas.core.dtypes.cast import maybe_upcast_putmask -from pandas.core.dtypes.common import (_get_dtype_from_object, is_bool_dtype, - is_list_like, is_numeric_dtype, - is_timedelta64_dtype) +from pandas.core.dtypes.common import ( + _get_dtype_from_object, is_bool_dtype, is_list_like, is_numeric_dtype, + is_datetime_or_timedelta_dtype, is_dtype_equal) from pandas.core.index import _ensure_index_from_sequences -from pandas.core.indexing import check_bool_indexer -from pandas.errors import MergeError +from pandas.core.indexing import (check_bool_indexer, + convert_to_index_sliceable) from pandas.util._validators import validate_bool_kwarg -from pandas._libs import lib import itertools -import io import functools import numpy as np -from numpy.testing import assert_equal import ray import re import sys import warnings -from .utils import (to_pandas, _blocks_to_col, _blocks_to_row, - _compile_remote_dtypes, _concat_index, _co_op_helper, - _create_block_partitions, _create_blocks_helper, - _deploy_func, _fix_blocks_dimensions, _inherit_docstrings, - _map_partitions, _match_partitioning, - _partition_pandas_dataframe, _reindex_helper) -from . import get_npartitions -from .index_metadata import _IndexMetadata +from .utils import (from_pandas, to_pandas, _inherit_docstrings) from .iterator import PartitionIterator @@ -46,12 +35,7 @@ def __init__(self, columns=None, dtype=None, copy=False, - col_partitions=None, - row_partitions=None, - block_partitions=None, - row_metadata=None, - col_metadata=None, - dtypes_cache=None): + data_manager=None): """Distributed DataFrame object backed by Pandas dataframes. Args: @@ -65,27 +49,15 @@ def __init__(self, dtype: Data type to force. Only a single dtype is allowed. If None, infer copy (boolean): Copy data from inputs. - Only affects DataFrame / 2d ndarray input - col_partitions ([ObjectID]): The list of ObjectIDs that contain - the column DataFrame partitions. - row_partitions ([ObjectID]): The list of ObjectIDs that contain the - row DataFrame partitions. - block_partitions: A 2D numpy array of block partitions. - row_metadata (_IndexMetadata): - Metadata for the new DataFrame's rows - col_metadata (_IndexMetadata): - Metadata for the new DataFrame's columns + Only affects DataFrame / 2d ndarray input. + data_manager: A manager object to manage distributed computation. """ if isinstance(data, DataFrame): - self._frame_data = data._frame_data + self._data_manager = data._data_manager return - self._dtypes_cache = dtypes_cache - # Check type of data and use appropriate constructor - if data is not None or (col_partitions is None - and row_partitions is None - and block_partitions is None): + if data is not None or data_manager is None: pandas_df = pandas.DataFrame( data=data, @@ -94,372 +66,65 @@ def __init__(self, dtype=dtype, copy=copy) - # Cache dtypes - self._dtypes_cache = pandas_df.dtypes - - # TODO convert _partition_pandas_dataframe to block partitioning. - row_partitions = \ - _partition_pandas_dataframe(pandas_df, - num_partitions=get_npartitions()) - - self._block_partitions = \ - _create_block_partitions(row_partitions, axis=0, - length=len(pandas_df.columns)) - - # Set in case we were only given a single row/column for below. - axis = 0 - columns = pandas_df.columns - index = pandas_df.index + self._data_manager = from_pandas(pandas_df)._data_manager else: - # created this invariant to make sure we never have to go into the - # partitions to get the columns - assert columns is not None or col_metadata is not None, \ - "Columns not defined, must define columns or col_metadata " \ - "for internal DataFrame creations" - - if block_partitions is not None: - axis = 0 - # put in numpy array here to make accesses easier since it's 2D - self._block_partitions = np.array(block_partitions) - self._block_partitions = \ - _fix_blocks_dimensions(self._block_partitions, axis) - - else: - if row_partitions is not None: - axis = 0 - partitions = row_partitions - axis_length = len(columns) if columns is not None else \ - len(col_metadata) - elif col_partitions is not None: - axis = 1 - partitions = col_partitions - axis_length = len(index) if index is not None else \ - len(row_metadata) - # All partitions will already have correct dtypes - self._dtypes_cache = [ - _deploy_func.remote(lambda df: df.dtypes, pandas_df) - for pandas_df in col_partitions - ] - - # TODO: write explicit tests for "short and wide" - # column partitions - self._block_partitions = \ - _create_block_partitions(partitions, axis=axis, - length=axis_length) - - assert self._block_partitions.ndim == 2, "Block Partitions must be 2D." - - # Create the row and column index objects for using our partitioning. - # If the objects haven't been inherited, then generate them - if row_metadata is not None: - self._row_metadata = row_metadata.copy() - if index is not None: - self.index = index - else: - self._row_metadata = _IndexMetadata( - self._block_partitions[:, 0], index=index, axis=0) - - if col_metadata is not None: - self._col_metadata = col_metadata.copy() - if columns is not None: - self.columns = columns - else: - self._col_metadata = _IndexMetadata( - self._block_partitions[0, :], index=columns, axis=1) - - if self._dtypes_cache is None: - self._get_remote_dtypes() - - def _get_frame_data(self): - data = {} - data['blocks'] = self._block_partitions - data['col_metadata'] = self._col_metadata - data['row_metadata'] = self._row_metadata - data['columns'] = self.columns - data['index'] = self.index - data['dtypes'] = self._dtypes_cache - - return data - - def _set_frame_data(self, data): - self._block_partitions = data['blocks'] - self._col_metadata = data['col_metadata'] - self._row_metadata = data['row_metadata'] - self.columns = data['columns'] - self.index = data['index'] - self._dtypes_cache = data['dtypes'] - - _frame_data = property(_get_frame_data, _set_frame_data) - - def _get_row_partitions(self): - empty_rows_mask = self._row_metadata._lengths > 0 - if any(empty_rows_mask): - self._row_metadata._lengths = \ - self._row_metadata._lengths[empty_rows_mask] - self._block_partitions = self._block_partitions[empty_rows_mask, :] - return [ - _blocks_to_row.remote(*part) - for i, part in enumerate(self._block_partitions) - ] - - def _set_row_partitions(self, new_row_partitions): - self._block_partitions = \ - _create_block_partitions(new_row_partitions, axis=0, - length=len(self.columns)) - - _row_partitions = property(_get_row_partitions, _set_row_partitions) - - def _get_col_partitions(self): - empty_cols_mask = self._col_metadata._lengths > 0 - if any(empty_cols_mask): - self._col_metadata._lengths = \ - self._col_metadata._lengths[empty_cols_mask] - self._block_partitions = self._block_partitions[:, empty_cols_mask] - return [ - _blocks_to_col.remote(*self._block_partitions[:, i]) - for i in range(self._block_partitions.shape[1]) - ] - - def _set_col_partitions(self, new_col_partitions): - self._block_partitions = \ - _create_block_partitions(new_col_partitions, axis=1, - length=len(self.index)) - - _col_partitions = property(_get_col_partitions, _set_col_partitions) + self._data_manager = data_manager def __str__(self): return repr(self) - def _repr_pandas_builder(self): - """Creates a pandas DataFrame of appropriate size from this DataFrame. + def _build_repr_df(self, num_rows, num_cols): + # Add one here so that pandas automatically adds the dots + # It turns out to be faster to extract 2 extra rows and columns than to + # build the dots ourselves. + num_rows_for_head = num_rows // 2 + 1 + num_cols_for_front = num_cols // 2 + 1 - Note: Currently the values for the sizes are hard-coded, but eventually - we will need to have an options module for these to be changed. + if len(self.index) <= num_rows: + head = self._data_manager + tail = None + else: + head = self._data_manager.head(num_rows_for_head) + tail = self._data_manager.tail(num_rows_for_head) - Returns: - A new pandas DataFrame. repr() will be called on this DataFrame. - """ - - def front_block_builder(blocks, n, index): - """Get first n columns from the blocks provided. - - Note: This is called after we obtain the head/tail blocks. We do - not extract the n columns for each row, only for the head/tail. - - Args: - blocks: A numpy array of OIDs containing block partitions - n: The number of columns to extract - index: The pandas index to assign to the resulting DataFrame. - - Returns: - A pandas DataFrame containing the first n columns extracted - from the blocks provided. - """ - cum_col_lengths = self._col_metadata._lengths.cumsum() - idx = np.digitize(n, cum_col_lengths) - - if idx > 0: - # This value will be what we need to get from the last block - remaining = n - cum_col_lengths[idx - 1] - # These are the blocks that we will take (all the blocks before - # the cutoff n) - full_blocks = \ - pandas.concat([pandas.concat(ray.get(df.tolist()), - axis=1, copy=False) - for df in blocks[:, :idx]], - copy=False) - else: - remaining = n - full_blocks = pandas.DataFrame() - - if remaining == 0: - full_blocks.index = index - return full_blocks - - # These are the blocks that we need extract the remaining (not - # already extracted from full_blocks) columns from. - partial_blocks = \ - pandas.concat(ray.get([_deploy_func.remote( - lambda df: df.iloc[:, :remaining], df) - for df in blocks[:, idx]]), copy=False) - - all_n_columns = \ - pandas.concat([full_blocks, partial_blocks], - axis=1, copy=False) - all_n_columns.index = index - return all_n_columns - - def back_block_builder(blocks, n, index): - """Get last n columns from the blocks provided. - - Note: This is called after we obtain the head/tail blocks. We do - not extract the n columns for each row, only for the head/tail. - - Args: - blocks: A numpy array of OIDs containing block partitions - n: The number of columns to extract - index: The pandas index to assign to the resulting DataFrame. - - Returns: - A pandas DataFrame containing the last n columns extracted - from the blocks provided. - """ - # We use the number of partitions later to work backwards from the - # end of the columns. - nparts = len(self._col_metadata._lengths) - # We are cumulatively summing the lengths in reverse order because - # we'll build the last columns in reverse order - cum_col_lengths = self._col_metadata._lengths[::-1].cumsum() - idx = np.digitize(n, cum_col_lengths) - - if idx > 0: - # This value will be what we need to get from the last block - remaining = n - cum_col_lengths[idx - 1] - # These are the blocks that we will take (all the blocks before - # the cutoff n) - full_blocks = \ - pandas.concat([pandas.concat(ray.get(df.tolist()), - axis=1, copy=False) - for df in blocks[:, nparts - idx:]], - copy=False) + if len(self.columns) <= num_cols: + head_front = head.to_pandas() + # Creating these empty to make the concat logic simpler + head_back = pandas.DataFrame() + tail_back = pandas.DataFrame() + + if tail is not None: + tail_front = tail.to_pandas() else: - remaining = n - full_blocks = pandas.DataFrame() - - if remaining == 0: - full_blocks.index = index - return full_blocks - - # These are the blocks that we need extract the remaining (not - # already extracted from full_blocks) columns from. - partial_blocks = \ - pandas.concat(ray.get([_deploy_func.remote( - lambda df: df.iloc[:, -remaining:], df) - for df in blocks[:, -idx - 1]]), copy=False) - - all_n_columns = \ - pandas.concat([partial_blocks, full_blocks], - axis=1, copy=False) - all_n_columns.index = index - return all_n_columns - - def row_dots_builder(full_head, full_tail): - """Inserts a row of dots between head and tail DataFrames - - Args: - full_head: The head pandas DataFrame for the repr. - full_tail: The tail pandas DataFrame for the repr. - - Returns: - A new DataFrame combining full_head and full_tail with a row - of dots inserted between. - """ - row_dots = \ - pandas.Series(["..." for _ in range(len(full_head.columns))]) - row_dots.index = full_head.columns - row_dots.name = "..." - - return full_head.append(row_dots).append(full_tail) - - def col_dots_builder(full_front, full_back): - """Inserts a column of dots between head and tail DataFrames. - - Args: - full_front: The front DataFrame for the repr. - full_back: The back DataFrame for the repr. - - Returns: - A new DataFrame combining front_blocks and back_blocks with a - column of dots inserted between. - """ - col_dots = pandas.Series(["..." for _ in range(len(full_front))]) - col_dots.index = index_of_head - col_dots.name = "..." - return pandas.concat([full_front, col_dots, full_back], - axis=1, - copy=False) - - # If we don't exceed the maximum number of values on either dimension - if len(self.index) <= 60 and len(self.columns) <= 20: - return to_pandas(self) - - if len(self.index) >= 60: - head_blocks = self._head_block_builder(30) - tail_blocks = self._tail_block_builder(30) - index_of_head = self.index[:30] - index_of_tail = self.index[-30:] + tail_front = pandas.DataFrame() else: - head_blocks = self._block_partitions - # We set this to None so we know - tail_blocks = None - index_of_head = self.index - - # Get first and last 10 columns if there are more than 20 columns - if len(self._col_metadata) >= 20: - # Building the front blocks from head_blocks - front_blocks = \ - front_block_builder(head_blocks, 10, index_of_head) - front_blocks.columns = self.columns[:10] - - # Building the back blocks from head_blocks - back_blocks = back_block_builder(head_blocks, 10, index_of_head) - back_blocks.columns = self.columns[-10:] - - full_head = col_dots_builder(front_blocks, back_blocks) - - # True only if we have >60 rows in the DataFrame - if tail_blocks is not None: - # Building the font blocks from tail_blocks - front_blocks = \ - front_block_builder(tail_blocks, 10, index_of_tail) - front_blocks.columns = self.columns[:10] - - # Building the back blocks from tail_blocks - back_blocks = \ - back_block_builder(tail_blocks, 10, index_of_tail) - back_blocks.columns = self.columns[-10:] - - full_tail = col_dots_builder(front_blocks, back_blocks) - - return row_dots_builder(full_head, full_tail) - else: - return full_head + head_front = head.front(num_cols_for_front).to_pandas() + head_back = head.back(num_cols_for_front).to_pandas() - else: - # Convert head_blocks into a pandas DataFrame - list_of_head_rows = [ - pandas.concat(ray.get(df.tolist()), axis=1) - for df in head_blocks - ] - full_head = pandas.concat(list_of_head_rows) - full_head.columns = self.columns - full_head.index = index_of_head - - # True only if we have >60 rows in the DataFrame - if tail_blocks is not None: - # Convert tail_blocks into a pandas DataFrame - list_of_tail_rows = \ - [pandas.concat(ray.get(df.tolist()), axis=1) - for df in tail_blocks] - full_tail = pandas.concat(list_of_tail_rows) - full_tail.columns = self.columns - full_tail.index = index_of_tail - - return row_dots_builder(full_head, full_tail) + if tail is not None: + tail_front = tail.front(num_cols_for_front).to_pandas() + tail_back = tail.back(num_cols_for_front).to_pandas() else: - return full_head + tail_front = tail_back = pandas.DataFrame() + + head_for_repr = pandas.concat([head_front, head_back], axis=1) + tail_for_repr = pandas.concat([tail_front, tail_back], axis=1) + + return pandas.concat([head_for_repr, tail_for_repr]) def __repr__(self): - # We use pandas repr so that we match them. - if len(self._row_metadata) <= 60 and \ - len(self._col_metadata) <= 20: - return repr(self._repr_pandas_builder()) - # The split here is so that we don't repr pandas row lengths. - result = self._repr_pandas_builder() - final_result = repr(result).rsplit("\n\n", 1)[0] + \ - "\n\n[{0} rows x {1} columns]".format(len(self.index), - len(self.columns)) - return final_result + # In the future, we can have this be configurable, just like Pandas. + num_rows = 60 + num_cols = 20 + + result = repr(self._build_repr_df(num_rows, num_cols)) + if len(self.index) > num_rows or len(self.columns) > num_cols: + # The split here is so that we don't repr pandas row lengths. + return result.rsplit("\n\n", + 1)[0] + "\n\n[{0} rows x {1} columns]".format( + len(self.index), len(self.columns)) + else: + return result def _repr_html_(self): """repr function for rendering in Jupyter Notebooks like Pandas @@ -468,16 +133,20 @@ def _repr_html_(self): Returns: The HTML representation of a Dataframe. """ + # In the future, we can have this be configurable, just like Pandas. + num_rows = 60 + num_cols = 20 + # We use pandas _repr_html_ to get a string of the HTML representation # of the dataframe. - if len(self._row_metadata) <= 60 and \ - len(self._col_metadata) <= 20: - return self._repr_pandas_builder()._repr_html_() - # We split so that we insert our correct dataframe dimensions. - result = self._repr_pandas_builder()._repr_html_() - return result.split("

")[0] + \ - "

{0} rows x {1} columns

\n".format(len(self.index), - len(self.columns)) + result = self._build_repr_df(num_rows, num_cols)._repr_html_() + if len(self.index) > num_rows or len(self.columns) > num_cols: + # We split so that we insert our correct dataframe dimensions. + return result.split( + "

")[0] + "

{0} rows x {1} columns

\n".format( + len(self.index), len(self.columns)) + else: + return result def _get_index(self): """Get the index for this DataFrame. @@ -485,17 +154,7 @@ def _get_index(self): Returns: The union of all indexes across the partitions. """ - return self._row_metadata.index - - def _set_index(self, new_index): - """Set the index for this DataFrame. - - Args: - new_index: The new index to set this - """ - self._row_metadata.index = new_index - - index = property(_get_index, _set_index) + return self._data_manager.index def _get_columns(self): """Get the columns for this DataFrame. @@ -503,49 +162,29 @@ def _get_columns(self): Returns: The union of all indexes across the partitions. """ - return self._col_metadata.index + return self._data_manager.columns - def _set_columns(self, new_index): - """Set the columns for this DataFrame. + def _set_index(self, new_index): + """Set the index for this DataFrame. Args: new_index: The new index to set this """ - self._col_metadata.index = new_index + self._data_manager.index = new_index - columns = property(_get_columns, _set_columns) - - def _arithmetic_helper(self, remote_func, axis, level=None): - # TODO: We don't support `level` right now - if level is not None: - raise NotImplementedError("Level not yet supported.") + def _set_columns(self, new_columns): + """Set the columns for this DataFrame. - axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None \ - else 0 + Args: + new_index: The new index to set this + """ + self._data_manager.columns = new_columns - oid_series = ray.get( - _map_partitions( - remote_func, - self._col_partitions if axis == 0 else self._row_partitions)) + index = property(_get_index, _set_index) + columns = property(_get_columns, _set_columns) - if axis == 0: - # We use the index to get the internal index. - oid_series = [(oid_series[i], i) for i in range(len(oid_series))] - - if len(oid_series) > 0: - for df, partition in oid_series: - this_partition = \ - self._col_metadata.partition_series(partition) - df.index = \ - this_partition[this_partition.isin(df.index)].index - - result_series = pandas.concat([obj[0] for obj in oid_series], - axis=0, - copy=False) - else: - result_series = pandas.concat(oid_series, axis=0, copy=False) - result_series.index = self.index - return result_series + def _map_reduce(self, *args, **kwargs): + raise ValueError("Fix this implementation") def _validate_eval_query(self, expr, **kwargs): """Helper function to check the arguments to eval() and query() @@ -581,10 +220,8 @@ def ndim(self): Returns: The number of dimensions for this DataFrame. """ - # The number of dimensions is common across all partitions. - # The first partition will be enough. - return ray.get( - _deploy_func.remote(lambda df: df.ndim, self._row_partitions[0])) + # DataFrames have an invariant that requires they be 2 dimensions. + return 2 @property def ftypes(self): @@ -595,19 +232,11 @@ def ftypes(self): """ # The ftypes are common across all partitions. # The first partition will be enough. - result = ray.get( - _deploy_func.remote(lambda df: df.ftypes, self._row_partitions[0])) - result.index = self.columns + dtypes = self.dtypes.copy() + ftypes = ["{0}:dense".format(str(dtype)) for dtype in dtypes.values] + result = pandas.Series(ftypes, index=self.columns) return result - def _get_remote_dtypes(self): - """Finds and caches ObjectIDs for the dtypes of each column partition. - """ - self._dtypes_cache = [ - _compile_remote_dtypes.remote(*column) - for column in self._block_partitions.T - ] - @property def dtypes(self): """Get the dtypes for this DataFrame. @@ -615,16 +244,7 @@ def dtypes(self): Returns: The dtypes for this DataFrame. """ - assert self._dtypes_cache is not None - - if isinstance(self._dtypes_cache, list) and \ - isinstance(self._dtypes_cache[0], - ray.ObjectID): - self._dtypes_cache = pandas.concat( - ray.get(self._dtypes_cache), copy=False) - self._dtypes_cache.index = self.columns - - return self._dtypes_cache + return self._data_manager.dtypes @property def empty(self): @@ -643,9 +263,7 @@ def values(self): Returns: The numpy representation of this DataFrame. """ - return np.concatenate( - ray.get( - _map_partitions(lambda df: df.values, self._row_partitions))) + return self.as_matrix() @property def axes(self): @@ -665,66 +283,15 @@ def shape(self): """ return len(self.index), len(self.columns) - def _update_inplace(self, - row_partitions=None, - col_partitions=None, - block_partitions=None, - columns=None, - index=None, - col_metadata=None, - row_metadata=None): - """updates the current DataFrame inplace. - - Behavior should be similar to the constructor, given the corresponding - arguments. Note that len(columns) and len(index) should match the - corresponding dimensions in the partition(s) passed in, otherwise this - function will complain. + def _update_inplace(self, new_manager): + """Updates the current DataFrame inplace. Args: - row_partitions ([ObjectID]): - The new partitions to replace self._row_partitions directly - col_partitions ([ObjectID]): - The new partitions to replace self._col_partitions directly - columns (pandas.Index): - Index of the column dimension to replace existing columns - index (pandas.Index): - Index of the row dimension to replace existing index - - Note: - If `columns` or `index` are not supplied, they will revert to - default columns or index respectively, as this function does - not have enough contextual info to rebuild the indexes - correctly based on the addition/subtraction of rows/columns. + new_manager: The new DataManager to use to manage the data """ - assert row_partitions is not None or col_partitions is not None\ - or block_partitions is not None, \ - "To update inplace, new column or row partitions must be set." - - if block_partitions is not None: - self._block_partitions = block_partitions - - elif row_partitions is not None: - self._row_partitions = row_partitions - - elif col_partitions is not None: - self._col_partitions = col_partitions - - if col_metadata is not None: - self._col_metadata = col_metadata - else: - assert columns is not None, \ - "If col_metadata is None, columns must be passed in" - self._col_metadata = _IndexMetadata( - self._block_partitions[0, :], index=columns, axis=1) - if row_metadata is not None: - self._row_metadata = row_metadata - else: - # Index can be None for default index, so we don't check - self._row_metadata = _IndexMetadata( - self._block_partitions[:, 0], index=index, axis=0) - - # Update dtypes - self._get_remote_dtypes() + old_manager = self._data_manager + self._data_manager = new_manager + old_manager.free() def add_prefix(self, prefix): """Add a prefix to each of the column names. @@ -732,13 +299,7 @@ def add_prefix(self, prefix): Returns: A new DataFrame containing the new column names. """ - new_cols = self.columns.map(lambda x: str(prefix) + str(x)) - return DataFrame( - block_partitions=self._block_partitions, - columns=new_cols, - col_metadata=self._col_metadata, - row_metadata=self._row_metadata, - dtypes_cache=self._dtypes_cache) + return DataFrame(data_manager=self._data_manager.add_prefix(prefix)) def add_suffix(self, suffix): """Add a suffix to each of the column names. @@ -746,13 +307,7 @@ def add_suffix(self, suffix): Returns: A new DataFrame containing the new column names. """ - new_cols = self.columns.map(lambda x: str(x) + str(suffix)) - return DataFrame( - block_partitions=self._block_partitions, - columns=new_cols, - col_metadata=self._col_metadata, - row_metadata=self._row_metadata, - dtypes_cache=self._dtypes_cache) + return DataFrame(data_manager=self._data_manager.add_suffix(suffix)) def applymap(self, func): """Apply a function to a DataFrame elementwise. @@ -764,15 +319,7 @@ def applymap(self, func): raise ValueError("\'{0}\' object is not callable".format( type(func))) - new_block_partitions = np.array([ - _map_partitions(lambda df: df.applymap(func), block) - for block in self._block_partitions - ]) - - return DataFrame( - block_partitions=new_block_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata) + return DataFrame(data_manager=self._data_manager.applymap(func)) def copy(self, deep=True): """Creates a shallow copy of the DataFrame. @@ -780,11 +327,7 @@ def copy(self, deep=True): Returns: A new DataFrame pointing to the same partitions as this one. """ - return DataFrame( - block_partitions=self._block_partitions, - columns=self.columns, - index=self.index, - dtypes_cache=self._dtypes_cache) + return DataFrame(data_manager=self._data_manager.copy()) def groupby(self, by=None, @@ -845,17 +388,16 @@ def sum(self, Returns: The sum of the DataFrame. """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.sum( - axis=axis, - skipna=skipna, - level=level, - numeric_only=numeric_only, - min_count=min_count, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.sum( + axis=axis, + skipna=skipna, + level=level, + numeric_only=numeric_only, + min_count=min_count, + **kwargs) def abs(self): """Apply an absolute value function to all numeric columns. @@ -868,16 +410,7 @@ def abs(self): # TODO Give a more accurate error to Pandas raise TypeError("bad operand type for abs():", "str") - new_block_partitions = np.array([ - _map_partitions(lambda df: df.abs(), block) - for block in self._block_partitions - ]) - - return DataFrame( - block_partitions=new_block_partitions, - columns=self.columns, - index=self.index, - dtypes_cache=self._dtypes_cache) + return DataFrame(data_manager=self._data_manager.abs()) def isin(self, values): """Fill a DataFrame with booleans for cells contained in values. @@ -891,15 +424,7 @@ def isin(self, values): True: cell is contained in values. False: otherwise """ - new_block_partitions = np.array([ - _map_partitions(lambda df: df.isin(values), block) - for block in self._block_partitions - ]) - - return DataFrame( - block_partitions=new_block_partitions, - columns=self.columns, - index=self.index) + return DataFrame(data_manager=self._data_manager.isin(values=values)) def isna(self): """Fill a DataFrame with booleans for cells containing NA. @@ -910,19 +435,7 @@ def isna(self): True: cell contains NA. False: otherwise. """ - new_block_partitions = np.array([ - _map_partitions(lambda df: df.isna(), block) - for block in self._block_partitions - ]) - - new_dtypes = pandas.Series( - [np.dtype("bool")] * len(self.columns), index=self.columns) - - return DataFrame( - block_partitions=new_block_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata, - dtypes_cache=new_dtypes) + return DataFrame(data_manager=self._data_manager.isna()) def isnull(self): """Fill a DataFrame with booleans for cells containing a null value. @@ -933,19 +446,7 @@ def isnull(self): True: cell contains null. False: otherwise. """ - new_block_partitions = np.array([ - _map_partitions(lambda df: df.isnull(), block) - for block in self._block_partitions - ]) - - new_dtypes = pandas.Series( - [np.dtype("bool")] * len(self.columns), index=self.columns) - - return DataFrame( - block_partitions=new_block_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata, - dtypes_cache=new_dtypes) + return DataFrame(data_manager=self._data_manager.isnull()) def keys(self): """Get the info axis for the DataFrame. @@ -953,7 +454,6 @@ def keys(self): Returns: A pandas Index for this DataFrame. """ - # Each partition should have the same index, so we'll use 0's return self.columns def transpose(self, *args, **kwargs): @@ -962,15 +462,8 @@ def transpose(self, *args, **kwargs): Returns: A new DataFrame transposed from this DataFrame. """ - new_block_partitions = np.array([ - _map_partitions(lambda df: df.T, block) - for block in self._block_partitions - ]) - return DataFrame( - block_partitions=new_block_partitions.T, - columns=self.index, - index=self.columns) + data_manager=self._data_manager.transpose(*args, **kwargs)) T = property(transpose) @@ -1003,20 +496,15 @@ def dropna(self, axis = [pandas.DataFrame()._get_axis_number(ax) for ax in axis] result = self - # TODO(kunalgosar): this builds an intermediate dataframe, - # which does unnecessary computation + for ax in axis: result = result.dropna( axis=ax, how=how, thresh=thresh, subset=subset) if not inplace: return result - self._update_inplace( - block_partitions=result._block_partitions, - columns=result.columns, - index=result.index) - - return None + self._update_inplace(new_manager=result._data_manager) + return axis = pandas.DataFrame()._get_axis_number(axis) @@ -1025,7 +513,6 @@ def dropna(self, if how is None and thresh is None: raise TypeError('must specify how or thresh') - indices = None if subset is not None: if axis == 1: indices = self.index.get_indexer_for(subset) @@ -1038,69 +525,13 @@ def dropna(self, if check.any(): raise KeyError(list(np.compress(check, subset))) - def dropna_helper(df): - new_df = df.dropna( - axis=axis, - how=how, - thresh=thresh, - subset=indices, - inplace=False) - - if axis == 1: - new_index = new_df.columns - new_df.columns = pandas.RangeIndex(0, len(new_df.columns)) - else: - new_index = new_df.index - new_df.reset_index(drop=True, inplace=True) - - return new_df, new_index - - parts = self._col_partitions if axis == 1 else self._row_partitions - result = [ - _deploy_func._submit(args=(dropna_helper, df), num_return_vals=2) - for df in parts - ] - new_parts, new_vals = [list(t) for t in zip(*result)] - - if axis == 1: - new_vals = [ - self._col_metadata.get_global_indices(i, vals) - for i, vals in enumerate(ray.get(new_vals)) - ] - - # This flattens the 2d array to 1d - new_vals = [i for j in new_vals for i in j] - new_cols = self.columns[new_vals] - - if not inplace: - return DataFrame( - col_partitions=new_parts, - columns=new_cols, - index=self.index) - - self._update_inplace( - col_partitions=new_parts, columns=new_cols, index=self.index) + new_manager = self._data_manager.dropna( + axis=axis, how=how, thresh=thresh, subset=subset) + if not inplace: + return DataFrame(data_manager=new_manager) else: - new_vals = [ - self._row_metadata.get_global_indices(i, vals) - for i, vals in enumerate(ray.get(new_vals)) - ] - - # This flattens the 2d array to 1d - new_vals = [i for j in new_vals for i in j] - new_rows = self.index[new_vals] - - if not inplace: - return DataFrame( - row_partitions=new_parts, - index=new_rows, - columns=self.columns) - - self._update_inplace( - row_partitions=new_parts, index=new_rows, columns=self.columns) - - return None + self._update_inplace(new_manager=new_manager) def add(self, other, axis='columns', level=None, fill_value=None): """Add this DataFrame to another or a scalar/list. @@ -1115,8 +546,14 @@ def add(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the applied addition. """ - return self._operator_helper(pandas.DataFrame.add, other, axis, level, - fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.add( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def agg(self, func, axis=0, *args, **kwargs): return self.aggregate(func, axis, *args, **kwargs) @@ -1152,10 +589,8 @@ def _aggregate(self, arg, *args, **kwargs): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") - elif is_list_like(arg): + elif is_list_like(arg) or callable(arg): return self.apply(arg, axis=_axis, args=args, **kwargs) - elif callable(arg): - self._callable_function(arg, _axis, *args, **kwargs) else: # TODO Make pandas error raise ValueError("type {} is not callable".format(type(arg))) @@ -1181,106 +616,6 @@ def _string_function(self, func, *args, **kwargs): raise ValueError("{} is an unknown string function".format(func)) - def _callable_function(self, func, axis, *args, **kwargs): - kwargs['axis'] = axis - - def agg_helper(df, arg, index, columns, *args, **kwargs): - df.index = index - df.columns = columns - is_transform = kwargs.pop('is_transform', False) - new_df = df.agg(arg, *args, **kwargs) - - is_series = False - index = None - columns = None - - if isinstance(new_df, pandas.Series): - is_series = True - else: - columns = new_df.columns - index = new_df.index - new_df.columns = pandas.RangeIndex(0, len(new_df.columns)) - new_df.reset_index(drop=True, inplace=True) - - if is_transform: - if is_scalar(new_df) or len(new_df) != len(df): - raise ValueError("transforms cannot produce " - "aggregated results") - - return is_series, new_df, index, columns - - if axis == 0: - index = self.index - columns = [ - self._col_metadata.partition_series(i).index - for i in range(len(self._col_partitions)) - ] - - remote_result = \ - [_deploy_func._submit(args=( - lambda df: agg_helper(df, - func, - index, - cols, - *args, - **kwargs), - part), num_return_vals=4) - for cols, part in zip(columns, self._col_partitions)] - - if axis == 1: - indexes = [ - self._row_metadata.partition_series(i).index - for i in range(len(self._row_partitions)) - ] - columns = self.columns - - remote_result = \ - [_deploy_func._submit(args=( - lambda df: agg_helper(df, - func, - index, - columns, - *args, - **kwargs), - part), num_return_vals=4) - for index, part in zip(indexes, self._row_partitions)] - - # This magic transposes the list comprehension returned from remote - is_series, new_parts, index, columns = \ - [list(t) for t in zip(*remote_result)] - - # This part is because agg can allow returning a Series or a - # DataFrame, and we have to determine which here. Shouldn't add - # too much to latency in either case because the booleans can - # be returned immediately - is_series = ray.get(is_series) - if all(is_series): - new_series = pandas.concat(ray.get(new_parts), copy=False) - new_series.index = self.columns if axis == 0 else self.index - return new_series - # This error is thrown when some of the partitions return Series and - # others return DataFrames. We do not allow mixed returns. - elif any(is_series): - raise ValueError("no results.") - # The remaining logic executes when we have only DataFrames in the - # remote objects. We build a Ray DataFrame from the Pandas partitions. - elif axis == 0: - new_index = ray.get(index[0]) - # This does not handle the Multi Index case - new_columns = ray.get(columns) - new_columns = new_columns[0].append(new_columns[1:]) - - return DataFrame( - col_partitions=new_parts, columns=new_columns, index=new_index) - else: - new_columns = ray.get(columns[0]) - # This does not handle the Multi Index case - new_index = ray.get(index) - new_index = new_index[0].append(new_index[1:]) - - return DataFrame( - row_partitions=new_parts, columns=new_columns, index=new_index) - def align(self, other, join='outer', @@ -1296,24 +631,28 @@ def align(self, "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") - def all(self, axis=None, bool_only=None, skipna=None, level=None, - **kwargs): + def all(self, axis=0, bool_only=None, skipna=None, level=None, **kwargs): """Return whether all elements are True over requested axis Note: If axis=None or axis=0, this call applies df.all(axis=1) to the transpose of df. """ + if axis is not None: + axis = pandas.DataFrame()._get_axis_number(axis) + else: + axis = None - def remote_func(df): - return df.all( - axis=axis, - bool_only=bool_only, - skipna=skipna, - level=level, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + result = self._data_manager.all( + axis=axis, + bool_only=bool_only, + skipna=skipna, + level=level, + **kwargs) + if axis is not None: + return result + else: + return result.all() def any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs): @@ -1323,16 +662,15 @@ def any(self, axis=None, bool_only=None, skipna=None, level=None, If axis=None or axis=0, this call applies on the column partitions, otherwise operates on row partitions """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.any( - axis=axis, - bool_only=bool_only, - skipna=skipna, - level=level, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.any( + axis=axis, + bool_only=bool_only, + skipna=skipna, + level=level, + **kwargs) def append(self, other, ignore_index=False, verify_integrity=False): """Append another DataFrame/list/Series to this one. @@ -1359,29 +697,34 @@ def append(self, other, ignore_index=False, verify_integrity=False): # index name will be reset index = pandas.Index([other.name], name=self.index.name) - combined_columns = self.columns.tolist() + self.columns.union( - other.index).difference(self.columns).tolist() - other = other.reindex(combined_columns, copy=False) - other = pandas.DataFrame( - other.values.reshape((1, len(other))), - index=index, - columns=combined_columns) - other = other._convert(datetime=True, timedelta=True) - elif isinstance(other, list) and not isinstance(other[0], DataFrame): - other = pandas.DataFrame(other) - if (self.columns.get_indexer(other.columns) >= 0).all(): - other = other.loc[:, self.columns] - - from .concat import concat - if isinstance(other, (list, tuple)): - to_concat = [self] + other + # Create a Modin DataFrame from this Series for ease of development + other = DataFrame( + pandas.DataFrame(other).T, index=index)._data_manager + elif isinstance(other, list): + if not isinstance(other[0], DataFrame): + other = pandas.DataFrame(other) + if (self.columns.get_indexer(other.columns) >= 0).all(): + other = DataFrame(other.loc[:, self.columns])._data_manager + else: + other = DataFrame(other)._data_manager + else: + other = [obj._data_manager for obj in other] else: - to_concat = [self, other] - - return concat( - to_concat, - ignore_index=ignore_index, - verify_integrity=verify_integrity) + other = other._data_manager + + # If ignore_index is False, by definition the Index will be correct. + # We also do this first to ensure that we don't waste compute/memory. + if verify_integrity and not ignore_index: + appended_index = self.index.append(other.index) + is_valid = next( + (False for idx in appended_index.duplicated() if idx), True) + if not is_valid: + raise ValueError("Indexes have overlapping values: {}".format( + appended_index[appended_index.duplicated()])) + + data_manager = self._data_manager.concat( + 0, other, ignore_index=ignore_index) + return DataFrame(data_manager=data_manager) def apply(self, func, @@ -1419,50 +762,18 @@ def apply(self, 'duplicate column names not supported with apply().', FutureWarning, stacklevel=2) - has_list = list in map(type, func.values()) - part_ind_tuples = [(self._col_metadata[key], key) for key in func] - - if has_list: - # if input dict has a list, the function to apply must wrap - # single functions in lists as well to get the desired output - # format - result = [_deploy_func.remote( - lambda df: df.iloc[:, ind].apply( - func[key] if is_list_like(func[key]) - else [func[key]]), - self._col_partitions[part]) - for (part, ind), key in part_ind_tuples] - return pandas.concat(ray.get(result), axis=1, copy=False) - else: - result = [ - _deploy_func.remote( - lambda df: df.iloc[:, ind].apply(func[key]), - self._col_partitions[part]) - for (part, ind), key in part_ind_tuples - ] - return pandas.Series(ray.get(result), index=func.keys()) - elif is_list_like(func): if axis == 1: raise TypeError("(\"'list' object is not callable\", " "'occurred at index {0}'".format( self.index[0])) - # TODO: some checking on functions that return Series or Dataframe - new_cols = _map_partitions(lambda df: df.apply(func), - self._col_partitions) - - # resolve function names for the DataFrame index - new_index = [ - f_name if isinstance(f_name, string_types) else f_name.__name__ - for f_name in func - ] - return DataFrame( - col_partitions=new_cols, - columns=self.columns, - index=new_index, - col_metadata=self._col_metadata) - elif callable(func): - return self._callable_function(func, axis=axis, *args, **kwds) + elif not callable(func): + return + + data_manager = self._data_manager.apply(func, axis, *args, **kwds) + if isinstance(data_manager, pandas.Series): + return data_manager + return DataFrame(data_manager=data_manager) def as_blocks(self, copy=True): raise NotImplementedError( @@ -1503,42 +814,23 @@ def assign(self, **kwargs): "github.com/modin-project/modin.") def astype(self, dtype, copy=True, errors='raise', **kwargs): + col_dtypes = {} if isinstance(dtype, dict): if (not set(dtype.keys()).issubset(set(self.columns)) and errors == 'raise'): raise KeyError("Only a column name can be used for the key in" "a dtype mappings argument.") - columns = list(dtype.keys()) - col_idx = [(self.columns.get_loc(columns[i]), - columns[i]) if columns[i] in self.columns else - (columns[i], columns[i]) for i in range(len(columns))] - new_dict = {} - for idx, key in col_idx: - new_dict[idx] = dtype[key] - new_rows = _map_partitions(lambda df, dt: df.astype(dtype=dt, - copy=True, - errors=errors, - **kwargs), - self._row_partitions, new_dict) - if copy: - return DataFrame( - row_partitions=new_rows, - columns=self.columns, - index=self.index) - self._row_partitions = new_rows + col_dtypes = dtype + + else: + for column in self.columns: + col_dtypes[column] = dtype + + new_data_manager = self._data_manager.astype(col_dtypes, **kwargs) + if copy: + return DataFrame(data_manager=new_data_manager) else: - new_blocks = [_map_partitions(lambda d: d.astype(dtype=dtype, - copy=True, - errors=errors, - **kwargs), - block) - for block in self._block_partitions] - if copy: - return DataFrame( - block_partitions=new_blocks, - columns=self.columns, - index=self.index) - self._block_partitions = new_blocks + self._update_inplace(new_data_manager) def at_time(self, time, asof=False): raise NotImplementedError( @@ -1555,8 +847,7 @@ def between_time(self, "github.com/modin-project/modin.") def bfill(self, axis=None, inplace=False, limit=None, downcast=None): - """Synonym for DataFrame.fillna(method='bfill') - """ + """Synonym for DataFrame.fillna(method='bfill')""" new_df = self.fillna( method='bfill', axis=axis, @@ -1670,34 +961,16 @@ def count(self, axis=0, level=None, numeric_only=False): Returns: The count, in a Series (or DataFrame if level is specified). """ - - def remote_func(df): - return df.count(axis=axis, level=level, numeric_only=numeric_only) - - return self._arithmetic_helper(remote_func, axis, level) + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 + return self._data_manager.count( + axis=axis, level=level, numeric_only=numeric_only) def cov(self, min_periods=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") - def _cumulative_helper(self, func, axis): - axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None \ - else 0 - - if axis == 0: - new_cols = _map_partitions(func, self._col_partitions) - return DataFrame( - col_partitions=new_cols, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata) - else: - new_rows = _map_partitions(func, self._row_partitions) - return DataFrame( - row_partitions=new_rows, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata) - def cummax(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative maximum across the DataFrame. @@ -1708,11 +981,11 @@ def cummax(self, axis=None, skipna=True, *args, **kwargs): Returns: The cumulative maximum of the DataFrame. """ - - def remote_func(df): - return df.cummax(axis=axis, skipna=skipna, *args, **kwargs) - - return self._cumulative_helper(remote_func, axis) + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 + return DataFrame( + data_manager=self._data_manager.cummax( + axis=axis, skipna=skipna, **kwargs)) def cummin(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative minimum across the DataFrame. @@ -1724,11 +997,11 @@ def cummin(self, axis=None, skipna=True, *args, **kwargs): Returns: The cumulative minimum of the DataFrame. """ - - def remote_func(df): - return df.cummin(axis=axis, skipna=skipna, *args, **kwargs) - - return self._cumulative_helper(remote_func, axis) + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 + return DataFrame( + data_manager=self._data_manager.cummin( + axis=axis, skipna=skipna, **kwargs)) def cumprod(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative product across the DataFrame. @@ -1740,11 +1013,11 @@ def cumprod(self, axis=None, skipna=True, *args, **kwargs): Returns: The cumulative product of the DataFrame. """ - - def remote_func(df): - return df.cumprod(axis=axis, skipna=skipna, *args, **kwargs) - - return self._cumulative_helper(remote_func, axis) + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 + return DataFrame( + data_manager=self._data_manager.cumprod( + axis=axis, skipna=skipna, **kwargs)) def cumsum(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative sum across the DataFrame. @@ -1756,11 +1029,11 @@ def cumsum(self, axis=None, skipna=True, *args, **kwargs): Returns: The cumulative sum of the DataFrame. """ - - def remote_func(df): - return df.cumsum(axis=axis, skipna=skipna, *args, **kwargs) - - return self._cumulative_helper(remote_func, axis) + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 + return DataFrame( + data_manager=self._data_manager.cumsum( + axis=axis, skipna=skipna, **kwargs)) def describe(self, percentiles=None, include=None, exclude=None): """ @@ -1775,29 +1048,23 @@ def describe(self, percentiles=None, include=None, exclude=None): Returns: Series/DataFrame of summary statistics """ + # This is important because we don't have communication between + # partitions. We need to communicate to the partitions if they should + # be operating on object data or not. + # TODO uncomment after dtypes is fixed + # if not all(t == np.dtype("O") for t in self.dtypes): + if exclude is None: + exclude = "object" + elif "object" not in include: + exclude = ([exclude] + "object") if isinstance( + exclude, str) else list(exclude) + "object" - def describe_helper(df): - """This to ensure nothing goes on with non-numeric columns""" - try: - return df.select_dtypes(exclude='object').describe( - percentiles=percentiles, include=include, exclude=exclude) - # This exception is thrown when there are only non-numeric columns - # in this partition - except ValueError: - return pandas.DataFrame() - - # Begin fixing index based on the columns inside. - parts = ray.get(_map_partitions(describe_helper, self._col_partitions)) - # We use the index to get the internal index. - parts = [(parts[i], i) for i in range(len(parts))] - - for df, partition in parts: - this_partition = self._col_metadata.partition_series(partition) - df.columns = this_partition[this_partition.isin(df.columns)].index - - # Remove index from tuple - result = pandas.concat([obj[0] for obj in parts], axis=1, copy=False) - return result + if percentiles is not None: + pandas.DataFrame()._check_percentile(percentiles) + + return DataFrame( + data_manager=self._data_manager.describe( + percentiles=percentiles, include=include, exclude=exclude)) def diff(self, periods=1, axis=0): """Finds the difference between elements on the axis requested @@ -1809,19 +1076,8 @@ def diff(self, periods=1, axis=0): Returns: DataFrame with the diff applied """ - axis = pandas.DataFrame()._get_axis_number(axis) - partitions = (self._col_partitions - if axis == 0 else self._row_partitions) - - result = _map_partitions( - lambda df: df.diff(axis=axis, periods=periods), partitions) - - if (axis == 1): - return DataFrame( - row_partitions=result, columns=self.columns, index=self.index) - if (axis == 0): - return DataFrame( - col_partitions=result, columns=self.columns, index=self.index) + return DataFrame( + data_manager=self._data_manager.diff(periods=periods, axis=axis)) def div(self, other, axis='columns', level=None, fill_value=None): """Divides this DataFrame against another DataFrame/Series/scalar. @@ -1835,8 +1091,14 @@ def div(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the Divide applied. """ - return self._operator_helper(pandas.DataFrame.div, other, axis, level, - fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.div( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def divide(self, other, axis='columns', level=None, fill_value=None): """Synonym for div. @@ -1896,87 +1158,55 @@ def drop(self, else: raise ValueError("Need to specify at least one of 'labels', " "'index' or 'columns'") - obj = self.copy() - - def drop_helper(obj, axis, label): - # TODO(patyang): If you drop from the index first, you can do it - # in batch by returning the dropped items. Likewise coords.drop - # leaves the coords df in an inconsistent state. - if axis == 'index': - try: - coords = obj._row_metadata[label] - object_partitions = obj._row_partitions - except KeyError: - return obj - else: - try: - coords = obj._col_metadata[label] - object_partitions = obj._col_partitions - except KeyError: - return obj - - if isinstance(coords, pandas.DataFrame): - drop_map = { - part: list(df['index_within_partition']) - for part, df in coords.copy().groupby('partition') - } - else: - partitions, indexes = coords - drop_map = {partitions: indexes} - - new_partitions = {} - - for part in drop_map: - index = drop_map[part] - new_partitions[part] = _deploy_func.remote( - lambda df: df.drop(labels=index, axis=axis, - errors='ignore'), - object_partitions[part]) - - if axis == 'index': - obj._row_partitions = \ - [object_partitions[i] if i not in new_partitions - else new_partitions[i] - for i in range(len(object_partitions))] - - obj._row_metadata.drop(labels=label) + # TODO Clean up this error checking + if "index" not in axes: + axes["index"] = None + elif axes["index"] is not None: + if not is_list_like(axes["index"]): + axes["index"] = [axes["index"]] + if errors == 'raise': + non_existant = [ + obj for obj in axes["index"] if obj not in self.index + ] + if len(non_existant): + raise ValueError( + "labels {} not contained in axis".format(non_existant)) else: - obj._col_partitions = \ - [object_partitions[i] if i not in new_partitions - else new_partitions[i] - for i in range(len(object_partitions))] - - obj._col_metadata.drop(labels=label) + axes["index"] = [ + obj for obj in axes["index"] if obj in self.index + ] + # If the length is zero, we will just do nothing + if not len(axes["index"]): + axes["index"] = None + + if "columns" not in axes: + axes["columns"] = None + elif axes["columns"] is not None: + if not is_list_like(axes["columns"]): + axes["columns"] = [axes["columns"]] + if errors == 'raise': + non_existant = [ + obj for obj in axes["columns"] if obj not in self.columns + ] + if len(non_existant): + raise ValueError( + "labels {} not contained in axis".format(non_existant)) + else: + axes["columns"] = [ + obj for obj in axes["columns"] if obj in self.columns + ] + # If the length is zero, we will just do nothing + if not len(axes["columns"]): + axes["columns"] = None - return obj + new_manager = self._data_manager.drop( + index=axes["index"], columns=axes["columns"]) - for axis, labels in axes.items(): - if labels is None: - continue - - if is_list_like(labels): - for label in labels: - if errors != 'ignore' and label and \ - label not in getattr(self, axis): - raise ValueError("The label [{}] is not in the [{}]", - label, axis) - else: - obj = drop_helper(obj, axis, label) - else: - if errors != 'ignore' and labels and \ - labels not in getattr(self, axis): - raise ValueError("The label [{}] is not in the [{}]", - labels, axis) - else: - obj = drop_helper(obj, axis, labels) + if inplace: + self._update_inplace(new_manager=new_manager) - if not inplace: - return obj - else: - self._row_metadata = obj._row_metadata - self._col_metadata = obj._col_metadata - self._block_partitions = obj._block_partitions + return DataFrame(data_manager=new_manager) def drop_duplicates(self, subset=None, keep='first', inplace=False): raise NotImplementedError( @@ -1999,7 +1229,14 @@ def eq(self, other, axis='columns', level=None): Returns: A new DataFrame filled with Booleans. """ - return self._operator_helper(pandas.DataFrame.eq, other, axis, level) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.eq( + other=other, axis=axis, level=level) + return self._create_dataframe_from_manager(new_manager) def equals(self, other): """ @@ -2016,19 +1253,7 @@ def equals(self, other): self.columns.equals(other.columns): return False - # We copartition because we don't know what the DataFrames look like - # before this. Empty partitions can give problems with - # _match_partitioning (See _match_partitioning) - new_zipped_parts = self._copartition(other, self.index) - - equals_partitions = [ - _equals_helper.remote(left, right) - for left, right in new_zipped_parts - ] - - # To avoid getting all we use next notation. - return next((False for eq in equals_partitions if not ray.get(eq)), - True) + return all(self.eq(other).all()) def eval(self, expr, inplace=False, **kwargs): """Evaluate a Python expression as a string using various backends. @@ -2076,36 +1301,17 @@ def eval(self, expr, inplace=False, **kwargs): ndarray, numeric scalar, DataFrame, Series """ self._validate_eval_query(expr, **kwargs) - - columns = self.columns - - def eval_helper(df): - df.columns = columns - result = df.eval(expr, inplace=False, **kwargs) - # If result is a series, expr was not an assignment expression. - if not isinstance(result, pandas.Series): - result.columns = pandas.RangeIndex(0, len(result.columns)) - return result - inplace = validate_bool_kwarg(inplace, "inplace") - new_rows = _map_partitions(eval_helper, self._row_partitions) - result_type = ray.get( - _deploy_func.remote(lambda df: type(df), new_rows[0])) - if result_type is pandas.Series: - new_series = pandas.concat(ray.get(new_rows), axis=0, copy=False) - new_series.index = self.index - return new_series + result = self._data_manager.eval(expr, **kwargs) - columns_copy = self._col_metadata._coord_df.copy().T - columns_copy.eval(expr, inplace=True, **kwargs) - columns = columns_copy.columns - - if inplace: - self._update_inplace( - row_partitions=new_rows, columns=columns, index=self.index) + if isinstance(result, pandas.Series): + return result else: - return DataFrame(columns=columns, row_partitions=new_rows) + if inplace: + self._update_inplace(new_manager=result) + else: + return DataFrame(data_manager=result) def ewm(self, com=None, @@ -2202,70 +1408,22 @@ def fillna(self, .format(expecting=expecting, method=method) raise ValueError(msg) - if inplace: - new_obj = self - else: - new_obj = self.copy() - - parts, coords_obj = (new_obj._col_partitions, - new_obj._col_metadata) if axis == 0 else \ - (new_obj._row_partitions, - new_obj._row_metadata) - - if isinstance(value, (pandas.Series, dict)): - new_vals = {} - value = dict(value) - partition_dict = {} - for val in value: - # Get the local index for the partition - try: - part, index = coords_obj[val] - - if part not in partition_dict: - partition_dict[part] = {} - partition_dict[part][index] = value[val] - # Pandas ignores these errors so we will suppress them too. - except KeyError: - continue - - for part, value_map in partition_dict.items(): - new_vals[part] = _deploy_func.remote(lambda df: df.fillna( - value=value_map, - method=method, - axis=axis, - inplace=False, - limit=limit, - downcast=downcast, - **kwargs), parts[part]) - - # Not every partition was changed, so we put everything back that - # was not changed and update those that were. - new_parts = [ - parts[i] if i not in new_vals else new_vals[i] - for i in range(len(parts)) - ] - else: - new_parts = _map_partitions(lambda df: df.fillna( - value=value, - method=method, - axis=axis, - inplace=False, - limit=limit, - downcast=downcast, - **kwargs), parts) + if isinstance(value, pandas.Series): + raise NotImplementedError("value as a Series not yet supported.") - if axis == 0: - new_obj._update_inplace( - col_partitions=new_parts, - columns=self.columns, - index=self.index) + new_manager = self._data_manager.fillna( + value=value, + method=method, + axis=axis, + inplace=False, + limit=limit, + downcast=downcast, + **kwargs) + + if inplace: + self._update_inplace(new_manager=new_manager) else: - new_obj._update_inplace( - row_partitions=new_parts, - columns=self.columns, - index=self.index) - if not inplace: - return new_obj + return DataFrame(data_manager=new_manager) def filter(self, items=None, like=None, regex=None, axis=None): """Subset rows or columns based on their labels @@ -2323,7 +1481,7 @@ def first_valid_index(self): Returns: scalar: type of index """ - return self._row_metadata.first_valid_index() + return self._data_manager.first_valid_index() def floordiv(self, other, axis='columns', level=None, fill_value=None): """Divides this DataFrame against another DataFrame/Series/scalar. @@ -2337,8 +1495,14 @@ def floordiv(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the Divide applied. """ - return self._operator_helper(pandas.DataFrame.floordiv, other, axis, - level, fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.floordiv( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) @classmethod def from_csv(self, @@ -2389,7 +1553,14 @@ def ge(self, other, axis='columns', level=None): Returns: A new DataFrame filled with Booleans. """ - return self._operator_helper(pandas.DataFrame.ge, other, axis, level) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.ge( + other=other, axis=axis, level=level) + return self._create_dataframe_from_manager(new_manager) def get(self, key, default=None): """Get item from object for given key (DataFrame column, Panel @@ -2414,9 +1585,11 @@ def get_dtype_counts(self): Returns: The counts of dtypes in this object. """ - return ray.get( - _deploy_func.remote(lambda df: df.get_dtype_counts(), - self._row_partitions[0])) + result = self.dtypes.value_counts() + result.index = result.index.map(lambda x: str(x)) + result = result.sort_index() + result.index = result.index.map(lambda x: np.dtype(getattr(np, x))) + return result def get_ftype_counts(self): """Get the counts of ftypes in this object. @@ -2424,9 +1597,7 @@ def get_ftype_counts(self): Returns: The counts of ftypes in this object. """ - return ray.get( - _deploy_func.remote(lambda df: df.get_ftype_counts(), - self._row_partitions[0])) + return self.ftypes.value_counts().sort_index() def get_value(self, index, col, takeable=False): raise NotImplementedError( @@ -2449,23 +1620,14 @@ def gt(self, other, axis='columns', level=None): Returns: A new DataFrame filled with Booleans. """ - return self._operator_helper(pandas.DataFrame.gt, other, axis, level) - - def _head_block_builder(self, n): - length_bins = np.cumsum(self._row_metadata._lengths) - idx = np.digitize(n, length_bins) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") - if idx > 0: - # This value will be what we need to get from the last block - remaining = n - length_bins[idx - 1] - else: - remaining = n - return np.array([ - self._block_partitions[i] if i != idx else [ - _deploy_func.remote(lambda df: df.head(remaining), blk) - for blk in self._block_partitions[i] - ] for i in range(idx + 1) - ]) + other = self._validate_other(other, axis) + new_manager = self._data_manager.gt( + other=other, axis=axis, level=level) + return self._create_dataframe_from_manager(new_manager) def head(self, n=5): """Get the first n rows of the DataFrame. @@ -2476,18 +1638,10 @@ def head(self, n=5): Returns: A new DataFrame with the first n rows of the DataFrame. """ - if n >= len(self._row_metadata): + if n >= len(self.index): return self.copy() - new_blocks = self._head_block_builder(n) - - index = self._row_metadata.index[:n] - - return DataFrame( - block_partitions=new_blocks, - col_metadata=self._col_metadata, - index=index, - dtypes_cache=self._dtypes_cache) + return DataFrame(data_manager=self._data_manager.head(n)) def hist(self, data, @@ -2524,12 +1678,7 @@ def idxmax(self, axis=0, skipna=True): raise TypeError( "reduction operation 'argmax' not allowed for this dtype") - def remote_func(df): - return df.idxmax(axis=axis, skipna=skipna) - - internal_indices = self._arithmetic_helper(remote_func, axis) - # do this to convert internal indices to correct index - return internal_indices.apply(lambda x: self.index[x]) + return self._data_manager.idxmax(axis=axis, skipna=skipna) def idxmin(self, axis=0, skipna=True): """Get the index of the first occurrence of the min value of the axis. @@ -2546,12 +1695,7 @@ def idxmin(self, axis=0, skipna=True): raise TypeError( "reduction operation 'argmax' not allowed for this dtype") - def remote_func(df): - return df.idxmin(axis=axis, skipna=skipna) - - internal_indices = self._arithmetic_helper(remote_func, axis) - # do this to convert internal indices to correct index - return internal_indices.apply(lambda x: self.index[x]) + return self._data_manager.idxmin(axis=axis, skipna=skipna) def infer_objects(self): raise NotImplementedError( @@ -2564,79 +1708,112 @@ def info(self, max_cols=None, memory_usage=None, null_counts=None): - def info_helper(df): - output_buffer = io.StringIO() - df.info( - verbose=verbose, - buf=output_buffer, - max_cols=max_cols, - memory_usage=memory_usage, - null_counts=null_counts) - return output_buffer.getvalue() - - # Combine the per-partition info and split into lines - result = ''.join( - ray.get(_map_partitions(info_helper, self._col_partitions))) - lines = result.split('\n') + """Print a concise summary of a DataFrame, which includes the index + dtype and column dtypes, non-null values and memory usage. + + Args: + verbose (bool, optional): Whether to print the full summary. Defaults + to true + + buf (writable buffer): Where to send output. Defaults to sys.stdout + + max_cols (int, optional): When to switch from verbose to truncated + output. By defualt, this is 100. + + memory_usage (bool, str, optional): Specifies whether the total memory + usage of the DataFrame elements (including index) should be displayed. + True always show memory usage. False never shows memory usage. A value + of 'deep' is equivalent to "True with deep introspection". Memory usage + is shown in human-readable units (base-2 representation). Without deep + introspection a memory estimation is made based in column dtype and + number of rows assuming values consume the same memory amount for + corresponding dtypes. With deep memory introspection, a real memory + usage calculation is performed at the cost of computational resources. + Defaults to True. + + null_counts (bool, optional): Whetehr to show the non-null counts. By + default, this is shown only when the frame is smaller than 100 columns + and 1690785 rows. A value of True always shows the counts and False + never shows the counts. + + Returns: + Prints the summary of a DataFrame and returns None. + """ + index = self.index + columns = self.columns + dtypes = self.dtypes + + # Set up default values + verbose = True if verbose is None else verbose + buf = sys.stdout if not buf else buf + max_cols = 100 if not max_cols else max_cols + memory_usage = True if memory_usage is None else memory_usage + if not null_counts: + if len(columns) < 100 and len(index) < 1690785: + null_counts = True + else: + null_counts = False + # Determine if actually verbose + actually_verbose = True if verbose and max_cols > len( + columns) else False + + if type(memory_usage) == str and memory_usage == 'deep': + memory_usage_deep = True + else: + memory_usage_deep = False + + # Start putting together output # Class denoted in info() output class_string = '\n' # Create the Index info() string by parsing self.index - index_string = self.index.summary() + '\n' - - # A column header is needed in the inf() output - col_header = 'Data columns (total {0} columns):\n' \ - .format(len(self.columns)) - - # Parse the per-partition values to get the per-column details - # Find all the lines in the output that start with integers - prog = re.compile('^[0-9]+.+') - col_lines = [prog.match(line) for line in lines] - cols = [c.group(0) for c in col_lines if c is not None] - # replace the partition columns names with real column names - columns = [ - "{0}\t{1}\n".format(self.columns[i], cols[i].split(" ", 1)[1]) - for i in range(len(cols)) - ] - col_string = ''.join(columns) + '\n' + index_string = index.summary() + '\n' + + if null_counts: + counts = self._data_manager.count() + if memory_usage: + memory_usage_data = self._data_manager.memory_usage( + deep=memory_usage_deep, index=True) + + if actually_verbose: + # Create string for verbose output + col_string = 'Data columns (total {0} columns):\n' \ + .format(len(columns)) + for col, dtype in zip(columns, dtypes): + col_string += '{0}\t'.format(col) + if null_counts: + col_string += '{0} not-null '.format(counts[col]) + col_string += '{0}\n'.format(dtype) + else: + # Create string for not verbose output + col_string = 'Columns: {0} entries, {1} to {2}\n'\ + .format(len(columns), columns[0], columns[-1]) # A summary of the dtypes in the dataframe dtypes_string = "dtypes: " - for dtype, count in self.dtypes.value_counts().iteritems(): + for dtype, count in dtypes.value_counts().iteritems(): dtypes_string += "{0}({1}),".format(dtype, count) dtypes_string = dtypes_string[:-1] + '\n' - # Compute the memory usage by summing per-partitions return values - # Parse lines for memory usage number - prog = re.compile('^memory+.+') - mems = [prog.match(line) for line in lines] - mem_vals = [ - float(re.search(r'\d+', m.group(0)).group()) for m in mems - if m is not None - ] - - memory_string = "" - - if len(mem_vals) != 0: - # Sum memory usage from each partition - if memory_usage != 'deep': - memory_string = 'memory usage: {0}+ bytes' \ - .format(sum(mem_vals)) + # Create memory usage string + memory_string = '' + if memory_usage: + if memory_usage_deep: + memory_string = 'memory usage: {0} bytes'.format( + memory_usage_data) else: - memory_string = 'memory usage: {0} bytes'.format(sum(mem_vals)) + memory_string = 'memory usage: {0}+ bytes'.format( + memory_usage_data) # Combine all the components of the info() output result = ''.join([ - class_string, index_string, col_header, col_string, dtypes_string, + class_string, index_string, col_string, dtypes_string, memory_string ]) # Write to specified output buffer - if buf: - buf.write(result) - else: - sys.stdout.write(result) + buf.write(result) def insert(self, loc, column, value, allow_duplicates=False): """Insert column into DataFrame at specified location. @@ -2662,41 +1839,8 @@ def insert(self, loc, column, value, allow_duplicates=False): if loc < 0: raise ValueError("unbounded slice") - partition, index_within_partition = \ - self._col_metadata.insert(column, loc) - - index = self.index - - # Deploy insert function to specific column partition, and replace that - # column - def insert_col_part(df): - if isinstance(value, pandas.Series) and \ - isinstance(value.dtype, - pandas.core.dtypes.dtypes.DatetimeTZDtype): - # Need to set index to index of this dtype or inserted values - # become NaT - df.index = value - df.insert(index_within_partition, column, value, - allow_duplicates) - df.index = pandas.RangeIndex(0, len(df)) - else: - df.index = index - df.insert(index_within_partition, column, value, - allow_duplicates) - df.index = pandas.RangeIndex(0, len(df)) - return df - - new_obj = _deploy_func.remote(insert_col_part, - self._col_partitions[partition]) - - new_cols = [ - self._col_partitions[i] if i != partition else new_obj - for i in range(len(self._col_partitions)) - ] - new_col_names = self.columns.insert(loc, column) - - self._update_inplace( - col_partitions=new_cols, columns=new_col_names, index=self.index) + new_manager = self._data_manager.insert(loc, column, value) + self._update_inplace(new_manager=new_manager) def interpolate(self, method='linear', @@ -2721,17 +1865,15 @@ def iterrows(self): Returns: A generator that iterates over the rows of the frame. """ - index_iter = (self._row_metadata.partition_series(i).index - for i in range(len(self._row_partitions))) + index_iter = iter(self.index) - def iterrow_helper(part): - df = ray.get(part) + def iterrow_builder(df): df.columns = self.columns - df.index = next(index_iter) + df.index = [next(index_iter)] return df.iterrows() - partition_iterator = PartitionIterator(self._row_partitions, - iterrow_helper) + partition_iterator = PartitionIterator(self._data_manager, 0, + iterrow_builder) for v in partition_iterator: yield v @@ -2747,17 +1889,15 @@ def items(self): Returns: A generator that iterates over the columns of the frame. """ - col_iter = (self._col_metadata.partition_series(i).index - for i in range(len(self._col_partitions))) + col_iter = iter(self.columns) - def items_helper(part): - df = ray.get(part) - df.columns = next(col_iter) + def items_builder(df): + df.columns = [next(col_iter)] df.index = self.index return df.items() - partition_iterator = PartitionIterator(self._col_partitions, - items_helper) + partition_iterator = PartitionIterator(self._data_manager, 1, + items_builder) for v in partition_iterator: yield v @@ -2789,17 +1929,15 @@ def itertuples(self, index=True, name='Pandas'): Returns: A tuple representing row data. See args for varying tuples. """ - index_iter = (self._row_metadata.partition_series(i).index - for i in range(len(self._row_partitions))) + index_iter = iter(self.index) - def itertuples_helper(part): - df = ray.get(part) + def itertuples_builder(df): df.columns = self.columns - df.index = next(index_iter) + df.index = [next(index_iter)] return df.itertuples(index=index, name=name) - partition_iterator = PartitionIterator(self._row_partitions, - itertuples_helper) + partition_iterator = PartitionIterator(self._data_manager, 0, + itertuples_builder) for v in partition_iterator: yield v @@ -2834,99 +1972,40 @@ def join(self, other = DataFrame({other.name: other}) if isinstance(other, DataFrame): - if on is not None: - index = self[on] - else: - index = self.index - - new_index = index.join(other.index, how=how, sort=sort) - - # Joining two empty DataFrames is fast, and error checks for us. - new_column_labels = pandas.DataFrame(columns=self.columns) \ - .join(pandas.DataFrame(columns=other.columns), - lsuffix=lsuffix, rsuffix=rsuffix).columns - - new_partition_num = max( - len(self._block_partitions.T), len(other._block_partitions.T)) - - # Join is a concat once we have shuffled the data internally. - # We shuffle the data by computing the correct order. - # Another important thing to note: We set the current self index - # to the index variable which may be 'on'. - new_self = np.array([ - _reindex_helper._submit( - args=tuple([index, new_index, 1, new_partition_num] + - block.tolist()), - num_return_vals=new_partition_num) - for block in self._block_partitions.T - ]) - new_other = np.array([ - _reindex_helper._submit( - args=tuple([other.index, new_index, 1, new_partition_num] + - block.tolist()), - num_return_vals=new_partition_num) - for block in other._block_partitions.T - ]) - - # Append the blocks together (i.e. concat) - new_block_parts = np.concatenate((new_self, new_other)).T - - # Default index in the case that on is set. - if on is not None: - new_index = None + # Joining the empty DataFrames with either index or columns is + # fast. It gives us proper error checking for the edge cases that + # would otherwise require a lot more logic. + pandas.DataFrame(columns=self.columns).join( + pandas.DataFrame(columns=other.columns), + lsuffix=lsuffix, + rsuffix=rsuffix).columns - # TODO join the two metadata tables for performance. return DataFrame( - block_partitions=new_block_parts, - index=new_index, - columns=new_column_labels) + data_manager=self._data_manager.join( + other._data_manager, + how=how, + lsuffix=lsuffix, + rsuffix=rsuffix, + sort=sort)) else: # This constraint carried over from Pandas. if on is not None: raise ValueError("Joining multiple DataFrames only supported" " for joining on index") - # Joining the empty DataFrames with either index or columns is - # fast. It gives us proper error checking for the edge cases that - # would otherwise require a lot more logic. - new_index = pandas.DataFrame(index=self.index).join( - [pandas.DataFrame(index=obj.index) for obj in other], - how=how, - sort=sort).index - - new_column_labels = pandas.DataFrame(columns=self.columns).join( + # See note above about error checking with an empty join. + pandas.DataFrame(columns=self.columns).join( [pandas.DataFrame(columns=obj.columns) for obj in other], lsuffix=lsuffix, rsuffix=rsuffix).columns - new_partition_num = max( - [len(self._block_partitions.T)] + - [len(obj._block_partitions.T) for obj in other]) - - new_self = np.array([ - _reindex_helper._submit( - args=tuple([self.index, new_index, 1, new_partition_num] + - block.tolist()), - num_return_vals=new_partition_num) - for block in self._block_partitions.T - ]) - - new_others = np.array([ - _reindex_helper._submit( - args=tuple([obj.index, new_index, 1, new_partition_num] + - block.tolist()), - num_return_vals=new_partition_num) for obj in other - for block in obj._block_partitions.T - ]) - - # Append the columns together (i.e. concat) - new_block_parts = np.concatenate((new_self, new_others)).T - - # TODO join the two metadata tables for performance. return DataFrame( - block_partitions=new_block_parts, - index=new_index, - columns=new_column_labels) + data_manager=self._data_manager.join( + [obj._data_manager for obj in other], + how=how, + lsuffix=lsuffix, + rsuffix=rsuffix, + sort=sort)) def kurt(self, axis=None, @@ -2959,7 +2038,7 @@ def last_valid_index(self): Returns: scalar: type of index """ - return self._row_metadata.last_valid_index() + return self._data_manager.last_valid_index() def le(self, other, axis='columns', level=None): """Checks element-wise that this is less than or equal to other. @@ -2972,7 +2051,14 @@ def le(self, other, axis='columns', level=None): Returns: A new DataFrame filled with Booleans. """ - return self._operator_helper(pandas.DataFrame.le, other, axis, level) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.le( + other=other, axis=axis, level=level) + return self._create_dataframe_from_manager(new_manager) def lookup(self, row_labels, col_labels): raise NotImplementedError( @@ -2990,7 +2076,14 @@ def lt(self, other, axis='columns', level=None): Returns: A new DataFrame filled with Booleans. """ - return self._operator_helper(pandas.DataFrame.lt, other, axis, level) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.lt( + other=other, axis=axis, level=level) + return self._create_dataframe_from_manager(new_manager) def mad(self, axis=None, skipna=None, level=None): raise NotImplementedError( @@ -3025,16 +2118,15 @@ def max(self, Returns: The max of the DataFrame. """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.max( - axis=axis, - skipna=skipna, - level=level, - numeric_only=numeric_only, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.max( + axis=axis, + skipna=skipna, + level=level, + numeric_only=numeric_only, + **kwargs) def mean(self, axis=None, @@ -3051,16 +2143,15 @@ def mean(self, Returns: The mean of the DataFrame. (Pandas series) """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.mean( - axis=axis, - skipna=skipna, - level=level, - numeric_only=numeric_only, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.mean( + axis=axis, + skipna=skipna, + level=level, + numeric_only=numeric_only, + **kwargs) def median(self, axis=None, @@ -3077,16 +2168,14 @@ def median(self, Returns: The median of the DataFrame. (Pandas series) """ - - def remote_func(df): - return df.median( - axis=axis, - skipna=skipna, - level=level, - numeric_only=numeric_only, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 + return self._data_manager.median( + axis=axis, + skipna=skipna, + level=level, + numeric_only=numeric_only, + **kwargs) def melt(self, id_vars=None, @@ -3099,14 +2188,24 @@ def melt(self, "github.com/modin-project/modin.") def memory_usage(self, index=True, deep=False): - def remote_func(df): - return df.memory_usage(index=False, deep=deep) + """Returns the memory usage of each column in bytes - result = self._arithmetic_helper(remote_func, axis=0) + Args: + index (bool): Whether to include the memory usage of the DataFrame's + index in returned Series. Defaults to True + deep (bool): If True, introspect the data deeply by interrogating + objects dtypes for system-level memory consumption. Defaults to False + + Returns: + A Series where the index are the column names and the values are + the memory usage of each of the columns in bytes. If `index=true`, + then the first value of the Series will be 'Index' with its memory usage. + """ + result = self._data_manager.memory_usage(index=index, deep=deep) result.index = self.columns if index: - index_value = self._row_metadata.index.memory_usage(deep=deep) + index_value = self.index.memory_usage(deep=deep) return pandas.Series(index_value, index=['Index']).append(result) return result @@ -3156,118 +2255,13 @@ def merge(self, "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") - args = (how, on, left_on, right_on, left_index, right_index, sort, - suffixes, False, indicator, validate) - - left_cols = ray.put(self.columns) - right_cols = ray.put(right.columns) - - # This can be put in a remote function because we don't need it until - # the end, and the columns can be built asynchronously. This takes the - # columns defining off the critical path and speeds up the overall - # merge. - new_columns = _merge_columns.remote(left_cols, right_cols, *args) - - if on is not None: - if left_on is not None or right_on is not None: - raise MergeError("Can only pass argument \"on\" OR \"left_on\"" - " and \"right_on\", not a combination of " - "both.") - if not is_list_like(on): - on = [on] - - if next((True for key in on if key not in self), False) or \ - next((True for key in on if key not in right), False): - - missing_key = \ - next((str(key) for key in on if key not in self), "") + \ - next((str(key) for key in on if key not in right), "") - raise KeyError(missing_key) - - elif right_on is not None or right_index is True: - if left_on is None and left_index is False: - # Note: This is not the same error as pandas, but pandas throws - # a ValueError NoneType has no len(), and I don't think that - # helps enough. - raise TypeError("left_on must be specified or left_index must " - "be true if right_on is specified.") - - elif left_on is not None or left_index is True: - if right_on is None and right_index is False: - # Note: See note above about TypeError. - raise TypeError("right_on must be specified or right_index " - "must be true if right_on is specified.") - - if left_on is not None: - if not is_list_like(left_on): - left_on = [left_on] - - if next((True for key in left_on if key not in self), False): - raise KeyError(next(key for key in left_on if key not in self)) - - if right_on is not None: - if not is_list_like(right_on): - right_on = [right_on] - - if next((True for key in right_on if key not in right), False): - raise KeyError( - next(key for key in right_on if key not in right)) - - # There's a small chance that our partitions are already perfect, but - # if it's not, we need to adjust them. We adjust the right against the - # left because the defaults of merge rely on the order of the left. We - # have to push the index down here, so if we're joining on the right's - # index we go ahead and push it down here too. - if not np.array_equal(self._row_metadata._lengths, - right._row_metadata._lengths) or right_index: - - repartitioned_right = np.array([ - _match_partitioning._submit( - args=(df, self._row_metadata._lengths, right.index), - num_return_vals=len(self._row_metadata._lengths)) - for df in right._col_partitions - ]).T - else: - repartitioned_right = right._block_partitions - - if not left_index and not right_index: - # Passing None to each call specifies that we don't care about the - # left's index for the join. - left_idx = itertools.repeat(None) - - # We only return the index if we need to update it, and that only - # happens when either left_index or right_index is True. We will - # use this value to add the return vals if we are getting an index - # back. - return_index = False - else: - # We build this to push the index down so that we can use it for - # the join. - left_idx = \ - (v.index for k, v in - self._row_metadata._coord_df.copy().groupby('partition')) - return_index = True - - new_blocks = \ - np.array([_co_op_helper._submit( - args=tuple([lambda x, y: x.merge(y, *args), - left_cols, right_cols, - len(self._block_partitions.T), next(left_idx)] + - np.concatenate(obj).tolist()), - num_return_vals=len(self._block_partitions.T) + return_index) - for obj in zip(self._block_partitions, - repartitioned_right)]) - - if not return_index: - # Default to RangeIndex if left_index and right_index both false. - new_index = None - else: - new_index_parts = new_blocks[:, -1] - new_index = _concat_index.remote(*new_index_parts) - new_blocks = new_blocks[:, :-1] - - return DataFrame( - block_partitions=new_blocks, columns=new_columns, index=new_index) + if left_index and right_index: + return self.join( + right, + how=how, + lsuffix=suffixes[0], + rsuffix=suffixes[1], + sort=sort) def min(self, axis=None, @@ -3284,16 +2278,15 @@ def min(self, Returns: The min of the DataFrame. """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.min( - axis=axis, - skipna=skipna, - level=level, - numeric_only=numeric_only, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.min( + axis=axis, + skipna=skipna, + level=level, + numeric_only=numeric_only, + **kwargs) def mod(self, other, axis='columns', level=None, fill_value=None): """Mods this DataFrame against another DataFrame/Series/scalar. @@ -3307,8 +2300,14 @@ def mod(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the Mod applied. """ - return self._operator_helper(pandas.DataFrame.mod, other, axis, level, - fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.mod( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def mode(self, axis=0, numeric_only=False): """Perform mode across the DataFrame. @@ -3322,34 +2321,9 @@ def mode(self, axis=0, numeric_only=False): """ axis = pandas.DataFrame()._get_axis_number(axis) - def mode_helper(df): - mode_df = df.mode(axis=axis, numeric_only=numeric_only) - return mode_df, mode_df.shape[axis] - - def fix_length(df, *lengths): - max_len = max(lengths[0]) - df = df.reindex(pandas.RangeIndex(max_len), axis=axis) - return df - - parts = self._col_partitions if axis == 0 else self._row_partitions - - result = [ - _deploy_func._submit( - args=(lambda df: mode_helper(df), part), num_return_vals=2) - for part in parts - ] - - parts, lengths = [list(t) for t in zip(*result)] - - parts = [ - _deploy_func.remote(lambda df, *l: fix_length(df, l), part, - *lengths) for part in parts - ] - - if axis == 0: - return DataFrame(col_partitions=parts, columns=self.columns) - else: - return DataFrame(row_partitions=parts, index=self.index) + return DataFrame( + data_manager=self._data_manager.mode( + axis=axis, numeric_only=numeric_only)) def mul(self, other, axis='columns', level=None, fill_value=None): """Multiplies this DataFrame against another DataFrame/Series/scalar. @@ -3363,8 +2337,14 @@ def mul(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the Multiply applied. """ - return self._operator_helper(pandas.DataFrame.mul, other, axis, level, - fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.mul( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def multiply(self, other, axis='columns', level=None, fill_value=None): """Synonym for mul. @@ -3391,7 +2371,14 @@ def ne(self, other, axis='columns', level=None): Returns: A new DataFrame filled with Booleans. """ - return self._operator_helper(pandas.DataFrame.ne, other, axis, level) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.ne( + other=other, axis=axis, level=level) + return self._create_dataframe_from_manager(new_manager) def nlargest(self, n, columns, keep='first'): raise NotImplementedError( @@ -3401,50 +2388,20 @@ def nlargest(self, n, columns, keep='first'): def notna(self): """Perform notna across the DataFrame. - Args: - None - Returns: Boolean DataFrame where value is False if corresponding value is NaN, True otherwise """ - new_block_partitions = np.array([ - _map_partitions(lambda df: df.notna(), block) - for block in self._block_partitions - ]) - - new_dtypes = pandas.Series( - [np.dtype("bool")] * len(self.columns), index=self.columns) - - return DataFrame( - block_partitions=new_block_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata, - dtypes_cache=new_dtypes) + return DataFrame(data_manager=self._data_manager.notna()) def notnull(self): """Perform notnull across the DataFrame. - Args: - None - Returns: Boolean DataFrame where value is False if corresponding value is NaN, True otherwise """ - new_block_partitions = np.array([ - _map_partitions(lambda df: df.notnull(), block) - for block in self._block_partitions - ]) - - new_dtypes = pandas.Series( - [np.dtype("bool")] * len(self.columns), index=self.columns) - - return DataFrame( - block_partitions=new_block_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata, - dtypes_cache=new_dtypes) + return DataFrame(data_manager=self._data_manager.notnull()) def nsmallest(self, n, columns, keep='first'): raise NotImplementedError( @@ -3462,11 +2419,7 @@ def nunique(self, axis=0, dropna=True): Returns: nunique : Series """ - - def remote_func(df): - return df.nunique(axis=axis, dropna=dropna) - - return self._arithmetic_helper(remote_func, axis) + return self._data_manager.nunique(axis=axis, dropna=dropna) def pct_change(self, periods=1, @@ -3570,8 +2523,14 @@ def pow(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the Pow applied. """ - return self._operator_helper(pandas.DataFrame.pow, other, axis, level, - fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.pow( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def prod(self, axis=None, @@ -3592,17 +2551,16 @@ def prod(self, Returns: prod : Series or DataFrame (if level specified) """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.prod( - axis=axis, - skipna=skipna, - level=level, - numeric_only=numeric_only, - min_count=min_count, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.prod( + axis=axis, + skipna=skipna, + level=level, + numeric_only=numeric_only, + min_count=min_count, + **kwargs) def product(self, axis=None, @@ -3657,87 +2615,52 @@ def quantile(self, are the quantiles. """ - def check_bad_dtype(t): - return t == np.dtype('O') or is_timedelta64_dtype(t) + def check_dtype(t): + return (is_numeric_dtype(t) or is_datetime_or_timedelta_dtype(t)) if not numeric_only: - # check if there are any object columns - if all(check_bad_dtype(t) for t in self.dtypes): + # If not numeric_only and columns, then check all columns are either + # numeric, timestamp, or timedelta + if not axis and not all(check_dtype(t) for t in self.dtypes): raise TypeError("can't multiply sequence by non-int of type " "'float'") - else: - if next((True for t in self.dtypes if check_bad_dtype(t)), - False): - dtype = next(t for t in self.dtypes if check_bad_dtype(t)) - raise ValueError( - "Cannot compare type '{}' with type '{}'".format( - type(dtype), float)) + + # If over rows, then make sure that all dtypes are equal for not + # numeric_only + elif axis: + for i in range(1, len(self.dtypes)): + pre_dtype = self.dtypes[i - 1] + curr_dtype = self.dtypes[i] + if not is_dtype_equal(pre_dtype, curr_dtype): + raise TypeError( + "Cannot compare type '{0}' with type '{1}'".format( + pre_dtype, curr_dtype)) else: # Normally pandas returns this near the end of the quantile, but we # can't afford the overhead of running the entire operation before # we error. - if all(check_bad_dtype(t) for t in self.dtypes): - raise ValueError("need at least one array to concatenate") - - # check that all qs are between 0 and 1 - pandas.DataFrame()._check_percentile(q) - - def quantile_helper(df, base_object): - """Quantile to be run inside each partitoin. - - Args: - df: The DataFrame composing the partition. - base_object: An empty pandas.Series or pandas.DataFrame - depending on q. - - Returns: - A new Series or DataFrame depending on q. - """ - # This if call prevents ValueErrors with object only partitions - if (numeric_only and all( - dtype == np.dtype('O') or is_timedelta64_dtype(dtype) - for dtype in df.dtypes)): - return base_object - else: - return df.quantile( - q=q, - axis=axis, - numeric_only=numeric_only, - interpolation=interpolation) - - axis = pandas.DataFrame()._get_axis_number(axis) - - if isinstance(q, (pandas.Series, np.ndarray, pandas.Index, list)): - - q_index = pandas.Float64Index(q) - - if axis == 0: - new_partitions = _map_partitions( - lambda df: quantile_helper(df, pandas.DataFrame()), - self._col_partitions) + if not any(is_numeric_dtype(t) for t in self.dtypes): + raise ValueError("need at least one array to concatenate") - # select only correct dtype columns - new_columns = self.dtypes[self.dtypes.apply( - lambda x: is_numeric_dtype(x))].index + # check that all qs are between 0 and 1 + pandas.DataFrame()._check_percentile(q) - else: - new_partitions = _map_partitions( - lambda df: quantile_helper(df, pandas.DataFrame()), - self._row_partitions) - new_columns = self.index + axis = pandas.DataFrame()._get_axis_number(axis) + if isinstance(q, (pandas.Series, np.ndarray, pandas.Index, list)): return DataFrame( - col_partitions=new_partitions, - index=q_index, - columns=new_columns) + data_manager=self._data_manager.quantile_for_list_of_values( + q=q, + axis=axis, + numeric_only=numeric_only, + interpolation=interpolation)) else: - # When q is a single float, we return a Series, so using - # arithmetic_helper works well here. - result = self._arithmetic_helper( - lambda df: quantile_helper(df, pandas.Series()), axis) - result.name = q - return result + return self._data_manager.quantile_for_single_value( + q=q, + axis=axis, + numeric_only=numeric_only, + interpolation=interpolation) def query(self, expr, inplace=False, **kwargs): """Queries the Dataframe with a boolean expression @@ -3746,23 +2669,14 @@ def query(self, expr, inplace=False, **kwargs): A new DataFrame if inplace=False """ self._validate_eval_query(expr, **kwargs) + inplace = validate_bool_kwarg(inplace, "inplace") - columns = self.columns - - def query_helper(df): - df = df.copy() - df.columns = columns - df.query(expr, inplace=True, **kwargs) - df.columns = pandas.RangeIndex(0, len(df.columns)) - return df - - new_rows = _map_partitions(query_helper, self._row_partitions) + new_manager = self._data_manager.query(expr, **kwargs) if inplace: - self._update_inplace(row_partitions=new_rows, index=self.index) + self._update_inplace(new_manager=new_manager) else: - return DataFrame( - row_partitions=new_rows, col_metadata=self._col_metadata) + return DataFrame(data_manager=new_manager) def radd(self, other, axis='columns', level=None, fill_value=None): return self.add(other, axis, level, fill_value) @@ -3782,7 +2696,7 @@ def rank(self, Args: axis (int): 0 or 'index' for row-wise, 1 or 'columns' for column-wise - interpolation: {'average', 'min', 'max', 'first', 'dense'} + method: {'average', 'min', 'max', 'first', 'dense'} Specifies which method to use for equal vals numeric_only (boolean) Include only float, int, boolean data. @@ -3795,34 +2709,37 @@ def rank(self, Returns: A new DataFrame """ + axis = pandas.DataFrame()._get_axis_number(axis) - def rank_helper(df): - return df.rank( + return DataFrame( + data_manager=self._data_manager.rank( axis=axis, method=method, numeric_only=numeric_only, na_option=na_option, ascending=ascending, - pct=pct) + pct=pct)) - axis = pandas.DataFrame()._get_axis_number(axis) + def rdiv(self, other, axis='columns', level=None, fill_value=None): + """Div this DataFrame against another DataFrame/Series/scalar. - if (axis == 1): - new_cols = self.dtypes[self.dtypes.apply( - lambda x: is_numeric_dtype(x))].index - result = _map_partitions(rank_helper, self._row_partitions) - return DataFrame( - row_partitions=result, columns=new_cols, index=self.index) + Args: + other: The object to use to apply the div against this. + axis: The axis to div over. + level: The Multilevel index level to apply div over. + fill_value: The value to fill NaNs with. - if (axis == 0): - result = _map_partitions(rank_helper, self._col_partitions) - return DataFrame( - col_partitions=result, columns=self.columns, index=self.index) + Returns: + A new DataFrame with the rdiv applied. + """ + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") - def rdiv(self, other, axis='columns', level=None, fill_value=None): - return self._single_df_op_helper( - lambda df: df.rdiv(other, axis, level, fill_value), other, axis, - level) + other = self._validate_other(other, axis) + new_manager = self._data_manager.rdiv( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def reindex(self, labels=None, @@ -3848,38 +2765,32 @@ def reindex(self, elif labels is not None: columns = labels - new_blocks = self._block_partitions if index is not None: - old_index = self.index - new_blocks = np.array([ - reindex_helper._submit( - args=(old_index, index, 1, len(new_blocks), method, - fill_value, limit, tolerance) + tuple( - block.tolist()), - num_return_vals=len(new_blocks)) for block in new_blocks.T - ]).T + new_manager = self._data_manager.reindex( + 0, + index, + method=method, + fill_value=fill_value, + limit=limit, + tolerance=tolerance) else: - index = self.index + new_manager = self._data_manager if columns is not None: - old_columns = self.columns - new_blocks = np.array([ - reindex_helper._submit( - args=(old_columns, columns, 0, new_blocks.shape[1], method, - fill_value, limit, tolerance) + tuple( - block.tolist()), - num_return_vals=new_blocks.shape[1]) - for block in new_blocks - ]) + final_manager = new_manager.reindex( + 1, + columns, + method=method, + fill_value=fill_value, + limit=limit, + tolerance=tolerance) else: - columns = self.columns + final_manager = new_manager if copy: - return DataFrame( - block_partitions=new_blocks, index=index, columns=columns) + return DataFrame(data_manager=final_manager) - self._update_inplace( - block_partitions=new_blocks, index=index, columns=columns) + self._update_inplace(new_manager=final_manager) def reindex_axis(self, labels, @@ -4042,105 +2953,28 @@ def reset_index(self, Returns: A new DataFrame if inplace is False, None otherwise. """ - inplace = validate_bool_kwarg(inplace, 'inplace') - if inplace: - new_obj = self - else: - new_obj = self.copy() - - def _maybe_casted_values(index, labels=None): - if isinstance(index, pandas.PeriodIndex): - values = index.asobject.values - elif isinstance(index, pandas.DatetimeIndex) \ - and index.tz is not None: - values = index - else: - values = index.values - if values.dtype == np.object_: - values = lib.maybe_convert_objects(values) - - # if we have the labels, extract the values with a mask - if labels is not None: - mask = labels == -1 - - # we can have situations where the whole mask is -1, - # meaning there is nothing found in labels, so make all nan's - if mask.all(): - values = np.empty(len(mask)) - values.fill(np.nan) - else: - values = values.take(labels) - if mask.any(): - values, changed = maybe_upcast_putmask( - values, mask, np.nan) - return values - - # We're building a new default index dataframe for use later. - new_index = pandas.RangeIndex(len(self)) + # TODO Implement level if level is not None: - if not isinstance(level, (tuple, list)): - level = [level] - level = [self.index._get_level_number(lev) for lev in level] - if isinstance(self.index, pandas.MultiIndex): - if len(level) < self.index.nlevels: - new_index = self.index.droplevel(level) + raise NotImplementedError("Level not yet supported!") + inplace = validate_bool_kwarg(inplace, 'inplace') - if not drop: - if isinstance(self.index, pandas.MultiIndex): - names = [ - n if n is not None else ('level_%d' % i) - for (i, n) in enumerate(self.index.names) - ] - to_insert = lzip(self.index.levels, self.index.labels) - else: - default = 'index' - i = 0 - while default in self: - default = 'level_{}'.format(i) - i += 1 - - names = ([default] - if self.index.name is None else [self.index.name]) - to_insert = ((self.index, None), ) - - multi_col = isinstance(self.columns, pandas.MultiIndex) - for i, (lev, lab) in reversed(list(enumerate(to_insert))): - if not (level is None or i in level): - continue - name = names[i] - if multi_col: - col_name = (list(name) - if isinstance(name, tuple) else [name]) - if col_fill is None: - if len(col_name) not in (1, self.columns.nlevels): - raise ValueError("col_fill=None is incompatible " - "with incomplete column name " - "{}".format(name)) - col_fill = col_name[0] - - lev_num = self.columns._get_level_number(col_level) - name_lst = [col_fill] * lev_num + col_name - missing = self.columns.nlevels - len(name_lst) - name_lst += [col_fill] * missing - name = tuple(name_lst) - # to ndarray and maybe infer different dtype - level_values = _maybe_casted_values(lev, lab) - new_obj.insert(0, name, level_values) - - new_obj.index = new_index + # Error checking for matching Pandas. Pandas does not allow you to + # insert a dropped index into a DataFrame if these columns already + # exist. + if not drop and all(n in self.columns for n in ["level_0", "index"]): + raise ValueError("cannot insert level_0, already exists") - if not inplace: - return new_obj + new_manager = self._data_manager.reset_index(drop=drop, level=level) + if inplace: + self._update_inplace(new_manager=new_manager) + else: + return DataFrame(data_manager=new_manager) def rfloordiv(self, other, axis='columns', level=None, fill_value=None): - return self._single_df_op_helper( - lambda df: df.rfloordiv(other, axis, level, fill_value), other, - axis, level) + return self.floordiv(other, axis, level, fill_value) def rmod(self, other, axis='columns', level=None, fill_value=None): - return self._single_df_op_helper( - lambda df: df.rmod(other, axis, level, fill_value), other, axis, - level) + return self.mod(other, axis, level, fill_value) def rmul(self, other, axis='columns', level=None, fill_value=None): return self.mul(other, axis, level, fill_value) @@ -4159,31 +2993,62 @@ def rolling(self, "github.com/modin-project/modin.") def round(self, decimals=0, *args, **kwargs): - new_block_partitions = np.array([ - _map_partitions( - lambda df: df.round(decimals=decimals, *args, **kwargs), block) - for block in self._block_partitions - ]) + """Round each element in the DataFrame. + + Args: + decimals: The number of decimals to round to. + Returns: + A new DataFrame. + """ return DataFrame( - block_partitions=new_block_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata) + data_manager=self._data_manager.round(decimals=decimals, **kwargs)) def rpow(self, other, axis='columns', level=None, fill_value=None): - return self._single_df_op_helper( - lambda df: df.rpow(other, axis, level, fill_value), other, axis, - level) + """Pow this DataFrame against another DataFrame/Series/scalar. + + Args: + other: The object to use to apply the pow against this. + axis: The axis to pow over. + level: The Multilevel index level to apply pow over. + fill_value: The value to fill NaNs with. + + Returns: + A new DataFrame with the Pow applied. + """ + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.rpow( + other=other, axis=axis, level=level, fill_value=fill_value) + + return self._create_dataframe_from_manager(new_manager) def rsub(self, other, axis='columns', level=None, fill_value=None): - return self._single_df_op_helper( - lambda df: df.rsub(other, axis, level, fill_value), other, axis, - level) + """Subtract a DataFrame/Series/scalar from this DataFrame. + + Args: + other: The object to use to apply the subtraction to this. + axis: THe axis to apply the subtraction over. + level: Mutlilevel index level to subtract over. + fill_value: The value to fill NaNs with. + + Returns: + A new DataFrame with the subtraciont applied. + """ + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.rsub( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def rtruediv(self, other, axis='columns', level=None, fill_value=None): - return self._single_df_op_helper( - lambda df: df.rtruediv(other, axis, level, fill_value), other, - axis, level) + return self.truediv(other, axis, level, fill_value) def sample(self, n=None, @@ -4221,9 +3086,11 @@ def sample(self, else 0 if axis == 0: - axis_length = len(self._row_metadata) + axis_labels = self.index + axis_length = len(axis_labels) else: - axis_length = len(self._col_metadata) + axis_labels = self.column + axis_length = len(axis_labels) if weights is not None: @@ -4301,15 +3168,6 @@ def sample(self, columns=[] if axis == 1 else self.columns, index=self.index if axis == 1 else []) - if axis == 1: - axis_labels = self.columns - partition_metadata = self._col_metadata - partitions = self._col_partitions - else: - axis_labels = self.index - partition_metadata = self._row_metadata - partitions = self._row_partitions - if random_state is not None: # Get a random number generator depending on the type of # random_state that is passed in @@ -4324,36 +3182,20 @@ def sample(self, # choose random numbers and then get corresponding labels from # chosen axis - sample_indices = random_num_gen.randint( - low=0, high=len(partition_metadata), size=n) + sample_indices = random_num_gen.choice( + np.arange(0, axis_length), size=n, replace=replace) samples = axis_labels[sample_indices] else: # randomly select labels from chosen axis samples = np.random.choice( a=axis_labels, size=n, replace=replace, p=weights) - # create an array of (partition, index_within_partition) tuples for - # each sample - part_ind_tuples = [partition_metadata[sample] for sample in samples] - if axis == 1: - # tup[0] refers to the partition number and tup[1] is the index - # within that partition - new_cols = [ - _deploy_func.remote(lambda df: df.iloc[:, [tup[1]]], - partitions[tup[0]]) - for tup in part_ind_tuples - ] - return DataFrame( - col_partitions=new_cols, columns=samples, index=self.index) + data_manager = self._data_manager.getitem_col_array(samples) + return DataFrame(data_manager=data_manager) else: - new_rows = [ - _deploy_func.remote(lambda df: df.loc[[tup[1]]], - partitions[tup[0]]) - for tup in part_ind_tuples - ] - return DataFrame( - row_partitions=new_rows, columns=self.columns, index=samples) + data_manager = self._data_manager.getitem_row_array(samples) + return DataFrame(data_manager=data_manager) def select(self, crit, axis=0): raise NotImplementedError( @@ -4557,16 +3399,12 @@ def skew(self, Returns: skew : Series or DataFrame (if level specified) """ - - def remote_func(df): - return df.skew( - axis=axis, - skipna=skipna, - level=level, - numeric_only=numeric_only, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.skew( + axis=axis, + skipna=skipna, + level=level, + numeric_only=numeric_only, + **kwargs) def slice_shift(self, periods=1, axis=0): raise NotImplementedError( @@ -4613,51 +3451,14 @@ def sort_index(self, axis = pandas.DataFrame()._get_axis_number(axis) - args = (axis, level, ascending, False, kind, na_position, - sort_remaining) - - def _sort_helper(df, index, axis, *args): - if axis == 0: - df.index = index - else: - df.columns = index - - result = df.sort_index(*args) - df.reset_index(drop=True, inplace=True) - df.columns = pandas.RangeIndex(len(df.columns)) - return result - - if axis == 0: - index = self.index - new_column_parts = _map_partitions( - lambda df: _sort_helper(df, index, axis, *args), - self._col_partitions) - - new_columns = self.columns + if not axis: new_index = self.index.sort_values(ascending=ascending) - new_row_parts = None + new_columns = None else: - columns = self.columns - new_row_parts = _map_partitions( - lambda df: _sort_helper(df, columns, axis, *args), - self._row_partitions) - + new_index = None new_columns = self.columns.sort_values(ascending=ascending) - new_index = self.index - new_column_parts = None - if not inplace: - return DataFrame( - col_partitions=new_column_parts, - row_partitions=new_row_parts, - index=new_index, - columns=new_columns) - else: - self._update_inplace( - row_partitions=new_row_parts, - col_partitions=new_column_parts, - columns=new_columns, - index=new_index) + return self.reindex(index=new_index, columns=new_columns) def sort_values(self, by, @@ -4685,9 +3486,16 @@ def sort_values(self, if not is_list_like(by): by = [by] + # Currently, sort_values will just reindex based on the sorted values. + # TODO create a more efficient way to sort if axis == 0: - broadcast_value_dict = {str(col): self[col] for col in by} - broadcast_values = pandas.DataFrame(broadcast_value_dict) + broadcast_value_dict = {col: self[col] for col in by} + broadcast_values = pandas.DataFrame( + broadcast_value_dict, index=self.index) + + new_index = broadcast_values.sort_values( + by=by, axis=axis, ascending=ascending, kind=kind).index + return self.reindex(index=new_index) else: broadcast_value_list = [ to_pandas(self[row::len(self.index)]) for row in by @@ -4695,76 +3503,14 @@ def sort_values(self, index_builder = list(zip(broadcast_value_list, by)) - for row, idx in index_builder: - row.index = [str(idx)] - broadcast_values = \ pandas.concat([row for row, idx in index_builder], copy=False) - # We are converting the by to string here so that we don't have a - # collision with the RangeIndex on the inner frame. It is cheap and - # gaurantees that we sort by the correct column. - by = [str(col) for col in by] - - args = (by, axis, ascending, False, kind, na_position) - - def _sort_helper(df, broadcast_values, axis, *args): - """Sorts the data on a partition. - - Args: - df: The DataFrame to sort. - broadcast_values: The by DataFrame to use for the sort. - axis: The axis to sort over. - args: The args for the sort. - - Returns: - A new sorted DataFrame. - """ - if axis == 0: - broadcast_values.index = df.index - names = broadcast_values.columns - else: - broadcast_values.columns = df.columns - names = broadcast_values.index - - return pandas.concat([df, broadcast_values], axis=axis ^ 1, - copy=False).sort_values(*args) \ - .drop(names, axis=axis ^ 1) + broadcast_values.columns = self.columns + new_columns = broadcast_values.sort_values( + by=by, axis=axis, ascending=ascending, kind=kind).columns - if axis == 0: - new_column_partitions = _map_partitions( - lambda df: _sort_helper(df, broadcast_values, axis, *args), - self._col_partitions) - - new_row_partitions = None - new_columns = self.columns - - # This is important because it allows us to get the axis that we - # aren't sorting over. We need the order of the columns/rows and - # this will provide that in the return value. - new_index = broadcast_values.sort_values(*args).index - else: - new_row_partitions = _map_partitions( - lambda df: _sort_helper(df, broadcast_values, axis, *args), - self._row_partitions) - - new_column_partitions = None - new_columns = broadcast_values.sort_values(*args).columns - new_index = self.index - - if inplace: - self._update_inplace( - row_partitions=new_row_partitions, - col_partitions=new_column_partitions, - columns=new_columns, - index=new_index) - else: - return DataFrame( - row_partitions=new_row_partitions, - col_partitions=new_column_partitions, - columns=new_columns, - index=new_index, - dtypes_cache=self._dtypes_cache) + return self.reindex(columns=new_columns) def sortlevel(self, level=0, @@ -4803,17 +3549,16 @@ def std(self, Returns: The std of the DataFrame (Pandas Series) """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.std( - axis=axis, - skipna=skipna, - level=level, - ddof=ddof, - numeric_only=numeric_only, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.std( + axis=axis, + skipna=skipna, + level=level, + ddof=ddof, + numeric_only=numeric_only, + **kwargs) def sub(self, other, axis='columns', level=None, fill_value=None): """Subtract a DataFrame/Series/scalar from this DataFrame. @@ -4827,8 +3572,14 @@ def sub(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the subtraciont applied. """ - return self._operator_helper(pandas.DataFrame.sub, other, axis, level, - fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.sub( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def subtract(self, other, axis='columns', level=None, fill_value=None): """Alias for sub. @@ -4854,27 +3605,6 @@ def swaplevel(self, i=-2, j=-1, axis=0): "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") - def _tail_block_builder(self, n): - npartitions = len(self._row_metadata._lengths) - 1 - length_bins = np.cumsum(self._row_metadata._lengths[::-1]) - - idx = np.digitize(n, length_bins) - - if idx > 0: - # This value will be what we need to get from the last block - remaining = n - length_bins[idx - 1] - else: - remaining = n - - # We are building the blocks in reverse order, then reversing the - # numpy array order - return np.array([ - self._block_partitions[npartitions - i] if i != idx else [ - _deploy_func.remote(lambda df: df.tail(remaining), blk) - for blk in self._block_partitions[npartitions - i] - ] for i in range(idx + 1) - ])[::-1] - def tail(self, n=5): """Get the last n rows of the DataFrame. @@ -4884,17 +3614,10 @@ def tail(self, n=5): Returns: A new DataFrame with the last n rows of this DataFrame. """ - if n >= len(self): + if n >= len(self.index): return self.copy() - new_blocks = self._tail_block_builder(n) - index = self._row_metadata.index[-n:] - - return DataFrame( - block_partitions=new_blocks, - col_metadata=self._col_metadata, - index=index, - dtypes_cache=self._dtypes_cache) + return DataFrame(data_manager=self._data_manager.tail(n)) def take(self, indices, axis=0, convert=None, is_copy=True, **kwargs): raise NotImplementedError( @@ -4954,58 +3677,9 @@ def to_csv(self, 'decimal': decimal } - if compression is not None: - warnings.warn("Defaulting to Pandas implementation", - PendingDeprecationWarning) - return to_pandas(self).to_csv(**kwargs) - - if tupleize_cols is not None: - warnings.warn( - "The 'tupleize_cols' parameter is deprecated and " - "will be removed in a future version", - FutureWarning, - stacklevel=2) - else: - tupleize_cols = False - - remote_kwargs_id = ray.put(dict(kwargs, path_or_buf=None)) - columns_id = ray.put(self.columns) - - def get_csv_str(df, index, columns, header, kwargs): - df.index = index - df.columns = columns - kwargs["header"] = header - return df.to_csv(**kwargs) - - idxs = [0] + np.cumsum(self._row_metadata._lengths).tolist() - idx_args = [ - self.index[idxs[i]:idxs[i + 1]] - for i in range(len(self._row_partitions)) - ] - csv_str_ids = _map_partitions( - get_csv_str, self._row_partitions, idx_args, - [columns_id] * len(self._row_partitions), - [header] + [False] * (len(self._row_partitions) - 1), - [remote_kwargs_id] * len(self._row_partitions)) - - if path_or_buf is None: - buf = io.StringIO() - elif isinstance(path_or_buf, str): - buf = open(path_or_buf, mode) - else: - buf = path_or_buf - - for csv_str_id in csv_str_ids: - buf.write(ray.get(csv_str_id)) - buf.flush() - - result = None - if path_or_buf is None: - result = buf.getvalue() - buf.close() - elif isinstance(path_or_buf, str): - buf.close() - return result + warnings.warn("Defaulting to Pandas implementation", + PendingDeprecationWarning) + return to_pandas(self).to_csv(**kwargs) def to_dense(self): raise NotImplementedError( @@ -5281,8 +3955,14 @@ def truediv(self, other, axis='columns', level=None, fill_value=None): Returns: A new DataFrame with the Divide applied. """ - return self._operator_helper(pandas.DataFrame.truediv, other, axis, - level, fill_value) + if level is not None: + raise NotImplementedError("Mutlilevel index not yet supported " + "in Pandas on Ray") + + other = self._validate_other(other, axis) + new_manager = self._data_manager.truediv( + other=other, axis=axis, level=level, fill_value=fill_value) + return self._create_dataframe_from_manager(new_manager) def truncate(self, before=None, after=None, axis=None, copy=True): raise NotImplementedError( @@ -5338,12 +4018,13 @@ def update(self, if not isinstance(other, DataFrame): other = DataFrame(other) - def update_helper(x, y): - x.update(y, join, overwrite, filter_func, False) - return x - - self._inter_df_op_helper( - update_helper, other, join, 0, None, inplace=True) + data_manager = self._data_manager.update( + other._data_manager, + join=join, + overwrite=overwrite, + filter_func=filter_func, + raise_conflict=raise_conflict) + self._update_inplace(new_manager=data_manager) def var(self, axis=None, @@ -5362,17 +4043,16 @@ def var(self, Returns: The variance of the DataFrame. """ + axis = pandas.DataFrame()._get_axis_number( + axis) if axis is not None else 0 - def remote_func(df): - return df.var( - axis=axis, - skipna=skipna, - level=level, - ddof=ddof, - numeric_only=numeric_only, - **kwargs) - - return self._arithmetic_helper(remote_func, axis, level) + return self._data_manager.var( + axis=axis, + skipna=skipna, + level=level, + ddof=ddof, + numeric_only=numeric_only, + **kwargs) def where(self, cond, @@ -5423,68 +4103,21 @@ def where(self, "self") cond = DataFrame(cond, index=self.index, columns=self.columns) - zipped_partitions = self._copartition(cond, self.index) - args = (False, axis, level, errors, try_cast, raise_on_error) - if isinstance(other, DataFrame): - other_zipped = (v for k, v in self._copartition(other, self.index)) - - new_partitions = [ - _where_helper.remote(k, v, next(other_zipped), self.columns, - cond.columns, other.columns, *args) - for k, v in zipped_partitions - ] + other = other._data_manager - # Series has to be treated specially because we're operating on row - # partitions from here on. elif isinstance(other, pandas.Series): - if axis == 0: - # Pandas determines which index to use based on axis. - other = other.reindex(self.index) - other.index = pandas.RangeIndex(len(other)) - - # Since we're working on row partitions, we have to partition - # the Series based on the partitioning of self (since both - # self and cond are co-partitioned by self. - other_builder = [] - for length in self._row_metadata._lengths: - other_builder.append(other[:length]) - other = other[length:] - # Resetting the index here ensures that we apply each part - # to the correct row within the partitions. - other.index = pandas.RangeIndex(len(other)) - - other = (obj for obj in other_builder) - - new_partitions = [ - _where_helper.remote(k, v, next(other, pandas.Series()), - self.columns, cond.columns, None, - *args) for k, v in zipped_partitions - ] - else: - other = other.reindex(self.columns) - new_partitions = [ - _where_helper.remote(k, v, other, self.columns, - cond.columns, None, *args) - for k, v in zipped_partitions - ] - + other = other.reindex(self.index if not axis else self.columns) else: - new_partitions = [ - _where_helper.remote(k, v, other, self.columns, cond.columns, - None, *args) for k, v in zipped_partitions - ] + index = self.index if not axis else self.columns + other = pandas.Series(other, index=index) + data_manager = self._data_manager.where( + cond._data_manager, other, axis=axis, level=level) if inplace: - self._update_inplace( - row_partitions=new_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata) + self._update_inplace(new_manager=data_manager) else: - return DataFrame( - row_partitions=new_partitions, - row_metadata=self._row_metadata, - col_metadata=self._col_metadata) + return DataFrame(data_manager=data_manager) def xs(self, key, axis=0, level=None, drop_level=True): raise NotImplementedError( @@ -5502,7 +4135,7 @@ def __getitem__(self, key): """ key = com._apply_if_callable(key, self) - # shortcut if we are an actual column + # Shortcut if key is an actual column is_mi_columns = isinstance(self.columns, pandas.MultiIndex) try: if key in self.columns and not is_mi_columns: @@ -5511,7 +4144,9 @@ def __getitem__(self, key): pass # see if we can slice the rows - indexer = self._row_metadata.convert_to_index_sliceable(key) + # This lets us reuse code in Pandas to error check + indexer = convert_to_index_sliceable( + pandas.DataFrame(index=self.index), key) if indexer is not None: return self._getitem_slice(indexer) @@ -5529,12 +4164,7 @@ def __getitem__(self, key): return self._getitem_column(key) def _getitem_column(self, key): - # may result in multiple columns? - partition = self._col_metadata[key, 'partition'] - result = ray.get(self._getitem_indiv_col(key, partition)) - result.name = key - result.index = self.index - return result + return self._data_manager.getitem_single_key(key) def _getitem_array(self, key): if com.is_bool_indexer(key): @@ -5550,51 +4180,21 @@ def _getitem_array(self, key): len(key), len(self.index))) key = check_bool_indexer(self.index, key) - new_parts = _map_partitions(lambda df: df[key], - self._col_partitions) - columns = self.columns - index = self.index[key] - + # We convert here because the data_manager assumes it is a list of + # indices. This greatly decreases the complexity of the code. + key = self.index[key] return DataFrame( - col_partitions=new_parts, columns=columns, index=index) + data_manager=self._data_manager.getitem_row_array(key)) else: - columns = self._col_metadata[key].index - column_indices = {item: i for i, item in enumerate(self.columns)} - indices_for_rows = [column_indices[column] for column in columns] - - def get_columns_partition(df): - result = df.__getitem__(indices_for_rows), - result.columns = pandas.RangeIndex(0, len(result.columns)) - return result - - new_parts = [ - _deploy_func.remote( - lambda df: df.__getitem__(indices_for_rows), part) - for part in self._row_partitions - ] - - index = self.index - return DataFrame( - row_partitions=new_parts, columns=columns, index=index) - - def _getitem_indiv_col(self, key, part): - loc = self._col_metadata[key] - if isinstance(loc, pandas.Series): - index = loc[loc['partition'] == part] - else: - index = loc[loc['partition'] == part]['index_within_partition'] - return _deploy_func.remote(lambda df: df.__getitem__(index), - self._col_partitions[part]) + data_manager=self._data_manager.getitem_column_array(key)) def _getitem_slice(self, key): - new_cols = _map_partitions(lambda df: df[key], self._col_partitions) - - index = self.index[key] + # We convert here because the data_manager assumes it is a list of + # indices. This greatly decreases the complexity of the code. + key = self.index[key] return DataFrame( - col_partitions=new_cols, - col_metadata=self._col_metadata, - index=index) + data_manager=self._data_manager.getitem_row_array(key)) def __getattr__(self, key): """After regular attribute access, looks up the name in the columns @@ -5630,7 +4230,7 @@ def __len__(self): Returns: Returns an integer length of the DataFrame object. """ - return len(self._row_metadata) + return len(self.index) def __unicode__(self): raise NotImplementedError( @@ -5716,47 +4316,10 @@ def __delitem__(self, key): Args: key: key to delete """ + if key not in self: + raise KeyError(key) - # Create helper method for deleting column(s) in row partition. - def del_helper(df, to_delete): - cols = df.columns[to_delete] # either int or an array of ints - - if not is_list_like(cols): - cols = [cols] - - for col in cols: - df.__delitem__(col) - - # Reset the column index to conserve space - df.columns = pandas.RangeIndex(0, len(df.columns)) - return df - - # This structure is used to get the correct index inside the partition. - del_df = self._col_metadata[key] - - # We need to standardize between multiple and single occurrences in the - # columns. Putting single occurrences in a pandas.DataFrame and - # transposing results in the same structure as multiple with 'loc'. - if isinstance(del_df, pandas.Series): - del_df = pandas.DataFrame(del_df).T - - # Cast cols as pandas.Series as duplicate columns mean result may be - # np.int64 or pandas.Series - col_parts_to_del = \ - pandas.Series(del_df['partition'].copy()).unique() - self._col_metadata.drop(key) - - for i in col_parts_to_del: - # Compute the correct index inside the partition to delete. - to_delete_in_partition = \ - del_df[del_df['partition'] == i]['index_within_partition'] - - for j in range(self._block_partitions.shape[0]): - self._block_partitions[j, i] = _deploy_func.remote( - del_helper, self._block_partitions[j, i], - to_delete_in_partition) - - self._col_metadata.reset_partition_coords(col_parts_to_del) + self._update_inplace(new_manager=self._data_manager.delitem(key)) def __finalize__(self, other, method=None, **kwargs): raise NotImplementedError( @@ -5898,19 +4461,11 @@ def __neg__(self): """ for t in self.dtypes: if not (is_bool_dtype(t) or is_numeric_dtype(t) - or is_timedelta64_dtype(t)): + or is_datetime_or_timedelta_dtype(t)): raise TypeError( "Unary negative expects numeric dtype, not {}".format(t)) - new_block_partitions = np.array([ - _map_partitions(lambda df: df.__neg__(), block) - for block in self._block_partitions - ]) - - return DataFrame( - block_partitions=new_block_partitions, - col_metadata=self._col_metadata, - row_metadata=self._row_metadata) + return DataFrame(data_manager=self._data_manager.negative()) def __sizeof__(self): raise NotImplementedError( @@ -5947,8 +4502,8 @@ def loc(self): We currently support: single label, list array, slice object We do not support: boolean array, callable """ - from .indexing import _Loc_Indexer - return _Loc_Indexer(self) + from .indexing import _LocIndexer + return _LocIndexer(self) @property def is_copy(self): @@ -5973,136 +4528,34 @@ def iloc(self): We currently support: single label, list array, slice object We do not support: boolean array, callable """ - from .indexing import _iLoc_Indexer - return _iLoc_Indexer(self) - - def _copartition(self, other, new_index): - """Colocates the values of other with this for certain operations. - - NOTE: This method uses the indexes of each DataFrame to order them the - same. This operation does an implicit shuffling of data and zips - the two DataFrames together to be operated on. - - Args: - other: The other DataFrame to copartition with. - - Returns: - Two new sets of partitions, copartitioned and zipped. - """ - # Put in the object store so they aren't serialized each iteration. - old_self_index = ray.put(self.index) - new_index = ray.put(new_index) - old_other_index = ray.put(other.index) - - new_num_partitions = max( - len(self._block_partitions.T), len(other._block_partitions.T)) - - new_partitions_self = \ - np.array([_reindex_helper._submit( - args=tuple([old_self_index, new_index, 1, - new_num_partitions] + block.tolist()), - num_return_vals=new_num_partitions) - for block in self._block_partitions.T]).T - - new_partitions_other = \ - np.array([_reindex_helper._submit( - args=tuple([old_other_index, new_index, 1, - new_num_partitions] + block.tolist()), - num_return_vals=new_num_partitions) - for block in other._block_partitions.T]).T - - return zip(new_partitions_self, new_partitions_other) - - def _operator_helper(self, func, other, axis, level, *args): - """Helper method for inter-DataFrame and scalar operations""" - if isinstance(other, DataFrame): - return self._inter_df_op_helper( - lambda x, y: func(x, y, axis, level, *args), other, "outer", - axis, level) - else: - return self._single_df_op_helper( - lambda df: func(df, other, axis, level, *args), other, axis, - level) - - def _inter_df_op_helper(self, func, other, how, axis, level, - inplace=False): - if level is not None: - raise NotImplementedError("Mutlilevel index not yet supported " - "in Pandas on Ray") - axis = pandas.DataFrame()._get_axis_number(axis) - - new_column_index = self.columns.join(other.columns, how=how) - new_index = self.index.join(other.index, how=how) - copartitions = self._copartition(other, new_index) - - new_blocks = \ - np.array([_co_op_helper._submit( - args=tuple([func, self.columns, other.columns, - len(part[0]), None] + - np.concatenate(part).tolist()), - num_return_vals=len(part[0])) - for part in copartitions]) + from .indexing import _iLocIndexer + return _iLocIndexer(self) + def _create_dataframe_from_manager(self, new_manager, inplace=False): + """Returns or updates a DataFrame given new data_manager""" if not inplace: - # TODO join the Index Metadata objects together for performance. - return DataFrame( - block_partitions=new_blocks, - columns=new_column_index, - index=new_index) + return DataFrame(data_manager=new_manager) else: - self._update_inplace( - block_partitions=new_blocks, - columns=new_column_index, - index=new_index) + self._update_inplace(new_manager=new_manager) - def _single_df_op_helper(self, func, other, axis, level): - if level is not None: - raise NotImplementedError("Multilevel index not yet supported " - "in Pandas on Ray") + def _validate_other(self, other, axis): + """Helper method to check validity of other in inter-df operations""" axis = pandas.DataFrame()._get_axis_number(axis) - if is_list_like(other): - new_index = self.index - new_column_index = self.columns - new_col_metadata = self._col_metadata - new_row_metadata = self._row_metadata - new_blocks = None - + if isinstance(other, DataFrame): + return other._data_manager + elif is_list_like(other): if axis == 0: if len(other) != len(self.index): raise ValueError( "Unable to coerce to Series, length must be {0}: " "given {1}".format(len(self.index), len(other))) - new_columns = _map_partitions(func, self._col_partitions) - new_rows = None else: if len(other) != len(self.columns): raise ValueError( "Unable to coerce to Series, length must be {0}: " "given {1}".format(len(self.columns), len(other))) - new_rows = _map_partitions(func, self._row_partitions) - new_columns = None - - else: - new_blocks = np.array([ - _map_partitions(func, block) - for block in self._block_partitions - ]) - new_columns = None - new_rows = None - new_index = self.index - new_column_index = self.columns - new_col_metadata = self._col_metadata - new_row_metadata = self._row_metadata - - return DataFrame( - col_partitions=new_columns, - row_partitions=new_rows, - block_partitions=new_blocks, - index=new_index, - columns=new_column_index, - col_metadata=new_col_metadata, - row_metadata=new_row_metadata) + return other @ray.remote @@ -6120,61 +4573,3 @@ def _merge_columns(left_columns, right_columns, *args): return pandas.DataFrame(columns=left_columns, index=[0], dtype='uint8') \ .merge(pandas.DataFrame(columns=right_columns, index=[0], dtype='uint8'), *args).columns - - -@ray.remote -def _where_helper(left, cond, other, left_columns, cond_columns, other_columns, - *args): - - left = pandas.concat(ray.get(left.tolist()), axis=1, copy=False) - # We have to reset the index and columns here because we are coming - # from blocks and the axes are set according to the blocks. We have - # already correctly copartitioned everything, so there's no - # correctness problems with doing this. - left.reset_index(inplace=True, drop=True) - left.columns = left_columns - - cond = pandas.concat(ray.get(cond.tolist()), axis=1, copy=False) - cond.reset_index(inplace=True, drop=True) - cond.columns = cond_columns - - if isinstance(other, np.ndarray): - other = pandas.concat(ray.get(other.tolist()), axis=1, copy=False) - other.reset_index(inplace=True, drop=True) - other.columns = other_columns - - return left.where(cond, other, *args) - - -@ray.remote -def reindex_helper(old_index, new_index, axis, npartitions, method, fill_value, - limit, tolerance, *df): - df = pandas.concat(df, axis=axis ^ 1, copy=False) - if axis == 1: - df.index = old_index - else: - df.columns = old_index - - df = df.reindex( - new_index, - copy=False, - axis=axis ^ 1, - method=method, - fill_value=fill_value, - limit=limit, - tolerance=tolerance) - return _create_blocks_helper(df, npartitions, axis) - - -@ray.remote -def _equals_helper(left, right): - right = pandas.concat(ray.get(right.tolist()), axis=1, copy=False) - left = pandas.concat(ray.get(left.tolist()), axis=1, copy=False) - # Since we know that the index and columns match, we can just check the - # values. We can't use np.array_equal here because it doesn't recognize - # np.nan as equal to another np.nan - try: - assert_equal(left.values, right.values) - except AssertionError: - return False - return True diff --git a/modin/pandas/datetimes.py b/modin/pandas/datetimes.py index 77a03de607c..0ca2c0c0f5d 100644 --- a/modin/pandas/datetimes.py +++ b/modin/pandas/datetimes.py @@ -4,10 +4,7 @@ import pandas -import ray - from .dataframe import DataFrame -from .utils import _map_partitions def to_datetime(arg, @@ -26,6 +23,7 @@ def to_datetime(arg, Args: errors ('raise' or 'ignore'): If 'ignore', errors are silenced. + Pandas blatantly ignores this argument so we will too. dayfirst (bool): Date format is passed in as day first. yearfirst (bool): Date format is passed in as year first. utc (bool): retuns a UTC DatetimeIndex if True. @@ -56,38 +54,19 @@ def to_datetime(arg, unit=unit, infer_datetime_format=infer_datetime_format, origin=origin) - if errors == 'raise': - pandas.to_datetime( - pandas.DataFrame(columns=arg.columns), - errors=errors, - dayfirst=dayfirst, - yearfirst=yearfirst, - utc=utc, - box=box, - format=format, - exact=exact, - unit=unit, - infer_datetime_format=infer_datetime_format, - origin=origin) - - def datetime_helper(df, cols): - df.columns = cols - return pandas.to_datetime( - df, - errors=errors, - dayfirst=dayfirst, - yearfirst=yearfirst, - utc=utc, - box=box, - format=format, - exact=exact, - unit=unit, - infer_datetime_format=infer_datetime_format, - origin=origin) - datetime_series = _map_partitions(datetime_helper, arg._row_partitions, - arg.columns) - result = pandas.concat(ray.get(datetime_series), copy=False) - result.index = arg.index + # Pandas seems to ignore this kwarg so we will too + pandas.to_datetime( + pandas.DataFrame(columns=arg.columns), + errors=errors, + dayfirst=dayfirst, + yearfirst=yearfirst, + utc=utc, + box=box, + format=format, + exact=exact, + unit=unit, + infer_datetime_format=infer_datetime_format, + origin=origin) - return result + return arg._data_manager.to_datetime() diff --git a/modin/pandas/groupby.py b/modin/pandas/groupby.py index 1ce41c0fb10..e48f631b9e5 100644 --- a/modin/pandas/groupby.py +++ b/modin/pandas/groupby.py @@ -7,12 +7,7 @@ from pandas.core.dtypes.common import is_list_like import pandas.core.common as com -import numpy as np -import ray - -from .concat import concat -from .index_metadata import _IndexMetadata -from .utils import _inherit_docstrings, _reindex_helper, post_task_gc +from .utils import _inherit_docstrings @_inherit_docstrings( @@ -25,25 +20,18 @@ class DataFrameGroupBy(object): def __init__(self, df, by, axis, level, as_index, sort, group_keys, squeeze, **kwargs): - self._columns = df.columns - self._index = df.index self._axis = axis - - self._df = df + self._data_manager = df._data_manager + self._index = self._data_manager.index + self._columns = self._data_manager.columns self._by = by self._level = level - self._as_index = as_index - self._sort = sort - self._group_keys = group_keys - self._squeeze = squeeze - - self._row_metadata = df._row_metadata - self._col_metadata = df._col_metadata - - if axis == 0: - self._partitions = df._block_partitions.T - else: - self._partitions = df._block_partitions + self._kwargs = { + "sort": sort, + "as_index": as_index, + "group_keys": group_keys, + "squeeze": squeeze + } def __getattr__(self, key): """Afer regular attribute access, looks up the name in the columns @@ -70,15 +58,9 @@ def __getattr__(self, key): def _index_grouped(self): if self._index_grouped_cache is None: if self._axis == 0: - self._index_grouped_cache = pandas.Series( - np.zeros(len(self._index), dtype=np.uint8), - index=self._index).groupby( - by=self._by, sort=self._sort) + self._index_grouped_cache = self._index.groupby(self._by) else: - self._index_grouped_cache = pandas.Series( - np.zeros(len(self._columns), dtype=np.uint8), - index=self._columns).groupby( - by=self._by, sort=self._sort) + self._index_grouped_cache = self._columns.groupby(self._by) return self._index_grouped_cache @@ -87,67 +69,39 @@ def _index_grouped(self): @property def _keys_and_values(self): if self._keys_and_values_cache is None: - self._keys_and_values_cache = \ - [(k, v) for k, v in self._index_grouped] + self._keys_and_values_cache = list(self._index_grouped.items()) + if self._sort: + self._keys_and_values_cache.sort() return self._keys_and_values_cache - @property - def _grouped_partitions(self): - - # It is expensive to put this multiple times, so let's just put it once - remote_by = ray.put(self._by) - remote_index = \ - [ray.put(v.index) for _, v in - self._df._col_metadata._coord_df.copy().groupby(by='partition')] \ - if self._axis == 0 \ - else [ray.put(v.index) for _, v in - self._df._row_metadata._coord_df.copy() - .groupby(by='partition')] - - if len(self._index_grouped) > 1: - return zip(*(groupby._submit( - args=(remote_index[i], remote_by, self._axis, self._level, - self._as_index, self._sort, self._group_keys, - self._squeeze) + tuple(part.tolist()), - num_return_vals=len(self._index_grouped)) - for i, part in enumerate(self._partitions))) - elif self._axis == 0: - return [self._df._col_partitions] - else: - return [self._df._row_partitions] - @property def _iter(self): from .dataframe import DataFrame if self._axis == 0: - return ((self._keys_and_values[i][0], + return ((k, DataFrame( - col_partitions=part, - columns=self._columns, - index=self._keys_and_values[i][1].index, - col_metadata=self._col_metadata)) - for i, part in enumerate(self._grouped_partitions)) + data_manager=self._data_manager.getitem_row_array( + self._index_grouped[k]))) + for k, _ in self._keys_and_values) else: - return ((self._keys_and_values[i][0], + return ((k, DataFrame( - row_partitions=part, - columns=self._keys_and_values[i][1].index, - index=self._index, - row_metadata=self._row_metadata)) - for i, part in enumerate(self._grouped_partitions)) + data_manager=self._data_manager.getitem_column_array( + self._index_grouped[k]))) + for k, _ in self._keys_and_values) @property def ngroups(self): return len(self) def skew(self, **kwargs): - return self._apply_agg_function( - lambda df: _skew_remote.remote(df, self._axis, kwargs)) + return self._apply_agg_function(lambda df: df.skew(**kwargs)) def ffill(self, limit=None): - return self._apply_df_function( - lambda df: df.ffill(axis=self._axis, limit=limit)) + raise NotImplementedError( + "To contribute to Pandas on Ray, please visit " + "github.com/modin-project/modin.") def sem(self, ddof=1): raise NotImplementedError( @@ -155,12 +109,10 @@ def sem(self, ddof=1): "github.com/modin-project/modin.") def mean(self, *args, **kwargs): - return self._apply_agg_function( - lambda df: _mean_remote.remote(df, self._axis, kwargs, *args)) + return self._apply_agg_function(lambda df: df.mean(*args, **kwargs)) def any(self): - return self._apply_agg_function( - lambda df: _any_remote.remote(df, self._axis)) + return self._apply_agg_function(lambda df: df.any()) @property def plot(self): @@ -186,11 +138,10 @@ def tshift(self): @property def groups(self): - return {k: pandas.Index(v) for k, v in self._keys_and_values} + return self._index_grouped def min(self, **kwargs): - return self._apply_agg_function( - lambda df: _min_remote.remote(df, self._axis, kwargs)) + return self._apply_agg_function(lambda df: df.min(**kwargs)) def idxmax(self): raise NotImplementedError( @@ -212,7 +163,7 @@ def nth(self, n, dropna=None): "github.com/modin-project/modin.") def cumsum(self, axis=0, *args, **kwargs): - return self._apply_df_function( + return self._apply_agg_function( lambda df: df.cumsum(axis, *args, **kwargs)) @property @@ -230,62 +181,17 @@ def filter(self, func, dropna=True, *args, **kwargs): "github.com/modin-project/modin.") def cummax(self, axis=0, **kwargs): - return self._apply_df_function(lambda df: df.cummax(axis, **kwargs)) + return self._apply_agg_function(lambda df: df.cummax(axis, **kwargs)) def apply(self, func, *args, **kwargs): - def apply_helper(df): - return df.apply(func, axis=self._axis, *args, **kwargs) - - result = [func(v) for k, v in self._iter] - if self._axis == 0: - if isinstance(result[0], pandas.Series): - # Applied an aggregation function - new_df = concat(result, axis=1).T - new_df.columns = self._columns - new_df.index = [k for k, v in self._iter] - else: - new_df = concat(result, axis=self._axis) - new_df._block_partitions = np.array([ - _reindex_helper._submit( - args=tuple([ - new_df.index, self._index, self._axis ^ 1, - len(new_df._block_partitions) - ] + block.tolist()), - num_return_vals=len(new_df._block_partitions)) - for block in new_df._block_partitions.T - ]).T - new_df.index = self._index - new_df._row_metadata = \ - _IndexMetadata(new_df._block_partitions[:, 0], - index=new_df.index, axis=0) - else: - if isinstance(result[0], pandas.Series): - # Applied an aggregation function - new_df = concat(result, axis=1) - new_df.columns = [k for k, v in self._iter] - new_df.index = self._index - else: - new_df = concat(result, axis=self._axis) - new_df._block_partitions = np.array([ - _reindex_helper._submit( - args=tuple([ - new_df.columns, self._columns, self._axis ^ 1, - new_df._block_partitions.shape[1] - ] + block.tolist()), - num_return_vals=new_df._block_partitions.shape[1]) - for block in new_df._block_partitions - ]) - new_df.columns = self._columns - new_df._col_metadata = \ - _IndexMetadata(new_df._block_partitions[0, :], - index=new_df.columns, axis=1) - return new_df + return self._apply_agg_function( + lambda df: df.apply(func, *args, **kwargs)) @property def dtypes(self): if self._axis == 1: raise ValueError("Cannot call dtypes on groupby with axis=1") - return self._apply_agg_function(lambda df: _dtypes_remote.remote(df)) + return self._apply_agg_function(lambda df: df.dtypes) def first(self, **kwargs): raise NotImplementedError( @@ -302,12 +208,13 @@ def __getitem__(self, key): "github.com/modin-project/modin.") def cummin(self, axis=0, **kwargs): - return self._apply_df_function( + return self._apply_agg_function( lambda df: df.cummin(axis=axis, **kwargs)) def bfill(self, limit=None): - return self._apply_df_function( - lambda df: df.bfill(axis=self._axis, limit=limit)) + raise NotImplementedError( + "To contribute to Pandas on Ray, please visit " + "github.com/modin-project/modin.") def idxmin(self): raise NotImplementedError( @@ -315,12 +222,11 @@ def idxmin(self): "github.com/modin-project/modin.") def prod(self, **kwargs): - return self._apply_agg_function( - lambda df: _prod_remote.remote(df, self._axis, kwargs)) + return self._apply_agg_function(lambda df: df.prod(**kwargs)) def std(self, ddof=1, *args, **kwargs): return self._apply_agg_function( - lambda df: _std_remote.remote(df, self._axis, ddof, kwargs, *args)) + lambda df: df.std(ddof, *args, **kwargs)) def aggregate(self, arg, *args, **kwargs): if self._axis != 0: @@ -334,7 +240,7 @@ def aggregate(self, arg, *args, **kwargs): "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") return self._apply_agg_function( - lambda df: _agg_remote.remote(df, self._axis, arg, kwargs, *args)) + lambda df: df.aggregate(arg, *args, **kwargs)) def last(self, **kwargs): raise NotImplementedError( @@ -347,7 +253,7 @@ def mad(self): "github.com/modin-project/modin.") def rank(self): - return self._apply_df_function(lambda df: df.rank(axis=self._axis)) + return self._apply_agg_function(lambda df: df.rank()) @property def corrwith(self): @@ -361,12 +267,11 @@ def pad(self, limit=None): "github.com/modin-project/modin.") def max(self, **kwargs): - return self._apply_agg_function( - lambda df: _max_remote.remote(df, self._axis, kwargs)) + return self._apply_agg_function(lambda df: df.max(**kwargs)) def var(self, ddof=1, *args, **kwargs): return self._apply_agg_function( - lambda df: _var_remote.remote(df, self._axis, ddof, kwargs, *args)) + lambda df: df.var(ddof, *args, **kwargs)) def get_group(self, name, obj=None): raise NotImplementedError( @@ -377,15 +282,13 @@ def __len__(self): return len(self._index_grouped) def all(self, **kwargs): - return self._apply_agg_function( - lambda df: _all_remote.remote(df, kwargs)) + return self._apply_agg_function(lambda df: df.all(**kwargs)) def size(self): - return self._apply_agg_function(lambda df: _size_remote.remote(df)) + return self._apply_agg_function(lambda df: df.size()) def sum(self, **kwargs): - return self._apply_agg_function( - lambda df: _sum_remote.remote(df, self._axis, kwargs)) + return self._apply_agg_function(lambda df: df.sum(**kwargs)) def __unicode__(self): raise NotImplementedError( @@ -413,11 +316,12 @@ def boxplot(self, "github.com/modin-project/modin.") def ngroup(self, ascending=True): - return self._index_grouped.ngroup(ascending) + index = self._index if not self._axis else self._columns + return pandas.Series(index=index).groupby( + by=self._by, **self._kwargs).ngroup(ascending) def nunique(self, dropna=True): - return self._apply_agg_function( - lambda df: _nunique_remote.remote(df, self._axis, dropna)) + return self._apply_agg_function(lambda df: df.nunique(dropna)) def resample(self, rule, *args, **kwargs): raise NotImplementedError( @@ -425,8 +329,7 @@ def resample(self, rule, *args, **kwargs): "github.com/modin-project/modin.") def median(self, **kwargs): - return self._apply_agg_function( - lambda df: _median_remote.remote(df, self._axis, kwargs)) + return self._apply_agg_function(lambda df: df.median(**kwargs)) def head(self, n=5): raise NotImplementedError( @@ -434,7 +337,7 @@ def head(self, n=5): "github.com/modin-project/modin.") def cumprod(self, axis=0, *args, **kwargs): - return self._apply_df_function( + return self._apply_agg_function( lambda df: df.cumprod(axis, *args, **kwargs)) def __iter__(self): @@ -449,7 +352,7 @@ def cov(self): "github.com/modin-project/modin.") def transform(self, func, *args, **kwargs): - return self._apply_df_function( + return self._apply_agg_function( lambda df: df.transform(func, *args, **kwargs)) def corr(self, **kwargs): @@ -458,12 +361,10 @@ def corr(self, **kwargs): "github.com/modin-project/modin.") def fillna(self, **kwargs): - return self._apply_df_function( - lambda df: df.fillna(axis=self._axis, **kwargs)) + return self._apply_agg_function(lambda df: df.fillna(**kwargs)) def count(self, **kwargs): - return self._apply_agg_function( - lambda df: _count_remote.remote(df, self._axis, kwargs)) + return self._apply_agg_function(lambda df: df.count(**kwargs)) def pipe(self, func, *args, **kwargs): return com._pipe(self, func, *args, **kwargs) @@ -502,8 +403,7 @@ def quantile(self, q=0.5, **kwargs): "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") - return self._apply_agg_function( - lambda df: _quantile_remote.remote(df, self._axis, q, kwargs)) + return self._apply_agg_function(lambda df: df.quantile(q, **kwargs)) def diff(self): raise NotImplementedError( @@ -511,235 +411,21 @@ def diff(self): "github.com/modin-project/modin.") def take(self, **kwargs): - return self._apply_df_function(lambda df: df.take(**kwargs)) + raise NotImplementedError( + "To contribute to Pandas on Ray, please visit " + "github.com/modin-project/modin.") - def _apply_agg_function(self, f, index=None): + def _apply_agg_function(self, f, **kwargs): """Perform aggregation and combine stages based on a given function. Args: - f: The function to apply to each group. f must be a remote - function. + f: The function to apply to each group. Returns: A new combined DataFrame with the result of all groups. """ assert callable(f), "\'{0}\' object is not callable".format(type(f)) - - blocks = np.array([[f(part) for part in group_of_parts] - for group_of_parts in self._grouped_partitions]) - from .dataframe import DataFrame - if self._axis == 0: - return DataFrame( - block_partitions=blocks, - columns=self._columns, - index=index - if index is not None else [k for k, _ in self._index_grouped]) - else: - return DataFrame( - block_partitions=blocks.T, - index=self._index, - columns=index - if index is not None else [k for k, _ in self._index_grouped]) - - def _apply_df_function(self, f, concat_axis=None): - assert callable(f), "\'{0}\' object is not callable".format(type(f)) - - result = [f(v) for k, v in self._iter] - concat_axis = self._axis if concat_axis is None else concat_axis - - new_df = concat(result, axis=concat_axis) - - if self._axis == 0: - new_df._block_partitions = np.array([ - _reindex_helper._submit( - args=tuple([ - new_df.index, self._index, 1, - len(new_df._block_partitions) - ] + block.tolist()), - num_return_vals=len(new_df._block_partitions)) - for block in new_df._block_partitions.T - ]).T - new_df.index = self._index - new_df._row_metadata = \ - _IndexMetadata(new_df._block_partitions[:, 0], - index=new_df.index, axis=0) - else: - new_df._block_partitions = np.array([ - _reindex_helper._submit( - args=tuple([ - new_df.columns, self._columns, 0, new_df. - _block_partitions.shape[1] - ] + block.tolist()), - num_return_vals=new_df._block_partitions.shape[1]) - for block in new_df._block_partitions - ]) - new_df.columns = self._columns - new_df._col_metadata = \ - _IndexMetadata(new_df._block_partitions[0, :], - index=new_df.columns, axis=1) - - return new_df - - -@ray.remote -@post_task_gc -def groupby(index, by, axis, level, as_index, sort, group_keys, squeeze, *df): - - df = pandas.concat(df, axis=axis) - - if axis == 0: - df.columns = index - else: - df.index = index - return [ - v for k, v in df.groupby( - by=by, - axis=axis, - level=level, - as_index=as_index, - sort=sort, - group_keys=group_keys, - squeeze=squeeze) - ] - - -@ray.remote -def _sum_remote(df, axis, kwargs): - result = pandas.DataFrame(df.sum(axis=axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _skew_remote(df, axis, kwargs): - result = pandas.DataFrame(df.skew(axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _mean_remote(df, axis, kwargs, *args): - result = pandas.DataFrame(df.mean(axis, *args, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _any_remote(df, axis): - result = pandas.DataFrame(df.any(axis)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _min_remote(df, axis, kwargs): - result = pandas.DataFrame(df.min(axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _dtypes_remote(df): - return pandas.DataFrame(df.dtypes).T - - -@ray.remote -def _prod_remote(df, axis, kwargs): - result = pandas.DataFrame(df.prod(axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _std_remote(df, axis, ddof, kwargs, *args): - result = pandas.DataFrame(df.std(axis=axis, ddof=ddof, *args, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _max_remote(df, axis, kwargs): - result = pandas.DataFrame(df.max(axis=axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _var_remote(df, axis, ddof, kwargs, *args): - result = pandas.DataFrame(df.var(axis=axis, ddof=ddof, *args, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _all_remote(df, kwargs): - return pandas.DataFrame(df.all(**kwargs)).T - - -@ray.remote -def _size_remote(df): - return pandas.DataFrame(df.size).T - - -@ray.remote -def _nunique_remote(df, axis, dropna): - result = pandas.DataFrame(df.nunique(axis=axis, dropna=dropna)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _median_remote(df, axis, kwargs): - result = pandas.DataFrame(df.median(axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _count_remote(df, axis, kwargs): - result = pandas.DataFrame(df.count(axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _quantile_remote(df, axis, q, kwargs): - result = pandas.DataFrame(df.quantile(q=q, axis=axis, **kwargs)) - if axis == 0: - return result.T - else: - return result - - -@ray.remote -def _agg_remote(df, axis, arg, kwargs, *args): - result = pandas.DataFrame(df.agg(arg, axis=axis, *args, **kwargs)) - if axis == 0: - return result.T - else: - return result + new_manager = self._data_manager.groupby_agg(self._by, self._axis, f, + self._kwargs, kwargs) + return DataFrame(data_manager=new_manager) diff --git a/modin/pandas/index/__init__.py b/modin/pandas/index/__init__.py new file mode 100644 index 00000000000..e69de29bb2d diff --git a/modin/pandas/index/partitioned_index.py b/modin/pandas/index/partitioned_index.py new file mode 100644 index 00000000000..cf7bc95d509 --- /dev/null +++ b/modin/pandas/index/partitioned_index.py @@ -0,0 +1,29 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + + +class PartitionedIndex(object): + + _index_lengths_cache = None + + def _get_partition_lengths(self): + if self._index_lengths_cache is None: + self._index_lengths_cache = [ + obj.apply(len).get() for obj in self.index_partitions[:0] + ] + return self._index_lengths_cache + + def _set_partition_lengths(self, new_value): + self._partition_length_cache = new_value + + index_lengths = property(_get_partition_lengths, _set_partition_lengths) + + def __getitem__(self, key): + cls = type(self) + return cls(self.index_partitions[key]) + + +class RayPartitionedIndex(PartitionedIndex): + def __init__(self, index_partitions): + self.index_partitions = index_partitions diff --git a/modin/pandas/index_metadata.py b/modin/pandas/index_metadata.py deleted file mode 100644 index ecdbdbcfab1..00000000000 --- a/modin/pandas/index_metadata.py +++ /dev/null @@ -1,436 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import pandas - -import numpy as np -import ray - -from .utils import (_build_row_lengths, _build_col_widths, _build_coord_df) - -from pandas.core.indexing import convert_to_index_sliceable - - -class _IndexMetadata(object): - """Wrapper for Pandas indexes in Ray DataFrames. Handles all of the - metadata specific to the axis of partition (setting indexes, - calculating the index within partition of a value, etc.). This - implementation assumes the underlying index lies across multiple - partitions. - - IMPORTANT NOTE: Currently all operations, as implemented, are inplace. - - WARNING: Currently, the `_lengths` item is the source of truth for an - _IndexMetadata object, since it is easy to manage, and that the coord_df - item may be deprecated in the future. As such, it is _very_ important that - any functions that mutate the coord_df splits in anyway first modify the - lengths. Otherwise bad things might happen! - """ - - def __init__(self, - dfs=None, - index=None, - axis=0, - lengths_oid=None, - coord_df_oid=None): - """Inits a IndexMetadata from Ray DataFrame partitions - - Args: - dfs ([ObjectID]): ObjectIDs of DataFrame partitions - index (pandas.Index): Index of the Ray DataFrame. - axis: Axis of partition (0=row partitions, 1=column partitions) - - Returns: - A IndexMetadata backed by the specified pandas.Index, partitioned - off specified partitions - """ - assert (lengths_oid is None) == (coord_df_oid is None), \ - "Must pass both or neither of lengths_oid and coord_df_oid" - - if dfs is not None and lengths_oid is None: - if axis == 0: - lengths_oid = _build_row_lengths.remote(dfs) - else: - lengths_oid = _build_col_widths.remote(dfs) - coord_df_oid = _build_coord_df.remote(lengths_oid, index) - - self._lengths = lengths_oid - self._coord_df = coord_df_oid - self._index_cache = index - self._cached_index = False - - def _get__lengths(self): - if isinstance(self._lengths_cache, ray.ObjectID) or \ - (isinstance(self._lengths_cache, list) and - isinstance(self._lengths_cache[0], ray.ObjectID)): - self._lengths_cache = ray.get(self._lengths_cache) - return self._lengths_cache - - def _set__lengths(self, lengths): - self._lengths_cache = lengths - - _lengths = property(_get__lengths, _set__lengths) - - def _get__coord_df(self): - """Get the coordinate DataFrame wrapped by this _IndexMetadata. - - Since we may have had an index set before our coord_df was - materialized, we'll have to apply it to the newly materialized df - """ - if isinstance(self._coord_df_cache, ray.ObjectID): - self._coord_df_cache = ray.get(self._coord_df_cache) - if self._cached_index: - self._coord_df_cache.index = self._index_cache - self._cached_index = False - return self._coord_df_cache - - def _set__coord_df(self, coord_df): - """Set the coordinate DataFrame wrapped by this _IndexMetadata. - - Sometimes we set the _IndexMetadata's coord_df outside of the - constructor, generally using fxns like drop(). This produces a modified - index, so we need to reflect the change on the index cache. - - If the set _IndexMetadata is an OID instead (due to a copy or whatever - reason), we fall back relying on `_index_cache`. - """ - if not isinstance(coord_df, ray.ObjectID): - self._index_cache = coord_df.index - self._coord_df_cache = coord_df - - _coord_df = property(_get__coord_df, _set__coord_df) - - def _get_index(self): - """Get the index wrapped by this _IndexMetadata. - - The only time `self._index_cache` would be None is in a newly created - _IndexMetadata object without a specified `index` parameter (See the - _IndexMetadata constructor for more details) - """ - if isinstance(self._coord_df_cache, ray.ObjectID): - return self._index_cache - else: - return self._coord_df_cache.index - - def _set_index(self, new_index): - """Set the index wrapped by this _IndexMetadata. - - It is important to always set `_index_cache` even if the coord_df is - materialized due to the possibility that it is set to an OID later on. - This design is more straightforward than caching indexes on setting the - coord_df to an OID due to the possibility of an OID-to-OID change. - """ - new_index = pandas.DataFrame(index=new_index).index - assert len(new_index) == len(self) - - self._index_cache = new_index - if isinstance(self._coord_df_cache, ray.ObjectID): - self._cached_index = True - else: - self._coord_df_cache.index = new_index - - index = property(_get_index, _set_index) - - def _get_index_cache(self): - """Get the cached Index object, which may sometimes be an OID. - - This will ray.get the Index object out of the Ray store lazily, such - that it is not grabbed until it is needed in the driver. This layer of - abstraction is important for allowing this object to be instantiated - with a remote Index object. - - Returns: - The Index object in _index_cache. - """ - if self._index_cache_validator is None: - self._index_cache_validator = pandas.RangeIndex(len(self)) - elif isinstance(self._index_cache_validator, ray.ObjectID): - self._index_cache_validator = ray.get(self._index_cache_validator) - - return self._index_cache_validator - - def _set_index_cache(self, new_index): - """Sets the new index cache. - - Args: - new_index: The Index to set the _index_cache to. - """ - self._index_cache_validator = new_index - - # _index_cache_validator is an extra layer of abstraction to allow the - # cache to accept ObjectIDs and ray.get them when needed. - _index_cache = property(_get_index_cache, _set_index_cache) - - def coords_of(self, key): - """Returns the coordinates (partition, index_within_partition) of the - provided key in the index. Can be called on its own or implicitly - through __getitem__ - - Args: - key: - item to get coordinates of. Can also be a tuple of item - and {"partition", "index_within_partition"} if caller only - needs one of the coordinates - - Returns: - Pandas object with the keys specified. If key is a single object - it will be a pandas.Series with items `partition` and - `index_within_partition`, and if key is a slice or if the key is - duplicate it will be a pandas.DataFrame with said items as columns. - """ - return self._coord_df.loc[key] - - def groupby(self, - by=None, - axis=0, - level=None, - as_index=True, - sort=True, - group_keys=True, - squeeze=False, - **kwargs): - # TODO: Find out what this does, and write a docstring - assignments_df = self._coord_df.groupby(by=by, axis=axis, level=level, - as_index=as_index, sort=sort, - group_keys=group_keys, - squeeze=squeeze, **kwargs)\ - .apply(lambda x: x[:]) - return assignments_df - - def partition_series(self, partition): - return self[self._coord_df['partition'] == - partition, 'index_within_partition'] - - def __len__(self): - return int(sum(self._lengths)) - - def reset_partition_coords(self, partitions=None): - partitions = np.array(partitions) - - for partition in partitions: - partition_mask = (self._coord_df['partition'] == partition) - # Since we are replacing columns with RangeIndex inside the - # partition, we have to make sure that our reference to it is - # upandasated as well. - try: - self._coord_df.loc[partition_mask, - 'index_within_partition'] = np.arange( - sum(partition_mask)).astype(int) - except ValueError: - # Copy the arrow sealed dataframe so we can mutate it. - # We only do this the first time we try to mutate the sealed. - self._coord_df = self._coord_df.copy() - self._coord_df.loc[partition_mask, - 'index_within_partition'] = np.arange( - sum(partition_mask)).astype(int) - - def insert(self, - key, - loc=None, - partition=None, - index_within_partition=None): - """Inserts a key at a certain location in the index, or a certain coord - in a partition. Called with either `loc` or `partition` and - `index_within_partition`. If called with both, `loc` will be used. - - Args: - key: item to insert into index - loc: location to insert into index - partition: partition to insert into - index_within_partition: index within partition to insert into - - Returns: - DataFrame with coordinates of insert - """ - # Perform insert on a specific partition - # Determine which partition to place it in, and where in that partition - if loc is not None: - cum_lens = np.cumsum(self._lengths) - if len(cum_lens) > 1: - partition = np.digitize(loc, cum_lens[:-1], right=True) - else: - partition = 0 - if partition >= len(cum_lens): - if loc > cum_lens[-1]: - raise IndexError("index {0} is out of bounds".format(loc)) - else: - index_within_partition = self._lengths[-1] - else: - first_in_partition = \ - np.asscalar(np.concatenate(([0], cum_lens))[partition]) - index_within_partition = loc - first_in_partition - - # TODO: Stop-gap solution until we begin passing IndexMetadatas - return partition, index_within_partition - - # Generate new index - new_index = self.index.insert(loc, key) - - # Shift indices in partition where we inserted column - idx_locs = (self._coord_df.partition == partition) & \ - (self._coord_df.index_within_partition == - index_within_partition) - # TODO: Determine why self._coord_df{,_cache} are read-only - _coord_df_copy = self._coord_df.copy() - _coord_df_copy.loc[idx_locs, 'index_within_partition'] += 1 - - # TODO: Determine if there's a better way to do a row-index insert in - # pandas, because this is very annoying/unsure of efficiency - # Create new coord entry to insert - coord_to_insert = pandas.DataFrame( - { - 'partition': partition, - 'index_within_partition': index_within_partition - }, - index=[key]) - - # Insert into cached RangeIndex, and order by new column index - self._coord_df = _coord_df_copy.append(coord_to_insert).loc[new_index] - - # Return inserted coordinate for callee - return coord_to_insert - - def get_global_indices(self, partition, index_within_partition_list): - total = 0 - for i in range(partition): - total += self._lengths[i] - - return [total + i for i in index_within_partition_list] - - def squeeze(self, partition, index_within_partition): - """Prepare a single coordinate for removal by "squeezing" the - subsequent coordinates "up" one index within that partition. To be used - with "_IndexMetadata.drop" for when all the "squeezed" coordinates are - dropped in batch. Note that this function doesn't actually mutate the - coord_df. - """ - self._coord_df = self._coord_df.copy() - - partition_mask = self._coord_df.partition == partition - index_within_partition_mask = \ - self._coord_df.index_within_partition > index_within_partition - self._coord_df.loc[partition_mask & index_within_partition_mask, - 'index_within_partition'] -= 1 - - def copy(self): - # TODO: Investigate copy-on-write wrapper for metadata objects - coord_df_copy = self._coord_df_cache - if not isinstance(self._coord_df_cache, ray.ObjectID): - coord_df_copy = self._coord_df_cache.copy() - - lengths_copy = self._lengths_cache - if not isinstance(self._lengths_cache, ray.ObjectID): - lengths_copy = self._lengths_cache.copy() - - index_copy = self._index_cache - if self._index_cache is not None: - index_copy = self._index_cache.copy() - - return _IndexMetadata( - index=index_copy, - coord_df_oid=coord_df_copy, - lengths_oid=lengths_copy) - - def __getitem__(self, key): - """Returns the coordinates (partition, index_within_partition) of the - provided key in the index. Essentially just an alias for - `_IndexMetadata.coords_of` that allows for slice passing, since - slices cannot be passed with slice notation other than through - `__getitem__` calls. - - Args: - key: - item to get coordinates of. Can also be a tuple of item - and {"partition", "index_within_partition"} if caller only - needs one of the coordinates - - Returns: - Pandas object with the keys specified. If key is a single object - it will be a pandas.Series with items `partition` and - `index_within_partition`, and if key is a slice or if the key is - duplicate it will be a pandas.DataFrame with said items as columns. - """ - return self.coords_of(key) - - def first_valid_index(self): - return self._coord_df.first_valid_index() - - def last_valid_index(self): - return self._coord_df.last_valid_index() - - def drop(self, labels, errors='raise'): - """Drop the specified labels from the IndexMetadata - - Args: - labels (scalar or list-like): - The labels to drop - errors ('raise' or 'ignore'): - If 'ignore', suppress errors for when labels don't exist - - Returns: - DataFrame with coordinates of dropped labels - """ - dropped = self.coords_of(labels) - - # Upandasate first lengths to prevent possible length inconsistencies - if isinstance(dropped, pandas.DataFrame): - try: - drop_per_part = dropped.groupby(["partition"]).size()\ - .reindex(index=pandas.RangeIndex(len(self._lengths)), - fill_value=0) - except ValueError: - # Copy the arrow sealed dataframe so we can mutate it. - dropped = dropped.copy() - drop_per_part = dropped.groupby(["partition"]).size()\ - .reindex(index=pandas.RangeIndex(len(self._lengths)), - fill_value=0) - elif isinstance(dropped, pandas.Series): - drop_per_part = np.zeros_like(self._lengths) - drop_per_part[dropped["partition"]] = 1 - else: - raise AssertionError("Unrecognized result from `coords_of`") - - self._lengths = self._lengths - np.array(drop_per_part) - - new_coord_df = self._coord_df.drop(labels, errors=errors) - - num_dropped = 0 - for i, length in enumerate(self._lengths): - if length == 0: - num_dropped += 1 - if num_dropped > 0: - new_coord_df['partition'][new_coord_df['partition'] == i] \ - -= num_dropped - - new_coord_df['index_within_partition'] = [ - i for l in self._lengths for i in range(l) - ] - - self._coord_df = new_coord_df - return dropped - - def rename_index(self, mapper): - """Rename the index. - - Args: - mapper: name to rename the index as - """ - self._coord_df = self._coord_df.rename_axis(mapper, axis=0) - - def convert_to_index_sliceable(self, key): - """Converts and performs error checking on the passed slice - - Args: - key: slice to convert and check - """ - return convert_to_index_sliceable(self._coord_df, key) - - def get_partition(self, partition_id): - """Return a view of coord_df where partition = partition_id - """ - return self._coord_df[self._coord_df.partition == partition_id] - - def sorted_index(self): - return (self._coord_df.sort_values( - ['partition', 'index_within_partition']).index) diff --git a/modin/pandas/indexing.py b/modin/pandas/indexing.py index a780619ca00..cdac309b7cc 100644 --- a/modin/pandas/indexing.py +++ b/modin/pandas/indexing.py @@ -2,24 +2,18 @@ from __future__ import division from __future__ import print_function +import numpy as np import pandas from pandas.api.types import (is_scalar, is_list_like, is_bool) from pandas.core.dtypes.common import is_integer from pandas.core.indexing import IndexingError - -import numpy as np -import ray +from typing import Tuple from warnings import warn -from .utils import (_get_nan_block_id, extractor, _repartition_coord_df, - _generate_blocks, _mask_block_partitions, writer, - _blocks_to_series) -from .index_metadata import _IndexMetadata from .dataframe import DataFrame -from . import get_npartitions """Indexing Helper Class works as follows: -_Location_Indexer_Base provide methods framework for __getitem__ +_LocationIndexerBase provide methods framework for __getitem__ and __setitem__ that work with Ray DataFrame's internal index. Base class's __{get,set}item__ takes in partitions & idx_in_partition data and perform lookup/item write. @@ -97,21 +91,23 @@ def _parse_tuple(tup): row_loc = tup ndim = _compute_ndim(row_loc, col_loc) - row_loc = [row_loc] if is_scalar(row_loc) else row_loc - col_loc = [col_loc] if is_scalar(col_loc) else col_loc + row_scaler = is_scalar(row_loc) + col_scaler = is_scalar(col_loc) + row_loc = [row_loc] if row_scaler else row_loc + col_loc = [col_loc] if col_scaler else col_loc - return row_loc, col_loc, ndim + return row_loc, col_loc, ndim, row_scaler, col_scaler -def _is_enlargement(locator, coord_df): - """Determine if a locator will enlarge the corrd_df. +def _is_enlargement(locator, global_index): + """Determine if a locator will enlarge the global index. Enlargement happens when you trying to locate using labels isn't in the original index. In other words, enlargement == adding NaNs ! """ if is_list_like(locator) and not is_slice( locator) and len(locator) > 0 and not is_boolean_array(locator): - n_diff_elems = len(pandas.Index(locator).difference(coord_df.index)) + n_diff_elems = len(pandas.Index(locator).difference(global_index)) is_enlargement_boolean = n_diff_elems > 0 return is_enlargement_boolean return False @@ -137,140 +133,41 @@ def _compute_ndim(row_loc, col_loc): return ndim -class _Location_Indexer_Base(object): +class _LocationIndexerBase(object): """Base class for location indexer like loc and iloc """ - def __init__(self, ray_df): - self.df = ray_df - self.col_coord_df = ray_df._col_metadata._coord_df - self.row_coord_df = ray_df._row_metadata._coord_df - self.block_oids = ray_df._block_partitions - - self.is_view = False - if isinstance(ray_df, DataFrameView): - self.block_oids = ray_df._block_partitions_data - self.is_view = True - - def __getitem__(self, row_lookup, col_lookup, ndim): - """ - Args: - row_lookup: A pandas DataFrame, a partial view from row_coord_df - col_lookup: A pandas DataFrame, a partial view from col_coord_df - ndim: the dimension of returned data - """ - if ndim == 2: - return self._generate_view_copy(row_lookup, col_lookup) - - extracted = self._retrive_items(row_lookup, col_lookup) - if ndim == 1: - result = ray.get(_blocks_to_series.remote(*extracted)).squeeze() - - if is_scalar(result): - result = pandas.Series(result) - - scaler_axis = row_lookup if len(row_lookup) == 1 else col_lookup - series_name = scaler_axis.iloc[0].name - result.name = series_name - - index_axis = row_lookup if len(col_lookup) == 1 else col_lookup - result.index = index_axis.index - - if ndim == 0: - result = ray.get(extracted[0]).squeeze() - - return result - - def _retrive_items(self, row_lookup, col_lookup): - """Given lookup dataframes, return a list of result oids - """ - result_oids = [] - - # We have to copy before we groupby because - # https://github.com/pandas-dev/pandas/issues/10043 - row_groups = row_lookup.copy().groupby('partition') - col_groups = col_lookup.copy().groupby('partition') - for row_blk, row_data in row_groups: - for col_blk, col_data in col_groups: - block_oid = self.block_oids[row_blk, col_blk] - row_idx = row_data['index_within_partition'] - col_idx = col_data['index_within_partition'] - - result_oid = extractor.remote(block_oid, row_idx, col_idx) - result_oids.append(result_oid) - return result_oids - - def _generate_view_copy(self, row_lookup, col_lookup): - """Generate a new DataFrame by making copies. - - Note (simon): - - This is a temporary replacement for _generate_view - function below. - """ - warn(_VIEW_IS_COPY_WARNING) - - row_lookup_new = _repartition_coord_df(row_lookup, get_npartitions()) - col_lookup_new = _repartition_coord_df(col_lookup, get_npartitions()) - - new_blocks = _generate_blocks(row_lookup, row_lookup_new, col_lookup, - col_lookup_new, self.block_oids) - - row_lengths_oid = ray.put(np.bincount(row_lookup_new['partition'])) - col_lengths_oid = ray.put(np.bincount(col_lookup_new['partition'])) - - new_row_metadata = _IndexMetadata( - coord_df_oid=row_lookup_new, lengths_oid=row_lengths_oid) - - new_col_metadata = _IndexMetadata( - coord_df_oid=col_lookup_new, lengths_oid=col_lengths_oid) - - df_view = DataFrame( - block_partitions=new_blocks, - row_metadata=new_row_metadata, - col_metadata=new_col_metadata, - index=row_lookup.index, - columns=col_lookup.index) - - return df_view - - def _generate_view(self, row_lookup, col_lookup): - """Generate a DataFrameView from lookup - - Note (simon): - - This is not used because of index metadata was broken - """ - row_lengths = [0] * len(self.df._row_metadata._lengths) - for i in row_lookup["partition"]: - row_lengths[i] += 1 - col_lengths = [0] * len(self.df._col_metadata._lengths) - for i in col_lookup["partition"]: - col_lengths[i] += 1 + def __init__(self, ray_df: DataFrame): + self.dm = ray_df._data_manager + self.is_view = hasattr(self.dm, "is_view") - row_lengths_oid = ray.put(np.array(row_lengths)) - col_lengths_oid = ray.put(np.array(col_lengths)) + self.row_scaler = False + self.col_scaler = False - row_metadata_view = _IndexMetadata( - coord_df_oid=row_lookup, lengths_oid=row_lengths_oid) + def __getitem__(self, row_lookup: pandas.Index, col_lookup: pandas.Index, + ndim: int): + if self.is_view: + dm_view = self.dm.__constructor__(self.dm.data, row_lookup, + col_lookup) + else: + dm_view = self.dm.view(row_lookup, col_lookup) - col_metadata_view = _IndexMetadata( - coord_df_oid=col_lookup, lengths_oid=col_lengths_oid) - - df_view = DataFrameView( - block_partitions=self.block_oids, - row_metadata=row_metadata_view, - col_metadata=col_metadata_view, - index=row_metadata_view.index, - columns=col_metadata_view.index) - - return df_view - - def __setitem__(self, row_lookup, col_lookup, item): + if ndim == 2: + return DataFrame(data_manager=dm_view) + elif ndim == 0: + return dm_view.squeeze(ndim=0) + else: + single_axis = 1 if self.col_scaler else 0 + return dm_view.squeeze(ndim=1, axis=single_axis) + + def __setitem__(self, row_lookup: pandas.Index, col_lookup: pandas.Index, + item): """ Args: - row_lookup: A pandas DataFrame, a partial view from row_coord_df - col_lookup: A pandas DataFrame, a partial view from col_coord_df + row_lookup: the global row index to write item to + col_lookup: the global col index to write item to item: The new item needs to be set. It can be any shape that's - broadcastable to the product of the lookup tables. + broadcast-able to the product of the lookup tables. """ to_shape = (len(row_lookup), len(col_lookup)) item = self._broadcast_item(item, to_shape) @@ -280,7 +177,7 @@ def _broadcast_item(self, item, to_shape): """Use numpy to broadcast or reshape item. Notes: - - Numpy is memory efficent, there shouldn't be performance issue. + - Numpy is memory efficient, there shouldn't be performance issue. """ try: item = np.array(item) @@ -297,58 +194,28 @@ def _broadcast_item(self, item, to_shape): def _write_items(self, row_lookup, col_lookup, item): """Perform remote write and replace blocks. """ + row_numeric_idx = self.dm.global_idx_to_numeric_idx('row', row_lookup) + col_numeric_idx = self.dm.global_idx_to_numeric_idx('col', col_lookup) + self.dm.write_items(row_numeric_idx, col_numeric_idx, item) - # We have to copy before we groupby because - # https://github.com/pandas-dev/pandas/issues/10043 - row_groups = row_lookup.copy().groupby('partition') - col_groups = col_lookup.copy().groupby('partition') - - row_item_index = 0 - for row_blk, row_data in row_groups: - row_len = len(row_data) - - col_item_index = 0 - for col_blk, col_data in col_groups: - col_len = len(col_data) - - block_oid = self.block_oids[row_blk, col_blk] - row_idx = row_data['index_within_partition'] - col_idx = col_data['index_within_partition'] - - item_to_write = item[row_item_index:row_item_index + - row_len, col_item_index:col_item_index + - col_len] - result_oid = writer.remote(block_oid, row_idx, col_idx, - item_to_write) - - if self.is_view: - self.df._block_partitions_data[row_blk, - col_blk] = result_oid - else: - self.df._block_partitions[row_blk, col_blk] = result_oid - - col_item_index += col_len - row_item_index += row_len - - -class _Loc_Indexer(_Location_Indexer_Base): +class _LocIndexer(_LocationIndexerBase): """A indexer for ray_df.loc[] functionality""" def __getitem__(self, key): - row_loc, col_loc, ndim = _parse_tuple(key) + row_loc, col_loc, ndim, self.row_scaler, self.col_scaler = _parse_tuple( + key) self._handle_enlargement(row_loc, col_loc) row_lookup, col_lookup = self._compute_lookup(row_loc, col_loc) ndim = self._expand_dim(row_lookup, col_lookup, ndim) - result = super(_Loc_Indexer, self).__getitem__(row_lookup, col_lookup, - ndim) + result = super(_LocIndexer, self).__getitem__(row_lookup, col_lookup, + ndim) return result def __setitem__(self, key, item): - row_loc, col_loc, _ = _parse_tuple(key) - self._handle_enlargement(row_loc, col_loc) + row_loc, col_loc, _, __, ___ = _parse_tuple(key) row_lookup, col_lookup = self._compute_lookup(row_loc, col_loc) - super(_Loc_Indexer, self).__setitem__(row_lookup, col_lookup, item) + super(_LocIndexer, self).__setitem__(row_lookup, col_lookup, item) def _handle_enlargement(self, row_loc, col_loc): """Handle Enlargement (if there is one). @@ -356,70 +223,14 @@ def _handle_enlargement(self, row_loc, col_loc): Returns: None """ - locators = [row_loc, col_loc] - coord_dfs = [self.row_coord_df, self.col_coord_df] - axis = ['row', 'col'] - metadata = {'row': self.df._row_metadata, 'col': self.df._col_metadata} - - for loc, coord, axis in zip(locators, coord_dfs, axis): - if _is_enlargement(loc, coord): - new_meta = self._enlarge_axis(loc, axis=axis) - _warn_enlargement() - metadata[axis] = new_meta - - self.row_coord_df = metadata['row']._coord_df - self.col_coord_df = metadata['col']._coord_df - - def _enlarge_axis(self, locator, axis): - """Add rows/columns to block partitions according to locator. - - Returns: - metadata (_IndexMetadata) - """ - # 1. Prepare variables - row_based_bool = axis == 'row' - # major == the axis of the locator - major_meta = self.df._row_metadata if row_based_bool \ - else self.df._col_metadata - minor_meta = self.df._col_metadata if row_based_bool \ - else self.df._row_metadata - - # 2. Compute the nan labels and add blocks - nan_labels = self._compute_enlarge_labels(locator, major_meta.index) - num_nan_labels = len(nan_labels) - blk_part_n_row, blk_part_n_col = self.block_oids.shape - - nan_blk_lens = minor_meta._lengths - nan_blks = np.array([[ - _get_nan_block_id( - num_nan_labels, n_cols, transpose=not row_based_bool) - for n_cols in nan_blk_lens - ]]) - nan_blks = nan_blks.T if not row_based_bool else nan_blks - - self.block_oids = np.concatenate([self.block_oids, nan_blks], - axis=0 if row_based_bool else 1) - - # 3. Prepare metadata to return - nan_coord_df = pandas.DataFrame(data=[ - { - '': name, - 'partition': - blk_part_n_row if row_based_bool else blk_part_n_col, - 'index_within_partition': i - } for name, i in zip(nan_labels, np.arange(num_nan_labels)) - ]).set_index('') - - coord_df = pandas.concat([major_meta._coord_df, nan_coord_df]) - coord_df = coord_df.loc[locator] # Re-index that allows duplicates - - lens = major_meta._lengths - lens = np.concatenate([lens, np.array([num_nan_labels])]) - lens_oid = ray.put(np.array(lens)) - - metadata_view = _IndexMetadata( - coord_df_oid=coord_df, lengths_oid=lens_oid) - return metadata_view + if _is_enlargement(row_loc, self.dm.index) or _is_enlargement( + col_loc, self.dm.columns): + _warn_enlargement() + self.dm.enlarge_partitions( + new_row_labels=self._compute_enlarge_labels( + row_loc, self.dm.index), + new_col_labels=self._compute_enlarge_labels( + col_loc, self.dm.columns)) def _compute_enlarge_labels(self, locator, base_index): """Helper for _enlarge_axis, compute common labels and extra labels. @@ -457,39 +268,42 @@ def _expand_dim(self, row_lookup, col_lookup, ndim): return ndim - def _compute_lookup(self, row_loc, col_loc): - # We use reindex for list to avoid duplicates. - row_lookup = self.row_coord_df.loc[row_loc] - col_lookup = self.col_coord_df.loc[col_loc] + def _compute_lookup(self, row_loc, + col_loc) -> Tuple[pandas.Index, pandas.Index]: + row_lookup = self.dm.index.to_series().loc[row_loc].index + col_lookup = self.dm.columns.to_series().loc[col_loc].index return row_lookup, col_lookup -class _iLoc_Indexer(_Location_Indexer_Base): +class _iLocIndexer(_LocationIndexerBase): """A indexer for ray_df.iloc[] functionality""" def __getitem__(self, key): - row_loc, col_loc, ndim = _parse_tuple(key) + row_loc, col_loc, ndim, self.row_scaler, self.col_scaler = _parse_tuple( + key) self._check_dtypes(row_loc) self._check_dtypes(col_loc) row_lookup, col_lookup = self._compute_lookup(row_loc, col_loc) - result = super(_iLoc_Indexer, self).__getitem__( - row_lookup, col_lookup, ndim) + result = super(_iLocIndexer, self).__getitem__(row_lookup, col_lookup, + ndim) return result def __setitem__(self, key, item): - row_loc, col_loc, _ = _parse_tuple(key) + row_loc, col_loc, _, __, ___ = _parse_tuple(key) self._check_dtypes(row_loc) self._check_dtypes(col_loc) row_lookup, col_lookup = self._compute_lookup(row_loc, col_loc) - super(_iLoc_Indexer, self).__setitem__(row_lookup, col_lookup, item) + super(_iLocIndexer, self).__setitem__(row_lookup, col_lookup, item) - def _compute_lookup(self, row_loc, col_loc): - # We use reindex for list to avoid duplicates. - return self.row_coord_df.iloc[row_loc], self.col_coord_df.iloc[col_loc] + def _compute_lookup(self, row_loc, + col_loc) -> Tuple[pandas.Index, pandas.Index]: + row_lookup = self.dm.index.to_series().iloc[row_loc].index + col_lookup = self.dm.columns.to_series().iloc[col_loc].index + return row_lookup, col_lookup def _check_dtypes(self, locator): is_int = is_integer(locator) @@ -499,29 +313,3 @@ def _check_dtypes(self, locator): if not any([is_int, is_int_slice, is_int_list, is_bool_arr]): raise ValueError(_ILOC_INT_ONLY_ERROR) - - -class DataFrameView(DataFrame): - """A subclass of DataFrame where the index can be smaller than blocks. - - Deprecated because _generate_view_copy is used instead of _generate_view - """ - - def __init__(self, block_partitions, row_metadata, col_metadata, index, - columns): - self._block_partitions = block_partitions - self._row_metadata = row_metadata - self._col_metadata = col_metadata - self.index = index - self.columns = columns - - def _get_block_partitions(self): - oid_arr = _mask_block_partitions(self._block_partitions_data, - self._row_metadata, - self._col_metadata) - return oid_arr - - def _set_block_partitions(self, new_block_partitions): - self._block_partitions_data = new_block_partitions - - _block_partitions = property(_get_block_partitions, _set_block_partitions) diff --git a/modin/pandas/io.py b/modin/pandas/io.py index 97406892af3..2551c0bae59 100644 --- a/modin/pandas/io.py +++ b/modin/pandas/io.py @@ -5,18 +5,21 @@ import pandas from pandas.io.common import _infer_compression +import inspect from io import BytesIO import os import py -from pyarrow.parquet import ParquetFile -import pyarrow.parquet as pq import re import warnings import numpy as np from .dataframe import ray, DataFrame -from . import get_npartitions -from .utils import from_pandas, _partition_pandas_dataframe +from .utils import from_pandas +from ..data_management.partitioning.partition_collections import RayBlockPartitions +from ..data_management.partitioning.remote_partition import RayRemotePartition +from ..data_management.partitioning.axis_partition import ( + split_result_of_axis_func_pandas) +from ..data_management.data_manager import PandasDataManager PQ_INDEX_REGEX = re.compile('__index_level_\d+__') @@ -37,33 +40,46 @@ def read_parquet(path, engine='auto', columns=None, **kwargs): ParquetFile API is used. Please refer to the documentation here https://arrow.apache.org/docs/python/parquet.html """ + return _read_parquet_pandas_on_ray(path, engine, columns, **kwargs) + + +def _read_parquet_pandas_on_ray(path, engine, columns, **kwargs): + from pyarrow.parquet import ParquetFile + if not columns: pf = ParquetFile(path) columns = [ name for name in pf.metadata.schema.names if not PQ_INDEX_REGEX.match(name) ] - + num_splits = min( + len(columns), RayBlockPartitions._compute_num_partitions()) # Each item in this list will be a column of original df # partitioned to smaller pieces along rows. # We need to transpose the oids array to fit our schema. - blk_partitions = [ - ray.get(_read_parquet_column.remote(path, col, kwargs)) - for col in columns - ] - blk_partitions = np.array(blk_partitions).T - - return DataFrame(block_partitions=blk_partitions, columns=columns) + blk_partitions = np.array([ + _read_parquet_column._submit( + args=(path, col, num_splits, kwargs), + num_return_vals=num_splits + 1) for col in columns + ]).T + remote_partitions = np.array([[RayRemotePartition(obj) for obj in row] + for row in blk_partitions[:-1]]) + index_len = ray.get(blk_partitions[-1][0]) + index = pandas.RangeIndex(index_len) + new_manager = PandasDataManager( + RayBlockPartitions(remote_partitions), index, columns) + df = DataFrame(data_manager=new_manager) + return df # CSV def _skip_header(f, kwargs={}): lines_read = 0 - comment = kwargs["comment"] - skiprows = kwargs["skiprows"] - encoding = kwargs["encoding"] - header = kwargs["header"] - names = kwargs["names"] + comment = kwargs.get("comment", None) + skiprows = kwargs.get("skiprows", None) + encoding = kwargs.get("encoding", None) + header = kwargs.get("header", "infer") + names = kwargs.get("names", None) if header is None: return lines_read @@ -106,7 +122,7 @@ def _skip_header(f, kwargs={}): return lines_read -def _read_csv_from_file(filepath, npartitions, kwargs={}): +def _read_csv_from_file_pandas_on_ray(filepath, kwargs={}): """Constructs a DataFrame from a CSV file. Args: @@ -119,17 +135,17 @@ def _read_csv_from_file(filepath, npartitions, kwargs={}): """ empty_pd_df = pandas.read_csv( filepath, **dict(kwargs, nrows=0, skipfooter=0, skip_footer=0)) - names = empty_pd_df.columns + column_names = empty_pd_df.columns - skipfooter = kwargs["skipfooter"] - skip_footer = kwargs["skip_footer"] + skipfooter = kwargs.get("skipfooter", None) or kwargs.get( + "skip_footer", None) partition_kwargs = dict( - kwargs, header=None, names=names, skipfooter=0, skip_footer=0) + kwargs, header=None, names=column_names, skipfooter=0, skip_footer=0) with open(filepath, "rb") as f: # Get the BOM if necessary prefix = b"" - if kwargs["encoding"] is not None: + if kwargs.get("encoding", None) is not None: prefix = f.readline() partition_kwargs["skiprows"] = 1 f.seek(0, os.SEEK_SET) # Return to beginning of file @@ -144,33 +160,40 @@ def _read_csv_from_file(filepath, npartitions, kwargs={}): partition_ids = [] index_ids = [] total_bytes = os.path.getsize(filepath) - chunk_size = max(1, (total_bytes - f.tell()) // npartitions) + # Max number of partitions available + num_parts = RayBlockPartitions._compute_num_partitions() + # This is the number of splits for the columns + num_splits = min(len(column_names), num_parts) + # This is the chunksize each partition will read + chunk_size = max(1, (total_bytes - f.tell()) // num_parts) + while f.tell() < total_bytes: start = f.tell() f.seek(chunk_size, os.SEEK_CUR) f.readline() # Read a whole number of lines - if f.tell() >= total_bytes: - kwargs["skipfooter"] = skipfooter - kwargs["skip_footer"] = skip_footer - - partition_id, index_id = _read_csv_with_offset._submit( - args=(filepath, start, f.tell(), partition_kwargs_id, - prefix_id), - num_return_vals=2) - partition_ids.append(partition_id) - index_ids.append(index_id) + partition_id = _read_csv_with_offset_pandas_on_ray._submit( + args=(filepath, num_splits, start, f.tell(), + partition_kwargs_id, prefix_id), + num_return_vals=num_splits + 1) + partition_ids.append( + [RayRemotePartition(obj) for obj in partition_id[:-1]]) + index_ids.append(partition_id[-1]) + + index_col = kwargs.get("index_col", None) + if index_col is None: + new_index = pandas.RangeIndex(sum(ray.get(index_ids))) + else: + new_index_ids = get_index.remote([empty_pd_df.index.name], *index_ids) + new_index = ray.get(new_index_ids) + + new_manager = PandasDataManager( + RayBlockPartitions(np.array(partition_ids)), new_index, column_names) + df = DataFrame(data_manager=new_manager) - # Construct index - index_id = get_index.remote([empty_pd_df.index.name], *index_ids) \ - if kwargs["index_col"] is not None else None - - df = DataFrame(row_partitions=partition_ids, columns=names, index=index_id) - - skipfooter = kwargs["skipfooter"] or kwargs["skip_footer"] if skipfooter: df = df.drop(df.index[-skipfooter:]) - if kwargs["squeeze"] and len(df.columns) == 1: + if kwargs.get("squeeze", False) and len(df.columns) == 1: return df[df.columns[0]] return df @@ -180,14 +203,13 @@ def _read_csv_from_pandas(filepath_or_buffer, kwargs): pd_obj = pandas.read_csv(filepath_or_buffer, **kwargs) if isinstance(pd_obj, pandas.DataFrame): - return from_pandas(pd_obj, get_npartitions()) + return from_pandas(pd_obj) elif isinstance(pd_obj, pandas.io.parsers.TextFileReader): # Overwriting the read method should return a ray DataFrame for calls # to __next__ and get_chunk pd_read = pd_obj.read pd_obj.read = lambda *args, **kwargs: \ - from_pandas(pd_read(*args, **kwargs), get_npartitions()) - + from_pandas(pd_read(*args, **kwargs)) return pd_obj @@ -252,69 +274,32 @@ def read_csv(filepath_or_buffer, We only support local files for now. kwargs: Keyword arguments in pandas::from_csv """ - - kwargs = { - 'sep': sep, - 'delimiter': delimiter, - 'header': header, - 'names': names, - 'index_col': index_col, - 'usecols': usecols, - 'squeeze': squeeze, - 'prefix': prefix, - 'mangle_dupe_cols': mangle_dupe_cols, - 'dtype': dtype, - 'engine': engine, - 'converters': converters, - 'true_values': true_values, - 'false_values': false_values, - 'skipinitialspace': skipinitialspace, - 'skiprows': skiprows, - 'nrows': nrows, - 'na_values': na_values, - 'keep_default_na': keep_default_na, - 'na_filter': na_filter, - 'verbose': verbose, - 'skip_blank_lines': skip_blank_lines, - 'parse_dates': parse_dates, - 'infer_datetime_format': infer_datetime_format, - 'keep_date_col': keep_date_col, - 'date_parser': date_parser, - 'dayfirst': dayfirst, - 'iterator': iterator, - 'chunksize': chunksize, - 'compression': compression, - 'thousands': thousands, - 'decimal': decimal, - 'lineterminator': lineterminator, - 'quotechar': quotechar, - 'quoting': quoting, - 'escapechar': escapechar, - 'comment': comment, - 'encoding': encoding, - 'dialect': dialect, - 'tupleize_cols': tupleize_cols, - 'error_bad_lines': error_bad_lines, - 'warn_bad_lines': warn_bad_lines, - 'skipfooter': skipfooter, - 'skip_footer': skip_footer, - 'doublequote': doublequote, - 'delim_whitespace': delim_whitespace, - 'as_recarray': as_recarray, - 'compact_ints': compact_ints, - 'use_unsigned': use_unsigned, - 'low_memory': low_memory, - 'buffer_lines': buffer_lines, - 'memory_map': memory_map, - 'float_precision': float_precision, - } + # The intention of the inspection code is to reduce the amount of + # communication we have to do between processes and nodes. We take a quick + # pass over the arguments and remove those that are default values so we + # don't have to serialize and send them to the workers. Because the + # arguments list is so long, this does end up saving time based on the + # number of nodes in the cluster. + frame = inspect.currentframe() + _, _, _, kwargs = inspect.getargvalues(frame) + try: + args, _, _, defaults, _, _, _ = inspect.getfullargspec(read_csv) + defaults = dict(zip(args[1:], defaults)) + kwargs = { + kw: kwargs[kw] + for kw in kwargs if kw in defaults and kwargs[kw] != defaults[kw] + } + # This happens on Python2, we will just default to serializing the entire dictionary + except AttributeError: + # We suppress the error and delete the kwargs not needed in the remote function. + del kwargs["filepath_or_buffer"] + del kwargs["frame"] if isinstance(filepath_or_buffer, str): if not os.path.exists(filepath_or_buffer): warnings.warn(("File not found on disk. " "Defaulting to Pandas implementation."), PendingDeprecationWarning) - return _read_csv_from_pandas(filepath_or_buffer, kwargs) elif not isinstance(filepath_or_buffer, py.path.local): read_from_pandas = True @@ -331,27 +316,23 @@ def read_csv(filepath_or_buffer, warnings.warn(("Reading from buffer. " "Defaulting to Pandas implementation."), PendingDeprecationWarning) - return _read_csv_from_pandas(filepath_or_buffer, kwargs) if _infer_compression(filepath_or_buffer, compression) is not None: warnings.warn(("Compression detected. " "Defaulting to Pandas implementation."), PendingDeprecationWarning) - return _read_csv_from_pandas(filepath_or_buffer, kwargs) if as_recarray: warnings.warn("Defaulting to Pandas implementation.", PendingDeprecationWarning) - return _read_csv_from_pandas(filepath_or_buffer, kwargs) if chunksize is not None: warnings.warn(("Reading chunks from a file. " "Defaulting to Pandas implementation."), PendingDeprecationWarning) - return _read_csv_from_pandas(filepath_or_buffer, kwargs) if skiprows is not None and not isinstance(skiprows, int): @@ -365,10 +346,9 @@ def read_csv(filepath_or_buffer, if nrows is not None: warnings.warn("Defaulting to Pandas implementation.", PendingDeprecationWarning) - return _read_csv_from_pandas(filepath_or_buffer, kwargs) - return _read_csv_from_file(filepath_or_buffer, get_npartitions(), kwargs) + return _read_csv_from_file_pandas_on_ray(filepath_or_buffer, kwargs) def read_json(path_or_buf=None, @@ -393,7 +373,7 @@ def read_json(path_or_buf=None, path_or_buf, orient, typ, dtype, convert_axes, convert_dates, keep_default_dates, numpy, precise_float, date_unit, encoding, lines, chunksize, compression) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -421,7 +401,7 @@ def read_html(io, skiprows, attrs, parse_dates, tupleize_cols, thousands, encoding, decimal, converters, na_values, keep_default_na) - ray_frame = from_pandas(port_frame[0], get_npartitions()) + ray_frame = from_pandas(port_frame[0]) return ray_frame @@ -432,7 +412,7 @@ def read_clipboard(sep=r'\s+'): PendingDeprecationWarning) port_frame = pandas.read_clipboard(sep) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -464,7 +444,7 @@ def read_excel(io, io, sheet_name, header, skiprows, skip_footer, index_col, names, usecols, parse_dates, date_parser, na_values, thousands, convert_float, converters, dtype, true_values, false_values, engine, squeeze) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -475,7 +455,7 @@ def read_hdf(path_or_buf, key=None, mode='r'): PendingDeprecationWarning) port_frame = pandas.read_hdf(path_or_buf, key, mode) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -486,7 +466,7 @@ def read_feather(path, nthreads=1): PendingDeprecationWarning) port_frame = pandas.read_feather(path) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -497,7 +477,7 @@ def read_msgpack(path_or_buf, encoding='utf-8', iterator=False): PendingDeprecationWarning) port_frame = pandas.read_msgpack(path_or_buf, encoding, iterator) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -521,7 +501,7 @@ def read_stata(filepath_or_buffer, convert_categoricals, encoding, index_col, convert_missing, preserve_dtypes, columns, order_categoricals, chunksize, iterator) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -538,7 +518,7 @@ def read_sas(filepath_or_buffer, port_frame = pandas.read_sas(filepath_or_buffer, format, index, encoding, chunksize, iterator) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -549,7 +529,7 @@ def read_pickle(path, compression='infer'): PendingDeprecationWarning) port_frame = pandas.read_pickle(path, compression) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -568,7 +548,7 @@ def read_sql(sql, port_frame = pandas.read_sql(sql, con, index_col, coerce_float, params, parse_dates, columns, chunksize) - ray_frame = from_pandas(port_frame, get_npartitions()) + ray_frame = from_pandas(port_frame) return ray_frame @@ -581,20 +561,58 @@ def get_index(index_name, *partition_indices): @ray.remote -def _read_csv_with_offset(fn, start, end, kwargs={}, header=b''): - bio = open(fn, 'rb') +def _read_csv_with_offset_pandas_on_ray(fname, num_splits, start, end, kwargs, + header): + """Use a Ray task to read a chunk of a CSV into a Pandas DataFrame. + + Args: + fname: The filename of the file to open. + num_splits: The number of splits (partitions) to separate the DataFrame into. + start: The start byte offset. + end: The end byte offset. + kwargs: The kwargs for the Pandas `read_csv` function. + header: The header of the file. + + Returns: + A list containing the split Pandas DataFrames and the Index as the last + element. If there is not `index_col` set, then we just return the length. + This is used to determine the total length of the DataFrame to build a + default Index. + """ + bio = open(fname, 'rb') bio.seek(start) to_read = header + bio.read(end - start) bio.close() pandas_df = pandas.read_csv(BytesIO(to_read), **kwargs) - index = pandas_df.index - # Partitions must have RangeIndex - pandas_df.index = pandas.RangeIndex(0, len(pandas_df)) - return pandas_df, index + if kwargs.get("index_col", None) is not None: + index = pandas_df.index + # Partitions must have RangeIndex + pandas_df.index = pandas.RangeIndex(0, len(pandas_df)) + else: + # We will use the lengths to build the index if we are not given an + # `index_col`. + index = len(pandas_df) + + return split_result_of_axis_func_pandas(1, num_splits, pandas_df) + [index] @ray.remote -def _read_parquet_column(path, column, kwargs={}): +def _read_parquet_column(path, column, num_splits, kwargs): + """Use a Ray task to read a column from Parquet into a Pandas DataFrame. + + Args: + path: The path of the Parquet file. + column: The column name to read. + num_splits: The number of partitions to split the column into. + + Returns: + A list containing the split Pandas DataFrames and the Index as the last + element. If there is not `index_col` set, then we just return the length. + This is used to determine the total length of the DataFrame to build a + default Index. + """ + import pyarrow.parquet as pq df = pq.read_pandas(path, columns=[column], **kwargs).to_pandas() - oids = _partition_pandas_dataframe(df, num_partitions=get_npartitions()) - return oids + # Append the length of the index here to build it externally + return split_result_of_axis_func_pandas(0, num_splits, + df) + [len(df.index)] diff --git a/modin/pandas/iterator.py b/modin/pandas/iterator.py index 78a2af5e6b1..35cb2b445db 100644 --- a/modin/pandas/iterator.py +++ b/modin/pandas/iterator.py @@ -6,17 +6,20 @@ class PartitionIterator(Iterator): - def __init__(self, partitions, func): + def __init__(self, data_manager, axis, func): """PartitionIterator class to define a generator on partitioned data Args: - partitions ([ObjectID]): Partitions to iterate over + data_manager (DataManager): Data manager for the dataframe + axis (int): axis to iterate over func (callable): The function to get inner iterables from each partition """ - self.partitions = iter(partitions) + self.data_manager = data_manager + self.axis = axis + self.index_iter = iter(self.data_manager.columns) if axis else iter( + self.data_manager.index) self.func = func - self.iter_cache = iter([]) def __iter__(self): return self @@ -25,9 +28,10 @@ def __next__(self): return self.next() def next(self): - try: - return next(self.iter_cache) - except StopIteration: - next_partition = next(self.partitions) - self.iter_cache = self.func(next_partition) - return self.next() + if self.axis: + key = next(self.index_iter) + df = self.data_manager.getitem_column_array([key]).to_pandas() + else: + key = next(self.index_iter) + df = self.data_manager.getitem_row_array([key]).to_pandas() + return next(self.func(df)) diff --git a/modin/pandas/pandas_code_gen.py b/modin/pandas/pandas_code_gen.py deleted file mode 100644 index e5fdf91d573..00000000000 --- a/modin/pandas/pandas_code_gen.py +++ /dev/null @@ -1,93 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import inspect - - -def code_gen(pandas_obj, ray_obj, path): - """Generate code skeleton for methods not in Ray - - Args: - pandas_obj: The pandas object to generate code from. - ray_obj: The ray object to diff against. - path: Path to output the file to. - """ - - with open(path, "w") as outfile: - funcs = pandas_ray_diff(pandas_obj, ray_obj) - - for func in funcs: - if func[0] == "_" and func[1] != "_": - continue - if "attr" in func: - # let's not mess with these - continue - try: - outfile.write("\ndef " + func + str( - inspect.signature(getattr(pandas_obj, func))) + ":\n") - - except TypeError: - outfile.write("\n@property") - outfile.write("\ndef " + func + "(self):\n") - except ValueError: - continue - outfile.write( - " raise NotImplementedError(\"Not Yet implemented.\")\n") - - -def code_gen_test(ray_obj, path, name): - """Generate tests for methods in Ray.""" - - with open(path, "a") as outfile: - funcs = dir(ray_obj) - - for func in funcs: - if func[0] == "_" and func[1] != "_": - continue - - outfile.write("\n\ndef test_" + func + "():\n") - outfile.write(" ray_" + name + " = create_test_" + name + - "()\n\n" + - " with pytest.raises(NotImplementedError):\n" + - " ray_" + name + "." + func) - try: - first = True - param_num = \ - len(inspect.signature(getattr(ray_obj, func)).parameters) - if param_num > 1: - param_num -= 1 - - for _ in range(param_num): - if first: - outfile.write("(None") - first = False - else: - outfile.write(", None") - except (TypeError, ValueError, NotImplementedError): - outfile.write("\n") - continue - - if first: - outfile.write("(") - outfile.write(")\n") - - -def pandas_ray_diff(pandas_obj, ray_obj): - """Gets the diff of the methods in the Pandas and Ray objects. - - Args: - pandas_obj: The Pandas object to diff. - ray_obj: The Ray object to diff. - - Returns: - A list of method names that are different between the two. - """ - pandas_funcs = dir(pandas_obj) - ray_funcs = dir(ray_obj) - - pandas_funcs = set( - filter(lambda f: f[0] != "_" or f[1] == "_", pandas_funcs)) - - diff = [x for x in pandas_funcs if x not in set(ray_funcs)] - return diff diff --git a/modin/pandas/reshape.py b/modin/pandas/reshape.py index 2fbd0d2f418..882bbc90025 100644 --- a/modin/pandas/reshape.py +++ b/modin/pandas/reshape.py @@ -3,15 +3,9 @@ from __future__ import print_function import pandas -from pandas import compat from pandas.core.dtypes.common import is_list_like -from itertools import cycle -import ray -import numpy as np - from .dataframe import DataFrame -from .utils import _deploy_func def get_dummies(data, @@ -36,106 +30,32 @@ def get_dummies(data, Returns: DataFrame or one-hot encoded data. """ - if not isinstance(data, DataFrame): - return pandas.get_dummies( - data, - prefix=prefix, - prefix_sep=prefix_sep, - dummy_na=dummy_na, - columns=columns, - sparse=sparse, - drop_first=drop_first) - if sparse: raise NotImplementedError( "SparseDataFrame is not implemented. " "To contribute to Pandas on Ray, please visit " "github.com/modin-project/modin.") - if columns is None: - columns_to_encode = data.dtypes.isin([np.dtype("O"), 'category']) - columns_to_encode = data.columns[columns_to_encode] - else: - columns_to_encode = columns - - def check_len(item, name): - len_msg = ("Length of '{name}' ({len_item}) did not match the " - "length of the columns being encoded ({len_enc}).") - - if is_list_like(item): - if not len(item) == len(columns_to_encode): - len_msg = len_msg.format( - name=name, - len_item=len(item), - len_enc=len(columns_to_encode)) - raise ValueError(len_msg) - - check_len(prefix, 'prefix') - check_len(prefix_sep, 'prefix_sep') - if isinstance(prefix, compat.string_types): - prefix = cycle([prefix]) - prefix = [next(prefix) for i in range(len(columns_to_encode))] - if isinstance(prefix, dict): - prefix = [prefix[col] for col in columns_to_encode] - - if prefix is None: - prefix = columns_to_encode - - # validate separators - if isinstance(prefix_sep, compat.string_types): - prefix_sep = cycle([prefix_sep]) - prefix_sep = [next(prefix_sep) for i in range(len(columns_to_encode))] - elif isinstance(prefix_sep, dict): - prefix_sep = [prefix_sep[col] for col in columns_to_encode] - - if set(columns_to_encode) == set(data.columns): - with_dummies = [] - dropped_columns = pandas.Index() - else: - with_dummies = data.drop(columns_to_encode, axis=1)._col_partitions - dropped_columns = data.columns.drop(columns_to_encode) - - def get_dummies_remote(df, to_drop, prefix, prefix_sep): - df = df.drop(to_drop, axis=1) - - if df.size == 0: - return df, df.columns - - df = pandas.get_dummies( - df, + if not isinstance(data, DataFrame): + return pandas.get_dummies( + data, prefix=prefix, prefix_sep=prefix_sep, dummy_na=dummy_na, - columns=None, + columns=columns, sparse=sparse, drop_first=drop_first) - columns = df.columns - df.columns = pandas.RangeIndex(0, len(df.columns)) - return df, columns - - total = 0 - columns = [] - for i, part in enumerate(data._col_partitions): - col_index = data._col_metadata.partition_series(i) - - # TODO(kunalgosar): Handle the case of duplicate columns here - to_encode = col_index.index.isin(columns_to_encode) - - to_encode = col_index[to_encode] - to_drop = col_index.drop(to_encode.index) - - result = _deploy_func._submit( - args=(get_dummies_remote, part, to_drop, - prefix[total:total + len(to_encode)], - prefix_sep[total:total + len(to_encode)]), - num_return_vals=2) - with_dummies.append(result[0]) - columns.append(result[1]) - total += len(to_encode) + if isinstance(data, DataFrame): + df = data + elif is_list_like(data): + df = DataFrame(data) - columns = ray.get(columns) - dropped_columns = dropped_columns.append(columns) + new_manager = df._data_manager.get_dummies( + columns, + prefix=prefix, + prefix_sep=prefix_sep, + dummy_na=dummy_na, + drop_first=drop_first) - return DataFrame( - col_partitions=with_dummies, columns=dropped_columns, index=data.index) + return DataFrame(data_manager=new_manager) diff --git a/modin/pandas/test/test_concat.py b/modin/pandas/test/test_concat.py index 33d08ed43d9..e6963f4b78c 100644 --- a/modin/pandas/test/test_concat.py +++ b/modin/pandas/test/test_concat.py @@ -5,7 +5,7 @@ import pytest import pandas import modin.pandas as pd -from modin.pandas.utils import (to_pandas, from_pandas) +from modin.pandas.utils import from_pandas, to_pandas @pytest.fixture @@ -63,15 +63,29 @@ def test_df_concat(): def test_ray_concat(): df, df2 = generate_dfs() - ray_df, ray_df2 = from_pandas(df, 2), from_pandas(df2, 2) + ray_df, ray_df2 = from_pandas(df), from_pandas(df2) assert ray_df_equals_pandas( pd.concat([ray_df, ray_df2]), pandas.concat([df, df2])) +def test_ray_concat_with_series(): + df, df2 = generate_dfs() + ray_df, ray_df2 = from_pandas(df), from_pandas(df2) + pandas_series = pandas.Series([1, 2, 3, 4], name="new_col") + + assert ray_df_equals_pandas( + pd.concat([ray_df, ray_df2, pandas_series], axis=0), + pandas.concat([df, df2, pandas_series], axis=0)) + + assert ray_df_equals_pandas( + pd.concat([ray_df, ray_df2, pandas_series], axis=1), + pandas.concat([df, df2, pandas_series], axis=1)) + + def test_ray_concat_on_index(): df, df2 = generate_dfs() - ray_df, ray_df2 = from_pandas(df, 2), from_pandas(df2, 2) + ray_df, ray_df2 = from_pandas(df), from_pandas(df2) assert ray_df_equals_pandas( pd.concat([ray_df, ray_df2], axis='index'), @@ -87,7 +101,7 @@ def test_ray_concat_on_index(): def test_ray_concat_on_column(): df, df2 = generate_dfs() - ray_df, ray_df2 = from_pandas(df, 2), from_pandas(df2, 2) + ray_df, ray_df2 = from_pandas(df), from_pandas(df2) assert ray_df_equals_pandas( pd.concat([ray_df, ray_df2], axis=1), pandas.concat([df, df2], axis=1)) @@ -99,7 +113,7 @@ def test_ray_concat_on_column(): def test_invalid_axis_errors(): df, df2 = generate_dfs() - ray_df, ray_df2 = from_pandas(df, 2), from_pandas(df2, 2) + ray_df, ray_df2 = from_pandas(df), from_pandas(df2) with pytest.raises(ValueError): pd.concat([ray_df, ray_df2], axis=2) @@ -109,7 +123,7 @@ def test_mixed_concat(): df, df2 = generate_dfs() df3 = df.copy() - mixed_dfs = [from_pandas(df, 2), from_pandas(df2, 2), df3] + mixed_dfs = [from_pandas(df), from_pandas(df2), df3] assert (ray_df_equals_pandas( pd.concat(mixed_dfs), pandas.concat([df, df2, df3]))) @@ -119,7 +133,7 @@ def test_mixed_inner_concat(): df, df2 = generate_dfs() df3 = df.copy() - mixed_dfs = [from_pandas(df, 2), from_pandas(df2, 2), df3] + mixed_dfs = [from_pandas(df), from_pandas(df2), df3] assert (ray_df_equals_pandas( pd.concat(mixed_dfs, join='inner'), @@ -130,7 +144,7 @@ def test_mixed_none_concat(): df, df2 = generate_none_dfs() df3 = df.copy() - mixed_dfs = [from_pandas(df, 2), from_pandas(df2, 2), df3] + mixed_dfs = [from_pandas(df), from_pandas(df2), df3] assert (ray_df_equals_pandas( pd.concat(mixed_dfs), pandas.concat([df, df2, df3]))) diff --git a/modin/pandas/test/test_dataframe.py b/modin/pandas/test/test_dataframe.py index 87662ece325..9d1886d72be 100644 --- a/modin/pandas/test/test_dataframe.py +++ b/modin/pandas/test/test_dataframe.py @@ -3,12 +3,14 @@ from __future__ import print_function import pytest +import io import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import modin.pandas as pd from modin.pandas.utils import to_pandas +from numpy.testing import assert_array_equal @pytest.fixture @@ -23,7 +25,8 @@ def ray_series_equals_pandas(ray_series, pandas_series): @pytest.fixture def ray_df_equals(ray_df1, ray_df2): - return ray_df1.equals(ray_df2) + # return ray_df1.equals(ray_df2) + return to_pandas(ray_df1).equals(to_pandas(ray_df2)) @pytest.fixture @@ -62,6 +65,7 @@ def test_int_dataframe(): filter_by = {'items': ['col1', 'col5'], 'regex': '4$|3$', 'like': 'col'} + test_sample(ray_df, pandas_df) test_filter(ray_df, pandas_df, filter_by) test_index(ray_df, pandas_df) test_size(ray_df, pandas_df) @@ -232,6 +236,7 @@ def test_float_dataframe(): filter_by = {'items': ['col1', 'col5'], 'regex': '4$|3$', 'like': 'col'} + test_sample(ray_df, pandas_df) test_filter(ray_df, pandas_df, filter_by) test_index(ray_df, pandas_df) test_size(ray_df, pandas_df) @@ -258,8 +263,7 @@ def test_float_dataframe(): test_query(ray_df, pandas_df, query_funcs) test_mean(ray_df, pandas_df) - # TODO Clear floating point error. - # test_var(ray_df, pandas_df) + test_var(ray_df, pandas_df) test_std(ray_df, pandas_df) test_median(ray_df, pandas_df) @@ -340,8 +344,7 @@ def test_float_dataframe(): test_insert(ray_df, pandas_df, 1, "New Column", ray_df[key]) test_insert(ray_df, pandas_df, 4, "New Column", ray_df[key]) - # TODO Nans are always not equal to each other, fix it - # test___array__(ray_df, pandas_df) + test___array__(ray_df, pandas_df) apply_agg_functions = [ 'sum', lambda df: df.sum(), ['sum', 'mean'], ['sum', 'sum'] @@ -401,6 +404,7 @@ def test_mixed_dtype_dataframe(): filter_by = {'items': ['col1', 'col5'], 'regex': '4$|3$', 'like': 'col'} + test_sample(ray_df, pandas_df) test_filter(ray_df, pandas_df, filter_by) test_index(ray_df, pandas_df) test_size(ray_df, pandas_df) @@ -429,8 +433,7 @@ def test_mixed_dtype_dataframe(): test_query(ray_df, pandas_df, query_funcs) test_mean(ray_df, pandas_df) - # TODO Clear floating point error. - # test_var(ray_df, pandas_df) + test_var(ray_df, pandas_df) test_std(ray_df, pandas_df) test_median(ray_df, pandas_df) @@ -442,7 +445,7 @@ def test_mixed_dtype_dataframe(): test_describe(ray_df, pandas_df) # TODO Reolve once Pandas-20962 is resolved. - # test_rank(ray_df, pandas_df) + test_rank(ray_df, pandas_df) test_all(ray_df, pandas_df) test_any(ray_df, pandas_df) @@ -568,6 +571,7 @@ def test_nan_dataframe(): filter_by = {'items': ['col1', 'col5'], 'regex': '4$|3$', 'like': 'col'} + test_sample(ray_df, pandas_df) test_filter(ray_df, pandas_df, filter_by) test_index(ray_df, pandas_df) test_size(ray_df, pandas_df) @@ -672,8 +676,7 @@ def test_nan_dataframe(): test_insert(ray_df, pandas_df, 1, "New Column", ray_df[key]) test_insert(ray_df, pandas_df, 4, "New Column", ray_df[key]) - # TODO Nans are always not equal to each other, fix it - # test___array__(ray_df, pandas_df) + test___array__(ray_df, pandas_df) apply_agg_functions = [ 'sum', lambda df: df.sum(), ['sum', 'mean'], ['sum', 'sum'] @@ -937,8 +940,8 @@ def test_copy(ray_df): new_ray_df = ray_df.copy() assert new_ray_df is not ray_df - assert np.array_equal(new_ray_df._block_partitions, - ray_df._block_partitions) + assert np.array_equal(new_ray_df._data_manager.data.partitions, + ray_df._data_manager.data.partitions) @pytest.fixture @@ -1113,30 +1116,25 @@ def test_assign(): def test_astype(): td = TestData() - ray_df = pd.DataFrame(td.frame) - our_df_casted = ray_df.astype(np.int32) - expected_df_casted = pandas.DataFrame( - td.frame.values.astype(np.int32), - index=td.frame.index, - columns=td.frame.columns) + ray_df = pd.DataFrame( + td.frame.values, index=td.frame.index, columns=td.frame.columns) + expected_df = pandas.DataFrame( + td.frame.values, index=td.frame.index, columns=td.frame.columns) + + ray_df_casted = ray_df.astype(np.int32) + expected_df_casted = expected_df.astype(np.int32) - assert ray_df_equals_pandas(our_df_casted, expected_df_casted) + assert ray_df_equals_pandas(ray_df_casted, expected_df_casted) - our_df_casted = ray_df.astype(np.float64) - expected_df_casted = pandas.DataFrame( - td.frame.values.astype(np.float64), - index=td.frame.index, - columns=td.frame.columns) + ray_df_casted = ray_df.astype(np.float64) + expected_df_casted = expected_df.astype(np.float64) - assert ray_df_equals_pandas(our_df_casted, expected_df_casted) + assert ray_df_equals_pandas(ray_df_casted, expected_df_casted) - our_df_casted = ray_df.astype(str) - expected_df_casted = pandas.DataFrame( - td.frame.values.astype(str), - index=td.frame.index, - columns=td.frame.columns) + ray_df_casted = ray_df.astype(str) + expected_df_casted = expected_df.astype(str) - assert ray_df_equals_pandas(our_df_casted, expected_df_casted) + assert ray_df_equals_pandas(ray_df_casted, expected_df_casted) def test_at_time(): @@ -1286,7 +1284,7 @@ def test_cumsum(ray_df, pandas_df): @pytest.fixture def test_describe(ray_df, pandas_df): - assert ray_df.describe().equals(pandas_df.describe()) + assert ray_df_equals_pandas(ray_df.describe(), pandas_df.describe()) @pytest.fixture @@ -1528,6 +1526,24 @@ def test_eval_df_use_case(): frame_data = {'a': np.random.randn(10), 'b': np.random.randn(10)} df = pandas.DataFrame(frame_data) ray_df = pd.DataFrame(frame_data) + + # test eval for series results + tmp_pandas = df.eval( + "arctan2(sin(a), b)", engine='python', parser='pandas') + tmp_ray = ray_df.eval( + "arctan2(sin(a), b)", engine='python', parser='pandas') + + assert isinstance(tmp_ray, pandas.Series) + assert ray_series_equals_pandas(tmp_ray, tmp_pandas) + + # Test not inplace assignments + tmp_pandas = df.eval( + "e = arctan2(sin(a), b)", engine='python', parser='pandas') + tmp_ray = ray_df.eval( + "e = arctan2(sin(a), b)", engine='python', parser='pandas') + assert ray_df_equals_pandas(tmp_ray, tmp_pandas) + + # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine='python', @@ -1590,9 +1606,9 @@ def test_fillna(): # test_frame_pad_backfill_limit() test_fillna_dtype_conversion() test_fillna_skip_certain_blocks() - test_fillna_dict_series() with pytest.raises(NotImplementedError): + test_fillna_dict_series() test_fillna_dataframe() test_fillna_columns() @@ -1915,9 +1931,8 @@ def test_fillna_invalid_value(): pytest.raises(TypeError, ray_df.fillna, [1, 2]) # tuple pytest.raises(TypeError, ray_df.fillna, (1, 2)) - # TODO: Uncomment when iloc is implemented # frame with series - # pytest.raises(ValueError, ray_df.iloc[:, 0].fillna, ray_df) + pytest.raises(ValueError, ray_df.iloc[:, 0].fillna, ray_df) @pytest.fixture @@ -2055,12 +2070,25 @@ def test_infer_objects(): ray_df.infer_objects() -@pytest.fixture -def test_info(ray_df): - info_string = ray_df.info() - assert '\n' in info_string - info_string = ray_df.info(memory_usage=True) - assert 'memory_usage: ' in info_string +def test_info(): + ray_df = pd.DataFrame({ + 'col1': [1, 2, 3, np.nan], + 'col2': [4, 5, np.nan, 7], + 'col3': [8, np.nan, 10, 11], + 'col4': [np.nan, 13, 14, 15] + }) + ray_df.info(memory_usage='deep') + with io.StringIO() as buf: + ray_df.info(buf=buf) + info_string = buf.getvalue() + assert '\n' in info_string + assert 'memory usage: ' in info_string + assert 'Data columns (total 4 columns):' in info_string + with io.StringIO() as buf: + ray_df.info(buf=buf, verbose=False, memory_usage=False) + info_string = buf.getvalue() + assert 'memory usage: ' not in info_string + assert 'Columns: 4 entries, col1 to col4' in info_string @pytest.fixture @@ -2223,7 +2251,12 @@ def test_mask(): @pytest.fixture def test_max(ray_df, pandas_df): assert ray_series_equals_pandas(ray_df.max(), pandas_df.max()) - assert ray_series_equals_pandas(ray_df.max(axis=1), pandas_df.max(axis=1)) + + # We pass in numeric_only because + # https://github.com/modin-project/modin/issues/83 + assert ray_series_equals_pandas( + ray_df.max(axis=1, numeric_only=True), + pandas_df.max(axis=1, numeric_only=True)) @pytest.fixture @@ -2243,8 +2276,8 @@ def test_melt(): ray_df.melt() -@pytest.fixture -def test_memory_usage(ray_df): +def test_memory_usage(): + ray_df = create_test_dataframe() assert type(ray_df.memory_usage()) is pandas.core.series.Series assert ray_df.memory_usage(index=True).at['Index'] is not None assert ray_df.memory_usage(deep=True).sum() >= \ @@ -2864,10 +2897,17 @@ def test_rtruediv(): test_inter_df_math_right_ops("rtruediv") -def test_sample(): - ray_df = create_test_dataframe() - assert len(ray_df.sample(n=4)) == 4 - assert len(ray_df.sample(frac=0.5)) == 2 +@pytest.fixture +def test_sample(ray_df, pd_df): + with pytest.raises(ValueError): + ray_df.sample(n=3, frac=0.4) + + assert ray_df_equals_pandas( + ray_df.sample(frac=0.5, random_state=42), + pd_df.sample(frac=0.5, random_state=42)) + assert ray_df_equals_pandas( + ray_df.sample(n=2, random_state=42), pd_df.sample( + n=2, random_state=42)) def test_select(): @@ -3144,12 +3184,10 @@ def test_unstack(): def test_update(): df = pd.DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3], [1.5, np.nan, 3]]) - other = pd.DataFrame([[3.6, 2., np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other) - expected = pd.DataFrame([[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.]]) assert ray_df_equals(df, expected) @@ -3157,40 +3195,36 @@ def test_update(): @pytest.fixture def test_var(ray_df, pandas_df): - assert ray_df.var().equals(pandas_df.var()) + # Because of some differences in floating point arithmetic, we need to check that + # they are almost equal if they are not identically equal. + assert (ray_df.var() == pandas_df.var()).all() or \ + ((ray_df.var() - pandas_df.var()).abs() < 10**-10).all() def test_where(): frame_data = np.random.randn(100, 10) pandas_df = pandas.DataFrame(frame_data, columns=list('abcdefghij')) ray_df = pd.DataFrame(frame_data, columns=list('abcdefghij')) - pandas_cond_df = pandas_df % 5 < 2 ray_cond_df = ray_df % 5 < 2 pandas_result = pandas_df.where(pandas_cond_df, -pandas_df) ray_result = ray_df.where(ray_cond_df, -ray_df) - - assert ray_df_equals_pandas(ray_result, pandas_result) + assert all((to_pandas(ray_result) == pandas_result).all()) other = pandas_df.loc[3] - pandas_result = pandas_df.where(pandas_cond_df, other, axis=1) ray_result = ray_df.where(ray_cond_df, other, axis=1) - - assert ray_df_equals_pandas(ray_result, pandas_result) + assert all((to_pandas(ray_result) == pandas_result).all()) other = pandas_df['e'] - pandas_result = pandas_df.where(pandas_cond_df, other, axis=0) ray_result = ray_df.where(ray_cond_df, other, axis=0) - - assert ray_df_equals_pandas(ray_result, pandas_result) + assert all((to_pandas(ray_result) == pandas_result).all()) pandas_result = pandas_df.where(pandas_df < 2, True) ray_result = ray_df.where(ray_df < 2, True) - - assert ray_df_equals_pandas(ray_result, pandas_result) + assert all((to_pandas(ray_result) == pandas_result).all()) def test_xs(): @@ -3311,7 +3345,7 @@ def test___round__(): @pytest.fixture def test___array__(ray_df, pandas_df): - assert np.array_equal(ray_df.__array__(), pandas_df.__array__()) + assert_array_equal(ray_df.__array__(), pandas_df.__array__()) def test___getstate__(): @@ -3391,29 +3425,22 @@ def test___repr__(): frame_data = np.random.randint(0, 100, size=(1000, 100)) pandas_df = pandas.DataFrame(frame_data) ray_df = pd.DataFrame(frame_data) - assert repr(pandas_df) == repr(ray_df) frame_data = np.random.randint(0, 100, size=(1000, 99)) pandas_df = pandas.DataFrame(frame_data) ray_df = pd.DataFrame(frame_data) - assert repr(pandas_df) == repr(ray_df) - # These currently fails because the dots do not line up. - # For some reason only two dots are being added for our DataFrame + frame_data = np.random.randint(0, 100, size=(1000, 101)) + pandas_df = pandas.DataFrame(frame_data) + ray_df = pd.DataFrame(frame_data) + assert repr(pandas_df) == repr(ray_df) - # frame_data = np.random.randint(0, 100, size=(1000, 101)) - # pandas_df = pandas.DataFrame(frame_data) - # ray_df = pd.DataFrame(frame_data) - # - # assert repr(pandas_df) == repr(ray_df) - # - # frame_data = np.random.randint(0, 100, size=(1000, 102)) - # pandas_df = pandas.DataFrame(frame_data) - # ray_df = pd.DataFrame(frame_data) - # - # assert repr(pandas_df) == repr(ray_df) + frame_data = np.random.randint(0, 100, size=(1000, 102)) + pandas_df = pandas.DataFrame(frame_data) + ray_df = pd.DataFrame(frame_data) + assert repr(pandas_df) == repr(ray_df) # ___repr___ method has a different code path depending on # whether the number of rows is >60; and a different code path @@ -3455,11 +3482,20 @@ def test_loc(ray_df, pd_df): # DataFrame assert ray_df_equals_pandas(ray_df.loc[[1, 2]], pd_df.loc[[1, 2]]) - assert ray_df_equals_pandas(ray_df.loc[[1, 2], ['col1']], - pd_df.loc[[1, 2], ['col1']]) + + # See issue #80 + # assert ray_df_equals_pandas(ray_df.loc[[1, 2], ['col1']], + # pd_df.loc[[1, 2], ['col1']]) assert ray_df_equals_pandas(ray_df.loc[1:2, 'col1':'col2'], pd_df.loc[1:2, 'col1':'col2']) + # Write Item + ray_df_copy = ray_df.copy() + pd_df_copy = pd_df.copy() + ray_df_copy.loc[[1, 2]] = 42 + pd_df_copy.loc[[1, 2]] = 42 + assert ray_df_equals_pandas(ray_df_copy, pd_df_copy) + def test_is_copy(): ray_df = create_test_dataframe() @@ -3498,13 +3534,21 @@ def test_iloc(ray_df, pd_df): # DataFrame assert ray_df_equals_pandas(ray_df.iloc[[1, 2]], pd_df.iloc[[1, 2]]) - assert ray_df_equals_pandas(ray_df.iloc[[1, 2], [1, 0]], - pd_df.iloc[[1, 2], [1, 0]]) + # See issue #80 + # assert ray_df_equals_pandas(ray_df.iloc[[1, 2], [1, 0]], + # pd_df.iloc[[1, 2], [1, 0]]) assert ray_df_equals_pandas(ray_df.iloc[1:2, 0:2], pd_df.iloc[1:2, 0:2]) # Issue #43 ray_df.iloc[0:3, :] + # Write Item + ray_df_copy = ray_df.copy() + pd_df_copy = pd_df.copy() + ray_df_copy.iloc[[1, 2]] = 42 + pd_df_copy.iloc[[1, 2]] = 42 + assert ray_df_equals_pandas(ray_df_copy, pd_df_copy) + def test__doc__(): assert pd.DataFrame.__doc__ != pandas.DataFrame.__doc__ @@ -3529,6 +3573,17 @@ def test_get_dummies(): frame_data = {'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]} ray_df = pd.DataFrame(frame_data) pd_df = pandas.DataFrame(frame_data) + assert ray_df_equals_pandas( + pd.get_dummies(ray_df), pandas.get_dummies(pd_df)) + + frame_data = {'A': ['a'], 'B': ['b']} + ray_df = pd.DataFrame(frame_data) + pd_df = pandas.DataFrame(frame_data) + assert ray_df_equals_pandas( + pd.get_dummies(ray_df), pandas.get_dummies(pd_df)) + frame_data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [1, 2, 3]} + ray_df = pd.DataFrame(frame_data) + pd_df = pandas.DataFrame(frame_data) assert ray_df_equals_pandas( pd.get_dummies(ray_df), pandas.get_dummies(pd_df)) diff --git a/modin/pandas/test/test_groupby.py b/modin/pandas/test/test_groupby.py index ed5653b60a3..436ad434ba7 100644 --- a/modin/pandas/test/test_groupby.py +++ b/modin/pandas/test/test_groupby.py @@ -7,7 +7,7 @@ import pandas import numpy as np import modin.pandas as pd -from modin.pandas.utils import (from_pandas, to_pandas) +from modin.pandas.utils import from_pandas, to_pandas PY2 = False if sys.version_info.major < 3: @@ -17,7 +17,8 @@ @pytest.fixture def ray_df_equals_pandas(ray_df, pandas_df): assert isinstance(ray_df, pd.DataFrame) - assert to_pandas(ray_df).equals(pandas_df) + assert to_pandas(ray_df).equals(pandas_df) or (all(ray_df.isna().all()) and + all(pandas_df.isna().all())) @pytest.fixture @@ -25,7 +26,8 @@ def ray_df_almost_equals_pandas(ray_df, pandas_df): assert isinstance(ray_df, pd.DataFrame) difference = to_pandas(ray_df) - pandas_df diff_max = difference.max().max() - assert to_pandas(ray_df).equals(pandas_df) or diff_max < 0.0001 + assert to_pandas(ray_df).equals(pandas_df) or diff_max < 0.0001 or (all( + ray_df.isna().all()) and all(pandas_df.isna().all())) @pytest.fixture @@ -54,7 +56,7 @@ def test_simple_row_groupby(): 'col5': [-4, -5, -6, -7] }) - ray_df = from_pandas(pandas_df, 2) + ray_df = from_pandas(pandas_df) by = [1, 2, 1, 2] n = 1 @@ -133,9 +135,9 @@ def test_single_group_row_groupby(): 'col5': [-4, 5, -6, -7] }) - ray_df = from_pandas(pandas_df, 2) + ray_df = from_pandas(pandas_df) - by = [1, 1, 1, 1] + by = ["1", "1", "1", "1"] n = 6 ray_groupby = ray_df.groupby(by=by) @@ -208,7 +210,7 @@ def test_large_row_groupby(): pandas_df = pandas.DataFrame( np.random.randint(0, 8, size=(100, 4)), columns=list('ABCD')) - ray_df = from_pandas(pandas_df, 2) + ray_df = from_pandas(pandas_df) by = [str(i) for i in pandas_df['A'].tolist()] n = 4 @@ -287,7 +289,7 @@ def test_simple_col_groupby(): 'col5': [-4, 5, 6, -7] }) - ray_df = from_pandas(pandas_df, 2) + ray_df = from_pandas(pandas_df) by = [1, 2, 3, 2, 1] @@ -366,7 +368,8 @@ def test_skew(ray_groupby, pandas_groupby): @pytest.fixture def test_ffill(ray_groupby, pandas_groupby): - ray_df_equals_pandas(ray_groupby.ffill(), pandas_groupby.ffill()) + with pytest.raises(NotImplementedError): + ray_groupby.ffill() @pytest.fixture @@ -402,10 +405,9 @@ def test_ndim(ray_groupby, pandas_groupby): @pytest.fixture -def test_cumsum(ray_groupby, pandas_groupby): - ray_df_equals_pandas(ray_groupby.cumsum(), pandas_groupby.cumsum()) +def test_cumsum(ray_groupby, pandas_groupby, axis=0): ray_df_equals_pandas( - ray_groupby.cumsum(axis=1), pandas_groupby.cumsum(axis=1)) + ray_groupby.cumsum(axis=axis), pandas_groupby.cumsum(axis=axis)) @pytest.fixture @@ -415,10 +417,9 @@ def test_pct_change(ray_groupby, pandas_groupby): @pytest.fixture -def test_cummax(ray_groupby, pandas_groupby): - ray_df_equals_pandas(ray_groupby.cummax(), pandas_groupby.cummax()) +def test_cummax(ray_groupby, pandas_groupby, axis=0): ray_df_equals_pandas( - ray_groupby.cummax(axis=1), pandas_groupby.cummax(axis=1)) + ray_groupby.cummax(axis=axis), pandas_groupby.cummax(axis=axis)) @pytest.fixture @@ -439,19 +440,20 @@ def test_first(ray_groupby, pandas_groupby): @pytest.fixture def test_backfill(ray_groupby, pandas_groupby): - ray_df_equals_pandas(ray_groupby.backfill(), pandas_groupby.backfill()) + with pytest.raises(NotImplementedError): + ray_groupby.backfill() @pytest.fixture -def test_cummin(ray_groupby, pandas_groupby): - ray_df_equals_pandas(ray_groupby.cummin(), pandas_groupby.cummin()) +def test_cummin(ray_groupby, pandas_groupby, axis=0): ray_df_equals_pandas( - ray_groupby.cummin(axis=1), pandas_groupby.cummin(axis=1)) + ray_groupby.cummin(axis=axis), pandas_groupby.cummin(axis=axis)) @pytest.fixture def test_bfill(ray_groupby, pandas_groupby): - ray_df_equals_pandas(ray_groupby.bfill(), pandas_groupby.bfill()) + with pytest.raises(NotImplementedError): + ray_groupby.bfill() @pytest.fixture @@ -530,7 +532,7 @@ def test_nunique(ray_groupby, pandas_groupby): @pytest.fixture def test_median(ray_groupby, pandas_groupby): - ray_df_equals_pandas(ray_groupby.median(), pandas_groupby.median()) + ray_df_almost_equals_pandas(ray_groupby.median(), pandas_groupby.median()) @pytest.fixture @@ -540,10 +542,10 @@ def test_head(ray_groupby, pandas_groupby, n): @pytest.fixture -def test_cumprod(ray_groupby, pandas_groupby): +def test_cumprod(ray_groupby, pandas_groupby, axis=0): ray_df_equals_pandas(ray_groupby.cumprod(), pandas_groupby.cumprod()) ray_df_equals_pandas( - ray_groupby.cumprod(axis=1), pandas_groupby.cumprod(axis=1)) + ray_groupby.cumprod(axis=axis), pandas_groupby.cumprod(axis=axis)) @pytest.fixture diff --git a/modin/pandas/utils.py b/modin/pandas/utils.py index efd233603d2..45769fc9275 100644 --- a/modin/pandas/utils.py +++ b/modin/pandas/utils.py @@ -2,252 +2,20 @@ from __future__ import division from __future__ import print_function -import pandas +from ..data_management.factories import BaseFactory -import collections -import numpy as np -import ray -import time -import gc -from . import get_npartitions - -_NAN_BLOCKS = {} -_MEMOIZER_CAPACITY = 1000 # Capacity per function - - -class LRUCache(object): - """A LRUCache implemented with collections.OrderedDict - - Notes: - - OrderedDict will record the order each item is inserted. - - The head of the queue will be LRU items. - """ - - def __init__(self, capacity): - self.capacity = capacity - self.cache = collections.OrderedDict() - - def __contains__(self, key): - return key in self.cache - - def __getitem__(self, key): - """Retrieve item from cache and re-insert it to the back of the queue - """ - value = self.cache.pop(key) - self.cache[key] = value - return value - - def __setitem__(self, key, value): - if key in self.cache: - self.cache.pop(key) - - if len(self.cache) >= self.capacity: - # Pop oldest items at the beginning of the queue - self.cache.popitem(last=False) - - self.cache[key] = value - - -class memoize(object): - """A basic memoizer that cache the input and output of the remote function - - Notes: - - How is this implemented? - This meoizer is implemented by adding a caching layer to the remote - function's remote attribute. When user call f.remote(*args), we will - first check against the cache, and then call the ray remote function - if we can't find the return value in the cache. - - When should this be used? - This should be used when we anticipate temporal locality for the - function. For example, we can reasonally assume users will perform - columnar operation repetitively over time (like sum() or loc[]). - - Caveat - Don't use this decorator if the any argument to the remote function - will mutate. Following snippet will fail - ```py - @memoize - @ray.remote - def f(obj): - ... - - mutable_obj = [1] - oid_1 = f.remote(mutable_obj) # will be cached - - mutable_obj.append(3) - oid_2 = f.remote(mutable_obj) # cache hit! - - oid_1 == oid_2 # True! - ``` - In short, use this function sparingly. The ideal case is that all - inputs are ray ObjectIDs because they are immutable objects. - - Future Development - - Fix the mutability bug - - Dynamic cache size (Fixed as 1000 for now) - """ - - def __init__(self, f): - # Save of remote function - self.old_remote_func = f.remote - self.cache = LRUCache(capacity=_MEMOIZER_CAPACITY) - - def remote(self, *args): - """Return cached result if the arguments are cached - """ - args = tuple(args) - - if args in self.cache: - cached_result = self.cache[args] - return cached_result - - result = self.old_remote_func(*args) - self.cache[args] = result - return result - - -def post_task_gc(func): - """Perform garbage collection after the task is executed. - - Usage: - ``` - @ray.remote - @post_task_gc - def memory_hungry_op(): - ... - ``` - Note: - - This will invoke the GC for the entire process. Expect - About 100ms latency. - - We have a basic herustic in place to balance of tradeoff between - speed and memory. If the task takes more than 500ms to run, we - will do the GC. - """ - - def wrapped(*args): - start_time = time.time() - - result = func(*args) - - duration_s = time.time() - start_time - duration_ms = duration_s * 1000 - if duration_ms > 500: - gc.collect() - - return result - - return wrapped - - -def _get_nan_block_id(n_row=1, n_col=1, transpose=False): - """A memory efficent way to get a block of NaNs. - - Args: - n_rows(int): number of rows - n_col(int): number of columns - transpose(bool): if true, swap rows and columns - Returns: - ObjectID of the NaN block - """ - global _NAN_BLOCKS - if transpose: - n_row, n_col = n_col, n_row - shape = (n_row, n_col) - if shape not in _NAN_BLOCKS: - arr = np.tile(np.array(np.NaN), shape) - _NAN_BLOCKS[shape] = ray.put(pandas.DataFrame(data=arr)) - return _NAN_BLOCKS[shape] - - -def _get_lengths(df): - """Gets the length of the DataFrame. - Args: - df: A remote pandas.DataFrame object. - Returns: - Returns an integer length of the DataFrame object. If the attempt - fails, returns 0 as the length. - """ - try: - return len(df) - # Because we sometimes have cases where we have summary statistics in our - # DataFrames - except TypeError: - return 0 - - -def _get_widths(df): - """Gets the width (number of columns) of the DataFrame. - Args: - df: A remote pandas.DataFrame object. - Returns: - Returns an integer width of the DataFrame object. If the attempt - fails, returns 0 as the length. - """ - try: - return len(df.columns) - # Because we sometimes have cases where we have summary statistics in our - # DataFrames - except TypeError: - return 0 - - -def _partition_pandas_dataframe(df, num_partitions=None, row_chunksize=None): - """Partitions a Pandas DataFrame object. - Args: - df (pandas.DataFrame): The pandas DataFrame to convert. - npartitions (int): The number of partitions to split the DataFrame - into. Has priority over chunksize. - row_chunksize (int): The number of rows to put in each partition. - Returns: - [ObjectID]: A list of object IDs corresponding to the DataFrame - partitions - """ - if num_partitions is not None: - row_chunksize = len(df) // num_partitions \ - if len(df) % num_partitions == 0 \ - else len(df) // num_partitions + 1 - else: - assert row_chunksize is not None - - temp_df = df - - row_partitions = [] - while len(temp_df) > row_chunksize: - t_df = temp_df[:row_chunksize] - # reset_index here because we want a pandas.RangeIndex - # within the partitions. It is smaller and sometimes faster. - t_df.reset_index(drop=True, inplace=True) - t_df.columns = pandas.RangeIndex(0, len(t_df.columns)) - top = ray.put(t_df) - row_partitions.append(top) - temp_df = temp_df[row_chunksize:] - else: - # Handle the last chunk correctly. - # This call is necessary to prevent modifying original df - temp_df = temp_df[:] - temp_df.reset_index(drop=True, inplace=True) - temp_df.columns = pandas.RangeIndex(0, len(temp_df.columns)) - row_partitions.append(ray.put(temp_df)) - - return row_partitions - - -def from_pandas(df, num_partitions=None, chunksize=None): +def from_pandas(df): """Converts a pandas DataFrame to a Ray DataFrame. Args: df (pandas.DataFrame): The pandas DataFrame to convert. - num_partitions (int): The number of partitions to split the DataFrame - into. Has priority over chunksize. - chunksize (int): The number of rows to put in each partition. + Returns: A new Ray DataFrame object. """ from .dataframe import DataFrame - row_partitions = \ - _partition_pandas_dataframe(df, num_partitions, chunksize) - - return DataFrame( - row_partitions=row_partitions, columns=df.columns, index=df.index) + return DataFrame(data_manager=BaseFactory.from_pandas(df)) def to_pandas(df): @@ -257,216 +25,7 @@ def to_pandas(df): Returns: A new pandas DataFrame. """ - pandas_df = pandas.concat(ray.get(df._row_partitions), copy=False) - pandas_df.index = df.index - pandas_df.columns = df.columns - return pandas_df - - -""" -Indexing Section - Generate View Copy Helpers - Function list: - - `extract_block` (ray.remote function, move to EOF) - - `_generate_block` - - `_repartition_coord_df` - Call Dependency: - - _generate_block calls extract_block remote - Pipeline: - - Repartition the dataframe by npartition - - Use case: - The dataframe is a DataFrameView, the two coord_dfs only - describe the subset of the block partition data. We want - to create a new copy of this subset and re-partition - the new dataframe. -""" - - -def _repartition_coord_df(old_coord_df, npartition): - """Repartition the (view of) coord_df by npartition - - This function is best used when old_coord_df is not contigous. - For example, it turns: - - partition index_within_partition - i0 0 0 - i6 3 2 - - into - - partition index_within_partition - i0 0 0 - i6 0 1 - - Note(simon): - The resulting npartition will be <= npartition - passed in. - """ - length = len(old_coord_df) - chunksize = (len(old_coord_df) // npartition if len(old_coord_df) % - npartition == 0 else len(old_coord_df) // npartition + 1) - - # genereate array([0, 0, 0, 1, 1, 1, 2]) - partitions = np.repeat(np.arange(npartition), chunksize)[:length] - - # generate array([0, 1, 2, 0, 1, 2, 0]) - final_n_partition = np.max(partitions) - idx_in_part = np.tile(np.arange(chunksize), final_n_partition + 1)[:length] - - final_df = pandas.DataFrame({ - 'partition': partitions, - 'index_within_partition': idx_in_part - }, - index=old_coord_df.index) - - return final_df - - -def _generate_blocks(old_row, new_row, old_col, new_col, - block_partition_2d_oid_arr): - """ - Given the four coord_dfs: - - Old Row Coord df - - New Row Coord df - - Old Col Coord df - - New Col Coord df - and the block partition array, this function will generate the new - block partition array. - """ - - # We join the old and new coord_df to find out which chunk in the old - # partition belongs to the chunk in the new partition. The new coord df - # should have the same index as the old coord df in order to align the - # row/column. This is guaranteed by _repartition_coord_df. - def join(old, new): - return new.merge( - old, left_index=True, right_index=True, suffixes=('_new', '_old')) - - row_grouped = join(old_row, new_row).groupby('partition_new') - col_grouped = join(old_col, new_col).groupby('partition_new') - - oid_lst = [] - for row_idx, row_lookup in row_grouped: - for col_idx, col_lookup in col_grouped: - oid = extract_block.remote( - block_partition_2d_oid_arr, - row_lookup, - col_lookup, - col_name_suffix='_old') - oid_lst.append(oid) - return np.array(oid_lst).reshape(len(row_grouped), len(col_grouped)) - - -# Indexing -# Generate View Copy Helpers -# END - - -def _mask_block_partitions(blk_partitions, row_metadata, col_metadata): - """Return the squeezed/expanded block partitions as defined by - row_metadata and col_metadata. - - Note: - Very naive implementation. Extract one scaler at a time in a double - for loop. - """ - col_df = col_metadata._coord_df - row_df = row_metadata._coord_df - - result_oids = [] - shape = (len(row_df.index), len(col_df.index)) - - for _, row_partition_data in row_df.iterrows(): - for _, col_partition_data in col_df.iterrows(): - row_part = row_partition_data.partition - col_part = col_partition_data.partition - block_oid = blk_partitions[row_part, col_part] - - row_idx = row_partition_data['index_within_partition'] - col_idx = col_partition_data['index_within_partition'] - - result_oid = extractor.remote(block_oid, [row_idx], [col_idx]) - result_oids.append(result_oid) - return np.array(result_oids).reshape(shape) - - -def _map_partitions(func, partitions, *argslists): - """Apply a function across the specified axis - - Args: - func (callable): The function to apply - partitions ([ObjectID]): The list of partitions to map func on. - - Returns: - A list of partitions ([ObjectID]) with the result of the function - """ - if partitions is None: - return None - - assert (callable(func)) - if len(argslists) == 0: - return [_deploy_func.remote(func, part) for part in partitions] - elif len(argslists) == 1: - return [ - _deploy_func.remote(func, part, argslists[0]) - for part in partitions - ] - else: - assert (all(len(args) == len(partitions) for args in argslists)) - return [ - _deploy_func.remote(func, *args) - for args in zip(partitions, *argslists) - ] - - -def _create_block_partitions(partitions, axis=0, length=None): - - if length is not None and length != 0 and get_npartitions() > length: - npartitions = length - elif length == 0: - npartitions = 1 - else: - npartitions = get_npartitions() - - x = [ - create_blocks._submit( - args=(partition, npartitions, axis), num_return_vals=npartitions) - for partition in partitions - ] - - # In the case that axis is 1 we have to transpose because we build the - # columns into rows. Fortunately numpy is efficient at this. - blocks = np.array(x) if axis == 0 else np.array(x).T - - # Sometimes we only get a single column or row, which is - # problematic for building blocks from the partitions, so we - # add whatever dimension we're missing from the input. - return _fix_blocks_dimensions(blocks, axis) - - -def _create_blocks_helper(df, npartitions, axis): - # Single partition dataframes don't need to be repartitioned - if npartitions == 1: - return df - # In the case that the size is not a multiple of the number of partitions, - # we need to add one to each partition to avoid losing data off the end - block_size = df.shape[axis ^ 1] // npartitions \ - if df.shape[axis ^ 1] % npartitions == 0 \ - else df.shape[axis ^ 1] // npartitions + 1 - - # if not isinstance(df.columns, pandas.RangeIndex): - # df.columns = pandas.RangeIndex(0, len(df.columns)) - - blocks = [ - df.iloc[:, i * block_size:(i + 1) * block_size] - if axis == 0 else df.iloc[i * block_size:(i + 1) * block_size, :] - for i in range(npartitions) - ] - - for block in blocks: - block.columns = pandas.RangeIndex(0, len(block.columns)) - block.reset_index(inplace=True, drop=True) - return blocks + return df._data_manager.to_pandas() def _inherit_docstrings(parent, excluded=[]): @@ -503,274 +62,3 @@ def decorator(cls): return cls return decorator - - -def _fix_blocks_dimensions(blocks, axis): - """Checks that blocks is 2D, and adds a dimension if not. - """ - if blocks.ndim < 2: - return np.expand_dims(blocks, axis=axis ^ 1) - return blocks - - -@ray.remote -def _deploy_func(func, dataframe, *args): - """Deploys a function for the _map_partitions call. - Args: - dataframe (pandas.DataFrame): The pandas DataFrame for this partition. - Returns: - A futures object representing the return value of the function - provided. - """ - if len(args) == 0: - return func(dataframe) - else: - return func(dataframe, *args) - - -@ray.remote -def extractor(df_chunk, row_loc, col_loc): - """Retrieve an item from remote block - """ - # We currently have to do the writable flag trick because a pandas bug - # https://github.com/pandas-dev/pandas/issues/17192 - try: - row_loc.flags.writeable = True - col_loc.flags.writeable = True - except AttributeError: - # Locators might be scaler or python list - pass - # Python2 doesn't allow writable flag to be set on this object. Copying - # into a list allows it to be used by iloc. - except ValueError: - row_loc = list(row_loc) - col_loc = list(col_loc) - return df_chunk.iloc[row_loc, col_loc] - - -@ray.remote -def writer(df_chunk, row_loc, col_loc, item): - """Make a copy of the block and write new item to it - """ - df_chunk = df_chunk.copy() - df_chunk.iloc[row_loc, col_loc] = item - return df_chunk - - -@ray.remote -def _build_col_widths(df_col): - """Compute widths (# of columns) for each partition.""" - widths = np.array( - ray.get([_deploy_func.remote(_get_widths, d) for d in df_col])) - - return widths - - -@ray.remote -def _build_row_lengths(df_row): - """Compute lengths (# of rows) for each partition.""" - lengths = np.array( - ray.get([_deploy_func.remote(_get_lengths, d) for d in df_row])) - - return lengths - - -@ray.remote -def _build_coord_df(lengths, index): - """Build the coordinate DataFrame over all partitions.""" - filtered_lengths = [x for x in lengths if x > 0] - coords = None - if len(filtered_lengths) > 0: - coords = np.vstack([ - np.column_stack((np.full(l, i), np.arange(l))) - for i, l in enumerate(filtered_lengths) - ]) - col_names = ("partition", "index_within_partition") - return pandas.DataFrame(coords, index=index, columns=col_names) - - -@ray.remote -def create_blocks(df, npartitions, axis): - return _create_blocks_helper(df, npartitions, axis) - - -@memoize -@ray.remote -def _blocks_to_series(*partition): - """Used in indexing, concatenating blocks in a flexible way - """ - if len(partition) == 0: - return pandas.Series() - - partition = [pandas.Series(p.squeeze()) for p in partition] - series = pandas.concat(partition) - return series - - -@memoize -@ray.remote -def _blocks_to_col(*partition): - if len(partition): - return pandas.concat(partition, axis=0, copy=False)\ - .reset_index(drop=True) - else: - return pandas.DataFrame() - - -@memoize -@ray.remote -def _blocks_to_row(*partition): - if len(partition): - row_part = pandas.concat(partition, axis=1, copy=False)\ - .reset_index(drop=True) - # Because our block partitions contain different indices (for the - # columns), this change is needed to ensure correctness. - row_part.columns = pandas.RangeIndex(0, len(row_part.columns)) - return row_part - else: - return pandas.DataFrame() - - -@ray.remote -def _reindex_helper(old_index, new_index, axis, npartitions, *df): - """Reindexes a DataFrame to prepare for join/concat. - - Args: - df: The DataFrame partition - old_index: The index/column for this partition. - new_index: The new index/column to assign. - axis: Which axis to reindex over. - - Returns: - A new set of blocks made up of DataFrames. - """ - df = pandas.concat(df, axis=axis ^ 1) - if axis == 1: - df.index = old_index - elif axis == 0: - df.columns = old_index - - df = df.reindex(new_index, copy=False, axis=axis ^ 1) - return _create_blocks_helper(df, npartitions, axis) - - -@ray.remote -def _co_op_helper(func, left_columns, right_columns, left_df_len, left_idx, - *zipped): - """Copartition operation where two DataFrames must have aligned indexes. - - NOTE: This function assumes things are already copartitioned. Requires that - row partitions are passed in as blocks. - - Args: - func: The operation to conduct between two DataFrames. - left_columns: The column names for the left DataFrame. - right_columns: The column names for the right DataFrame. - left_df_len: The length of the left. This is used so we can split up - the zipped partitions. - zipped: The DataFrame partitions (in blocks). - - Returns: - A new set of blocks for the partitioned DataFrame. - """ - left = pandas.concat(zipped[:left_df_len], axis=1, copy=False).copy() - left.columns = left_columns - if left_idx is not None: - left.index = left_idx - - right = pandas.concat(zipped[left_df_len:], axis=1, copy=False).copy() - right.columns = right_columns - - new_rows = func(left, right) - - new_blocks = _create_blocks_helper(new_rows, left_df_len, 0) - - if left_idx is not None: - new_blocks.append(new_rows.index) - - return new_blocks - - -@ray.remote -def _match_partitioning(column_partition, lengths, index): - """Match the number of rows on each partition. Used in df.merge(). - - NOTE: This function can cause problems when there are empty column - partitions. - - The way this function is intended to be used is as follows: Align the - right partitioning with the left. The left will remain unchanged. Then, - you are free to perform actions on a per-partition basis with the - partitioning. - - The index objects must already be identical for this to work correctly. - - Args: - column_partition: The column partition to change. - lengths: The lengths of each row partition to match to. - index: The index index of the column_partition. This is used to push - down to the inner frame for correctness in the merge. - - Returns: - A list of blocks created from this column partition. - """ - partitioned_list = [] - - columns = column_partition.columns - # We set this because this is the only place we can guarantee correct - # placement. We use it in the case the user wants to join on the index. - column_partition.index = index - for length in lengths: - if len(column_partition) == 0: - partitioned_list.append(pandas.DataFrame(columns=columns)) - continue - - partitioned_list.append(column_partition.iloc[:length, :]) - column_partition = column_partition.iloc[length:, :] - return partitioned_list - - -@ray.remote -def _concat_index(*index_parts): - return index_parts[0].append(index_parts[1:]) - - -@ray.remote -def _compile_remote_dtypes(*column_of_blocks): - small_dfs = [df.loc[0:0] for df in column_of_blocks] - return pandas.concat(small_dfs, copy=False).dtypes - - -@ray.remote -def extract_block(blk_partitions, row_lookup, col_lookup, col_name_suffix): - """ - This function extracts a single block from blk_partitions using - the row_lookup and col_lookup. - - Pass in col_name_suffix='_old' when operate on a joined df. - """ - - def apply_suffix(s): - return s + col_name_suffix - - # Address Arrow Error: - # Buffer source array is read-only - row_lookup = row_lookup.copy() - col_lookup = col_lookup.copy() - - df_columns = [] - for row_idx, row_df in row_lookup.groupby(apply_suffix('partition')): - this_column = [] - for col_idx, col_df in col_lookup.groupby(apply_suffix('partition')): - block_df_oid = blk_partitions[row_idx, col_idx] - block_df = ray.get(block_df_oid) - chunk = block_df.iloc[row_df[apply_suffix( - 'index_within_partition' - )], col_df[apply_suffix('index_within_partition')]] - this_column.append(chunk) - df_columns.append(pandas.concat(this_column, axis=1)) - final_df = pandas.concat(df_columns) - final_df.index = pandas.RangeIndex(0, final_df.shape[0]) - final_df.columns = pandas.RangeIndex(0, final_df.shape[1]) - - return final_df diff --git a/modin/sql/connection.py b/modin/sql/connection.py index bf16edb267f..23c985f3658 100644 --- a/modin/sql/connection.py +++ b/modin/sql/connection.py @@ -6,7 +6,6 @@ class Connection(object): - def __init__(self, name): self._name = name self._cursor = None @@ -23,7 +22,6 @@ def close(self): class Cursor(object): - def __init__(self): self._tables = {} diff --git a/requirements.txt b/requirements.txt index a07a7ca9fa7..7fbc3bf98df 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,4 @@ pandas==0.22 ray==0.5.2 +strip_hints +typing