diff --git a/quantization/AutomaticQuantizationWithVoyageAI.ipynb b/quantization/AutomaticQuantizationWithVoyageAI.ipynb
new file mode 100644
index 0000000..088924f
--- /dev/null
+++ b/quantization/AutomaticQuantizationWithVoyageAI.ipynb
@@ -0,0 +1,2422 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Atlas Vector Search - Vector Quantization - Automatic Quantization with Voyage AI"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This notebook is a companion to the [Automatic Quantization with Voyage AI](https://www.mongodb.com/docs/atlas/atlas-vector-search/tutorials/auto-quantize-with-voyage-ai/) tutorial. Refer to the page for set-up instructions and detailed explanations.\n",
+ "\n",
+ "This tutorial details techniques needed to design, deploy, and manage advanced AI workloads at scale, ensuring optimal performance and cost efficiency.\n",
+ "\n",
+ "\n",
+ "
\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 19538,
+ "status": "ok",
+ "timestamp": 1756743355864,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "MlVgdTfI4mVF",
+ "outputId": "48eefd32-5470-44fe-db52-f3a799248c94"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/491.5 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━\u001b[0m \u001b[32m471.0/491.5 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m491.5/491.5 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h"
+ ]
+ }
+ ],
+ "source": [
+ "pip install --quiet datasets==3.6.0 gcsfs==2025.3.0 fsspec==2025.3.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 16093,
+ "status": "ok",
+ "timestamp": 1756743375636,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "a_rQlPqIwJoe",
+ "outputId": "c8baf8bc-c1ac-40bb-99c3-7cd82dc477e0"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m313.6/313.6 kB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h"
+ ]
+ }
+ ],
+ "source": [
+ "pip install --quiet pymongo voyageai pandas==2.2.2 matplotlib"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 19250,
+ "status": "ok",
+ "timestamp": 1756744205537,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "v9WNOdlUESGQ",
+ "outputId": "096a4f12-42b1-4af7-b0f9-c0eaf0cbeaaf"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Enter your Voyage API Key: ··········\n",
+ "Enter your MongoDB URI: ··········\n"
+ ]
+ }
+ ],
+ "source": [
+ "import getpass\n",
+ "import os\n",
+ "import voyageai\n",
+ "\n",
+ "# Function to securely get and set environment variables\n",
+ "def set_env_securely(var_name, prompt):\n",
+ " value = getpass.getpass(prompt)\n",
+ " os.environ[var_name] = value\n",
+ "\n",
+ "# Environment Variables\n",
+ "set_env_securely(\"VOYAGE_API_KEY\", \"Enter your Voyage API Key: \")\n",
+ "set_env_securely(\"MONGO_URI\", \"Enter your MongoDB URI: \")\n",
+ "MONGO_URI = os.environ.get(\"MONGO_URI\")\n",
+ "if not MONGO_URI:\n",
+ " raise ValueError(\"MONGO_URI not set in environment variables.\")\n",
+ "\n",
+ "# Voyage Client\n",
+ "voyage_client = voyageai.Client()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 48,
+ "status": "ok",
+ "timestamp": 1756744211284,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "VdidySCdPv1b"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "from datasets import load_dataset\n",
+ "from bson.binary import Binary, BinaryVectorDtype\n",
+ "import pymongo\n",
+ "\n",
+ "# Connect to Cluster\n",
+ "def get_mongo_client(uri):\n",
+ " \"\"\"Connect to MongoDB and confirm the connection.\"\"\"\n",
+ " client = pymongo.MongoClient(uri)\n",
+ " if client.admin.command(\"ping\").get(\"ok\") == 1.0:\n",
+ " print(\"Connected to MongoDB successfully.\")\n",
+ " return client\n",
+ " print(\"Failed to connect to MongoDB.\")\n",
+ " return None\n",
+ "\n",
+ "# Generate BSON Vector\n",
+ "def generate_bson_vector(array, data_type):\n",
+ " \"\"\"Convert an array to BSON vector format.\"\"\"\n",
+ " array = [float(val) for val in eval(array)]\n",
+ " return Binary.from_vector(array, BinaryVectorDtype(data_type))\n",
+ "\n",
+ "# Load Datasets\n",
+ "def load_and_prepare_data(dataset_name, amount):\n",
+ " \"\"\"Load and prepare streaming datasets for DataFrame.\"\"\"\n",
+ " data = load_dataset(dataset_name, streaming=True, split=\"train\").take(amount)\n",
+ " return pd.DataFrame(data)\n",
+ "\n",
+ "# Insert datasets into MongoDB Collection\n",
+ "def insert_dataframe_into_collection(df, collection):\n",
+ " \"\"\"Insert Dataset records into MongoDB collection.\"\"\"\n",
+ " collection.insert_many(df.to_dict(\"records\"))\n",
+ " print(f\"Inserted {len(df)} records into '{collection.name}' collection.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 34182,
+ "status": "ok",
+ "timestamp": 1756744424113,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "WG--GrYFPzV9",
+ "outputId": "766e33fe-48a9-41c8-a823-9f45b5453a70"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Connected to MongoDB successfully.\n",
+ "Collection 'wikipedia-22-12-en' created successfully.\n",
+ "Inserted 2500 records into 'wikipedia-22-12-en' collection.\n",
+ "Collection 'wikipedia-22-12-en-annotation' created successfully.\n",
+ "Inserted 2500 records into 'wikipedia-22-12-en-annotation' collection.\n"
+ ]
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "from bson.binary import Binary, BinaryVectorDtype\n",
+ "from pymongo.errors import CollectionInvalid\n",
+ "\n",
+ "wikipedia_data_df = load_and_prepare_data(\"MongoDB/wikipedia-22-12-en-voyage-embed\", amount=2500)\n",
+ "wikipedia_annotation_data_df = load_and_prepare_data(\"MongoDB/wikipedia-22-12-en-annotation\", amount=2500)\n",
+ "wikipedia_annotation_data_df.drop(columns=[\"_id\"], inplace=True)\n",
+ "\n",
+ "# Convert embeddings to BSON format\n",
+ "wikipedia_data_df[\"embedding\"] = wikipedia_data_df[\"embedding\"].apply(\n",
+ " lambda x: generate_bson_vector(x, BinaryVectorDtype.FLOAT32)\n",
+ ")\n",
+ "\n",
+ "# MongoDB Setup\n",
+ "mongo_client = get_mongo_client(MONGO_URI)\n",
+ "DB_NAME = \"testing_datasets\"\n",
+ "db = mongo_client[DB_NAME]\n",
+ "\n",
+ "collections = {\n",
+ " \"wikipedia-22-12-en\": wikipedia_data_df,\n",
+ " \"wikipedia-22-12-en-annotation\": wikipedia_annotation_data_df,\n",
+ "}\n",
+ "\n",
+ "# Create Collections and Insert Data\n",
+ "for collection_name, df in collections.items():\n",
+ " if collection_name not in db.list_collection_names():\n",
+ " try:\n",
+ " db.create_collection(collection_name)\n",
+ " print(f\"Collection '{collection_name}' created successfully.\")\n",
+ " except CollectionInvalid:\n",
+ " print(f\"Error creating collection '{collection_name}'.\")\n",
+ " else:\n",
+ " print(f\"Collection '{collection_name}' already exists.\")\n",
+ "\n",
+ " # Clear collection and insert fresh data\n",
+ " collection = db[collection_name]\n",
+ " collection.delete_many({})\n",
+ " insert_dataframe_into_collection(df, collection)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 49,
+ "status": "ok",
+ "timestamp": 1756744459328,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "SXeaGqmI1TsC"
+ },
+ "outputs": [],
+ "source": [
+ "import time\n",
+ "from pymongo.operations import SearchIndexModel\n",
+ "\n",
+ "def setup_vector_search_index(collection, index_definition, index_name=\"vector_index\"):\n",
+ " new_vector_search_index_model = SearchIndexModel(\n",
+ " definition=index_definition, name=index_name, type=\"vectorSearch\"\n",
+ " )\n",
+ "\n",
+ " # Create the new index\n",
+ " try:\n",
+ " result = collection.create_search_index(model=new_vector_search_index_model)\n",
+ " print(f\"Creating index '{index_name}'...\")\n",
+ "\n",
+ " # Wait for initial sync to complete\n",
+ " print(\"Polling to check if the index is ready. This may take around a minute.\")\n",
+ " predicate=None\n",
+ " if predicate is None:\n",
+ " predicate = lambda index: index.get(\"queryable\") is True\n",
+ " while True:\n",
+ " indices = list(collection.list_search_indexes(result))\n",
+ " if len(indices) and predicate(indices[0]):\n",
+ " break\n",
+ " time.sleep(5)\n",
+ " print(f\"Index '{index_name}' is ready for querying.\")\n",
+ " return result\n",
+ "\n",
+ " except Exception as e:\n",
+ " print(f\"Error creating new vector search index '{index_name}': {e!s}\")\n",
+ " return None"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 50,
+ "status": "ok",
+ "timestamp": 1756744468384,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "y0vqX0Ed1dgc"
+ },
+ "outputs": [],
+ "source": [
+ "vector_index_definition_scalar_quantized = {\n",
+ " \"fields\": [\n",
+ " {\n",
+ " \"type\": \"vector\",\n",
+ " \"path\": \"embedding\",\n",
+ " \"quantization\": \"scalar\", # Added quantization for scalar vector quantization\n",
+ " \"numDimensions\": 1024,\n",
+ " \"similarity\": \"cosine\",\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "vector_index_definition_binary_quantized = {\n",
+ " \"fields\": [\n",
+ " {\n",
+ " \"type\": \"vector\",\n",
+ " \"path\": \"embedding\",\n",
+ " \"quantization\": \"binary\", # Changed quantization to binary for binary vector quantization\n",
+ " \"numDimensions\": 1024,\n",
+ " \"similarity\": \"cosine\",\n",
+ " }\n",
+ " ]\n",
+ "}\n",
+ "\n",
+ "vector_index_definition_float32_ann = {\n",
+ " \"fields\": [\n",
+ " {\n",
+ " \"type\": \"vector\",\n",
+ " \"path\": \"embedding\",\n",
+ " \"numDimensions\": 1024,\n",
+ " \"similarity\": \"cosine\",\n",
+ " }\n",
+ " ]\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 47,
+ "status": "ok",
+ "timestamp": 1756744474089,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "jlQHLYxA1mNW"
+ },
+ "outputs": [],
+ "source": [
+ "import pymongo\n",
+ "vector_search_scalar_quantized_index_name = \"vector_index_scalar_quantized\"\n",
+ "vector_search_binary_quantized_index_name = \"vector_index_binary_quantized\"\n",
+ "vector_search_float32_ann_index_name = \"vector_index_float32_ann\"\n",
+ "db = mongo_client[DB_NAME]\n",
+ "wiki_data_collection = db[\"wikipedia-22-12-en\"]\n",
+ "wiki_annotation_data_collection = db[\"wikipedia-22-12-en-annotation\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 196
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 87075,
+ "status": "ok",
+ "timestamp": 1756744563624,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "oKw8HI3H1r7w",
+ "outputId": "8e447700-a341-411b-815e-f97e6f61a920"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Creating index 'vector_index_scalar_quantized'...\n",
+ "Polling to check if the index is ready. This may take around a minute.\n",
+ "Index 'vector_index_scalar_quantized' is ready for querying.\n",
+ "Creating index 'vector_index_binary_quantized'...\n",
+ "Polling to check if the index is ready. This may take around a minute.\n",
+ "Index 'vector_index_binary_quantized' is ready for querying.\n",
+ "Creating index 'vector_index_float32_ann'...\n",
+ "Polling to check if the index is ready. This may take around a minute.\n",
+ "Index 'vector_index_float32_ann' is ready for querying.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "string"
+ },
+ "text/plain": [
+ "'vector_index_float32_ann'"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from pymongo.operations import SearchIndexModel\n",
+ "\n",
+ "setup_vector_search_index(\n",
+ " wiki_data_collection,\n",
+ " vector_index_definition_scalar_quantized,\n",
+ " vector_search_scalar_quantized_index_name,\n",
+ ")\n",
+ "setup_vector_search_index(\n",
+ " wiki_data_collection,\n",
+ " vector_index_definition_binary_quantized,\n",
+ " vector_search_binary_quantized_index_name,\n",
+ ")\n",
+ "setup_vector_search_index(\n",
+ " wiki_data_collection,\n",
+ " vector_index_definition_float32_ann,\n",
+ " vector_search_float32_ann_index_name,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 47,
+ "status": "ok",
+ "timestamp": 1756744594454,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "G-YgBPNOKwF-"
+ },
+ "outputs": [],
+ "source": [
+ "def get_embedding(text, task_prefix=\"document\"):\n",
+ " \"\"\"Fetch embedding for a given text using Voyage AI.\"\"\"\n",
+ " if not text.strip():\n",
+ " print(\"Empty text provided for embedding.\")\n",
+ " return []\n",
+ " result = voyage_client.embed([text], model=\"voyage-3-large\", input_type=task_prefix)\n",
+ " return result.embeddings[0]\n",
+ "\n",
+ "def custom_vector_search(\n",
+ " user_query,\n",
+ " collection,\n",
+ " embedding_path,\n",
+ " vector_search_index_name=\"vector_index\",\n",
+ " top_k=5,\n",
+ " num_candidates=25,\n",
+ " use_full_precision=False,\n",
+ "):\n",
+ " \"\"\"Perform vector search on a MongoDB collection using specified index.\"\"\"\n",
+ " # Generate embedding for the user query\n",
+ " query_embedding = get_embedding(user_query, task_prefix=\"query\")\n",
+ "\n",
+ " if query_embedding is None or not query_embedding:\n",
+ " return {\n",
+ " \"error\": \"Invalid query or embedding generation failed.\",\n",
+ " \"execution_time_ms\": None,\n",
+ " \"results\": [],\n",
+ " }\n",
+ "\n",
+ " # Define the vector search stage\n",
+ " vector_search_stage = {\n",
+ " \"$vectorSearch\": {\n",
+ " \"index\": vector_search_index_name,\n",
+ " \"queryVector\": query_embedding,\n",
+ " \"path\": embedding_path,\n",
+ " \"limit\": top_k,\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " # Configure search precision approach\n",
+ " if not use_full_precision:\n",
+ " # For approximate nearest neighbor (ANN) search\n",
+ " vector_search_stage[\"$vectorSearch\"][\"numCandidates\"] = num_candidates\n",
+ " else:\n",
+ " # For exact nearest neighbor (ENN) search\n",
+ " vector_search_stage[\"$vectorSearch\"][\"exact\"] = True\n",
+ "\n",
+ " # Project stage to fetch desired fields and vector search score\n",
+ " project_stage = {\n",
+ " \"$project\": {\n",
+ " \"_id\": 0,\n",
+ " \"title\": 1,\n",
+ " \"text\": 1,\n",
+ " \"wiki_id\": 1,\n",
+ " \"url\": 1,\n",
+ " \"score\": {\"$meta\": \"vectorSearchScore\"},\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " # Define the aggregate pipeline\n",
+ " pipeline = [vector_search_stage, project_stage]\n",
+ "\n",
+ " try:\n",
+ " # Execute the explain command to measure latency\n",
+ " explain_result = collection.database.command(\n",
+ " \"explain\",\n",
+ " {\"aggregate\": collection.name, \"pipeline\": pipeline, \"cursor\": {}},\n",
+ " verbosity=\"executionStats\",\n",
+ " )\n",
+ "\n",
+ " # Extract the execution time\n",
+ " vector_search_explain = explain_result[\"stages\"][0][\"$vectorSearch\"]\n",
+ " execution_time_ms = vector_search_explain[\"explain\"][\"query\"][\"stats\"][\"context\"][\"millisElapsed\"]\n",
+ "\n",
+ " # Execute the actual aggregate query\n",
+ " results = list(collection.aggregate(pipeline))\n",
+ "\n",
+ " return {\n",
+ " \"results\": results,\n",
+ " \"execution_time_ms\": execution_time_ms,\n",
+ " }\n",
+ " except Exception as e:\n",
+ " print(f\"Error during vector search: {e}\")\n",
+ " return {\n",
+ " \"error\": str(e),\n",
+ " \"execution_time_ms\": None,\n",
+ " \"results\": [],\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 175
+ },
+ "executionInfo": {
+ "elapsed": 1420,
+ "status": "ok",
+ "timestamp": 1756744627479,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "8qxNXCRdbJKD",
+ "outputId": "81d84363-b33f-4485-d16b-5025fc1a7be6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "summary": "{\n \"name\": \"results_df\",\n \"rows\": 4,\n \"fields\": [\n {\n \"column\": \"precision\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"_scalar_\",\n \"Float32_ENN\",\n \"_float32_ann\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"top_k\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 5,\n \"max\": 5,\n \"num_unique_values\": 1,\n \"samples\": [\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"num_candidates\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 25,\n \"max\": 25,\n \"num_unique_values\": 1,\n \"samples\": [\n 25\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"latency_ms\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 91.0287034707709,\n \"min\": 1.72466,\n \"max\": 205.778084,\n \"num_unique_values\": 4,\n \"samples\": [\n 205.778084\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"results\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
+ "type": "dataframe",
+ "variable_name": "results_df"
+ },
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " precision | \n",
+ " top_k | \n",
+ " num_candidates | \n",
+ " latency_ms | \n",
+ " results | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " _float32_ann | \n",
+ " 5 | \n",
+ " 25 | \n",
+ " 86.283681 | \n",
+ " {'title': 'Facebook', 'text': 'Data is read fr... | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " _scalar_ | \n",
+ " 5 | \n",
+ " 25 | \n",
+ " 205.778084 | \n",
+ " {'title': 'Facebook', 'text': 'Data is read fr... | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " _binary_ | \n",
+ " 5 | \n",
+ " 25 | \n",
+ " 26.408544 | \n",
+ " {'title': 'Facebook', 'text': 'Data is read fr... | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Float32_ENN | \n",
+ " 5 | \n",
+ " 25 | \n",
+ " 1.724660 | \n",
+ " {'title': 'Facebook', 'text': 'Data is read fr... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ " precision top_k num_candidates latency_ms \\\n",
+ "0 _float32_ann 5 25 86.283681 \n",
+ "1 _scalar_ 5 25 205.778084 \n",
+ "2 _binary_ 5 25 26.408544 \n",
+ "3 Float32_ENN 5 25 1.724660 \n",
+ "\n",
+ " results \n",
+ "0 {'title': 'Facebook', 'text': 'Data is read fr... \n",
+ "1 {'title': 'Facebook', 'text': 'Data is read fr... \n",
+ "2 {'title': 'Facebook', 'text': 'Data is read fr... \n",
+ "3 {'title': 'Facebook', 'text': 'Data is read fr... "
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "vector_search_indicies = [\n",
+ " vector_search_float32_ann_index_name,\n",
+ " vector_search_scalar_quantized_index_name,\n",
+ " vector_search_binary_quantized_index_name,\n",
+ "]\n",
+ "\n",
+ "# Random query\n",
+ "user_query = \"How do I increase my productivity for maximum output\"\n",
+ "test_top_k = 5\n",
+ "test_num_candidates = 25\n",
+ "\n",
+ "# Result is a list of dictionaries with the following headings: precision, top_k, latency_ms, results\n",
+ "results = []\n",
+ "\n",
+ "for vector_search_index in vector_search_indicies:\n",
+ "# Conduct a vector search operation using scalar quantized\n",
+ " vector_search_results = custom_vector_search(\n",
+ " user_query,\n",
+ " wiki_data_collection,\n",
+ " embedding_path=\"embedding\",\n",
+ " vector_search_index_name=vector_search_index,\n",
+ " top_k=test_top_k,\n",
+ " num_candidates=test_num_candidates,\n",
+ " use_full_precision=False,\n",
+ " )\n",
+ " # Include the precision in the results\n",
+ " precision = vector_search_index.split(\"vector_index\")[1]\n",
+ " precision = precision.replace(\"quantized\", \"\").capitalize()\n",
+ "\n",
+ " results.append(\n",
+ " {\n",
+ " \"precision\": precision,\n",
+ " \"top_k\": test_top_k,\n",
+ " \"num_candidates\": test_num_candidates,\n",
+ " \"latency_ms\": vector_search_results[\"execution_time_ms\"],\n",
+ " \"results\": vector_search_results[\"results\"][\n",
+ " 0\n",
+ " ], # Just taking the first result\n",
+ " }\n",
+ " )\n",
+ "\n",
+ "# Conduct a vector search operation using full precision\n",
+ "precision = \"Float32_ENN\"\n",
+ "vector_search_results = custom_vector_search(\n",
+ " user_query,\n",
+ " wiki_data_collection,\n",
+ " embedding_path=\"embedding\",\n",
+ " vector_search_index_name=\"vector_index_scalar_quantized\",\n",
+ " top_k=test_top_k,\n",
+ " num_candidates=test_num_candidates,\n",
+ " use_full_precision=True,\n",
+ ")\n",
+ "\n",
+ "results.append(\n",
+ " {\n",
+ " \"precision\": precision,\n",
+ " \"top_k\": test_top_k,\n",
+ " \"num_candidates\": test_num_candidates,\n",
+ " \"latency_ms\": vector_search_results[\"execution_time_ms\"],\n",
+ " \"results\": vector_search_results[\"results\"][0], # Just taking the first result\n",
+ " }\n",
+ ")\n",
+ "\n",
+ "# Convert the results to a pandas DataFrame with the headings: precision, top_k, latency_ms\n",
+ "results_df = pd.DataFrame(results)\n",
+ "results_df.columns = [\"precision\", \"top_k\", \"num_candidates\", \"latency_ms\", \"results\"]\n",
+ "\n",
+ "# To display the results:\n",
+ "results_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 47,
+ "status": "ok",
+ "timestamp": 1756744668014,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "uYUCb8RHg9Xf"
+ },
+ "outputs": [],
+ "source": [
+ "from datetime import timedelta\n",
+ "\n",
+ "def format_time(ms):\n",
+ " \"\"\"Convert milliseconds to a human-readable format\"\"\"\n",
+ " delta = timedelta(milliseconds=ms)\n",
+ "\n",
+ " # Extract minutes, seconds, and milliseconds with more precision\n",
+ " minutes = delta.seconds // 60\n",
+ " seconds = delta.seconds % 60\n",
+ " milliseconds = round(ms % 1000, 3) # Keep 3 decimal places for milliseconds\n",
+ "\n",
+ " # Format based on duration\n",
+ " if minutes > 0:\n",
+ " return f\"{minutes}m {seconds}.{milliseconds:03.0f}s\"\n",
+ " elif seconds > 0:\n",
+ " return f\"{seconds}.{milliseconds:03.0f}s\"\n",
+ " else:\n",
+ " return f\"{milliseconds:.3f}ms\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 48,
+ "status": "ok",
+ "timestamp": 1756744674155,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "QlKQOMnWhCuN"
+ },
+ "outputs": [],
+ "source": [
+ "def measure_latency_with_varying_topk(\n",
+ " user_query,\n",
+ " collection,\n",
+ " vector_search_index_name=\"vector_index_scalar_quantized\",\n",
+ " use_full_precision=False,\n",
+ " top_k_values=[5, 10, 100],\n",
+ " num_candidates_values=[25, 50, 100, 200, 500, 1000, 2000, 5000, 10000],\n",
+ "):\n",
+ " results_data = []\n",
+ "\n",
+ " # Conduct vector search operation for each (top_k, num_candidates) combination\n",
+ " for top_k in top_k_values:\n",
+ " for num_candidates in num_candidates_values:\n",
+ " # Skip scenarios where num_candidates < top_k\n",
+ " if num_candidates < top_k:\n",
+ " continue\n",
+ "\n",
+ " # Construct the precision name\n",
+ " precision_name = vector_search_index_name.split(\"vector_index\")[1]\n",
+ " precision_name = precision_name.replace(\"quantized\", \"\").capitalize()\n",
+ "\n",
+ " # If use_full_precision is true, then the precision name is \"_float32_\"\n",
+ " if use_full_precision:\n",
+ " precision_name = \"_float32_ENN\"\n",
+ "\n",
+ " # Perform the vector search\n",
+ " vector_search_results = custom_vector_search(\n",
+ " user_query=user_query,\n",
+ " collection=collection,\n",
+ " embedding_path=\"embedding\",\n",
+ " vector_search_index_name=vector_search_index_name,\n",
+ " top_k=top_k,\n",
+ " num_candidates=num_candidates,\n",
+ " use_full_precision=use_full_precision,\n",
+ " )\n",
+ "\n",
+ " # Extract the execution time (latency)\n",
+ " latency_ms = vector_search_results[\"execution_time_ms\"]\n",
+ "\n",
+ " # Append the results to the list\n",
+ " results_data.append(\n",
+ " {\n",
+ " \"precision\": precision_name,\n",
+ " \"top_k\": top_k,\n",
+ " \"num_candidates\": num_candidates,\n",
+ " \"latency_ms\": latency_ms,\n",
+ " }\n",
+ " )\n",
+ "\n",
+ " print(f\"Top-K: {top_k}, NumCandidates: {num_candidates}, \"\n",
+ " f\"Latency: {latency_ms} ms, Precision: {precision_name}\")\n",
+ "\n",
+ " return results_data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 47,
+ "status": "ok",
+ "timestamp": 1756744680284,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "-V0BT0uRiJ_4"
+ },
+ "outputs": [],
+ "source": [
+ "# Define vector search indices\n",
+ "vector_search_float32_ann_index_name = \"vector_index_float32_ann\"\n",
+ "vector_search_scalar_quantized_index_name = \"vector_index_scalar_quantized\"\n",
+ "vector_search_binary_quantized_index_name = \"vector_index_binary_quantized\"\n",
+ "\n",
+ "vector_search_indices = [\n",
+ " vector_search_float32_ann_index_name,\n",
+ " vector_search_scalar_quantized_index_name,\n",
+ " vector_search_binary_quantized_index_name,\n",
+ "]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 24303,
+ "status": "ok",
+ "timestamp": 1756744711035,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "Uc73DGUnR2ey",
+ "outputId": "7466e740-ed71-4c6e-b1ae-69425701e449"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Top-K: 5, NumCandidates: 25, Latency: 2.34802 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 50, Latency: 2.69349 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 100, Latency: 3.085918 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 200, Latency: 3.796262 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 500, Latency: 5.063448 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 1000, Latency: 3.763206 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 2000, Latency: 4.357494 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 5000, Latency: 5.895361 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 10000, Latency: 6.080381 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 25, Latency: 1.736514 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 50, Latency: 2.267651 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 100, Latency: 2.410042 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 200, Latency: 3.321675 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 500, Latency: 4.584557 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 1000, Latency: 2.963686 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 2000, Latency: 3.311705 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 5000, Latency: 3.798438 ms, Precision: _float32_ann\n",
+ "Top-K: 10, NumCandidates: 10000, Latency: 3.305494 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 50, Latency: 2.085725 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 100, Latency: 11.986639 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 200, Latency: 3.460139 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 500, Latency: 4.313759 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 1000, Latency: 2.559779 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 2000, Latency: 2.857659 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 5000, Latency: 3.102541 ms, Precision: _float32_ann\n",
+ "Top-K: 50, NumCandidates: 10000, Latency: 3.148161 ms, Precision: _float32_ann\n",
+ "Top-K: 100, NumCandidates: 100, Latency: 2.475068 ms, Precision: _float32_ann\n",
+ "Top-K: 100, NumCandidates: 200, Latency: 3.011821 ms, Precision: _float32_ann\n",
+ "Top-K: 100, NumCandidates: 500, Latency: 4.320916 ms, Precision: _float32_ann\n",
+ "Top-K: 100, NumCandidates: 1000, Latency: 2.698083 ms, Precision: _float32_ann\n",
+ "Top-K: 100, NumCandidates: 2000, Latency: 2.56315 ms, Precision: _float32_ann\n",
+ "Top-K: 100, NumCandidates: 5000, Latency: 2.816961 ms, Precision: _float32_ann\n",
+ "Top-K: 100, NumCandidates: 10000, Latency: 2.66185 ms, Precision: _float32_ann\n",
+ "Top-K: 5, NumCandidates: 25, Latency: 3.40843 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 50, Latency: 1.983106 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 100, Latency: 2.243061 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 200, Latency: 2.622319 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 500, Latency: 3.773975 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 1000, Latency: 2.988514 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 2000, Latency: 4.051868 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 5000, Latency: 3.148933 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 10000, Latency: 3.377691 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 25, Latency: 1.233653 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 50, Latency: 1.544515 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 100, Latency: 2.064514 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 200, Latency: 2.793519 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 500, Latency: 3.586925 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 1000, Latency: 2.483578 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 2000, Latency: 2.824229 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 5000, Latency: 3.014467 ms, Precision: _scalar_\n",
+ "Top-K: 10, NumCandidates: 10000, Latency: 2.996548 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 50, Latency: 1.651804 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 100, Latency: 2.876801 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 200, Latency: 2.583221 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 500, Latency: 3.614238 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 1000, Latency: 2.50203 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 2000, Latency: 2.935384 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 5000, Latency: 2.987948 ms, Precision: _scalar_\n",
+ "Top-K: 50, NumCandidates: 10000, Latency: 2.935468 ms, Precision: _scalar_\n",
+ "Top-K: 100, NumCandidates: 100, Latency: 1.895514 ms, Precision: _scalar_\n",
+ "Top-K: 100, NumCandidates: 200, Latency: 2.475355 ms, Precision: _scalar_\n",
+ "Top-K: 100, NumCandidates: 500, Latency: 3.728216 ms, Precision: _scalar_\n",
+ "Top-K: 100, NumCandidates: 1000, Latency: 2.455966 ms, Precision: _scalar_\n",
+ "Top-K: 100, NumCandidates: 2000, Latency: 2.946825 ms, Precision: _scalar_\n",
+ "Top-K: 100, NumCandidates: 5000, Latency: 9.271127 ms, Precision: _scalar_\n",
+ "Top-K: 100, NumCandidates: 10000, Latency: 2.896009 ms, Precision: _scalar_\n",
+ "Top-K: 5, NumCandidates: 25, Latency: 12.365069 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 50, Latency: 2.676547 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 100, Latency: 3.762128 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 200, Latency: 5.00018 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 500, Latency: 6.218719 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 1000, Latency: 5.543958 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 2000, Latency: 5.802571 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 5000, Latency: 5.624381 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 10000, Latency: 5.560114 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 25, Latency: 1.92962 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 50, Latency: 2.656911 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 100, Latency: 3.528849 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 200, Latency: 4.915123 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 500, Latency: 6.151708 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 1000, Latency: 5.041075 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 2000, Latency: 6.587714 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 5000, Latency: 5.426732 ms, Precision: _binary_\n",
+ "Top-K: 10, NumCandidates: 10000, Latency: 5.507867 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 50, Latency: 2.694392 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 100, Latency: 3.527617 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 200, Latency: 4.888442 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 500, Latency: 6.23655 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 1000, Latency: 5.018419 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 2000, Latency: 5.361668 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 5000, Latency: 5.568478 ms, Precision: _binary_\n",
+ "Top-K: 50, NumCandidates: 10000, Latency: 5.492152 ms, Precision: _binary_\n",
+ "Top-K: 100, NumCandidates: 100, Latency: 4.903153 ms, Precision: _binary_\n",
+ "Top-K: 100, NumCandidates: 200, Latency: 5.057359 ms, Precision: _binary_\n",
+ "Top-K: 100, NumCandidates: 500, Latency: 6.108579 ms, Precision: _binary_\n",
+ "Top-K: 100, NumCandidates: 1000, Latency: 5.815404 ms, Precision: _binary_\n",
+ "Top-K: 100, NumCandidates: 2000, Latency: 5.177239 ms, Precision: _binary_\n",
+ "Top-K: 100, NumCandidates: 5000, Latency: 6.662274 ms, Precision: _binary_\n",
+ "Top-K: 100, NumCandidates: 10000, Latency: 5.385733 ms, Precision: _binary_\n",
+ "Top-K: 5, NumCandidates: 25, Latency: 0.128725 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 50, Latency: 0.092744 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 100, Latency: 0.092424 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 200, Latency: 0.08805 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 500, Latency: 0.087515 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 1000, Latency: 0.090264 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 2000, Latency: 0.084766 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 5000, Latency: 0.140481 ms, Precision: _float32_ENN\n",
+ "Top-K: 5, NumCandidates: 10000, Latency: 0.084446 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 25, Latency: 0.080338 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 50, Latency: 0.08325 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 100, Latency: 0.095388 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 200, Latency: 0.087154 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 500, Latency: 0.084021 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 1000, Latency: 0.077539 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 2000, Latency: 0.076152 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 5000, Latency: 0.083395 ms, Precision: _float32_ENN\n",
+ "Top-K: 10, NumCandidates: 10000, Latency: 0.08718 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 50, Latency: 0.0806 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 100, Latency: 0.080024 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 200, Latency: 0.077087 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 500, Latency: 0.078435 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 1000, Latency: 0.08603 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 2000, Latency: 0.089214 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 5000, Latency: 0.077529 ms, Precision: _float32_ENN\n",
+ "Top-K: 50, NumCandidates: 10000, Latency: 0.145385 ms, Precision: _float32_ENN\n",
+ "Top-K: 100, NumCandidates: 100, Latency: 0.0853 ms, Precision: _float32_ENN\n",
+ "Top-K: 100, NumCandidates: 200, Latency: 0.090102 ms, Precision: _float32_ENN\n",
+ "Top-K: 100, NumCandidates: 500, Latency: 0.088583 ms, Precision: _float32_ENN\n",
+ "Top-K: 100, NumCandidates: 1000, Latency: 0.085062 ms, Precision: _float32_ENN\n",
+ "Top-K: 100, NumCandidates: 2000, Latency: 0.079546 ms, Precision: _float32_ENN\n",
+ "Top-K: 100, NumCandidates: 5000, Latency: 0.122299 ms, Precision: _float32_ENN\n",
+ "Top-K: 100, NumCandidates: 10000, Latency: 0.081493 ms, Precision: _float32_ENN\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Run the measurements\n",
+ "user_query = \"How do I increase my productivity for maximum output\"\n",
+ "top_k_values = [5, 10, 50, 100]\n",
+ "num_candidates_values = [25, 50, 100, 200, 500, 1000, 2000, 5000, 10000]\n",
+ "\n",
+ "latency_results = []\n",
+ "\n",
+ "for vector_search_index in vector_search_indices:\n",
+ " latency_results.append(\n",
+ " measure_latency_with_varying_topk(\n",
+ " user_query,\n",
+ " wiki_data_collection,\n",
+ " vector_search_index_name=vector_search_index,\n",
+ " use_full_precision=False,\n",
+ " top_k_values=top_k_values,\n",
+ " num_candidates_values=num_candidates_values,\n",
+ " )\n",
+ " )\n",
+ "\n",
+ "# Conduct vector search opreation using full precision\n",
+ "latency_results.append(\n",
+ " measure_latency_with_varying_topk(\n",
+ " user_query,\n",
+ " wiki_data_collection,\n",
+ " vector_search_index_name=\"vector_index_scalar_quantized\",\n",
+ " use_full_precision=True,\n",
+ " top_k_values=top_k_values,\n",
+ " num_candidates_values=num_candidates_values,\n",
+ " )\n",
+ ")\n",
+ "\n",
+ "# Combine all results into a single DataFrame\n",
+ "all_latency_results = pd.concat([pd.DataFrame(latency_results)])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 1625,
+ "status": "ok",
+ "timestamp": 1756744745265,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "2yddp_qBTy1X",
+ "outputId": "f8a5021a-0538-4694-9084-de9bb4e26b56"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAIjCAYAAADWYVDIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAq8ZJREFUeJzs3Xd4U9UbB/DvbdK9oLSlpS0to+wCMlSQQlHKEkSQH8PBUBmiyBBFVBCU6SyiIiiCAxDEoihDUBHK3ksREClllD1K6UqT+/vjkDRp0jZpM27L9/M8eUjuPbn3JL0teXPe8x5JlmUZREREREREBABwc3UHiIiIiIiIlIRBEhERERERkREGSUREREREREYYJBERERERERlhkERERERERGSEQRIREREREZERBklERERERERGGCQREREREREZYZBERERERERkhEESEbmMJEl44YUXXN0NIpeJiYnBoEGDDI///PNPSJKEP//8s8TnJiQkICEhwWF9c5QTJ06gY8eOCAwMhCRJ+PHHH13dJSIiMwySiCqAw4cPo3fv3oiOjoaXlxciIiKQmJiIOXPmuLprDpOamgpJkvDee+/Z5XiffvopFi1aZJdjVXSLFi2CJEnw8vLCuXPnzPYnJCSgUaNGLuhZ8bRaLRYuXIiEhAQEBQXB09MTMTExGDx4MPbs2ePq7jlNVlYWJk+ebFUg5ggDBw7E4cOHMW3aNHzzzTdo0aKFQ86TkJAASZJKvE2ePNkh5zemD35XrFhhsj0vLw/dunWDm5sbvvzyS4f3Qy8mJsbiezF8+HCn9YFI6dSu7gARlc22bdvQvn17VK9eHUOGDEFYWBjOnDmDHTt2YPbs2Rg5cqSru1gufPrppwgODjb5Vp+Kl5ubi5kzZ5aLYDw7Oxu9evXCunXr0LZtW7z22msICgpCamoqli9fjq+++gppaWmIjIx0aT/btm2L7OxseHh4OOwcWVlZmDJlCgA4fSQqOzsb27dvx+uvv+7wUeTXX38dzz77rOHx7t278dFHH+G1115D/fr1DdsbN27s0H4URaPRoHfv3lizZg0+//xzPP300049f9OmTfHSSy+ZbKtTp45T+0CkZAySiMq5adOmITAwELt370alSpVM9l26dMnp/bl9+zZ8fX2dfl5yvqZNm+Lzzz/HhAkTUK1aNVd3p1gvv/wy1q1bhw8//BCjR4822ffmm2/iww8/dE3HCnFzc4OXl5eru+Ewly9fBgCzv1VlUdTfnMTERJPHXl5e+Oijj5CYmOjyNEWNRoM+ffrgl19+wbx58/DMM884vQ8RERF48sknnX5eovKC6XZE5dzJkyfRsGFDix86QkNDzbZ9++23aN68Oby9vREUFIR+/frhzJkzJm1SUlLwv//9D9WrV4enpyeioqIwZswYZGdnm7QbNGgQ/Pz8cPLkSXTt2hX+/v544oknAAA6nQ6zZ89GXFwcvLy8EBISgs6dO1tMa/rxxx/RqFEjeHp6omHDhli3bl0Z3hFTCxcuxIMPPojQ0FB4enqiQYMGmDt3rkmbmJgY/PXXX9i0aZMh7cT4Q9SNGzcwevRoREVFwdPTE7Vr18asWbOg0+kMbYzT/+bPn49atWrB09MTLVu2xO7du8369c8//6BPnz4ICQmBt7c36tati9dffx0AsHHjRkiShJUrV5o9b8mSJZAkCdu3b7f4evfs2QNJkvDVV1+Z7fv1118hSRJ++eUXAMCtW7cwevRoxMTEwNPTE6GhoUhMTMS+fftKfmMBvPbaa9BqtZg5c2ax7fTvjaV0xsLpTpMnT4YkSTh+/DiefPJJBAYGIiQkBBMnToQsyzhz5gx69OiBgIAAhIWF4f333y+xn2fPnsW8efOQmJhoFiABgEqlwrhx4wyjSKdPn8aIESNQt25deHt7o0qVKvjf//6H1NRUk+fp0w63bt2KsWPHIiQkBL6+vujZs6chGNCTZRlTp05FZGQkfHx80L59e/z1119mfSlqTpL+mvL29sa9996LlJQUs+fm5eVh0qRJaN68OQIDA+Hr64v4+Hhs3LjR0CY1NRUhISEAgClTplhMOfvnn3/Qu3dvBAUFwcvLCy1atMCqVatMzqXRaDBlyhTExsbCy8sLVapUQZs2bbBhwwazfulNnjwZ0dHRAETQKkkSYmJiDPv379+PLl26ICAgAH5+fnjooYewY8cOi+/5pk2bMGLECISGhpZ59O/TTz9Fw4YN4enpiWrVquH555/HjRs3TNroU0j37t2L1q1bw9vbGzVq1MBnn31m8/ny8/PRr18//PTTT5g7dy6GDBlSpv6XRV5eHm7fvu2y8xMpGUeSiMq56OhobN++HUeOHClxHsi0adMwceJE9OnTB88++ywuX76MOXPmoG3btti/f78h0Pr++++RlZWF5557DlWqVMGuXbswZ84cnD17Ft9//73JMfPz89GpUye0adMG7733Hnx8fAAAzzzzDBYtWoQuXbrg2WefRX5+PlJSUrBjxw6TOQhbtmxBcnIyRowYAX9/f3z00Ud47LHHkJaWhipVqpT5/Zk7dy4aNmyIRx55BGq1Gj///DNGjBgBnU6H559/HgCQlJSEkSNHws/PzxCoVK1aFYBITWrXrh3OnTuHYcOGoXr16ti2bRsmTJiA9PR0JCUlmZxvyZIluHXrFoYNGwZJkvDOO++gV69e+O+//+Du7g4AOHToEOLj4+Hu7o6hQ4ciJiYGJ0+exM8//4xp06YhISEBUVFRWLx4MXr27Gly/MWLF6NWrVpo1aqVxdfbokUL1KxZE8uXL8fAgQNN9i1btgyVK1dGp06dAADDhw/HihUr8MILL6BBgwa4evUqtmzZgqNHj6JZs2Ylvrc1atTAgAED8Pnnn+PVV1+162hS3759Ub9+fcycOROrV6/G1KlTERQUhHnz5uHBBx/ErFmzsHjxYowbNw4tW7ZE27ZtizzW2rVrkZ+fj6eeesqqc+/evRvbtm1Dv379EBkZidTUVMydOxcJCQn4+++/Dde43siRI1G5cmW8+eabSE1NRVJSEl544QUsW7bM0GbSpEmYOnUqunbtiq5du2Lfvn3o2LEj8vLySuzPggULMGzYMLRu3RqjR4/Gf//9h0ceeQRBQUGIiooytMvIyMAXX3yB/v37Y8iQIbh16xYWLFiATp06YdeuXWjatClCQkIwd+5cPPfcc+jZsyd69eoFoCDl7K+//sIDDzyAiIgIvPrqq/D19cXy5cvx6KOP4ocffjBcj5MnT8aMGTPw7LPP4t5770VGRgb27NmDffv2mY3g6PXq1QuVKlXCmDFj0L9/f3Tt2hV+fn6G88bHxyMgIACvvPIK3N3dMW/ePCQkJGDTpk247777TI41YsQIhISEYNKkSWX6kD958mRMmTIFHTp0wHPPPYdjx45h7ty52L17N7Zu3Wr4nQWA69evo2vXrujTpw/69++P5cuX47nnnoOHh4fVqXL5+fno378/Vq5ciU8++QTDhg2zuq9Xrlyxqp2/vz88PT1LbPfHH3/Ax8cHWq0W0dHRGDNmDEaNGmV1f4gqPJmIyrX169fLKpVKVqlUcqtWreRXXnlF/vXXX+W8vDyTdqmpqbJKpZKnTZtmsv3w4cOyWq022Z6VlWV2nhkzZsiSJMmnT582bBs4cKAMQH711VdN2v7xxx8yAPnFF180O45OpzPcByB7eHjI//77r2HbwYMHZQDynDlzin3dp06dkgHI7777brHtLL2WTp06yTVr1jTZ1rBhQ7ldu3Zmbd9++23Z19dXPn78uMn2V199VVapVHJaWppJf6pUqSJfu3bN0O6nn36SAcg///yzYVvbtm1lf39/k/dSlk3fmwkTJsienp7yjRs3DNsuXbokq9Vq+c033yz2NU+YMEF2d3c36Udubq5cqVIl+emnnzZsCwwMlJ9//vlij2XJwoULZQDy7t275ZMnT8pqtdrkZ92uXTu5YcOGhsf692bhwoVmxwJg8nrefPNNGYA8dOhQw7b8/Hw5MjJSliRJnjlzpmH79evXZW9vb3ngwIHF9nfMmDEyAHn//v1WvT5L18z27dtlAPLXX39t2KZ/Hzp06GDysxszZoysUqkMP7tLly7JHh4e8sMPP2zS7rXXXpMBmPR/48aNMgB548aNsizLcl5enhwaGio3bdpUzs3NNbSbP3++DMDkms3PzzdpI8viPapatarJz/3y5ctm77veQw89JMfFxck5OTmGbTqdTm7durUcGxtr2NakSRP54YcfNnt+SYr6vX300UdlDw8P+eTJk4Zt58+fl/39/eW2bdsatunf8zZt2sj5+fk2nfv77783eW/1P5eOHTvKWq3W0O7jjz+WAchffvmlYVu7du1kAPL7779v2Jabmys3bdpUDg0NNft7W5j+5xodHS0DkD/55BOb+i7L4nfFmpul37PCunfvLs+aNUv+8ccf5QULFsjx8fEyAPmVV16xuV9EFRXT7YjKucTERGzfvh2PPPIIDh48iHfeeQedOnVCRESESYpMcnIydDod+vTpgytXrhhuYWFhiI2NNUnJ8fb2Nty/ffs2rly5gtatW0OWZezfv9+sD88995zJ4x9++AGSJOHNN980aytJksnjDh06oFatWobHjRs3RkBAAP777z/b3wwLjF/LzZs3ceXKFbRr1w7//fcfbt68WeLzv//+e8THx6Ny5com71uHDh2g1WqxefNmk/Z9+/ZF5cqVDY/j4+MBwPB6Ll++jM2bN+Ppp59G9erVTZ5r/N4MGDAAubm5JtWwli1bhvz8/BLnEfTt2xcajQbJycmGbevXr8eNGzfQt29fw7ZKlSph586dOH/+fInvQ1Fq1qyJp556CvPnz0d6enqpj1OY8YR7lUqFFi1aQJZlk7kblSpVQt26dUu8VjIyMgCIb9itYXzNaDQaXL16FbVr10alSpUspiIOHTrU5GcXHx8PrVaL06dPAwB+++035OXlYeTIkSbtLKX+FbZnzx5cunQJw4cPNynmMGjQIAQGBpq0ValUhjY6nQ7Xrl1Dfn4+WrRoYVUK5bVr1/DHH3+gT58+uHXrluFav3r1Kjp16oQTJ04YqhlWqlQJf/31F06cOFHicUui1Wqxfv16PProo6hZs6Zhe3h4OB5//HFs2bLF8DPUGzJkCFQqVZnOq/+5jB49Gm5uBR+HhgwZgoCAAKxevdqkvVqtNhn58fDwwLBhw3Dp0iXs3bvXqnNevHgRarUaNWrUsLm/GzZssOqmHykuzqpVq/DKK6+gR48eePrpp7Fp0yZ06tQJH3zwAc6ePWtz34gqIgZJRBVAy5YtkZycjOvXr2PXrl2YMGECbt26hd69e+Pvv/8GINYmkWUZsbGxCAkJMbkdPXrUpMhDWloaBg0ahKCgIPj5+SEkJATt2rUDALPAQq1Wm80JOHnyJKpVq4agoKAS+144UACAypUr4/r16za/D5Zs3boVHTp0gK+vLypVqoSQkBC89tprAMxfiyUnTpzAunXrzN6zDh06ADAvjlH49egDJv3r0X+gLyk1sl69emjZsiUWL15s2LZ48WLcf//9qF27drHPbdKkCerVq2eS7rVs2TIEBwfjwQcfNGx75513cOTIEURFReHee+/F5MmTSxWcvvHGG8jPzy9xbpItCr+PgYGB8PLyQnBwsNn2kq6VgIAAAGIOljWys7MxadIkwxy04OBghISE4MaNGxavmZJ+5vpgKTY21qRdSEiISUBtSVHPdXd3Nwko9L766is0btzYME8oJCQEq1evtupa//fffyHLMiZOnGh2veu/8NBf72+99RZu3LiBOnXqIC4uDi+//DIOHTpU4jksuXz5MrKyslC3bl2zffXr14dOpzObN1maIKMw/Xtb+LweHh6oWbOmYb9etWrVzApE6KvB6eerXbhwweRWeB7nO++8g+rVq6N3797YunWrTf3t0KGDVbfw8HCbjguIL2jGjBmD/Px8l5WGJ1IazkkiqkA8PDzQsmVLtGzZEnXq1MHgwYPx/fff480334ROp4MkSVi7dq3Fb2D1cwO0Wi0SExNx7do1jB8/HvXq1YOvry/OnTuHQYMGmRQrAABPT0+Tb2FtVdS3wbIsl/qYeidPnsRDDz2EevXq4YMPPkBUVBQ8PDywZs0afPjhh2avxRKdTofExES88sorFvcXLplrz9czYMAAjBo1CmfPnkVubi527NiBjz/+2Krn9u3bF9OmTcOVK1fg7++PVatWoX///lCrC/7s9+nTB/Hx8Vi5ciXWr1+Pd999F7NmzUJycjK6dOlidT9r1qyJJ598EvPnz8err75qtr/w6KGeVqst8piW3sfSvrf16tUDINYTa9q0abFtATHHaOHChRg9ejRatWplWPS0X79+Fq8ZR17Dtvj2228xaNAgPProo3j55ZcRGhoKlUqFGTNm4OTJkyU+X//axo0bV+RohD5Ab9u2LU6ePImffvoJ69evxxdffIEPP/wQn332mckooKMYj/YpSeEAZeHChSbLCoSHh2PDhg1o06YNHn74YWzatAlNmjSx6tgXLlywql1gYGCp3h/9/LZr167Z/FyiiohBElEFpS+OoE+BqlWrFmRZRo0aNYpdC+Pw4cM4fvw4vvrqKwwYMMCwvbiqVYXVqlULv/76K65du2bVaJKj/Pzzz8jNzcWqVatMvu03Ti3UK+qDfK1atZCZmWkYOSor/bf/R44cKbFtv379MHbsWCxduhTZ2dlwd3c3SZcrTt++fTFlyhT88MMPqFq1KjIyMtCvXz+zduHh4RgxYgRGjBiBS5cuoVmzZpg2bZpNQRIgRpO+/fZbzJo1y2yffrSkcMWwwt/UO0qXLl2gUqnw7bffWlW8YcWKFRg4cKBJ5bycnByz/ltLX9HtxIkTJqM/ly9fLnEUzPi5xqOAGo0Gp06dMvmAvWLFCtSsWRPJyckm13PhtNeirnV939zd3a263oOCgjB48GAMHjwYmZmZaNu2LSZPnmxzkBQSEgIfHx8cO3bMbN8///wDNzc3kwIV9qJ/b48dO2byc8nLy8OpU6fM3oPz58+blRs/fvw4ABiq9BX+O9mwYUOz89asWRO//vor2rVrh06dOiElJcVspNASa0eICgdm1tKPIuurHxLd7ZhuR1TObdy40eI31mvWrAFQkErSq1cvqFQqTJkyxay9LMu4evUqgIJvxY3byLKM2bNnW92nxx57DLIsGxasLHwuZ7H0Wm7evImFCxeatfX19bX4IbhPnz7Yvn07fv31V7N9N27cQH5+vk19CgkJQdu2bfHll18iLS3NZF/h9yY4OBhdunTBt99+i8WLF6Nz585m6WZFqV+/PuLi4rBs2TIsW7YM4eHhJhXgtFqtWQpWaGgoqlWrhtzcXJteEyCCySeffBLz5s0z+8Y7ICAAwcHBZvO3Pv30U5vPUxpRUVEYMmQI1q9fb3HhW51Oh/fff98wF0OlUpn9LObMmVPsyFdxOnToAHd3d8yZM8fkuIUrI1rSokULhISE4LPPPjOphLdo0SKz69XS9b5z506zcvH66nyFnx8aGoqEhATMmzfP4vwy47Lm+r8Xen5+fqhdu3aprh2VSoWOHTvip59+MimzfvHiRSxZsgRt2rQxpEzaU4cOHeDh4YGPPvrI5D1bsGABbt68iYcfftikfX5+PubNm2d4nJeXh3nz5iEkJATNmzc3HNOa1Le4uDisXr0amZmZSExMNMz1Ko695iRdu3bN7FrWaDSYOXMmPDw80L59+xL7QnQ34EgSUTk3cuRIZGVloWfPnqhXrx7y8vKwbds2LFu2DDExMRg8eDAA8SF26tSpmDBhAlJTU/Hoo4/C398fp06dwsqVKzF06FCMGzcO9erVQ61atTBu3DicO3cOAQEB+OGHH2yaI9S+fXs89dRT+Oijj3DixAl07twZOp0OKSkpaN++PV544QW7vf7ff/8dOTk5ZtsfffRRdOzYER4eHujevTuGDRuGzMxMfP755wgNDTX7ENi8eXPMnTsXU6dORe3atREaGooHH3wQL7/8MlatWoVu3bph0KBBaN68OW7fvo3Dhw9jxYoVSE1NtTpw0fvoo4/Qpk0bNGvWDEOHDkWNGjWQmpqK1atX48CBAyZtBwwYgN69ewMA3n77bZvO07dvX0yaNAleXl545plnTNIib926hcjISPTu3RtNmjSBn58ffvvtN+zevduqtYcsef311/HNN9/g2LFjZt+gP/vss5g5cyaeffZZtGjRAps3bzZ8C+8M77//Pk6ePIkXX3wRycnJ6NatGypXroy0tDR8//33+Oeffwwjbd26dcM333yDwMBANGjQANu3b8dvv/1W6pL0ISEhGDduHGbMmIFu3bqha9eu2L9/P9auXVvitePu7o6pU6di2LBhePDBB9G3b1+cOnUKCxcuNJuT1K1bNyQnJ6Nnz554+OGHcerUKXz22Wdo0KABMjMzDe28vb3RoEEDLFu2DHXq1EFQUBAaNWqERo0a4ZNPPkGbNm0QFxeHIUOGoGbNmrh48SK2b9+Os2fP4uDBgwCABg0aICEhAc2bN0dQUBD27NljKCdfGlOnTjWkoY0YMQJqtRrz5s1Dbm4u3nnnnVIdsyQhISGYMGECpkyZgs6dO+ORRx7BsWPH8Omnn6Jly5ZmBVKqVauGWbNmITU1FXXq1MGyZctw4MABzJ8/36RUuLVatWqF5ORkdO/eHYmJiUhJSSn2GrPXaPaqVaswdepU9O7dGzVq1MC1a9ewZMkSHDlyBNOnT0dYWJhdzkNU7jmzlB4R2d/atWvlp59+Wq5Xr57s5+cne3h4yLVr15ZHjhwpX7x40az9Dz/8ILdp00b29fWVfX195Xr16snPP/+8fOzYMUObv//+W+7QoYPs5+cnBwcHy0OGDDGU5jYuLztw4EDZ19fXYr/y8/Pld999V65Xr57s4eEhh4SEyF26dJH37t1raAPAYgnq6OjoEss660sJF3X75ptvZFmW5VWrVsmNGzeWvby85JiYGHnWrFnyl19+KQOQT506ZTjehQsX5Icfflj29/c3K61869YtecKECXLt2rVlDw8POTg4WG7durX83nvvGUr/FleSHBbKLR85ckTu2bOnXKlSJdnLy0uuW7euPHHiRLPn5ubmypUrV5YDAwPl7OzsYt+Twk6cOGF4P7Zs2WJ23Jdffllu0qSJ7O/vL/v6+spNmjSRP/300xKPa1wCvDB9WXjjEuCyLMpqP/PMM3JgYKDs7+8v9+nTR7506VKRJcAvX75sdlxL11rhcuPFyc/Pl7/44gs5Pj5eDgwMlN3d3eXo6Gh58ODBJuXBr1+/Lg8ePFgODg6W/fz85E6dOsn//POP2XVZ1PtQuIy3LMuyVquVp0yZIoeHh8ve3t5yQkKCfOTIEbNjWnquLMvyp59+KteoUUP29PSUW7RoIW/evFlu166dyXWq0+nk6dOny9HR0bKnp6d8zz33yL/88os8cOBAOTo62uR427Ztk5s3by57eHiY/QxOnjwpDxgwQA4LC5Pd3d3liIgIuVu3bvKKFSsMbaZOnSrfe++9cqVKlWRvb2+5Xr168rRp00oshV3c78m+ffvkTp06yX5+frKPj4/cvn17edu2bSZtirv2SlK4BLjexx9/LNerV092d3eXq1atKj/33HPy9evXTdror7M9e/bIrVq1kr28vOTo6Gj5448/turc+p/r999/b7Zv2bJlspubm9yyZUs5IyPD5tdlqz179sjdu3eXIyIiZA8PD9nPz09u06aNvHz5coefm6g8kWTZyTNLiYjIavn5+ahWrRq6d++OBQsWuLo7RHelhIQEXLlyxaq5hERUMXBOEhGRgv3444+4fPmySRENIiIicizOSSIiUqCdO3fi0KFDePvtt3HPPfcY1qkiIiIix+NIEhGRAs2dOxfPPfccQkND8fXXX7u6O0RERHcVzkkiIiIiIiIywpEkIiIiIiIiIwySiIiIiIiIjFT4wg06nQ7nz5+Hv78/JElydXeIiIiIiMhFZFnGrVu3UK1aNZNF1gur8EHS+fPnERUV5epuEBERERGRQpw5cwaRkZFF7q/wQZK/vz8A8UYEBAS4pA8ajQbr169Hx44d4e7u7pI+UPnD64ZsxWuGbMVrhmzFa4ZKQ0nXTUZGBqKiogwxQlEqfJCkT7ELCAhwaZDk4+ODgIAAl18YVH7wuiFb8ZohW/GaIVvxmqHSUOJ1U9I0HBZuICIiIiIiMsIgiYiIiIiIyAiDJCIiIiIiIiMVfk4SEREREVVMsiwjPz8fWq3W1V2hYmg0GqjVauTk5Dj8Z6VSqaBWq8u89A+DJCIiIiIqd/Ly8pCeno6srCxXd4VKIMsywsLCcObMGaesW+rj44Pw8HB4eHiU+hgMkoiIiIioXNHpdDh16hRUKhWqVasGDw8Pp3z4ptLR6XTIzMyEn59fsQu4lpUsy8jLy8Ply5dx6tQpxMbGlvp8DJKIiIiIqFzJy8uDTqdDVFQUfHx8XN0dKoFOp0NeXh68vLwcGiQBgLe3N9zd3XH69GnDOUuDhRuIiIiIqFxy9AduKp/scV3wyiIiIiIiIjLCIImIiIiIiMgIgyQiIiIiumtptcCffwJLl4p/HV1NXJZlDB06FEFBQZAkCZUqVcLo0aMde1KyGYMkIiIiIrorJScDMTFA+/bA44+Lf2NixHZHWbduHRYtWoRffvkF6enpaNSokd3PkZCQYBZ4Xb16FZ07d0a1atXg6emJqKgovPDCC8jIyDC0SU5ORmJiIkJCQhAQEIBWrVrh119/tXv/ygMGSURERER010lOBnr3Bs6eNd1+7pzY7qhA6eTJkwgPD0fr1q0RFhYGtdo5xabd3NzQo0cPrFq1CsePH8eiRYvw22+/Yfjw4YY2mzdvRmJiItasWYO9e/eiffv26N69O/bv3++UPioJgyRn0WohbdrkvLFcIiIioruILAO3b1t3y8gAXnxRPMfScQBg1CjRzprjWTqOJYMGDcLIkSORlpYGSZIQExNj1ub69esYMGAAKleuDB8fH3Tp0gUnTpww7L969Sr69++PiIgI+Pj4IC4uDkuXLjU5x6ZNmzB79mxIkgRJkpCamorKlSvjueeeQ4sWLRAdHY2HHnoII0aMQEpKiuG5SUlJeOWVV9CyZUvExsZi+vTpiI2Nxc8//2zV61u3bh3atGmDSpUqoUqVKujWrRtOnjxp2J+amgpJkpCcnIz27dvDx8cHTZo0wfbt2w1tFi1ahEqVKuHXX39F/fr14efnh86dOyM9Pd26N9lOGCQ5gbRyJToOHQp1YqLzxnKJiIiI7iJZWYCfn3W3wEAxYlQUWRYjTIGB1h0vK8u6Ps6ePRtvvfUWIiMjkZ6ejt27d5u1GTRoEPbs2YNVq1Zh+/btkGUZXbt2hUajAQDk5OSgefPmWL16NY4cOYKhQ4fiqaeewq5duwznaNWqFYYMGYL09HSkp6cjKirK7Dznz59HcnIy2rVrV2R/dTodbt26haCgIKte3+3btzF27Fjs2bMHv//+O9zc3NCzZ0/odDqTdq+//jrGjRuHAwcOoE6dOujfvz/y8/MN+7OysvDee+/hm2++webNm5GWloZx48ZZ1Qd74WKyjpacDFW/flAV/opBP5a7YgXQq5dr+kZEREREThMYGAh/f3+oVCqEhYWZ7T9x4gRWrVqFrVu3onXr1gCAxYsXIyoqCj/++CP+97//ISIiwiRgGDlyJH799VcsX74c9957LwIDA+Hh4QEfHx+L5+jfvz9++uknZGdno3v37vjiiy+K7O97772HzMxM9OnTx6rX99hjj5k8/vLLLxESEoK///4b1atXN2wfN24cHn74YQDAlClT0LBhQ/z777+oV68eAECj0eCzzz5DrVq1AAAvvPAC3nrrLav6YC8cSXIkrVaM1coypML79EHT6NFMvSMiIiIqIx8fIDPTutuaNdYdc80a647n42Of13D06FGo1Wrcd999hm1VqlRB3bp1cfToUQCAVqvF22+/jbi4OAQFBcHPzw+//vor0tLSrDrHhx9+iH379uGnn37CyZMnMXbsWIvtlixZgilTpmD58uUIDQ216tgnTpxA//79UbNmTQQEBBjSCQv3rXHjxob74eHhAIBLly4Ztvn4+BgCJH0b4/3OwJEkR0pJAc6eNQ+Q9GQZOHNGtEtIcGLHiIiIiCoWSQJ8fa1r27EjEBkpEnsszSeSJLG/Y0dApbJvP8vq3XffxezZs5GUlIS4uDj4+vpi9OjRyMvLs+r5YWFhCAsLQ7169RAUFIT4+HhMnDjREKwAwHfffYdnn30W33//PTp06GB137p3747o6Gh8/vnnqFatGnQ6HRo1amTWN3d3d8N9SRKflI1T8oz369vI1k78shOOJDmStRPMnDwRjYiIiOhuplIBs2eL+1Khb7P1j5OSnB8g1a9fH/n5+di5c6dh29WrV3Hs2DE0aNAAALB161b06NEDTz75JJo0aYKaNWvi+PHjJsfx8PCA1opMJX1gkpuba9i2dOlSDB48GEuXLjWkxFlD38833ngDDz30EOrXr4/r169b/XylYZDkSEYRuV3aEREREZFd9OolpoZHRJhuj4x03ZTx2NhY9OjRA0OGDMGWLVtw8OBBPPnkk4iIiECPHj0MbTZs2IBt27bh6NGjGDZsGC5evGhynJiYGOzcuROpqam4cuUKdDod1qxZg4ULF+LIkSNITU3F6tWrMXz4cDzwwAOGtLglS5ZgwIABeP/993HffffhwoULuHDhAm7evFli3ytXrowqVapg/vz5+Pfff/HHH38UmcpXHjBIcqT4eCAyEnLhryj0JAmIihLtiIiIiMipevUCUlOBjRuBJUvEv6dOubam1sKFC9G8eXN069YNrVq1gizLWLNmjSEF7Y033kCzZs3QqVMnJCQkICwsDI8++qjJMcaNGweVSoUGDRogJCQEaWlp8Pb2xueff442bdqgfv36GDNmDB555BH88ssvhufNnz8f+fn5eP755xEeHm64jRo1qsR+u7m54bvvvsPevXvRqFEjjBkzBu+++65d3xtnkmRnJ/g5WUZGBgIDA3Hz5k0EBAQ4vwPJyZB79zYv3qAPnFjdjoqg0WiwZs0adO3a1Sw3l8gSXjNkK14zZCulXDM5OTk4deoUatSoAS8vL5f1g6yj0+mQkZGBgIAAuLk5foymuOvD2tiAI0mO1qsXtN99h5wqVUy3u3Isl4iIiIiIisQgyQnknj2xfv58yMHBYsNnn7l+LJeIiIiIyEppaWnw8/Mr8mZtCfLygiXAnUWlKiii36yZ8upJEhEREREVoVq1ajhw4ECx+ysSBknOpJ+HZFQHnoiIiIhI6dRqNWrXru3qbjiNS9PtNm/ejO7du6NatWqQJAk//vijYZ9Go8H48eMNi2RVq1YNAwYMwPnz513X4bLST1Sr2LUyiIiIiIjKNZcGSbdv30aTJk3wySefmO3LysrCvn37MHHiROzbtw/Jyck4duwYHnnkERf01E44kkREREREpHguTbfr0qULunTpYnFfYGAgNmzYYLLt448/xr333ou0tDRUr17dGV20L32QxJEkIiIiIiLFKldzkm7evAlJklCpUqUi2+Tm5iI3N9fwOCMjA4BI39NoNI7uokX688qSBAlAvkYD2UV9ofJDf9246rql8ofXDNmK1wzZSinXjEajgSzL0Ol00DFDR/H0y7Lqf2aOptPpIMsyNBoNVIWKpVl77ZabICknJwfjx49H//79i134acaMGZgyZYrZ9vXr18NHX13ORbKysuAHYMe2bbh686ZL+0LlR+ERVaKS8JohW/GaIVu5+ppRq9UICwtDZmYm8vLyXNoXst6tW7eccp68vDxkZ2dj8+bNyM/PN9mXlZVl1THKRZCk0WjQp08fyLKMuXPnFtt2woQJGDt2rOFxRkYGoqKi0LFjx2KDK0fSaDTYsGEDfPz8AAD333cf5LZtXdIXKj/0101iYqJLVzWn8oPXDNmK1wzZSinXTE5ODs6cOQM/Pz94eXmV7WA6LXA5BchJB7zCgZB4wK18LtWyaNEijB07FteuXXN1V0zIsoxbt27B398fkn76iQPl5OTA29sbbdu2Nbs+9FlmJVF8kKQPkE6fPo0//vijxEDH09MTnp6eZtvd3d1d/h+AdKe6nVqlAvifEVlJCdculS+8ZshWvGbIVq6+ZrRaLSRJgpubG9zcylCH7EwysHcUkHW2YJtPJNB8NhDVq+wddTL9e1Gm98QB9Cl2+p+Zo7m5uUGSJIvXqbXXrbLewUL0AdKJEyfw22+/oUqVKq7uUtmwuh0RERGRMpxJBlJ6mwZIAJB1Tmw/k+yafrkY0xcFlwZJmZmZOHDggGH13lOnTuHAgQNIS0uDRqNB7969sWfPHixevBharRYXLlzAhQsXyu8Pj+skERERETmGLAP5t6275WUAe14EYOkz2Z1te0aJdtYcz8bPditWrEBcXBy8vb1RpUoVdOjQAbdv3wYAfPnll2jYsCE8PT0RHh6OF154wfC8Dz74wLCGaFRUFEaMGIHMzMwiz3Py5En06NEDVatWhZ+fH1q2bInffvvNpE1MTAzefvttDBgwAAEBARg6dKhNr6Wicmm63Z49e9C+fXvDY/1cooEDB2Ly5MlYtWoVAKBp06Ymz9u4cSMSEhKc1U37YQlwIiIiIsfQZgHL/ex0MBnIPgusCLSueZ9MQO1rVdP09HT0798f77zzDnr27Ilbt24hJSXFMPd+7NixmDlzJrp06YKbN29i69athue6ubnho48+Qo0aNfDff/9hxIgReOWVV/Dpp59aPFdmZia6du2KadOmwdPTE19//TW6d++OY8eOmSyn895772HSpEl48803rXu9dwGXBkkJCQmGkoCWFLevXGK6HREREdFdLT09Hfn5+ejVqxeio6MBAHFxcQCAqVOn4qWXXsKoUaMM7Vu2bGm4P3r0aMP9mJgYTJ06FcOHDy8ySGrSpAmaNGliePz2229j5cqVWLVqlckI1YMPPoiXXnrJLq+volB84YYKhel2RERERI6h8hEjOta4tBn4s2vJ7RLWAKFWVCRWWb/MTJMmTfDQQw8hLi4OnTp1QseOHdG7d29oNBqcP38eDz30UJHP/e233zBjxgz8888/yMjIQH5+PnJycpCVlWVxqZvMzExMnjwZq1evNgRn2dnZSEtLM2nXokULq/t/t1B04YYKhyNJRERERI4hSSLlzZpbWEdRxQ5FlaOWAJ8o0c6a49lQ1lqlUmHDhg1Yu3YtGjRogDlz5qBu3bq4ePFisc9LTU1Ft27d0LhxY/zwww/Yu3cvPvnkEwBFF1sYN24cVq5cienTpyMlJQUHDhxAXFycWXtfX+tSBe8mDJKciXOSiIiIiFzPTSXKfAMwD5TuPG6e5LD1kiRJwgMPPIApU6Zg//798PDwwIYNGxATE4Pff//d4nP27t0LnU6H999/H/fffz/q1KmD8+fPF3uerVu3YtCgQejZsyfi4uIQFhaG1NRUB7yiiofpdk4ku7mJXzsGSURERESuFdULiF9RxDpJSQ5bJ2nnzp34/fff0bFjR4SGhmLnzp24fPky6tevj8mTJ2P48OEIDQ1Fly5dcOvWLWzduhUjR45E7dq1odFoMGfOHHTv3h1bt27FZ599Vuy5YmNjkZycjO7du0OSJEycONGwZhEVj0GSMzHdjoiIiEg5onoBET2AyylAdjrgHQ6ExDtsBAkAAgICsHnzZiQlJSEjIwPR0dF4//330aVLFwBATk4OPvzwQ4wbNw7BwcHo3bs3ADGX6YMPPsCsWbMwYcIEtG3bFjNmzMCAAQOKPNcHH3yAp59+Gq1bt0ZwcDDGjx+PjIwMh722ioRBkjMx3Y6IiIhIWdxUQNUEp52ufv36WLduXZH7hw0bhmHDhlncN2bMGIwZM8Zk21NPPWW4P2jQIAwaNMjwOCYmBn/88YdJ++eff97kMdPvLOOcJGdidTsiIiIiIsVjkORMTLcjIiIiIlI8BknOxJEkIiIiIiLFY5DkTJyTRERERESkeAySnInpdkREREREiscgyZmYbkdEREREpHgMkpyJI0lERERERIrHIMmZOCeJiIiIiEjxGCQ5E9PtiIiIiIgUj0GSMzHdjoiIiEhZtFrgzz+BpUvFv1qtQ0+XkJCA0aNHF7k/JiYGSUlJDu0DlUzt6g7cVZhuR0RERKQcycnAqFHA2bMF2yIjgdmzgV69XNKl3bt3w9fX1yXnpgIcSXImptsRERERKUNyMtC7t2mABADnzontycku6VZISAh8fHwceo68vDyHHr8iYJDkTEy3IyIiInIMWQZu37bulpEBvPii5S+u9dtGjRLtrDmejV+A5+fn44UXXkBgYCCCg4MxceJEyHeOUTjdTpIkfPHFF+jZsyd8fHwQGxuLVatWGfZrtVo888wzqFGjBry9vVG3bl3Mnj3b5HyDBg3Co48+imnTpqFatWqoW7cu3nrrLTRq1Misb02bNsXEiRNtej0VEdPtnIkjSURERESOkZUF+PnZ51iyLEaYAgOta5+ZCdiQIvfVV1/hmWeewa5du7Bnzx4MHToU1atXx5AhQyy2nzJlCt555x28++67mDNnDp544gmcPn0aQUFB0Ol0iIyMxPfff48qVapg27ZtGDp0KMLDw9GnTx/DMX7//XcEBARgw4YNAIDAwEBMmTIFu3fvRsuWLQEA+/fvx6FDh5DsolE0JWGQ5Eyck0RERER014uKisKHH34ISZJQt25dHD58GB9++GGRQdKgQYPQv39/AMD06dPx0UcfYdeuXejcuTPc3d0xZcoUQ9saNWpg+/btWL58uUmQ5Ovriy+++AIeHh6GbZ06dcLChQsNQdLChQvRrl071KxZ0xEvu1xhup0rMN2OiIiIyL58fMSIjjW3NWusO+aaNdYdz8Y5RPfffz8k/ZfnAFq1aoUTJ05AW0RlvcaNGxvu+/r6IiAgAJcuXTJs++STT9C8eXOEhITAz88P8+fPR1pamskx4uLiTAIkABgyZAiWLl2KnJwc5OXlYcmSJXj66adtei0VFUeSnInpdkRERESOIUnWp7x17Ciq2J07Z/lzmSSJ/R07AiqVfftZCu7u7iaPJUmC7s6X7t999x3GjRuH999/H61atYK/vz/effdd7Ny50+Q5lirmde/eHZ6enli5ciU8PDyg0WjQu3dvx72QcoRBkjOxcAMRERGR66lUosx3797i85lxoKT/vJaU5LAAqXAAs2PHDsTGxkJVivNt3boVrVu3xogRIwzbTp48adVz1Wo1Bg4ciIULF8LDwwP9+vWDt7e3zX2oiJhu50yck0RERESkDL16AStWABERptsjI8V2B66TlJaWhrFjx+LYsWNYunQp5syZg1GjRpXqWLGxsdizZw9+/fVXHD9+HBMnTsTu3butfv6zzz6LP/74A+vWrWOqnRGOJDkT0+2IiIiIlKNXL6BHDyAlBUhPB8LDgfh4h6fYDRgwANnZ2bj33nuhUqkwatQoDB06tFTHGjZsGPbv34++fftCkiT0798fI0aMwNq1a616fmxsLFq3bo1r167hvvvuK1UfKiIGSc7EdDsiIiIiZVGpgIQEp53uzz//NNyfO3eu2f7U1FSTx7KFL9dv3LhhuO/p6YmFCxdi4cKFJm1mzJhhuL9o0aIi+yPLMs6fP2+SrkcMkpyL6XZEREREpBCXL1/Gd999hwsXLmDw4MGu7o6iMEhyJqbbEREREZFChIaGIjg4GPPnz0flypVd3R1FYZDkTEy3IyIiIiKFsJTKRwKr2zkTR5KIiIiIiBSPQZIzcSSJiIiIiEjxGCQ5Ews3EBEREREpHoMkZ2K6HRERERGR4jFIciam2xERERERKR6DJGdiuh0RERERkeIxSHImptsRERERKYpOq0Pqn6k4vPQwUv9MhU7r2IwfWZYxdOhQBAUFQZIkVKpUCaNHj3boOcl2DJKciel2RERERIpxNPkoZsfMxlftv0Ly48n4qv1XmB0zG0eTjzrsnOvWrcOiRYvwyy+/ID09HY0aNbL7ORISEswCr6tXr6Jz586oVq0aPD09ERUVhRdeeAEZGRmGNsnJyUhMTERISAgCAgLQqlUr/Prrr1afd9CgQZAkyezWpUsXQ5uYmBhIkoQdO3aYPHf06NFISEgwPJ48eTIkScLw4cNN2h04cACSJCE1NdXqfpUGgyRn4kgSERERkSIcTT6K5b2XI+Nshsn2jHMZWN57ucMCpZMnTyI8PBytW7dGWFgY1Gq1Q85TmJubG3r06IFVq1bh+PHjWLRoEX777TeTIGTz5s1ITEzEmjVrsHfvXrRv3x7du3fH/v37rT5P586dkZ6ebnJbsmSJSRsvLy+MHz++xGN5eXlhwYIFOHHihPUv1E4YJDkT5yQREREROYQsy8i7nWfVLScjB2tfXAtY+kh2Z9vaUWuRk5Fj1fFkKz/bDRo0CCNHjkRaWhokSUJMTIxZm+vXr2PAgAGoXLkyfHx80KVLF5Mg4erVq+jfvz8iIiLg4+ODuLg4LF261OQcmzZtwuzZsw0jOampqahcuTKee+45tGjRAtHR0XjooYcwYsQIpKSkGJ6blJSEV155BS1btkRsbCymT5+O2NhY/Pzzz1a9PgDw9PREWFiYya1y5combYYOHYodO3ZgzZo1xR6rbt26aN++PV5//XWrz28vzgldCQAgM92OiIiIyCE0WRrM8Jthn4PJwK2ztzArcJZVzSdkToCHr0eJ7WbPno1atWph/vz52L17N1QqFf73v/+ZtBk0aBBOnDiBVatWISAgAOPHj0fXrl3x999/w93dHTk5OWjevDnGjx+PgIAArF69Gk899RRq1aqFe++9F7Nnz8bx48fRqFEjvPXWWwCAkJAQs76cP38eycnJaNeuXZH91el0uHXrFoKCgqx6H6xVo0YNDB8+HBMmTEDnzp3h5lb0uM3MmTPRsmVL7NmzBy1atLBrP4rDkSRnYrodERER0V0rMDAQ/v7+UKlUCAsLMwte9MHRF198gfj4eDRp0gSLFy/GuXPn8OOPPwIAIiIiMG7cODRt2hQ1a9bEyJEj0blzZyxfvtxwDg8PD/j4+BhGclQqleEc/fv3h4+PDyIiIhAQEIAvvviiyP6+9957yMzMRJ8+fax+jb/88gv8/PxMbjNmmAevb7zxBk6dOoXFixcXe7xmzZqhT58+VqXn2RNHkpyJI0lEREREDuHu444JmROsant682ks6bqkxHaPr3kc0W2jrTq3PRw9ehRqtRr33XefYVuVKlVQt25dHD0q5khptVpMnz4dy5cvx7lz55CXl4fc3Fz4+PhYdY4PP/wQb775Jo4fP44JEyZg7Nix+PTTT83aLVmyBFOmTMFPP/2E0NBQq19D+/btMXfuXJNtlSpVMmsXEhKCcePGYdKkSejbt2+xx5w6dSrq16+P9evX29SXsmCQ5Eyck0RERETkEJIkWZXyBgC1OtZCQGQAMs5lWJ6XJAEBkQGo1bEW3FTKSrx69913MXv2bCQlJSEuLg6+vr4YPXo08vLyrHq+fnSpXr16CAoKQnx8PCZOnIjw8HBDm++++w7PPvssvv/+e3To0MGm/vn6+qJ27dom23Q6nUkVPT19gGYpSDNWq1YtDBkyBK+++ioWLFhgU39KS1k/9YqO6XZERERELuemckPn2Z3FA6nQzjuPOyd1dnqAVL9+feTn52Pnzp2GbVevXsWxY8fQoEEDAMDWrVvRo0cPPPnkk2jSpAlq1qyJ48ePmxzHw8MDWq22xPPp7mQ35ebmGrYtXboUgwcPxtKlS/Hwww/b42UVyc/PDxMnTsS0adNw69atYttOmjQJx48fx3fffefQPukxSHImptsRERERKUL9XvXRZ0UfBEQEmGwPiAxAnxV9UL9Xfaf3KTY2Fj169MCQIUOwZcsWHDx4EE8++SQiIiLQo0cPQ5sNGzZg27ZtOHr0KIYNG4aLFy+aHCcmJgY7d+5Eamoqrly5Ap1OhzVr1mDhwoU4cuQIUlNTsXr1agwfPhwPPPCAocrekiVLMGDAALz//vu47777cOHCBVy4cAE3b960+jXk5uYanqe/Xblypcj2Q4cORWBgoFmZ8MKqVq2KsWPH4qOPPrK6L2XBIMmZmG5HREREpBj1e9XHqNRRGLhxIHot6YWBGwdi1KlRLgmQ9BYuXIjmzZujW7duaNWqFWRZxpo1a+DuLuY9vfHGG2jWrBk6deqEhIQEhIWF4dFHHzU5xrhx46BSqdCgQQOEhIQgLS0N3t7e+Pzzz9GmTRvUr18fY8aMwSOPPIJffvnF8Lz58+cjPz8fzz//PMLDww23UaNGWd3/devWmTw3PDwcbdu2LbK9u7s73n77beTk5JR47HHjxsHPz8/qvpSFJFtb2L2cysjIQGBgIG7evImAgICSn+AAGo0Ga9asQbc//oDqo4+AV18FLFT5IDKmv266du1q+MNIVBxeM2QrXjNkK6VcMzk5OTh16hRq1KgBLy8vl/WDrKOfkxQQEFBsuW97Ke76sDY24EiSMzHdjoiIiIhI8RgkORMLNxARERFROZSWlma2/pHxLS0tzdVdtCuWAHcmzkkiIiIionKoWrVqOHDgQLH7KxIGSa7AdDsiIiIiKkfUarXZ+kcVGdPtnInpdkRERER2U8Hrj1Ep2eO6YJDkTCzcQERERFRm+sp6WVlZLu4JKZH+uihLBUam2zkT5yQRERERlZlKpUKlSpVw6dIlAICPjw8k/ecsUhydToe8vDzk5OQ4tAS4LMvIysrCpUuXUKlSJahUqlIfi0GSMzHdjoiIiMguwsLCAMAQKJFyybKM7OxseHt7OyWYrVSpkuH6KC0GSc7EdDsiIiIiu5AkCeHh4QgNDYVGo3F1d6gYGo0GmzdvRtu2bR2+CLG7u3uZRpD0GCQ5E9PtiIiIiOxKpVLZ5UMxOY5KpUJ+fj68vLwcHiTZi0sLN2zevBndu3dHtWrVIEkSfvzxR5P9sixj0qRJCA8Ph7e3Nzp06IATJ064prP2wHQ7IiIiIiLFc2mQdPv2bTRp0gSffPKJxf3vvPMOPvroI3z22WfYuXMnfH190alTJ+Tk5Di5p3bCdDsiIiIiIsVzabpdly5d0KVLF4v7ZFlGUlIS3njjDfTo0QMA8PXXX6Nq1ar48ccf0a9fP2d21T44kkREREREpHiKnZN06tQpXLhwAR06dDBsCwwMxH333Yft27cXGSTl5uYiNzfX8DgjIwOAmDDmqkl9+vNqZRkqADqtFlpOMKQS6K8bTkYla/GaIVvxmiFb8Zqh0lDSdWNtHxQbJF24cAEAULVqVZPtVatWNeyzZMaMGZgyZYrZ9vXr18PHx8e+nbTRyZMnUR/AmdOncWDNGpf2hcqPDRs2uLoLVM7wmiFb8ZohW/GaodJQwnVj7QLEig2SSmvChAkYO3as4XFGRgaioqLQsWNHBAQEuKRPGo0GGzZsQK3YWABAVGQkqnXt6pK+UPmhv24SExPLTSUYci1eM2QrXjNkK14zVBpKum70WWYlUWyQpF8A6uLFiwgPDzdsv3jxIpo2bVrk8zw9PeHp6Wm23d3d3eU/FJVavN1uANz4h4WspIRrl8oXXjNkK14zZCteM1QaSrhurD2/S6vbFadGjRoICwvD77//btiWkZGBnTt3olWrVi7sWRlwnSQiIiIiIsVz6UhSZmYm/v33X8PjU6dO4cCBAwgKCkL16tUxevRoTJ06FbGxsahRowYmTpyIatWq4dFHH3Vdp8uC1e2IiIiIiBTPpUHSnj170L59e8Nj/VyigQMHYtGiRXjllVdw+/ZtDB06FDdu3ECbNm2wbt06eHl5uarLZcN1koiIiIiIFM+lQVJCQgLkYkZVJEnCW2+9hbfeesuJvXIgptsRERERESmeYuckVUhMtyMiIiIiUjwGSc7EdDsiIiIiIsVjkORMHEkiIiIiIlI8BknOxDlJRERERESKxyDJmZhuR0RERESkeAySnInpdkREREREiscgyZk4kkREREREpHgMkpyJc5KIiIiIiBSPQZITyUy3IyIiIiJSPAZJzsR0OyIiIiIixWOQ5EwcSSIiIiIiUjwGSc7EOUlERERERIrHIMmZmG5HRERERKR4DJKciSNJRERERESKxyDJmRgkEREREREpHoMkZ2K6HRERERGR4jFIciZWtyMiIiIiUjwGSc7EkSQiIiIiIsVjkORMnJNERERERKR4DJKciel2RERERESKxyDJmZhuR0RERESkeAySnIkjSUREREREiscgyZk4J4mIiIiISPEYJDkT0+2IiIiIiBSPQZIzMd2OiIiIiEjxGCQ5E9PtiIiIiIgUj0GSMzHdjoiIiIhI8RgkORPT7YiIiIiIFI9BkjNxJImIiIiISPEYJDkT5yQRERERESkegyRnYrodEREREZHiMUhyJqbbEREREREpHoMkZ+JIEhERERGR4jFIcibOSSIiIiIiUjwGSc7EdDsiIiIiIsVjkORMTLcjIiIiIlI8BknOxHQ7IiIiIiLFY5DkTEy3IyIiIiJSPAZJzsR0OyIiIiIixWOQ5EwcSSIiIiIiUjwGSc7EOUlERERERIrHIMmZmG5HRERERKR4DJKciel2RERERESKxyDJmTiSRERERESkeAySnIlzkoiIiIiIFI9BkjMx3Y6IiIiISPEYJDmRzHQ7IiIiIiLFY5DkCgySiIiIiIgUi0GSMzHdjoiIiIhI8RgkORPT7YiIiIiIFI9BkjNxJImIiIiISPEYJDkTR5KIiIiIiBSPQZIzcZ0kIiIiIiLFY5DkTEy3IyIiIiJSPAZJzsR0OyIiIiIixWOQ5ExMtyMiIiIiUjwGSc7EdDsiIiIiIsVTdJCk1WoxceJE1KhRA97e3qhVqxbefvttyOV1JIbpdkREREREiqd2dQeKM2vWLMydOxdfffUVGjZsiD179mDw4MEIDAzEiy++6Oru2Y7pdkREREREiqfoIGnbtm3o0aMHHn74YQBATEwMli5dil27drm4Z6XEdDsiIiIiIsVTdJDUunVrzJ8/H8ePH0edOnVw8OBBbNmyBR988EGRz8nNzUVubq7hcUZGBgBAo9FAo9E4vM+W6M+br9PBHYAsy8h3UV+o/NBfN666bqn84TVDtuI1Q7biNUOloaTrxto+SLKCJ/jodDq89tpreOedd6BSqaDVajFt2jRMmDChyOdMnjwZU6ZMMdu+ZMkS+Pj4OLK7JfK+fBkdhwyBVq3GLytWuLQvRERERER3m6ysLDz++OO4efMmAgICimyn6CDpu+++w8svv4x3330XDRs2xIEDBzB69Gh88MEHGDhwoMXnWBpJioqKwpUrV4p9IxxJo9Fgw4YN6NigAbzr1IHs7o7827dd0hcqP/TXTWJiItzd3V3dHSoHeM2QrXjNkK14zVBpKOm6ycjIQHBwcIlBkqLT7V5++WW8+uqr6NevHwAgLi4Op0+fxowZM4oMkjw9PeHp6Wm23d3d3eU/FPWd80uy7PK+UPmhhGuXyhdeM2QrXjNkK14zVBpKuG6sPb+iS4BnZWXBzc20iyqVCrryWviAhRuIiIiIiBRP0SNJ3bt3x7Rp01C9enU0bNgQ+/fvxwcffICnn37a1V0rHa6TRERERESkeIoOkubMmYOJEydixIgRuHTpEqpVq4Zhw4Zh0qRJru5a6XCdJCIiIiIixVN0kOTv74+kpCQkJSW5uiv2oQ+SABEoGT8mIiIiIiJFUPScpArHeH4VR5OIiIiIiBSJQZIzFR5JIiIiIiIixWGQ5EzGQRIr3BERERERKRKDJGdiuh0RERERkeIxSHImjiQRERERESkegyRn4kgSEREREZHiMUhyJhZuICIiIiJSPAZJzsR0OyIiIiIixWOQ5ExMtyMiIiIiUjwGSc7EdDsiIiIiIsVjkORMTLcjIiIiIlI8tS2NdTodNm3ahJSUFJw+fRpZWVkICQnBPffcgw4dOiAqKspR/awYmG5HRERERKR4Vo0kZWdnY+rUqYiKikLXrl2xdu1a3LhxAyqVCv/++y/efPNN1KhRA127dsWOHTsc3efyi+l2RERERESKZ9VIUp06ddCqVSt8/vnnSExMhLu7u1mb06dPY8mSJejXrx9ef/11DBkyxO6dLfeYbkdEREREpHhWBUnr169H/fr1i20THR2NCRMmYNy4cUhLS7NL5yocptsRERERESmeVel2JQVIxtzd3VGrVq1Sd6hC40gSEREREZHi2Vzdbt26ddiyZYvh8SeffIKmTZvi8ccfx/Xr1+3auQpJHyhxJImIiIiISJFsDpJefvllZGRkAAAOHz6Ml156CV27dsWpU6cwduxYu3ewwmGQRERERESkaDaVAAeAU6dOoUGDBgCAH374Ad26dcP06dOxb98+dO3a1e4drHD0QRLT7YiIiIiIFMnmkSQPDw9kZWUBAH777Td07NgRABAUFGQYYaJi6Is3cCSJiIiIiEiRbB5JatOmDcaOHYsHHngAu3btwrJlywAAx48fR2RkpN07WOEw3Y6IiIiISNFsHkn6+OOPoVarsWLFCsydOxcREREAgLVr16Jz585272CFw3Q7IiIiIiJFs3kkqXr16vjll1/Mtn/44Yd26VCFx3Q7IiIiIiJFszlI0rt06RIuXboEXaERkcaNG5e5UxUa0+2IiIiIiBTN5iBp7969GDhwII4ePQr5zgd9SZIgyzIkSYJWq7V7JysU/UgS0+2IiIiIiBTJ5iDp6aefRp06dbBgwQJUrVoVkn5khKzDkSQiIiIiIkWzOUj677//8MMPP6B27dqO6E/Fx8INRERERESKZnN1u4ceeggHDx50RF/uDizcQERERESkaDaPJH3xxRcYOHAgjhw5gkaNGsHd3d1k/yOPPGK3zlVITLcjIiIiIlI0m4Ok7du3Y+vWrVi7dq3ZPhZusALT7YiIiIiIFM3mdLuRI0fiySefRHp6OnQ6ncmNAZIVmG5HRERERKRoNgdJV69exZgxY1C1alVH9KfiY7odEREREZGi2Rwk9erVCxs3bnREX+4OTLcjIiIiIlI0m+ck1alTBxMmTMCWLVsQFxdnVrjhxRdftFvnKiSm2xERERERKVqpqtv5+flh06ZN2LRpk8k+SZIYJJWE6XZERERERIpmc5B06tQpR/Tj7qEfSWK6HRERERGRItk8J4nKiCNJRERERESKZlWQNHPmTGRnZ1t1wJ07d2L16tVl6lSFxsINRERERESKZlWQ9Pfff6N69eoYMWIE1q5di8uXLxv25efn49ChQ/j000/RunVr9O3bF/7+/g7rcLnHwg1ERERERIpm1Zykr7/+GgcPHsTHH3+Mxx9/HBkZGVCpVPD09ERWVhYA4J577sGzzz6LQYMGwcvLy6GdLteYbkdEREREpGhWF25o0qQJPv/8c8ybNw+HDh3C6dOnkZ2djeDgYDRt2hTBwcGO7GfFwXQ7IiIiIiJFs7m6nZubG5o2bYqmTZs6oDt3AabbEREREREpGqvbORvT7YiIiIiIFI1BkrMx3Y6IiIiISNEYJDkb0+2IiIiIiBSNQZKzMd2OiIiIiEjRbA6SFi5caCj7TaWgH0liuh0RERERkSLZHCS9+uqrCAsLwzPPPINt27Y5ok8VG0eSiIiIiIgUzeYg6dy5c/jqq69w5coVJCQkoF69epg1axYuXLjgiP5VPCzcQERERESkaDYHSWq1Gj179sRPP/2EM2fOYMiQIVi8eDGqV6+ORx55BD/99BN0DACK5urCDVot8OefwNKl4l+t1jX9ICIiIiJSqDIVbqhatSratGmDVq1awc3NDYcPH8bAgQNRq1Yt/Pnnn3bqYgXjynS75GQgJgZo3x54/HHxb0yM2E5ERERERABKGSRdvHgR7733Hho2bIiEhARkZGTgl19+walTp3Du3Dn06dMHAwcOtHdfKwZXpdslJwO9ewNnz5puP3dObGegREREREQEoBRBUvfu3REVFYVFixZhyJAhOHfuHJYuXYoOHToAAHx9ffHSSy/hzJkzdu9sheCKdDutFhg1yvI59dtGj2bqHRERERERALWtTwgNDcWmTZvQqlWrItuEhITg1KlTZepYheWKdLuUFPMRJGOyDJw5I9olJDitW0RERERESmRzkLRgwYIS20iShOjo6FJ1qMJzRbpderp92xERERERWUGrBTZtkrB5cwR8fSW0bw+oVK7uVclsTrd78cUX8dFHH5lt//jjjzF69Gh79Klic0W6XXi4fdsREREREZVAXzMsMVGNDz5ogcREdbmpGWZzkPTDDz/ggQceMNveunVrrFixwi6dqtBckW4XHw9ERpbcbv16IDfX8f0hIiIiogqtvNcMsznd7urVqwgMDDTbHhAQgCtXrtilUxWafiTJmel2KhXwxBPArFnm+ySpIGCbMQP46Sfgyy+B++5zXv+IiIiISBFkGdBogPx8038tbStqX04OMHRo0TXDJEnUDOvRQ7mpdzYHSbVr18a6devwwgsvmGxfu3YtatasabeO6Z07dw7jx4/H2rVrkZWVhdq1a2PhwoVo0aKF3c/lFK4YSdLpgHXrxH1/f+DWrYJ9kZFAUpJo8/zzwN9/A61biyv37bcBHx/n9ZOIiIhI4WRZBALFBQ+2BBSual/UMZxR7Lg81AyzOUgaO3YsXnjhBVy+fBkPPvggAOD333/H+++/j6SkJLt27vr163jggQfQvn17rF27FiEhIThx4gQqV65s1/M4lSsKN6xcCRw8KAKkf/8VgVB6upiDFB9fEMK3bw+MGQN88w3wwQdiVOmLL5R79RIREZHiyLL4oK3kAKEsAcXduGKKJAHu7oBaLf41vl/4X3d34MYN8ZGzJEquGWZzkPT0008jNzcX06ZNw9tvvw0AiImJwdy5czFgwAC7dm7WrFmIiorCwoULDdtq1KhR7HNyc3ORazSvJiMjAwCg0Wig0Wjs2j9r6c+r0WigkiS4AcjXaCA7oz86HdSTJkECoB05ErrKlQHjOWU6XUHAFhAALFgAqXdvqJ5/HtLJk0D79tAOGQLdjBliPzmN8XVDZA1eM5ZptcCWLZLhu6E2bWTFpnc4G68Z15Bl8V+vtR/M8/Mlqz7w69sWd1zTERDJ4jktBzj646pw8+ZD8PBQIT9fLqIfkqvfYpdwd5eLDCJMAwnL7VSqogIRuZhjFT6XbNKmqCBGtJFLOFbBNjcbqxhs2iQhMbHkMCMkJB8ajROzq2D93ztJlkuf93X58mV4e3vDz8+vtIcoVoMGDdCpUyecPXsWmzZtQkREBEaMGIEhQ4YU+ZzJkydjypQpZtuXLFkCHwWkjj3w+usI/usv7H75ZZy3UADD3qpt2YKW770HjY8P1s+fj3wrf1bqrCw0+Ppr1LiTppddpQoOPPccLpXXNEciuitt3x6OL76Iw9Wr3oZtVapk49lnD6NVKwV/hUnQagGdzg35+RK0WglarZvh3/x8qYR9EvLz3QzbjdsX7Cu6veV9ksl+823mz7V8PDfk59tcN6tCUKl0d24y1GoZbm46qNWyYZu46ffrTB5b3me6zc1Ntng8y/uK7odxe/N9lvqtg5tbQbIQid/foUM74upVLwCW3hgZwcHZmDdvg9O/tMrKysLjjz+OmzdvIqCYAYAyBUmO5uXlBUCk+P3vf//D7t27MWrUKHz22WcYOHCgxedYGkmKiorClStXin0jHEmj0WDDhg1ITEyEV5cucNu8Gfnffgu5Tx/HnlirhbppU0jHjkH75pvQvf66zYeQNm2CatgwSP/9BwDQPfEEtO+/DwQF2bu3VIjxdePu7u7q7lA5wGvG1MqVEvr1U92ZAlrwn7Qkif/2vvtOi549FftfYIl0OuvTibRay6MLOTla7Nt3EPXrN4FOp7ozgmB5dME41ch0m3l749EK02NIJvuL678s332fOFUqudhv9U1HCMxHAYoeZZCLOIal9nKx7YB8HDiwG61atYS3t8qKkY2CURIGEXcX/d9gwPT32dV/gzMyMhAcHFxikGRzut3Fixcxbtw4/P7777h06RIKx1haOyZq6nQ6tGjRAtOnTwcA3HPPPThy5EixQZKnpyc8PT3Ntru7u7v8Q4O7uzvc7oTLav2YqiMtWwYcOwZUrgzV2LFQleZ8HToAhw4BEycCSUlwW7wYbr/9BnzyCfDYY/bvMwlaLaRt2xCxeTM8fH2hLi8rr5EiKOHvnatptcBLLxVVWUmCJAGjRqlRv37JwYYjJ0iXpb19praqAdxrjwM5hZubdfMhSrvN0e2LO4ZaDUg2RRGuiTg0Ghm5udfQurXqrv87Q8Xr00dc16NGmZYBj4yUkJQE9OplcxhiF9Zetzb3btCgQUhLS8PEiRMRHh5u4y+0bcLDw9GgQQOTbfXr18cPP/zgsHM6nLOq2+XnA/q0w5dfLtt8Il9fUcihTx/g6aeBo0dFgfvHHgM+/hgIC7NPn0lITgZGjYL67Fm0AMR7HxkJzJ4N9Orl6t4RlQs//WS+NocxWQYuXAAaN3Zen5zBzc22D/JqtQ4ZGddQtWoQ3N3dFB1sqNW2z4sgItfq1UuU+d64MR9r1x5Aly5N0b69ulx872tzkLRlyxakpKSgadOmDuiOqQceeADHjh0z2Xb8+HFER0c7/NwO46x1kr79VpQVCQ4GCpVrL7X77wf27wemTgVmzgR++AH44w9RQvyppziObg/6ldcKB9H6lddWrGCgRGTB+fPApk3i9uefYhDdGn5+4ubsUQNHtbc1iNBotFizZiu6du0Kd3dGIERkfyoV0K6djNu3z6FduyblIkACShEkRUVFmaXYOcqYMWPQunVrTJ8+HX369MGuXbswf/58zJ8/3ynndwhnjCRpNMBbb4n7r7wiSn/bi6enWD/pscfEqNL+/cDAgcB33wHz5gFRUfY7191GqxVj0uV55TUiJzl3TgRD+qDoxInSHefnn7nKARERmbM5SEpKSsKrr76KefPmISYmxgFdKtCyZUusXLkSEyZMwFtvvYUaNWogKSkJTzzxhEPP61DOCJK++go4dQoIDQVGjHDMOZo2BXbuBN57D5g8GVi7FmjYEHj3XWDIEOZEWCs/X3zaS00V72FJ+UFnzgCtWgERESJg9fQEvLyKv1/Sfktt3d05MkiKcuZMQUC0aZP5+huSBNxzD9CunQh6WrcWj8+ds/znVpJEFmt8vDN6T0RE5Y3NQVLfvn2RlZWFWrVqwcfHx2zy07Vr1+zWOQDo1q0bunXrZtdjupSj0+3y8sRIDwBMmCDmEzmKu7s4x6OPAs88A2zfDgwfLkaVvvgCqFXLcecuL4yDIEu3M2dsX5Vu925xczRHBF+laat2zcROcq3Tp02DojsFNg3c3EQQlJAgbm3aAJUqmbaZPVtkqUqSaaCkj/+TkjgoS0RElpVqJInKwNEjSQsWAGlpYsXEYcMcc47C6tcHUlJEEYfXXhOfauLixNylUaMq9qeQ/HwxGeLUqdIHQR4eQEyMKK6xZ0/J5xw/HqhZE8jNBXJyTP+15n5R+/PyTM+TkyNurubm5vxArajnVeRr2cVSU8WfDn1QlJpqul+lApo1EwFRu3YiKAoMLP6YvXqJaXxjXtSixrkUhCMd6QhHakQ8Ppit4vQ+IiIqks1BUlGlt8lK+iDJESNJOTnAtGni/muvAd7exbe3J5VKBETdu4t0uz/+EPV3ly8XgVvDhs7riz1ptSWPBOXnF38MDw8gOloEQpZuYWEiENBqxeOS8oOmTXPMh3WdTgRK9g6+StPW+D3V6YDsbHFzNbVaGaNrHh7lOqVVlsX3CsZzitLSTNuoVECLFgVB0QMPlK5IZy8ko6c0ChIKUlllRELCbACMkoiIyLJS5bGcPHkSCxcuxMmTJzF79myEhoZi7dq1qF69OhqW1w/DzqL/YOOIkaTPPxcfsCMjgWeftf/xrVGzJvDbbyLdbtw4MW+pWTOxztL48Y5fG8pWzgyCSqJSuTY/yM1NfAD38ir5K3pH02pdE5xZamv8hYZ+9cvbt1333ui5u5sFT2oPD7TLzYVq5syCn6WjgzoPjxLnr8kycPKkaVBUePqdWg20bGk6p6jMNWfuVIuUCv29lVgtkojIebRaSJs2IWLzZki+vkA5WfvR5iBp06ZN6NKlCx544AFs3rwZ06ZNQ2hoKA4ePIgFCxZgxYoVjuhnxeGodLvsbODOort4/XXxIcZVJEmMJnXpIuYorV4tgqQffgC+/FJMJADEB+GUFCA9XaQHxsfb/5dGqxXpcEUFQWlpJQdB7u7FB0Hh4fb7Vl+fH2S+8hrurLxmn/MonUoF+PiIm6vl57s+UNPfN6ZfVfTWLcMmCUAlwHwCj6MVCp5kT0/kuXkhI9cT17K8cDnDExm5ngiCF7rCEw9B7K9c1RNVoz0RWcsLkbU84RFwJ/hK8wQulSJoE6txij6xWiQRkeuV47UfbQ6SXn31VUydOhVjx46Fv9HXfA8++CA+/vhju3auQnJUut1nn4mVEaOjRWluJYiMFPV1lywRH1YOHBBfFb/yiljB8eWXzQMBW39pylsQZI07K6/lb9yIA2vXommXLlCXk29dKiS1umAxHVeSZREUFRNQ5d++jd1btqBlXBzU+tG40gRqJe0vPH9Nvz8jA4AI1jwBhNy51bX0enQA0u/cdtjpPZKkgoBJkoDr14tuq68W2bw5ULmy+B13cxPPM/7X0rbi9tl7m4PPJel0iDh4EFJmZsFCSxXgdZn9S0TOV87XfrQ5SDp8+DCWLFlitj00NBRXrlyxS6cqNEek292+LRZ3BcSIjYeH/Y5dVpIEPPEEkJgIjBwp5ijNmGG5raVfGq1WjDQVDn70hRKsDYKqVy8+CFJaAKJSQW7XDudu30aTdu2U1z9yPkkSv9seHkXmockaDS5lZUHu2tWhqa2yVodjh/Ow9Y9c7NyUg73bcpFxJRdeyIEncuGJXPirc9CkXi6aNshF49gcxFbPhYfOASNuxr//smz7/LWDB+3/BpUjakB8u1vROStIK2/HLcW53HQ6xJ44Abe//ioIrCvA63Loue7GQL0CjObbHCRVqlQJ6enpqFGjhsn2/fv3IyIiwm4dq7AckW736afApUtiPtCAAfY7rj2FhgLLlgH/+x/Qt6/lkTT9ezJgAPDJJ6IGcFqa+Pa8OGp1ySNBCv0FJCoPZBn4+++COUWbNrnh0iUvAF4AxPw1T0+xhFdCgphXdN99TqodYzx/zTiI2rLFurmZb74pKnTKsvi7pNMV3LfHNkcd107n0ul0uHrpEqpUqQK3oo6nlNdQlv83Zdn25RbIIhWABq7uRHlUEYO/4rZdvGjd2o8pKYpd0dvmIKlfv34YP348vv/+e0iSBJ1Oh61bt2LcuHEYoNQP6EqiH0myV7rdrVvArFni/qRJyiuMUFhwcMmv/fZtUR1PT60ueiSoRg0GQUR2ptMBf/1lHBQBhRMFvLxEcQV9UHTvvS6aClnU/LXatcVC1yVVi5w48a7++6HVaLBtzRp07doVbkr//wNweVB5V5/rzr+6/HycSUtDVEQE3CSpfL2Gsp7LHoE6g3VT6emu7kGRbA6Spk+fjueffx5RUVHQarVo0KABtFotHn/8cbzxxhuO6GPFYu+RpDlzgKtXgdhYkdamdNb+Mjz3HNC/vwiEqlW7qz/EEDmaTgccPlxQeW7zZvFnxZi3tyjDra8+17KlGD1SLFdXiyTHkCT+zFxMq9HgwJo1qFZeAmt70gdKSgv+lBhU/vuvqLpckvBwx//cSsnmIMnDwwOff/45Jk2ahMOHDyMzMxP33HMPYmNjHdG/iseeQdLNm8B774n7b74pRlyUztpfhj59RLU7IrI7rRY4dMg0KCpc48DHRyzYqg+KWrRQ1nRHq7BaJBHZk/H8IgbrxdNqgbVrSx7NV/BnPZs/Vb/11lsYN24coqKiEBUVZdienZ2Nd999F5MmTbJrBysce6bbzZ4tPtnUrw/061f24zlDfLz4pSjHvzRE5Y1WK4pL6oOilBTgxg3TNn5+pkFR8+bKz961yp1qkQ5fboCIiApUgNF8m4OkKVOmYPjw4fAplP+dlZWFKVOmMEgqib1Gkq5fF7XmAZF3r+CLzEQF+KUhUrr8fFG0TT+nKCVFDDwb8/cXQZF+TlGzZhUkKLJEpVLsxGAiogqrnI/m2xwkybIMyUIpw4MHDyIoKMgunarQ9O9dWUeSPvxQfOpp1EgEHOVJOf+lIVKa/Hxg3z7g99/d8MMP9+Gpp9TGa8wCAAICxACKPii6557ykaFLRETlWDle+9Hq/yIrV64MSZIgSRLq1KljEihptVpkZmZi+PDhDulkhaJPtyvLSNLVqyKYAIApUwqOWZ4wBYao1DQaYO/egpGiLVuAzExAFOcNAwAEBgJt2xYERU2b8teLiIhcoJyu/Wh1kJSUlARZlvH0009jypQpCAwMNOzz8PBATEwMWrVq5ZBOVij2SLd77z1R+rtpU+DRR+3RK9dgCgyRVfLygD17CuYUbd0qKuUbq1wZaNNGh5CQvzBsWD00b+5eXv4fIiIiUhyrg6SBAwcCAGrUqIHWrVvDvcImrztYWdPtLl0SZb+B8juKRETFys0Fdu8uCIq2bQOyskzbBAWJESJ9oYW4ODGqv2bNf7jnnnoMkIiIiMrA5oz0du3aGe7n5OQgLy/PZH9AQEDZe1WRlTXd7t13xVfILVoA3bvbr19E5DK5ucDOnQVB0fbtQHa2aZvgYNOgqGFD8+9IuEYhERGRfdgcJGVlZeGVV17B8uXLcbXwaoMQ32RSMcqSbnfhAvDJJ+L+W28VHIuIypWcHBEU6ecUbd8uthkLCSkIiBISRKV/DhwTERE5h81B0ssvv4yNGzdi7ty5eOqpp/DJJ5/g3LlzmDdvHmbOnOmIPlYsZVknadYs8fXy/fcDnTvbt19E5DDZ2cCOHQVB0Y4dYvTIWNWqBUFRu3YiKOL3IERERK5hc5D0888/4+uvv0ZCQgIGDx6M+Ph41K5dG9HR0Vi8eDGeeOIJR/Sz4ijtSNL588DcueJ+GUaRtFoWlCNytKwsMTqkD4p27hTFF4yFh5sGRXXrMigiIiJSCpuDpGvXrqFmzZoAxPyja9euAQDatGmD5557zr69q4hKGyTNmCG+em7TBujQoVSnTk62vDTR7NlcmoioLG7fFsUV9HOKdu0SZbqNVatWEBAlJACxsQyKiIiIlMrmIKlmzZo4deoUqlevjnr16mH58uW499578fPPP6NSpUoO6GIFU5p0u7Q0YP58cb+Uo0jJyWLN2cKx2blzYvuKFQyUiKyVmSnKcOuDot27xYKuxiIjTYOiWrUYFBEREZUXNgdJgwcPxsGDB9GuXTu8+uqr6N69Oz7++GNoNBp88MEHjuhjxWLtSJJxXtzSpSJXJyEBaN/e5lNqtWIEydIpZVl0afRosbYrU++IzN26JYKiP/8Utz17zCvJVa9uGhTVqMGgiIiIqLyyOUgaM2aM4X6HDh3wzz//YO/evahduzYaN25s185VSNask2QpLw4AHnqoVKdMSTE/lDFZBs6cEe24tisRkJEBbNlSMKdo717zoCgmxrT6XEyM07tJREREDmJzkFRYdHQ0oqOjcfbsWQwdOhTz9WlhZFlJ6yQVlRcHAJMmAQ0a2JwXl55u33ZEFc2NG6ZB0b595t9j1KxpWmghOtoFHSUiIiKnKHOQpHf16lUsWLCAQVJJiku3Ky4vTq8UeXHh4fZtR1TeXb8uRk71QdH+/ea/drVqFQRE7dqJdDoiIiK6O9gtSCIrFZdu56C8uPh4MYm8qENLktgfH2/1IYnKlWvXgM2bCwotHDxoHhTFxpoGRZGRrugpERERKQGDJGcrLt3OQXlxKpWoIP7UU5b3yzKQlMSiDVRxXLliGhQdPmz+K1e3rmlQVK2aK3pKRERESsQgydmKS7dzYF7cmTPiX7XavFSxmxtQubLNhyRSjMuXRVCkrz535Ih5m/r1TYOisDAnd5KIiIjKDauDpF4lFAu4ceNGWftydyhunSR9Xty5c5aDqFLmxd2+Deirs3/xhZhwnp4uPiQuWAAsXgz07SsqeEVF2fh6iFzg4sWCoGjTJuCvv8zbNGxYUGihbVugalVn95KIiIjKK6uDpMDAwBL3DxgwoMwdqvCKG0lSqYDZs0V1u6KeV4q8uM8+E+lHtWoBTzwhRpP07r8f+PtvMXG9Vy8x3cnLy6bDEznchQsFqXObNgFHj5q3iYszDYpCQpzdSyIiIqoorA6SFi5c6Mh+3D1KWky2Vy9gxQrg2WdFCS69yEgRINlY/js7G3j3XXF/wgTTAAkAvL1F1fEWLcQCmSNGiNElLoJJrnT+vAiG9IHRsWPmbRo3LlijKD4eCA52cieJiIiowuKcJGcrLt1OTz+kk5QEdO4MjB8vPgWWorLCF1+I1KTq1Ysu3BATA3z3HdCpE7BwIdCyJfDcczafiqjUzp41DYpOnDDdL0lAkyYFc4ri44EqVVzRUyIiIrobMEhytpJGkvT0+US9etlU7ttYbi4wa5a4/+qrgIdH0W07dABmzgReeUUs1dS4MfDAA6U6LVGJzpwpSJ3780/g5EnT/W5uQNOmpkERi4sQERGRszBIcrbi1kky9vff4t8GDUp9qkWLRA2IiAjg6adLbj9unEi5W75cTIvau5dlkck+Tp82nVP033+m+93cgGbNCuYUtWkDVKrkgo4SERERgUGS8xW3TpJeRkZBze6GDUt1Go1GrI0EiNEhT8+SnyNJYj7S33+LEsr/+x+wcWPxI1BEhckykJpqGhSlppq2UamA5s0LgqIHHgBKqA1DRERE5DQMkpzNmnQ7/ShStWql/jr9m2/Et/dVqwJDhlj/PD8/YOVKMS9p2zZg9Gjg009L1QW6S8gycOpUwRpFmzYBaWmmbVQqcU0ZB0X+/i7oLBEREZEVGCQ5mzWFG/SLvpQy1S4/H5g+XdwfN05UsLNF7dpi7aRu3YC5c0XlO2vS9ejuIMtiDpHxnKKzZ03bqNUiKNJXn2vdWgTgREREROUBgyRns2UkqZSpdt99Jz7EVqkCDB9eqkOga1dgyhRg0iRR6S4uTnzopbuPLItqc8ZB0fnzpm3c3YF77y0otNC6NeDr64LOEhEREdkBgyRnsyZI0o8klSJI0mqBadPE/ZdeKtu396+/Loo3/PSTKLK3dy8QGlr641H5IMtiXSLjoOjCBdM2Hh7AffcVBEWtWgE+Pi7oLBEREZEDMEhyNlvS7UoRJP3wA/DPP6Jc8vPPl6J/RtzcgK+/FiMEx44BffoAGzaIUQOqOGRZVJw3LrRw8aJpG09P4P77C+YU3X+/7WmcREREROUFgyRnK2kkKSOjYIKHjXOSdDrg7bfF/VGjgICAUvbRSECAKORw773iw/MrrwAfflj245Lr6HQio1MfFG3eDFy6ZNrGy0uMDumDovvuE9uIiIiI7gYMkpytpCCpDJXtfvpJlO729wdefLH0XSysfn0xotSrF5CUJAo5PPGE/Y5PjqXTicFJffW5zZuBK1dM23h7i3lE+qDo3nutKxtPREREVBExSHK2ktLtSplqJ8sFo0gjR4p0O3vq2VPMUZo2TZQUb9gQaNrUvucg+9DpgMOHC1LnNm0Crl0zbePjI4Ii/Zyili0ZFBERERHpMUhytpJGkkpZ/nvNGmD/flFRbMyYMvSvGFOmiOIN69aJoGnPHlFBj+xPqwU2bZKweXMEfH0ltG8v1hoqqu2hQwVB0ebNwPXrpm18fcXaRPqgqEULLhJMREREVBQGSc6mD5KKGkkqRflv41GkESOA4OAy9K8YKhWwZIn4gP3ff0D//sDatUV/eKfSSU4Wc8rOnlUDaIEPPgAiI4HZs0XKo1YLHDhgOqfo5k3TY/j5AW3aFARFzZuz4AYRERGRtRgkOZs+3a6kkSQbgqTffgN27hTzSl56qYz9K0HlysCPP4rqZhs2iBS8mTMde867SXIy0Lu3+eVx9izw2GNAs2bAv/+K+h7G/P2B+PiCOUXNmokFXYmIiIjIdvwY5WzFpdvdvGlzZTtZBt56S9wfOhSoWtUOfSxBXBywYIEYSZo1S4ws9e7t+PNWdFqtGEEqbgmtffvEvwEBQNu2BUFR06YMioiIiIjshR+rnK24wg1Hj4p/bahst2kTsGWLmF/y8sv26aI1+vUT85Peew8YNEhUwCvFsk50x61bonKgPkYuzrx5wDPPMM2RiIiIyFEYJDlbcSNJpUi1089FeuYZICKijH2z0YwZoljE77+LQg67dtlctfyupV/Adc0aMa8rJQXQaKx7rr8/AyQiIiIiR2KQ5Gx2DJK2bQP++EOkWY0fb6f+2UCtBr77ThQFOHECeOopsVaTfrCMTN2+LX5e+sDo9GnT/RERwLlzJR8nPNwx/SMiIiIigR9nna24dDsby3/rR5EGDQKio8vetdIIDhbFBjw9gV9+KZgfRSIOPn5cpNF17AgEBQGPPAJ89pkIkDw9gc6dRdW648fFtsjIgji6MEkCoqJEgQYiIiIichyOJDlbcSNJNpT/3r1brFekUgETJtixf6XQvDkwfz4wcKBYS6lZMxEM3I2ys0VZ7jVrxO2//0z3x8QADz8MdOkCtG8vFnU1Nnu2KIIhSaaXiP6ySUpiqh0RERGRozFIcraigiQbK9tNnSr+feIJoGZNO/avlAYMEIHbxx+LtLtdu4C6dV3dK+c4ebIghW7jRiAnp2Cfu7uoQNe1qwiM6tYteqQIEOsgrVihXyepYHtkpAiQevVy2MsgIiIiojsYJDlbUel2+lGkiIgSqx8cOACsWiU+bL/2mt17WGoffCD6tmWLKOSwc6coMlDR5OSIBVzXrhXB0fHjpvujokRQ1LUr8OCDYmFXW/TqBfTorsWBDX/i6L4dqN/sfjRNTIDKnUNIRERERM7AIMnZihpJ0gdJNowi9e2rrNEad3fg++9F+t3Ro2Ku1IoVxY+clBepqSIoWrtWVPPLyirYp1YDbdoUBEYNGpTxNZ9JhmrvKDTPOovmNQHcALA6Emg+G4jiUBIRERGRozFIcjb9p+fCI0lWVrb76y/ghx/E/TfesHPf7CAsTPSvbVtR0GHmTNfPmSqNvDwxIqZPo9PHsHrVqon0ua5dgQ4dxOKudnEmGUjpDaBQEJ11TmyPX8FAiYiIiMjBylV1u5kzZ0KSJIwePdrVXSk9fbpd4ZEkK4OkadPEv489ptzFW++/X8xNAoDXXwd+/dW1/bHW2bPA55+LVMEqVYCHHgLef18ESCqVqCo3fbpIKTx7FvjiC5EaZ7cASacF9o6CWYAEFGzbO1q0IyIiIiKHKTcjSbt378a8efPQuHFjV3elbIpKt7Oi/Pfx48CyZeK+EkeRjA0dCuzZI4KO/v3FfSUUmDCm0Yi1pvRziw4fNt1ftaoYLerSBUhMBCpXdnCHLqcAWWeLaSADWWeA1G+A6H6AysvBHSIiIiK6O5WLICkzMxNPPPEEPv/8c0zVT8gprywVbrh5s2AV0WKCpOnTxdO6dweaNnVcF+1lzhzg0CFRwKFnTxGQ+Pq6tk/p6aJ0+po1wPr1QEZGwT5JEqNg+jS6e+5x8sK4t46X3AYAdgwGdjwN+FYH/OsA/rF3bnfu+8UAbu4O7SoRERFRRVYugqTnn38eDz/8MDp06FBikJSbm4vc3FzD44w7n4I1Gg00Go1D+1kU/Xk1Gg0knQ5qADqtFto726VDh6AGIEdEIN/XVwxxFPLff8C336oBSJgwIR8ajaWULGVxcwOWLgXuv1+NQ4ckPPOMDl9/rXVqIYf8fGDXLgnr1klYt84NBw6Ynjw4WEbHjjI6d9YhMVFGlSoF+7RacXM4zU24HZ8Nt3/ehzVvjezmA0mXBdw+LW4XNpjul9SAbwxkv1jI/rUBv9qQ/WMh+9UGfKIAiVXyKirjvzVE1uA1Q7biNUOloaTrxto+KD5I+u6777Bv3z7s3r3bqvYzZszAlClTzLavX78ePoVX7nSyDRs2oPrhw7gHwKWLF7FzzRoAQPUNG3APgMvBwdh+Z1thn3zSBFptDO655yIuXdqBIpop0qhRVTBpUmssW+YGX9+/8Mgj/5X8pDK4ccMD+/dXxb59odi/PxSZmaajKrGx19Gs2UU0b34JtWpdNyzOunOnQ7tlRiVno6ZmNWprfoQKmQAAHVSQoLUYLMkAsqVgbPD8DJ5SJnx15+GnS4evfB5+uvPwldPhqzsPtZwHZP4LKfNf4ILpMbRQ47YUjttu4ch0q4bbUjVkuoXjtlQNOVJQxShFSNiwYUPJjYiM8JohW/GaodJQwnWTZVyiuBiKDpLOnDmDUaNGYcOGDfDysm7+xYQJEzB27FjD44yMDERFRaFjx44IsNsMe9toNBps2LABiYmJ8Lh8GQAQGhKCrl27AgDcNm4EAFRp186wzVhaGvDnn+JHlZRUBa1ambdRsq5dAR8fGWPGAF991Qj9+tVHQoL9RsK0WmDvXglr10r49VcJe/dKkOWCD/uVK8tITBSjRR07yggN9QPgB6CW3fpgW4ez4XZyPtz+eQeSRlwPckB9aBtOAiBBtb0/ZACSUQEH+U7Y5HH/J+ga+UiRh5ZlHTTZ50WAlPkvpFsnIGWegHTrX+D2f1Dp8hAgn0GA9gxQaJRMVvkCfrUg+9eG7Fcbsn8dMQrlVxvwDGEAVQ4Y/61xd2fKJZWM1wzZitcMlYaSrpsM47kWxVB0kLR3715cunQJzZo1M2zTarXYvHkzPv74Y+Tm5kKlMk0d8vT0hKenp9mx3N3dXf5DcXd3h1ot3nI3AG76/hw9CgBQxcVBdWebVgukpIg5NMuWiQy8Bx8E2rZV9I+sSKNGAfv2Ad98I+Hxx9XYuxeoXr30x7t6VVTNW7NG/Hvliun+e+4pWLfo3nslqNUSXF7MUZsH/LcAODIVyD4vtvnVAuKmQIruB7XbnWtZ7S6q3BkVcZB8IoHmSVBbU/7bowYQWANAoul2nRbISgNunQAyjot/b50Qc6Fup0LS3gZuHoJ085D5Md0Dzec++ccCAbGAh6MrWpCtlPD3jsoXXjNkK14zVBpKuG6sPb+iP3E/9NBDOFyo5NjgwYNRr149jB8/3ixAKheMq9vpIyF9KmG9egDE+kKjRoky08batbPD+XVaUUUtOx3wDgdC4gE3x7+PkgTMmwccOQLs3y9KZ//5p6h6l54OhIeLEttF/Uh1OvG8NWvEbedO0wKBgYGiAl3XrkDnzuJ4iqHLB059AxyZIuYQAYBPdSBuElBjgHmRhaheQEQP5KdvxIEda9H0/i5Qh7cv+8/JTQX41RC38I6m+7R5wO3UgqBJH0BlHBcV9TQ3gWt7xK0wz2DLAZR/LODuV7Y+ExEREbmAooMkf39/NGrUyGSbr68vqlSpYra93NCXS0tPB2JiTCOhvn2x44k56P1eL7MK4QAweTLQqJEIMErlTLLZCAV8IoHms52yQKm3twgAW7QA9u4VJbaN00IjI4HZswte3/XrwIYNBQu6XrpkerzGjQsq0bVqBSjuCy2dFkhbBhyeLAIOQASmDV8Haj0LqMxHPA3cVJBD2+Gc+jaahLZzfCCr8gAC6ogbHjbdp80Bbp00DZ7097PTgdwr4nZlu/lxvcMtB09+tQC1t2NfExEREVEpKTpIqpD0I0kHD5rtktPTce+7vfEoVmAlLActo0cDPXoUPeJSpDPJQEpvmC1UmnVObI9f4ZRAKSYGeP554K23TAMkQFRB791brKuUlgZs325aXc7PT4wW6dcuiox0eHdLR5aBsyuBQ5OAm3fWv/IMBhpMAGKfK3/BgcoLqNRQ3ArT3AJu/WsUPBkFULlXRBCVnQ5c2lzoiZKotOcfKwIz45EovxosYU5EREQuVe6CpD///NPVXSgbS0NEd0iyDBkSkjAaP6EHdDCNhGQZOHNGZOglJNhwTp1WjCAVDpDEUQFIwN7RQEQPh49YaLXAl19a3qd/a5YsKdjWoIEYKerSBWjTBvDwcGj3ykaWgfNrgEMTgev7xTb3SkCDl4E6IwF3f5d2zyHc/YGge8StsLzrQIaF4OnWCZG+l5Umbhd/N32epAJ8YwrNfbpz36e6U9JDiYiI6O5W7oKkcu948QuGukFGdZxBPFKwCQkW26Sn23jOyymmKXZmZDHv5HIKUNXyOe0lJcV8rpUlY8aIeVnR0Q7tjn3IMnDxD+DgG8DVHWKb2g+oNxaoNwbwqOTS7rmMR2Ug+F5xMybLYpSp8Nwn/X1tFpB5UtzS15o+180D8KtpOYDyrgZILi7OQURERBUCgyRnu3HDqmbhKDoSsrkoQbaVUZW17crA2gCvZctyEiBd2iJGji79KR6rvMWoUf2XAa9gl3ZNsSQJ8AoRt5AHTPfJsqj8Z2n06dZJQJcLZPwjboWpvE3nPRkHUl6hLGFOREREVmOQ5GxBQVY1S4d5JCRJYh5OfLyN5/S2Mqqytl0ZWBvgKao6nSVXd4vgKP1X8djNA6g9HGg4AfAOc23fyjNJAnwixK3wqKZOK0Y8LQVQmf8B2mzgxiFxK8w9oOgAytO630kiIiK6ezBIcrYGDYrdLUPCGUQiBaaRkP5L8KSkUhRtCIkHvMKAnAvFNJKcMpIUHy8CvXPnLE/PKnUg6CzXDwGHJwFnfxKPJTVQ62mg4RuAb5Rr+1bRuakAvxhxCy+8BpQGyEy1MPp0QpRd12QA1/aKW2GeVQC/WAtFJGIr5jwyIiIiKhGDJGczjnAkyTRSkCRIAM6MSYL8ocqkzkJkpAiQSlX+200lvjm3GCRJECeSgW2PA5e3AM0+KL48dRmoVKLMd+/eFl8+gFIGgo528x9RyjttmXgsuQExT4m1jvxqurRrBFENL+DO4rboarpPmyNGmiwtopt9Hsi9Km76+WTGvMLM5z75xwJ+tctflUIiIiKyGoMkZ9Ovk1SvHpCRAZw/X7DvTiSUW6kX5A+AypWBOXOAiIjiF1ot0fWDoigDAHiGArlGCw75RAL3fADcOAD8NQ048SlwdRfQZrkoxewAvXoBK1aYL5hbpkDQUTL/Aw5PAVK/BWSd2Fa9LxA3GQis59KukZVUXkBgA3ErLP/2nRLmhUafMo4DuZfFFws5Fwp+f4zpS5gXTt/zqynWnSIiIqJyi0GSs+mHS4KCxMqqDRoAXl5itdQ7kdDql0STRx8FnnjCDuc8MAGADET3A1p9Kz7wZaeLOUgh8WKkKbq3mES//Sng2h5gbTOg1VdA5CN26IC5Xr3Eek8pKaKYQ3h4GQNBe7t9BvhrKnDyS0DOF9siHwXipgCVG7u0a2RHal+gchNxKyzvpnn6nn4kSnNDzI/KOiMqGxqT3O6UMI81r8LnE80S5kREROUAgyRn0wdJsgxcujOiU726ycJHa9aIf7sWyhoqlYsbRRllSQ00flt8QCuqzHe1LkDn/cCWPiL1aHMPUaWtyTSHLO6pUtm43pMzZKcDf80A/p0H6PLEtvDOQOO3gCotXds3ci6PQKBKC3EzJssiPa/w6JP+cf5tMQKZ+V9BYQ89N3fzEub6YMongiXMiYiIFIJBkrPIWkiXNok5P4Co1HXhzhyhsIJqaP/9B/zzD6BWA4mJFo5j0zllYP94cb/2MMC/dsnP8Y0COmwCDowHjiUBR98FrmwHHvhOfIirqHKuAEffAY5/LKqkAUBoO6DxVCC0jWv7RsoiSaK8u1cwENLadJ8si/S8wnOfbp0QaX26XCDjmLgVpvISc51Mikfcue9VlSXMiYiInIhBkhNIZ1eiY/YIqDddBfSfja7tB47e+ZbZKEjSjyK1aQMEBpbxxGd+AK7tFilFjSZa/zyVB9D8QyCkDbDzaRHYrb0HeGAJENahjJ1SmLwbwD8fAP98CORnim1V7geaTAWqPsgPpmQbSRJprN7hQNV2pvtknVjUWR80ZRgFUJn/iQITN4+IW2Fq/0IjT0aFJDyrOOe1ERERlYZODBRE5G+GdMkXCG9fLlLPGSQ52plkqLb3g0pfqk7/mVurAfYtFPeNFgVavVr8+/DDZTyvTgMcfF3cr/cS4F3V9mNUf0zM1djyP+D6AeCPjkDcm6LcdTm4uIuluQUc+wg4+p6YXwIAle8RI0fVujA4IvuT3ADf6uJW+MsGXT5wO9V87tOtE0DWaSD/FnB9n7gV5lHZMOLk5lsTEfm3gethQOX6Yn0oIiIiVzmTDOwdBXXWWbQAgE0fiKJhzWcDUUqq1GWOQZIj6bTA3lEQqx/dob8jA7hx537VUABAVhawcaPYVOb5SCe/FN9Se4YA9V8q/XH8awOJ28TrOPm5KIN9eSvQ+lvAK7SMnXSB/GxRwe/vmUDuFbEtsKGYcxTZk8ERuYabWvyu+dcG0MV0nza3oIR54UISWWeBvOvA1Z3A1Z1QAeI/od/eF8/1qlrEIrq1AbWPc18jERHdXc4kAym9YbKmDQBknRPb41coOlBikORIl1OArLOw+LFbBnDzzn2fDADAH38AublAdDRQv34Zzpt/WwQzgEizK+u3yWpv4L75QGg8sGs4cGHDnfS7ZeVnvo42F/j3c+Dv6QWL5vrHimp11fuU/5ExqrhUnkBgfXErLD/rTglzETzpbh7D9bRdCHK/Cin3EpBzUdz0cyGN+UQWU8LcMeukERHRXcJooMCcDEAC9o4GInoo9jMYgyRH0n8YN6YvXmU8klRJ/KOfj/Tww2Uc0Dg2W0we960hCjbYS42ngMrNgC29gYx/gN8TgKYzRTqfUkdgdBrgv6+AI2+Jcs0A4BsNNHpTvB43/gpQOab2ESXp75Sl12o02HJ5Dbp27Qp3ZJvPfdKPROVdF6NQWWdFBUxjkpsoVW5pEV3fGP7OEBEphSyLZUp0GlGRV5fnhPtWtsvLAHLOF9d58bnsckrRVZddjP/bOZJ3eNH7jIOkqNqQ5YL5SGVKtcu5Avw9S9xvMtX+i1pWagh02g3sGgacXgLsfxm4lAK0WiTmRiiFTgucXipG1DJPim3e1YBGbwA1n+Fin1TxuQcAQc3FrbDcq+ZznwwlzDOB26fE7cJ60+dJ6jslzO+MPgUYlzCPZAlzIiq/ZFl8yJfvfNDX5jn2vr0Cl/LO0oCCQjBIcqSQeMAnEnLWOUhmhRsA3Lpzv35X/P03kJYm1pVt374M5/xrOqDJACo3FYvHOoK7n5iTFNoW2PsicG4VsLY5EP+95Q9kziTrRFW/Q28CGUfFNs8QoOFrYlRN7e3a/hEpgWcVcQu+33S7LIv0PEuL6Gb+Kyrw3Toublht+lyVF+BXy/Iiul5hyh1tJiL70wcczhrdkDUiALGlXeH7Oo2r3zX7cHMHJHfAzUN8IWzpfnH7CrdzK+X9G0eAvS+U3N/iBhRcjEGSI7mpRPWOlN767MuCIOkmxGiSyg0IrYrV34jN7dsDPqWdT337NHDiE3G/6SzHfqsrSUDsMLHAakpv8a3z+tZA8ySg9nDnfyCSZeDcL8ChicCNg2KbR2Wg/itAnRdEYEdExZMkwDtM3ELjTffJOjHZ1tIiuoYS5n+JW2FqvzuFKSysAeVZhQEUUXFknZPTqYq/r9bmon3WNajXvlwQXBRuL+e7+l2zj7IECYXvS+4iAHHkfTd35fw9DWkDHJ0p/t+wOC9JEhkIIfEW9ikDgyRHi+oFbavvoNkxAt7y1YIg6c6SPAitCqhUJvORSu3QJPHHqepDQFhZV6K1UlAzoMs+YMdg4OyPwO4RIv3u3nmAu7/jzy/LopDEoYnA1V1im9ofqDcWqDcG8CjrYlNEBOBOCfMocQt7yHSfLh/ISrOcvnc7VaTwXT8gboW5Vyq0gK5RAGWv31+dVuS9Z6eLby1D4hU7UZgcTKc1SndyVbBh43NkravfNRMSgACg4HOMtQyBgx0DD7vdt7BPUisn4CiPjAYKxFVjHCjdeV+bJyn6bzGDJCeQI3tivbca3T1nwA17THeGheHGDWDLneJTXbqYPd061w8Bp+4MRzWd6dxfbI9KQHyyWJD1wHgxF+j6PqDNCqBSI8ed99Jm4OAb4sMPAKh8gLovAvXHcYFNImdyuzNXya8mgM6m+7R5xZQwPyPWKbu6q+BLDmOeIYUCKOMS5r7W9e3OGh3IOluwrZys0aF4Oq39U6VKc9+WeR+yztXvmh1IzgkSirifL7th5+79uO/+NlB7+Fj3XEnFgONuFNVLlPm2+Dc4SfF/gxkkOYukEoUDCmXAXfUIx1tvAlotULcuULNmKY9/cAIAWZSzrtKirL21nSQB9ccCwfcBW/oCGceAX+8FWn4G1Bxg33Nd2SlGji5sEI/dPIHY54AGr5Zu0VwichyVBxBYT9wKy88ShVUsLaKbcwHIvQxcvizWZivMu5r53Cf/WDEvSl/CvLys0SHLYrTABaMbKm0O7ss5B9XmT2yfUG4xhaa8kcT1Ypy2VGJKk5XzORwxz8PNw+XfvMsaDa6otJBD2gDu7i7tC5UDUb2AiB7IT9+IAzvWoun9XaAOb+/y69gaDJKcycLijT/uDMNHO8X9c+eA5GSgl63/Z1/cBJxfI4aGG08tez/LIuQBoMt+YNuTojLWjoHA5c1A8zllL5pw/YBIKTz3s3gsqYHaQ0RRBp/IMnediJxM7QNUihO3wjQZRmtAGQVQmSdEdb7s8+J26c9CT5REmX+/2sDV7Sh6jQ4Au54T86VcFKCY3HdRwOEGIAwALtrhYJLK+WlSZZ7DofwPakTlnpsKcmg7nFPfRpPQduXm945BkjOpvM1Gki6I/54AAJmZQO/ewIoVNgRKsixS3AARMATE2qevZeEVAiSsEZX2Dr8JnFwAXN0DtPm+dP27+beoVndmhXgsuQE1BoqFcv1q2LfvRKQM7gFizmNQM/N9udcsp+9lHAfyb4l5ULdTSz5H7iVgYyd799w+JLVTgg2trMKhI/8grmkzqN0tpU7ZcFyWgCeiCoRBkhPJKvORlHSYlz4cPRro0QNQWRNon10JXN0p5uM0mlT2TtqLmwqImwiEtAa2PS4qzq1rDtz/JVC9t2hT0mTqW/8Ch6cAqYthWJ05uh8Q9yYQUNcVr4qIlMAzCPC8T6T3GpNlIOeSCJhOfQOcnF/ysbwjAa/QYj78O3lkxE1foco5AYdOo0HasTVoFN2VqVNEREYYJDmTyqugut0dxiNJgPg//swZICUFSEgo4Xi6fODga+J+/ZdE2V6lCXsI6Lwf2NpPBERb/gfUeVGk5e1/yfJk6qDmwJG3gf8WFVT1ieoFxE1xbCEIIirfJEnMS/SuKkoQWxMktf5Gsau9ExGR6zBIciaVj1mQZGkkCQDSrVmA+L+FokCCZ7Co6KZUPtWAh/4ADr0B/D0LOP6RuBWWdQ5IeUzkteuDo2pdgcZvuX6RWiIqX+4s5l2e1+ggIiLXYQKxM6m8SxxJ0gsvaQHi/Cwx3wcAGr4h8veVzE0tSpPHr4TZm2Bw54OMrAVC2wOJW4GE1QyQiMh2+jU6AJj/zSkfa3QQEZHrMEhyJiuCJEkCoqKA+JK+3Dw2W8zl8Y0BYofbtZsO5VEJVlVxipsk5jMREZWWfo0OnwjT7T6Ryin/TUREisR0OyeSC6XbZcAfWShYEFG/zlpSUglFG3KvAn/PFPcbTy1YE6Q8yLYmj9CGdkRExbmzRkexRWKIiIgKYZDkTIUKN1wsNIoUGSkCpBLLf/81Q6whUqkJENPf7t10KO+S8ghtbEdEVBI3FYszEBGRTRgkOVOhEuDpd4Kkzz4D6tYVKXYllv2+fRo4Pkfcbzqz/K1LwcnURERERKRw5ewTdjlXaE5SOsLRpAkwbJgo923VukiH3hQrtFdtD4QrdBHE4nAyNREREREpHIMkZ1Kbzkm6gDB06GDD828cBk59Le43nVUwiam84WRqIiIiIlIwpts5U6GRpAsIK3nBWGMHXgMgA1G9gSot7dw5J+NkaiIiIiJSKAZJTvT7n97oZDQNJxA3MWKYFnlzVCUXa7i0GTj/i1hotck0h/bTaTiZmoiIiIgUiOl2TrJ9ezh+GrYNmFWw7VXMwtbzMVj8WDKSk4t5siwD+8eL+7WGAAF1HNpXIiIiIqK7GYMkJ9BqgfRPTuLjmyOBm6b7InAO36M31g1NhlZrtEOnBS7+CaQuBY5MA67uAFQ+YpFVIiIiIiJyGKbbOcGWTTpMzXwFlkpeu0GGDhLeuDoaKX/2QMJDKuBMMrB3FJB11rRxtS5cP4iIiIiIyME4kuQEuk1bEIWzRb7ZbpBRHWeg/TNFBEgpvc0DJEDsO1NcXh4REREREZUVgyQnCEe6de3kc2IEyeIiq3fsHS1S8YiIiIiIyCEYJDlB3YQw69rdc9nyCJKBDGSdEWWziYiIiIjIIRgkOYHUtg1u+IdCB8uLv+ogIatKFFRNQ6w7YLZ1I1NERERERGQ7BknOoFLh+IjBkGCeSKeDBAmAz/wkwC/CuuOxeAMRERERkcMwSHKS9FatoF32HfIDTQsKSpGRkH5YAfTqBYTEAz6RQBEjToAE+ESJdkRERERE5BAsAe5ENx7sibMvN0DT7EPICX4VXk07QYqPB1Qq0cBNBTSfDaQ8ZuHZdwKn5kmiHREREREROQSDJCfRaoFly9zQLN8HaAC4P3AfEJ1g3tA32vIBfCJFgBTVy5HdJCIiIiK66zFIcoKVKyWMGNERV6+q8NsEHwDAqOez8eDTIsvOQJaB/ePF/ej+QO2hokiDd7hIseMIEhERERGRwzFIcrDkZKBfPxVkWQQ42Rpv8W9mNnr3BlasMAqU0tcDF38H3DyAJtMBvxjXdJqIiIiI6C7Gwg0OpNUCo0aJASL9nKLsPBEkeXtkAQBGjxbtoNMCB14RT6zzAgMkIiIiIiIX4UiSA6WkAGfPAsbV6gqCpGxI0KKmXwqO/ZqOBuGHgBuHAPdAoOFrrukwERERERExSHKkdAtrvmbliTlJzWL2InV2DKKqnAVuQNwAIOIRwLOKk3pIRERERESFMd3OgcItrPmqH0nq12oZIoLOmjdI/RY4k+zgnhERERERUVEYJDlQfDwQGQlIkmzYlpPnabjvVtSasXtHizlKRERERETkdAySHEilAmbP1j8SgVJo4GUAgFRUgAQZyDoDXE5xdPeIiIiIiMgCBkkO1qsX8N13WlSpkgMA8FTnWvfEbAsTmoiIiIiIyOFYuMEJevaUoVavR0DAw4i8FGzdk7wtTGgiIiIiIiKHY5DkJCoV0K6dDPfTccCu4lpKgE8kEBLvrK4REREREZERpts5m7tfMTvvTFRqngS4qZzRGyIiIiIiKkTRQdKMGTPQsmVL+Pv7IzQ0FI8++iiOHTvm6m6VjZtH0ft8IoH4FUBUL+f1h4iIiIiITCg6SNq0aROef/557NixAxs2bIBGo0HHjh1x+/ZtV3etVKSzK4FdQ003qgOAuqOBhzYCj5xigERERERE5GKKnpO0bt06k8eLFi1CaGgo9u7di7Zt27qoV6UTnr8dqu3vQF8K3CD/FnBsNhAazxQ7IiIiIiIFUHSQVNjNmzcBAEFBQUW2yc3NRW5uQZntjIwMAIBGo4FGo3FsB4ugyctBXN4XMAuQAAAyZEjAnlHIr9oVkBgokaC/Xl113VL5w2uGbMVrhmzFa4ZKQ0nXjbV9kGRZtvTJXXF0Oh0eeeQR3LhxA1u2bCmy3eTJkzFlyhSz7UuWLIGPj48ju1ikKtrDaJMzscR2W7zexlVVnBN6RERERER098nKysLjjz+OmzdvIiAgoMh25SZIeu6557B27Vps2bIFkZGRRbazNJIUFRWFK1euFPtGOJLu1GJ47hlcYrv8+76GXL2fE3pE5YFGo8GGDRuQmJgId3d3V3eHygFeM2QrXjNkK14zVBpKum4yMjIQHBxcYpBULtLtXnjhBfzyyy/YvHlzsQESAHh6esLT09Nsu7u7u8t+KPm+xfdZT+0XBfAPDhXiymuXyideM2QrXjNkK14zVBpKuG6sPb+iq9vJsowXXngBK1euxB9//IEaNWq4ukulIoe0QbZURcw9skgCfKK4gCwRERERkQIoOkh6/vnn8e2332LJkiXw9/fHhQsXcOHCBWRnZ7u6a7aRVDjs8az+QeGd4h8uIEtEREREpAiKDpLmzp2LmzdvIiEhAeHh4YbbsmXLXN01m6WrW0Hb6jvAJ8J0BxeQJSIiIiJSFEXPSSonNSWsJkf2BKIfAy6nANnpgHe4SLHjCBIRERERkWIoOkiqkNxUQNUEV/eCiIiIiIiKoOh0OyIiIiIiImdjkERERERERGSEQRIREREREZERBklERERERERGGCQREREREREZYZBERERERERkhEESERERERGREQZJRERERERERhgkERERERERGWGQREREREREZIRBEhERERERkREGSUREREREREYYJBERERERERlhkERERERERGSEQRIREREREZERBklERERERERGGCQREREREREZYZBERERERERkhEESERERERGREQZJRERERERERhgkERERERERGWGQREREREREZIRBEhERERERkREGSUREREREREYYJBERERERERlhkERERERERGSEQRIREREREZERBklERERERERGGCQREREREREZYZBERERERERkhEESERER0f/bu/eoqOr1f+DvGe53FJKLgmioGBCiJILXigQzyvJUp8Mxs6uKBQfSk79OabZMtDQvC/Oc1jd1dUzTE5ql4fHgLU0hURQUyETUFDRDHAjTYeb5/WHsZuQiIMMM+H6txVozn/3Zn/3sPY979rP3ni0RkQEWSURERERERAZYJBERERERERlgkURERERERGSARRIREREREZEBFklEREREREQGWCQREREREREZYJFERERERERkgEUSERERERGRARZJREREREREBlgkERERERERGWCRREREREREZIBFEhERERERkQEWSURERERERAZYJBERERERERlgkURERERERGSARRIREREREZEBFklEREREREQGWCQREREREREZYJFERERERERkgEUSERERERGRAWtzB3CnEJ3g9O7TuPrzVbj4uMB/uD/UVqxRiYhMTa/T48y3Z1BVVsX9LxERNQuLpHZQtLEIx6cex5FfjihtDl0dMPjVwfAf7o9fL/7KL24iIhMozChEZlImND9plDbXHq6IWxKH/k/0N2NkRERkyVgkmVhhRiEy/pwBiHH71Yqr2P3ObqM2wy9uU535tKQzqpYUi6XR6/Q4vfs0Lu+5jNNOp9H7/t7cNkQtVJhRiPV/Wl9v/6s5p8H6P63HU/95ioUSEZGJddRjGhZJJqTX6ZGZlFnvC7oxdV/c0a9Ho2BtQZuf+bSkM6qWFIuluXnbnF50mtuGOi0Rgeh//9P98Vqv0zfY3tQ0w3adVoctU7Y0vP/9vW3L1C1w6e4CtbUaKpUKKrUKUMH4tVoFlcr4dXP7tWYew35ERB1dRz6mUYlIMw/hOyaNRgM3NzdcuXIFrq6u7brs0l2lWH3/6rYZ7Pfvy9ae+WzsjOrtjtsalhSLpeG2aZ3mHEA39+C61dPaelmtKQxqdThTegY9uveACiqTLret1pGaUFcs3Waxdat5aq7WwMnJ6caZ3XYo/m63GG2rcSxtvTpKPLW1tcjakYWYh2Jga2vbqnh4IuDOYKnHNM2tDXglyYSqyqrabrDfE+zLF77E5VOXG79M2dA+R4Bd7+xq8ozqly98icsll6FSqyAigNw4w1vXp61e63V65CzLaTqWSV+i7FAZVFY3VqZuh9pWr5UdsylftyIu0QsyX2vkyuPvbZtf2oyaX2puNJn4YB16dJgCgoxVoMLcIbQ9FaC2Ut84+FKroLJSKa+N2n+fVnu1Flcrrt5yWAcPB9g42tzII/m94Bbj18o0w9e36NfcOwiaZLD/NHVBeQ3XTDo+dT7HcOy2x7Ck4s/SitGOvl4Q4JtXv2n8mEYFZCZnot9j/Sz21rsOcSUpPT0d77//PsrLyxEWFoZly5Zh8ODBzZq301xJIqLbdvOBdIMH2QbtTU1r6MDcFPO0pJ9AcOLECfTr3w/Wttbtvn7NHq+F87TmrHNz978Td05EwKiAVmZU09qi2LqteRrod/M8tdpafPfddxgSOQTWVtZmj8fStg8EnXa9bjceorZgyn1wYzrNlaTPP/8cKSkpWLFiBSIjI7F48WLExsaiuLgY3bp1M3d4TfIf7g/XHq5Gv7tpC37RfnAPcAfwx1lGIzc1VZZW4qcDPzVv3F43xr3VVZfWXs2pOFGBku0lt4yl10O94NHHw+hManNf162/4dlcU14dq/e6ieU39bqqvAqXjl+65bbxDveGm59b8w9CO+BBsanG6+y0Wi00WzWIfjgaNjY25g7HrJT97zlNwwd0qhu/g/Qf7m+yGIzOClsorVYL58vO8B/mf8fnDDWPVqvF1q1bMWbMGNhY23S64s8i4mnHdTXVNqsqa94xTZveddXGLL5IWrRoEV566SVMmjQJALBixQps2bIFn3zyCd544w0zR9c0tZUacUvisH78+jYd94G5D7So6m7uGdWWjtsapbtKm1Ukjfh/I9r9zIK5Nfdzil0Ue8dtG6KWUva/f1p/4ySNYaH0e80StzjOYm/zILJ0dbdXqaACrMwdDVma5h7TuPi4tEM0rWPRRdL169eRm5uLmTNnKm1qtRoxMTHYv39/g/Ncu3YN1679cW+1RnPjKo5Wq4VWqzVtwA0IjA/EY589hq9f/hq6at3tDaYCXLu7wmeIT4vWxWeID1y6u6DqfFXjZ1RbMW5rWFIslobbhm5XXV4wP24IjA/EE+uewPaU7ag698fZStfurohZGIPA+MA7flsxZ6ilmDPUHJZ8TNPc5Vn0b5LOnz+P7t2747vvvkNUVJTSPmPGDOzevRvZ2dn15pk9ezbeeeedeu2fffYZHB0dTRpvU0QnKN9QjktfX2q0WLLxtIH7MHf8vOnnRscJ+HsA3KPcW7z8yv2VKJ1f2ubjtoYlxWJpuG2I2p7oBNXHq1F7uRbWXazhfI+z8mAYIiIyDUs9pqmpqcFf/vKXjv+bpJaaOXMmUlJSlPcajQZ+fn4YPXp0uz+4oY5Wq8X27dvx7P89Cyu1Fc7uPYvqsmo4dnMEVEDNhRo4+zjDb5gf1FZqFG0sqn/ms8eNM59Bjwe1LoiHgaKBJhi3o8diabht6DbU7Wseeugh/r7kZvHmDsAyMWeopZgz1GwWekxTd5fZrVh0keTp6QkrKytcuHDBqP3ChQvw9vZucB47OzvY2dnVa7exsTH7P+a6GAJjApvsF/pUKILHB+PMt2dQVVYFFx8X+A/3v+175001bkePxdLUbZuSnSXY+81eDBszrMP879RkGSxhf0cdC3OGWoo5Q81hicc0zc1biy6SbG1tMWjQIGRlZWHcuHEAAL1ej6ysLEybNs28wZmY2kptkh/nm2rc1rCkWCyN2kqNniN74tivx9BzZE8WSERERNQhddRjGosukgAgJSUFEydOREREBAYPHozFixfj119/VZ52R0RERERE1JYsvkh6+umn8fPPP+Ptt99GeXk5BgwYgMzMTHh5eZk7NCIiIiIi6oQsvkgCgGnTpnX62+uIiIiIiMgydIybAomIiIiIiNoJiyQiIiIiIiIDLJKIiIiIiIgMsEgiIiIiIiIywCKJiIiIiIjIAIskIiIiIiIiAyySiIiIiIiIDLBIIiIiIiIiMsAiiYiIiIiIyACLJCIiIiIiIgPW5g7A1EQEAKDRaMwWg1arRU1NDTQaDWxsbMwWB3UszBtqKeYMtRRzhlqKOUOtYUl5U1cT1NUIjen0RVJVVRUAwM/Pz8yREBERERGRJaiqqoKbm1uj01VyqzKqg9Pr9Th//jxcXFygUqnMEoNGo4Gfnx/Onj0LV1dXs8RAHQ/zhlqKOUMtxZyhlmLOUGtYUt6ICKqqquDr6wu1uvFfHnX6K0lqtRo9evQwdxgAAFdXV7MnBnU8zBtqKeYMtRRzhlqKOUOtYSl509QVpDp8cAMREREREZEBFklEREREREQGWCS1Azs7O8yaNQt2dnbmDoU6EOYNtRRzhlqKOUMtxZyh1uiIedPpH9xARERERETUErySREREREREZIBFEhERERERkQEWSURERERERAZYJBERERERERlgkdQO0tPTERAQAHt7e0RGRiInJ8fcIVE7mDdvHu677z64uLigW7duGDduHIqLi436/Pbbb0hMTISHhwecnZ0xfvx4XLhwwajPmTNnMHbsWDg6OqJbt26YPn06amtrjfrs2rULAwcOhJ2dHQIDA7Fq1SpTrx61g7S0NKhUKiQnJyttzBlqyLlz5/DXv/4VHh4ecHBwQGhoKA4ePKhMFxG8/fbb8PHxgYODA2JiYnDixAmjMSoqKpCQkABXV1e4u7vjhRdeQHV1tVGfo0ePYvjw4bC3t4efnx8WLFjQLutHbUun0+Gtt95Cr1694ODggLvvvhvvvvsuDJ/lxZy5s+3Zswfx8fHw9fWFSqXCpk2bjKa3Z35s2LABQUFBsLe3R2hoKLZu3drm69sgIZNat26d2NrayieffCLHjh2Tl156Sdzd3eXChQvmDo1MLDY2VlauXCkFBQWSl5cnDz/8sPj7+0t1dbXSZ/LkyeLn5ydZWVly8OBBGTJkiERHRyvTa2trJSQkRGJiYuTw4cOydetW8fT0lJkzZyp9SkpKxNHRUVJSUuT48eOybNkysbKykszMzHZdX2pbOTk5EhAQIPfee68kJSUp7cwZullFRYX07NlTnnvuOcnOzpaSkhLZtm2b/Pjjj0qftLQ0cXNzk02bNsmRI0fk0UcflV69esnVq1eVPnFxcRIWFiYHDhyQb7/9VgIDA+WZZ55Rpl+5ckW8vLwkISFBCgoKZO3ateLg4CD//Oc/23V96fbNnTtXPDw85Ouvv5ZTp07Jhg0bxNnZWZYsWaL0Yc7c2bZu3SpvvvmmZGRkCADZuHGj0fT2yo99+/aJlZWVLFiwQI4fPy7/+Mc/xMbGRvLz802+DVgkmdjgwYMlMTFRea/T6cTX11fmzZtnxqjIHC5evCgAZPfu3SIiUllZKTY2NrJhwwalT2FhoQCQ/fv3i8iNnZRarZby8nKlz0cffSSurq5y7do1ERGZMWOGBAcHGy3r6aefltjYWFOvEplIVVWV9OnTR7Zv3y4jR45UiiTmDDXk73//uwwbNqzR6Xq9Xry9veX9999X2iorK8XOzk7Wrl0rIiLHjx8XAPL9998rfb755htRqVRy7tw5ERFZvny5dOnSRcmjumX369evrVeJTGzs2LHy/PPPG7U98cQTkpCQICLMGTJ2c5HUnvnx1FNPydixY43iiYyMlFdeeaVN17EhvN3OhK5fv47c3FzExMQobWq1GjExMdi/f78ZIyNzuHLlCgCga9euAIDc3FxotVqj/AgKCoK/v7+SH/v370doaCi8vLyUPrGxsdBoNDh27JjSx3CMuj7MsY4rMTERY8eOrfe5MmeoIZs3b0ZERASefPJJdOvWDeHh4fj444+V6adOnUJ5ebnRZ+7m5obIyEijvHF3d0dERITSJyYmBmq1GtnZ2UqfESNGwNbWVukTGxuL4uJiXL582dSrSW0oOjoaWVlZ+OGHHwAAR44cwd69ezFmzBgAzBlqWnvmhzm/r1gkmdClS5eg0+mMDlYAwMvLC+Xl5WaKisxBr9cjOTkZQ4cORUhICACgvLwctra2cHd3N+prmB/l5eUN5k/dtKb6aDQaXL161RSrQya0bt06HDp0CPPmzas3jTlDDSkpKcFHH32EPn36YNu2bZgyZQpee+01rF69GsAfn3tT30Xl5eXo1q2b0XRra2t07dq1RblFHcMbb7yBP//5zwgKCoKNjQ3Cw8ORnJyMhIQEAMwZalp75kdjfdojf6xNvgQiQmJiIgoKCrB3715zh0IW7OzZs0hKSsL27dthb29v7nCog9Dr9YiIiMB7770HAAgPD0dBQQFWrFiBiRMnmjk6skTr16/HmjVr8NlnnyE4OBh5eXlITk6Gr68vc4bod7ySZEKenp6wsrKq9+SpCxcuwNvb20xRUXubNm0avv76a+zcuRM9evRQ2r29vXH9+nVUVlYa9TfMD29v7wbzp25aU31cXV3h4ODQ1qtDJpSbm4uLFy9i4MCBsLa2hrW1NXbv3o2lS5fC2toaXl5ezBmqx8fHB/fcc49RW//+/XHmzBkAf3zuTX0XeXt74+LFi0bTa2trUVFR0aLcoo5h+vTpytWk0NBQTJgwAX/729+UK9jMGWpKe+ZHY33aI39YJJmQra0tBg0ahKysLKVNr9cjKysLUVFRZoyM2oOIYNq0adi4cSN27NiBXr16GU0fNGgQbGxsjPKjuLgYZ86cUfIjKioK+fn5Rjua7du3w9XVVTkoioqKMhqjrg9zrON58MEHkZ+fj7y8POUvIiICCQkJymvmDN1s6NCh9f57gR9++AE9e/YEAPTq1Qve3t5Gn7lGo0F2drZR3lRWViI3N1fps2PHDuj1ekRGRip99uzZA61Wq/TZvn07+vXrhy5duphs/ajt1dTUQK02PgS0srKCXq8HwJyhprVnfpj1+8rkj4a4w61bt07s7Oxk1apVcvz4cXn55ZfF3d3d6MlT1DlNmTJF3NzcZNeuXVJWVqb81dTUKH0mT54s/v7+smPHDjl48KBERUVJVFSUMr3ucc6jR4+WvLw8yczMlLvuuqvBxzlPnz5dCgsLJT09nY9z7kQMn24nwpyh+nJycsTa2lrmzp0rJ06ckDVr1oijo6P8+9//VvqkpaWJu7u7fPnll3L06FF57LHHGnxcb3h4uGRnZ8vevXulT58+Ro/rraysFC8vL5kwYYIUFBTIunXrxNHRkY9z7oAmTpwo3bt3Vx4BnpGRIZ6enjJjxgylD3PmzlZVVSWHDx+Ww4cPCwBZtGiRHD58WE6fPi0i7Zcf+/btE2tra/nggw+ksLBQZs2axUeAdybLli0Tf39/sbW1lcGDB8uBAwfMHRK1AwAN/q1cuVLpc/XqVZk6dap06dJFHB0d5fHHH5eysjKjcUpLS2XMmDHi4OAgnp6ekpqaKlqt1qjPzp07ZcCAAWJrayu9e/c2WgZ1bDcXScwZashXX30lISEhYmdnJ0FBQfKvf/3LaLper5e33npLvLy8xM7OTh588EEpLi426vPLL7/IM888I87OzuLq6iqTJk2Sqqoqoz5HjhyRYcOGiZ2dnXTv3l3S0tJMvm7U9jQajSQlJYm/v7/Y29tL79695c033zR6FDNz5s62c+fOBo9hJk6cKCLtmx/r16+Xvn37iq2trQQHB8uWLVtMtt6GVCIG/70yERERERHRHY6/SSIiIiIiIjLAIomIiIiIiMgAiyQiIiIiIiIDLJKIiIiIiIgMsEgiIiIiIiIywCKJiIiIiIjIAIskIiIiIiIiAyySiIiIiIiIDLBIIiKiFistLYVKpUJeXp65Q1EUFRVhyJAhsLe3x4ABA8wdToOee+45jBs3Tnk/atQoJCcnNzlPQEAAFi9ebNK4iIjIGIskIqIO6LnnnoNKpUJaWppR+6ZNm6BSqcwUlXnNmjULTk5OKC4uRlZWVqP9ysvL8eqrr6J3796ws7ODn58f4uPjm5zHVDIyMvDuu++26ZirVq2Cu7t7m45JRHSnYZFERNRB2dvbY/78+bh8+bK5Q2kz169fb/W8J0+exLBhw9CzZ094eHg02Ke0tBSDBg3Cjh078P777yM/Px+ZmZm4//77kZiY2Oplt1bXrl3h4uLS7sslIqKmsUgiIuqgYmJi4O3tjXnz5jXaZ/bs2fVuPVu8eDECAgKU93W3gL333nvw8vKCu7s75syZg9raWkyfPh1du3ZFjx49sHLlynrjFxUVITo6Gvb29ggJCcHu3buNphcUFGDMmDFwdnaGl5cXJkyYgEuXLinTR40ahWnTpiE5ORmenp6IjY1tcD30ej3mzJmDHj16wM7ODgMGDEBmZqYyXaVSITc3F3PmzIFKpcLs2bMbHGfq1KlQqVTIycnB+PHj0bdvXwQHByMlJQUHDhxQ+i1atAihoaFwcnKCn58fpk6diurqamV63dWabdu2oX///nB2dkZcXBzKysqUPjqdDikpKXB3d4eHhwdmzJgBETGK5+bb7S5evIj4+Hg4ODigV69eWLNmTb11aCq2Xbt2YdKkSbhy5QpUKpXRtrh27Rpef/11dO/eHU5OToiMjMSuXbuUcU+fPo34+Hh06dIFTk5OCA4OxtatWxvcjkREnR2LJCKiDsrKygrvvfceli1bhp9++um2xtqxYwfOnz+PPXv2YNGiRZg1axYeeeQRdOnSBdnZ2Zg8eTJeeeWVesuZPn06UlNTcfjwYURFRSE+Ph6//PILAKCyshIPPPAAwsPDcfDgQWRmZuLChQt46qmnjMZYvXo1bG1tsW/fPqxYsaLB+JYsWYKFCxfigw8+wNGjRxEbG4tHH30UJ06cAACUlZUhODgYqampKCsrw+uvv15vjIqKCmRmZiIxMRFOTk71phveoqZWq7F06VIcO3YMq1evxo4dOzBjxgyj/jU1Nfjggw/w6aefYs+ePThz5ozRchcuXIhVq1bhk08+wd69e1FRUYGNGzc28SncKFjPnj2LnTt34j//+Q+WL1+OixcvGvVpKrbo6GgsXrwYrq6uKCsrM9oW06ZNw/79+7Fu3TocPXoUTz75JOLi4pRtmJiYiGvXrmHPnj3Iz8/H/Pnz4ezs3GS8RESdlhARUYczceJEeeyxx0REZMiQIfL888+LiMjGjRvFcNc+a9YsCQsLM5r3ww8/lJ49exqN1bNnT9HpdEpbv379ZPjw4cr72tpacXJykrVr14qIyKlTpwSApKWlKX20Wq306NFD5s+fLyIi7777rowePdpo2WfPnhUAUlxcLCIiI0eOlPDw8Fuur6+vr8ydO9eo7b777pOpU6cq78PCwmTWrFmNjpGdnS0AJCMj45bLu9mGDRvEw8NDeb9y5UoBID/++KPSlp6eLl5eXsp7Hx8fWbBggfK+bvvUfW4iN9Y/KSlJRESKi4sFgOTk5CjTCwsLBYB8+OGHLYrNzc3NqM/p06fFyspKzp07Z9T+4IMPysyZM0VEJDQ0VGbPnt34RiAiuoNYm7E+IyKiNjB//nw88MADDV49aa7g4GCo1X/cXODl5YWQkBDlvZWVFTw8POpd1YiKilJeW1tbIyIiAoWFhQCAI0eOYOfOnQ1ejTh58iT69u0LABg0aFCTsWk0Gpw/fx5Dhw41ah86dCiOHDnSzDVEvVvdmvK///0P8+bNQ1FRETQaDWpra/Hbb7+hpqYGjo6OAABHR0fcfffdyjw+Pj7K9rly5QrKysoQGRmpTK/bPo3FUVhYCGtra6PtERQUVO8hDM2J7Wb5+fnQ6XTKNq9z7do15fdbr732GqZMmYL//ve/iImJwfjx43Hvvfc2c4sREXUuvN2OiKiDGzFiBGJjYzFz5sx609Rqdb2Dcq1WW6+fjY2N0XuVStVgm16vb3Zc1dXViI+PR15entHfiRMnMGLECKVfQ7e+mUKfPn2gUqlQVFTUZL/S0lI88sgjuPfee/HFF18gNzcX6enpAIwfLNHQ9mlJIdYazY3tZtXV1bCyskJubq7RZ1FYWIglS5YAAF588UWUlJRgwoQJyM/PR0REBJYtW2bS9SEislQskoiIOoG0tDR89dVX2L9/v1H7XXfdhfLycqOD97b8v40MH3ZQW1uL3Nxc9O/fHwAwcOBAHDt2DAEBAQgMDDT6a0lh5OrqCl9fX+zbt8+ofd++fbjnnnuaPU7Xrl0RGxuL9PR0/Prrr/WmV1ZWAgByc3Oh1+uxcOFCDBkyBH379sX58+ebvRwAcHNzg4+PD7Kzs5W2uu3TmKCgoHp9iouLlbiaG5utrS10Op1RW3h4OHQ6HS5evFjvs/D29lb6+fn5YfLkycjIyEBqaio+/vjjFq03EVFnwSKJiKgTCA0NRUJCApYuXWrUPmrUKPz8889YsGABTp48ifT0dHzzzTdtttz09HRs3LgRRUVFSExMxOXLl/H8888DuPEggIqKCjzzzDP4/vvvcfLkSWzbtg2TJk2qdxB/K9OnT8f8+fPx+eefo7i4GG+88Qby8vKQlJTU4nh1Oh0GDx6ML774AidOnEBhYSGWLl2q3DoYGBgIrVaLZcuWoaSkBJ9++mmjD5RoSlJSEtLS0rBp0yYUFRVh6tSpRgXPzfr164e4uDi88soryM7ORm5uLl588UU4ODgofZoTW0BAAKqrq5GVlYVLly6hpqYGffv2RUJCAp599llkZGTg1KlTyMnJwbx587BlyxYAQHJyMrZt24ZTp07h0KFD2Llzp1LwEhHdaVgkERF1EnPmzKl3O1z//v2xfPlypKenIywsDDk5Obf126WbpaWlIS0tDWFhYdi7dy82b94MT09PAFCu/uh0OowePRqhoaFITk6Gu7u70e+fmuO1115DSkoKUlNTERoaiszMTGzevBl9+vRp0Ti9e/fGoUOHcP/99yM1NRUhISF46KGHkJWVhY8++ggAEBYWhkWLFmH+/PkICQnBmjVrmnzMemNSU1MxYcIETJw4EVFRUXBxccHjjz/e5DwrV66Er68vRo4ciSeeeAIvv/wyunXrpkxvTmzR0dGYPHkynn76adx1111YsGCBMvazzz6L1NRU9OvXD+PGjcP3338Pf39/ADceWZ6YmIj+/fsjLi4Offv2xfLly1u83kREnYFKTH0DNRERERERUQfCK0lEREREREQGWCQREREREREZYJFERERERERkgEUSERERERGRARZJREREREREBlgkERERERERGWCRREREREREZIBFEhERERERkQEWSURERERERAZYJBERERERERlgkURERERERGTg/wNe8DMTncXD2wAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAvFRJREFUeJzs3Xl4TNcbwPHvZLJIZBOCSCKx1k6LtlSIfSlFqpSqpS0tXaifLtraWkqrilardKELamm0qLWttVRRlKqliCViXyISWSb398cxSSbrTDLJzCTv53nuMzP3nrn3zLgm973nnPfoNE3TEEIIIYQQQogSwsnWFRBCCCGEEEKIoiRBkBBCCCGEEKJEkSBICCGEEEIIUaJIECSEEEIIIYQoUSQIEkIIIYQQQpQoEgQJIYQQQgghShQJgoQQQgghhBAligRBQgghhBBCiBJFgiAhhBBCCCFEiSJBkBCiwHQ6HS+88IKtqyGEzYSGhjJo0KC015s3b0an07F58+Y83xseHk54eHih1a2wHD9+nA4dOuDj44NOp+PHH3+0dZWEEMJsEgQJYUcOHjxIr169CAkJoVSpUgQGBtK+fXs+/vhjW1et0ERFRaHT6fjggw+ssr9PP/2UBQsWWGVfxd2CBQvQ6XSUKlWK6OjoLNvDw8OpV6+eDWqWO4PBwPz58wkPD8fPzw83NzdCQ0MZPHgwe/bssXX1ikx8fDwTJkwwK9AqDAMHDuTgwYNMnjyZb7/9liZNmhTKccLDw9HpdHkuEyZMKJTjZ2QMbpcvX26yPikpia5du+Lk5MRXX31V6PUwWrJkCf3796dGjRrodLpcg+nExERee+01KlWqhLu7Ow888AAbN24ssroKYW+cbV0BIYSyY8cOWrduTeXKlRkyZAgVK1bk7Nmz/PHHH8yaNYsXX3zR1lV0CJ9++inlypUzuSsvcpeYmMjUqVMdIthOSEggIiKCdevW0bJlS9544w38/PyIiopi6dKlfP3115w5c4agoCCb1rNly5YkJCTg6upaaMeIj49n4sSJAEXekpSQkMDOnTt58803C70V+M033+SZZ55Je717924++ugj3njjDWrXrp22vkGDBoVaj5wkJyfTq1cv1qxZw+eff85TTz1VZMeeM2cOe/fupWnTply9ejXXsoMGDWL58uWMHDmSGjVqsGDBArp06cKmTZto0aJFEdVYCPshQZAQdmLy5Mn4+Piwe/dufH19TbZdunSpyOtz+/ZtSpcuXeTHFUWvUaNGfP7554wZM4ZKlSrZujq5euWVV1i3bh0zZsxg5MiRJtvGjx/PjBkzbFOxTJycnChVqpStq1FoLl++DJDlt6ogcvrNad++vcnrUqVK8dFHH9G+fXubdyNMTk6md+/erF69mrlz5/L0008X6fG//fZbAgMDcXJyyrXV9s8//+T7779n2rRpjB49GoABAwZQr149Xn31VXbs2FFUVRbCbkh3OCHsxIkTJ6hbt262FxXly5fPsu67776jcePGuLu74+fnx+OPP87Zs2dNymzbto3HHnuMypUr4+bmRnBwMC+//DIJCQkm5QYNGoSnpycnTpygS5cueHl58cQTTwCQmprKrFmzqF+/PqVKlcLf359OnTpl2+3oxx9/pF69eri5uVG3bl3WrVtXgG/E1Pz582nTpg3ly5fHzc2NOnXqMGfOHJMyoaGh/PPPP2zZsiWti0zGi6QbN24wcuRIgoODcXNzo3r16rz33nukpqamlcnYPW/evHlUq1YNNzc3mjZtyu7du7PU68iRI/Tu3Rt/f3/c3d255557ePPNNwHYtGkTOp2OFStWZHnfokWL0Ol07Ny5M9vPu2fPHnQ6HV9//XWWbevXr0en07F69WoAbt26xciRIwkNDcXNzY3y5cvTvn17/vrrr7y/WOCNN97AYDAwderUXMsZv5vsuhtm7o40YcIEdDodx44do3///vj4+ODv78/YsWPRNI2zZ8/SvXt3vL29qVixItOnT8+znufOnWPu3Lm0b98+SwAEoNfrGT16dFor0OnTpxk+fDj33HMP7u7ulC1blscee4yoqCiT9xm7Bf7++++MGjUKf39/SpcuTc+ePdMu9o00TWPSpEkEBQXh4eFB69at+eeff7LUJacxQcZzyt3dnfvvv59t27ZleW9SUhLjxo2jcePG+Pj4ULp0acLCwti0aVNamaioKPz9/QGYOHFitl3Cjhw5Qq9evfDz86NUqVI0adKElStXmhwrOTmZiRMnUqNGDUqVKkXZsmVp0aJFrt2kJkyYQEhICKCCUp1OR2hoaNr2ffv20blzZ7y9vfH09KRt27b88ccf2X7nW7ZsYfjw4ZQvX77ArXeffvopdevWxc3NjUqVKvH8889z48YNkzLGLp579+6lefPmuLu7U6VKFT777DOLj5eSksLjjz/OTz/9xJw5cxgyZEiB6p8fwcHBODnlfSm3fPly9Ho9Q4cOTVtXqlQpnn76aXbu3Jnlb4cQJYG0BAlhJ0JCQti5cyeHDh3KcxzG5MmTGTt2LL179+aZZ57h8uXLfPzxx7Rs2ZJ9+/alBVLLli0jPj6eYcOGUbZsWf78808+/vhjzp07x7Jly0z2mZKSQseOHWnRogUffPABHh4eADz99NMsWLCAzp0788wzz5CSksK2bdv4448/TMYAbN++ncjISIYPH46XlxcfffQRjz76KGfOnKFs2bIF/n7mzJlD3bp1eeSRR3B2dmbVqlUMHz6c1NRUnn/+eQBmzpzJiy++iKenZ1ogUqFCBUB1HWrVqhXR0dE8++yzVK5cmR07djBmzBhiYmKYOXOmyfEWLVrErVu3ePbZZ9HpdLz//vtERERw8uRJXFxcAPj7778JCwvDxcWFoUOHEhoayokTJ1i1ahWTJ08mPDyc4OBgFi5cSM+ePU32v3DhQqpVq0azZs2y/bxNmjShatWqLF26lIEDB5psW7JkCWXKlKFjx44APPfccyxfvpwXXniBOnXqcPXqVbZv386///7Lfffdl+d3W6VKFQYMGMDnn3/O66+/btXWoD59+lC7dm2mTp3Kzz//zKRJk/Dz82Pu3Lm0adOG9957j4ULFzJ69GiaNm1Ky5Ytc9zX2rVrSUlJ4cknnzTr2Lt372bHjh08/vjjBAUFERUVxZw5cwgPD+fw4cNp57jRiy++SJkyZRg/fjxRUVHMnDmTF154gSVLlqSVGTduHJMmTaJLly506dKFv/76iw4dOpCUlJRnfb788kueffZZmjdvzsiRIzl58iSPPPIIfn5+BAcHp5WLjY3liy++oG/fvgwZMoRbt27x5Zdf0rFjR/78808aNWqEv78/c+bMYdiwYfTs2ZOIiAggvUvYP//8w0MPPURgYCCvv/46pUuXZunSpfTo0YMffvgh7XycMGECU6ZM4ZlnnuH+++8nNjaWPXv28Ndff2VpgTGKiIjA19eXl19+mb59+9KlSxc8PT3TjhsWFoa3tzevvvoqLi4uzJ07l/DwcLZs2cIDDzxgsq/hw4fj7+/PuHHjuH37dp7fYU4mTJjAxIkTadeuHcOGDePo0aPMmTOH3bt38/vvv6f9nwW4fv06Xbp0oXfv3vTt25elS5cybNgwXF1dze7KlpKSQt++fVmxYgWffPIJzz77rNl1vXLlilnlvLy8cHNzM3u/udm3bx81a9bE29vbZP39998PwP79+03OQSFKBE0IYRc2bNig6fV6Ta/Xa82aNdNeffVVbf369VpSUpJJuaioKE2v12uTJ082WX/w4EHN2dnZZH18fHyW40yZMkXT6XTa6dOn09YNHDhQA7TXX3/dpOxvv/2mAdpLL72UZT+pqalpzwHN1dVV+++//9LWHThwQAO0jz/+ONfPferUKQ3Qpk2blmu57D5Lx44dtapVq5qsq1u3rtaqVassZd955x2tdOnS2rFjx0zWv/7665per9fOnDljUp+yZctq165dSyv3008/aYC2atWqtHUtW7bUvLy8TL5LTTP9bsaMGaO5ublpN27cSFt36dIlzdnZWRs/fnyun3nMmDGai4uLST0SExM1X19f7amnnkpb5+Pjoz3//PO57is78+fP1wBt9+7d2okTJzRnZ2eTf+tWrVppdevWTXtt/G7mz5+fZV+AyecZP368BmhDhw5NW5eSkqIFBQVpOp1Omzp1atr669eva+7u7trAgQNzre/LL7+sAdq+ffvM+nzZnTM7d+7UAO2bb75JW2f8Htq1a2fyb/fyyy9rer0+7d/u0qVLmqurq/bwww+blHvjjTc0wKT+mzZt0gBt06ZNmqZpWlJSkla+fHmtUaNGWmJiYlq5efPmaYDJOZuSkmJSRtPUd1ShQgWTf/fLly9n+d6N2rZtq9WvX1+7c+dO2rrU1FStefPmWo0aNdLWNWzYUHv44YezvD8vOf2/7dGjh+bq6qqdOHEibd358+c1Ly8vrWXLlmnrjN95ixYttJSUFIuOvWzZMpPv1vjv0qFDB81gMKSVmz17tgZoX331Vdq6Vq1aaYA2ffr0tHWJiYlao0aNtPLly2f5vc3M+O8aEhKiAdonn3xiUd01Tf1fMWfJ7v9ZbnL67TNua9OmTZb1//zzjwZon332mcWfQwhHJ93hhLAT7du3Z+fOnTzyyCMcOHCA999/n44dOxIYGGjShSUyMpLU1FR69+7NlStX0paKFStSo0YNky4z7u7uac9v377NlStXaN68OZqmsW/fvix1GDZsmMnrH374AZ1Ox/jx47OU1el0Jq/btWtHtWrV0l43aNAAb29vTp48afmXkY2Mn+XmzZtcuXKFVq1acfLkSW7evJnn+5ctW0ZYWBhlypQx+d7atWuHwWBg69atJuX79OlDmTJl0l6HhYUBpH2ey5cvs3XrVp566ikqV65s8t6M382AAQNITEw0ySa1ZMkSUlJS6N+/f6517tOnD8nJyURGRqat27BhAzdu3KBPnz5p63x9fdm1axfnz5/P83vISdWqVXnyySeZN28eMTEx+d5PZhkHtOv1epo0aYKmaSZjJ3x9fbnnnnvyPFdiY2MBdYfcHBnPmeTkZK5evUr16tXx9fXNtqvg0KFDTf7twsLCMBgMnD59GoBffvmFpKQkXnzxRZNy2XXNy2zPnj1cunSJ5557ziRZwqBBg/Dx8TEpq9fr08qkpqZy7do1UlJSaNKkiVldHK9du8Zvv/1G7969uXXrVtq5fvXqVTp27Mjx48fTsgH6+vryzz//cPz48Tz3mxeDwcCGDRvo0aMHVatWTVsfEBBAv3792L59e9q/odGQIUPQ6/UFOq7x32XkyJEmXcOGDBmCt7c3P//8s0l5Z2dnk5YbV1dXnn32WS5dusTevXvNOubFixdxdnamSpUqFtd348aNZi3Gll5rSEhIyLZVyThuLXMXaSFKAukOJ4Qdadq0KZGRkSQlJXHgwAFWrFjBjBkz6NWrF/v376dOnTocP34cTdOoUaNGtvvI2O3jzJkzjBs3jpUrV3L9+nWTcpkDB2dn5yx98k+cOEGlSpXw8/PLs+6ZAwGAMmXKZDlufv3++++MHz+enTt3Eh8fb7Lt5s2bWS4kMzt+/Dh///132jiKzDInn8j8eYwBkfHzGC/Y8+q6WKtWLZo2bcrChQvTLvwXLlzIgw8+SPXq1XN9b8OGDalVqxZLlixJe++SJUsoV64cbdq0SSv3/vvvM3DgQIKDg2ncuDFdunRhwIABJhei5njrrbf49ttvmTp1KrNmzbLovTnJ/D36+PhQqlQpypUrl2V9XtmtjF15bt26ZdaxExISmDJlCvPnzyc6OhpN09K2ZRc45/VvbgyGMv/f8/f3NwmYs5PTe11cXLL9d/r666+ZPn06R44cITk5OW29ORfd//33H5qmMXbsWMaOHZttmUuXLhEYGMjbb79N9+7dqVmzJvXq1aNTp048+eST+cq0dvnyZeLj47nnnnuybKtduzapqamcPXuWunXrWvR58mL8bjMf19XVlapVq6ZtN6pUqVKWBAw1a9YE1FirBx98kAsXLphs9/HxMQmq33//fWbOnEmvXr3YsGEDDz30kNn1bdeundllrcXd3Z3ExMQs6+/cuZO2XYiSRoIgIeyQq6srTZs2pWnTptSsWZPBgwezbNkyxo8fT2pqKjqdjrVr12Z7B9XYN99gMNC+fXuuXbvGa6+9Rq1atShdujTR0dEMGjTIJBkAgJubm1kDbHOS093cjBee+XXixAnatm1LrVq1+PDDDwkODsbV1ZU1a9YwY8aMLJ8lO6mpqbRv355XX3012+3GiyAja36eAQMGMGLECM6dO0diYiJ//PEHs2fPNuu9ffr0YfLkyVy5cgUvLy9WrlxJ3759cXZO//nu3bs3YWFhrFixgg0bNjBt2jTee+89IiMj6dy5s9n1rFq1Kv3792fevHm8/vrrWbZnbv0zMhgMOe4zu+8xv99trVq1ADWfVqNGjXItC2qMz/z58xk5ciTNmjVLm9Tz8ccfz/acKcxz2BLfffcdgwYNokePHrzyyiuUL18evV7PlClTOHHiRJ7vN3620aNH59iaYAzAW7ZsyYkTJ/jpp5/YsGEDX3zxBTNmzOCzzz4zacUrLPZ68R0QEGDyev78+SZp9wMCAti4cSMtWrTg4YcfZsuWLTRs2NCsfWcOsHKSOfAqiICAgGznAjO2+tp7VkghCoMEQULYOWPyAeMfq2rVqqFpGlWqVMly4Z7RwYMHOXbsGF9//TUDBgxIW2/J5HjVqlVj/fr1XLt2zazWoMKyatUqEhMTWblypcnd+oxd/4xyulCvVq0acXFxVrsLa7x7f+jQoTzLPv7444waNYrFixeTkJCAi4uLSXe23PTp04eJEyfyww8/UKFCBWJjY3n88cezlAsICGD48OEMHz6cS5cucd999zF58mSLgiBQrUHfffcd7733XpZtxtaOzBm3Mt9pLyydO3dGr9fz3XffmZUcYfny5QwcONAk89ydO3ey1N9cxoxox48fN2m9uXz5cp4tnhnfm7EVLzk5mVOnTplcQC9fvpyqVasSGRlpcj5n7paa07lurJuLi4tZ57ufnx+DBw9m8ODBxMXF0bJlSyZMmGBxEOTv74+HhwdHjx7Nsu3IkSM4OTkVyuB743d79OhRk3+XpKQkTp06leU7OH/+fJZ03MeOHQNIy3KX+XcyY+uVUdWqVVm/fj2tWrWiY8eObNu2LccW+owyB1g5yRx4FUSjRo3YtGkTsbGxJskRdu3albZdiJJGxgQJYSc2bdqU7R3nNWvWAOldPSIiItDr9UycODFLeU3T0roUGe9qZyyjaZpF3ZweffRRNE1Lm5Ax87GKSnaf5ebNm8yfPz9L2dKlS2d7kdu7d2927tzJ+vXrs2y7ceMGKSkpFtXJ39+fli1b8tVXX3HmzBmTbZm/m3LlytG5c2e+++47Fi5cSKdOnbJ0B8tJ7dq1qV+/PkuWLGHJkiUEBASYZFAzGAxZunaVL1+eSpUqZdv9JS/VqlWjf//+zJ07N8sda29vb8qVK5dl/NSnn35q8XHyIzg4mCFDhrBhw4ZsJ3ZNTU1l+vTpnDt3DlDnTeZ/i48//jjXlqvctGvXDhcXFz7++GOT/WbOLJidJk2a4O/vz2effWaSSW7BggVZztfszvddu3ZlSaduzG6X+f3ly5cnPDycuXPnZju+K2Pa78xdED09PalevXq+zh29Xk+HDh346aefTNKQX7x4kUWLFtGiRYss2cmsoV27dri6uvLRRx+ZfGdffvklN2/e5OGHHzYpn5KSwty5c9NeJyUlMXfuXPz9/WncuHHaPjMuOQUu9evX5+effyYuLo727dtn29qSmS3GBPXq1QuDwcC8efPS1iUmJjJ//nweeOAByQwnSiRpCRLCTrz44ovEx8fTs2dPatWqRVJSEjt27GDJkiWEhoYyePBgQF2kTpo0iTFjxhAVFUWPHj3w8vLi1KlTrFixgqFDhzJ69Ghq1apFtWrVGD16NNHR0Xh7e/PDDz9YNEandevWPPnkk3z00UccP36cTp06kZqayrZt22jdurVVZ4r/9ddf0/qnZ9SjRw86dOiAq6sr3bp149lnnyUuLo7PP/+c8uXLZ7nIa9y4MXPmzGHSpElUr16d8uXL06ZNG1555RVWrlxJ165dGTRoEI0bN+b27dscPHiQ5cuXExUVZXZgYvTRRx/RokUL7rvvPoYOHUqVKlWIiori559/Zv/+/SZlBwwYQK9evQB45513LDpOnz59GDduXNq8Hhm7Ld66dYugoCB69epFw4YN8fT05JdffmH37t1mzb2TnTfffJNvv/2Wo0ePZrkD/swzzzB16lSeeeYZmjRpwtatW9PuoheF6dOnc+LECV566SUiIyPp2rUrZcqU4cyZMyxbtowjR46ktZR17dqVb7/9Fh8fH+rUqcPOnTv55Zdf8p2y3d/fn9GjRzNlyhS6du1Kly5d2LdvH2vXrs3z3HFxcWHSpEk8++yztGnThj59+nDq1Cnmz5+fZUxQ165diYyMpGfPnjz88MOcOnWKzz77jDp16hAXF5dWzt3dnTp16rBkyRJq1qyJn58f9erVo169enzyySe0aNGC+vXrM2TIEKpWrcrFixfZuXMn586d48CBAwDUqVOH8PBwGjdujJ+fH3v27ElLt54fkyZNSusmNnz4cJydnZk7dy6JiYm8//77+dpnXvz9/RkzZgwTJ06kU6dOPPLIIxw9epRPP/2Upk2bZklAUqlSJd577z2ioqKoWbMmS5YsYf/+/cybN89kTKW5mjVrRmRkJN26daN9+/Zs27Yt13PMmmOCtm7dmnZT4vLly9y+fZtJkyYBqquj8YbJAw88wGOPPcaYMWO4dOkS1atX5+uvvyYqKoovv/zSavURwqEUYSY6IUQu1q5dqz311FNarVq1NE9PT83V1VWrXr269uKLL2oXL17MUv6HH37QWrRooZUuXVorXbq0VqtWLe3555/Xjh49mlbm8OHDWrt27TRPT0+tXLly2pAhQ9JSV2dMvzpw4ECtdOnS2dYrJSVFmzZtmlarVi3N1dVV8/f31zp37qzt3bs3rQyQbYrmkJCQPNMeG1Pt5rR8++23mqZp2sqVK7UGDRpopUqV0kJDQ7X33ntP++qrrzRAO3XqVNr+Lly4oD388MOal5dXltTDt27d0saMGaNVr15dc3V11cqVK6c1b95c++CDD9JS4+aWspts0hEfOnRI69mzp+br66uVKlVKu+eee7SxY8dmeW9iYqJWpkwZzcfHR0tISMj1O8ns+PHjad/H9u3bs+z3lVde0Ro2bKh5eXlppUuX1ho2bKh9+umnee43Y4rszIxp0zOmyNY0lXb66aef1nx8fDQvLy+td+/e2qVLl3JMkX358uUs+83uXMucjjs3KSkp2hdffKGFhYVpPj4+mouLixYSEqINHjzYJH329evXtcGDB2vlypXTPD09tY4dO2pHjhzJcl7m9D1kTnOtaZpmMBi0iRMnagEBAZq7u7sWHh6uHTp0KMs+s3uvpmnap59+qlWpUkVzc3PTmjRpom3dulVr1aqVyXmampqqvfvuu1pISIjm5uam3Xvvvdrq1au1gQMHaiEhISb727Fjh9a4cWPN1dU1y7/BiRMntAEDBmgVK1bUXFxctMDAQK1r167a8uXL08pMmjRJu//++zVfX1/N3d1dq1WrljZ58uQ8U0Xn9v/kr7/+0jp27Kh5enpqHh4eWuvWrbUdO3aYlMnt3MtL5hTZRrNnz9Zq1aqlubi4aBUqVNCGDRumXb9+3aSM8Tzbs2eP1qxZM61UqVJaSEiINnv2bLOObfx3XbZsWZZtS5Ys0ZycnLSmTZtqsbGxFn+u/DD+P8tuyfxblZCQoI0ePVqrWLGi5ubmpjVt2lRbt25dkdRTCHuk07QiHvEphBAlUEpKCpUqVaJbt25y51UIGwkPD+fKlStmjeUTQhRvMiZICCGKwI8//sjly5dNklQIIYQQwjZkTJAQQhSiXbt28ffff/POO+9w77330qpVK1tXSQghhCjxpCVICCEK0Zw5cxg2bBjly5fnm2++sXV1hBBCCAHImCAhhBBCCCFEiSItQUIIIYQQQogSRYIgIYQQQgghRIni0IkRUlNTOX/+PF5eXuh0OltXRwghhBBCCGEjmqZx69YtKlWqZDKxeHYcOgg6f/48wcHBtq6GEEIIIYQQwk6cPXuWoKCgXMs4dBDk5eUFqA/q7e1ts3okJyezYcMGOnTogIuLi83qIRyHnDPCUnLOCEvJOSPyQ84bYSl7OmdiY2MJDg5OixFy49BBkLELnLe3t82DIA8PD7y9vW3+jy8cg5wzwlJyzghLyTkj8kPOG2EpezxnzBkmI4kRhBBCCCGEECWKBEFCCCGEEEKIEkWCICGEEEIIIUSJ4tBjgoQQoqTTNI2UlBQMBoOtqyLshIuLC3q93tbVEEIIuyZBkBBCOKikpCRiYmKIj4+3dVWEHdHpdAQFBeHm5mbrqgghhN2SIEgIIRxQamoqp06dQq/XU6lSJVxdXWXSaIGmaVy+fJlz584RGhpq6+oIIYTdkiBICCEcUFJSEqmpqQQHB+Ph4WHr6gg74u/vT1RUFCkpKbauihBC2C1JjCCEEA7MyUl+xoUpY4ugpmk2rokQQtgv+esphBBCCCGEKFEkCBJCCCGEEEKUKBIECSFECWYwwObNsHixeiyKTNuapjF06FD8/PzQ6XT4+voycuTIwj+wEEIIcZcEQUIIUUJFRkJoKLRuDf36qcfQULW+MK1bt44FCxawevVqYmJiqFevntWPER4eniWwunr1Kp06daJSpUq4ubkRHBzMCy+8QGxsbFqZyMhI2rdvj7+/P97e3jRr1oz169dbvX5CCCFsS4IgIYQogSIjoVcvOHfOdH10tFpfmIHQiRMnCAgIoHnz5lSsWBFn56JJVOrk5ET37t1ZuXIlx44dY8GCBfzyyy8899xzaWW2bt1K+/btWbNmDXv37qV169Z069aNffv2FUkdhRBCFA0JgoQoagYDui1bCNy6Fd2WLUXT/0gUe5oGt2+bt8TGwksvqfdktx+AESNUOXP2Z0kSskGDBvHiiy9y5swZdDpdtnPZXL9+nQEDBlCmTBk8PDzo3Lkzx48fT9t+9epV+vbtS2BgIB4eHtSvX5/FixebHGPLli3MmjULnU6HTqcjKiqKMmXKMGzYMJo0aUJISAht27Zl+PDhbNu2Le29M2fO5NVXX6Vp06bUqFGDd999lxo1arBq1SqzPt+6deto0aIFvr6+lC1blq5du3LixIm07VFRUeh0OiIjI2ndujUeHh40bNiQnTt3ppVZsGABvr6+rF+/ntq1a+Pp6UmnTp2IiYkx/4sWQgiRKwmChChKd/sfObdvT5MPP8S5ffui6X8kir34ePD0NG/x8VEtPjnRNNVC5ONj3v7i482v56xZs3j77bcJCgoiJiaG3bt3ZykzaNAg9uzZw8qVK9m5cyeaptGlSxeSk5MBuHPnDo0bN+bnn3/m0KFDDB06lCeffJI///wz7RjNmjVjyJAhxMTEEBMTQ3BwcJbjnD9/nsjISFq1apVjfVNTU7l16xZ+fn5mfb7bt28zatQo9uzZw6+//oqTkxM9e/YkNTXVpNybb77J6NGj2b9/PzVr1qRv374m8/rEx8fzwQcf8O2337J161bOnDnD6NGjzaqDEEKIvMlkqUIUFWP/o8y3zY39j5Yvh4gI29RNiCLi4+ODl5cXer2eihUrZtl+/PhxVq5cye+//07z5s0BWLhwIcHBwfz444889thjBAYGmgQEL774IuvXr2fp0qXcf//9+Pj44OrqioeHR7bH6Nu3Lz/99BMJCQl069aNL774Isf6fvDBB8TFxdG7d2+zPt+jjz5q8vqrr77C39+fw4cPm4x9Gj16NA8//DAAEydOpG7duvz333/UqlULgOTkZD777DOqVasGwAsvvMDbb79tVh2EEELkTVqChCgKBoPqX5Rb/6ORI6VrnMg3Dw+IizNvWbPGvH2uWWPe/jw8rPc5/v33X5ydnXnggQfS1pUtW5Z77rmHf//9FwCDwcA777xD/fr18fPzw9PTk/Xr13PmzBmzjjFjxgz++usvfvrpJ06cOMGoUaOyLbdo0SImTpzI0qVLKV++vFn7Pn78OH379qVq1ap4e3undffLXLcGDRqkPQ8ICADg0qVLaes8PDzSAiBjmYzbhRBCFIy0BAlRFLZtyzoCPSNNg7NnVbnw8CKrlig+dDooXdq8sh06QFCQaoTMLi7X6dT2Dh1Ar7duPa1h2rRpzJo1i5kzZ1K/fn1Kly7NyJEjSUpKMuv9FStWpGLFitSqVQs/Pz/CwsIYO3ZsWjAC8P333/PMM8+wbNky2rVrZ3bdunXrRkhICJ9//jmVKlUiNTWVevXqZambi4tL2nOdTgdg0mUu43ZjGc2SwVdCCCFyJS1BQhQFcwc0f/cdXLtWuHURJZ5eD7Nmqed3r7/TGF/PnGmbAKh27dqkpKSwa9eutHVXr17l6NGj1KlTB4Dff/+d7t27079/fxo2bEjVqlU5duyYyX5cXV0xmNGyagw8EhMT09YtXryYwYMHs3jx4rQua+Yw1vOtt96ibdu21K5dm+vXr5v9fiGEEEVHgiAhikKGO8y5+vJLqFgRuneHJUssG3EuhAUiItQwtMBA0/VBQbYdnlajRg26d+/OkCFD2L59OwcOHKB///4EBgbSvXv3tDIbN25kx44d/Pvvvzz77LNcvHjRZD+hoaHs2rWLqKgorly5QmpqKmvWrGH+/PkcOnSIqKgofv75Z5577jkeeuihtG5rixYtYsCAAUyfPp0HHniACxcucOHCBW7evJln3cuUKUPZsmWZN28e//33H7/99luOXe2EEELYlgRBQhSFsDAoUybn7TqdSsXVoAEkJ8PKlfD441ChAgwYAOvXQ4bMUUJYQ0QEREXBpk2waJF6PHXK9vk55s+fT+PGjenatSvNmjVD0zTWrFmT1kXsrbfe4r777qNjx46Eh4dTsWJFevToYbKP0aNHo9frqVOnDv7+/pw5cwZ3d3c+//xzWrRoQe3atXn55Zd55JFHWL16ddr75s2bR0pKCs8//zwBAQFpy4gRI/Kst5OTE99//z179+6lXr16vPzyy0ybNs2q340QQgjr0GkO3Mk4NjYWHx8fbt68ibe3t83qkZyczJo1a+jSpUuWftxCAHDyJNStC3fuZN1m7H9kvP3+zz/qinTRInWFalS+PPTpA/36wQMPZO3HJIq1zL8zd+7c4dSpU1SpUoVSpUrZunrCjhjPjaCgIH777Tf52yQsItc0wlL2dM5YEhtIS5AQhS0lBfr3VwFQ7dqqv1FGmfsf1a0LkyerwOn33+H556FcObh0CT7+GJo1g+rVYexYOHKk6D+PEEIIIYSDkyBIiML27ruwcyd4e8PatRAVRcrGjewZNYqUjRtz7n+k00Hz5jB7Npw/r/IVP/GESgF28iRMmqSCqvvug+nTc5/9UghRYGfOnMHT0zPHxdwU3UIIIWxPUmQLUZj++AOMExx++imEhACgtWpF9O3bNGzVyrwUXC4u0LmzWm7fVmOGFi2Cdetg3z61vPIKtGqlAqVHH819DJIQwmKVKlVi//79uW4XQgjhGCQIEqKw3LqlAhKDQY3jeeIJ6+y3dGno21ctV66ornQLF8L27bB5s1qefx66dFHH7doV3N2tc2whSjBnZ2eqV69u62oIIYSwAukOJ0RhGTFCdVurXBk++aRwjlGuHDz3nJpkNSoKpk6F+vUhKQl+/BF691YZ5gYNgo0bJcOcEEIIIQQSBAlROH74AebPV+N6vv0WfH0L/5ghIfDaa/D332p5/XUVgN26BV9/DR06qCQMI0fCn3+C4yaGFEIIIYQoEAmChLC2c+dgyBD1/PXXoWXLoq9D/fowZYpKurBtGwwbBmXLwsWLMGuWSrFdsyaMHw/HjhV9/YQQQgghbEiCICGsKTVVdT27fh2aNIEJE2xbHycnaNFCJWU4fx5Wr1ZjiTw84L//VNKGe+5RdZ0xQ5URQgghhCjmJAgSwppmzIBff1VBxsKF4Opq6xqlc3WFhx9WWeUuXoTvvlPJE/R62LsXRo1S3eXatoWvvoKbN21dYyGEEEKIQiFBkBDWcuAAvPGGej5jhupuZq88PVW2up9/hpgYlbiheXM1Tui33+Dpp1VChUcfVeOb7tyxdY1FYUk1wMXNELVYPaYabF2jfFuwYAG+RTH+TgghhMOTIEgIa0hIUOmok5Kge/f0MUGOwN8fhg+H339X2ewmT4Y6dSAxESIjoVcvFRA99ZRq5TI47kWyyORsJKwMhV9bw45+6nFlqFovhBBCFGMSBAlhDa++CocPQ8WK8MUXKiucI6pSRbVmHTqkWrZefRWCgyE2VmW7a9dOvR41CvbskQxzjuxsJGzrBfHnTNfHR6v1JTQQSkpKsnUVhBBCFAEJgoQoqLVrYfZs9XzBAjV3j6PT6aBBA3jvPTX/0JYtMHQolCmjus/NmAFNm0KtWjBxIhw/busaC02DlNvmLUmxsOclILsg9u66PSNUOXP2Z2EwvHz5curXr4+7uztly5alXbt23L59G4CvvvqKunXr4ubmRkBAAC+88ELa+z788EPq169P6dKlCQ4OZvjw4cTFxeV4nBMnTtC9e3cqVKiAp6cnTZs25ZdffjEpExoayjvvvMOAAQPw9vZm6NChFn0WIYQQjsnZ1hUQwqFdugSDB6vnL70EHTvatj6FwclJpflu2RI+/hjWr1dJH1auVOm1J0xQS9OmapxRnz6qRUwULUM8LPW00s40SDgHy33MK947DpxLm1U0JiaGvn378v7779OzZ09u3brFtm3b0DSNOXPmMGrUKKZOnUrnzp25efMmv//+e9p7nZyc+Oijj6hSpQonT55k+PDhvPrqq3z66afZHisuLo4uXbowefJk3Nzc+Oabb+jWrRtHjx6lcuXKaeU++OADxo0bx/jx4837vEIIIRyeBEFC5JemwTPPqExr9eqpVpPiztUVunVTy61b8OOPKtvcxo2we7daRo1SGeb69YOICPD2tnWthR2JiYkhJSWFiIgIQkJCAKhfvz4AkyZN4n//+x8jRoxIK9+0adO05yNHjkx7HhoayqRJk3juuedyDIIaNmxIw4YN016/8847rFixgpUrV5q0MLVp04b//e9/Vvl8QgghHIMEQULk19y5sGqVCgwWLoRSpWxdo6Ll5QVPPqmWixdh2TL1PfzxhwqKNm6E555TAdMTT0DnzuDmZutaF196D9UiY45LW2Fzl7zLha+B8mZM9qv3MO+4qMCkbdu21K9fn44dO9KhQwd69epFcnIy58+fp23btjm+95dffmHKlCkcOXKE2NhYUlJSuHPnDvHx8Xh4ZK1DXFwcEyZM4Oeff04LvhISEjhz5oxJuSZNmphdfyGEEMWDjAkSIj+OHFEtHgBTp6rxMyVZhQrwwguwcyecOAHvvKPGCyUmwvLl0LOnKvPMM7Bpk2SYKww6neqSZs5SsQN4BAE5JfDQgUewKmfO/ixIBKLX69m4cSNr166lTp06fPzxx9xzzz1cvHgx1/dFRUXRtWtXGjRowA8//MDevXv55JNPgJyTGYwePZoVK1bw7rvvsm3bNvbv30/9+vWzlC9d2ryufEIIIYoPCYKEsFRSkmrZSEhQ2dIydN0RQNWq8NZbKlveX3/B6NEQGKgmX/3yS2jTBkJC1Pq//pIMc7bgpIfGs+6+yBzA3H3deKYqVwh0Oh0PPfQQEydOZN++fbi6urJx40ZCQ0P59ddfs33P3r17SU1NZfr06Tz44IPUrFmT8+fP53qc33//nUGDBtGzZ0/q169PxYoViYqKKoRPJIQQwtFIECSEpcaPVxfvfn7w9dcqcYDISqeDe++FadPg9GnVAvTMM+DrC9HRMH06NG6s5iR65x3VgiSKTnAEhC0Hj0DT9R5Ban1wRKEcdteuXbz77rvs2bOHM2fOEBkZyeXLl6lduzYTJkxg+vTpfPTRRxw/fpy//vqLjz/+GIDq1auTnJzMxx9/zMmTJ/n222/57LPPcj1WjRo1iIyMZP/+/Rw4cIB+/fqRmppaKJ9LCCGEY5ExQcWJwQDbtqkUxgEBEBYG+sK5k1tibd6cngDhiy+gUiWbVsdh6PUQHq6W2bNh3To1fmjVKtW1cNw4tTzwgGpl691bdZ8ThSs4AgK7w+VtkBAD7gHgH1ZoLUAA3t7ebN26lZkzZxIbG0tISAjTp0+nc+fOANy5c4cZM2YwevRoypUrR69evQA1lujDDz/kvffeY8yYMbRs2ZIpU6YwYMCAHI/14Ycf8tRTT9G8eXPKlSvHa6+9RmxsbKF9NiGEEI5Dp2mO2xclNjYWHx8fbt68ibcNM1AlJyezZs0aunTpgouLi20qERmpumWdyzDxYVAQzJqlMnSJgrt+HRo2hLNn4emnVRCUT3ZxztiD2FhYsUJlmPvlFzDepdfrVVfDfv2gRw/JMEfWc+bOnTucOnWKKlWqUKqkJeUQuTKeG0FBQfz222/yOyMsIn+fhKXs6ZyxJDaQfjzFQWQk9OplGgCB6nLUq5faLgpG02D4cBUAVa8OM2faukbFg7c3DByo5h6KjlZB+/33q1bN9evVtgoV1NxDP/2kxmMJIYQQQhSQBEGOzmBQLUDZNegZ140cKdm4CmrhQvj+e9VCsXAheFprUkqRpmJFNeHsrl1w/DhMnAg1a8KdO7B0qWoRqlgRhg6FLVvSW42EEEIIISwkQZCj27YtawtQRpqmWi+2bSu6OhU3p06pViCACRNUS4UoXNWrqzFCR47Anj0qHXlAgOqS+PnnamxRSAi8+irs3y8Z5oQQQghhEQmCHF1MjHXLCVMpKWoy0Fu34KGHYMwYW9eoZNHpVAa56dNVMP/rr2o8lo+PCv6nTVMZ6OrVg8mTVcAqhBBCCJEHCYIcXUCAdcsJU1Onwu+/g5cXfPutZNuzJb1ezTH0xRdw4YIa6/boo+DmpuYkeustNUdR8+bwySdw+bKtayyEEEIIOyVBkKMLC1NZ4HKasV2ng+BgVU5Y5s8/Vfc3gE8/hSpVbFodkUGpUtCzJyxfDhcvwldfQdu26nzfuRNeeEEF/l26wHffQVycrWsshBBCCDsiQZCj0+tVRq3czJwpLRiWiotT89UYDPD44+q5sE8+PjB4sEqxHR0NM2ZAkybq327tWtWdsXx56NsXVq+WDHNCCCGEkCCoWIiIgOeey37bsGEyT1B+jBwJ//2nWtHmzMm5pU3Yl4AA9W+3ezccPQrjx6skCwkJKrtft26qzLBhKlmIZJgTQgghSiQJgoqL69fV44ABauLJYcPU63XrIDnZdvVyRCtWwJdfqsDn22/B19fWNRL5UbOm6s547Jjq2jhypEqxfe0afPYZtGypuji+/jr8/betayuEEEKIImTzICg6Opr+/ftTtmxZ3N3dqV+/Pnv27LF1tRxLaqrKmgXwzDOq28+0aeDvDydPqqBImOf8efUdArz2GrRqZdv6iILT6aBpU9VN7tw52LgRBg1SyS7OnIH33oOGDaF+fZgyBU6ftnWNi5bBAJs3w+LF6rEI5hQLDw9n5MiROW4PDQ1lpkxILIQQohDZNAi6fv06Dz30EC4uLqxdu5bDhw8zffp0ypQpY8tqOZ6DB1UmrNKl4YEH1LrSpWH0aPV88mSV6lnkLjUVBg5ULQX33acm6xTFi14P7drB/PkqocKyZSrBgqsrHDoEb7wBoaHQooXqBnnliq1rXLgiI9Xnbd0a+vVTj6Ghar0N7d69m6FDh9q0DkIIIYo3mwZB7733HsHBwcyfP5/777+fKlWq0KFDB6pVq2bLajmeX35Rj61aqYs5o+HDoWxZOH4cliyxTd0cyaxZ6rt0d4eFC02/S1H8uLtDr17qgv/CBZV6u3Vr1XL0++/q/09AAHTtqlpTb9+2dY2tKzJSff7Mky1HR6d/Lzbi7++Ph4dHoR4jSRJkCCFEieZsy4OvXLmSjh078thjj7FlyxYCAwMZPnw4Q4YMybZ8YmIiiYmJaa9jY2MBSE5OJtmG416Mx7ZVHfQbN+IEGFq3JjVjHdzccBoxAv24cWjvvEPKo49Klric/P03zq+/jg4wTJtGarVqhTqWytbnjMjE01ONpxswAKKjcVq2DKfFi9Ht2wc//ww//4zm4YH2yCOk9u2L1q4duLgUaRUznzPJyclomkZqaiqpqamgaRAfb97ODAZ0L74ImkaWlB+ahqbTwUsvobVpY95vhoeHxclDkpOTef755/nuu+9wcXHhueeeY+LEieh0OqpWrcqIESMYMWIEAHq9nrlz57JmzRo2bNhAYGAg06ZN45FHHrn7cQw8++yzbNq0iQsXLlC5cmWGDRvGSy+9lHa8wYMHc+PGDZo2bcqnn36Km5sbgwYNYtmyZfydaUzYfffdR9euXXn77bct+kz2IjU1FU3TSLnbA0B+Z4Ql5O+TsJQ9nTOW1MGmQdDJkyeZM2cOo0aN4o033mD37t289NJLuLq6MnDgwCzlp0yZwsRsuiht2LCh0O8ammPjxo1Ffkyn5GQ6b96ME7DFxYVba9aYbHeuXp32np64Hj3KgbfeIlrmC8rCKTGRVq+8gndSEjFNm/JnYCBk+h4Liy3OGWGGmjVh/Hg8z50jaOtWArduxfPCBXTff4/T99+T6O3N+Yce4lzLlly75x5wKrpGdeM54+zsTMWKFYmLi1OtGrdv4xsUZJVj6DQNoqPRmdk1+ca5c6oLrplSUlL45ptv6N+/P7/88gv79u3j5Zdfxt/fn4EDB5KamsqdO3fSbnQBTJw4kYkTJzJu3DjmzZvHk08+yd9//02ZMmVITk7G39+fr776Cj8/P3bt2sXLL7+Mj48PPXv2BNQfxt9++w13d3d++OEHALy9vXn77bfZvHkz9913HwB///03f//9NwsWLDA5viNJSkoiISGBHTt2API7I/JHzhthKXs4Z+LNvRkI6DRN0wqxLrlydXWlSZMmaT/UAC+99BK7d+9m586dWcpn1xIUHBzMlStX8Pb2LpI6Zyc5OZmNGzfSvn17XIr47rBu61ac27VDK1+elLNns70b6zR5MvqJE9Fq1yZl374ivWBzBE6jRqGfPRutQgVS/vpLJZQoZLY8Z0Q+aBq63btVELR0KbpLl9I3hYSQ2qcPqY8/DvXqFVoVMp8zd+7c4ezZs4SGhlKqVCm4fRsnG/0OpsbGWhQEtWnThkuXLnHw4EF0d3+zxowZw6pVqzh06FC2LUFvvvlmWsvM7du38fb25ueff6ZTp07ZHuPFF1/kwoULLFu2DFAtQevXrycqKgrXDF1dH374YUJDQ/nkk08AGDFiBIcOHeJXY7IZB3Tnzh2ioqIICAhg69at8jsjLCJ/n4Sl7OmciY2NpVy5cty8eTPP2MCmLUEBAQHUqVPHZF3t2rXT7tJl5ubmhpubW5b1Li4uNv/SbVaPzZsB0LVrh0tOY1hGjoSZM9H9+y8uq1ap/v5CWb8eZs8GQDd/Pi6VKhXp4e3l3BVmeOghtcyYAb/9psaNRUaiO30a/fvvo3//fWjQQCUY6NsXKlculGoYzxmDwYBOp8PJyQknJyfVpS8uzrydbN0KXbrkXW7NGpVKPA9O+egO9+CDD6LP0NWuefPmfPjhhxjvyxk/m1HDhg3TXnt5eeHt7c2VK1fS1n3yySd89dVXnDlzhoSEBJKSkmjUqFHadp1OR/369VXAmMHQoUN56qmnmDFjBk5OTixevDjtuaNycnJCp9Ph7Kz+xMvvjMgPOW+EpezhnLHk+Db9lX/ooYc4evSoybpjx44REhJioxo5IGNShHbtci7j6wt376jyzjsyQaTR5csqVTLAiy9C5842rY5wEM7O0KEDfP01XLqkko50767GCP39t5p3KCREJSqZOxeuXi2aeul0qjXGnKVDBwgKyjlw0enURMEdOpi3vyKYTDjzHzadTqfGQgHff/89o0eP5umnn2bDhg3s37+fwYMHZ0l+UDqb1qpu3brh5ubGihUrWLVqFcnJyfSSG0VCCFHs2TQIevnll/njjz949913+e+//1i0aBHz5s3j+eeft2W1HMfNm2oSSIC2bXMvO2KEmhfl779h5crCr5u90zQYMkRlBatbV80VI4Sl3N2hd2/48Ud1Ls2blz631Nat8NxzKsPcI4/A99+bn7igsOn1KhsiZA1gjK9nzizURCq7du0yef3HH39Qo0YNk9Yhc/3+++80b96c4cOHc++991K9enVOnDhh1nudnZ0ZOHAg8+fPZ/78+Tz++OO4u7tbXAchhBCOxaZBUNOmTVmxYgWLFy+mXr16vPPOO8ycOZMnnnjCltVyHJs3q1admjXz7nrj5wfGTElvv62CgJLs88/hp59UGuyFC9XFrBAF4eenAuvNm9UkrO+/D40aqSyDq1apLnLly8OTT8K6dbafuysiApYvh8BA0/VBQWp9REShHv7MmTOMGjWKo0ePsnjxYj7++OO0MUCWqlGjBnv27GH9+vUcO3aMsWPHsnv3brPf/8wzz/Dbb7+xbt06nnrqqXzVQQghhGOx6ZgggK5du9K1a1dbV8MxmdMVLqOXX1Z3d/ftg9WroVu3QquaXTt2TH0XAO++Cw0b2rY+ovgJDoZXXlHL4cNqnqFFi+DUKfjuO7X4+0OfPmoM0YMPFkmXsiwiIlRXvm3bICZGtVqFhRVJKv0BAwaQkJDA/fffj16vZ8SIEfmeIPXZZ59l37599OnTB51OR9++fRk+fDhr16416/01atSgefPmXLt2jQeME04LIYQo1mweBIkCsDQIKlsWXnhBdf16+201CaQtLrxsKTkZnnhCdUtq2zY9GBKisNSpA5MmqfF4f/yhWh6XLFFj0mbPVkuVKioYeuIJqF27aOun10N4eJEecvPdhC4Ac+bMybI9KirK5HV2SUxv3LiR9tzNzS2tO1tGU6ZMSXu+YMGCHOujaRrnz59n+PDhuVdcCCFEseG46W9KunPn4MgRle7akguY//1PTWy4Z4/qklPSTJigPrufnxrY7sAZoISD0emgWTMV9Jw/D2vXQv/+KrHAqVMwebIKmO69F6ZNU//HRaG7fPkys2fP5sKFCwwePNjW1RFCCFFE5ArQURnnsGjSBMyc0BBQXXCMdzsnTixZY4O2bgXjneF587KOhRCiqLi4QKdO8O23KsPc4sWqe6qzM+zfD6++qsb5hYer8WvXrtm6xsVW+fLlefvtt5k3bx5lLPktFUII4dAkCHJUlnaFy2j0aChVCnbtAjuY3bdI3LihBqRrGgweDI8+ausaCaF4eMDjj6usjRcuwGefqXE5mgZbtsDQoVCxIvpHH6XS9u2QkGDrGhcrmqZx+fJl+vXrZ+uqCCGEKEISBDkiTStYEFShgkrdCyWnNej551XGrmrV0lMDC2FvypaFZ59VrZanT8PUqWoC1uRknFatoukHH+AcFAQDB8L27SXj/64QQghRCCQIckSHD6s7xu7uaoxBfrzyCri5wY4dsGmTdetnbxYuVJm59Hr13MvL1jUSIm+VK8Nrr8GBA3DwIIZXXyXe3x/drVvwzTfwzDNq3ND58xAXJwGREEIIYQEJghyRsRUoLEx1a8uPSpXUnCagMsUVV1FR6WOgxo0DSX8rHFG9eqROmsTGuXNJ2bwZhg1TYwFTU9V4oSNH4NAhiI6GO3dsXVshhBDC7kkQ5IgK0hUuo9deU5OFbtmiluLGYIABAyA2Fpo3hzfesHWNhCgYJye05s3h009Vl7ny5cHHR2U5TExUc/0cOpTeWpyUZOsaCyGEEHZJgiBHk5ysZqSHggdBQUHw9NPqeXFsDXrvPTUJpJeXysLlLNNiiWLExUV1iQ0OVhP+VqmiAiKdTs2Dde4c/P03HD2q5iRKSbF1jYUQQgi7IUGQo/nzT9X/v2xZdeFTUK+/ri6mfvtNDbQuLnbvhvHj1fPZs6FqVdvWR4jCpNer34QaNVQihcqVwdNTbbt1SyVZOHAA/vsPrl9X3eiEEEKIEkyCIEdj7ArXtq11JvqsXBkGDVLP33mn4PuzB3Fx8MQT6s53794qNbYQJYWLi+omV6sW1K+v5sNyd1eJE27cgBMnVEB06hTExpKaYiBqcxQHFx8kanMUqYbCD5A0TWPo0KH4+fmh0+nw9fVl5MiRhX5cIYQQwkiCIEdjrfFAGY0Zo7qKbdgAf/xhvf3ayqhRcPy46u732Weqe5AQJZGbGwQEQN26UKcOVKyoxgEaDHD1Kv9+toVZQR/wdeuviewXydetv2ZW6Cz+jfy3UKu1bt06FixYwOrVq4mJiaFevXpWP0Z4eHiWwOrq1at06tSJSpUq4ebmRnBwMC+88AKxsbFpZSIjI2nfvj3+/v54e3vTrFkz1q9fb/ZxBw0ahE6ny7J06tQprUxoaCg6nY4/Mv3ejhw5kvDw8LTXEyZMQKfT8ZxxSoO79u/fj06nIyoqyux6CSGEMCVBkCO5dSs9SLFmEFSlikogAI7fGvTjj/D55yrw+eYblUFLCKEmZQ0KUq1D99zDv3vjWfr6X8ReNM0mFxsdy9JeSws1EDpx4gQBAQE0b96cihUr4lxE4/WcnJzo3r07K1eu5NixYyxYsIBffvnFJMjYunUr7du3Z82aNezdu5fWrVvTrVs39u3bZ/ZxOnXqRExMjMmyePFikzKlSpXitddey3NfpUqV4ssvv+T48ePmf1AhhBB5kiDIkWzdqrp4Va2qAhdreuMNNa5gzRo1nsYRxcSouVNAzYPUurVt6yNEEdI0jaTbSXkv8cnc0VxY+84eyG5qIU0ta4ev4s7xMyRdj8tzn5oFcxQNGjSIF198kTNnzqDT6QgNDc1S5vr16wwYMIAyZcrg4eFB586dTYKAq1ev0rdvXwIDA/Hw8KB+/fomQcagQYPYsmULs2bNSmuJiYqKokyZMgwbNowmTZoQEhJC27ZtGT58ONu2bUt778yZM3n11Vdp2rQpNWrU4N1336VGjRqsWrXK7M/o5uZGxYoVTZYymW7IDB06lD/++IM1a9bkuq977rmH1q1b8+abb5p9fCGEEHmTdFmOpDC6whlVq6bG0XzzjWoNWrnS+scoTKmpamzT1atw772O36IlhIWS45OZ4jnFavu7dTGB92rON6vsmLgxuJZ2NavsrFmzqFatGvPmzWP37t3o9Xoee+wxkzKDBg3i+PHjrFy5Em9vb1577TW6dOnC4cOHcXFx4c6dOzRu3JjXXnsNb29vfv75Z5588kmqVavG/fffz6xZszh27Bj16tXj7buZL/39/bPU5fz580RGRtKqVasc65uamsqtW7fw8/Mz6/OZq0qVKjz33HOMGTOGTp064ZTLGM+pU6fStGlT9uzZQ5MmTaxaDyGEKKmkJciRFGYQBPDmmyrZwqpVYEHXD7vw8cdqTFOpUrBwoRr3IISwOz4+Pnh5eaHX66lYsWKW4MQY/HzxxReEhYXRsGFDFi5cSHR0ND/++CMAgYGBjB49mkaNGlG1alVefPFFOnXqxNKlS9OO4erqioeHR1pLjF6vTztG37598fDwIDAwEG9vb7744osc6/vBBx8QFxdH7969zf6Mq1evxtPT02R59913s5R76623OHXqFAsXLsx1f/fddx+9e/c2q/ucEEII80hLkKO4cEFNgqjTFV43r5o1oW9fFUS88w5ERhbOcazt4EE18SvAhx9C7dq2rY8QNuDi4cKYuDFmlT299TSLuizKs1y/Nf0IeaCiSqt99RokZhg/pNeDry+U8cPF3Xp/Sv7991+cnZ154IEH0taVLVuWe+65h3//VeOUDAYD7777LkuXLiU6OpqkpCQSExPx8PAw6xgzZsxg/PjxHDt2jDFjxjBq1Cg+/fTTLOUWLVrExIkT+emnnyhfvrzZn6F169bMmTPHZF12LUn+/v6MHj2acePG0adPn1z3OWnSJGrXrs2GDRssqosQQojsSRDkKH79VT3eey+UK1d4x3nzTVi0CFasUBMtNmhQeMeyhjt3oF8/SEyErl0hUxYlIUoKnU5ndpe0ah2q4R3kTWx0bPbjgnTgHeRNtQ7VcNI7gZ8XVA2GhAS4dk0tSUkQf1Mtl86Bn59aPDwKPSPjtGnTmDVrFjNnzqR+/fqULl2akSNHkpSUZNb7ja1DtWrVws/Pj7CwMMaOHUtAQEBame+//55nnnmGZcuW0c7C1vfSpUtTvXp1s8oaA7DsgrCMqlWrxpAhQ3j99df58ssvLaqPEEKIrKQ7nKMo7K5wRrVrq7l1wDHG1YwZo1rIypeHL7+UdNhCmMFJ70SnWXdTNmf+L3P3daeZnVQAlLZelyXDHOXKqRah5GS4eBH+/Rf++QfOn1c3KPKhdu3apKSksGvXrrR1V69e5ejRo9SpUweA33//ne7du9O/f38aNmxI1apVOXbsmMl+XF1dMRgMeR4v9e7EsYmJiWnrFi9ezODBg1m8eDEPP/xwvj6HuTw9PRk7diyTJ0/m1q1buZYdN24cx44d4/vvvy/UOgkhREkgQZAj0LSiC4IA3npLPS5frgIMe7VhA8ycqZ7Pn68CISGEWWpH1Kb38t54B3qbrPcO8qb38t7UjsilW6lOB15eEBoKDRtC9eoqHb1Op4Kf8+fVb8e//6rgKDnZ7HrVqFGD7t27M2TIELZv386BAwfo378/gYGBdO/ePa3Mxo0b2bFjB//++y/PPvssFy9eNNlPaGgou3btIioqiitXrpCamsqaNWuYP38+hw4dIioqip9//pnnnnuOhx56KC1L3aJFixgwYADTp0/ngQce4MKFC1y4cIGbN2+a/RkSExPT3mdcrly5kmP5oUOH4uPjw6JFuXdRrFChAqNGjeKjjz4yuy5CCFGoDAZ0W7YQuHUrui1b1Dx0DkKCIEdw7BicO6cmPmzRovCPV68ePPqoej55cuEfLz+uXFHZ4ACefx66dLFpdYRwRLUjajMiagQDNw0kYlEEAzcNZMSpEbkHQJk5OamxQdWqQaNGKjDyvhtY3b4NZ8/CgQPqd+zKFbP+QM6fP5/GjRvTtWtXmjVrhqZprFmzBhcXF0AlFLjvvvvo2LEj4eHhVKxYkR49epjsY/To0ej1eurUqYO/vz9nzpzB3d2dzz//nBYtWlC7dm1efvllHnnkEVavXp32vnnz5pGSksLzzz9PQEBA2jJixAizv5J169aZvDcgIIAWufx2u7i48M4773DHjNaz0aNH4+npaXZdhBCi0ERGQmgozu3b0+TDD3Fu3179DXCQMeU6zZIJHuxMbGwsPj4+3Lx5E29v77zfUEiSk5NZs2YNXbp0SfsjbVWffAIvvABt2qSPDSpsBw6oCxqdDg4fhlq1iua45tA0iIhQE6PWrg1794K7u61rZZFCP2dEsZP5nLlz5w6nTp2iSpUqlCpVytbVyyo5OX380O3b6et1OhU0lS2rgqVcUkOL/DGeG0FBQfz222/yOyMsIn+fhFkiI6FXL3VNlpFxWMLy5eparYhZEhvIXx9HUJRd4YwaNoQePdTJbW+tQV9+qQIgFxeVxMHBAiAhSgQXF6hQQd2oqFcPKlVSKew1TWWb++8/dbMlKgpu3cr6h1QIIYR9MhhgxIjsf7eN60aOtPuucZIdzt6lpMCmTep5UQZBAGPHqmBj0SL1vGbNoj1+do4fV//xAN59V7VWCSHsW6lSKggKCID4+PQWouRk1UXuyhUVNPn5qRYid3e7THJy5syZtOQM2Tl8+DCVK1cuwhoJIYodTVMTwKekpC8Gg+nr7NaZU8Za686cUcM0cvsMZ8/Ctm0QHl5kX52lJAiyd3v3ws2bqvvIffcV7bHvu0+lnV69WgUcCxYU7fEzS06GJ55QF1Ft2sCoUbatjxDCMjodlC6tlqAg1QJ07ZpqGTJmmLt4UQVNxoDIzc3WtU5TqVIl9u/fn+t2IUQ+aJp1LtSLMhAozHoUFzExtq5BriQIsnfGrnBt2qhUtEVt3DgVBH33nWoNqlat6OtgNHEi7N6tslB9/bWMJRDCkel0akyQtzdUrqxu9ly7BjdupGeYO39eBUxly6r/99mNT9A0iItT8xa5uoKnZ6G1Ijk7O5s9/48Qucp8t9+OLsCdkpJocPIk+pUrVR2Loh53U9WLPDg7q2tBZ2fTxZx1+X1fduvOnFFDE/KSYe41eyRBkL2zxXigjJo2hc6dYe1amDIFvvjCNvXYvl0dH2DuXHUXWQiBA+e2SefkpIKcMmXURdGNGyogio1VSRVu31Z/dL29VUDk66v+KF+/rrpcZJwk1dUVgoPVvkoo4zmhs7cuhRnv9tv7nfiiqIed0gNVbF0JIycn+7jot4fgw8nJfroJGwywfj1ER2c/LkinU9dpYWFFXzcLSBBkz27fhh071HNbBUGgWoDWrlWtL2+9pdIfFqWbN6F/f3WnaNAgeOyxoj2+EHbImLUpPj4e9+KUHMTZWU3CWq6cCm6uX0/PMBcbqxYnJzVxa1xc1vcnJcGJE6rV2taBkPHiQNOyPs/utTllzHhP0p07cP06LqtWUfPAAZz27EkPQGwZCMjdfvPY+ALfoNNx7NQpataqhd7NzXaBhl4vPT7slV4Ps2ap7HA6nWkgZAzUZs60TQ8mC0gQZM+2b1d/0CtXVpMR2kqzZtC+PWzcqFpj5s4t2uO/8AKcPg1Vq4JMEigEAHq9Hl9fXy5dugSAh4eH/d35twYfH7UkJqobIjduqN/F7AKgjE6dUuUha8CQ3brcyhRkexFLBS7fuYPHhg24TppEbUdoKdTpbH+33l5aEuzgbn9qcjLH1qyhepcu6CVFtshJRIRKgz1ihGmShKAgFQDZID22pSQIsmcZu8LZ+uJm3DgVBM2fD2++qQKzorB4sRqPpNerRy+vojmuEA6gYsWKAGmBUIng4qLGDF27lndZe/9eMv6uG59b+pjNOqe4OCpfuYI2cCCnz58nuGpVdTFr6wv8nAINudsvhGOKiIDu3UnZtIn9a9fSqHNnnFu3tvsWICMJguyZrccDZdSihUrO8Ntv8N57agLXwnb6NAwbpp6/9ZZqkRJCpNHpdAQEBFC+fHmSk5NtXZ2is3o1jB6dd7mwMNWKbrzDbrzoNl6I57Uu40W6tdYZxzgU4o0tV1dXnLp0ITk5mQNr1hAod/SFEIVFr0dr1Yro27dp2KqVwwRAIEGQ/bp8GYypWNu0sWlV0owbp4KgL76AN96AwMDCO5bBAAMGqO4sDz6ogiAhRLb0ej16B/rDU2DlyqmbJHlZsMCu56gQQghhO9IGba9++009NmigZl23B61aQcuWqj/+++8X7rGmTYOtW1W624UL1R1UIYQA1cITFJRza4pOpzLE2XlmIiGEELYjQZC9sqeucBmNG6ce580rvEmw9uxRGekAPv5YJUQQQggjY2YiyBoIOVBmIiGEELYjQZA90jSVhADsLwhq0waaN1cDk6dNs/7+b9+GJ55Q6VR79YKBA61/DCGE4zNmJsrcLTcoSK13gMxEQgghbEeCIHt08qTq7+7iYn/dOXQ6GD9ePf/sM7h40br7/9//4NgxdWEzd67ts+IJIexXRARERcGmTbBokXo8dUoCICGEEHmSIMgeGbvCNWumxsTYm/bt4YEHICEBpk+33n5XrkwPfL75Bvz8rLdvIUTxpNer5Ad9+6pH6QInhBDCDBIE2SN7HQ9kpNOljw365BOVya6gLlyAp59Wz//3P/vJiCeEEEIIIYodCYLsjcGQnhnOXoMggM6doXFjiI+HDz8s2L40DQYPhitXoFEjmDTJKlUUQgghhBAiOxIE2Zv9+9VM6F5e0LSprWuTs4ytQbNnw9Wr+d/X7Nmwbh2UKqXSYbu5WaeOQgghhBBCZEOCIHtj7ArXurX9z43TrZtquYmLU+lo8+Off+CVV9TzDz6AOnWsVTshhBBCCCGyJUGQvbH38UAZZWwN+ugjuH7dsvcnJkK/fuqxSxcYPtz6dRRCCCGEECITCYLsSUICbNumnjtCEATQvTvUrw+xsSoQssQbb8Dff4O/P3z1laTDFkIIIYQQRUKCIHuyY4dqFalUCWrVsnVtzOPkBGPHquczZ8LNm+a975df0hMqfPUVVKhQKNUTQgghhBAiMwmC7EnGrnCO1Cry6KNqLM+NG/Dxx3mXv3oVBg5Uz4cNg65dC7V6QgghhBBCZCRBkD1xpPFAGWVsDfrwQ7h1K+eymgZDh8L586q164MPiqaOQgghhBBC3CVBkL24dg327lXP27a1bV3y47HH4J57VHKETz7Judz8+RAZCS4uKh22h0fR1VEIIYQQQggkCLIfmzapVpI6ddSYIEej18Nbb6nnH3yg0mZn9t9/8NJL6vmkSXDffUVXPyGEEEIIIe6SIMheOGpXuIwefxyqV1djfubMMd2WnAz9+8Pt2xAeDv/7n02qKIQQQgghhJ3PxlmCFIcgyNlZtQYNGgTvv69SZ1+/DgEB6vPt2gW+vvDNN6rlSAghhBBCCBuQIMgeREWprmJ6PbRqZevaFEy/fvDaa3DxInTunHX73LkQHFz09RJCCCGEEOIu6Q5nD379VT0+8AB4e9u2LgW1apUKgHLiLHG3EEIIIYSwLQmC7EFx6AoHYDDAiBE5b9fpYORIVU4IIYQQQggbsWkQNGHCBHQ6nclSq1YtW1ap6KWmprcEOXoQtG0bnDuX83ZNg7NnVTkhhBBCCCFsxOZ9k+rWrcsvxpYQwLmkdZc6eBAuX4bSpVV3OEcWE2PdckIIIYQQQhQCm0cczs7OVKxY0dbVsB1jANiqFbi62rYuBRUQYN1yQgghhBBCFAKbB0HHjx+nUqVKlCpVimbNmjFlyhQqV66cbdnExEQSExPTXsfGxgKQnJxMcnJykdQ3O8Zj56cO+o0bcQIMrVuTasPPYBUPPohzYCCcP49O07Js1nQ6CAwk5cEH1bxBJVhBzhlRMsk5Iywl54zIDzlvhKXs6ZyxpA46TcvmarWIrF27lri4OO655x5iYmKYOHEi0dHRHDp0CC8vryzlJ0yYwMSJE7OsX7RoER4eHkVRZatySk6mc//+OCcm8tvMmdwKDbV1lQosYOdOmr73HgC6DOuNJ9nu114jplmzIq+XEEIIIYQo3uLj4+nXrx83b97EO4+MyzYNgjK7ceMGISEhfPjhhzz99NNZtmfXEhQcHMyVK1fy/KCFKTk5mY0bN9K+fXtcXFzMe5PBgNMnn6AfPRrN15eU8+eLTfpo3YoV6EeNQhcdnbZOCwrCMH06Ws+eNqyZ/cjXOSNKNDlnhKXknBH5IeeNsJQ9nTOxsbGUK1fOrCDIrq66fX19qVmzJv/991+2293c3HBzc8uy3sXFxeZfukX1iIxUqaTvZlLT3biBS82aMGsWREQUci2LQO/e8OijKgtcTAwEBKALC8NZr7d1zeyOvZy7wnHIOSMsJeeMyA85b4Sl7OGcseT4djVPUFxcHCdOnCCgOA+cj4yEXr2yppKOjlbrIyNtUy9r0+shPBz69lWPEgAJIYQQQgg7YdMgaPTo0WzZsoWoqCh27NhBz5490ev19O3b15bVKjzGyUSz64FoXCeTiQohhBBCCFGobNod7ty5c/Tt25erV6/i7+9PixYt+OOPP/D397dltQqPJZOJhocXWbWEEEIIIYQoSWwaBH3//fe2PHzRk8lEhRBCCCGEsDm7GhNU7MlkokIIIYQQQticBEFFKSwMgoJAp8t+u04HwcGqnBBCCCGEEKJQSBBUlPR6lQY7O8bAaOZMyaQmhBBCCCFEIZIgqKhFRMDy5VCqlOn6oCC1vjjMEySEEEIIIYQdkyDIFiIioFEj9XzkSNi0CU6dkgBICCGEEEKIImDT7HAl2tWr6rFnT2jZ0rZ1EUIIIYQQogSRliBbuXJFPRbXOZGEEEIIIYSwUxIE2UJKCly/rp6XK2fbugghhBBCCFHCSBBkC9euqUedDsqUsW1dhBBCCCGEKGEkCLKFy5fVY5ky4CzDsoQQQgghhChKEgTZgnE8kHSFE0IIIYQQoshJEGQLkhRBCCGEEEIIm5EgyBakJUgIIYQQQgibkSDIFoxjgiQIEkIIIYQQoshJEGQL0hIkhBBCCCGEzUhqMlsopDFBBgNs2wYxMRAQAGFhoNdb9RBCCCGEEEI4PAmCbKEQWoIiI2HECDh3Ln1dUBDMmgUREVY7jBBCCCGEEA5PusPZgpWDoMhI6NXLNAACiI5W6yMjrXIYIYQQQgghigUJgmzBiokRDAbVAqRpWbcZ140cqcoJIYQQQgghJAiyDSuOCdq2LWsLUEaaBmfPqnJCCCGEEEIICYKKXny8WsAqLUExMdYtJ4QQQgghRHEnQVBRu3pVPbq4gJdXgXcXEGDdckIIIYQQQhR3EgQVtYzjgXS6Au8uLExlgctpVzodBAerckIIIYQQQggJgoqelecI0utVGuzczJwp8wUJIYQQQghhJEFQUSuEOYIiIuDll7Ou9/SE5ctlniAhhBBCCCEykiCoqBVCEAQQF6cee/WCV15Rz0uXhu7drXoYIYQQQgghHJ4EQUXNinMEZfTrr+px0CCYNAl8feHiRUmNLYQQQgghRGYSBBW1QmgJOn0aTpxQ437CwsDVFXr2VNuWLrXaYYQQQgghhCgWJAgqalZOjADw22/q8f77wdtbPe/TRz0uXw4pKVY7lBBCCCGEEA5PgqCiVggtQcaucG3apK9r0wbKllW977ZssdqhhBBCCCGEcHgSBBU1KwdBmpbeEtS2bfp6F5f0rHBLlljlUEIIIYQQQhQLEgQVNSsnRjhyBGJioFQpaNbMdFvv3uoxMhKSk61yOCGEEEIIIRyeBEFFSdOsPibI2BXuoYdUIJRReLg6zNWr6a1FQgghhBBClHQSBBWlmzfBYFDPy5a1yi6z6wpn5OwMjz6qnkuWOCGEEEIIIRQJgoqSsRXI0zNrs00+GAywaZN6njEpQkbGLHGRkZCUVOBDCiGEEEII4fAkCCpKVh4PtH8/3Lih0mI3bpx9mbAwqFhRlfvlF6scVgghhBBCCIcmQVBRKqTxQK1aqa5v2dHroVcv9VyyxAkhhBBCCCFBUNGycnpsYxCU3XigjIxZ4n78ERITrXJoIYQQQgghHJYEQUXJikFQUhJs26ae5xUEPfQQVKoEsbGwfn2BDy2EEEIIIYRDkyCoKFlxTNAff0BCApQvD3Xr5l7WyQkee0w9lyxxQgghhBCipJMgqChZsSXImBq7TRvQ6fIub8wS99NPKngSQgghhBCipJIgqChZMTGCcTxQTqmxM3vgAQgOhrg4WLeuwIcXQgghhBDCYUkQVJSs1BIUF6e6w0He44GMnJzSEyRIljghhBBCCFGSSRBUlKwUBG3fDikpEBoKVaua/z5jELRqFcTHF6gKQgghhBBCOCwJgoqSlRIjWNoVzqhpUxU4xcfDzz8XqApCCCGEEEI4LAmCikpyMty4oZ4XcEyQMSmCuV3hjHS69NYgyRInhBBCCCFKKgmCisq1a+pRp4MyZQq0m3371PPWrS1/vzEI+vlnNbZICCGEEEKIkkaCoKJiHA/k5wd6fb53s2kTaBrUqQMBAZa//777oFo1lSZ79ep8V0MIIYQQQgiHJUFQUbHSeKD8doUzki5xQgghhBCipJMgqKhYaY6g/CZFyMg4ceqaNRAbW6DqCCGEEEII4XAkCCoqVkiPHR0NR4+qOX/Cw/NflQYNoGZNSExU6bKFEEIIIYQoSSQIKipWCIKMXeHuuw98ffNfFZ0uvTVIJk4VQgghhBAljQRBRcUKY4KMXeHyOx4oI+O4oPXr0zN3CyGEEEIIURJIEFRUCtgSpGkFT4qQUb16KsNcUhL89FPB9yeEEEIIIYSjsJsgaOrUqeh0OkaOHGnrqhSOAiZG+O8/OHsWXF3hoYesUyXJEieEEEIIIUoiuwiCdu/ezdy5c2nQoIGtq1J4CtgSZGwFatYMPDysUyVjELRhQ/pcrkIIIYQQQhR3Ng+C4uLieOKJJ/j8888pU6aMratTeAoYBFkjNXZmtWtD/fqQkgI//mi9/QohhBBCCGHPnG1dgeeff56HH36Ydu3aMWnSpFzLJiYmkpiYmPY69u4kN8nJySQnJxdqPXNjPHZudXC+fBkdkOzjAxbWNTUVfvvNGdDRqlUKyclaAWprqlcvJw4e1PP996k8+aTBavsVuTPnnBEiIzlnhKXknBH5IeeNsJQ9nTOW1MGiICg1NZUtW7awbds2Tp8+TXx8PP7+/tx77720a9eO4OBgiyr6/fff89dff7F7926zyk+ZMoWJEydmWb9hwwY8rNVHrAA2btyY7Xp9YiJdExIA2LBvHylHjli031OnvLl6tTWlSqVw5coa1qyxXhDk718aaMevv8L33/+Ct3eS1fYt8pbTOSNETuScEZaSc0bkh5w3wlL2cM7Ex8ebXVanaVqeV9QJCQlMnz6dOXPmcO3aNRo1akSlSpVwd3fn2rVrHDp0iPPnz9OhQwfGjRvHgw8+mOeBz549S5MmTdi4cWPaWKDw8HAaNWrEzJkzs31Pdi1BwcHBXLlyBW9vbzM/svUlJyezceNG2rdvj4uLS9YCZ87gUr06mqsrKbduqYl6LDBzphOvvqqnU6dUVq60fmvN/fc7s3+/jk8/TeGZZ6wXYImc5XnOCJGJnDPCUnLOiPyQ80ZYyp7OmdjYWMqVK8fNmzfzjA3MagmqWbMmzZo14/PPP8/xA54+fZpFixbx+OOP8+abbzJkyJBc97l3714uXbrEfffdl7bOYDCwdetWZs+eTWJiInq93uQ9bm5uuLm5ZdmXi4uLzb/0XOtx8yYAunLlcHF1tXi/W7aox3btnHBxsf4wrj59YP9++OEHZ4YNs/ruRS7s5dwVjkPOGWEpOWdEfsh5IyxlD+eMJcc3KwjasGEDtWvXzrVMSEgIY8aMYfTo0Zw5cybPfbZt25aDBw+arBs8eDC1atXitddeyxIAObQCTJSanJweBFkzKUJGvXvDmDGwaRNcvAgVKhTOcYQQQgghhLAHZgVBeQVAGbm4uFCtWrU8y3l5eVGvXj2TdaVLl6Zs2bJZ1ju8AswRtHs3xMWBnx80bGjlet1VtSo0aQJ79kBkJNIaJIQQQgghijWL+1atW7eO7du3p73+5JNPaNSoEf369eP69etWrVyxUYD02Mb5gVq3BqdCTGjep496XLKk8I4hhBBCCCGEPbD4svqVV15JS0198OBB/ve//9GlSxdOnTrFqFGjClSZzZs355gUwaEVIAgyzg/Utq0V65ONxx5Tj1u3QkxM4R5LCCGEEEIIW7I4CDp16hR16tQB4IcffqBr1668++67fPLJJ6xdu9bqFSwW8hkEJSTAjh3qeWEHQSEh8OCDoGmwfHnhHksIIYQQQghbsjgIcnV1TcvB/csvv9ChQwcA/Pz80lqIRCb5TIzw+++QlASBgVCjRiHUK5PevdXj0qWFfywhhLAGgwE2b4bFi9WjQeZ8FkIIYQaLg6AWLVowatQo3nnnHf78808efvhhAI4dO0ZQUJDVK1gs5DMxQsaucBZOLZQvvXqpx+3bITq68I8nhBAFERkJoaFqzGS/fuoxNFStF0IIIXJjcRA0e/ZsnJ2dWb58OXPmzCEwMBCAtWvX0qlTJ6tXsFjIZ3c4Y1KEwkqNnVlwMDz0kHq+bFnRHFMIIfIjMlLduDl3znR9dLRaL4GQEEKI3JiVIjujypUrs3r16izrZ8yYYZUKFUv5CIJu3FApq6HwxwNl1Lu36oa3dCmMHFl0xxVCCHMZDDBihBrDmJmmqZbzkSOhe3coTlPOCSGEsB6LgyCjS5cucenSJVJTU03WN2jQoMCVKlZSU/MVBG3dqt5asyYUZS/DXr3UxcPOnXDmDFSuXHTHFkKIzGJj4fhxOHYsfdm7N2sLUEaaBmfPqh7IlSurCaBzW/z9JVgSQoiSxuIgaO/evQwcOJB///0X7e5tOJ1Oh6Zp6HQ6DDIq1dTNm+kjdS0IgozjgYqqK5xRpUoQFqaCsGXL4H//K9rjCyFKnsREOHnSNNAxLhcu5H+/16+rJS86nQqE8gqWjAGTi0v+6ySEEMI+WBwEPfXUU9SsWZMvv/ySChUqoCuKEfuOzNgK5OUFbm5mv62o5gfKTp8+KghaskSCICGEdRgMqnXGGNxkbN2JilIt3zmpUEG1itesqTJlJiXBuHF5H3PePDXW8eJFFUxdvJh1uXJFtRxduqSWgwfz3m/ZsrkHShUrqsfy5cHV1eyvSAghRBGyOAg6efIkP/zwA9WrVy+M+hQ/+egKd/Ei/POPeh4ebv0q5eXRR+HFF2H3bjh1CqpUKfo6CCEcj6apGQGya9H57z/V4pMTL6/0QCfjUqMG+PiYljUYVIATHZ39uCCdTnUjfuqpvLu5paSon+nsAqTMy6VLKli7elUthw/n/Z2UKWNeC1OFClCqVN77E0IIYR0WB0Ft27blwIEDEgSZKx9zBBmzwjVqZHFCOauoUEEFX7/9phIkvPZa0ddBCGG/Mo7TyTxe5+bNnN/n6grVq6vAJnOwU6GC+VMB6PUwa5Yaw6jTmQZCxn3MnGneOB9nZ9VyU7Fi3mWNAVBuLUsZA6aUlPQueUeO5L1/b++8W5eMi4dH3vsTQgiRM4uDoC+++IKBAwdy6NAh6tWrh0umztGPPPKI1SpXLORjjiBjEGSLrnBGvXtLECRESZbfcTo6HYSEZN+qU7my9RIQRETA8uUqS1zGJAlBQSoAioiwznEycnJSP+X+/lCvXu5lU1NV8GNOC9PFi6qLX2xseoCZF0/PvFuW/PwgIcE529YyIYQo6SwOgnbu3Mnvv//O2rVrs2yTxAjZyEd3OFslRcgoIgKefx7++kt1Y5GGPyGKn4zjdDK36OQ1Tqd8+ewDnWrViq5bV0SESoO9bRvExEBAgErsYg+Z3pyc1NihsmWhTp3cy2qaakHLq3XJuNy5A3FxajlxIrc9uwAP4+6u5dmyZFy8vYtmcm4hhLA1i4OgF198kf79+zN27FgqVKhQGHUqXiwMgk6dUouzs/pjbiv+/ioI27hRtQa98Ybt6iKEyL+iGqdjK3q9bcZOWpNOB76+aqlVK/eymga3bpkXLF24oBEfryMhQUdUlAps8+LmZv4YpjJlJGASQjgui4Ogq1ev8vLLL0sAZC4LgyBjV7j771cXILbUp48KgpYskSBICHuX33E6Li6qpTe7YMeScTqiaOh0qrXG21sFo7lJTk7hhx/W06hRR65dc8kzaLp1SwXFZ86oJS8uLqpFMK/WJWPXPCcn63wHQghhDRYHQREREWzatIlq1aoVRn2KH2NiBDPHBBUoNXaqAS5vg4QYcA8A/zBwyn+/kJ494bnn4O+/1aDevO5QCiEKV3KyE//+q1qL7XGcjrA/7u4GqlUz7/c7IcGc1iX1ePMmJCerDH3R0Xnv29nZ/LmYypWTc1IIUfgsDoJq1qzJmDFj2L59O/Xr18+SGOGll16yWuWKBQtagjStAEkRzkbC3hEQn2GEsEcQNJ4FwfkbIeznB+3bw9q1qkucOfNyCCEKJjXVdD6d9MWZqKiupKbm3DRjD+N0hONyd4fQULXk5c4dlQHPnG55166pTHkxMWrJizEBhbmT1zpbfCUjhBD5zA7n6enJli1b2LJli8k2nU4nQVBmFgRBhw+rPxju7vDggxYc42wkbOsFZEoBFB+t1octz3cg1Lu3BEFCWFv+xumo4MfLS6NmTZ3J+Bzjo69vUX4KUZKVKqVaEStXzrtsUpI633NqVcq4XL2qbgQYX+dFp8t78lrjIpPXCiEysjgIOnXqVGHUo/iyIAgydoVr0UINTjVLqkG1AGUOgODuOh3sHQmB3fPVNa5HDxg6VE3e+s8/ULeuxbsQosS6dSvr+Jz8jtOpWjWFM2d+oV+/tri6uuT8ZiHsjKsrBAaqJS8pKdkHTNktly+rgOnKFbUYJxnPjZ+f+YkfzP47LIRwSNKIXJju3IEbN9Tzo0fVrdpcOjobu8JZlBr78jbTLnBZaBB/VpWrEG7BjhVfX+jYEVavVq1BEydavAshijVrzKeTefLQypWzdvFJTtZYsyZREhWIYs3ZWaU6DwjIu6zBkD55bW6tS8bJaw0G1TXv2jX499+89+/jk3uQlDERhLt7wT+7EKJomRUETZ06lREjRuBuxv/yXbt2ceXKFR5++OECV86hRUbCCy+kv+7RQ83iN2tWtrP4paTA5s3quUXjgRLM6GBtSbls9OmjgqAlS2DCBMkWJUqenMfpOMZ8OkIUR3q9+v9VvjzUr5972dRUFfyYO3ltcrJqrb15U/0/z4uXl/ktTJ6e1vn8QoiCMSsIOnz4MJUrV+axxx6jW7duNGnSBP+72c5SUlI4fPgw27dv57vvvuP8+fN88803hVppuxcZCb16kWWa7uhotX758iyB0L596sfWxwfuu8+CY7mbcbvMknLZeOQR1S3g6FE4eBAaNMj3roSwWwWZT8fTM+f5dGScjhC25+SkeqWXK5d3t25NU504cmtZyrgkJqqur7duqd+KvHh45N2yZFy8vOTGoxCFxawg6JtvvuHAgQPMnj2bfv36ERsbi16vx83Njfj4eADuvfdennnmGQYNGkSpknx702CAESOyBkCg1ul0MHKkmuY8Q9c443ig8HALU4P6h6kscPHRZD8uSKe2++d/5lVvb+jUCX76SbUGSRAkHJk1x+nIfDpCFD86nZoItkwZ8yavjY01v4UpPl4txonR81KqlPktTL6+8jskhCXMHhPUsGFDPv/8c+bOncvff//N6dOnSUhIoFy5cjRq1IhyZk4GWuxt2wbnchmjo2mqX822bSbTnOd7fiAnvUqDve3RnMs0nlmg+YJAdYn76Sc1LmjSJPmhFfYtp3E6x4/nnqJXp1PjcXKaT0dS8QohMtLpVA8OHx/1O5GXuDjzWpcuXlRl79yB06fVkhdXV/Mnry1TRiavFcLiP+lOTk40atSIRo0aFUJ1igFzJkHIVC4xEbZvV88tSopgVKkLOHtCSlzWbY3ez3d67Iy6dlV3pP77D/bvh3vvLfAuhSgQGacjhHA0np6qRbl69bzLxseb38J086ZKRX7uXO73YY2cnU0DpoxL2bI6Tp/2JzhYDWUuV04CJlE8yX1NazMnpU2mcjt3qrs9FSpAnTr5OOaZZSoAcg+CBxdA4iU48SVc/BWubAdG52Onpry84OGH4YcfVJc4CYJEUchpnM7x42qRcTpCiOLKwwOqVFFLXu7cMT9gun5dJWM6f14tWTkDzRk/Xr0yTl6bW8uScSlXTlrMheOQU9XawsLUrZPo6OzHBel0antY+hidjKmx89XN7Nin6rHGcxBwtz9dmUbwc1049xNc369eF1Dv3ioIWroUpkyRLnHCeqw5TseYbrpiRTlHhRAlQ6lSKuV+SEjeZZOSVMrwnIKkmJhUTpyIIz7ei6tXdRZPXluunPmT17rIlGfChiQIsja9XqXB7tUr6zbjFdnMmdkmRbB4PBDAtb/g6h/g5ALVnklf71MbQvrA6e/h4NvQMjIfOzf18MPqztSpU7BnDzRtWuBdihJExukIIYTtubqqe7FBQdlvT042sGbNJrp06QK4WDR5rbH1/vJlOHQo77qULWt+wCST1wprk8uHwhARodJg9+8PCQnp64OCVACUIT32rVvw55/qeb6CoONz1GNwL3CvYLqt3lg4vQTOrYDrf0OZgqV1K11ajQ1aulQtEgSJzKw1Tifj5KHVqslEhEIIYQsuLlCpklryYjDAlSvZB0iZk0Fcvpw+2e3Vq3D4cN779/U1f/JaGdspzGFxEDR//nz69OmDh4dHYdSn+IiIgJYtYf16ePZZePxx1QUuU/7rbdtU39wqVSA01MJjJN2AqIXqeY3hWbf71IHKj8GZpXDobQhbnp9PYqJPn/Qg6P33pbtRSZR5nE7GbmwyTkcIIUomvT49CMlLaqoKfswdx5SSouZuunFDzVmYF29v81OLly5d0E8uHJXFQdDrr7/OiBEjeOyxx3j66adp3rx5YdSreDAOZujUySQddkYF6gp38mswJIBvffB/KPsy9caqIOjsD3DjoCpbAJ07qwvZM2dg1y548MEC7U7YsYKO08nYmmNcZJyOEEIIY7IFf3+oVy/3spqmkjnk1rKUcUlKUnM3xcaqv2F5KV3avNalChXU9Y/8DSs+LA6CoqOjWbVqFQsWLCA8PJyqVasyePBgBg4cSMWKFQujjo7rxg31mMst7oxJESyiaXDcmBBheM7/K33rqa5yZ5fDoXegxVILD2TK3R0eeQQWLVJZ4iQIcmyZx+lkDHpknI4QQghb0+nAz08ttWvnXlbT1E06c1uYEhLg9m31d/Dkybzr4u5ufguTj48ETPbO4ksVZ2dnevbsSc+ePbl48SLfffcdX3/9NWPHjqVTp048/fTTdOvWDSdJKp9rEGQwwOrVas4dgFatLNz3xd/g1jFw9oLQJ3IvW3+cCoLOLIcb/4BvXQsPZqp3bxUELVsG06fL/AH2rqDjdLJr0ZFxOkIIIeyNTqcuuXx94Z57ci+raWpCWnNaly5eVMFSQoL6uxkVlXdd3Nwsm7xWAqaiV6D7tRUqVKBFixYcO3aMY8eOcfDgQQYOHEiZMmWYP38+4Tl0ASsxjEFQmTImqyMjYcQI0wnNHnhAJZWLMHdeU2MrUJUB4OKVe1nf+mrC1LORd1uDvjfzINnr2FH1t42Ohh07oEWLAu2uxDEYYMsWHVu3BlK6tI7WrbMMFbOYjNMRQgghzKfTqTkQvbzMm7z29m3zW5hiY9Xf3bNn1ZIXF5ecJ6/NOpmtfd18LoxrmqKSryDo4sWLfPvtt8yfP5+TJ0/So0cPVq9eTbt27bh9+zZvv/02AwcO5PTp09aur+O4c0ctYHIlGRmpsmdnnkIoOlqtX77cjEAo/pya/wegxjDz6lNvnAqCziyFm+NU0oR8KlUKuneHb79VCRIkCDJfegDsDDThww9V0kBzA+CCjNOpVi37YEfG6QghhBC5K10aqlZVS14SEtRcTHm1Ll28qO6XJyer68Do6Lz3rdersVR5tS4ZJ68tzICkoNc0tmZxENStWzfWr19PzZo1GTJkCAMGDMDPzy9te+nSpfnf//7HtGnTrFpRh2O8IjXeakBFyyNGZD+HqqapoiNHqgAj15P2v89BM0D5VuZ3bSvTEIJ6wLkf4dAkeGiRBR8mqz59VBC0bBnMmOE4Ub8tmRsAG8fpZBfs5GecTo0aagI9GacjhBBCFD53d/Mnr01MzH3y2ozd9a5dU9eSFy6o5cCB3Pft5GTZ5LWWXCdY5aa+jVl8WVS+fHm2bNlCs2bNcizj7+/PqVOnClQxh2fsCufjk9ZuuW2baRe4zDRNNZtu25ZjMjlITYb/5qnn2aXFzk29cSoIOv29eu5Ty7L3Z9C+vWrgunABtm/Px5imEiavABjgiScgIABOn859nI6/f/YtOjJORwghhHAsbm4QHKyWvCQnmxcwXbyo5mxKTVXlL12Cgwfz3r+5AVPZsla6qW9jFgdBX375ZZ5ldDodIeaEv8VZNkkRcruLn1Gu5c79CHcuQKmKqmXHEn73QuAjEL0S/pkEzb+z7P0ZuLpCz54wf77KEidBUO7yCoBB9Z403jvIPE7HmJygRo0sQ8yEEEIIUQK4uEBgoFrykpKS8+S1mZNBXL6sAqYrV9Tyzz8Fq6dZN/XtgMVB0EsvvUT16tV56aWXTNbPnj2b//77j5kzZ1qrbo4tmyAoIMC8t+Za7tjdhAjVh4De1fJ61R+ngqDTi1VrkHdNy/dxV+/eKgj64Qf46CPpbpWdGzdUFsCPPjKv/NixMGyYjNMRQgghRP45O6trCXNmrzEYzJ+89tIlFWCZw9yb/7Zi8WXrDz/8wMqVK7Osb968OVOnTpUgyCibICgsTA0Yi47OvglRp1Pbw8Jy2OfNw3BpM+j0UH1o/url1xgqdYXzq9XYoObf5G8/qAle/fzUf4gtW/I54WsxFBMDP/0EK1aoeaDM/bEANV+UucGyEEIIIURB6fVqTFD58lC/fu5lU1Nh1Sro0SPv/dr79YzFSfauXr2Kj49PlvXe3t5cuXLFKpUqFrIJgvR6lTEjO8a7/jNn5tJ/8vgc9Rj4CHgE5b9u9cerx9MLIdaM6ZRz4OKSPuhtacHmYHV4J07ABx/AQw+pZuphw2DDBhUA1a0Lb7yhflxyat3R6VR/4BwDYCGEEEIIG3Nygq5d1U17R7+msTgIql69OuvWrcuyfu3atVQ1J29gSXH9unrMNNFKRITKmOHiYlo8KCiPTBrJcXDya/W8poUJETIr2wQqPQxaKvwzuUC76tNHPf7wgxqwV1JomsrKMmECNGyo5hh45RU1b5KmqXmfpk6Fo0fh0CGYPBnm3I1hM/9omBUACyGEEELYgYw39R35msbi7nCjRo3ihRde4PLly7Rp0waAX3/9lenTp0tXuIyyaQkyiohQA9+vX1cXyg88oKLlXE+WqIWQcgu8akKFNgWvX/3xcP5niPoO6o0Fr2r52k14uMomcuUKbNoEHToUvGr2KjUV/vhDpYVcsUKlsTbS61VyiIgIlQ0lKJuGOmMAnHmi3KAg9WNh76kkhRBCCCGgeFzTWBwEPfXUUyQmJjJ58mTeeecdAEJDQ5kzZw4DBgywegUdVi5BUFxcekPRsGHg7Z3HvjQNjt9NiFBjGOisMFVw2aYQ0Bli1qrWoAe/ytdunJ3h0Udh7lyVJa64BUFJSbB5swp8fvpJZVIxKlVKfd6ICNU0XLZs3vszBkmbNqWwdu1+OnduROvWznZ/t0QIIYQQIiNHv6bJVz6vYcOGMWzYMC5fvoy7uzuenp7WrpfjyyUIOn06fVOeARDAlR1w42/Qu0PVgVaqIKo1KGYtnPoG6r0FnvnrztinjwqCVqxQXb5c85G0zp7cvg3r16vAZ/Xq9HlvQf17de2q/uN37Kha9CylWo00bt+OplWrhg7zYyGEEEIIkZEjX9MUKKmxv7+/tepR/OQSBJ05ox7NnkrJmBY7tB+4WnGSmHIPQEBHiFkP/7wLD3yRr920bKkmz7p4EX79FTp3tl4Vi8q1ayrgiYxUCQ0SEtK3Vaig7nREREDr1o4f5AkhhBBClHQW96u6ePEiTz75JJUqVcLZ2Rm9Xm+yiLvMaAmqXNmM/dy5BGeXqec1CpgQITv17maKO/k1xEXlaxd6PfTqpZ4vWWKdahWF8+fh00+hXTuVuW3gQNXlLSEBqlSBUaPURF/R0aqlq2NHCYCEEEIIIYoDi1uCBg0axJkzZxg7diwBAQHoZEbH7JkRBJnVEnTiS0hNhrIPgN991qpdOv9mULE9XNh4tzVoXr5207s3fPIJ/PgjJCaCm5t1q2ktx4+rbnuRkbBrl+m2+vWhZ0/V4tOggUxWKoQQQghRXFkcBG3fvp1t27bRqFGjQqhOMWKNICjVAMc/U88LoxXIqP54FQSdnA/13oTS5vbTS9eihZoUKyZGdSfr1q0Q6pkPmgb796vAZ8UKla46o2bNVODTs6dKcy2EEEIIIYo/i4Og4OBgNE0rjLoUL8YgqEzWMTxmjwk6vwbiz4CrH4T0tmr1TPg/BBXawsVfVWvQ/XMt3oWTEzz2GHz0kZo41ZZBkMGg5usxBj5RUenbnJ3VuJ6ePdU4n0qVbFZNIYQQQghhIxaPCZo5cyavv/46URmvLIWpO3dUnzAo2JggY1rsak+DvpTVqpet+saxQfPh9pl87cI4cepPP6mvoCglJsLatTB0qApsWraEGTNUAOTuDj16wDffwKVLqqVq2DAJgIQQQgghSiqLW4L69OlDfHw81apVw8PDAxcXF5Pt165ds1rlHJaxFcjJKUsO5eRkNSAf8mgJunUCYtYBOqj+bGHU0lT5MKjQGi5ugn+mwP1zLN7Fgw+qSbLOnYN161TgUZji4tRxIiPh558hNjZ9m6+vaSprD4/CrYsQQgghhHAcFgdBM2fOLIRqFDPGIMjHRwVCGURHQ2qqShxQvnwu+/jv7liggE7gVa1QqplFvfEqCDr5JdR9A0oHW/R2JyeVIOHDD1WWuMIIgq5ehVWr0lNZGxvcACpWVMeMiIDwcMgUnwshiqNUA1zeBgkx4B4A/mHgJJlKhRBC5M7iIGjgQCtO1llcmZke2ymnzogpCXDiK/W8ZiEmRMisQiso3woubYHDU6HpJxbvwhgErVoF8fHWaYE5d05lnYuMhK1b1Zgfo2rV0jO6PfBALt+pEKL4ORsJe0dA/Ln0dR5B0HgWBEfYrl5CCFFSpBrQXdpCYMpWdJdKQ0Brh7kRla9LxhMnTvDWW2/Rt29fLl26BMDatWv5559/LNrPnDlzaNCgAd7e3nh7e9OsWTPWrl2bnyrZl4LOEXRmKSRdU1naAop45lHj2KATX5heWJjp/vtVN7/bt2HNmvxX4+hRmDpV7S84GF58ETZtUgFQw4YwYQIcOKBSXk+bprK8SQAkRAlyNhK29cr6OxUfrdafjbRNvYQQoqQ4GwkrQ3He0p4miR/ivKU9rAx1mN9fiy8bt2zZQv369dm1axeRkZHExcUBcODAAcaPH2/RvoKCgpg6dSp79+5lz549tGnThu7du1scTNmdgqbHNiZEqP5c0UfT5cNVd5LUJDj8nsVv1+lUaxDA7NmweDFs3mzaepMdTYO9e+Gtt6BOHahVC8aMgd271T4fegg++ABOnFApr8ePl7l8hCixUg2qBYjsMpXeXbd3pConhBDC+orBjSiLu8O9/vrrTJo0iVGjRuHl5ZW2vk2bNsyePduifXXLlEd58uTJzJkzhz/++IO6detaWjX7cf26eswmCMozPfbVPXD1T3ByhWpPFUr1cqXTqdag39rBf59DnTHgYVkaNX9/9bhli1pAJUyYNUt1WzMyGGD79vRU1mcyJKVzdoa2bdNTWVesWMDPJYSwf4YkSL4JybF3H29C0s3058b1N//No6Vag/izsKo6OHtmuFuiU4tOl/4cTF/rMqzP+Do/70l7bsaxzdq/ZfXVp2o0SjyHfvePoNdbXqcC19eC78Madcp8bGv/GxW4vnkc29w6WfWcyubYhhQ8U6Ph1jFwdjXvM+f3+7DGv1GW71AUujxvROnUjajA7nbdNc7iIOjgwYMsWrQoy/ry5ctz5cqVfFfEYDCwbNkybt++TbNmzbItk5iYSGKGkfCxd9OBJScnk5ycnO9jF5Tx2MZHp6tX0QOp3t4YMtUrKkoPOBEYmEJyctaTR3/0E5yA1KBHMejLqHRyRc0vDH3Z5jhd3YHh0BRS7/3Q7LeuWKHjtdeMJ3z6j1F0tEavXvDttwY8PeGnn5xYvVrH5cvpZTw8NDp21OjePZUuXTSTGNKG/7yFIvM5I0Re7Pqc0TQwJKgAJSUWXcYgJjkWXVoAY3ye+bUqr0u1cm7921HW3Z+DcQJCAKJsWw/hWFyAtgDrbFyRAtAK84aF1W8CkM/9pG/TrBGQWvJ9JF7FyYwbUSkxm9DKt8qlnPVZ8jfS4iDI19eXmJgYqlSpYrJ+3759BAYGWro7Dh48SLNmzbhz5w6enp6sWLGCOnXqZFt2ypQpTJw4Mcv6DRs24GEHOZA3btwIQJ2//qIGcPL6df7JNDDm8OG2gCcxMbtYs8Y0aHTR4ugYrwLM7Zcacr0gg2oKyN/QgebsgP/m8Wv0fSQ6+eX5HoMBhg/vgKYZ7zim0zQdoNG/v+k2T88kmja9wIMPxtCo0WXc3FT3lR07rPhh7JjxnBHCXFY/Z7RUnLmDs3YbFxJw1uJx0W7jQnzac2cSclznrMXjQjxOWK/rWQqlSNZ5kIKHetR5kIwHybrSpOCBi3aLEMNvee7noMsgbumNf6s0FawBOjTS72Bqd3+RtAzPM7/OWN70/boM+zEpn3as7PZFpvdnt++s5fOsi2b+vnI/du71SlunmVM+83dk/Czml9dl+D5N35/1eV51MS2fy76yPVdyO3Zudcn+M+d8PHP2bVn5zNvQsp5PpueqOcfOWD79M2d8bbqfomPyXWf66MWRvbZ/7f9jLdHOt4v0mPHx8WaX1WmaZtEpMXr0aHbt2sWyZcuoWbMmf/31FxcvXmTAgAEMGDDA4nFBSUlJnDlzhps3b7J8+XK++OILtmzZkm0glF1LUHBwMFeuXMHb29ui41pTcnIyGzdupH379ri4uOA0fDj6L77AMG4cqW+9lVZO08DHx5k7d3QcOZJM1aqm+3E6Ngv9gVfQfBqQ0n63bZt1NQ39plY4Xf0DQ42XSG30QZ5v2bJFR/v2ecfVZctqPPZYKj16aISFaSUylXXmc0aIvGR7zqSmQEpsektKhhYYXXL6+iwtLimZtlnpykBDBy7e4OIDzl5oLj7quYv33efeads1YzkXHzQXr7TnOHuDUx6/I5oB55+rQ8L5bOuuoQP3QFIePg46++2KUdjkd0bkR6GdN2lBs5bhOZleZwx4M5fVimA/1jgGaeV1DvGZc9pPdtvUPnSxR9Efy/u6MKXVxiJvCYqNjaVcuXLcvHkzz9jA4pagd999l+eff57g4GAMBgN16tTBYDDQr18/3spwwW8uV1dXqlevDkDjxo3ZvXs3s2bNYu7cuVnKurm54ebmlmW9i4uLXfzAp9Xjbjc9fdmy6DPU69IluHNHxTZVqriYXvxrqXByHgC6e57HxdW1KKuevfoTYHMn9Cfnoa83BtxzH5hz+bJ5u501S8cTT5TcC5OM7OXcFTZgSDQd55Jx7EtShvV3F33iDcISTuP+q9PdIOYmpFjxDpvOGVzTg5a0oMTFJ/v1mde5+qBz9gRder6dwruN4wJNPlKDb1GtzBk+iDpuk1m4uJYqtBo4EvmdEfkh543IUaoBzn2vkiBkexNNBx5BONsgXbYl56zFQZCrqyuff/4548aN4+DBg8TFxXHvvfdSo0YNS3eVrdTUVJPWHoeUQ3Y4Y2a4SpUgS4xz4Ve4dVxdUIT0K+wamiegA5R9AK7ugn+nwX3Tcy8eYN5u89FrUgj7oWlgiM82UEkPZPIY2J90E1It+51zAvwAbmWzUV8qQ9DinSlIybA+t3V6d8caVBwcAWHLc5gnaKbMEySEEIXFSa/mY8vhRhSgfoftOCkC5CMIevvttxk9ejTBwcEEBwenrU9ISGDatGmMGzfO7H2NGTOGzp07U7lyZW7dusWiRYvYvHkz69evt7Ra9iWPICjbOYKMabGrDAQXz8KqmWWMmeI2d4Hjc6D2q+BeIcfiYWEqC1x0dIYW2Uy7CwpS5YSwCS0Vkm/l3AKT7bq76zMGOFqK9erk7JketDhnClQyrEtxKs3ev/+j8YNtcHYva9oqo7eDlmNbCI5Q2Ycub4OEGHAPUCn+7fwPrxBCOLxicCPK4iBo4sSJPPfcc1kSEcTHxzNx4kSLgqBLly4xYMAAYmJi8PHxoUGDBqxfv5727dtbWi37kkcQlCU99u2zEL1SPa8xrDBrZrmATuDXFK7thiMfwL3Tciyq16s02L16qYAnYyBkvME8c+bdTK1CWCo1JYeg5G7QkpLNusytMsm3sNrIWJ1ThqDFku5jGVpgnL3NvmDXkpO5cHgNWvlwSuRAupw46aFCuK1rIYQQJc/dG1EpMZvY/8daGj3Y2SZd4PLL4iBI0zR02XSZOHDgAH5+eWcQy+jLL7+09PCOIYcgKMc5gv6bp+5QV2gNPrULu3aWMbYGbekKxz6F2q9AqfI5Fo+IgOXLYcQIOJfhxkBQkAqAIuz/xkDhSzWgu7SFwJSt6C6VBgf6wcg3w52Cdx8zmJ/xJU9OLvnrPpYx4DGZf0YIIYQogZz0aOVbEe18m4blWznU9YzZQVCZMmXQ6XTodDpq1qxpEggZDAbi4uJ47rnnCqWSDkXT0oOgMmVMNmXbEmRIghOfq+c1hhd69fKlUhfwawLX9sC/0+He93ItHhGhJjjdtg1iYtRYobAwaQEC1AzKe0fgHH+OJgBbPrzbdDzLPpuONU0Nvje7q1gO61KTrFcnvXvO3ccyByrZtcC4+KgxNBLACCGEECWW2UHQzJkz0TSNp556iokTJ+Lj45O2zdXVldDQ0BwnOS1R7tyBpLsXfLmNCUo1qH7sZyPhzkUoVRGCuhdpVc2m00G9cbD1ETj+yd3WoHK5vkWvh/DwoqmewzgbeXcQYabuWPHRan3YcusGQlqqSRrkLIFK5paZbLuPxYJmvflfcPYyr6tY5nUZAx4n6QomhBBCiIIxOwgaOHAgAFWqVKF58+aSNjEnxlYgJyfwNE1wYAyC6vtGwspMA8lS4iF6lX22BgAEdoUy98H1v+DIdGg0xdY1ciypBjV4MNvxKBqgg70j1SBvJz2kJufRVcyM7mMp2aURyyedU9auYtkFKtmOjUmfN8aRmsmFEEIIUXxZPCaoVatWac/v3LlDUpJpNxdbTlpqFzKOB8rQ3ebWLbh+HXo2iST4dDatASm3Cqc1wFqMY4O2dodjs6H2aHAra+taOY7L20yD3iw0iD8LP/hD6h0wJFjv2E6u5gcqOQ3sdy4t3ceEEEIIUWxYHATFx8fz6quvsnTpUq5evZplu8Fgxa4zjiiXpAhOOgMfDxqRw+zs2bQG2JvAblDmXri+D458CA0n27pGjiE1GWI2mlc2+brpa71H3l3F8hrYr5cJI4UQQgghMrI4CHrllVfYtGkTc+bM4cknn+STTz4hOjqauXPnMnXq1MKoo2O5fvciNpvxQGG1thFYxozWgMvb7DPlq3Fs0LaecPRjqPU/cLMsI2CJkXwLYtbDuR8h+mdIvmHe++7/HCq2vRvYeMv4FyGEEEKIQmBxELRq1Sq++eYbwsPDGTx4MGFhYVSvXp2QkBAWLlzIE088URj1dBy5zBEU4Btj3j4SzCxnC0Hdwbch3DgAR2ZAw3dsXSP7kXBBjes69yNc+BVSE9O3uZZTXdwMt3N4s05lias62D5bAYUQQgghihEnS99w7do1qlatCqjxP9euXQOgRYsWbN261bq1c0S5dIeLuRFg3j7czSxnCzod1L87Ie6xjyDpeu7li7vYo3D4fdjQHFZUgj+Hwvk1KgDyrK7GTrXfDhEXoPk3gO7uktHd141nSgAkhBBCCFEELG4Jqlq1KqdOnaJy5crUqlWLpUuXcv/997Nq1Sp8M134l0i5tARtOxLGLUMQXvposs8Sdrc1wD+skCtZQEE9wLc+3DgIR2ZCg4m2rlHR0VLh6p9w7ifV4hN7xHS7X1MI7qG+I+/apskEgiNU4ou9mTIDegSpAMgeE2IIIYQQQhRDFgdBgwcP5sCBA7Rq1YrXX3+dbt26MXv2bJKTk/nwww8Lo46OJZcgKFXTc9B1Fs0NvbJ5owO1Buic1Nig7Y/B0ZlQayS4lsnrXY7LkAgXf7sb+PwEdy6kb3NygQptVDfBwEfAIzD3fQVHQGB3UmI2sf+PtTR6sDPOAa3t/99cCCGEEKIYsTgIevnll9Oet2vXjiNHjrB3716qV69OgwYNrFo5h2MwwOHD6vn16+q1Xl3cGucIcq4SAQHLYdtjQGr6ex2tNSA4Anzqwc1DcGQWNJhg6xpZV9IN1a3t3I9wfi2kxKVvc/aCSl1Ua0+lzioDmyWc9GjlWxHtfJuG5VtJACSEEEIIUcQsDoIyCwkJISQkhHPnzjF06FDmzZtnjXo5nICdO3F+/nmIjlYr5s+HjRth1iySu0Vw/rxaHRIC+LYiLQB6cD6UDlVd4BzpYljnBPXGwu99MrQG+dq4UgV0+yxEr1SBz8XNoKWkb3OvpFp6gnqozH16N9vUUQghhBBCFFiBgyCjq1ev8uWXX5bIIEi3YgVN33sv64boaOjVi2ufLEfTInBzg/LlgSvH1HaPYKg6qCiral2Ve8GhOnDzMBz9KD1hgqPQNNWSZRzfc22v6XafOiroCewOZZuowE8IIYQQQjg8qwVBJZbBgH7UKCBrzi80DXQ6fMaPxInuVK6sV+Pkbx1V273vKcqaWp/OCeqOhR19Vbrse0ZY3jWsqKUa4Mrv6YFP3MkMG3Xg3zw98PGuYaNKCiGEEEKIwiRBUEFt24bO2AUuO5pGqctnCWMbLiHhal3s3ZYgr5qFXr1CV/kxODRRZUk79jHUe8vWNcoqJR4ubFSBT/QqSLySvs3JDSq2VxndKnUF9wo2q6YQQgghhCgaEgQVVIx5E5sGEEPpkLsvjC1BxSEIctKrsUE7noAjH8I9L4GLt61rBXeuwPnVKvCJWa8mKjVyLaMCnuAeULEDuHjarJpCCCGEEKLomR0ERUTknrXshjE1dEkTYN7EpjEE0NYYBBlbghy9O5xR5T5w6G01ceix2VD3DdvUI+5keje3y9vVnD5GpUNUF7fgHuDfQqW2FkIIIYQQJZLZQZCPT+5jPXx8fBgwYECBK+RwwsLQAgMhOjrrmCAAnY5LrkFsSwzjqRDUmJRbx9U272LQEgSqNajuW7DzSfh3OtR8EVy8Cv+4mgbX96mg59yPavLWjMo0Sg98fBuaTlwqhBBCCCFKLLODoPnz5xdmPRyXXo/hww/R9+mDptOh07T0bXcvut/2m0lqjJ7KlYH4s5CaCE6u4BGS/T4dUcjjqjXo1nE49gnUfb1wjpOaDJe2pE9cGn82fZtOD+Vb3k1s8Ah4hhZOHYQQQgghhEOTMUFWoPXsye7XXqPpt9+SNiEQQFAQ2oyZfPGE6koYEgLcMiZFqO5Y8wLlxclZtQb9MRCOfAA1X7DeWJvkWxCz7m5ig58h+Ub6Nr0HVOp0d+LSh8HNzzrHFEIIIYQQxZYEQVYS06wZKc8+i0vVqmrFb79By5ZcuqInMRGcnCAoCDhpTIpQTMYDZRTaDw69A3H/wfFPoc6r+d9XwoW7E5f+BBd+gdSk9G1u/hBknLi0LTi7F7jqQgghhBCi5JAgyJqS7l6oly4NrVsDcPq0WlWpEri4kN4SVFzGA2Xk5Az13oQ/BsPhaeBbH5JugHsA+Ifl3fIVe1SN7Tn7I1zdBWToWuhZXY3tCeoBZR8sXq1oQgghhBCiSEkQZE3x8erRwyNtlTEIqlz57orYYtwSBBDaH/a/DncuwuYu6es9gqDxLAjOkGVQS4Wrf6YnNjB+N0Zl74eg7irw8a4tiQ2EEEIIIYRVSBBkRbqEu3PRuKd3zzpzRj2GpM0RVIxbgkB1YbtzMev6+GjY1gseWqzmETr3I5xbCXcupJdxcoEKbVTgE/gIeAQWWbWFEEIIIUTJIUGQNRmDoGxagkJCgJQEuH03KioOE6VmlmqAvSNy2Hi3a9vvfTHp5ubiDZW6qNaegE7gmnsqdiGEEEIIIQpKgiBrMnaHy9ASZBIExf0HaOBaBtzKFXn1Ct3lbRB/Lo9CGriWhZDeKvApHw561yKonBBCCCGEEIoEQdaUqSXIYIB//lGrbtwAw42j6EG1AhXH8S0JMeaVazwLqjxRuHURQgghhBAiB062rkCxkiExQmQkhIbCiRNq1Zgx8ME443igYpoUwT3AvHIy1kcIIYQQQtiQBEHWdLcl6PwNd3r1gnOZeoZVLK2yn/2/vTuPj6LK9z7+7XTWhoQAgewsDquAAUE2BVHZFFFER0e5inpnRjSMcGFgxtcsoD7KojIgF3Xu3EfxmSuiYkDHJVyGHQaCRlDQEBEQMCQgS0ggEDrd5/kjpKHNQpZOqkN/3q9Xv0hVnVT/qnLS6S+n+tTXh67AzwNJpdNgO5IkVTbKZZMcyaXtAAAAAIsQgnyobHa4z3Y5ZEz57Z3iSkeCFi7uLJerIStrIEH20kvdJJUPQheWe8/nHj8AAACwFCHIly5cDnfsrKPCzWUh6F+7OmnjxgarqmElj5UGLSt/yZsjqXT9pfcJAgAAACzAxAi+dCEEnVVEuU0tmx5Ty8gTkqTvjnRQbjXnEGiUksdKiXeWzhZ3Nrf0s0KtBjECBAAAAL9ACPKlc+ckSUUqPxLUKb50FOjAsTY6e96h+GrOIdBoBdml2CFWVwEAAACUw+VwvnRhJCg4snwI6hxfOinCt7mdlJwsDWJuAAAAAMAShCAfKpsYYfid5S+HKxsJ+ja3s+bPl+xcGQYAAABYgsvhfMicKR0JOnGu8pGgG27rpBTmBgAAAAAsQwjykS1b4uX4+JyGSfp/y0pHgkJDpT/8QerYURph/1YqkVJuuEJvlAoAAAA0ElwO5wPLl9s0Z851sp0rvRyubGKE8+elmTOlsFCXmri/K20cdYXeKBUAAABoJAhBdeRySVOmlH7Ax6HSy+F+OjvcS88clNzFUlCY5GjT4DUCAAAAuIjL4epo40YpJ8cm6WIIuvQ+QcZIkSr9PJAiO3CvHAAAAMBijATV0aU3PY2Q9+VwZcpmhlMkl8IBAAAAViME1dGlNz2t7HK4TnEXQlAUkyIAAAAAViME1dGgQVJiopFkKrwczmaTUtqXXQ7HSBAAAABgNUJQHdnt0rx5LknlL4ezlX5USL07MhIEAAAA+AtCkA/cdZfR76Zvk+MnISgpSVr+XpEcOljakJEgAAAAwHKEIB+5vvcBz9f2JhFau1bav1+68+YL9wcKbSGFx1hUHQAAAIAyTJHtI/biYs/XTWIiNGTIhYVCPg8EAAAA+BNGgnykLAQVK1SOqEuyZQGfBwIAAAD8CSHIR+znz0sqnRkuMvLCSrdLOrK+9Oug4NJlAAAAAJYiBPlI2UhQkRyKipJ0KE36sJ10ZFVpg73/t3T5UJpVJQIAAAAQIchnLh0JuqVTmrTxHqnoB+9GRTml6wlCAAAAgGUIQT5y6UjQoymTJJkKWl1YlzmZS+MAAAAAixCCfKQsBNnDS9Qi/IcqWhqp6JD048aGKQwAAACAF0KQj5RdDqdQW/W+4Wxu/RUDAAAAoFKWhqBZs2bpuuuuU2RkpFq3bq0xY8YoOzvbypJqrWwkqMAVVb1viIivx2oAAAAAVMbSELR+/XqlpqZq69atWrVqlZxOp4YPH64zZ85YWVatlIWgnDOJOu1OklTZiJBNciRLrQY1WG0AAAAALgq+fJP6k56e7rW8ePFitW7dWpmZmRo8eLBFVdVO2eVwRXLoC9sCDdY9FbS6EIx6z5eC7A1WGwAAAICLLA1BP3Xq1ClJUosWLSrcXlxcrOILIy6SVFBQIElyOp1yOp31X2AlnOfOKfLgQUlSM+XrWOgolfRZKvvWf5PNXKzLRCTK1fMlmbjRkoX1wnpl/dXKfovGhT6DmqLPoDboN6gpf+ozNanBZoypaC7nBud2u3XHHXcoPz9fmzZtqrDNzJkz9fTTT5dbv2TJEjkcjvousULxW7aox3//tyKOH/esK4hqpd2PP6prrvmrwpWvb0LG6YS9i44HXS3ZGAECAAAAfK2oqEgPPPCATp06paioqj+n7zch6PHHH9enn36qTZs2KSkpqcI2FY0EJScn69ixY5c90PpgW75c9l/8QjLG6xNARrbSK98mGdmuk5yjD0nhsQ1eH/yX0+nUqlWrNGzYMIWEhFhdDhoB+gxqij6D2qDfoKb8qc8UFBQoJiamWiHILy6Hmzhxoj766CNt2LCh0gAkSWFhYQoLCyu3PiQkpOFPusslTZ0qVZAhbTKSbNL/k3RdsEKaJkg2ZiNHeZb0XTRq9BnUFH0GtUG/QU35Q5+pyfNbGoKMMfrNb36j5cuXa926dWrfvr2V5dTMxo3SD1XcFNUY6YSkfS0IQAAAAIAfsTQEpaamasmSJfrggw8UGRmpvLw8SVKzZs0UERFhZWmXl1vNm52eaVa/dQAAAACoEUuHKF599VWdOnVKQ4YMUXx8vOfxzjvvWFlW9cRX82an1W0HAAAAoEFYfjlcozVokJSUJOXkVPi5INkkNZfUP6WhKwMAAABQBT6sUlt2u7RggSTJ2Gze22w2yUh6SFLT5AYvDQAAAEDlCEF1MXastGyZlJDgvT4pSfpzN+k6SY5ES0oDAAAAUDFCUF2NHauS777Tf49bpPu1RBM6r5X275f6nC/dHpFQ9fcDAAAAaFB+cZ+gRs9u1zet+2qp+ujmRElBRirKKd0WwUgQAAAA4E8YCfKRc+dK82RkpCTnKclVVLqBy+EAAAAAv0II8gGXS9q3r/R+QGfOSK7TF0aBQqKlYId1hQEAAAAohxBUR2lpUocOwVq5sr0k6Z//lB6650IIYhQIAAAA8Dt8JqgO0tKke+4pf5ugMHdpCDpSmKhYC+oCAAAAUDlGgmrJ5ZImTSoLQN73CYqPPixJWrctUS5Xw9cGAAAAoHKEoFrauFH64YeKtyU2Lx0J+vZQojZubMCiAAAAAFwWIaiWcnMr35bYojQE5ZxMrLIdAAAAgIZHCKql+PjKt5WNBOWcSKyyHQAAAICGRwiqpUGDpKQkyWYrv60sBLlCEzVoUAMXBgAAAKBKhKBastulBQtKv7bZLk4PF2x3KrbZEUlS6rRE2e1WVAcAAACgMoSgOhg7Vlq2TEpIuLgurlmegoKM3ArRqLGtrCsOAAAAQIW4T1AdjR0r3XZbiV58MUNt2/ZXt9gc6ZgU5IiXbGRMAAAAwN8QgnzAbpd69Diu224zCsnNkTZJciRaXRYAAACACjBU4UvGJR1dV/q1LURyc6dUAAAAwN8QgnwkvmSLgj/uIH37n6UrftwgfdhOOpRmaV0AAAAAvBGCfMD2w3JdVzxHOpvjvaEoR9p4D0EIAAAA8COEoLpyu2TfMUWSVP6WQRemzs6czKVxAAAAgJ8gBNXVjxtlO5tTQQAqY6SiQ9KPGxuwKAAAAACVIQTV1dlc37YDAAAAUK8IQXUVEe/bdgAAAADqFSGorloNkolILPv0TwVskiNZajWoAYsCAAAAUBlCUF0F2eXqOU+SKghCFz4p1Hu+FGRvwKIAAAAAVIYQ5AMm6S59FvY7KbSl9wZHkjRomZQ81prCAAAAAJQTbHUBV4rc4AFydWmn4MzHpeieUu+/lF4CxwgQAAAA4FcIQT5kKz5W+kWLnlLsECtLAQAAAFAJLofzpeKjpf+Gx1pbBwAAAIBKEYJ8yHbuSOkXYa2tLQQAAABApQhBvlT8Y+m/jAQBAAAAfosQ5EOekaBwRoIAAAAAf0UI8iVGggAAAAC/RwjyEZtxSWWzwzESBAAAAPgtQpCPhKpQNhlJNiksxupyAAAAAFSCEOQjYSb/whctpSBuvwQAAAD4K0KQLxiXWpVsL/06uKnkdllbDwAAAIBKEYLq6lCagj/uoO7ON0uXz3wvfdhOOpRmZVUAAAAAKkEIqotDadLGe6SzOd7ri3JK1xOEAAAAAL9DCKott0vKnCTJyFZuoyn9J3Myl8YBAAAAfoYQVFs/bpSKfqiigZGKDpW2AwAAAOA3CEG1dTbXt+0AAAAANAhCUG1FxPu2HQAAAIAGQQiqrVaDJEeSVMEngkrZJEdyaTsAAAAAfoMQVFtBdqn3AkkVTY1wYbn3/NJ2AAAAAPwGIaguksdKg5ZJEQne6x1JpeuTx1pTFwAAAIBKBVtdQKOXPFYlsbcp46MX1T+lrYKbXrgEjhEgAAAAwC8RgnzBZtdxew+ZNrdJISFWVwMAAACgClwOBwAAACCgEIIAAAAABBRCEAAAAICAQggCAAAAEFAsDUEbNmzQ6NGjlZCQIJvNphUrVlhZDgAAAIAAYGkIOnPmjFJSUrRo0SIrywAAAAAQQCydIvvWW2/VrbfeamUJAAAAAAJMo7pPUHFxsYqLiz3LBQUFkiSn0ymn02lVWZ7ntrIGNC70GdQUfQY1RZ9BbdBvUFP+1GdqUoPNGGPqsZZqs9lsWr58ucaMGVNpm5kzZ+rpp58ut37JkiVyOBz1WB0AAAAAf1ZUVKQHHnhAp06dUlRUVJVtG1UIqmgkKDk5WceOHbvsgdYnp9OpVatWadiwYQoJCbGsDjQe9BnUFH0GNUWfQW3Qb1BT/tRnCgoKFBMTU60Q1KguhwsLC1NYWFi59SEhIZafdH+qA40HfQY1RZ9BTdFnUBv0G9SUP/SZmjw/9wkCAAAAEFAsHQk6ffq0vvvuO8/y/v37tWPHDrVo0UJt2rSxsDIAAAAAVypLQ9Dnn3+um266ybM8ZcoUSdL48eO1ePFii6oCAAAAcCWzNAQNGTJEfjIvAwAAAIAAwWeCAAAAAAQUQhAAAACAgEIIAgAAABBQCEEAAAAAAgohCAAAAEBAIQQBAAAACCiEIAAAAAABhRAEAAAAIKAQggAAAAAEFEIQAAAAgIBCCAIAAAAQUAhBAAAAAAIKIQgAAABAQCEEAQAAAAgohCAAAAAAAYUQBAAAACCgEIIAAAAABBRCEAAAAICAQggCAAAAEFAIQQAAAAACCiEIAAAAQEAhBAEAAAAIKIQgAAAAAAGFEAQAAAAgoBCCAAAAAAQUQhAAAACAgEIIAgAAABBQCEEAAAAAAgohCAAAAEBAIQQBAAAACCiEIAAAAAABhRAEAAAAIKAQggAAAAAEFEIQAAAAgIBCCAIAAAAQUAhBAAAAAAIKIQgAAABAQCEEAQAAAAgohCAAAAAAAYUQBAAAACCgEIIAAAAABBRCEAAAAICAQggCAAAAEFAIQQAAAAACCiEIAAAAQEAhBAEAAAAIKMFWF3Alc7vcOrjxoApzCxUZH6k2g9ooyE7uBAAAAKxECPIBt8utwp2F2pW/S8Uni+Vo5dDJvSeV+bdMFf5Q6GkXlRSlkQtGquvYrvUSkAhdAAINr3sAYB23y60D6w/o5IaTOtDkgK666apG8xpMCKqjrLQsffrkpyrMKdRe7a2ybUFOgd69510N/O1A7Xp7lwp+KPBsuzQg1baO9EnpPt1nXfDGpHKN+QUD8Cf+9roHAIHkp6/BB+YdaFSvwYSgOshKy9K797wrmWp+w4V2/3rhX+U2lQWke5fdW+OOU1kdddlnXfDGpHKN/QUD8Bf+9roHAIHkSngN5r+fa8ntcit9Unr1A9DlXNhP+uR0uV1u39RRy33WRdkvxaUBSLr4S5GVltUgdfgjzg3gG/72ugcAvmSMqfjhrvjhdrnLP0oqfricroof58s/SopLKnycP3Nenz75aaN/DbYZY3z1Nr7BFRQUqFmzZjp16pSioqIa9Lm/X/e93rzpzXrZt81uU1BwkILsQbIF2WSz22QLsl1cvmSd67xLZ46cuew+W3VvJUcLR+m+7UHV+rdabcvqtNtks9m0ee5mFZ8qrrSO8Obhuvn/3CxbkE2yXXLMtksXfL++IZ6jqvXGZfRx6sc6e/ysKhPRMkK3/edtF7/3wm+m51f00uWqtl1Yru22aj2H1c9/hR9jRd/vcrmUk5OjxIREBQUFWV6jlc9/7tQ5Hcs6pstp2amlwqLCyq2v8M9eJX8J69y2kvb11fbS9sYYnT59Wk2bNpXtpy+I9VxHbWuudVsf1EHNFzmdTgUHV3KxkJ/WXJ911GfNV7Lxa8er3ZB2DfqcNckGXA5XS4W5hZdvVEvGZeRyueSSy2f7/HHXjz7bV12cO3lOn6R+YnUZfuns8bN6//73rS4Dfu6kTlpdQqNx/NvjVpfgF4pV+X9MAZXx5XsQBKb6fK/sC4SgWoqMj6y3fd/z7j1K6pckt8tdOtTpujjceemycRvlbMupVqi4ceaNatW1Vek+XMYn/7pLvNed2HNCBzYcuGwtCX0SFJV0MZ17/Y/JpV/6aH1DPMfl1p85ekbHsy//hiymS4yaxDa5OKpU9k9Fyw297cJyfWyz6nktO8+1qM3tdmv37t3q2rWr7MF2/zumBvwZHt11VGv/uFaXc/PzNysuJa7ijRUMjHiN5vqwbaXt66vthfYlJSXK2Jqhfv37KTg4uFHUXJe2PqmDmuV0OrV+/XrdeOONCgkNqZ86OM8+bVtp+3qq+cDGA3r79rcr3scl6vO9si/4RQhatGiRXnjhBeXl5SklJUULFy5U3759rS6rSm0GtVFUUlS5z3fUia10AoGuY7tWe7awuF5x2jRrkwpyCioear2wz8F/HFzvM5BV9xLBYS8Ma/DhUatV99yMenVUwJ0bVI/T6dSJT06o3239FBJS8RuTQNHp9k7KfC3zsq9710+/PqBnXnQ6nfr69NdqO7htwPcZVJ/T6VT4d+Fq2akl/QYV6jCyQ+l74Mu8BrcZ1KbBa6sJy/86vPPOO5oyZYpmzJihL774QikpKRoxYoSOHj1qdWlVCrIHaeSCkZWm7IpEJUdp4LSBuvR/vj0uLI+cP7JGf7Q9dVyyj7rus7bKgmGl58RWeg78/ZeiPnBuAN/xp9c9AAg0V8prsOXVzZs3T7/61a/0yCOP6Oqrr9Zrr70mh8Oh119/3erSLqvr2K66d9m9ikyseLgvMilSQ54eorFLxmr82vGatH+Shs0dpnuX3auoRO8Pa0UlRdV6OsGyOny5z9q4Un4p6gPnBvAtf3ndA4BAdCW8Bls6O9z58+flcDi0bNkyjRkzxrN+/Pjxys/P1wcffODVvri4WMXFFz/gWVBQoOTkZB07dqzBZ4fzqutcsVYsWKEuCV1UfLJYjhiHIhMjlXxDcqVvat0utw5tOqTTuafVNL5plW2rqz72WRu7l+/WqimrVJhz8QNxUUlRGvrSUHW5q0uD1+NPODeoLafTqVWrVmnYsGFconIJf3nd80f0GdQG/QY14Xa5tX/dfm1dtVX9h/VX+yHtLX0NLigoUExMTLVmh7M0BB0+fFiJiYn617/+pQEDBnjWT58+XevXr1dGRoZX+5kzZ+rpp58ut58lS5bI4XDUe72oPuMyOv3NaZWcLFFw82A1vbqpbPYaXDt4BePcAAAA+F5RUZEeeOCBK2+K7KeeekpTpkzxLJeNBA0fPtzSkSD+16QSo60uwH85R9JnUDO8zqCm6DOoDfoNasqf+kxBQfUnLLM0BMXExMhut+vIkSNe648cOaK4uPLTmoaFhSksrPyN70JCQiw/6f5UBxoP+gxqij6DmqLPoDboN6gpf+gzNXl+Sy+cDg0NVe/evbV69WrPOrfbrdWrV3tdHgcAAAAAvmL55XBTpkzR+PHj1adPH/Xt21fz58/XmTNn9Mgjj1hdGgAAAIArkOUh6L777tOPP/6oP//5z8rLy1PPnj2Vnp6u2NhYq0sDAAAAcAWyPARJ0sSJEzVx4kSrywAAAAAQALiZAgAAAICAQggCAAAAEFAIQQAAAAACCiEIAAAAQEAhBAEAAAAIKIQgAAAAAAGFEAQAAAAgoBCCAAAAAAQUv7hZam0ZYyRJBQUFltbhdDpVVFSkgoIChYSEWFoLGgf6DGqKPoOaos+gNug3qCl/6jNlmaAsI1SlUYegwsJCSVJycrLFlQAAAADwB4WFhWrWrFmVbWymOlHJT7ndbh0+fFiRkZGy2WyW1VFQUKDk5GQdOnRIUVFRltWBxoM+g5qiz6Cm6DOoDfoNasqf+owxRoWFhUpISFBQUNWf+mnUI0FBQUFKSkqyugyPqKgoy3/4aFzoM6gp+gxqij6D2qDfoKb8pc9cbgSoDBMjAAAAAAgohCAAAAAAAYUQ5ANhYWGaMWOGwsLCrC4FjQR9BjVFn0FN0WdQG/Qb1FRj7TONemIEAAAAAKgpRoIAAAAABBRCEAAAAICAQggCAAAAEFAIQQAAAAACCiGojhYtWqR27dopPDxc/fr107Zt26wuCQ1g1qxZuu666xQZGanWrVtrzJgxys7O9mpz7tw5paamqmXLlmratKnuvvtuHTlyxKvNwYMHNWrUKDkcDrVu3VrTpk1TSUmJV5t169bp2muvVVhYmDp06KDFixfX9+GhAcyePVs2m02TJ0/2rKPPoCI5OTn6t3/7N7Vs2VIRERHq0aOHPv/8c892Y4z+/Oc/Kz4+XhERERo6dKj27NnjtY8TJ05o3LhxioqKUnR0tP793/9dp0+f9mrz1VdfadCgQQoPD1dycrLmzp3bIMcH33K5XPrTn/6k9u3bKyIiQj/72c/07LPP6tJ5sOgz2LBhg0aPHq2EhATZbDatWLHCa3tD9pH33ntPXbp0UXh4uHr06KFPPvnE58dbIYNaW7p0qQkNDTWvv/66+frrr82vfvUrEx0dbY4cOWJ1aahnI0aMMG+88YbZtWuX2bFjh7nttttMmzZtzOnTpz1tJkyYYJKTk83q1avN559/bvr3728GDhzo2V5SUmK6d+9uhg4darZv324++eQTExMTY5566ilPm3379hmHw2GmTJlivvnmG7Nw4UJjt9tNenp6gx4vfGvbtm2mXbt25pprrjGTJk3yrKfP4KdOnDhh2rZtax5++GGTkZFh9u3bZ1auXGm+++47T5vZs2ebZs2amRUrVpgvv/zS3HHHHaZ9+/bm7NmznjYjR440KSkpZuvWrWbjxo2mQ4cO5v777/dsP3XqlImNjTXjxo0zu3btMm+//baJiIgwf/3rXxv0eFF3zz33nGnZsqX56KOPzP79+817771nmjZtahYsWOBpQ5/BJ598Yv7whz+YtLQ0I8ksX77ca3tD9ZHNmzcbu91u5s6da7755hvzxz/+0YSEhJidO3fW+zkgBNVB3759TWpqqmfZ5XKZhIQEM2vWLAurghWOHj1qJJn169cbY4zJz883ISEh5r333vO0ycrKMpLMli1bjDGlL0BBQUEmLy/P0+bVV181UVFRpri42BhjzPTp0023bt28nuu+++4zI0aMqO9DQj0pLCw0HTt2NKtWrTI33nijJwTRZ1CR3/3ud+aGG26odLvb7TZxcXHmhRde8KzLz883YWFh5u233zbGGPPNN98YSeazzz7ztPn000+NzWYzOTk5xhhjXnnlFdO8eXNPPyp77s6dO/v6kFDPRo0aZR599FGvdWPHjjXjxo0zxtBnUN5PQ1BD9pF7773XjBo1yquefv36mccee8ynx1gRLoerpfPnzyszM1NDhw71rAsKCtLQoUO1ZcsWCyuDFU6dOiVJatGihSQpMzNTTqfTq3906dJFbdq08fSPLVu2qEePHoqNjfW0GTFihAoKCvT111972ly6j7I29LHGKzU1VaNGjSr3c6XPoCIffvih+vTpo5///Odq3bq1evXqpb/97W+e7fv371deXp7Xz7xZs2bq16+fV7+Jjo5Wnz59PG2GDh2qoKAgZWRkeNoMHjxYoaGhnjYjRoxQdna2Tp48Wd+HCR8aOHCgVq9erW+//VaS9OWXX2rTpk269dZbJdFncHkN2Ues/JtFCKqlY8eOyeVyeb0ZkaTY2Fjl5eVZVBWs4Ha7NXnyZF1//fXq3r27JCkvL0+hoaGKjo72antp/8jLy6uw/5Rtq6pNQUGBzp49Wx+Hg3q0dOlSffHFF5o1a1a5bfQZVGTfvn169dVX1bFjR61cuVKPP/64nnzySb355puSLv7cq/pblJeXp9atW3ttDw4OVosWLWrUt9A4/P73v9cvfvELdenSRSEhIerVq5cmT56scePGSaLP4PIaso9U1qYh+lBwvT8DcIVLTU3Vrl27tGnTJqtLgR87dOiQJk2apFWrVik8PNzqctBIuN1u9enTR88//7wkqVevXtq1a5dee+01jR8/3uLq4I/effddvfXWW1qyZIm6deumHTt2aPLkyUpISKDPAJdgJKiWYmJiZLfby83cdOTIEcXFxVlUFRraxIkT9dFHH2nt2rVKSkryrI+Li9P58+eVn5/v1f7S/hEXF1dh/ynbVlWbqKgoRURE+PpwUI8yMzN19OhRXXvttQoODlZwcLDWr1+vl19+WcHBwYqNjaXPoJz4+HhdffXVXuu6du2qgwcPSrr4c6/qb1FcXJyOHj3qtb2kpEQnTpyoUd9C4zBt2jTPaFCPHj304IMP6j/+4z88I9D0GVxOQ/aRyto0RB8iBNVSaGioevfurdWrV3vWud1urV69WgMGDLCwMjQEY4wmTpyo5cuXa82aNWrfvr3X9t69eyskJMSrf2RnZ+vgwYOe/jFgwADt3LnT60Vk1apVioqK8rzpGTBggNc+ytrQxxqfW265RTt37tSOHTs8jz59+mjcuHGer+kz+Knrr7++3PT73377rdq2bStJat++veLi4rx+5gUFBcrIyPDqN/n5+crMzPS0WbNmjdxut/r16+dps2HDBjmdTk+bVatWqXPnzmrevHm9HR98r6ioSEFB3m/v7Ha73G63JPoMLq8h+4ilf7PqfeqFK9jSpUtNWFiYWbx4sfnmm2/Mr3/9axMdHe01cxOuTI8//rhp1qyZWbduncnNzfU8ioqKPG0mTJhg2rRpY9asWWM+//xzM2DAADNgwADP9rLpjocPH2527Nhh0tPTTatWrSqc7njatGkmKyvLLFq0iOmOryCXzg5nDH0G5W3bts0EBweb5557zuzZs8e89dZbxuFwmP/5n//xtJk9e7aJjo42H3zwgfnqq6/MnXfeWeFUtr169TIZGRlm06ZNpmPHjl5T2ebn55vY2Fjz4IMPml27dpmlS5cah8PBdMeN0Pjx401iYqJniuy0tDQTExNjpk+f7mlDn0FhYaHZvn272b59u5Fk5s2bZ7Zv324OHDhgjGm4PrJ582YTHBxsXnzxRZOVlWVmzJjBFNmNxcKFC02bNm1MaGio6du3r9m6davVJaEBSKrw8cYbb3janD171jzxxBOmefPmxuFwmLvuusvk5uZ67ef77783t956q4mIiDAxMTFm6tSpxul0erVZu3at6dmzpwkNDTVXXXWV13OgcftpCKLPoCL/+Mc/TPfu3U1YWJjp0qWL+a//+i+v7W632/zpT38ysbGxJiwszNxyyy0mOzvbq83x48fN/fffb5o2bWqioqLMI488YgoLC73afPnll+aGG24wYWFhJjEx0cyePbvejw2+V1BQYCZNmmTatGljwsPDzVVXXWX+8Ic/eE1TTJ/B2rVrK3wfM378eGNMw/aRd99913Tq1MmEhoaabt26mY8//rjejvtSNmMuuYUwAAAAAFzh+EwQAAAAgIBCCAIAAAAQUAhBAAAAAAIKIQgAAABAQCEEAQAAAAgohCAAAAAAAYUQBAAAACCgEIIAAAAABBRCEADAy/fffy+bzaYdO3ZYXYrH7t271b9/f4WHh6tnz55Wl1Ohhx9+WGPGjPEsDxkyRJMnT67ye9q1a6f58+fXa10AgPIIQQDgZx5++GHZbDbNnj3ba/2KFStks9ksqspaM2bMUJMmTZSdna3Vq1dX2i4vL0+/+c1vdNVVVyksLEzJyckaPXp0ld9TX9LS0vTss8/6dJ+LFy9WdHS0T/cJAIGIEAQAfig8PFxz5szRyZMnrS7FZ86fP1/r7927d69uuOEGtW3bVi1btqywzffff6/evXtrzZo1euGFF7Rz506lp6frpptuUmpqaq2fu7ZatGihyMjIBn9eAMDlEYIAwA8NHTpUcXFxmjVrVqVtZs6cWe7SsPnz56tdu3ae5bJLtJ5//nnFxsYqOjpazzzzjEpKSjRt2jS1aNFCSUlJeuONN8rtf/fu3Ro4cKDCw8PVvXt3rV+/3mv7rl27dOutt6pp06aKjY3Vgw8+qGPHjnm2DxkyRBMnTtTkyZMVExOjESNGVHgcbrdbzzzzjJKSkhQWFqaePXsqPT3ds91msykzM1PPPPOMbDabZs6cWeF+nnjiCdlsNm3btk133323OnXqpG7dumnKlCnaunWrp928efPUo0cPNWnSRMnJyXriiSd0+vRpz/ay0ZaVK1eqa9euatq0qUaOHKnc3FxPG5fLpSlTpig6OlotW7bU9OnTZYzxquenl8MdPXpUo0ePVkREhNq3b6+33nqr3DFUVdu6dev0yCOP6NSpU7LZbF7nori4WL/97W+VmJioJk2aqF+/flq3bp1nvwcOHNDo0aPVvHlzNWnSRN26ddMnn3xS4XkEgEBACAIAP2S32/X8889r4cKF+uGHH+q0rzVr1ujw4cPasGGD5s2bpxkzZuj2229X8+bNlZGRoQkTJuixxx4r9zzTpk3T1KlTtX37dg0YMECjR4/W8ePHJUn5+fm6+eab1atXL33++edKT0/XkSNHdO+993rt480331RoaKg2b96s1157rcL6FixYoJdeekkvvviivvrqK40YMUJ33HGH9uzZI0nKzc1Vt27dNHXqVOXm5uq3v/1tuX2cOHFC6enpSk1NVZMmTcptv/QSsqCgIL388sv6+uuv9eabb2rNmjWaPn26V/uioiK9+OKL+vvf/64NGzbo4MGDXs/70ksvafHixXr99de1adMmnThxQsuXL6/ip1AaSA8dOqS1a9dq2bJleuWVV3T06FGvNlXVNnDgQM2fP19RUVHKzc31OhcTJ07Uli1btHTpUn311Vf6+c9/rpEjR3rOYWpqqoqLi7Vhwwbt3LlTc+bMUdOmTausFwCuaAYA4FfGjx9v7rzzTmOMMf379zePPvqoMcaY5cuXm0tftmfMmGFSUlK8vvcvf/mLadu2rde+2rZta1wul2dd586dzaBBgzzLJSUlpkmTJubtt982xhizf/9+I8nMnj3b08bpdJqkpCQzZ84cY4wxzz77rBk+fLjXcx86dMhIMtnZ2cYYY2688UbTq1evyx5vQkKCee6557zWXXfddeaJJ57wLKekpJgZM2ZUuo+MjAwjyaSlpV32+X7qvffeMy1btvQsv/HGG0aS+e677zzrFi1aZGJjYz3L8fHxZu7cuZ7lsvNT9nMzpvT4J02aZIwxJjs720gy27Zt82zPysoyksxf/vKXGtXWrFkzrzYHDhwwdrvd5OTkeK2/5ZZbzFNPPWWMMaZHjx5m5syZlZ8EAAgwwRbmLwDAZcyZM0c333xzhaMf1dWtWzcFBV0c+I+NjVX37t09y3a7XS1btiw3KjFgwADP18HBwerTp4+ysrIkSV9++aXWrl1b4WjC3r171alTJ0lS7969q6ytoKBAhw8f1vXXX++1/vrrr9eXX35ZzSNUuUvRqvLPf/5Ts2bN0u7du1VQUKCSkhKdO3dORUVFcjgckiSHw6Gf/exnnu+Jj4/3nJ9Tp04pNzdX/fr182wvOz+V1ZGVlaXg4GCv89GlS5dykxxUp7af2rlzp1wul+eclykuLvZ8furJJ5/U448/rv/93//V0KFDdffdd+uaa66p5hkDgCsPl8MBgB8bPHiwRowYoaeeeqrctqCgoHJvup1OZ7l2ISEhXss2m63CdW63u9p1nT59WqNHj9aOHTu8Hnv27NHgwYM97Sq6NK0+dOzYUTabTbt3766y3ffff6/bb79d11xzjd5//31lZmZq0aJFkrwnbqjo/NQkaNVGdWv7qdOnT8tutyszM9PrZ5GVlaUFCxZIkn75y19q3759evDBB7Vz50716dNHCxcurNfjAQB/RggCAD83e/Zs/eMf/9CWLVu81rdq1Up5eXleb859eW+fSycTKCkpUWZmprp27SpJuvbaa/X111+rXbt26tChg9ejJsEnKipKCQkJ2rx5s9f6zZs36+qrr672flq0aKERI0Zo0aJFOnPmTLnt+fn5kqTMzEy53W699NJL6t+/vzp16qTDhw9X+3kkqVmzZoqPj1dGRoZnXdn5qUyXLl3KtcnOzvbUVd3aQkND5XK5vNb16tVLLpdLR48eLfeziIuL87RLTk7WhAkTlJaWpqlTp+pvf/tbjY4bAK4khCAA8HM9evTQuHHj9PLLL3utHzJkiH788UfNnTtXe/fu1aJFi/Tpp5/67HkXLVqk5cuXa/fu3UpNTdXJkyf16KOPSir9oP2JEyd0//3367PPPtPevXu1cuVKPfLII+XepF/OtGnTNGfOHL3zzjvKzs7W73//e+3YsUOTJk2qcb0ul0t9+/bV+++/rz179igrK0svv/yy59K+Dh06yOl0auHChdq3b5/+/ve/VzphQ1UmTZqk2bNna8WKFdq9e7eeeOIJr0DzU507d9bIkSP12GOPKSMjQ5mZmfrlL3+piIgIT5vq1NauXTudPn1aq1ev1rFjx1RUVKROnTpp3Lhxeuihh5SWlqb9+/dr27ZtmjVrlj7++GNJ0uTJk7Vy5Urt379fX3zxhdauXesJtAAQiAhBANAIPPPMM+UuV+vatateeeUVLVq0SCkpKdq2bVudPjv0U7Nnz9bs2bOVkpKiTZs26cMPP1RMTIwkeUZvXC6Xhg8frh49emjy5MmKjo72+vxRdTz55JOaMmWKpk6dqh49eig9PV0ffvihOnbsWKP9XHXVVfriiy900003aerUqerevbuGDRum1atX69VXX5UkpaSkaN68eZozZ466d++ut956q8ppyCszdepUPfjggxo/frwGDBigyMhI3XXXXVV+zxtvvKGEhATdeOONGjt2rH7961+rdevWnu3VqW3gwIGaMGGC7rvvPrVq1Upz58717Puhhx7S1KlT1blzZ40ZM0afffaZ2rRpI6l0Su/U1FR17dpVI0eOVKdOnfTKK6/U+LgB4EphM/V9kTMAAAAA+BFGggAAAAAEFEIQAAAAgIBCCAIAAAAQUAhBAAAAAAIKIQgAAABAQCEEAQAAAAgohCAAAAAAAYUQBAAAACCgEIIAAAAABBRCEAAAAICAQggCAAAAEFD+P1leu/LvE2pWAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAIjCAYAAADWYVDIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApUBJREFUeJzs3Xd8E/X/B/DXJU33otBCaQtlb0HZSKEoW2Z/FcTBUjZI4QsIKgjKdGAREQEVHICsosgSVEbZG0GQZUuhlD1K6UqT+/1xJCRN2iZtkkvL6/l45NHk7pO7T9Kj5JX35z4niKIogoiIiIiIiAAACrk7QERERERE5EwYkoiIiIiIiAwwJBERERERERlgSCIiIiIiIjLAkERERERERGSAIYmIiIiIiMgAQxIREREREZEBhiQiIiIiIiIDDElEREREREQGGJKIyCEEQcDIkSPl7gaRbMLDw9G/f3/94507d0IQBOzcubPA50ZGRiIyMtJufbOXCxcuoH379vDz84MgCPjll1/k7hIRkUUYkoiKmVOnTiE6OhoVK1aEu7s7QkJC0K5dO8yfP1/urtlNYmIiBEHAp59+apPtffXVV1i2bJlNtlXSLVu2DIIgwN3dHcnJySbrIyMjUbduXRl6lj+NRoOlS5ciMjISAQEBcHNzQ3h4OAYMGIAjR47I3T2HSU9Px9SpUy0KYvbQr18/nDp1CjNmzMCPP/6IRo0a2WU/kZGREAShwNvUqVPtsn9DuvC7du1ao+XZ2dno0qULFAoFvvvuO7v3Qyc8PNzsezF06FCTtvfv38fgwYMRGBgILy8vtGnTBseOHXNYX4mciYvcHSAiy+3btw9t2rRBhQoVMGjQIJQrVw5XrlzBgQMHMG/ePIwaNUruLhYLX331FcqUKWP0rT7lLysrC7Nnzy4WYTwjIwNRUVHYunUrWrVqhXfffRcBAQFITEzE6tWr8f333yMpKQmhoaGy9rNVq1bIyMiAq6ur3faRnp6OadOmAYDDK1EZGRnYv38/3nvvPbtXkd977z289dZb+seHDx/GF198gXfffRe1atXSL3/mmWfs2o+8qNVqREdHY/PmzViyZAkGDhzo0P03aNAA//vf/4yWVa9e3eixVqvFSy+9hJMnT2L8+PEoU6YMvvrqK0RGRuLo0aOoVq2aI7tMJDuGJKJiZMaMGfDz88Phw4fh7+9vtO7mzZsO78+jR4/g5eXl8P2S4zVo0ABLlizBpEmTUL58ebm7k6/x48dj69at+PzzzxETE2O07oMPPsDnn38uT8dyUSgUcHd3l7sbdnPr1i0AMPlbVRR5/c1p166d0WN3d3d88cUXaNeunezDFNVqNXr16oWNGzdi0aJFePPNNx3eh5CQELz++uv5tlm7di327duHNWvWIDo6GgDQq1cvVK9eHR988AFWrFjhiK4SOQ0OtyMqRi5duoQ6deqY/dARFBRksuynn35Cw4YN4eHhgYCAALzyyiu4cuWKUZv4+Hi8/PLLqFChAtzc3BAWFoYxY8YgIyPDqF3//v3h7e2NS5cuoXPnzvDx8cFrr70GQPoGct68eahXrx7c3d0RGBiIjh07mh3W9Msvv6Bu3bpwc3NDnTp1sHXr1iK8I8aWLl2KF154AUFBQXBzc0Pt2rWxcOFCozbh4eH4559/sGvXLv2wE8MPUffv30dMTAzCwsLg5uaGqlWrYs6cOdBqtfo2hsP/Fi9ejCpVqsDNzQ2NGzfG4cOHTfr177//olevXggMDISHhwdq1KiB9957DwCwY8cOCIKA9evXmzxvxYoVEAQB+/fvN/t6jxw5AkEQ8P3335us+/333yEIAjZu3AgAePjwIWJiYhAeHg43NzcEBQWhXbt2Fg+leffdd6HRaDB79ux82+neG3PDGXMPd5o6dSoEQcD58+fx+uuvw8/PD4GBgZg8eTJEUcSVK1fQvXt3+Pr6oly5cvjss88K7OfVq1exaNEitGvXziQgAYBSqcS4ceP0VaTLly9j+PDhqFGjBjw8PFC6dGm8/PLLSExMNHqebtjh3r17MXbsWP1wpJ49e+rDgI4oipg+fTpCQ0Ph6emJNm3a4J9//jHpS17nJOmOKQ8PDzRp0gTx8fEmz83OzsaUKVPQsGFD+Pn5wcvLCxEREdixY4e+TWJiIgIDAwEA06ZNMzvk7N9//0V0dDQCAgLg7u6ORo0aYcOGDUb7UqvVmDZtGqpVqwZ3d3eULl0aLVu2xPbt2036pTN16lRUrFgRgBRaBUFAeHi4fv3x48fRqVMn+Pr6wtvbGy+++CIOHDhg9j3ftWsXhg8fjqCgoCJX/7766ivUqVMHbm5uKF++PEaMGIH79+8btdENIT169ChatGgBDw8PVKpUCV9//bXV+8vJycErr7yCX3/9FQsXLsSgQYOK1P+iyM7OxqNHj/Jcv3btWpQtWxZRUVH6ZYGBgejVqxd+/fVXZGVlOaKbRE6DlSSiYqRixYrYv38/Tp8+XeB5IDNmzMDkyZPRq1cvvPXWW7h16xbmz5+PVq1a4fjx4/qgtWbNGqSnp2PYsGEoXbo0Dh06hPnz5+Pq1atYs2aN0TZzcnLQoUMHtGzZEp9++ik8PT0BAG+++SaWLVuGTp064a233kJOTg7i4+Nx4MABo3MQ9uzZg7i4OAwfPhw+Pj744osv8H//939ISkpC6dKli/z+LFy4EHXq1EG3bt3g4uKC3377DcOHD4dWq8WIESMAALGxsRg1ahS8vb31QaVs2bIApKFJrVu3RnJyMoYMGYIKFSpg3759mDRpElJSUhAbG2u0vxUrVuDhw4cYMmQIBEHAxx9/jKioKPz3339QqVQAgL///hsRERFQqVQYPHgwwsPDcenSJfz222+YMWMGIiMjERYWhuXLl6Nnz55G21++fDmqVKmC5s2bm329jRo1QuXKlbF69Wr069fPaN2qVatQqlQpdOjQAQAwdOhQrF27FiNHjkTt2rVx584d7NmzB2fPnsVzzz1X4HtbqVIl9O3bF0uWLMHEiRNtWk3q3bs3atWqhdmzZ2PTpk2YPn06AgICsGjRIrzwwguYM2cOli9fjnHjxqFx48Zo1apVntvasmULcnJy8MYbb1i078OHD2Pfvn145ZVXEBoaisTERCxcuBCRkZE4c+aM/hjXGTVqFEqVKoUPPvgAiYmJiI2NxciRI7Fq1Sp9mylTpmD69Ono3LkzOnfujGPHjqF9+/bIzs4usD/ffvsthgwZghYtWiAmJgb//fcfunXrhoCAAISFhenbpaam4ptvvkGfPn0waNAgPHz4EN9++y06dOiAQ4cOoUGDBggMDMTChQsxbNgw9OzZU//hVzfk7J9//sHzzz+PkJAQTJw4EV5eXli9ejV69OiBdevW6Y/HqVOnYtasWXjrrbfQpEkTpKam4siRIzh27JhJBUcnKioK/v7+GDNmDPr06YPOnTvD29tbv9+IiAj4+vpiwoQJUKlUWLRoESIjI7Fr1y40bdrUaFvDhw9HYGAgpkyZku+H/IJMnToV06ZNQ9u2bTFs2DCcO3cOCxcuxOHDh7F37179v1kAuHfvHjp37oxevXqhT58+WL16NYYNGwZXV1eLh8rl5OSgT58+WL9+PRYsWIAhQ4ZY3Nfbt29b1M7Hxwdubm4Ftvvrr7/g6ekJjUaDihUrYsyYMRg9erRRm+PHj+O5556DQmH8/XmTJk2wePFinD9/HvXq1bP4NRAVeyIRFRvbtm0TlUqlqFQqxebNm4sTJkwQf//9dzE7O9uoXWJioqhUKsUZM2YYLT916pTo4uJitDw9Pd1kP7NmzRIFQRAvX76sX9avXz8RgDhx4kSjtn/99ZcIQHz77bdNtqPVavX3AYiurq7ixYsX9ctOnjwpAhDnz5+f7+tOSEgQAYiffPJJvu3MvZYOHTqIlStXNlpWp04dsXXr1iZtP/roI9HLy0s8f/680fKJEyeKSqVSTEpKMupP6dKlxbt37+rb/frrryIA8bffftMva9Wqlejj42P0Xoqi8XszadIk0c3NTbx//75+2c2bN0UXFxfxgw8+yPc1T5o0SVSpVEb9yMrKEv39/cWBAwfql/n5+YkjRozId1vmLF26VAQgHj58WLx06ZLo4uJi9Ltu3bq1WKdOHf1j3XuzdOlSk20BMHo9H3zwgQhAHDx4sH5ZTk6OGBoaKgqCIM6ePVu//N69e6KHh4fYr1+/fPs7ZswYEYB4/Phxi16fuWNm//79IgDxhx9+0C/TvQ9t27Y1+t2NGTNGVCqV+t/dzZs3RVdXV/Gll14yavfuu++KAIz6v2PHDhGAuGPHDlEURTE7O1sMCgoSGzRoIGZlZenbLV68WARgdMzm5OQYtRFF6T0qW7as0e/91q1bJu+7zosvvijWq1dPzMzM1C/TarViixYtxGrVqumX1a9fX3zppZdMnl+QvP7d9ujRQ3R1dRUvXbqkX3bt2jXRx8dHbNWqlX6Z7j1v2bKlmJOTY9W+16xZY/Te6n4v7du3FzUajb7dl19+KQIQv/vuO/2y1q1biwDEzz77TL8sKytLbNCggRgUFGTy9zY33e+1YsWKIgBxwYIFVvVdFKV/K5bczP07y61r167inDlzxF9++UX89ttvxYiICBGAOGHCBKN2Xl5eRseOzqZNm0QA4tatW61+HUTFGYfbERUj7dq1w/79+9GtWzecPHkSH3/8MTp06ICQkBCjITJxcXHQarXo1asXbt++rb+VK1cO1apVMxqS4+Hhob//6NEj3L59Gy1atIAoijh+/LhJH4YNG2b0eN26dRAEAR988IFJW0EQjB63bdsWVapU0T9+5pln4Ovri//++8/6N8MMw9fy4MED3L59G61bt8Z///2HBw8eFPj8NWvWICIiAqVKlTJ639q2bQuNRoPdu3cbte/duzdKlSqlfxwREQEA+tdz69Yt7N69GwMHDkSFChWMnmv43vTt2xdZWVlGs2GtWrUKOTk5BZ5H0Lt3b6jVasTFxemXbdu2Dffv30fv3r31y/z9/XHw4EFcu3atwPchL5UrV8Ybb7yBxYsXIyUlpdDbyc3whHulUolGjRpBFEWjczf8/f1Ro0aNAo+V1NRUANI37JYwPGbUajXu3LmDqlWrwt/f3+xQxMGDBxv97iIiIqDRaHD58mUAwB9//IHs7GyMGjXKqJ25oX+5HTlyBDdv3sTQoUONJnPo378//Pz8jNoqlUp9G61Wi7t37yInJweNGjWyaAjl3bt38ddff6FXr154+PCh/li/c+cOOnTogAsXLuhnM/T398c///yDCxcuFLjdgmg0Gmzbtg09evRA5cqV9cuDg4Px6quvYs+ePfrfoc6gQYOgVCqLtF/d7yUmJsaoUjJo0CD4+vpi06ZNRu1dXFyMKj+urq4YMmQIbt68iaNHj1q0zxs3bsDFxQWVKlWyur/bt2+36KarFOdnw4YNmDBhArp3746BAwdi165d6NChA+bOnYurV6/q22VkZJitSunOm8s9BJuopGNIIipmGjdujLi4ONy7dw+HDh3CpEmT8PDhQ0RHR+PMmTMApGuTiKKIatWqITAw0Oh29uxZo0kekpKS0L9/fwQEBMDb2xuBgYFo3bo1AJgECxcXF5NzAi5duoTy5csjICCgwL7nDgoAUKpUKdy7d8/q98GcvXv3om3btvDy8oK/vz8CAwPx7rvvAjB9LeZcuHABW7duNXnP2rZtC8B0cozcr0cXmHSvR/eBvqChkTVr1kTjxo2xfPly/bLly5ejWbNmqFq1ar7PrV+/PmrWrGk03GvVqlUoU6YMXnjhBf2yjz/+GKdPn0ZYWBiaNGmCqVOnFiqcvv/++8jJySnw3CRr5H4f/fz84O7ujjJlypgsL+hY8fX1BSCdg2WJjIwMTJkyRX8OWpkyZRAYGIj79++bPWYK+p3rwlLumcACAwONArU5eT1XpVIZBQqd77//Hs8884z+PKHAwEBs2rTJomP94sWLEEURkydPNjnedV946I73Dz/8EPfv30f16tVRr149jB8/Hn///XeB+zDn1q1bSE9PR40aNUzW1apVC1qt1uS8ycKEjNx0723u/bq6uqJy5cr69Trly5c3mSBCNxuc7ny169evG91yh4iPP/4YFSpUQHR0NPbu3WtVf9u2bWvRLTg42KrtAtIXNGPGjEFOTo7R+XAeHh5mzzvKzMzUryd6mvCcJKJiytXVFY0bN0bjxo1RvXp1DBgwAGvWrMEHH3wArVYLQRCwZcsWs9/A6s4N0Gg0aNeuHe7evYt33nkHNWvWhJeXF5KTk9G/f3+jyQoAwM3NzWS8ujXy+jZYFMVCb1Pn0qVLePHFF1GzZk3MnTsXYWFhcHV1xebNm/H555+bvBZztFot2rVrhwkTJphdn3vKXFu+nr59+2L06NG4evUqsrKycODAAXz55ZcWPbd3796YMWMGbt++DR8fH2zYsAF9+vSBi8uTP/G9evVCREQE1q9fj23btuGTTz7BnDlzEBcXh06dOlncz8qVK+P111/H4sWLMXHiRJP1uauHOhqNJs9tmnsfC/ve1qxZE4B0PbEGDRrk2xaQzjFaunQpYmJi0Lx5c/1FT1955RWzx4w9j2Fr/PTTT+jfvz969OiB8ePHIygoCEqlErNmzcKlS5cKfL7utY0bNy7PaoQuoLdq1QqXLl3Cr7/+im3btuGbb77B559/jq+//tqoCmgvzvrhPHdAWbp0qdFlBYKDg7F9+3a0bNkSL730Enbt2oX69etbtO3r169b1M7Pz69Q74/u/La7d+8a9ddchVi3zNlntSSyNYYkohJANzmC7j+zKlWqQBRFVKpUyeSDvaFTp07h/Pnz+P7779G3b1/98vxmrcqtSpUq+P3333H37l2Lqkn28ttvvyErKwsbNmww+rbfcGihTl4f5KtUqYK0tDR95aiodN/+nz59usC2r7zyCsaOHYuVK1ciIyMDKpXKaLhcfnr37o1p06Zh3bp1KFu2LFJTU/HKK6+YtAsODsbw4cMxfPhw3Lx5E8899xxmzJhhVUgCpGrSTz/9hDlz5pis01VLcs8Ylvubenvp1KkTlEolfvrpJ4smb1i7di369etnNHNeZmamSf8tpZvR7cKFC0bVn1u3bhVYBTN8rmEVUK1WIyEhwegD9tq1a1G5cmXExcUZHc+5h73mdazr+qZSqSw63gMCAjBgwAAMGDAAaWlpaNWqFaZOnWp1SAoMDISnpyfOnTtnsu7ff/+FQqEwmqDCVnTv7blz54x+L9nZ2UhISDB5D65du2Yy3fj58+cBQD9LX+6/k3Xq1DHZb+XKlfH777+jdevW6NChA+Lj4y263pClFaLcwcxSuiqybvZDQJrmPz4+Hlqt1ujLsIMHD8LT0zPf/0uISiIOtyMqRnbs2GH2G+vNmzcDeDKUJCoqCkqlEtOmTTNpL4oi7ty5A+DJt+KGbURRxLx58yzu0//93/9BFEX9BStz78tRzL2WBw8eYOnSpSZtvby8zH4I7tWrF/bv34/ff//dZN39+/eRk5NjVZ8CAwPRqlUrfPfdd0hKSjJal/u9KVOmDDp16oSffvoJy5cvR8eOHU2Gm+WlVq1aqFevHlatWoVVq1YhODjYaAY4jUZjMgQrKCgI5cuXL9S0vlWqVMHrr7+ORYsWmXzj7evrizJlypicv/XVV19ZvZ/CCAsLw6BBg7Bt2zazF77VarX47LPP9OdiKJVKk9/F/Pnz86185adt27ZQqVSYP3++0XZzz4xoTqNGjRAYGIivv/7aaCa8ZcuWmRyv5o73gwcPmkwXr5udL/fzg4KCEBkZiUWLFpmtHhhOa677e6Hj7e2NqlWrFurYUSqVaN++PX799VejadZv3LiBFStWoGXLlvohk7bUtm1buLq64osvvjB6z7799ls8ePAAL730klH7nJwcLFq0SP84OzsbixYtQmBgIBo2bKjfpiVD3+rVq4dNmzYhLS0N7dq105/rlR9bnZN09+5dk2NZrVZj9uzZcHV1RZs2bfTLo6OjcePGDaPzG2/fvo01a9aga9euFs2iR1SSsJJEVIyMGjUK6enp6NmzJ2rWrIns7Gzs27cPq1atQnh4OAYMGABA+hA7ffp0TJo0CYmJiejRowd8fHyQkJCA9evXY/DgwRg3bhxq1qyJKlWqYNy4cUhOToavry/WrVtn1TlCbdq0wRtvvIEvvvgCFy5cQMeOHaHVahEfH482bdpg5MiRNnv9f/75p358vKEePXqgffv2cHV1RdeuXTFkyBCkpaVhyZIlCAoKMvkQ2LBhQyxcuBDTp09H1apVERQUhBdeeAHjx4/Hhg0b0KVLF/Tv3x8NGzbEo0ePcOrUKaxduxaJiYkWBxedL774Ai1btsRzzz2HwYMHo1KlSkhMTMSmTZtw4sQJo7Z9+/bVX8Txo48+smo/vXv3xpQpU+Du7o4333zT6Jvghw8fIjQ0FNHR0ahfvz68vb3xxx9/4PDhwxZde8ic9957Dz/++CPOnTtn8g36W2+9hdmzZ+Ott95Co0aNsHv3bv238I7w2Wef4dKlS3j77bcRFxeHLl26oFSpUkhKSsKaNWvw77//6ittXbp0wY8//gg/Pz/Url0b+/fvxx9//FHoKekDAwMxbtw4zJo1C126dEHnzp1x/PhxbNmypcBjR6VSYfr06RgyZAheeOEF9O7dGwkJCVi6dKnJOUldunRBXFwcevbsiZdeegkJCQn4+uuvUbt2baSlpenbeXh4oHbt2li1ahWqV6+OgIAA1K1bF3Xr1sWCBQvQsmVL1KtXD4MGDULlypVx48YN7N+/H1evXsXJkycBALVr10ZkZCQaNmyIgIAAHDlyRD+dfGFMnz5dPwxt+PDhcHFxwaJFi5CVlYWPP/64UNssSGBgICZNmoRp06ahY8eO6NatG86dO4evvvoKjRs3NpkgpXz58pgzZw4SExNRvXp1rFq1CidOnMDixYuNpgq3VPPmzREXF4euXbuiXbt2iI+Pz/cYs1U1e8OGDZg+fTqio6NRqVIl3L17FytWrMDp06cxc+ZMlCtXTt82OjoazZo1w4ABA3DmzBmUKVMGX331FTQajdkvwYhKPEdOpUdERbNlyxZx4MCBYs2aNUVvb2/R1dVVrFq1qjhq1Cjxxo0bJu3XrVsntmzZUvTy8hK9vLzEmjVriiNGjBDPnTunb3PmzBmxbdu2ore3t1imTBlx0KBB+qm5DaeX7devn+jl5WW2Xzk5OeInn3wi1qxZU3R1dRUDAwPFTp06iUePHtW3AWB2CuqKFSsWOK2zbirhvG4//vijKIqiuGHDBvGZZ54R3d3dxfDwcHHOnDnid999JwIQExIS9Nu7fv26+NJLL4k+Pj4mUys/fPhQnDRpkli1alXR1dVVLFOmjNiiRQvx008/1U/9m9+U5DAz3fLp06fFnj17iv7+/qK7u7tYo0YNcfLkySbPzcrKEkuVKiX6+fmJGRkZ+b4nuV24cEH/fuzZs8dku+PHjxfr168v+vj4iF5eXmL9+vXFr776qsDtGk4BnptuWnjDKcBFUZpW+8033xT9/PxEHx8fsVevXuLNmzfznAL81q1bJts1d6zlnm48Pzk5OeI333wjRkREiH5+fqJKpRIrVqwoDhgwwGh68Hv37okDBgwQy5QpI3p7e4sdOnQQ//33X5PjMq/3Ifc03qIoihqNRpw2bZoYHBwsenh4iJGRkeLp06dNtmnuuaIoil999ZVYqVIl0c3NTWzUqJG4e/dusXXr1kbHqVarFWfOnClWrFhRdHNzE5999llx48aNYr9+/cSKFSsabW/fvn1iw4YNRVdXV5PfwaVLl8S+ffuK5cqVE1UqlRgSEiJ26dJFXLt2rb7N9OnTxSZNmoj+/v6ih4eHWLNmTXHGjBkFToWd37+TY8eOiR06dBC9vb1FT09PsU2bNuK+ffuM2uR37BUk9xTgOl9++aVYs2ZNUaVSiWXLlhWHDRsm3rt3z6iN7jg7cuSI2Lx5c9Hd3V2sWLGi+OWXX1q0b93vdc2aNSbrVq1aJSoUCrFx48Ziamqq1a/LWkeOHBG7du0qhoSEiK6urqK3t7fYsmVLcfXq1Wbb3717V3zzzTfF0qVLi56enmLr1q0L9f4TlQSCKDr4bFMiIjIrJycH5cuXR9euXfHtt9/K3R2ip1JkZCRu375t0bmERFRy8ZwkIiIn8csvv+DWrVtGk2gQERGR4/GcJCIimR08eBB///03PvroIzz77LP661QRERGRPFhJIiKS2cKFCzFs2DAEBQXhhx9+kLs7RERETz2ek0RERERERGSAlSQiIiIiIiIDDElEREREREQGSvzEDVqtFteuXYOPjw8EQZC7O0REREREJBNRFPHw4UOUL1/e6MLruZX4kHTt2jWEhYXJ3Q0iIiIiInISV65cQWhoaJ7rS3xI8vHxASC9Eb6+vg7fv1qtxrZt29C+fXuoVCqH75+KHx4zVBg8bshaPGaoMHjcUGE403GTmpqKsLAwfUbIS4kPSbohdr6+vrKFJE9PT/j6+sp+UFDxwGOGCoPHDVmLxwwVBo8bKgxnPG4KOg2HEzcQEREREREZYEgiIiIiIiIywJBERERERERkoMSfk0REREREJZMoisjJyYFGo5G7K5QPtVoNFxcXZGZm2v13pVQq4eLiUuRL/zAkEREREVGxk52djZSUFKSnp8vdFSqAKIooV64crly54pDrlnp6eiI4OBiurq6F3gZDEhEREREVK1qtFgkJCVAqlShfvjxcXV0d8uGbCker1SItLQ3e3t75XsC1qERRRHZ2Nm7duoWEhARUq1at0PtjSCIiIiKiYiU7OxtarRZhYWHw9PSUuztUAK1Wi+zsbLi7u9s1JAGAh4cHVCoVLl++rN9nYXDiBiIiIiIqluz9gZuKJ1scFzyyiIiIiIiIDDAkERERERERGWBIIiIiIqKnlkYD7NwJrFwp/bT3bOKiKGLw4MEICAiAIAjw9/dHTEyMfXdKVmNIIiIiIqKnUlwcEB4OtGkDvPqq9DM8XFpuL1u3bsWyZcuwceNGpKSkoG7dujbfR2RkpEnwunPnDjp27Ijy5cvDzc0NYWFhGDlyJFJTU/Vt4uLi0K5dOwQGBsLX1xfNmzfH77//bvP+FQcMSURERET01ImLA6KjgatXjZcnJ0vL7RWULl26hODgYLRo0QLlypWDi4tjJptWKBTo3r07NmzYgPPnz2PZsmX4448/MHToUH2b3bt3o127dti8eTOOHj2KNm3aoGvXrjh+/LhD+uhMZA1Ju3fvRteuXVG+fHkIgoBffvlFv06tVuOdd95BvXr14OXlhfLly6Nv3764du2afB22IUeXdomIiIhKMlEEHj2y7JaaCrz9tvQcc9sBgNGjpXaWbM/cdszp378/Ro0ahaSkJAiCgPDwcJM29+7dQ9++fVGqVCl4enqiU6dOuHDhgn79nTt30KdPH4SEhMDT0xP16tXDypUrjfaxa9cuzJs3D4IgQBAEJCYmolSpUhg2bBgaNWqEihUr4sUXX8Tw4cMRHx+vf25sbCwmTJiAxo0bo1q1apg5cyaqVauG3377zaLXt3XrVrRs2RL+/v4oXbo0unTpgkuXLunXJyYmQhAExMXFoU2bNvD09ET9+vWxf/9+fZtly5bB398fv//+O2rVqgVvb2907NgRKSkplr3JNiJrSHr06BHq16+PBQsWmKxLT0/HsWPHMHnyZBw7dgxxcXE4d+4cunXrJkNPbUuO0i4RERFRSZaeDnh7W3bz85MqRnkRRanC5Odn2fbS0y3r47x58/Dhhx8iNDQUKSkpOHz4sEmb/v3748iRI9iwYQP2798PURTRuXNnqNVqAEBmZiYaNmyITZs24fTp0xg8eDDeeOMNHDp0SL+P5s2bY9CgQUhJSUFKSgrCwsJM9nPt2jXExcWhdevWefZXq9Xi4cOHCAgIsOj1PXr0CGPHjsWRI0fw559/QqFQoGfPntBqtUbt3nvvPYwbNw4nTpxA9erV0adPH+Tk5OjXp6en49NPP8WPP/6I3bt3IykpCePGjbOoD7Yi68VkO3XqhE6dOpld5+fnh+3btxst+/LLL9GkSRMkJSWhQoUKjuiizelKu7m/cdCVdteuBaKi5OkbEREREdmPn58ffHx8oFQqUa5cOZP1Fy5cwIYNG7B37160aNECALB8+XKEhYXhl19+wcsvv4yQkBCjwDBq1Cj8/vvvWL16NZo0aQI/Pz+4urrC09PT7D769OmDX3/9FRkZGejatSu++eabPPv76aefIi0tDb169bLo9f3f//2f0ePvvvsOgYGBOHPmjNFn93HjxuGll14CAEybNg116tTBxYsXUbNmTQDSiLKvv/4aVapUAQCMHDkSH374oUV9sBVZQ5K1Hjx4oJ8FJC9ZWVnIysrSP9adjKZWq/UJ3JF0+1Sr1dBogLffdnkckASjdqIICIKI0aOBzp1zoFQ6vKvkJAyPGSJL8bgha/GYocJwluNGrVZDFEVotVp9lcLdXRoeZ4n4eOCllwoeULVpkxYREQVvz90dyFUsyZP4+Jtyw+qK7rX8888/cHFxQePGjfXrS5UqhRo1auDMmTPQarXQaDSYNWsW1qxZg+TkZGRnZyMrKwseHh5mt5nbZ599hsmTJ+P8+fN47733MGbMGLOjulasWIFp06Zh/fr1KFOmjNlt5XbhwgV88MEHOHToEG7fvq1/zuXLl1GhQgX9a69bt65+XdmyZQEA169fR/Xq1aHVauHp6YlKlSoZtbl586ZFfdC9t6IoQq1WQ5nrQ7Wlx26xCUmZmZl455130KdPH/j6+ubZbtasWZg2bZrJ8m3btsHT09OeXczX9u3bcepUaSQnt8yzjSgKuHoV+PTTg6hX744De0fOKHcllcgSPG7IWjxmqDDkPm5cXFxQrlw5pKWlITs72+rnN20KlC/vi5QUAaIomKwXBBHly4to2jTVovPGHz60fN+ZmZnQarX6L/JzcnKQnZ2N1NRUpD8et5eammr04V6j0SArKwupqan4/PPP8eWXX2LmzJmoXbs2vLy8MGnSJKSnp5vdZm6enp7w9PRE+fLl8emnn6Jz584YPXq0UdVp3bp1GDVqFJYuXYomTZqY3Y45Xbt2RVhYGD7//HOUK1cOWq0WLVq00D//0aNHAGDUt7S0NP3P1NRUZGZmwsXFxWifmZmZEEXR4n5kZ2cjIyMDu3fvNhrGB0D/HhekWIQktVqNXr16QRRFLFy4MN+2kyZNwtixY/WPU1NTERYWhvbt2+cbruxFrVZj+/btaNeuHVJTXS16TsWKzdC5s4VnAFKJY3jMqFQqubtDxQSPG7IWjxkqDGc5bjIzM3HlyhV4e3vD3d29UNuYNw/o1UsKRIZBSRCkz2CxsUCpUrb/7Oju7g6FQqH/XOri4gJXV1f4+vqiYcOGyMnJwdmzZ/XD7e7cuYOLFy+iQYMG8PX1xdGjR9G9e3cMGjQIgFQ1SUhIQK1atfTb9PDwgFKpLPCzr4eHBwDo9w8AK1euxMiRI7FixQp0797d4td1584dXLhwAUuWLEHE4/Lbnj17jPbj5eWl/6nbn6465OnpCV9fX7i7u0MQBKO+655v6Wf5zMxMeHh4oFWrVibHh6VBy+lDki4gXb58GX/99VeBb46bmxvc3NxMlqtUKln/MatUKoSFWfZ2h4W5gP9fkdzHLBVPPG7IWjxmqDDkPm40Gg0EQYBCoYBCUbh5yHTngo8ebTwNeGiogNhYICrKtMJkC4Igbdew37rXUqNGDXTv3h1DhgzBokWL4OPjg4kTJyIkJAQ9e/aEQqFA9erVsXbtWhw4cAClSpXC3LlzcePGDdSuXVu/zUqVKuHQoUNISkqCt7c3AgICsHXrVty4cQONGzeGt7c3/vnnH4wfPx7PP/88KleuDEAaYte/f3/95A83b94EIIUUPz+/fF9X6dKlUbp0aXzzzTcICQlBUlISJk6cmOdr1/XV8Ke55bnbWEKhUEAQBLPHqaXHrVNfJ0kXkC5cuIA//vgDpUuXlrtLRRIRAYSGAkIe/+YEAQgLg0VjX4mIiIioaKKigMREYMcOYMUK6WdCgryTaC1duhQNGzZEly5d0Lx5c4iiiM2bN+s/3L///vt47rnn0KFDB0RGRqJcuXLo0aOH0TbGjRsHpVKJ2rVrIzAwEElJSfDw8MCSJUvQsmVL1KpVC2PGjEG3bt2wceNG/fMWL16MnJwcjBgxAsHBwfrb6NGjC+y3QqHAzz//jKNHj6Ju3boYM2YMPvnkE5u+N44kayUpLS0NFy9e1D9OSEjAiRMnEBAQgODgYERHR+PYsWPYuHEjNBoNrl+/DgAICAiAq6tlQ9eciVIplXajo03X6YJTbCw4aQMRERGRgyiVQGSk4/YXExODmJgY/eOdO3carS9VqhR++OGHPJ8fEBBgdG1Rc6pXr2507SEACA8Px759+/J9Xu6+WKtt27Y4c+aM0TLdBBKpqakIDw/XT96g4+/vb7Ssf//+6N+/v1GbHj16mDzP3mStJB05cgTPPvssnn32WQDA2LFj8eyzz2LKlClITk7Ghg0bcPXqVTRo0MAozRb0C3ZmUVFSaTf3BH2hoZz+m4iIiIjIGchaSYqMjMw3FTo6MTpKVBRw+TIwdiwQHCyVdyMiWEEiIiIiIueUlJSE2rVr57k+97WQijunn7ihpHNzc2yJl4iIiIjIWuXLl8eJEyfyXV+SMCTJRDfnfiGm9iciIiIicigXFxdUrVpV7m44jFPPbleSMSQRERERETknhiSZPL5uFkMSEREREZGTYUiSCStJRERERETOiSFJJqwkERERERE5J4YkmegqSVrtk/tERERERCQ/hiSZGAYjVpOIiIiIZKLVADd2AokrpZ/a4vvt9bJly+Dv7y93N0oETgEuE91wO0AKSR4e8vWFiIiI6Kl0JQ44OhpIv/pkmWco0HAeEBYlX79IdqwkyYSVJCIiIiIZXYkD4qONAxIApCdLy6/EydMvmWXzgykAhiTZ5K4kEREREVERiCKQ88iyW3YqcORtAKK5DUk/joyW2lmyPdHcdvK2du1a1KtXDx4eHihdujTatm2LR48eAQC+++471KlTB25ubggODsbIkSP1z5s7dy7q1asHLy8vhIWFYfjw4UhLS8tzP5cuXUL37t1RtmxZeHt7o3Hjxvjjjz+M2oSHh+Ojjz5C37594evri8GDB1v1WkoqDreTCStJRERERDakSQdWe9toYyKQcRVY62dZ815pgIuXRU1TUlLQp08ffPzxx+jZsycePnyI+Ph4iKKIhQsXYuzYsZg9ezY6deqEBw8eYO/evfrnKhQKfPHFF6hUqRL+++8/DB8+HBMmTMBXX31ldl9paWno3LkzZsyYATc3N/zwww/o2rUrzp07hwoVKujbffrpp5gyZQo++OADy17vU4AhSSYMSURERERPn5SUFOTk5CAqKgoVK1YEANSrVw8AMH36dPzvf//D6NGj9e0bN26svx8TE6O/Hx4ejunTp2Po0KF5hqT69eujfv36+scfffQR1q9fjw0bNhhVqF544QX873//s8nrKykYkmTC4XZERERENqT0lCo6lri5G9jZueB2kZuBoFaW7dtC9evXx4svvoh69eqhQ4cOaN++PaKjo6FWq3Ht2jW8+OKLeT73jz/+wKxZs/Dvv/8iNTUVOTk5yMzMRHp6Ojw9TfuQlpaGqVOnYtOmTfpwlpGRgaSkJKN2jRo1srj/TwuekyQTVpKIiIiIbEgQpCFvltzKtZdmsYOQ18YAzzCpnSXbE/LajimlUont27djy5YtqF27NubPn48aNWrgxo0b+T4vMTERXbp0wTPPPIN169bh6NGjWLBgAYC8J1sYN24c1q9fj5kzZyI+Ph4nTpxAvXr1TNp7eVk2VPBpwpAkE1aSiIiIiGSiUErTfAMwDUqPHzeMldrZgSAIeP755zFt2jQcP34crq6u2L59O8LDw/Hnn3+afc7Ro0eh1Wrx2WefoVmzZqhevTquXbuW73727t2L/v37o2fPnqhXrx7KlSuHxMREO7yikofD7WTCShIRERGRjMKigIi1eVwnKdZu10k6ePAg/vzzT7Rv3x5BQUE4ePAgbt26hVq1amHq1KkYOnQogoKC0KlTJzx8+BB79+7FqFGjULVqVajVasyfPx9du3bF3r178fXXX+e7r2rVqiEuLg5du3aFIAiYPHkytIbf1FOeGJJkwpBEREREJLOwKCCkO3ArHshIATyCgcAIu1WQAMDX1xe7d+9GbGwsUlNTUbFiRXz22Wfo1KkTACAzMxOff/45xo0bhzJlyiA6OhqAdC7T3LlzMWfOHEyaNAmtWrXCrFmz0Ldv3zz3NXfuXAwcOBAtWrRAmTJl8M477yA1NdVur60kYUiSCYfbERERETkBhRIoG+mw3dWqVQtbt27Nc/2QIUMwZMgQs+vGjBmDMWPGGC1744039Pf79++P/v376x+Hh4fjr7/+Mmo/YsQIo8ccfmcez0mSCStJRERERETOiSFJJqwkERERERE5J4YkmbCSRERERETknBiSZMKQRERERETknBiSZMLhdkREREREzokhSSasJBEREREROSeGJJmwkkRERERE5JwYkmTCShIRERERkXNiSJIJQxIRERERkXNiSJIJh9sREREROQGNBti5E1i5Uvpp+E22HURGRiImJibP9eHh4YiNjbVrH6hgLnJ34GnFShIRERGRzOLigNGjgatXnywLDQXmzQOiomTp0uHDh+Hl5SXLvukJVpJkwkoSERERkYzi4oDoaOOABADJydLyuDhZuhUYGAhPT0+77iObHz4LxJAkE1aSiIiIiGxIFIFHjyy7paYCb78tPcfcdgCpwpSaatn2zG0nHzk5ORg5ciT8/PxQpkwZTJ48GeLjbeQebicIAr755hv07NkTnp6eqFatGjZs2KBfr9Fo8Oabb6JSpUrw8PBAjRo1MG/ePKP99e/fHz169MCMGTNQvnx51KhRAx9++CHq1q1r0rcGDRpg8uTJVr2ekojD7WTCShIRERGRDaWnA97ettmWKEoVJj8/y9qnpQFWDJH7/vvv8eabb+LQoUM4cuQIBg8ejAoVKmDQoEFm20+bNg0ff/wxPvnkE8yfPx+vvfYaLl++jICAAGi1WoSGhmLNmjUoXbo09u3bh8GDByM4OBi9evXSb+PPP/+Er68vtm/fDgDw8/PDtGnTcPjwYTRu3BgAcPz4cfz999+Ik6mK5kwYkmTCShIRERHR0yksLAyff/45BEFAjRo1cOrUKXz++ed5hqT+/fujT58+AICZM2fiiy++wKFDh9CxY0eoVCpMmzZN37ZSpUrYv38/Vq9ebRSSvLy88M0338DV1VW/rEOHDli6dKk+JC1duhStW7dG5cqV7fGyixUOt5OJYUjKypKvH0REREQlgqenVNGx5LZ5s2Xb3LzZsu1ZeQ5Rs2bNIAiC/nHz5s1x4cIFaPKYWe+ZZ57R3/fy8oKvry9u3rypX7ZgwQI0bNgQgYGB8Pb2xuLFi5GUlGS0jXr16hkFJAAYNGgQVq5ciczMTGRnZ2PFihUYOHCgVa+lpGIlSSYcbkdERERkQ4Jg+ZC39u2lWeySk82fTyQI0vr27QGl0rb9LASVSmX0WBAEaB9/mPz5558xbtw4fPbZZ2jevDl8fHzwySef4ODBg0bPMTdjXteuXeHm5ob169fD1dUVarUa0dHR9nshxQhDkkw43I6IiIhIJkqlNM13dLQUiAyDkq7CExtrt4CUO8AcOHAA1apVg7IQ+9u7dy9atGiB4cOH65ddunTJoue6uLigX79+WLp0KVxdXfHKK6/Aw8PD6j6URBxuJxNWkoiIiIhkFBUFrF0LhIQYLw8NlZbb8TpJSUlJGDt2LM6dO4eVK1di/vz5GD16dKG2Va1aNRw5cgS///47zp8/j8mTJ+Pw4cMWP/+tt97CX3/9ha1bt3KonQFWkmTCShIRERGRzKKigO7dgfh4ICUFCA4GIiLsPsSub9++yMjIQJMmTaBUKjF69GgMHjy4UNsaMmQIjh8/jt69e0MQBPTp0wfDhw/Hli1bLHp+tWrV0KJFC9y9exdNmzYtVB9KIoYkmTAkERERETkBpRKIjHTY7nbu3Km/v3DhQpP1iYmJRo9FM+dM3b9/X3/fzc0NS5cuxdKlS43azJo1S39/2bJlefZHFEVcu3bNaLgeMSTJhsPtiIiIiEhOt27dws8//4zr169jwIABcnfHqTAkyYSVJCIiIiKSU1BQEMqUKYPFixejVKlScnfHqTAkyYSVJCIiIiKSk7mhfCTh7HYyYSWJiIiIiMg5MSTJhCGJiIiIiMg5MSTJhMPtiIiIiIicE0OSTFhJIiIiIiJyTgxJMmEliYiIiIjIOTEkycSwkqRWA5xchIiIiIjIOTAkycQwJAFSUCIiIiIix9JqtEjcmYhTK08hcWcitBptwU8qAlEUMXjwYAQEBEAQBPj7+yMmJsau+yTrMSTJRJvr3x+H3BERERE51tm4s5gXPg/ft/keca/G4fs232Ne+DycjTtrt31u3boVy5Ytw8aNG5GSkoK6devafB+RkZEmwevOnTvo2LEjypcvDzc3N4SFhWHkyJFITU3Vt4mLi0O7du0QGBgIX19fNG/eHL///rvF++3fvz8EQTC5derUSd8mPDwcgiDgwIEDRs+NiYlBZGSk/vHUqVMhCAKGDh1q1O7EiRMQBAGJiYkW96swGJJkkruSxJBERERE5Dhn485idfRqpF5NNVqempyK1dGr7RaULl26hODgYLRo0QLlypWDi4uLXfaTm0KhQPfu3bFhwwacP38ey5Ytwx9//GEUQnbv3o127dph8+bNOHr0KNq0aYOuXbvi+PHjFu+nY8eOSElJMbqtWLHCqI27uzveeeedArfl7u6Ob7/9FhcuXLD8hdoIQ5JMWEkiIiIish1RFJH9KNuiW2ZqJra8vQUwd07442VbRm9BZmqmRdsTLTy5vH///hg1ahSSkpIgCALCw8NN2ty7dw99+/ZFqVKl4OnpiU6dOhmFhDt37qBPnz4ICQmBp6cn6tWrh5UrVxrtY9euXZg3b56+kpOYmIhSpUph2LBhaNSoESpWrIgXX3wRw4cPR3x8vP65sbGxmDBhAho3boxq1aph5syZqFatGn777TeLXh8AuLm5oVy5cka3UqVKGbUZPHgwDhw4gM2bN+e7rRo1aqBNmzZ47733LN6/rTgmupIJVpKIiIiIbEedrsYs71m22ZgIPLz6EHP85ljUfFLaJLh6uRbYbt68eahSpQoWL16Mw4cPQ6lU4uWXXzZq079/f1y4cAEbNmyAr68v3nnnHXTu3BlnzpyBSqVCZmYmGjZsiHfeeQe+vr7YtGkT3njjDVSpUgVNmjTBvHnzcP78edStWxcffvghACAwMNCkL9euXUNcXBxat26dZ3+1Wi0ePnyIgIAAi94HS1WqVAlDhw7FpEmT0LFjRygUeddtZs+ejcaNG+PIkSNo1KiRTfuRH1aSZMKQRERERPR08fPzg4+PD5RKJcqVK2cSXnTh6JtvvkFERATq16+P5cuXIzk5Gb/88gsAICQkBOPGjUODBg1QuXJljBo1Ch07dsTq1av1+3B1dYWnp6e+kqNUKvX76NOnDzw9PRESEgJfX1988803efb3008/RVpaGnr16mXxa9y4cSO8vb2NbrNmmYbX999/HwkJCVi+fHm+23vuuefQq1cvi4bn2RIrSTIQRdMpvxmSiIiIiApP5anCpLRJFrW9vPsyVnReUWC7Vze/ioqtKlq0b1s4e/YsXFxc0LRpU/2y0qVLo0aNGjh7VjpHSqPRYObMmVi9ejWSk5ORnZ2NrKwseHp6WrSPzz//HB988AHOnz+PSZMmYezYsfjqq69M2q1YsQLTpk3Dr7/+iqCgIItfQ5s2bbBw4UKjZf7+/ibtAgMDMW7cOEyZMgW9e/fOd5vTp09HrVq1sG3bNqv6UhQMSTIwPB/JzQ3IymJIIiIiIioKQRAsGvIGAFXaV4FvqC9Sk1PNn5ckAL6hvqjSvgoUSucaePXJJ59g3rx5iI2NRb169eDl5YWYmBhkW/hhUlddqlmzJgICAhAREYHJkycjODhY3+bnn3/GW2+9hTVr1qBt27ZW9c/LywtVq1Y1WqbVao1m0dPRBTRzIc1QlSpVMGjQIEycOBHffvutVf0pLOf6rT8lDEOSu7v0kyGJiIiIyDEUSgU6zusoPRByrXz8uGNsR4cHpFq1aiEnJwcHDx7UL7tz5w7OnTuH2rVrAwD27t2L7t274/XXX0f9+vVRuXJlnD9/3mg7rq6u0OQ+t8MM7eMPpVlZWfplK1euxIABA7By5Uq89NJLtnhZefL29sbkyZMxY8YMPHz4MN+2U6ZMwfnz5/Hzzz/btU86DEkyMDxmPTyknwxJRERERI5TK6oWeq3tBd8QX6PlvqG+6LW2F2pF1XJ4n6pVq4bu3btj0KBB2LNnD06ePInXX38dISEh6N69u77N9u3bsW/fPpw9exZDhgzBjRs3jLYTHh6OgwcPIjExEbdv34ZWq8XmzZuxdOlSnD59GomJidi0aROGDh2K559/Xj/L3ooVK9C3b1989tlnaNq0Ka5fv47r16/jwYMHFr+GrKws/fN0t9u3b+fZfvDgwfDz8zOZJjy3smXLYuzYsfjiiy8s7ktRMCTJwDAksZJEREREJI9aUbUwOnE0+u3oh6gVUei3ox9GJ4yWJSDpLF26FA0bNkSXLl3QvHlziKKIzZs3Q6WSznt6//338dxzz6FDhw6IjIxEuXLl0KNHD6NtjBs3DkqlErVr10ZgYCCSkpLg4eGBJUuWoGXLlqhVqxbGjBmDbt26YePGjfrnLV68GDk5ORgxYgSCg4P1t9GjR1vc/61btxo9Nzg4GK1atcqzvUqlwkcffYTMzMwCtz1u3Dh4e3tb3JeiEERLJ3a3g927d+OTTz7B0aNHkZKSgvXr1xv9kkVRxAcffIAlS5bg/v37eP7557Fw4UJUq1bN4n2kpqbCz88PDx48gK+vb8FPsDG1Wo3Nmzejc+fO+oP74UNA15VatYCzZ4EtW4COHR3ePXJC5o4ZooLwuCFr8ZihwnCW4yYzMxMJCQmoVKkS3HXfOJPT0p2T5Ovrm+9037aS3/FhaTaQtZL06NEj1K9fHwsWLDC7/uOPP8YXX3yBr7/+GgcPHoSXlxc6dOhgUdJ0ZhxuR0RERETkvGSd3a5Tp07o1KmT2XWiKCI2Nhbvv/++fgzmDz/8gLJly+KXX37BK6+84siu2hQnbiAiIiKi4iQpKUk/eYQ5Z86cQYUKFRzYI/ty2inAExIScP36daNpB/38/NC0aVPs378/z5CUlZVlNEOHbrpBtVoNtVpt306bodun4b6lQphUonZ31wJQID09B2q1bCMfyYmYO2aICsLjhqzFY4YKw1mOG7VaDVEUodVq9TO0kX2VK1cOx44dy3d9Xr8L3dk9ut+ZvWm1WoiiCLVabXQhXcDyY9dpQ9L169cBSDNZGCpbtqx+nTmzZs3CtGnTTJZv27bN4ots2cP27dv19+/dcwMgnYD04MFNAOVw5Mjf8PO7Ik/nyCkZHjNEluJxQ9biMUOFIfdx4+LignLlyiEtLc3i6wNR0eV3Idf09PQCn1/QNN+2kp2djYyMDOzevRs5OTlG6yzpJ+DEIamwdFcO1klNTUVYWBjat28v28QN27dvR7t27fQnOF67Jq1TKkWEhATh6FGgVq1n0LlzPYf3j5yPuWOGqCA8bshaPGaoMJzluMnKykJSUhK8vLzgoTvBm5yWKIp4+PAhfHx8IAi5L0xlexkZGfDw8EDr1q3h5uZmtM7cRW3NcdqQVK5cOQDAjRs3jK4AfOPGDTRo0CDP57m5uZm8GYA0vaCc/5gN96+b1EOpFODuLh0oGo0L+H8UGZL7mKXiiccNWYvHDBWG3MeNQqGAIAjIzMyEl5eXbP0gy+iG2AmC4LDZ7QRBgIeHh8lwO0uPW6cNSZUqVUK5cuXw559/6kNRamoqDh48iGHDhsnbuSLSDcVUKABXV+k+K8VEREREllEqlfD398fNmzcBAJ6eng6pUFDhaLVaZGdnIzMz064hSRRFpKen4+bNm/D39zcJSNaQNSSlpaXh4sWL+scJCQk4ceIEAgICUKFCBcTExGD69OmoVq0aKlWqhMmTJ6N8+fImF8wqbnRTgCuVT0KSwVwTRERERFQA3agjXVAi5yWKon4InCPCrL+/v/74KCxZQ9KRI0fQpk0b/WPduUT9+vXDsmXLMGHCBDx69AiDBw/G/fv30bJlS2zdurXYXzRMF5JYSSIiIiIqHEEQEBwcjKCgINln26P8qdVq7N69G61atbL7ME2VSlWkCpKOrCEpMjJSPyWgOYIg4MMPP8SHH37owF7Zn264nWEliSGJiIiIyHpKpdImH4rJfpRKJXJycuDu7l5szoG0/5lTZMLccDuGJCIiIiIi58CQJAPDiRt0E/ExJBEREREROQeGJBmwkkRERERE5LwYkmTAKcCJiIiIiJwXQ5IMWEkiIiIiInJeDEkyYEgiIiIiInJeDEky4HA7IiIiIiLnxZAkA1aSiIiIiIicF0OSDFhJIiIiIiJyXgxJMmAliYiIiIjIeTEkyYAhiYiIiIjIeTEkyYDD7YiIiIiInBdDkgxYSSIiIiIicl4MSTJgJYmIiIiIyHkxJMmAlSQiIiIiIufFkCQDhiQiIiIiIufFkCQDDrcjIiIiInJeDEkyYCWJiIiIiMh5MSTJgJUkIiIiIiLnxZAkA1aSiIiIiIicF0OSDMyFJK32yXIiIiIiIpIPQ5IMzA23A1hNIiIiIiJyBgxJMjBXSQIYkoiIiIiInAFDkgwMK0kq1ZPlDElERERERPJjSJKBYSVJEJ4EJYYkIiIiIiL5MSTJwDAkAZzhjoiIiIjImTAkycBwuB3AkERERERE5EwYkmTAShIRERERkfNiSJIBK0lERERERM6LIUkGrCQRERERETkvhiQZ6EISK0lERERERM6HIUkGuuF2uStJWVny9IeIiIiIiJ5gSJIBh9sRERERETkvhiQZcOIGIiIiIiLnxZAkA1aSiIiIiIicF0OSDDhxAxERERGR82JIkkHuiRvc3KSfDElERERERPJjSJIBh9sRERERETkvhiQZcOIGIiIiIiLnxZAkA1aSiIiIiIicF0OSDDhxAxERERGR82JIkkHuiRsYkoiIiIiInAdDkgw43I6IiIiIyHkxJMmAEzcQERERETkvhiQZsJJEREREROS8GJJkwIkbiIiIiIicF0OSDDhxAxERERGR82JIkgGH2xEREREROS+GJBlw4gYiIiIiIufFkCQDVpKIiIiIiJwXQ5IMWEkiIiIiInJeDEkyYCWJiIiIiMh5MSTJgCGJiIiIiMh5MSTJgMPtiIiIiIicF0OSDFhJIiIiIiJyXgxJMmAliYiIiIjIeTEkyYCVJCIiIiIi58WQJAOGJCIiIiIi58WQJAMOtyMiIiIicl5OHZI0Gg0mT56MSpUqwcPDA1WqVMFHH30EURTl7lqRsJJEREREROS8XOTuQH7mzJmDhQsX4vvvv0edOnVw5MgRDBgwAH5+fnj77bfl7l6hsZJEREREROS8nDok7du3D927d8dLL70EAAgPD8fKlStx6NAhmXtWNKwkERERERE5L6cOSS1atMDixYtx/vx5VK9eHSdPnsSePXswd+7cPJ+TlZWFrKws/ePU1FQAgFqthlqttnufc9Pt03DfOTlKAAqIYg7UahGCAAAqqNVAdrb68WN6Wpk7ZogKwuOGrMVjhgqDxw0VhjMdN5b2walD0sSJE5GamoqaNWtCqVRCo9FgxowZeO211/J8zqxZszBt2jST5du2bYOnp6c9u5uv7du36+/fu9cagD+OHj0M4CYePXIBIFXLNmzYApWqeJ9zRbZheMwQWYrHDVmLxwwVBo8bKgxnOG7S09MtaieITjwLws8//4zx48fjk08+QZ06dXDixAnExMRg7ty56Nevn9nnmKskhYWF4fbt2/D19XVU1/XUajW2b9+Odu3aQaVSAQAaNXLB338L2LQpB+3aicjIAPz8pHV376rh7e3wbpITMXfMEBWExw1Zi8cMFQaPGyoMZzpuUlNTUaZMGTx48CDfbODUlaTx48dj4sSJeOWVVwAA9erVw+XLlzFr1qw8Q5Kbmxvc3NxMlqtUKll/KYb718VSV1cXqFRPJnAAAK1WBf7NIUD+Y5aKJx43ZC0eM1QYPG6oMJzhuLF0/049BXh6ejoUCuMuKpVKaHXTwxVTuSduUCqfBCVO3kBEREREJC+nriR17doVM2bMQIUKFVCnTh0cP34cc+fOxcCBA+XuWpHkDkmANMNdZiZDEhERERGR3Jw6JM2fPx+TJ0/G8OHDcfPmTZQvXx5DhgzBlClT5O5akeS+ThLAkERERERE5CycOiT5+PggNjYWsbGxcnfFpvKqJAEMSUREREREcnPqc5JKqrwqSQBDEhERERGR3BiSZGCukqSbkI8hiYiIiIhIXgxJMuBwOyIiIiIi58WQJAMOtyMiIiIicl4MSTJgJYmIiIiIyHkxJMmAlSQiIiIiIufFkCQDVpKIiIiIiJwXQ5IMGJKIiIiIiJwXQ5IMONyOiIiIiMh5MSTJgJUkIiIiIiLnxZAkA1aSiIiIiIicF0OSDFhJIiIiIiJyXgxJMmBIIiIiIiJyXgxJDiaKT+5zuB0RERERkfNhSHIwXRUJYCWJiIiIiMgZMSQ5mG7SBoCVJCIiIiIiZ8SQ5GCsJBEREREROTeGJAdjSCIiIiIicm4MSQ7G4XZERERERM6NIcnBWEkiIiIiInJuLtY01mq12LVrF+Lj43H58mWkp6cjMDAQzz77LNq2bYuwsDB79bPEYCWJiIiIiMi5WVRJysjIwPTp0xEWFobOnTtjy5YtuH//PpRKJS5evIgPPvgAlSpVQufOnXHgwAF797lYM6wkMSQRERERETkfiypJ1atXR/PmzbFkyRK0a9cOKpXKpM3ly5exYsUKvPLKK3jvvfcwaNAgm3e2JNCFJIUCEIQnyxmSiIiIiIicg0Uhadu2bahVq1a+bSpWrIhJkyZh3LhxSEpKsknnSiLdcDtFrhoeQxIRERERkXOwaLhdQQHJkEqlQpUqVQrdoZJOV0kynLQBYEgiIiIiInIWVs9ut3XrVuzZs0f/eMGCBWjQoAFeffVV3Lt3z6adK4lYSSIiIiIicm5Wh6Tx48cjNTUVAHDq1Cn873//Q+fOnZGQkICxY8favIMlDStJRERERETOzaopwAEgISEBtWvXBgCsW7cOXbp0wcyZM3Hs2DF07tzZ5h0saXSVJIYkIiIiIiLnZHUlydXVFenp6QCAP/74A+3btwcABAQE6CtMlDfD2e0MMSQRERERETkHqytJLVu2xNixY/H888/j0KFDWLVqFQDg/PnzCA0NtXkHS5qChttlZTm2P0REREREZMzqStKXX34JFxcXrF27FgsXLkRISAgAYMuWLejYsaPNO1jScOIGIiIiIiLnZnUlqUKFCti4caPJ8s8//9wmHSrpOHEDEREREZFzszok6dy8eRM3b96EVlcaeeyZZ54pcqdKMk7cQERERETk3KwOSUePHkW/fv1w9uxZiKIIABAEAaIoQhAEaHSlEjKLEzcQERERETk3q0PSwIEDUb16dXz77bcoW7YsBEGwR79KLEuG24kiwLeViIiIiEgeVoek//77D+vWrUPVqlXt0Z8Sr6CJG0RRClIuhR4ISURERERERWH17HYvvvgiTp48aY++PBXyqiS5uT25zyF3RERERETysbpe8c0336Bfv344ffo06tatC5VKZbS+W7duNutcSVRQJQmQQpKnp+P6RERERERET1gdkvbv34+9e/diy5YtJus4cUPB8qokGQ6vYyWJiIiIiEg+Vg+3GzVqFF5//XWkpKRAq9Ua3RiQCpZXSBIEznBHREREROQMrA5Jd+7cwZgxY1C2bFl79KfEy2u4HcCQRERERETkDKwOSVFRUdixY4c9+vJUyKuSBDAkERERERE5A6vPSapevTomTZqEPXv2oF69eiYTN7z99ts261xJxEoSEREREZFzK9Tsdt7e3ti1axd27dpltE4QBIakArCSRERERETk3KwOSQkJCfbox1ODIYmIiIiIyLlZfU4SFQ2H2xEREREROTeLQtLs2bORkZFh0QYPHjyITZs2FalTJRkrSUREREREzs2ikHTmzBlUqFABw4cPx5YtW3Dr1i39upycHPz999/46quv0KJFC/Tu3Rs+Pj5263Bxx0oSEREREZFzs+icpB9++AEnT57El19+iVdffRWpqalQKpVwc3NDeno6AODZZ5/FW2+9hf79+8Pd3d2unS7OWEkiIiIiInJuFk/cUL9+fSxZsgSLFi3C33//jcuXLyMjIwNlypRBgwYNUKZMGXv2s8RgSCIiIiIicm5Wz26nUCjQoEEDNGjQwA7dKfk43I6IiIiIyLlZHZKoaGSrJGk0QHw8kJICBAcDERHmO0FERERE9JRjSHIwWSpJcXHA6NHA1atPloWGAvPmAVFRNt4ZEREREVHxxuskOZjDK0lxcUB0tHFAAoDkZGl5XJwNd0ZEREREVPwxJDmYQ0OSRiNVkETRdJ1uWUzMk04REREREZH1IWnp0qX6ab/Jeg4dbhcfb1pBMiSKwJUrUjsiIiIiIgJQiJA0ceJElCtXDm+++Sb27dtnjz6VaA6tJKWk2LYdEREREdFTwOqQlJycjO+//x63b99GZGQkatasiTlz5uD69ev26F+J49BKUnCwbdsRERERET0FrA5JLi4u6NmzJ3799VdcuXIFgwYNwvLly1GhQgV069YNv/76K7S6JEAmHFpJioiQZrHLT2io1I6IiIiIiAAUceKGsmXLomXLlmjevDkUCgVOnTqFfv36oUqVKti5c6eNuliyODQkKZXAJ5/k36ZyZfNlLSIiIiKip1ShPh3fuHEDn376KerUqYPIyEikpqZi48aNSEhIQHJyMnr16oV+/frZpIPJycl4/fXXUbp0aXh4eKBevXo4cuSITbYtB4dfJ0k3yUbuVBYYKHVi9+6CgxQRERER0VPE6pDUtWtXhIWFYdmyZRg0aBCSk5OxcuVKtG3bFgDg5eWF//3vf7hy5UqRO3fv3j08//zzUKlU2LJlC86cOYPPPvsMpUqVKvK25eLQSpIoAnPnSvdnzgR27ABWrJB+pqRIF5MFgIkTgY0bbbRTIiIiIqLizcXaJwQFBWHXrl1o3rx5nm0CAwORkJBQpI4BwJw5cxAWFoalS5fql1WqVKnI25WTJZWkrCwb7WzbNuCffwBvb2DwYMDf33j9iBHAqVPA4sXAq68C+/cDderYaOdERERERMWT1SHp22+/LbCNIAioWLFioTpkaMOGDejQoQNefvll7Nq1CyEhIRg+fDgGDRqU53OysrKQZZAyUlNTAQBqtRpqtbrIfbKWbp+6n9nZCgBKCIIGarXxBBdKpbQuM1MLtbroF3hVfvYZFAA0AwdC6+UFmHv9c+dCefYsFPHxELt1Q87evUDp0kXeNxVe7mOGyBI8bshaPGaoMHjcUGE403FjaR8EURRFazb89ttvo2rVqnj77beNln/55Ze4ePEiYmNjrdlcvtzd3QEAY8eOxcsvv4zDhw9j9OjR+Prrr/M852nq1KmYNm2ayfIVK1bA09PTZn0rrB9/rIV166qjS5dLeOut00brtm+vgAULnkWjRtfx/vsHi7Qfn8uX8cLo0RAVCvyxcCHSy5bNs61raipajRsHr5s3catePez/4AOILlbnZyIiIiIip5aeno5XX30VDx48gK+vb57trA5JISEh2LBhAxo2bGi0/NixY+jWrRuuXr1auB6b4erqikaNGhldtPbtt9/G4cOHsX//frPPMVdJCgsLw+3bt/N9I+xFrVZj+/btaNeuHVQqFd59V4FPP1Vi9GgNPvnEuJL0008CBg50Qbt2WmzaVLRKknLQICi+/x7aqChofv654CecOgWX1q0hpKVBM3QotF98UaT9U+HlPmaILMHjhqzFY4YKg8cNFYYzHTepqakoU6ZMgSHJ6nLBnTt34OfnZ7Lc19cXt2/ftnZz+QoODkbt2rWNltWqVQvr1q3L8zlubm5wc3MzWa5SqWT9peTev0qlhEplPHuDrtClViugUhVhWu7r14GVKwEAivHjobDkdT/3HPDTT0DPnlB+/TWU9esDQ4cWvg9UZHIfs1Q88bgha/GYocLgcUOF4QzHjaX7t/qTeNWqVbF161aT5Vu2bEHlypWt3Vy+nn/+eZw7d85o2fnz521yvpNcHDIF+IIF0kaaNweaNbP8ed27A9OnS/dHjQJ4rSsiIiIiegpZXUkaO3YsRo4ciVu3buGFF14AAPz555/47LPPbHo+EgCMGTMGLVq0wMyZM9GrVy8cOnQIixcvxuLFi226H0ey+xTg6enAwoXS/bFjrX/+pEnA6dNSJer//g84fFi64CwRERER0VPC6pA0cOBAZGVlYcaMGfjoo48AAOHh4Vi4cCH69u1r0841btwY69evx6RJk/Dhhx+iUqVKiI2NxWuvvWbT/TiSrpJkt5D044/AnTtApUpAz57WP18QgG+/BS5cAI4cAbp1A/btA2Q4n4uIiIiISA6FmsJs2LBhGDZsGG7dugUPDw94e3vbul96Xbp0QZcuXey2fUfTVZLsMtxOq31y8djRo80nMUt4eAC//AI0bixdZ+n114H16wu/PSIiIiKiYqQIswNIF421Z0AqifIbbqebb6LQIWnzZuD8ecDPDxg4sJAbeSwkRApKbm7Ab78B779ftO0RERERERUTVoekGzdu4I033kD58uXh4uICpVJpdKP82XXiBl0VafBgwMenkBsx0KSJNPQOAGbPBpYvL/o2iYiIiIicnNXD7fr374+kpCRMnjwZwcHBEATBHv0qsew2ccPx48COHYCLizQzna289hpw6hQwZw7w5ptAtWpSeCIiIiIiKqGsDkl79uxBfHw8GjRoYIfulHx2m7hBV0Xq1QsICytU3/I0Y4Z0btLGjUCPHtKMdyEhtt0HEZE9aDRAfDyQkgIEBwMRETy/koiICmT1cLuwsDCIomiPvjwV7DJxw9WrwM8/S/fHjCl03/KkVEpD7erUkT5o9OgBZGTYfj9ERLYUFweEhwNt2gCvvir9DA+XlhMREeXD6pAUGxuLiRMnIjEx0Q7dKfnsMtzuyy+BnBygVSugUaMi9S9Pvr7Ahg1AQIA0NfibbwIMy0TkrOLigOho6UskQ8nJ0nIGJSIiyofVIal3797YuXMnqlSpAh8fHwQEBBjdKH+WTNyQk/OkXYHS0oBFi6T7//tfkfuXr8qVgbVrpfOeVq6UJnMgInI2Go10GQRzX+TolsXEPPnWioiI7EejgbBrF0J274awa1ex+dtr9TlJsbGxdujG08OSShIAqNVPpgTP19KlwP370oQKjrieVJs2wBdfAMOHA++9Jw3B69bN/vslopIjJ0caspuZKf00vOVeZkmb3Mtu3zatIBkSReDKFelyCW5u0rdW5m6CkPc6a2+22pYN+6TQalH53DkoLl0CVCqn6JPd3idBkG5E5FhxccDo0XC5ehWNAOkc+tBQYN48ICpK7t7ly+qQ1K9fP3v046lhycQNgDTkrsCQpNEAutA6Zoz58pQ9DBsmzXi3cKE0+92+fUC9eo7ZNxHZllpt24BiybZycuR+1ZJHj6TbU0oJ4Kn6y13YAOaEAVfOPglaLUJPnYLw4IH0wcUJ+mT1thiYHUM37Dl3VV837HntWqcOSlaHJAC4dOkSli5dikuXLmHevHkICgrCli1bUKFCBdSpU8fWfSxR8pu4QaV6ct+i85I2bAD++086T6hvX5v0z2Lz5gH//itNO96tmzTjXZkyju0DUUkiivkHlgKWKdLSUO/ff6HcsAHIyrI8xMg97MHNDfDweHJzd8//sSXL/v3XsklsfvgBaNxY+vbK3E0U815n7c1W27Jhn7QaDZKvXkVIuXLS2Htn6Jc127H2vFhRlI53uY/5Ys4FQEO5O2ELxSSUFts+iaL0pXpew54FQRr23L270844anVI2rVrFzp16oTnn38eu3fvxowZMxAUFISTJ0/i22+/xdq1a+3RzxIjv+F2SqV002gsDEmffSb9HDoU8PKyWR8tolIBa9ZI10z67z/pG4Ft24zLYWQ9w3G7Xl7S8EYn/eNRoomi9I+wKNWSwiyz+GREU0oAlYv6um0RUKx5nm6om621ayf9fUxONv8ftCBIwz1effWp/velUatxbPNmlOvcGQrDb+mKC1HMP1Q5YTAtCX3SajS4feMGypQuDUXu58r5+qxV2OeRbeiGPcfHA5GRcvfGLKtD0sSJEzF9+nSMHTsWPj4++uUvvPACvvzyS5t2riTS/XvM63OBq6v0eanAkHTwILB3rxRWRo60aR8tVrq0VM1q3hzYtQt4+21pCB7L2IVTjMft2pUomlZGHDE0TM7ZGwXB6oCicXPDxatXUbVuXSi9va0PLW5uJeffrlIp/buJjpZek+HvUvcaY2Of6oBUIujOM7JH0KY8adRq7N+8GZ2dLVznFaxKQDAtln26cQM4d67g31tKiv2PjUKyOiSdOnUKK1asMFkeFBSE27dv26RTJVl+lSTAipCku3jsq69KF0iUS506wIoV0pC7RYukc5NGjJCvP8VVcRm3q9VKAcJR567oHstJobB9BaWg57m6Wh1YtGo1/t28GZU7d4bSmT64yCUqSvp3M3q08SQOoaFSQHKGf09EZDuC8GRIDslv505pNExB5PwMWwCrQ5K/vz9SUlJQqVIlo+XHjx9HSEiIzTpWUukqSfmFJKCAkJSYKP3nD9jn4rHW6tIFmDULmDhR+kBSsybw4oty96r4KGi64rzG7Wq19g8ouZdlZTnsbTFLqbR/QMm9TKUqORWWp01UlPTvJj5e+rYyOBiIiOCHKCIie4uIkL6UKmjYc0SE4/tmIatD0iuvvIJ33nkHa9asgSAI0Gq12Lt3L8aNG4e+jp48oBjKb+IGwMKQNH++9AG5bVugfn2b9q/QJkwATp8GfvoJePll4NAhoGpVuXtVPMTHWzZdse5LCF1osfqqwzbm4uK4c1d0y1ghIWsplU473p2IqMQqAcOerQ5JM2fOxIgRIxAWFgaNRoPatWtDo9Hg1Vdfxfvvv2+PPpYolgy3A/L5/PvgAbBkiXR/7Fib9q1IBEHq1/nzUkDq1g3Yv1+6Dgk9kZYGnDkjBUrd7fBhy55740be61Qq+weU3MtcCjU5JhERET0NivmwZ6s/5bi6umLJkiWYMmUKTp06hbS0NDz77LOoVq2aPfpX4lgycQOQT0j69lvg4UOgdm2gY0eb969I3N2BX34BGjUCzp6VzpfasMGpvyWwm8xMaRri06eBf/55EogSEwu/zQULgOefNx9Ynsb3mIiIiJzb42HPOTt24MSWLWjQqRNcisnMvVaHpA8//BDjxo1DWFgYwsLC9MszMjLwySefYMqUKTbtYElTpEpSTo5UugSkc5Gc8TyJ4GDg11+lMaabNwOTJgEffyx3r+xHrQYuXjSuDP3zD3DhQt5TiwYHA3XrSpNe1K0L1KolDVFMScl/3O6QIcXijwoRERGRnlIJsXVrJD96hPqtWxebzzJWh6Rp06Zh6NCh8PT0NFqenp6OadOmMSQVoEgTN6xbByQlAYGBwOuv26V/NtGoEfDdd1Il6ZNPpCBQ3M9X02qBhATTytC//0pByZyAAOm162516ki30qVN286fX6zH7RIRERGVJFaHJFEUIZipYJw8eRIBAQE26VRJVuiJG0TxycVjR4yQhlg5sz59pBAxcyYwaBBQvTrQrJncvSqYKEozseSuDJ05A6Snm3+Ot/eTqpBhICpXzvJqXzEft0tERERUklgckkqVKgVBECAIAqpXr24UlDQaDdLS0jB06FC7dLIkKfRwu717pRP83dyAYcPs1j+b+ugjKWD8+ivQowdw5Ij0od9Z3LxpWhk6fRpITTXf3s1NOhfMcKhc3bpAWJhtLmZYjMftEhEREZUkFoek2NhYiKKIgQMHYtq0afAzmLXM1dUV4eHhaN68uV06WZIUeuIG3cVj33gDCAqyS99sTqEAfvwRaNFCCh+665XkGqppd/fvGwch3f1bt8y3d3GRKl+GVaG6dYEqVewfWIrpuF0iIiKiksTikNSvXz8AQKVKldCiRQuoeL2SQilUJenSJWnWOMA5Lh5rDR8faYa7Jk2AY8eAgQOlaynt2WP7izs+eiQNi8tdGUpONt9eEIDKlY2HydWtKwUk3S+CiIiIiJ46Vp+T1Lp1a/39zMxMZOcqefj6+ha9VyVYoSZuiI2VzpXp1Eka7lXcVKoknW/Tti2wahWwZYvxkLbQUGnWPkvPu8nKAs6dM60MJSSYnx0OkIbE5R4mV6uW46taREREROT0rA5J6enpmDBhAlavXo07d+6YrNfoSiVkltUTN9y7J80UBwD/+59d+2ZXrVsDb74JLFpkes5PcrI0s9vatcZBKSdHml47d2XowoUnb2RuQUHmZ5TjRW2JiIiIyEJWh6Tx48djx44dWLhwId544w0sWLAAycnJWLRoEWbPnm2PPpYolg63y8p6vGDRImlWtWeeAV54we79sxuNBti0yfw6UZSGvg0ZIl2E9uxZKQydPZv3VXX9/U0rQ3XqSNOjExEREREVgdUh6bfffsMPP/yAyMhIDBgwABEREahatSoqVqyI5cuX47XXXrNHP0sMqyZuyM6Wrp8DAGPHOufFYy0VH288tXVuogjcvg28/77xck/PJ0HIMBCVL1+83w8iIiIiclpWh6S7d++icuXKAKTzj+7evQsAaNmyJYYVl6mpZWRJJUkBDcqfjwfGrAGuXZOut9Onj+M6aQ8pKZa1a9EC6NLlSSgKD7fN9NpERERERBayOiRVrlwZCQkJqFChAmrWrInVq1ejSZMm+O233+Dv72+HLpYsBU3c0CgpDpMwGmHfG1Rd0tOBjRuL9wVFg4MtazdjBhAZadeuEBERERHlx+qv6AcMGICTJ08CACZOnIgFCxbA3d0dY8aMwfjx423ewZIm34kb4uIwYFM0QpBrWNrDh9LEBnFxdu+f3URESLPY5TVEThCkGegiIhzbLyIiIiKiXKyuJI0xuE5P27Zt8e+//+Lo0aOoWrUqnnnmGZt2riTKc7idRgOMHg1ANE2uuokNYmKkC7IWxwuMKpXSNN/R0dJrMZyqWxecYmOL52sjIiIiohKlyCd7VKxYEVFRUQgICMDgwYNt0acSLc+JGx5PbJDnVASiCFy5IrUrrqKipGm+Q0KMl4eGmk7/TUREREQkE5udEX/nzh18++23ttpciZVnJcnSiQ0sbeesoqKAxERgxw5gxQrpZ0ICAxIREREROQ2rh9tR0eQ5cYOlExtY2s6ZKZWcnIGIiIiInBbnVnawPCdueDyxgZjXgDtObEBERERE5BAMSQ6W53A73cQGAMRcqzixARERERGR41g83C6qgHNG7t+/X9S+PBXynLgBAKKisHPEGrRe8DIEw6gUGioFJJ63Q0RERERkdxaHJD8/vwLX9+3bt8gdKunyrCQ99qBWMyggQgMFlD8sezLEjhUkIiIiIiKHsDgkLV261J79eGrkOXHDYwG3zwMArnlUQdgbbzioV0REREREpMNzkhwsz4kbHvO/KYWky27VHdQjIiIiIiIyxJDkQKJYcCXJ97oUkhJVDElERERERHJgSHIg0WAuhrwqSd7XpJCU4FLNAT0iIiIiIqLcGJIcSDfUDsi7kuR57QIA4KKClSQiIiIiIjkwJDmQbqgdkEclKScH7smXAADnwZBERERERCQHhiQHKrCSlJgIhSYH6fBAkibEYf0iIiIiIqInGJIcyLCSZDYknZfOR7qAashS81dDRERERCQHfhJ3IMNKktnhdgYhKTvbMX0iIiIiIiJjFl9MloquwOF2F6RJG86jus1DkkYDxMcDKSlAcDAQEZH35BFERERERE8zhiQHKnDihseVJF1IEkVAEIq+37g4YPRo4OrVJ8tCQ4F584CoqKJvn4iIiIioJOFwOweydLjdeVSHKBq3L6y4OCA62jggAUBysrQ8Lq7o+yAiIiIiKkkYkhxIV0kyO8wtIwNISgIgnZMEoMhD7jQaqYJkeBFbHd2ymBjbhDEiIiIiopKCIcmBdGHEbBXpknR9JNHfH7dRBkDRQ1J8vGkFyZAoAleuSO2IiIiIiEjCkORAupCU3/TfqF4dgHQiUlFDUkqKbdsRERERET0NGJIcSDfcLr/zkYTq1eHqKi0qakgKDrZtOyIiIiKipwFDkgNZVEmqVs1mISkiAggJyXu9IABhYVI7IiIiIiKSMCQ5UL4TNxgMt7NVSFIqgcaN828TG8vrJRERERERGWJIcqB8J254fCFZW4aknTuBX3+V7pcubbq+XTteJ4mIiIiIKDeGJAfKc7jd/fvAzZvSfRsNt7t3D+jbV5rB7s03gRs3gB07gBUrpOoRAPzxB3DqVOH3QURERERUErnI3YGnSZ4TN+iqSMHBgI+PTULSiBHS9N5Vqz4ZUhcZ+WT9nj3A2rXAmDHA9u3S+UlERERERFTMKkmzZ8+GIAiIiYmRuyuFkmclyWDSBgD6kJSVVbj9LF8OrFwp7eennwBvb9M2H38MuLkBf/4J/PZb4fZDRERERFQSFZuQdPjwYSxatAjPPPOM3F0ptDwnbjC6RhKKVElKTASGD5fuT5kCNG1qvl2lSsDYsdL9//2v8IGMiIiIiKikKRYhKS0tDa+99hqWLFmCUqVKyd2dQstz4gaDSRuAwockjUY6Dyk1FWjRAnj33fzbT5oElCsHXLwIzJ9v3b6IiIiIiEqqYnFO0ogRI/DSSy+hbdu2mD59er5ts7KykGVQFklNTQUAqNVqqNVqu/bTHN0+1Wo1srIEAC5QKkWo1Tn6Nspz56AAkFO5MkS1GiqVEoAC6ek5UKtFi/c1Z44C8fFKeHuL+O67HIgikN9LdncHPvpIwKBBLvjoIxF9+uQgKKhwr5Nsx/CYIbIUjxuyFo8ZKgweN1QYznTcWNoHpw9JP//8M44dO4bDhw9b1H7WrFmYNm2ayfJt27bB09PT1t2z2Pbt23H2bACACGRkPMLmzX9KK0QRnc+ehQLA7pQUPNy8GampLQAE4tChE3B3T7Zo+xcv+mPqVOmqsAMGHMe//17Bv/8W/LzSpYHKlVvjv//8MXBgMoYPP1mo10e2t337drm7QMUQjxuyFo8ZKgweN1QYznDcpKenW9ROEEXR8lKFg125cgWNGjXC9u3b9eciRUZGokGDBojVzWOdi7lKUlhYGG7fvg1fX19HdNuIWq3G9u3b0a5dOxw44IoXX3RB9eoiTp9+XEm6fh2qChUgCgJyUlMBNzd07arE778r8M03Oejbt+Bfz6NHQJMmLrhwQUBUlBYrV2qsmq1uzx4BL7zgAoVCxMGDOahfv5AvlmzC8JhRqVRyd4eKCR43ZC0eM1QYPG6oMJzpuElNTUWZMmXw4MGDfLOBU1eSjh49ips3b+K5557TL9NoNNi9eze+/PJLZGVlQZlrFgQ3Nze4ubmZbEulUsn6S1GpVFAopLfbxUV40peEBACAEB4O1eNp6HTd12pdYEmXJ02STmsqXx5YskQBV1frTjVr0wbo1QtYvVrAhAkq/PknpwR3BnIfs1Q88bgha/GYocLgcUOF4QzHjaX7d+qJG1588UWcOnUKJ06c0N8aNWqE1157DSdOnDAJSM7O7MQNuSZtAKybuOG334Cvv5buf/89EBBQuL7NmSOFsx07gF9/Ldw2iIiIiIhKAqeuJPn4+KBu3bpGy7y8vFC6dGmT5cWB2esk5Zr+G7A8JN24Abz5pnR/7FigbdvC9y08HBg3DpgxQ/rZqdOTihYRERER0dPEqStJJY3uOklGlaRcF5IFLAtJoggMHAjcugXUqwfMnFn0/k2cCAQHA5cuAV98UfTtEREREREVR8UuJO3cuTPPSRucnS0rSQsXAps3S9WeFStsU/Xx9gZmzZLuf/SRVKkiIiIiInraFLuQVJzpKkn6kKTRSGUbwKqQdPYs8L//SffnzAFsOfLwjTeARo2Ahw+ByZNtt10iIiIiouKCIcmBTCZuuHIFyMqSUlGFCvp2uqqQuZCUnQ28/jqQmQm0bw+MGmXbPioUgK5Q9803wIkTtt0+EREREZGzY0hyIJPhdrqhdlWqGI3By6+SNGUKcOyYdBHYpUtznd+UH60GuLETSFwp/dRq8mz6/PPAK69I5z3FxEg/iYiIiIieFgxJDmQycYOZ85GAvEPSrl3Axx9L95cska6LZJErccCGcODPNsC+V6WfG8Kl5XmYMwdwd5f2uX69hfshIiIiIioBGJIcKM9KkgUh6f596XwhUZSm/e7Z08KdXokD4qOB9KvGy9OTpeV5BKUKFYDx46X748ZJowKJiIiIiJ4GDEkOZDRxg0YDHDggLRDFJwkK5kPSiBHSKUxVqjw5Z6jgHWqAo6MBmBsv93jZ0Zg8h95NmCBVqxISrNgnEREREVExx5DkQLocFHErTrp66+HD0oJPP5Uex0lVndwhacUK6aZUAsuXS1N1W+RWvGkFyYgIpF+R2pnh7Q3Mni3dnzEDuH7dwv0SERERERVjDEkOpNEAPRGHySejgau5wktyMhAdDcTFwcVFWnTpEvDzz8DQodLjKVOApk2t2GFGSpHbvfYa0KSJNCX4++9bsW8iIiIiomKKIcmBxBwN5iGP4W+Pp5BLHxyDKe9JJafDh4E+faSAUr068O67Vu7QI7jI7QynBP/uO+D4cSv7QERERERUzDAkOVDgv/EIw1UIeTUQRXjeuYK6902Hv124AGzYYO0OIwDP0PzbeIZJ7fLRvLkU1jglOBERERE9DRiSHMj9vmXD34Jhvl1MjNH8DgVTKIHKA/Jv41cXEAo+DObMATw8gN27gXXrrOgDEREREVExw5DkQGnelg1/S4FpO1GUZreLNz/HgnlaNZC0Vrrvkmu2B9fSj3e2BTgzu8BNhYU9mRJ8/HggM9OKfhARERERFSMMSQ50tVIEriAU2jwG3GkhIAlhiEfew99SLJyLAQBwfgGQehZwKwN0TwRe3AG0WCH9jLoBPBcrtTv5LnBpaYGbmzABCAkBEhOBzz+3oh9ERERERMUIQ5IDaaDEaMwzG5HEx0tjEAstlGZaSIItnIsBmTeBUx9I9+vPBNxKA2UjgfA+0k+FEqg5Gqj9jtTm0CAgeWO+m/TykobdAcDMmVYGNiIiIiKiYoIhyYE0GmA9ojAvYq00bZyh0FAMKb0WvwhRZp8rCNKQt4j851h44uS7gDoVKPUcUHlg3u3qzwIq9QNEDbCnF3Brf76b7dNHmoY8LQ147z0L+0JEREREVIwwJDmQViv9/Ce0w5MHS5YAO3ZASExAp8VSQBJylZp0j2NjpQvKFujOEeDSd9L9Rl9IVaO8CALQdAlQvjOgyQB2dQEenM2zueGU4MuWAUePWtAfIiIiIqJihCHJgXQz0wVmJEl3fH2Bt94CIiMBpRJRUcDatdJ5P4ZCQ6XlUeaLTMZEETj6NgARCH8NCHy+4OcoVEDL1UDppkD2XWBHByD9ap7NmzWTLjLLKcGJiIiIqCRiSHKgJyHpsnSnYkWTNlFR0sQIO3YAK1ZIPxMSLAxIAJC4HLi9H3DxAhrMsbxzLl5A642Abw0g/QqwoyOQfS/P5rNnS1OC79kjBTgiIiIiopKCIcmBdCPsAh/lHZIAaUhdZKR0/s/jIpNl1A+BExOk+3XeAzxD8m+fm3sZoM3vgEd54ME/wK5uQE6G2aahocA7j+d8GD8eyDDfjIiIiIieYhoNsGuXgN27Q7Brl2DdNT9lxJDkQLqDokwBIanQ/pkJZKQA3lWAmmMKtw2vikCbrYDKD7i1B9j3KqDNMdt0/HgpLF2+zCnBiYiIiMhYXBwQHg60a+eCuXMboV07F4SHS8udHUOSA+kqSaXT7BCSHl4E/p0r3X9uLqB0L/y2/OsBrTcACjfg6i/AkRFmTzzy9DSeEvzatcLvkojIHjQaYOdOYOVK6Wdx+QaTiKi4i4sDoqOBq7lOc09OlpY7e1BiSHIg3X/OAWmPJ26oUMF2Gz82FtBmA8EdgJCuRd9eUCvg+RWAoAAuLgZOTTPbrE8faSKHR484JTgRORfdN5ht2gCvvir9LC7fYBIRFWcaDTB6tPnJvXTLYmKc+4srF7k78DTRVZICbF1JurYFSP4NEFyA52JN5xAvrLAooNEC4PAw4PQ0wKMcUG2oURNBAObNk66dtGwZMGIE0KiRbXZPRFRYum8wc/8HrfsG0+IZQ4moQKL45KbVGj8ubsudsU/Fsa/XrplWkHIfM1euAPHx0vn3zoghyYE0GsAFavilJUsLbBGSNNnA0Rjpfo23Ab+aRd+moWpDpfOcTn8oDbtzD5LCk4EmTYA33gB+/FH6ViA+3nY5jYjIWgV9gykI0voXX5Su/fa0fqhRqwUcP14eqakClMri+RpKUl+Lz2twgVbbTf+YqChSUuTuQd4YkhxIowFCkAyFqAVcXYGyZYu+0fPzgYfnpfBSd0rRt2dOvalA5nVp2N3eV6UZ8Mq2Nmoyaxawbh2wdy+wejXQu7d9ukJEJYsoSrNjpqdLw3bT043v57csr3W3b0sVIwBQCBpE1IxHsH8KUu4HI/7fCGhFJa5eBfz9ZX3pTsAFQGO5O0HFjv2/BRUE8zeFwjbLbbktuZY7Y58MlyckAN99V/DvOjjY7odToTEkOZBWC1TE46F2FSpIR1NRZFx/cq5Q/VmAq1/RtpcXQZCG3WXeAK7+CuzuDrSLlyZ4eCwkBJg4EZgyBZgwAejWTbqOEhEVb9nZtgku+S2zl56N4jCv72iElX4y5uPKnVCM/mEe1h+xbqxdcfyQUtByQIu7d+8iMDAACoXCKfpUEj8sOsu+bbU8J0eNnTv/wosvvgBXV5Vd9kHFn0YDbNsmfWFlruIoCNIMyRERju+bpRiSHEijMQhJthhqd/JdIOchENAIqNy/6NvLj8IFaLES2NFemhp8R0eg/T5pyvDHxo0DliwBkpKAzz4D3n/fvl0qkbQaCDd3ISRnN4SbXkBwG0Bh6YWy6Gmj1T4JGvfvA0lJPjhyREBWVtGDi+5+jvkrANiFm5s0a6aXl/TT8L41y86dA3b+GIe1MdEAjP93DimVjLUx0YiOXYtBH0ahdWvLPtiWRGq1Bps370Xnzp2hUnEeJ7KMWg0EBGQiOBhQqeTuDTkrpVI6Zz06GlAqNGhZ40lFf885qaIfG2vFtUBlwJDkQFotUAGPZ7Yraki6fQj4b6l0v9F8QHDAf3AuHtLU4NsjpIvN7ugAtN0jXYQWUuXo44+lGe9mzQIGDgTKl7d/t0qMK3HA0dFwSb+KRgCway7gGQo0nGdyHhg5P1GEPqzYquKSe1lmpuEeVQBesNvrUShMw0lRw4zhTw8PwMVG/yO1fUGDaJfRAEQocgUchUKEVitg/oAYlGvbHUqVE/8PTURUjEVFAftWxaHCrdEo7/+kon/tfiiSAuehmZPPnsOQ5EBGlaSwUODGTmlSBI9gIDDC8oqBqAWOvi3dr9QXKNPMLv01y7UU0GYrsK0FkHoO2NUFePFPwMULgHQu0vz5wL59wKRJwPffO65rxdqVOCDe9FtvpCdLyyPWMijZWE6OdYEkI12L9EdaZGRokZGuRWaGBpm6+5nS46xM3X0tsjK1EAQNFIJWf1MqNFAocj0WtKbLcj32FLTwVmih8NBC6aWBIkhr9DylQgN3Nw1ULtnw9lbAw00Ld3ct3N20cHPTwsNNAzc3LdxcpcduKi3c3DRwU2nh6vr4ptLAVaWFq0oLlUoLVxcNVC7SfRelFkqFFgI00t8fUQtAC4gGj8XHj6EtuM0jLZCWx3PMLjPzWL990zZKTTbK+z/K83evUIgI8b8CrPMBlCoAj0tIEB5/4aQrH5lZbkkba59rzbZztynMcx8vV4pA/ayrUB75DVC6WPVcu74fFi23/fsh+2uy2WshchJX4tBMHQ3R3/izTbB/Msqro4Erzv3ZhiHJgYxC0t35wJ8fPllpTcUg4UfgzkHAxRtoMNs+nc2PZyjQ5ndge0upH3t6Aa1+ARTS2OTYWGnGux9+kKYEb9LE8V0sVrQa4Kj0rbcpEYAAHB4BeFfVPSGfD4t5fHg018bch1iL2+T64GuujbaAD7r5tBFFLTQ5WmhzNNBoHt/XaKHRaKHVaKDVaKHVaiFqtRA1mif3H29D1Ob60A0NhMf7EfA4vEAKGUpBi1IKDUqbCytKLRT+WigDtHY8AJyE+vHtaaLNkG5PKQWAcABIkLcfZAdmA5ZtwpsLFGibng6Xzd6Pz612UGiU5bklNIDbNbw//ilqpc8uEJE7ugu6zzZHY4CQ7k57WgFDkgNptUAdt3+ALAA+94xXWloxUKcCJyZK9+tOlqpQcvCrBbTeCPz1InBtM3BwENBsKSAIaNwY6NdPqiLFxEgz3vHLrTyIIpC0CkjP52ICEKXZBbfUd1i35CbAgj9OAgDl45sTEaF4/B/H45+CEoKgu/9k2ZP1eTw22kbBbbRQ4NbtOwgMLAuFQvlkfa6+mH2sX5bPc8y1MdcvS9pY+nqt6rvBstuHgQNvFPzLav4TULoJAPFxmBaN74sipBBv4fKiPDf3NgqzbSufq9Hk4Py5f1G9ejUoFQrbvyZbPtfsctu+H87xXBsRDb7YseFmAelPrxcAPLph2w3TU0YE0q8At+KBspFyd8YshiQH0ubkIFh7TXoQmHuthan69HTpA7NPNaDGaPt11hKBzYGWq4HdPYCE76XA1mAWAGDmTOlijfv3Az//LJ2nRACyHwB3DkkVuNsHpZ9Ztyx7rosP4OJZ4IdMUVBAq1VAKyqhFaX7Gq0CGq3y8U8FNBoFcrRK5Gge389RQK1RSj9zFPqf2TlKqNUKZKulx1nZ0uMcjQJaUdqmbh9a0fwy/WN9X/J5bGaZUqmA0kUJlatCuqkUULlKj11dFXB1092UcHVTwM1NAVd36bG7uwJu7orHP5XSfU/psYeHAu6eSri5KQxCTAGhQVFAIIAAQaZvBDRqNQ5s3ozOEZ2heNrPpvauCvw9SfryyewnREGqiFd8xWm/wXQErVqN8wmbUbV2Zyif9mPGWehDk70CZ0HBs+Dgl5Ojxr59e9CieXO4uCidI0Q7OoA7+2uS5bm53lNtFqCxoFKf4bwXSmJIcqD6qg1QqCF9DRNgrkUBqTr1PHAuVrr/3OeA0s1eXbVcSBegyRLg4EDgzGzAvRxQczTKl5fOSXr/feCdd4Du3aWTs58q2hzg/ikpCOlCUepZk2aioIQgagrc3CeHN+BkSmSB59EYn8xvXxadzO9tvMzXihP8bXkyPz1FFEpp+HJ8NKQ/uIZB6XGIbRj7VAckclL6oU5ydyRvolqNe8rbEMs05/R2lLcbO4E/2xTcTq4RURbgxw8HCs44I93xR/7vfF6p+tgYQKsGyncGQl6yce+KoMoAIDMFOPkecCwGcC8LhL+CsWOlKcEvXwY+/VS6hlKJln4VuH3gSSC6exTQmF4EJse9Mu4ITXHpflMcSWiKX3bWw/cv10RIqWQoFKbfemu1Aq7eDcXEzyKgtXLYhIeH7WYhM7fM1ZVDKclJhUVJw5ePjjYezuoZKgUkJz5ZmIio2AuMkP7eFlTRD3TeCyUxJDmKRoOgcxel+54AtJDOmjXHXKpO3iSd+6NQSVUkZ1N7khTuzn8JHOgLuJeBR7m2+Phjaca7OXOkKcFDQ+XuqI2o06QQdOfAk2FzGddMmmWLvkhKb4q/rzbFrn+aYsPepki8bjLWEqMz5mFtTDS0WsEoKGm10jeKMT/GIur/lGjWzLoqTFGvV0xUrIVFScOXb8UXbiZRIiIqnBJQ0WdIcoDg/fvhMmIEWicnSwuSAYwG0BdAY8OWeaRqTZZURQKAGjGAb3V7d9l6ggA8Fwtk3gCS1gC7ewJtd+Hll5/D/PnAnj3S8Lsff5S7o4UgaoEHZx9XiB5Xih6chtGJsQA0WiUu3amHfeebYefppjh4sSnOpdSAKBonFYUCqFQJqF5dugHAvHlRiI5di3l9RyOs9JNvva/eDUXMj7FYfyQKOz4BIiPt/WKJShiF0mlPCiYiKtGKeUWfIcnOhPXr0XjOHNMVdwHEAoiBQVASzafqc/OAhxekYWx137dfZ4tKoQSa/whk3QZu7AB2doLQbh9iY6ugcWPgp5+AkSOBpk3l7mgBMm7ozyMSbx2AeOcwFJqHJs2u3AnFwUtNceBCMxy81BTHEp9DepaXfn1wMNCq1ZMwpLtVriwNU9PRaIB164Bfjkbh16PdEVHzyVWp4/+NgAglwsKACOetSBMRERGZelzRz0nZgRMHtqBBs05wCW7j1BUkHYYke9JooBw7FkA+52D+AKAhpKF3Lt5AmebG6zNSgNMfSfcbzAFUvvbpq60o3YCI9cAfrYH7J4EdHdCw3V70718WS5dKU4Lv2+dE57FoMiHeOYaHiQeRmXwQHo8OwEdxWb/68Sm0SMv0wpH/Gkmh6GIzHLzYFCn3y8PP73H4aQS0e/VJEKpWDfDxsawLSiUwbx4QHQ2IUGLX2cgn+3/8PsXGSu2IiIiIihWFEmJQayS7PEL9oNbFIiABDEn2FR8PQTfELi93AXh8AngsB+6fkK43FPELcHuPFJD+WwbkpAGlmwKVLLjuhzNw9QPabAG2tQDSLgE7O2PmtJ1Ys8YHBw4AK1cCr77q+G49uC8i6cwFPEw8CJf7B1EaB1HR5wRclDnwBeALAArpPKAzybVx8JI0ZO5YUjPkeNZGlWouqF4d6NYeGPc4DJUpY5vAFxUlTZk+ejRw1aAiHRoqBaQo565IExEREZUoDEn2lGLh3O/ZIcCLPwJbGwLXNgHrg4Dse8ZtQns+vg5LMeERDLT5Hdj+PHDvGMpdiML7727CxHddMWECUKoUcP++NCQtIsJ2VZKsLODSJeD8eSDpwl1obx2EX85BVPQ6iPqhh1DP567U0P/Jc248CMLBi81w/m5T3EFTaEo1RsUqvqj+MtC2uhRUHFHFiYqSpkrfsSMHW7acQKdODdCmjQsrSEREREQOxpBkT8EWzv0eHAz41wUq9AYSfzQNSABwchLgW83pT3Iz4lsdiNwszZN//Q+Me74/5gb9hORkBTp3ftIsNFQabmZptUSjAa5ckYKQ7vbfxWwoU/9GBa8DaFLlIJpWOYgeIReAEOPnZqrdcPHOc0hRN0OGV1O4hzRFWIOK6DBQQDcnuOyUUgm0bi3i0aNktG5dnwGJiIiISAYMSfYUEQExJARITs77nKTQUKmUotVIkx3k52iMNJ1tMRnLCQAo3RiIiAN2vgTl1ZWY2L4sxi3/BBE19+gnJ9hzLgLR0UqsXfskKIkicOuWcRDS3S5eFFHO5zKaVpXC0CtVD+C5Xsfg7pplsvs72dWQ6toUyqBmCKjeFN4hz6Cu0hV1Hfw2EBEREVHxwZBkT0olNHPnQtm7N0RBgCCauZjWvHlS+eDGTiDjqul6PRFIvyJd76O4TWcb3B7aJsugOPg6xnSKxYBWS+Hv9UC/+sqdUIz+YR4GDIjC2rXAxYtSGHrwuImPRyoaVz6MplUOol+Hg2g24gDK+t002Y1aUQraUk3hGtwUQplmQOkmKO0WgNKOep1EREREVCIwJNmZ2LMnDr/zDhr/9BNgOIlDAIDB5Z6UTjIsPH/J0nZOZveV15C4ezv6t/reKCABQEipZKyNiUZ07FqsXtUNdUL/Qa/nDqJZ1YN4vtZBVAs6A4VgHDBFwQVCqQbShBZlmgKlm0HlU9WJps0jIiIiouKKIckBUpo3R87UqRjf7ABunEzBu5MvoF71D4CgSk8aeVh4/pKl7ZzM9WsavFjnT4iiaY5RKESIIrBi5KuAoIS7S7rpBrzCDQJRUwilngVcPBzSdyIiIiJ6ujAkOYpSiWO+kYgHML7uIiAHgFvgk/WBEdIViNOTAZgZlgdBWh9YPK8oWrN0PMKQ93BCQQDcVY/PKXLxkc5lKtNMCkalmwIeZR3UUyIiIiJ62jEkOZBGI/10x63HdwxCkkIJNJwHxEdDunypYVB6XHppGFu8Jm0w8Ey1FOBOwe20z3wMRe2xxfZ1EhEREVHxV4wuvFP8abXST3fhcUgyrCQB0vTeEWsBz1zzVnuGSsuL0/TfuSi8LBsmqAhszIBERERERLJiJcmBdJUkNzGPkARIQSikuzSLXUaKdA5SYETxDw6PhxOK6ckQzAwnFCFAKMbDCYmIiIio5GBIciB9SDI33M6QQln8pvkuyOPhhEJ8tBSIDIKS9BjFejghEREREZUcHG7nQLrhdq75VZJKssfDCYVcwwmFEjCckIiIiIhKDlaSHEhXSdKHpLwqSSVZSR1OSEREREQlBkOSA0mVJBGu2qe0kqRTEocTEhEREVGJweF2DqTRAL4eqVBALS14WkMSEREREZETY0hyII0GCPR9XEVy8QJcPOTtEBERERERmWBIciCtFgj0ecqH2hEREREROTmGJAfRaIC0tCeVJJEhiYiIiIjIKTEkOcD+/cGoWtUFN248qST9tTcQcXEyd4yIiIiIiEwwJNnZ+vUC5sxpjORk6bGuknTlViCio8GgRERERETkZBiS7EijAcaO1V3/RwDwJCTdSpWG28XEPLl+EhERERERyc+pQ9KsWbPQuHFj+Pj4ICgoCD169MC5c+fk7pbF4uOB5GQBuoAEPBlud+thIEQRuHJFakdERERERM7BqUPSrl27MGLECBw4cADbt2+HWq1G+/bt8ejRI7m7ZpGUFNNluStJebUjIiIiIiJ5uMjdgfxs3brV6PGyZcsQFBSEo0ePolWrVjL1ynLBwabLDCtJ+bUjIiIiIiJ5OHVIyu3BgwcAgICAgDzbZGVlISsrS/84NTUVAKBWq6FWq+3bwVyaNQNCQpRGQ+4MK0mCICIkBGjWLAcO7ho5Md1x6ujjlYo3HjdkLR4zVBg8bqgwnOm4sbQPgiiKop37YhNarRbdunXD/fv3sWfPnjzbTZ06FdOmTTNZvmLFCnh6etqzi2bt3x+MOXMaP34k4NF3nvB0y0DlmItIuFUZ77xzGM2bc7wdEREREZG9paen49VXX8WDBw/g6+ubZ7tiE5KGDRuGLVu2YM+ePQgNDc2znblKUlhYGG7fvp3vG2EvarUaH354Gj/91Aj3bmfg0XfeAICakx/gw1me6NmzWLz95EBqtRrbt29Hu3btoFKp5O4OFRM8bshaPGaoMHjcUGE403GTmpqKMmXKFBiSisVwu5EjR2Ljxo3YvXt3vgEJANzc3ODm5mayXKVSyfZLad48BVOnanBizy3gJqCFG/455wOli1Dwk+mpJecxS8UXjxuyFo8ZKgweN1QYznDcWLp/p57dThRFjBw5EuvXr8dff/2FSpUqyd2lQlMqgWbPSucjKTwDGZCIiIiIiJyUU1eSRowYgRUrVuDXX3+Fj48Prl+/DgDw8/ODh4eHzL0rhEwpJMEtMP92REREREQkG6euJC1cuBAPHjxAZGQkgoOD9bdVq1bJ3bXCyWJIIiIiIiJydk5dSSomc0pYTheS3BmSiIiIiIiclVNXkkoUUQPcOSrd12QCWo28/SEiIiIiIrMYkhwgOGc/XDZVBZJ+lhZcWQdsCAeuxMnaLyIiIiIiMsWQZGfC1fVonDUHyEg2XpGeDMRHMygRERERETkZhiR70mqgPDEWAGA64ffj862OxnDoHRERERGRE2FIsqdb8RAyks0EJB0RSL8C3Ip3YKeIiIiIiCg/DEn2lJFi23ZERERERGR3DEn25BFs23ZERERERGR3DEn2FBgB0SMEeV/tSQA8w4DACAd2ioiIiIiI8sOQZE8KJTQN5gIARJMzkx4/bhgLKJQO7RYREREREeWNIcnOxNCeOOz2DuBR3niFZygQsRYIi5KnY0REREREZJaL3B14GqS4NEdOp6lQ3TsgTdLgESwNsWMFiYiIiIjI6TAkOYqgBMpGyt0LIiIiIiIqAIfbERERERERGWBIIiIiIiIiMsCQREREREREZIAhiYiIiIiIyABDEhERERERkQGGJCIiIiIiIgMMSURERERERAYYkoiIiIiIiAwwJBERERERERlgSCIiIiIiIjLAkERERERERGSAIYmIiIiIiMgAQxIREREREZEBhiQiIiIiIiIDDElEREREREQGGJKIiIiIiIgMMCQREREREREZYEgiIiIiIiIywJBERERERERkgCGJiIiIiIjIAEMSERERERGRAYYkIiIiIiIiAwxJREREREREBhiSiIiIiIiIDDAkERERERERGWBIIiIiIiIiMsCQREREREREZIAhiYiIiIiIyABDEhERERERkQGGJCIiIiIiIgMMSURERERERAYYkoiIiIiIiAwwJBERERERERlgSCIiIiIiIjLAkERERERERGSAIYmIiIiIiMgAQxIREREREZEBhiQiIiIiIiIDDElEREREREQGGJKIiIiIiIgMMCQREREREREZYEgiIiIiIiK70Gq0uLzrMu7tvofLuy5Dq9HK3SWLuMjdASIiIiIiKnnOxp3F1tFbkXo1FQBwee5l+Ib6ouO8jqgVVUvm3uWPlSRyOK1Gi8SdiTi18hQSdyYWm28UHKG4fttCREREZOhs3Fmsjl6tD0g6qcmpWB29GmfjzsrUM8uwkuQgWo0WiXsT8TDlIXyCfRDaIhRX913VP64QUQEKpULfNik+yey6ouzf1tssjNzfKAAoNt8o2Ftx/raFyFk5y98+IqKniVajxdbRWwHRzEoRgABsjdmKGt1rOO3fZIYkB7i//z4WjFiAh8kP9csEpQBR8+TI0X0YBmDzEOEswUT3jULufzC6bxR6re311IYBvjdEtucsf/uIyPZEUQRE6aeolW4Qob8vakWjdSbr81uXa729tuuMfcprHbSwaj+Pbj0yqSAZ/wKB1CupSIpPQnhkuMOOG2swJNnZv+v/ReKcRJPlhgEJePxh+P9Wm91GUT4oO8uH75LwjYK98L0hsj1n+dtHT5j7UFucPiQWmz5Z86G2EPvRarS4e/cubs68adTe0e+L2f8zqdh5mPKw4EYyYUiyI61Gi+1jt1vWOL9/7I/X/Tb4N2iyNYBgvFwURf1jo/taEVvH5PPhG8CGtzboD1CjP0IW3kz+eOVxS72aatE3Cj+2/xHeZb2N+qx/TeZes5MuM1pewLL0u+kWvTdLGi+Bx/+3d+9RVdXp/8Dfh/tNQEFABEEThYAQJRE1zSTBjDL9dhvGyKaLiSMMpJO/pnR0mahpKgtzprW8rMa0LLSb4TiIOpqCoigokHlPueQFgTA9nPP8/nDYnS0XAYFz0PdrLZbsz+dz9n723o+b/Zy9zz5dbZX9r9HU/XJ/TCv/mkAspjit0+lQ9mMZfsj/AeYW5q2bn4mtU2unRS/ImN70se+b177B9avXlTZTOCFuzUnt3Zx4i15w7do1XHjnQocULzypvbfUoMbYIbSOBtCYaX7/0WhU06r+pvpM9LWmEuPl4sv4YfEPd9wdXXp06YCd3joaUZ3hmaa0tDQsXrwYpaWlCAkJQWpqKgYPHtys11ZWVsLJyQnXrl2Do6NjO0eqdmbnGawbta5Dl0lERHRPae6JWQtO+Fp0MtjOr4VZw+tgSjEaTut0Ohw6fAhhD4fBwsqi9cs1RhFh+IYQtSu9To/lvstReaGy4TdINLduf044ndDhd8k0tzYw+StJn332GZKSkrBq1SqEh4dj2bJliIqKQnFxMdzc3IwdXpPa4xKia4Ar7N3sb/1Hb+AdVMPfq0uqUV5Qfsd5eg72hLOPs/oA09gBvDk/mvptFWcrkLc6746xhE0Ng4ufi7IOdepdVWigrcl3w++mrYVxtDS2X47/gt3zduNORrw7Aq4BrrcmGriKyOn7e1qv1+P8ufPw9vb+Pd9MIC5jTFeVVuHS8Uu4E48BHujSs0uLT7yUY2JnOjls5GT3wMEDGDxkMCytLE32BJ1Mi1arxUmrk/B7wg+WlpbGDodMlJm5GaKXR9+67VkDdaH0v//W0cuiTfpjBCZfJC1duhSvvfYaJk+eDABYtWoVvvvuO6xevRpvv/12vfE3btzAjRs3lOnKylu3MWm1Wmi12o4J+n9su9u2+TyjVkTBZ6RPs8ae3XUW6x9ff8dxo+aPavY8W0uv0+PktpOouljV+DsKPR0RuSTSpP/DtAe/8X44vPrwHbfN0P839L7bNtR8Wq0W27dvx+OPP37fn7g099g3evHodj/2mTKtVoui2iJ4PeJlEjkj/zsACm7degh+A4JJqjuX6uhzKup8+sb0xYSNE7A9abvq4WV153t9Y/oaJY+au0yTvt3u5s2bsLOzwxdffIHx48cr7XFxcaioqMBXX31V7zVz5szB3//+93rtn376Kezs7Noz3HpEJzj++nFoL7dNAli6WuLBfzwIjXnz3llrzvJbOs+7UbGvosGHWNTx/asvnCOc2z0OU8RtQ9R2TO3YR0R0PxOdoPp4NWqv1sKiqwUcHnQw6rG3pqYGf/jDHzr37XaXLl2CTqeDu7u7qt3d3R1FRUUNvmbWrFlISkpSpisrK+Ht7Y0xY8Z0+GeSAMA31Rdf/eGr+pcab2fY38hlyZi0GPjH+Ldo+Q+sfADpL6TfmmijebbaE0DRwKL67yh43XpHwf+ZDorDFHHb0F3ilSQ1kzr2mSjmDLUG84ZaQxttOnlTd5fZnZh0kdQa1tbWsLa2rtduaWlplJ0S+H+BOHLkCC7/6/KdvydpWRPfk7Ssdd/rEfxcMCwsLNp0nncj+LlgBE4M5Jc7NqBu25zKOoU93+/B8LHD0WdUH24bahFjHetMjakd+0wZc4Zag3lDrWEKedPc5Zt0keTq6gpzc3OUlZWp2svKyuDh4WGkqFrOOcIZL8x5ASX7S5TCwGuoF37+4ecGC4X+T/dv0yIiYEJAm8/zbpiZm5nsF4cZm5m5GXxG+uDYr8fgM9KHBRLRXTC1Yx8REXUeJl0kWVlZYdCgQcjMzFQ+k6TX65GZmYlp06YZN7gWaqgwaKxQaI8igoUJEd2PeOwjIqLWMOkiCQCSkpIQFxeHsLAwDB48GMuWLcOvv/6qPO2OiIiIiIioLZl8kfT888/jl19+wXvvvYfS0lIMGDAAGRkZ9R7mQERERERE1BZMvkgCgGnTpnW62+uIiIiIiKhz4qdXiYiIiIiIDLBIIiIiIiIiMsAiiYiIiIiIyACLJCIiIiIiIgMskoiIiIiIiAywSCIiIiIiIjLAIomIiIiIiMgAiyQiIiIiIiIDLJKIiIiIiIgMsEgiIiIiIiIyYGHsANqbiAAAKisrjbJ8rVaLmpoaVFZWwtLS0igxUOfCnKHWYN5QSzFnqDWYN9QappQ3dTVBXY3QmHu+SKqqqgIAeHt7GzkSIiIiIiIyBVVVVXBycmq0XyN3KqM6Ob1ej4sXL6JLly7QaDQdvvzKykp4e3vj/PnzcHR07PDlU+fDnKHWYN5QSzFnqDWYN9QappQ3IoKqqip4enrCzKzxTx7d81eSzMzM4OXlZeww4OjoaPSkoM6FOUOtwbyhlmLOUGswb6g1TCVvmrqCVIcPbiAiIiIiIjLAIomIiIiIiMgAi6R2Zm1tjdmzZ8Pa2trYoVAnwZyh1mDeUEsxZ6g1mDfUGp0xb+75BzcQERERERG1BK8kERERERERGWCRREREREREZIBFEhERERERkQEWSURERERERAZYJLWjtLQ0+Pr6wsbGBuHh4cjJyTF2SNRBFixYgIcffhhdunSBm5sbxo8fj+LiYtWY3377DfHx8XBxcYGDgwMmTpyIsrIy1Zhz585h3LhxsLOzg5ubG2bMmIHa2lrVmJ07d2LgwIGwtrZG3759sXbt2vZePeoAKSkp0Gg0SExMVNqYM9SQCxcu4I9//CNcXFxga2uL4OBgHDx4UOkXEbz33nvo0aMHbG1tERkZiRMnTqjmceXKFcTGxsLR0RHOzs7405/+hOrqatWYo0eP4pFHHoGNjQ28vb2xaNGiDlk/als6nQ7vvvsuevfuDVtbWzzwwAOYN28eDJ/jxZyh3bt3IyYmBp6entBoNNiyZYuqvyNzZNOmTfD394eNjQ2Cg4OxdevWNl/fBgm1i40bN4qVlZWsXr1ajh07Jq+99po4OztLWVmZsUOjDhAVFSVr1qyRgoICycvLkyeeeEJ69eol1dXVypgpU6aIt7e3ZGZmysGDB2XIkCEydOhQpb+2tlaCgoIkMjJSDh8+LFu3bhVXV1eZNWuWMubUqVNiZ2cnSUlJcvz4cUlNTRVzc3PJyMjo0PWltpWTkyO+vr7y0EMPSUJCgtLOnKHbXblyRXx8fOTll1+W7OxsOXXqlGzbtk1++uknZUxKSoo4OTnJli1b5MiRI/LUU09J79695fr168qY6OhoCQkJkf3798t///tf6du3r7z44otK/7Vr18Td3V1iY2OloKBANmzYILa2tvKPf/yjQ9eX7t78+fPFxcVFvv32Wzl9+rRs2rRJHBwcZPny5coY5gxt3bpV3nnnHUlPTxcAsnnzZlV/R+XI3r17xdzcXBYtWiTHjx+Xv/3tb2JpaSn5+fntvg1YJLWTwYMHS3x8vDKt0+nE09NTFixYYMSoyFjKy8sFgOzatUtERCoqKsTS0lI2bdqkjCksLBQAsm/fPhG5dYAyMzOT0tJSZcxHH30kjo6OcuPGDRERmTlzpgQGBqqW9fzzz0tUVFR7rxK1k6qqKvHz85Pt27fLyJEjlSKJOUMN+etf/yrDhw9vtF+v14uHh4csXrxYaauoqBBra2vZsGGDiIgcP35cAMiBAweUMd9//71oNBq5cOGCiIisXLlSunbtquRR3bL79+/f1qtE7WzcuHHyyiuvqNomTJggsbGxIsKcofpuL5I6Mkeee+45GTdunCqe8PBweeONN9p0HRvC2+3awc2bN5Gbm4vIyEilzczMDJGRkdi3b58RIyNjuXbtGgCgW7duAIDc3FxotVpVjvj7+6NXr15Kjuzbtw/BwcFwd3dXxkRFRaGyshLHjh1TxhjOo24M86zzio+Px7hx4+rtV+YMNeTrr79GWFgYnn32Wbi5uSE0NBQff/yx0n/69GmUlpaq9rmTkxPCw8NVeePs7IywsDBlTGRkJMzMzJCdna2MGTFiBKysrJQxUVFRKC4uxtWrV9t7NakNDR06FJmZmfjxxx8BAEeOHMGePXswduxYAMwZurOOzBFj/s1ikdQOLl26BJ1OpzpRAQB3d3eUlpYaKSoyFr1ej8TERAwbNgxBQUEAgNLSUlhZWcHZ2Vk11jBHSktLG8yhur6mxlRWVuL69evtsTrUjjZu3IhDhw5hwYIF9fqYM9SQU6dO4aOPPoKfnx+2bduGN998E9OnT8e6desA/L7fm/p7VFpaCjc3N1W/hYUFunXr1qLcos7h7bffxgsvvAB/f39YWloiNDQUiYmJiI2NBcCcoTvryBxpbExH5JBFuy+B6D4XHx+PgoIC7Nmzx9ihkAk7f/48EhISsH37dtjY2Bg7HOok9Ho9wsLC8P777wMAQkNDUVBQgFWrViEuLs7I0ZEp+vzzz7F+/Xp8+umnCAwMRF5eHhITE+Hp6cmcITLAK0ntwNXVFebm5vWeOlVWVgYPDw8jRUXGMG3aNHz77bfIysqCl5eX0u7h4YGbN2+ioqJCNd4wRzw8PBrMobq+psY4OjrC1ta2rVeH2lFubi7Ky8sxcOBAWFhYwMLCArt27cKKFStgYWEBd3d35gzV06NHDzz44IOqtoCAAJw7dw7A7/u9qb9HHh4eKC8vV/XX1tbiypUrLcot6hxmzJihXE0KDg7GpEmT8Je//EW5gs2coTvpyBxpbExH5BCLpHZgZWWFQYMGITMzU2nT6/XIzMxERESEESOjjiIimDZtGjZv3owdO3agd+/eqv5BgwbB0tJSlSPFxcU4d+6ckiMRERHIz89XHWS2b98OR0dH5aQoIiJCNY+6Mcyzzmf06NHIz89HXl6e8hMWFobY2Fjld+YM3W7YsGH1vl7gxx9/hI+PDwCgd+/e8PDwUO3zyspKZGdnq/KmoqICubm5ypgdO3ZAr9cjPDxcGbN7925otVplzPbt29G/f3907dq13daP2l5NTQ3MzNSnf+bm5tDr9QCYM3RnHZkjRv2b1e6PhrhPbdy4UaytrWXt2rVy/Phxef3118XZ2Vn11Cm6d7355pvi5OQkO3fulJKSEuWnpqZGGTNlyhTp1auX7NixQw4ePCgRERESERGh9Nc9znnMmDGSl5cnGRkZ0r179wYf5zxjxgwpLCyUtLQ0Ps75HmL4dDsR5gzVl5OTIxYWFjJ//nw5ceKErF+/Xuzs7ORf//qXMiYlJUWcnZ3lq6++kqNHj8rTTz/d4KN6Q0NDJTs7W/bs2SN+fn6qR/VWVFSIu7u7TJo0SQoKCmTjxo1iZ2fHxzl3QnFxcdKzZ0/lEeDp6eni6uoqM2fOVMYwZ6iqqkoOHz4shw8fFgCydOlSOXz4sJw9e1ZEOi5H9u7dKxYWFvLBBx9IYWGhzJ49m48AvxekpqZKr169xMrKSgYPHiz79+83dkjUQQA0+LNmzRplzPXr12Xq1KnStWtXsbOzk2eeeUZKSkpU8zlz5oyMHTtWbG1txdXVVZKTk0Wr1arGZGVlyYABA8TKykr69OmjWgZ1brcXScwZasg333wjQUFBYm1tLf7+/vLPf/5T1a/X6+Xdd98Vd3d3sba2ltGjR0txcbFqzOXLl+XFF18UBwcHcXR0lMmTJ0tVVZVqzJEjR2T48OFibW0tPXv2lJSUlHZfN2p7lZWVkpCQIL169RIbGxvp06ePvPPOO6rHMDNnKCsrq8HzmLi4OBHp2Bz5/PPPpV+/fmJlZSWBgYHy3Xfftdt6G9KIGHzFMhERERER0X2On0kiIiIiIiIywCKJiIiIiIjIAIskIiIiIiIiAyySiIiIiIiIDLBIIiIiIiIiMsAiiYiIiIiIyACLJCIiIiIiIgMskoiIiIiIiAywSCIiohY7c+YMNBoN8vLyjB2KoqioCEOGDIGNjQ0GDBhg7HAa9PLLL2P8+PHK9KOPPorExMQmX+Pr64tly5a1a1xERKTGIomIqBN6+eWXodFokJKSomrfsmULNBqNkaIyrtmzZ8Pe3h7FxcXIzMxsdFxpaSn+/Oc/o0+fPrC2toa3tzdiYmKafE17SU9Px7x589p0nmvXroWzs3ObzpOI6H7DIomIqJOysbHBwoULcfXqVWOH0mZu3rzZ6teePHkSw4cPh4+PD1xcXBocc+bMGQwaNAg7duzA4sWLkZ+fj4yMDIwaNQrx8fGtXnZrdevWDV26dOnw5RIRUdNYJBERdVKRkZHw8PDAggULGh0zZ86cereeLVu2DL6+vsp03S1g77//Ptzd3eHs7Iy5c+eitrYWM2bMQLdu3eDl5YU1a9bUm39RURGGDh0KGxsbBAUFYdeuXar+goICjB07Fg4ODnB3d8ekSZNw6dIlpf/RRx/FtGnTkJiYCFdXV0RFRTW4Hnq9HnPnzoWXlxesra0xYMAAZGRkKP0ajQa5ubmYO3cuNBoN5syZ0+B8pk6dCo1Gg5ycHEycOBH9+vVDYGAgkpKSsH//fmXc0qVLERwcDHt7e3h7e2Pq1Kmorq5W+uuu1mzbtg0BAQFwcHBAdHQ0SkpKlDE6nQ5JSUlwdnaGi4sLZs6cCRFRxXP77Xbl5eWIiYmBra0tevfujfXr19dbh6Zi27lzJyZPnoxr165Bo9GotsWNGzfw1ltvoWfPnrC3t0d4eDh27typzPfs2bOIiYlB165dYW9vj8DAQGzdurXB7UhEdK9jkURE1EmZm5vj/fffR2pqKn7++ee7mteOHTtw8eJF7N69G0uXLsXs2bPx5JNPomvXrsjOzsaUKVPwxhtv1FvOjBkzkJycjMOHDyMiIgIxMTG4fPkyAKCiogKPPfYYQkNDcfDgQWRkZKCsrAzPPfecah7r1q2DlZUV9u7di1WrVjUY3/Lly7FkyRJ88MEHOHr0KKKiovDUU0/hxIkTAICSkhIEBgYiOTkZJSUleOutt+rN48qVK8jIyEB8fDzs7e3r9RveomZmZoYVK1bg2LFjWLduHXbs2IGZM2eqxtfU1OCDDz7AJ598gt27d+PcuXOq5S5ZsgRr167F6tWrsWfPHly5cgWbN29uYi/cKljPnz+PrKwsfPHFF1i5ciXKy8tVY5qKbejQoVi2bBkcHR1RUlKi2hbTpk3Dvn37sHHjRhw9ehTPPvssoqOjlW0YHx+PGzduYPfu3cjPz8fChQvh4ODQZLxERPcsISKiTicuLk6efvppEREZMmSIvPLKKyIisnnzZjE8tM+ePVtCQkJUr/3www/Fx8dHNS8fHx/R6XRKW//+/eWRRx5Rpmtra8Xe3l42bNggIiKnT58WAJKSkqKM0Wq14uXlJQsXLhQRkXnz5smYMWNUyz5//rwAkOLiYhERGTlypISGht5xfT09PWX+/PmqtocfflimTp2qTIeEhMjs2bMbnUd2drYAkPT09Dsu73abNm0SFxcXZXrNmjUCQH766SelLS0tTdzd3ZXpHj16yKJFi5Tpuu1Tt99Ebq1/QkKCiIgUFxcLAMnJyVH6CwsLBYB8+OGHLYrNyclJNebs2bNibm4uFy5cULWPHj1aZs2aJSIiwcHBMmfOnMY3AhHRfcTCiPUZERG1gYULF+Kxxx5r8OpJcwUGBsLM7PebC9zd3REUFKRMm5ubw8XFpd5VjYiICOV3CwsLhIWFobCwEABw5MgRZGVlNXg14uTJk+jXrx8AYNCgQU3GVllZiYsXL2LYsGGq9mHDhuHIkSPNXEPUu9WtKf/5z3+wYMECFBUVobKyErW1tfjtt99QU1MDOzs7AICdnR0eeOAB5TU9evRQts+1a9dQUlKC8PBwpb9u+zQWR2FhISwsLFTbw9/fv95DGJoT2+3y8/Oh0+mUbV7nxo0byue3pk+fjjfffBP//ve/ERkZiYkTJ+Khhx5q5hYjIrq38HY7IqJObsSIEYiKisKsWbPq9ZmZmdU7KddqtfXGWVpaqqY1Gk2DbXq9vtlxVVdXIyYmBnl5eaqfEydOYMSIEcq4hm59aw9+fn7QaDQoKipqctyZM2fw5JNP4qGHHsKXX36J3NxcpKWlAVA/WKKh7dOSQqw1mhvb7aqrq2Fubo7c3FzVvigsLMTy5csBAK+++ipOnTqFSZMmIT8/H2FhYUhNTW3X9SEiMlUskoiI7gEpKSn45ptvsG/fPlV79+7dUVpaqjp5b8vvNjJ82EFtbS1yc3MREBAAABg4cCCOHTsGX19f9O3bV/XTksLI0dERnp6e2Lt3r6p97969ePDBB5s9n27duiEqKgppaWn49ddf6/VXVFQAAHJzc6HX67FkyRIMGTIE/fr1w8WLF5u9HABwcnJCjx49kJ2drbTVbZ/G+Pv71xtTXFysxNXc2KysrKDT6VRtoaGh0Ol0KC8vr7cvPDw8lHHe3t6YMmUK0tPTkZycjI8//rhF601EdK9gkUREdA8IDg5GbGwsVqxYoWp/9NFH8csvv2DRokU4efIk0tLS8P3337fZctPS0rB582YUFRUhPj4eV69exSuvvALg1oMArly5ghdffBEHDhzAyZMnsW3bNkyePLneSfydzJgxAwsXLsRnn32G4uJivP3228jLy0NCQkKL49XpdBg8eDC+/PJLnDhxAoWFhVixYoVy62Dfvn2h1WqRmpqKU6dO4ZNPPmn0gRJNSUhIQEpKCrZs2YKioiJMnTpVVfDcrn///oiOjsYbb7yB7Oxs5Obm4tVXX4Wtra0ypjmx+fr6orq6GpmZmbh06RJqamrQr18/xMbG4qWXXkJ6ejpOnz6NnJwcLFiwAN999x0AIDExEdu2bcPp06dx6NAhZGVlKQUvEdH9hkUSEdE9Yu7cufVuhwsICMDKlSuRlpaGkJAQ5OTk3NVnl26XkpKClJQUhISEYM+ePfj666/h6uoKAMrVH51OhzFjxiA4OBiJiYlwdnZWff6pOaZPn46kpCQkJycjODgYGRkZ+Prrr+Hn59ei+fTp0weHDh3CqFGjkJycjKCgIDz++OPIzMzERx99BAAICQnB0qVLsXDhQgQFBWH9+vVNPma9McnJyZg0aRLi4uIQERGBLl264JlnnmnyNWvWrIGnpydGjhyJCRMm4PXXX4ebm5vS35zYhg4diilTpuD5559H9+7dsWjRImXeL730EpKTk9G/f3+MHz8eBw4cQK9evQDcemR5fHw8AgICEB0djX79+mHlypUtXm8ionuBRtr7BmoiIiIiIqJOhFeSiIiIiIiIDLBIIiIiIiIiMsAiiYiIiIiIyACLJCIiIiIiIgMskoiIiIiIiAywSCIiIiIiIjLAIomIiIiIiMgAiyQiIiIiIiIDLJKIiIiIiIgMsEgiIiIiIiIywCKJiIiIiIjIwP8H9uneVkUFMHcAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzhtJREFUeJzs3XdcVfUbwPHP5bI3KCoqigvBXW5cuEeaSebKHJWaNhw/K61MLa2sLEflqrQyTVNMy525995bce+FyOae3x9fuXABFRA4jOf9ep0Xl3POvee5lwPc557v93kMmqZpCCGEEEIIIUQ+YaV3AEIIIYQQQgiRnSQJEkIIIYQQQuQrkgQJIYQQQggh8hVJgoQQQgghhBD5iiRBQgghhBBCiHxFkiAhhBBCCCFEviJJkBBCCCGEECJfkSRICCGEEEIIka9IEiSEEEIIIYTIVyQJEkKki8Fg4K233tI7DCF04+vrS69evczfr1u3DoPBwLp1655436CgIIKCgrIstqxy8uRJWrRogZubGwaDgb/++kvvkIQQ4qlIEiSETg4ePEjHjh0pWbIk9vb2FCtWjObNmzN58mS9Q8syoaGhGAwGvv7660x5vB9++IFZs2ZlymPldbNmzcJgMGBvb8+lS5dSbA8KCqJSpUo6RPZ48fHxzJw5k6CgIDw9PbGzs8PX15fevXuza9cuvcPLNhEREYwaNSpNiVZW6NmzJwcPHmTs2LH89ttv1KhRI0uOExQUhMFgeOIyatSoLDl+UgnJ7YIFCyzWx8TE0LZtW6ysrPj555+zPI4E8+bNo3v37pQrVw6DwfDYZDo6Opr333+fokWL4uDgQO3atVm9enWq+27ZsoX69evj6OhIkSJFeOeddwgPD8+iZyFEzmGtdwBC5EdbtmyhcePGlChRgj59+lCkSBEuXLjAtm3bmDhxIm+//bbeIeYKP/zwAwULFrT4VF48XnR0NF988UWuSLYjIyMJDg5mxYoVNGzYkA8++ABPT09CQ0OZP38+v/zyC+fPn6d48eK6xtmwYUMiIyOxtbXNsmNEREQwevRogGy/khQZGcnWrVv58MMPs/wq8Icffsjrr79u/n7nzp1MmjSJDz74gICAAPP6KlWqZGkcjxIbG0vHjh1ZtmwZM2bM4NVXX822Y0+ZMoXdu3dTs2ZNbt269dh9e/XqxYIFCxg0aBDlypVj1qxZtGnThrVr11K/fn3zfvv27aNp06YEBATwzTffcPHiRb7++mtOnjzJ8uXLs/opCaErSYKE0MHYsWNxc3Nj586duLu7W2y7fv16tsfz4MEDnJycsv24IvtVq1aNGTNmMHz4cIoWLap3OI/17rvvsmLFCr799lsGDRpksW3kyJF8++23+gSWjJWVFfb29nqHkWVu3LgBkOJv1dN41N+c5s2bW3xvb2/PpEmTaN68ue7DCGNjY+nUqRP//PMP06ZN47XXXsvW4//2228UK1YMKyurx1613bFjB3/88QdfffUVQ4cOBaBHjx5UqlSJ9957jy1btpj3/eCDD/Dw8GDdunW4uroCarhnnz59WLVqFS1atMjaJyWEjmQ4nBA6OH36NBUrVkz1TUWhQoVSrJs9ezbVq1fHwcEBT09PunTpwoULFyz22bhxIy+99BIlSpTAzs4OHx8fBg8eTGRkpMV+vXr1wtnZmdOnT9OmTRtcXFx4+eWXATCZTEycOJHKlStjb2+Pl5cXrVq1SnXY0V9//UWlSpWws7OjYsWKrFix4ileEUszZ86kSZMmFCpUCDs7OypUqMCUKVMs9vH19eXw4cOsX7/ePEQm6Zuku3fvMmjQIHx8fLCzs6Ns2bKMGzcOk8lk3ifp8Lzp06dTpkwZ7OzsqFmzJjt37kwR17Fjx+jUqRNeXl44ODhQvnx5PvzwQwDWrl2LwWBg0aJFKe43Z84cDAYDW7duTfX57tq1C4PBwC+//JJi28qVKzEYDPzzzz8A3L9/n0GDBuHr64udnR2FChWiefPm7Nmz58kvLOpNT3x8PF988cVj90t4bVIbbph8ONKoUaMwGAycOHGC7t274+bmhpeXFyNGjEDTNC5cuED79u1xdXWlSJEijB8//olxXrx4kWnTptG8efMUCRCA0Whk6NCh5qtA586dY8CAAZQvXx4HBwcKFCjASy+9RGhoqMX9EoYFbt68mSFDhuDl5YWTkxMdOnQwv9lPoGkaY8aMoXjx4jg6OtK4cWMOHz6cIpZHzQlKOKccHByoVasWGzduTHHfmJgYPv74Y6pXr46bmxtOTk40aNCAtWvXmvcJDQ3Fy8sLgNGjR6c6JOzYsWN07NgRT09P7O3tqVGjBkuWLLE4VmxsLKNHj6ZcuXLY29tToEAB6tev/8hhUqB+tiVLlgRUUmowGPD19TVv37t3L61bt8bV1RVnZ2eaNm3Ktm3bUn3N169fz4ABAyhUqNBTX7374YcfqFixInZ2dhQtWpQ333yTu3fvWuyTMMRz9+7dBAYG4uDgQKlSpZg6dWq6jxcXF0eXLl1YvHgxU6ZMoU+fPk8Vf0b4+PhgZfXkt20LFizAaDTSt29f8zp7e3tee+01tm7dav7fERYWxurVq+nevbs5AQKVMDk7OzN//vzMfxJC5CByJUgIHZQsWZKtW7dy6NChJ87DGDt2LCNGjKBTp068/vrr3Lhxg8mTJ9OwYUP27t1rTqT+/PNPIiIi6N+/PwUKFGDHjh1MnjyZixcv8ueff1o8ZlxcHC1btqR+/fp8/fXXODo6AvDaa68xa9YsWrduzeuvv05cXBwbN25k27ZtFnMANm3aREhICAMGDMDFxYVJkybx4osvcv78eQoUKPDUr8+UKVOoWLEizz//PNbW1vz9998MGDAAk8nEm2++CcCECRN4++23cXZ2NicihQsXBtTQoUaNGnHp0iX69etHiRIl2LJlC8OHD+fKlStMmDDB4nhz5szh/v379OvXD4PBwJdffklwcDBnzpzBxsYGgAMHDtCgQQNsbGzo27cvvr6+nD59mr///puxY8cSFBSEj48Pv//+Ox06dLB4/N9//50yZcpQt27dVJ9vjRo1KF26NPPnz6dnz54W2+bNm4eHhwctW7YE4I033mDBggW89dZbVKhQgVu3brFp0yaOHj3Ks88++8TXtlSpUvTo0YMZM2YwbNiwTL0a1LlzZwICAvjiiy9YunQpY8aMwdPTk2nTptGkSRPGjRvH77//ztChQ6lZsyYNGzZ85GMtX76cuLg4XnnllTQde+fOnWzZsoUuXbpQvHhxQkNDmTJlCkFBQRw5csR8jid4++238fDwYOTIkYSGhjJhwgTeeust5s2bZ97n448/ZsyYMbRp04Y2bdqwZ88eWrRoQUxMzBPj+emnn+jXrx+BgYEMGjSIM2fO8Pzzz+Pp6YmPj495v7CwMH788Ue6du1Knz59uH//Pj/99BMtW7Zkx44dVKtWDS8vL6ZMmUL//v3p0KEDwcHBQOKQsMOHD1OvXj2KFSvGsGHDcHJyYv78+bzwwgssXLjQfD6OGjWKzz//nNdff51atWoRFhbGrl272LNnT4orMAmCg4Nxd3dn8ODBdO3alTZt2uDs7Gw+boMGDXB1deW9997DxsaGadOmERQUxPr166ldu7bFYw0YMAAvLy8+/vhjHjx48MTX8FFGjRrF6NGjadasGf379+f48eNMmTKFnTt3snnzZvPvLMCdO3do06YNnTp1omvXrsyfP5/+/ftja2ub5qFscXFxdO3alUWLFvH999/Tr1+/NMd68+bNNO3n4uKCnZ1dmh/3cfbu3Yufn59FYgNQq1YtQA2B8/Hx4eDBg8TFxaWY32Vra0u1atXYu3dvpsQjRI6lCSGy3apVqzSj0agZjUatbt262nvvvaetXLlSi4mJsdgvNDRUMxqN2tixYy3WHzx4ULO2trZYHxERkeI4n3/+uWYwGLRz586Z1/Xs2VMDtGHDhlns+99//2mA9s4776R4HJPJZL4NaLa2ttqpU6fM6/bv368B2uTJkx/7vM+ePasB2ldfffXY/VJ7Li1bttRKly5tsa5ixYpao0aNUuz76aefak5OTtqJEycs1g8bNkwzGo3a+fPnLeIpUKCAdvv2bfN+ixcv1gDt77//Nq9r2LCh5uLiYvFaaprlazN8+HDNzs5Ou3v3rnnd9evXNWtra23kyJGPfc7Dhw/XbGxsLOKIjo7W3N3dtVdffdW8zs3NTXvzzTcf+1ipmTlzpgZoO3fu1E6fPq1ZW1tb/KwbNWqkVaxY0fx9wmszc+bMFI8FWDyfkSNHaoDWt29f87q4uDitePHimsFg0L744gvz+jt37mgODg5az549Hxvv4MGDNUDbu3dvmp5faufM1q1bNUD79ddfzesSXodmzZpZ/OwGDx6sGY1G88/u+vXrmq2trfbcc89Z7PfBBx9ogEX8a9eu1QBt7dq1mqZpWkxMjFaoUCGtWrVqWnR0tHm/6dOna4DFORsXF2exj6ap16hw4cIWP/cbN26keN0TNG3aVKtcubIWFRVlXmcymbTAwECtXLly5nVVq1bVnnvuuRT3f5JH/d6+8MILmq2trXb69GnzusuXL2suLi5aw4YNzesSXvP69etrcXFx6Tr2n3/+afHaJvxcWrRoocXHx5v3++677zRA+/nnn83rGjVqpAHa+PHjzeuio6O1atWqaYUKFUrx9za5hJ9ryZIlNUD7/vvv0xW7pqnflbQsqf2ePc6j/vYlbGvSpEmK9YcPH9YAberUqZqmJb62GzZsSLHvSy+9pBUpUiRdMQmR28hwOCF00Lx5c7Zu3crzzz/P/v37+fLLL2nZsiXFihWzGMISEhKCyWSiU6dO3Lx507wUKVKEcuXKWQyZcXBwMN9+8OABN2/eJDAwEE3TUv1Er3///hbfL1y4EIPBwMiRI1PsazAYLL5v1qwZZcqUMX9fpUoVXF1dOXPmTPpfjFQkfS737t3j5s2bNGrUiDNnznDv3r0n3v/PP/+kQYMGeHh4WLxuzZo1Iz4+ng0bNljs37lzZzw8PMzfN2jQAMD8fG7cuMGGDRt49dVXKVGihMV9k742PXr0IDo62qKa1Lx584iLi6N79+6Pjblz587ExsYSEhJiXrdq1Sru3r1L586dzevc3d3Zvn07ly9ffuLr8CilS5fmlVdeYfr06Vy5ciXDj5Nc0gntRqORGjVqoGmaxdwJd3d3ypcv/8RzJSwsDFCfkKdF0nMmNjaWW7duUbZsWdzd3VMdKti3b1+Ln12DBg2Ij4/n3LlzAPz777/ExMTw9ttvW+yX2tC85Hbt2sX169d54403LIol9OrVCzc3N4t9jUajeR+TycTt27fNn86nZYjj7du3+e+//+jUqRP37983n+u3bt2iZcuWnDx50lwN0N3dncOHD3Py5MknPu6TxMfHs2rVKl544QVKly5tXu/t7U23bt3YtGmT+WeYoE+fPhiNxqc6bsLPZdCgQRZDw/r06YOrqytLly612N/a2triyo2trS39+vXj+vXr7N69O03HvHbtGtbW1pQqVSrd8a5evTpNS8KV3swQGRmZ6lWlhHlrCUOkE74+at/kQ6mFyGtkOJwQOqlZsyYhISHExMSwf/9+Fi1axLfffkvHjh3Zt28fFSpU4OTJk2iaRrly5VJ9jKTDPs6fP8/HH3/MkiVLuHPnjsV+yRMHa2vrFGPyT58+TdGiRfH09Hxi7MkTAQAPD48Ux82ozZs3M3LkSLZu3UpERITFtnv37qV4I5ncyZMnOXDggHkeRXLJi08kfz4JCVHC80l4w/6koYv+/v7UrFmT33//3fzG//fff6dOnTqULVv2sfetWrUq/v7+zJs3z3zfefPmUbBgQZo0aWLe78svv6Rnz574+PhQvXp12rRpQ48ePSzeiKbFRx99xG+//cYXX3zBxIkT03XfR0n+Orq5uWFvb0/BggVTrH9SdauEoTz3799P07EjIyP5/PPPmTlzJpcuXULTNPO21BLnJ/3ME5Kh5L97Xl5eFglzah51Xxsbm1R/Tr/88gvjx4/n2LFjxMbGmten5U33qVOn0DSNESNGMGLEiFT3uX79OsWKFeOTTz6hffv2+Pn5UalSJVq1asUrr7ySoUprN27cICIigvLly6fYFhAQgMlk4sKFC1SsWDFdz+dJEl7b5Me1tbWldOnS5u0JihYtmqIAg5+fH6DmWtWpU4erV69abHdzc7NIqr/88ksmTJhAx44dWbVqFfXq1UtzvM2aNUvzvpnFwcGB6OjoFOujoqLM25N+fdS+SV8DIfIiSYKE0JmtrS01a9akZs2a+Pn50bt3b/78809GjhyJyWTCYDCwfPnyVD9BTRibHx8fT/Pmzbl9+zbvv/8+/v7+ODk5cenSJXr16mVRDADUJ39pmWD7KI/6NDfpG8+MOn36NE2bNsXf359vvvkGHx8fbG1tWbZsGd9++22K55Iak8lE8+bNee+991LdnvAmKEFmPp8ePXowcOBALl68SHR0NNu2beO7775L0307d+7M2LFjuXnzJi4uLixZsoSuXbtibZ34p7pTp040aNCARYsWsWrVKr766ivGjRtHSEgIrVu3TnOcpUuXpnv37kyfPp1hw4al2J786l+C+Pj4Rz5maq9jRl9bf39/QPXTqlat2mP3BTXHZ+bMmQwaNIi6deuam3p26dIl1XMmK8/h9Jg9eza9evXihRde4N1336VQoUIYjUY+//xzTp8+/cT7Jzy3oUOHPvJqQkIC3rBhQ06fPs3ixYtZtWoVP/74I99++y1Tp061uIqXVXLqm2pvb2+L72fOnGlRdt/b25vVq1dTv359nnvuOdavX0/VqlXT9NjJE6xHSZ54PQ1vb+9Ue4ElXPVNmAeY8LxTuxp85cqVHF89UoinJUmQEDlIwgTVhH9KZcqUQdM0SpUqleKNe1IHDx7kxIkT/PLLL/To0cO8/nFVn5IrU6YMK1eu5Pbt22m6GpRV/v77b6Kjo1myZInFp/VJh/4leNQb9TJlyhAeHp5pn8ImfHp/6NChJ+7bpUsXhgwZwty5c4mMjMTGxsZiONvjdO7cmdGjR7Nw4UIKFy5MWFgYXbp0SbGft7c3AwYMYMCAAVy/fp1nn32WsWPHpisJAnU1aPbs2YwbNy7FtoSrHckrbiX/pD2rtG7dGqPRyOzZs9NUHGHBggX07NnTovJcVFRUivjTKqEi2smTJy2u3ty4ceOJVzyT3jfpVbzY2FjOnj1r8QZ6wYIFlC5dmpCQEIvzOfmw1Eed6wmx2djYpOl89/T0pHfv3vTu3Zvw8HAaNmzIqFGj0p0EeXl54ejoyPHjx1NsO3bsGFZWVhYFIDJLwmt7/Phxi59LTEwMZ8+eTfEaXL58OUU57hMnTgCYq9wl/zuZ9OpVgtKlS7Ny5UoaNWpEy5Yt2bhx4yOv0CeVPMF6lOSJ19OoVq0aa9euJSwszKI4wvbt283bQV3Ztra2ZteuXXTq1Mm8X0xMDPv27bNYJ0ReJHOChNDB2rVrU/3EedmyZUDiUI/g4GCMRiOjR49Osb+maeYhRQmfaifdR9O0dA1zevHFF9E0zdyQMfmxsktqz+XevXvMnDkzxb5OTk6pvsnt1KkTW7duZeXKlSm23b17l7i4uHTF5OXlRcOGDfn55585f/68xbbkr03BggVp3bo1s2fP5vfff6dVq1YphoM9SkBAAJUrV2bevHnMmzcPb29viwpq8fHxKYZ2FSpUiKJFi6Y6pOVJypQpQ/fu3Zk2bVqKT6xdXV0pWLBgivlTP/zwQ7qPkxE+Pj7mXiWpNXY1mUyMHz+eixcvAuq8Sf6zmDx58mOvXD1Os2bNsLGxYfLkyRaPm7yyYGpq1KiBl5cXU6dOtagkN2vWrBTna2rn+/bt21OUU0+obpf8/oUKFSIoKIhp06al+ol+0rLfyYcgOjs7U7Zs2QydO0ajkRYtWrB48WKLMuTXrl1jzpw51K9fP0V1sszQrFkzbG1tmTRpksVr9tNPP3Hv3j2ee+45i/3j4uKYNm2a+fuYmBimTZuGl5cX1atXNz9m0uVRiUvlypVZunQp4eHhNG/ePNWrLcnpMSeoY8eOxMfHM336dPO66OhoZs6cSe3atc3JqZubG82aNWP27NkWw05/++03wsPDeemllzItJiFyIrkSJIQO3n77bSIiIujQoQP+/v7ExMSwZcsW5s2bh6+vL7179wbUm9QxY8YwfPhwQkNDeeGFF3BxceHs2bMsWrSIvn37MnToUPz9/SlTpgxDhw7l0qVLuLq6snDhwnTN0WncuDGvvPIKkyZN4uTJk7Rq1QqTycTGjRtp3LhxpnaKX7NmjXl8elIvvPACLVq0wNbWlnbt2tGvXz/Cw8OZMWMGhQoVSvEmr3r16kyZMoUxY8ZQtmxZChUqRJMmTXj33XdZsmQJbdu2pVevXlSvXp0HDx5w8OBBFixYQGhoaJoTkwSTJk2ifv36PPvss/Tt25dSpUoRGhrK0qVL2bdvn8W+PXr0oGPHjgB8+umn6TpO586d+fjjj819PZIOW7x//z7FixenY8eOVK1aFWdnZ/7991927tyZpt47qfnwww/57bffOH78eIpPwF9//XW++OILXn/9dWrUqMGGDRvMn6Jnh/Hjx3P69GneeecdQkJCaNu2LR4eHpw/f54///yTY8eOma+UtW3blt9++w03NzcqVKjA1q1b+ffffzNcst3Ly4uhQ4fy+eef07ZtW9q0acPevXtZvnz5E88dGxsbxowZQ79+/WjSpAmdO3fm7NmzzJw5M8WcoLZt2xISEkKHDh147rnnOHv2LFOnTqVChQqEh4eb93NwcKBChQrMmzcPPz8/PD09qVSpEpUqVeL777+nfv36VK5cmT59+lC6dGmuXbvG1q1buXjxIvv37wegQoUKBAUFUb16dTw9Pdm1a5e53HpGjBkzxjxMbMCAAVhbWzNt2jSio6P58ssvM/SYT+Ll5cXw4cMZPXo0rVq14vnnn+f48eP88MMP1KxZM0UBkqJFizJu3DhCQ0Px8/Nj3rx57Nu3j+nTp1vMqUyrunXrEhISQrt27WjevDkbN2587DmWmXOCNmzYYP5Q4saNGzx48IAxY8YAaqhjwgcmtWvX5qWXXmL48OFcv36dsmXL8ssvvxAaGspPP/1k8Zhjx44lMDCQRo0a0bdvXy5evMj48eNp0aIFrVq1yrTYhciRsrESnRDioeXLl2uvvvqq5u/vrzk7O2u2trZa2bJltbffflu7du1aiv0XLlyo1a9fX3NyctKcnJw0f39/7c0339SOHz9u3ufIkSNas2bNNGdnZ61gwYJanz59zKWrk5Zf7dmzp+bk5JRqXHFxcdpXX32l+fv7a7a2tpqXl5fWunVrbffu3eZ9gFRLNJcsWfKJZY8TSu0+avntt980TdO0JUuWaFWqVNHs7e01X19fbdy4cdrPP/+sAdrZs2fNj3f16lXtueee01xcXFKUHr5//742fPhwrWzZspqtra1WsGBBLTAwUPv666/NpXEfV7KbVMoRHzp0SOvQoYPm7u6u2dvba+XLl9dGjBiR4r7R0dGah4eH5ubmpkVGRj72NUnu5MmT5tdj06ZNKR733Xff1apWraq5uLhoTk5OWtWqVbUffvjhiY+btER2cgll05OWyNY0VXb6tdde09zc3DQXFxetU6dO2vXr1x9ZIvvGjRspHje1cy15Oe7HiYuL03788UetQYMGmpubm2ZjY6OVLFlS6927t0X57Dt37mi9e/fWChYsqDk7O2stW7bUjh07luK8fNTrkLzMtaZpWnx8vDZ69GjN29tbc3Bw0IKCgrRDhw6leMzU7qtpmvbDDz9opUqV0uzs7LQaNWpoGzZs0Bo1amRxnppMJu2zzz7TSpYsqdnZ2WnPPPOM9s8//2g9e/bUSpYsafF4W7Zs0apXr67Z2tqm+BmcPn1a69Gjh1akSBHNxsZGK1asmNa2bVttwYIF5n3GjBmj1apVS3N3d9ccHBw0f39/bezYsU8sFf2435M9e/ZoLVu21JydnTVHR0etcePG2pYtWyz2edy59yTJS2Qn+O677zR/f3/NxsZGK1y4sNa/f3/tzp07FvsknGe7du3S6tatq9nb22slS5bUvvvuuzQdO+Hn+ueff6bYNm/ePM3KykqrWbOmFhYWlu7nlREJv2epLcn/VkVGRmpDhw7VihQpotnZ2Wk1a9bUVqxYkerjbty4UQsMDNTs7e01Ly8v7c0338y25ySEngyals2zQIUQIo+Li4ujaNGitGvXLsUnr0KI7BEUFMTNmzfTNJdPCJH/yJwgIYTIZH/99Rc3btywKFIhhBBCiJxD5gQJIUQm2b59OwcOHODTTz/lmWeeoVGjRnqHJIQQQohUyJUgIYTIJFOmTKF///4UKlSIX3/9Ve9whBBCCPEIMidICCGEEEIIka/IlSAhhBBCCCFEviJJkBBCCCGEECJfydWFEUwmE5cvX8bFxQWDwaB3OEIIIYQQQgidaJrG/fv3KVq0qEWz8dTk6iTo8uXL+Pj46B2GEEIIIYQQIoe4cOECxYsXf+w+uToJcnFxAdQTdXV1zfLjxcbGsmrVKlq0aIGNjU2WH0/kHXLuiIyQ80ZkhJw3IqPk3BEZkZPOm7CwMHx8fMw5wuPk6iQoYQicq6trtiVBjo6OuLq66v5DFrmLnDsiI+S8ERkh543IKDl3REbkxPMmLdNkpDCCEEIIIYQQIl+RJEgIIYQQQgiRr0gSJIQQQgghhMhXcvWcICGEEEIIkXfFx8cTGxurdxjiMWJjY7G2tiYqKor4+PgsPZbRaMTa2jpTWuNIEiSEEEIIIXKc8PBwLl68iKZpeociHkPTNIoUKcKFCxeypW+no6Mj3t7e2NraPtXjSBIkhBBCCCFylPj4eC5evIijoyNeXl7Z8uZaZIzJZCI8PBxnZ+cnNih9GpqmERMTw40bNzh79izlypV7quNJEiSEEEIIIXKU2NhYNE3Dy8sLBwcHvcMRj2EymYiJicHe3j5LkyAABwcHbGxsOHfunPmYGSWFEYQQQgghRI4kV4BEcpmVaEkSJIQQQgghhMhXJAkSQgghhBBC5CuSBAkhhBBCiDwpPh7WrYO5c9XXLK7gDKgJ/H379sXT0xODwYC7uzuDBg3K+gOLdJEkSAghhBBC5DkhIeDrC40bQ7du6quvr1qflVasWMGsWbP4559/uHLlCpUqVcr0YwQFBaVIrG7dukWrVq0oWrQodnZ2+Pj48NZbbxEWFmbeJyQkhObNm+Pl5YWrqyt169Zl5cqVmR5fbiBJkBBCCCGEyFNCQqBjR7h40XL9pUtqfVYmQqdPn8bb25vAwECKFCmCtXX2FGO2srKiffv2LFmyhBMnTjBr1iz+/fdf3njjDfM+GzZsoHnz5ixbtozdu3fTuHFj2rVrx969e7MlxpxEkiAhhBC5iykerq2D0LnqqykbxrcIIXSlafDgQdqWsDB45x11n9QeB2DgQLVfWh4vPb1ae/Xqxdtvv8358+cxGAz4+vqm2OfOnTv06NEDDw8PHB0dad26NSdPnjRvv3XrFl27dqVYsWI4OjpSuXJl5s6da3GM9evXM3HiRAwGAwaDgdDQUDw8POjfvz81atSgZMmSNG3alAEDBrBx40bzfSdMmMB7771HzZo1KVeuHJ999hnlypXj77//TtPzW7FiBfXr18fd3Z0CBQrQtm1bTp8+bd4eGhqKwWAgJCSExo0b4+joSNWqVdm6dat5n1mzZuHu7s7KlSsJCAjA2dmZVq1aceXKlbS/0JlAkiAhhBC5x4UQWOILaxrDlm7q6xJftV4IkWdFRICzc9oWNzd1xedRNE1dIXJzS9vjRUSkPc6JEyfyySefULx4ca5cucLOnTtT7NOrVy927drFkiVL2Lp1K5qm0aZNG2JjYwGIioqievXqLF26lEOHDtG3b19eeeUVduzYYT5G3bp16dOnD1euXOHKlSv4+PikOM7ly5cJCQmhUaNGj4zXZDJx//59PD090/T8Hjx4wJAhQ9i1axdr1qzBysqKF198EZPJZLHfhx9+yNChQ9m3bx9+fn507dqVuLg48/aIiAi+/vprfvvtNzZs2MD58+cZOnRommLILNIsVQghRO5wIQQ2dgSSfSwbcUmtb7AAfIJ1CU0IIQDc3NxwcXHBaDRSpEiRFNtPnjzJkiVL2Lx5M4GBgQD8/vvv+Pj48Ndff/HSSy9RrFgxi4Tg7bffZuXKlcyfP59atWrh5uaGra0tjo6OqR6ja9euLF68mMjISNq1a8ePP/74yHi//vprwsPD6dSpU5qe34svvmjx/c8//4yXlxfHjh2jTp065vVDhw7lueeeA2D06NFUrFiRU6dO4e/vD6hmuFOnTqVMmTIAvPXWW3zyySdpiiGzyJUgIYQQOZ8pHnYPJEUCBInrdg+SoXFC5FGOjhAenrZl2bK0PeayZWl7PEfHzHseR48exdramtq1a5vXFShQgPLly3P06FEA4uPj+fTTT6lcuTKenp44OzuzcuVKzp8/n6ZjfPvtt+zZs4fFixdz+vRphgwZkup+c+bMYfTo0cyfP59ChQql6bFPnjxJ165dKV26NK6urubhfheTTb6qUqWK+ba3tzcA169fN69zdHQ0J0AJ+yTdnh3kSpAQQoic78ZGiLj4mB00iLig9isclF1RCSGyicEATk5p27dFCyheXA2JS20+j8GgtrdoAUZj5saZGb766ismTpzIhAkTqFy5Mk5OTgwaNIiYmJg03b9IkSIUKVIEf39/PD09adCgASNGjDAnIwB//PEHr7/+On/++SfNmjVLc2zt2rWjZMmSzJgxg6JFi2IymahUqZJ5KF8CGxsb822DwQBgMWQu6faEfbT0TL7KBHIlSAghRM4XmcYJs2ndTwiRZxmNMHGiuv3w/bdZwvcTJuiTAAUEBBAXF8f27dvN627dusXx48epUKECAJs3b6Z9+/Z0796dqlWrUrp0aU6cOGHxOLa2tsSnoelRQuIRHR1tXjd37lx69+7N3LlzzUPW0iIhzo8++oimTZsSEBDAnTt30nz/nEaSICGEEDmfg/eT90nPfkKIPC04GBYsgGLFLNcXL67WB+s0fbBcuXK0b9+ePn36sGnTJvbv30/37t0pVqwY7du3N++zevVqtmzZwtGjR+nXrx/Xrl2zeBxfX1+2b99OaGgoN2/exGQysWzZMmbOnMmhQ4cIDQ1l6dKlvPHGG9SrV888bG3OnDn06NGD8ePHU7t2ba5evcrVq1e5d+/eE2P38PCgQIECTJ8+nVOnTvHff/89cqhdbiBJkBBCiJzPqwHYFXzCTlZgyIFjW4QQuggOhtBQWLsW5sxRX8+e1S8BSjBz5kyqV69O27ZtqVu3LpqmsWzZMvMQsY8++ohnn32Wli1bEhQURJEiRXjhhRcsHmPo0KEYjUYqVKiAl5cX58+fx8HBgRkzZlC/fn0CAgIYPHgwzz//PP/884/5ftOnTycuLo4333wTb29v8zJw4MAnxm1lZcUff/zB7t27qVSpEoMHD+arr77K1NcmOxm07B6Al4nCwsJwc3Pj3r17uLq6ZvnxYmNjWbZsGW3atEkxllGIx5FzR2SEnDdJRF6Df8pDbGqfVhowF0ewsoWaU6DMq9kZXY4i543IqJx07kRFRXH27FlKlSqFvb29rrGIxzOZTISFheHq6oqVVdZfX3ncuZGe3ECuBAkhhMjZNBNsfUUlQI4+4JBsfItjcag7G3xeBFMMbH8Ndg8GU1zqjyeEECLfk+pwQgghcrYj4+DqajA6QOMV4FJeVYGLvKLmAHk1ACsj+HaFQ5/CwVFwfALcOwz1/gC7tDUBFEKI/Oz8+fPm4gypOXLkCCVKlMjGiLKWJEFCCCFyrhub4cAIdbvGd+D28B90amWwDVZQeSS4VYKtPVTitLI2NFoCbgHZFrIQQuRGRYsWZd++fY/dnpdIEiSEECJnir4Nm7uCFg8lu0Hp3mm7X4kXwaUsbGgP4adUIlRvDhRrm7XxCiFELmZtbU3ZsmX1DiPbyJwgIYQQOY+mwfZXVQNU57JQa2rKhh+P41EVWu6EQo0g7j6sf14Nq8u9tYCEEEJkIkmChBBC5DwnJsPFxaraW/15YOOS/sew94Imq6HsG4AG+4bBlu4QF5np4QohhMhdJAkSQgiRs9zeA3vfVbef+Ro8n834Y1nZQK0pUPMHMFjDuTnwbwOIuJg5sQohhMiVJAkSQgiRc8Teh02dVanr4i+A31uZ87jl+kOTf8GuANzeDStqwI2tmfPYQgghch1JgoQQQuQMmgY73lDFDBxLQO2f0jcP6EkKN1LzhNwrQ9Q1WBMEZ2Zl3uMLIYTINSQJEkIIkTOcmamGqxmMUG9u1vT3cS4FzbdA8Q7qatO23rB7iDRWFSKvMsXDtXUQOld9NcXrHVGGzZo1C3d3d73DyDMkCRJCCKG/e0dg18Ohb1U+Ba/ArDuWjTM0WACVRqrvj38L69pAzJ2sO6YQIvtdCIElvrCmMWzppr4u8VXrRb4nSZAQQgh9xUWoeUDxkVCkOVR4P+uPabCCKqOg/p9gdFSNVVfUgntHs/7YQoisdyEENnZMWQQl4pJan08ToZiYGL1DyDEkCRJCCKGv3YPg3iGwLwx1f1MJSnYp0RFabFZzkMJPwao6cGlZ9h1fCJE2mgZxD9K2xITBrneA1PqCPVy3a6DaLy2Pl87+YgsWLKBy5co4ODhQoEABmjVrxoMHDwD4+eefqVixInZ2dnh7e/PWW4nFX7755hsqV66Mk5MTPj4+DBgwgPDw8Ece5/Tp07Rv357ChQvj7OxMzZo1+ffffy328fX15dNPP6VHjx64urrSt2/fdD2XvMxa7wCEEELkY+fmwekZgAECZ4ND4eyPwaMatNqpPh2+sRHWt4Vqn0PAe5lbmEEIkXHxETDfOZMeTIPIi7DALW27dwoHa6c07XrlyhW6du3Kl19+SYcOHbh//z4bN25E0zSmTJnCkCFD+OKLL2jdujX37t1j8+bN5vtaWVkxadIkSpUqxZkzZxgwYADvvfceP/zwQ6rHCg8Pp02bNowdOxY7Ozt+/fVX2rVrx/HjxylRooR5v6+//pqPP/6YkSNHpu355hOSBAkhhNDH/dOwvY+6XfEDKNJMv1jsC6kS2rvfgVPTVGPVOweg9o9g7aBfXEKIXOXKlSvExcURHBxMyZIlAahcuTIAY8aM4X//+x8DBw4071+zZk3z7UGDBplv+/r6MmbMGN54441HJkFVq1alatWq5u8//fRTFi1axJIlSyyuMDVp0oT//e9/mfL88hJJgoQQQmS/+BjY3AXi7oNXfag8Su+IwGgLtaaCR1XY9baqVHf/BDT8CxyL6R2dEPmb0VFdkUmL6xtUsZMnCVoGhRqm7dhpVLVqVZo2bUrlypVp2bIlLVq0oGPHjsTGxnL58mWaNm36yPv++++/fP755xw7doywsDDi4uKIiooiIiICR8eUMYSHhzNq1CiWLl1qTr4iIyM5f/68xX41atRIc/z5icwJEkIIkf32DYPbu8DWEwLngFUO+kyuXH9osvphY9VdqrHqzW16RyVE/mYwqCFpaVmKtADH4sCjhrMawNFH7ZeWx0vHsFij0cjq1atZvnw5FSpUYPLkyZQvX55r16499n6hoaG0bduWKlWqsHDhQnbv3s33338PPLqYwdChQ1m0aBGfffYZGzduZN++fVSuXDnF/k5OaRvKl99IEiSEECJ7XfpHlaUGqDMTnHz0jSc1hRurxqpulSDqKvzbCM78ondUQoi0sDJC9YkPv0mewDz8vvoEtV8WMBgM1KtXj9GjR7N3715sbW1ZvXo1vr6+rFmzJtX77N69G5PJxPjx46lTpw5+fn5cvnz5scfZvHkzvXr1okOHDlSuXJkiRYoQGhqaBc8ob5IkSAghRPaJuAhbe6rb5QdC8ef1jedxnEtBiy1Q/IWHjVV7wZ7/SWNVIXIDn2DVDyz5UFbH4mq9T3CWHHb79u189tln7Nq1i/PnzxMSEsKNGzcICAhg1KhRjB8/nkmTJnHy5En27NnD5MmTAShbtiyxsbFMnjyZM2fO8NtvvzF16tTHHqtcuXKEhISwb98+9u/fT7du3TCZTFnyvPKiHDT+QAghRJ5mioPN3SDmNng8C9XG6R3Rk9m4QIOFcHAUHPoUjn0D9w5Dvblg66F3dEKIx/EJhmLtVdXHyCvg4A1eDbLsChCAq6srGzZsYMKECYSFhVGyZEnGjx9P69atAYiKiuLbb79l6NChFCxYkI4dOwJqLtE333zDuHHjGD58OA0bNuTzzz+nR48ejzzWN998w6uvvkpgYCAFCxbk/fffJywsLMueW15j0LR0Fj/PQcLCwnBzc+PevXu4urpm+fFiY2NZtmwZbdq0wcbGJsuPJ/IOOXdERuS582b/CDg8BqxdoPUecCmrd0Tpc/5P2NpLlep1KQcNl4Cbv95RpZDnzhuRbXLSuRMVFcXZs2cpVaoU9vb2usYiHs9kMhEWFoarqytWVlk/yOxx50Z6cgMZDieEECLrXV0Dh8eq27Wm574ECKDES4mNVe+fhFW14fJyvaMSQgiRAZIECSGEyFqR12BLd0CDMq+Dbxe9I8q4hMaqXvUhNgzWPQdHvkp3R3khhBD6kiRICCFE1tFMsLWHqrDmVjFJxaZczL4QNFkDZfoAGux7Tz3HuEi9IxNCCJFGkgQJIYTIOke/gqurwOgA9eaBddqbDuZoRluoNQ1qfAcGI4TOVmW0Iy7pHZkQQog0kCRICCFE1rixFfZ/qG5XnwTuFfWNJ7MZDOD3JjRepZq+3t4JK2vCze16RyaEEOIJJAkSQgiR+WLuwOYuoMVDyS5Q5jW9I8o6RZqoeUJuFVUZ3n8bwZlf9Y5KCCHEY0gSJIQQInNpGmx7DSLOg3MZNWzMkLxrex7jXBpabIXi7cEUDdt6wp6hYIrXOzIhhBCpkCRICCFE5jrxPVxcBFY2UH8e2GR9H7ccwcYFGoRAxY/U98fGw/q2EHNX17CEEEKkJEmQEEKIzHN7L+z9n7pd7SvwrK5vPNnNYAVVP1VFIIwOcGUFrKwNYcf1jkwIIUQSkgQJIYTIHLH3YXNnMMVAseeh/Dt6R6Sfkp2g+WZw9IH7J1QiJI1Vhch+8fGwbh3Mnau+xmftENWgoCAGDRr0yO2+vr5MmDAhS2MQaSNJkBBCiKenabBzANw/CY7Foc7PeX8e0JN4PgMtd4JXPYi9p4bGHR0vjVWFyC4hIeDrC40bQ7du6quvr1qvk507d9K3b1/dji8SSRIkhBDi6Z39RfXKMRghcC7YFdA7opzBoTA0+U9Vx9NMsHcobO0J8VF6RyZE3hYSAh07wsWLlusvXVLrdUqEvLy8cHTM2n5pMTExWfr4eYUkQUIIIZ7OvaOw8011u/JoKFRf33hyGqMt1JqheiUZjBD628PGqpf1jkyI3EPT4MGDtC1hYfDOO6lfdU1YN3Cg2i8tj5fOq7dxcXG89dZbuLm5UbBgQUaMGIH28DGSD4czGAz8+OOPdOjQAUdHR8qVK8eSJUvM2+Pj43nttdcoVaoUDg4OlC9fnokTJ1ocr1evXrzwwguMHTuWokWLUr58eT755BMqVaqUIrZq1aoxYsSIdD2fvMpa7wCEEELkYnGRah5QfAQUbgoVhukdUc5kMED5t8GtAmzqBLd2wMoa0OAvKFhL7+iEyPkiIsDZOXMeS9PUFSI3t7TtHx4OTk5pfvhffvmF1157jR07drBr1y769u1LiRIl6NOnT6r7jx49mi+//JKvvvqKyZMn8/LLL3Pu3Dk8PT0xmUwUL16cP//8kwIFCrBlyxb69u2Lt7c3nTp1Mj/GmjVrcHV1ZfXq1QC4ubkxevRodu7cSc2aNQHYu3cvBw4cIETH4YA5iVwJEkIIkXF7BsPdg2BfCAJng5VR74hytiJNoeUOlQxFXoF/G8LZ2XpHJYTIRD4+Pnz77beUL1+el19+mbfffptvv/32kfv36tWLrl27UrZsWT777DPCw8PZsWMHADY2NowePZoaNWpQqlQpXn75ZXr37s38+fMtHsPJyYkff/yRihUrUrFiRYoXL07Lli2ZOXOmeZ+ZM2fSqFEjSpcunTVPPJeRJEgIIUTGnP8TTk0DDFB3NjgU0Tui3MGljGqsWqydaqy69RXY+540VhXicRwd1RWZtCzLlqXtMZctS9vjpXMOT506dTAkKQxTt25dTp48SfwjKtNVqVLFfNvJyQlXV1euX79uXvf9999TvXp1vLy8cHZ2Zvr06Zw/f97iMSpXroytra3Fuj59+jB37lyioqKIiYlhzpw5vPrqq+l6LnmZDIcTQgiRfuFnYPvr6naFYeDdXN94chsbV2j4Fxz4GA6PhaNfwd1DUG8O2LrrHZ0QOY/BkPYhaS1aQPHiqghCavN5DAa1vUULMOp/9drGxsbie4PBgMlkAuCPP/5g6NChjB8/nrp16+Li4sJXX33F9u3bLe7jlMpr065dO+zs7Fi0aBG2trbExsbSsWPHrHsiuYwkQUIIIdInPgY2dYHYMCgYCFU+0Tui3MlgBVXHgHtl2NYbriyHVXWg4RJw9dM7OiFyL6MRJk5UVeAMBstEKOEKzYQJWZYAJU9Qtm3bRrly5TBm4HibN28mMDCQAQMGmNedPn06Tfe1tramZ8+ezJw5E1tbW7p06YKDg0O6Y8irZDicEEKI9Nn/AdzeCbYeUG8uWMnnaU+lZGdovkn1Vwo7DitrweWVekclRO4WHAwLFkCxYpbrixdX64ODs+zQ58+fZ8iQIRw/fpy5c+cyefJkBg4cmKHHKleuHLt27WLlypWcOHGCESNGsHPnzjTf//XXX+e///5jxYoVMhQuGfnPJYQQIu0uLYVj49Xt2j+DUwl948krPJ+FlrtgYzDc3ALr20C1r8B/sDSdFSKjgoOhfXvYuBGuXAFvb2jQIMuHwPXo0YPIyEhq1aqF0Whk4MCBGW6Q2q9fP/bu3Uvnzp0xGAx07dqVAQMGsHz58jTdv1y5cgQGBnL79m1q166doRjyKkmChBBCpE3EJdjWU932ext8XtA1nDzHoTA0/Q92vQmnf4K9/4O7+6HWNDDa6x2dELmT0QhBQdl2uHXr1plvT5kyJcX20NBQi++1VOYs3b1713zbzs6OmTNnWlR5A/j888/Nt2fNmvXIeDRN4/LlyxbD6YQiw+GEEEI8mSkOtnSD6Fvg8Qw885XeEeVNRjvLxqpnf4V/g1Q5bSGESIcbN27w3XffcfXqVXr37q13ODmOXAkSQgjxZIc+hesbwNoZ6s1Tb9ZF1jA3Vg142Fh1O6yooarJFaipd3RCiFyiUKFCFCxYkOnTp+Ph4aF3ODmOJEFCCCEe79palQSBGprlWk7fePKLIs1UY9UN7eHeEVjdAGr/BKVe1jsyIUQukNpQO5FIhsMJIYR4tKjrsOVlQIPSr4JvN70jyl9cyiZrrNod9r4vjVWFEOIpSRIkhBAidZoJtvZU81FcA6DGJL0jyp8SGqtW/EB9f/RL2PA8xNzTNSwhhMjNJAkSQgiRuqPj4coKVZms/nywTmO3dpH5DFZQdSwEzlE/j8vLVGPVsBN6RyaEELmSJEFCCCFSurlNNUUFqD4R3CvpG49QfLsmaax6DFbWhiur9I5KCCFyHUmChBBCWIq5C5u7ghYHJTpBmT56RySS8qwOLXdCwboQexfWtYZj34JMghZCiDTTNQmKj49nxIgRlCpVCgcHB8qUKcOnn34q1SyEEEIvmgbbX4cHoeBcGmpNVyWbRc7iUASaroXSvdXcrT1DYPurEB+td2RCCJEr6JoEjRs3jilTpvDdd99x9OhRxo0bx5dffsnkyZP1DEsIIfKvk1PgwkKwsoF6f4Ctm94RiUcx2qmS2c9OUHOGzsySxqpCJGOKNxG6LpSDcw8Sui4UU7wpy4+paRp9+/bF09MTg8GAu7s7gwYNyvLjivTRNQnasmUL7du357nnnsPX15eOHTvSokULduzYoWdYQgiRP93Zp64oAFQbJ405cwODAfwHQtAKsHGHW9uwXhOIe/wpvSMTQndHQ44y0XcivzT+hZBuIfzS+Bcm+k7kaMjRLD3uihUrmDVrFv/88w9XrlyhUqXMn1MZFBSUIrG6desWrVq1omjRotjZ2eHj48Nbb71FWFiYeZ+QkBCaN2+Ol5cXrq6u1K1bl5UrV6b5uL169cJgMFgsRqORjh07mvfx9fXFYDCwbds2i/sOGjSIoKAg8/ejRo3CYDDwxhtvWOy3b98+DAYDoaGhaY4rI3RtlhoYGMj06dM5ceIEfn5+7N+/n02bNvHNN9+kun90dDTR0YmX+hN+qLGxscTGxmZ5vAnHyI5jibxFzh2REdl63sSFY72xEwZTNCbvNsSXfhPkfM09CgZB081Yb34Rw/1j1OcD4s54Elu6u96RiVwkJ/2vio2NRdM0TCYTJlP6r94cDTnKgk4LINkMi7BLYczvOJ+O8zsSEByQSdFaOnXqFN7e3tSpUwcAa2tr83PJTKk9Zrt27fjkk0/w8vLi1KlTvP3229y6dYvff/8dgPXr19OsWTPGjBmDu7s7s2bNol27dmzdupVnnnkmTcds2bIlP//8s8W6pD8vAHt7e95//33Wrl1rsR9g3kfTNOzt7fnpp58YPHgw5cqVs9j+qJ+9yWQyH9NoNFpsS8+5q2sSNGzYMMLCwvD398doNBIfH8/YsWN5+eXUu2F//vnnjB49OsX6VatW4ejomNXhmq1evTrbjiXyFjl3REZkx3nzTPRESsSdJNJQgHX3uhCzfHmWH1NkPmvtY6obv6FI/C6Mu1/l5IF/OGLzMhiMT76zEA/lhP9V1tbWFClShPDwcGJiYtA0jbiIuDTd1xRvYvk7y1MkQIBaZ4AVA1dQsFZBrIxPHhRl7WiNIY1zIwcMGMDcuXMBMBqN+Pj4UKJECWJiYswf3t+9e5dhw4axYsUKYmJiCAwMZNy4cZQpUwaA27dv8+6777J161bu3r2Lr68vQ4YMMV9tGTBgAOvXr2f9+vVMmqT6t+3fv58SJUpYvIeuWbMmvXv3ZtKkSeZjJ38f/f777/PXX3+xcOFC8/EfJyHxSO199/379wGVpPTs2ZOZM2eyYMECWrRoAUBMTAxxcXHmWKKjoylbtixeXl4MGzaMmTNnAvDgwQMAwsPDLa5iJYiJiSEyMpINGzYQF2d5TkRERDzxOSTQNQmaP38+v//+O3PmzKFixYrs27ePQYMGUbRoUXr27Jli/+HDhzNkyBDz92FhYfj4+NCiRQtcXV2zPN7Y2FhWr15N8+bNsbGxyfLjibxDzh2REdl13hhCf8N651o0rLBp9CfNvOpn2bFE1ouNacuJZb3xi11IudgQyhSMIr72r6rpqhCPkZP+V0VFRXHhwgWcnZ2xt7cn5kEM44qPy5wH1yD8cjhTS05N0+7vh72PrZNtmvb9/vvv8ff3Z8aMGWzfvh2j0Ujnzp2xtbU1v1ft0aMHp06dYvHixbi6ujJs2DC6dOnCoUOHsLGx4f79+9SpU4cPP/wQV1dXli1bxhtvvEGlSpWoVasW33//PaGhoVSsWNGc1Hh5eaW4KnL58mWWL19OUFDQI98nm0wmHjx4gLe3d5reS9vY2GBtbW2xr6Zp3L9/HxcXFwwGA1ZWVpQvX55+/foxduxYgoODsbKywtbW1uK+dnZ2GI1GvvzyS2rXrs2JEyeoUaMGTk6qJ52zs3OqMUVFReHg4EDDhg2xt7e32JZa0vQouiZB7777rvkHD1C5cmXOnTvH559/nmoSZGdnh52dXYr1NjY22frLmt3HE3mHnDsiI7L0vAk7DnvfAcBQeRTWRRtnzXFEtjpq+wqln22P9a6+WF1ZhtV/DaDhYnAtp3doIhfICf+r4uPjzW+oExa9pOf4Hh4euLq6YjQaKVq0qHl9wnM5efIkf//9N5s3byYwMBCAOXPm4OPjw5IlS3jppZfw8fHh3XffNd/3nXfeYdWqVSxYsIA6derg4eGBra0tTk5OFsdI0LVrVxYvXkxkZCTt2rXjp59+emT8X3/9NeHh4XTu3DlNz9FgMLB06dIUycngwYMZPXq0+TEMBgMjRoxg1qxZzJ07l1deecV8NS3pPgA1atSgU6dODB8+nDVr1pi3P+p1t7KywmAwpHqepue81TUJioiISPHkjEZjpo+ZFEIIkYq4SNjUCeIeQOEmUPEDvSMSmUgr0QXcA2DDCxB2FFbWgvrzwbu53qEJkW42jjYMDx+epn3PbTjHnDZznrhft2XdKNmwZJqOnVmOHj2KtbU1tWvXNq8rUKAA5cuX5+hRVbAhPj6ezz77jPnz53Pp0iViYmKIjo5O89SPb7/9lpEjR3LixAnzKKoffvghxX5z5sxh9OjRLF68mEKFCqX5OTRu3JgpU6aYvzeZTKkmH15eXgwdOpSPP/6Yzp07P/Yxx4wZQ0BAAKtWrUpXLE9D1ySoXbt2jB07lhIlSlCxYkX27t3LN998w6uvvqpnWEIIkT/s/R/cPQB2XhA4G6xk3kieU6AGtNoJG4Lh1jZY1wqeGQ/lB0r/J5GrGAyGNA9JK9OiDK7FXQm7FJb6vCADuBZ3pUyLMmmaE5TdvvrqKyZOnMiECROoXLkyTk5ODBo0iJiYmDTdv0iRIhQpUgR/f388PT1p0KABI0aMwNvb27zPH3/8weuvv86ff/5Js2bN0hWfk5MTZcuWNX9vMpkeOQwtIQFLLQlLqkyZMvTp04dhw4bx008/pSuejNL1Jz958mQ6duzIgAEDCAgIYOjQofTr149PP/1Uz7CEECLvO79Q9QQCqPsbOHg/fn+Rezl4Q7N1ULrXw8aqg2H7a9JYVeRZVkYrWk1spb5Jnus//L7VhFa6JEABAQHExcWxfft287pbt25x/PhxKlSoAMDmzZtp37493bt3p2rVqpQuXZoTJ05YPI6trS3x8fFPPF7C6Kqk1ZXnzp1L7969mTt3Ls8991xmPK1HcnZ2ZsSIEYwdO9ZcOOFRPv74Y06cOMEff/yRpTEl0DUJcnFxYcKECZw7d47IyEhOnz7NmDFjsLVNW6YvhBAiA8LPqjfBABXeh6It9Y1HZD2jHdT+GZ795mFj1ZmwpjFEXtU7MiGyREBwAJ0WdMK1mOXcFdfirnRa0CnLymM/Sbly5Wjfvj19+vRh06ZN7N+/n+7du1OsWDHat29v3mf16tVs2bKFo0eP0q9fP65du2bxOL6+vmzfvp3Q0FBu3ryJyWRi2bJlzJw5k0OHDhEaGsrSpUt54403qFevHr6+voAaAtejRw/Gjx9P7dq1uXr1KlevXuXevXtpfg7R0dHm+yUst27deuT+ffv2xc3NjTlzHj9EsXDhwgwZMsRc8S6r5bxrgEIIIbKOKRY2d4XYe1CwLlSRK+/5hsEA/oMhaLlqrHpzK6ysCbd36x2ZEFkiIDiAgaED6bm2J8Fzgum5ticDzw7ULQFKMHPmTKpXr07btm2pW7cumqaxbNky87yajz76iGeffZaWLVsSFBREkSJFeOGFFyweY+jQoRiNRipUqICXlxfnz5/HwcGBGTNmUL9+fQICAhg8eDDPP/88//zzj/l+06dPJy4ujjfffBNvb2/zMnDgwDTHv2LFCov7FitWjNatWz9yfxsbGz799FOioqKe+NhDhw7F2dk5zbE8DYOW0LkoFwoLC8PNzY179+5lW4nsZcuW0aZNG92rpojcRc4dkRFZct7sfQ+OfqXeBLfZB05PnhQscpc0nTdhJ2HD8xB2DIz2UHsm+HbJ3kBFjpOT/ldFRUVx9uxZSpUqlaIMsshZEuYEubq6ZksVv8edG+nJDeRKkBBC5BeXl6sECKDOT5IA5Weu5aDFNijaBuKjYEtX2PeBmjMkhBD5gCRBQgiRH0Rchq091O1yb4JPsL7xCP3ZukHDJWpeGMCRz2F9e4hNe7NBIUTecf78eZydnR+5nD9/Xu8QM5WuJbKFEEJkA1M8bHkZom+CRzV49mu9IxI5hZURqn0BbpVhx+tw+R9YWQcaLQGXsk++vxAizyhatCj79u177Pa8RJIgIYTI6w6PgevrwNoJ6s1Tc0CESKrUy+Dql7KxapH09Q8RQuRe1tbWFv1/8joZDieEEHnZtfVw6BN1u+ZU9UZXiNQUqAmtdkGB2hBzB9a2guOTIPfWTxJ5QC6u3yWySGadE5IECSFEXhV1A7Z0U5PdS/eCUt31jkjkdAmNVUv1BC0edg+E7a9LY1WR7YxGIwAxMTE6RyJymoiICICnrmAow+GEECIv0kywrRdEXgZXf6jxnd4RidzCaA91ZoJ7Fdj3Lpz5WZXSbhACDoX1jk7kE9bW1jg6OnLjxg1sbGyypfSyyBiTyURMTAxRUVFZ+nPSNI2IiAiuX7+Ou7u7OVHOKEmChBAiLzr2LVxeBlZ2ah6QtZPeEYncxGCAgCHgVhE2d4abW2BlDWi4GDyf1Ts6kQ8YDAa8vb05e/Ys586d0zsc8RiaphEZGYmDgwMGgyHLj+fu7k6RIkWe+nEkCRJCiLzm5g7YN0zdrj4BPKroGo7IxYq2hJY7HjZWPQ6r66urRCU76x2ZyAdsbW0pV66cDInL4WJjY9mwYQMNGzbM8ia7NjY2T30FKIEkQUIIkZfE3IPNXUCLA5+OULaf3hGJ3M7VD1psh81d4cpydX7dPQBVPgWDDFESWcvKygp7e6lomZMZjUbi4uKwt7fP8iQoM8lfLyGEyCs0TU1if3AWnHyh9gw1rEmIp2XrBo3+hoD31PeHP1PltKWxqhAil5IkSAgh8opT0+DCAjBYq3lAtu56RyTyEisjPDMO6v6m5ppd+htW1YX7p/WOTAgh0k2SICGEyAvuHIDdg9Ttal9AwVq6hiPysFLdodkGcCgK947AyppwdY3eUQkhRLpIEiSEELld3ANVwcsUDUXbgP9gvSMSeV3BWtByJxSo9bCxaks4Plkaqwohcg1JgoQQIrfb9Zbq4+JQFOr8IpPVRfZwLArN1oPvKw8bq74DO/pCvFTyEkLkfPKfUgghcrOzs+HMLJX4BM4B+4J6RyTyE6M91P0FnvlanYOnf4T/mkDkNb0jE0KIx5IkSAghcquwE7DzDXW70sdQuJG+8Yj8yWCAgP9Bo6Vg4wY3Nqt5Qrf36h2ZEEI8kiRBQgiRG8VHqXlAcQ+gUBBU/EjviER+V7QVtNwOLn4QcQFW14Nz8/WOSgghUiVJkBBC5EZ7hsKdfWBXEAJ/V+WLhdCba3mVCHm3gvhIlajv/wg0k96RCSGEBUmChBAit7kQAie/V7fr/qYmqAuRU9i6Q6N/IGCo+v7wWNgYDLH3dQ1LCCGSkiRICCFyk/BQ2Paauh3wrhqCJEROY2WEZ76Cur+qxqoXF6vGquFn9I5MCCEASYKEECL3MMXC5q4QexcK1IaqY/WOSIjHK/WKKqPt4A33DsOKmnD1P72jEkIISYKEECLXODACbm1TFbjq/QFWNnpHJMSTFawNLXeBZ02IuQ1rW8Dx76SxqhBCV5IECSFEbnB5JRwZp27X/gmcfXUNR4h0MTdW7f6wserbsKOfNFYVQuhGkiAhhMjpIq/A1lfU7XL9ocSL+sYjREZYO6g5QtW+BAxwegb81xSirusdmRAiH5IkSAghcjItHuOOXhB9A9yrwLPf6B2REBlnMECFd1X1OBtXuLFJzRO6s0/vyIQQ+YwkQUIIkYP5xS7A6vpasHaCevPAaK93SEI8vWJtoEVCY9XzsCoQzv+pd1RCiHxEkiAhhMihDDc24h87T31T4wdw89c3ICEyk5s/tNwG3i1VY9VNneDAx9JYVQiRLSQJEkKInCjqJsbtPTBgwlSyO5TuoXdEQmQ+Ww81NM7/f+r7Q5/CxhelsaoQIstJEiSEEDmNpsG23hgiL3HfUIz4ZyfpHZEQWcfKGp79Gur8Ala2cPEvNTxOGqsKIbKQJEFCCJHTHJ8Al/9Bs7Jjl91QsHbWOyIhsl7pHqqMtn0RuHdIFUy4tlbvqIQQeZQkQUIIkZPc2gX73gfAVPUrwoyldA5IiGxUsA602gWeNVRj1f+aw4kfpLGqECLTSRIkhBA5Rcw92NwZTLHg8yKmMv30jkiI7OdYDJptAN+XVWPVXW/CzjeksaoQIlNJEiSEEDmBpsGOvmoehJMv1P5R9VQRIj+ydoC6v0G1cYABTk2H/5pJY1UhRKaRJEgIIXKC0zPg/HwwWEO9P8DWXe+IhNCXwQAV3kvSWHWjNFYVQmQaSYKEEEJvdw/C7oHqdtXPoGBtfeMRIicp1gZabAPnsg8bq9aD8wv0jkoIkctJEiSEEHqKewCbOkN8FHi3hoD/6R2REDmPWwC02gFFWkB8BGx6CQ6MlMaqQogMkyRICCH0tOsdCDsKDt5Q9xcwyJ9lIVJl6wFBS8F/iPr+0CewsSPEhusblxAiV5L/tkIIoZfQOXDmZ8AAgb+DvZfeEQmRs1lZw7Pjoc7Mh41VF8HqQAg/q3dkQohcRpIgIYTQQ9hJ2PGwBHalEVC4sb7xCJGblO4FTdepxqp3D8LKmnBtnb4xCSFyFUmChBAiu8VHw+YuEBcOhRqqJEgIkT5edaHVTvCsDtG3VGPVk1P0jkoIkUtIEiSEENlt73twZw/YFYDAOWqIjxAi/RyLQ7ONULIbaHGwcwDs6C+NVYUQTyRJkBBCZKcLf8GJSep2nV/BsZiu4QiR61k7QOBsqPYFqrHqVFjbHKJu6B2ZECIHkyRICCGyy4PzsP1Vddv/f6r/iRDi6RkMUOF9aLQErF3g+gY1T+jOfr0jE0LkUJIECSFEdjDFwuauEHMHCtRSTVGFEJmrWFtouV01Vn1wDlYFwvmFekclhMiBJAkSQojscGAk3NwCNq5Qby4YbfWOSIi8yS1AJUJFmj1srNoRDoySxqpCCAuSBAkhRFa7shqOfKFu1/4RnEvrG48QeZ2dJwQth/KD1PeHRsOml6SxqhDCTJIgIYTISpFXYWt3QIOy/aDES3pHlPvFx8O6dTB3rvoaH693RCInsrKG6t9C7Z9VY9ULIbC6HoSH6h2ZECIHkCRICCGyiiketnSHqOvgXhme/VbviHK/kBDw9YXGjaFbN/XV11etFyI1ZXpD07VgXxjuHnjYWHW93lEJIXQmSZAQQmSVI1/AtTVgdIR681QpX5FxISHQsSNcvGi5/tIltV4SIfEoXoHQMqGx6k34rxmcnKp3VEIIHUkSJIQQWeH6Jjj4sbpd83s1WVtkXHw8DBwImpZyW8K6QYNkaJx4NCcfaLYBSnZ52Fi1v2quaorVOzIhhA4kCRJCiMwWfQu2dFXVqHy7Q6meekeU+23cmPIKUFKaBhcuwHffwc2b2ReXyF2sHSFwDlT9HDDAySnwX3OIknNGiPxGkiAhhMhMmgbbXoWIi+BSDmr+oBo5ioy5fh1+/BEGD07b/oMGgZcXFCoEQUEwYIBKjP77D65eTf1KkshfDAaoOAwaLn7YWHX9w8aqB/SOTAiRjaz1DkAIIfKU45Pg0hJVjar+fLBx0Tui3OfcOfjrLzXHZ9MmMKWjv0vhwnDtGty4AevXqyUpDw+oUCHlUqyYJKv5TfF20HIbrH8ewk/D6kCo+yv4BOsdmRAiG0gSJIQQmeX2btj3rrr9zHjwqKZrOLmGpsHRo7BokUp89uyx3P7ss9C+Pfzwg7oylNrVHIMBiheHs2chKgqOHYMjRyyX06fhzh3YvFktSbm4pJ4clSgBVjJoIs9yqwAtd8CmTqqIycYXofJoqPQRGOTnLkReJkmQEEJkhtgw2NRZTbIu3gH83tQ7opxN02DnzsTE58SJxG0GAzRoAB06wAsvqBLYAJUqqSpwBoNlIpRwBWfCBDAawckJqldXS1KRkeo4yZOjkyfh/n3Yvl0tSTk6QkBAyuSoVCl1LJH72XlC4xWw539wYhIcHKlKadf9Bayd9I5OCJFFJAkSQoinpWmwo58aUuNUEur8JEOrUhMXBxs2qMRn0SJV2jqBrS00a6YSn+efV3N6kgsOhgULVJW4pEUSihdXCVDwE4YxOThA1apqSSomRiVCyZOj48chIgJ271ZLUnZ2UL58yuSobFmwsUnXyyJyACtrqDERPKrCzjfgwkK4fwoaLVa/00KIPEeSICGEeFqnf4Jzf4DBCIFzwdZD74hyjshIWL1aJT1LlsDt24nbnJzguedU4tOmDbi6PvnxgoPV0LiNG+HKFfD2VleNnuaqjK0tVKyolqTi4tQQuqNHLZOjo0fVkLsDB9SSlLU1+PmlTI78/FTiJHK2Mq+Ca3nYGAx398OKGtBgIRRqqHdkQohMJkmQEEI8jbuHYfc76nbVseBVV994coJ792DpUpX4LF8ODx4kbitQQF3pCQ5WV37s7dP/+EajqvyW1ayt1dWe8uXVsLwE8fGqeEPyK0dHjqjnmnA7ecxlyqRMjsqXV0PuRM7hVQ9a7oINL8CdPbCmqer1Vbav3pEJITKRJEFCCJFRcRGwuRPER4J3Swh4V++I9HPtGixerBKfNWsgNkkDyuLF1dWe4GCoX18lF7mZ0QilS6ulbdvE9SaTGqaXWnJ0756aj3TihKp8l8BgUPOLkidH/v6qWIPQh5MPNN+oyt2fn6eGu97ZD9UngJUMdxQiL8jl/4mEEEJHuwfCvSNgX0SV1s1v1aRCQxMLG2zebFmswN8/MfGpXj1/zJGyslLV5EqUgFatEtdrmhq6lzwxOnxYDQ88c0Yt//xj+XglSqRMjgICwN09W59WvmXtCPXmgkcV2P8RnPxB/b7X/xPsC+odnRDiKUkSJIQQGRH6B5z+ETBA4GywT2Uif16jaeqNe0Lis2+f5fYaNVTi06GDerMuFIMBihZVS7Nmies1TfUzSj7f6MgR1dj1/Hm1rFhh+XhFi6Zesa6gvDHPdAYDVPwA3CrBlpfh+jrVWLXREnCvrHd0QoinIEmQEEKk1/1TsOPh/ICKH0KRpvrGk5VMJtixIzHxOXUqcZuVFTRsmFjKukQJ3cLMlQwGVQWvUKGUc5xu305ZkOHIETXc7vJltaxZY3kfLy+oUAErf39KmUwYHBygShXVQDY/XInLSsWfhxbbYMPzEH4GVtWFurPB5wW9IxNCZJAkQUIIkR7x0bC5C8TdB68GUHmk3hFlvthYWL9eJT5//aXecCewtYUWLVTi066deuMtMp+nJ9Srp5ak7t1LvRFsaKi6qrR+Pcb166kCMGOGuo+HR+qNYIsVk+QoPdwrJmms+h9s7ACVP3nYWFVeRyFyG0mChBAiPfYNg9u7wa4A1Juj+ovkBRERsGqVSnz+/hvu3Enc5uKSWMq6dWuZsK8nNzeoXVstST14YE6O4g8e5Pr69RS5fRvDmTPqZ7l5s1qScnFJPTkqUUJd5RMp2RVI0lh1Mhz8+GFj1VnSWFWIXCaP/PcWQohscHEJHJ+gbteZBY7F9Yzm6d29qybjL1qk5p1ERCRuK1hQ9eMJDoamTaXHTU7n5KQKUFSvjik2lh3LltGmTRts4uJURbrkV45OnoT792H7drUk5ehoOeco4Xbp0k/XjymvsLKBGpPAvQrsGgAXFsD9k9JYVYhcRpIgIYRIiwcXYFtvdbv8YCjW9vH751RXr6ohbosWwX//qYagCUqUSKzoVq+evOHNCxwcoGpVtSQVE6PmdyVPjo4fV8nw7t1qScrOTvU1Sn7lqGxZsMmHZaPLvg6u/rDpxYeNVWs+bKzaQO/IhBBpIEmQEEI8iSkOtnSFmNvgWQOqfaF3ROlz+rRKehYtgq1bLUtZV6iQmPg884zMbcgvbG0Tk5ik4uJUue7kydHRoxAVBQcOqCUpa2vw80uZHPn55f0riIXqQ8udDxur7oX/mkKN76FsH70jE0I8gSRBQgjxJAdHwY3NYO0C9f4Ao63eET2epsHBg4kV3ZK/aa1VK7GUdfny+sQocqaEhMbPT1X8SxAfD+fOpd4I9sGDxNtJWVmpq0TJk6Py5dWQu7zCqQQ036SuFJ+frypH3j0Az34jjVWFyMEkCRJCiMe5+i8c/kzdrj0DXMroG8+jmEywbVti4nPmTOI2oxEaNUosZV08l89lEtnPaFRzgkqXhrZJhoKaTKpsd2rJ0b17aj7SiRNqCGYCgwFKlUqZHPn7596iG9aO6gMS9ypw4CM48R3cO6waq9oV0Ds6IUQqJAkSQohHibwGW7oDGpTpAyU76x2RpZgYWLdOJT6LF8OVK4nb7OygZcvEUtYF5I2YyAJWVmouWYkS0KpV4npNU+djasnRrVsqST9zRhXmSKpEiZQFGSpUAHf3bH1aGWIwQKUPwb2S+rtxba2aJ9RoiVonhMhRJAkSQojUaCbY+gpEXQO3ilB9gt4RKQ8ewMqVKvH55x9V4S2Bq6v6lL5DB/WG1NlZtzBFPmcwQNGiamnWzHLbjRupJ0dXr8L582pZscLyPt7eqZfzLlgw+55TWhVvDy22wvrn4cFZ1Vg1cLZaL4TIMSQJyq3i42HjRvVJm7c3NGgglZyEyExHxsHV1WB0gPrz1XAXvdy5o94ULlqkEqDIyMRthQollrJu3DjvT0QXuZ+Xlxqe2aiR5frbt1UBhuTJ0cWL6n/dlSuwZk3Kx0otOSpcWN8iH+6VoNVO2PSSuiK04QWo8ilU/FCKjwiRQ0gSlBuFhMDAgeofQ4LixWHiRPVGSAjxdG5shgMj1O0a34FbhcfvnxUuX8YqJIS6P/6I9eHDlqWsfX0TK7rVrSsfgIi8wdNTlWavV89yfVhY6slRaKi6qrR+vVqS8vBIPTkqViz7khC7AtB4JewZouYIHRgBdw9CnZ+lsaoQOYAkQblNSAh07GhZ4hbg0iW1fsECSYSEeBrRt2FzV9DioWQ3KN07+4596lRiYYNt2zAChRK2VaqUmPhUrSqfJov8w9UVatdWS1IPHsCxYymTozNn1NXTzZvVkpSLS+rJUYkSan5TZrOygRqTHzZWfVNVj7t/AhouVlXlhBC6kSQoN4mPV1eAkidAoNYZDDBokBoaI58MC5F+mgbbX4OIC+BcFmpNzdpkQ9Ng//7ExOfQIYvNptq1OVq+PH7vv49N8n4uQuR3Tk5QvbpakoqMVBXpEvobJSRHJ0/C/fuwfbtaknJ0tCzEkHC7dOnM+X9ato9qrLrxRbizD1bUgAYhqs+QEEIXkgTlJhs3Wg6BS07T4MIFtV9QULaFJUSeceI7uPgXWNlC/XlgkwXleuPjVcPShOalZ88mbjMa1byeDh2gfXviCxXi1LJl+JUrl/lxCJFXOTioq6VVq1quj4lRV1uTXzk6fhwiImD3brUkZWen+holv3JUtizYpLMHUKEGap7QhhdUIvRfE6jxA5R9/WmerRAigyQJyk2Slr/NjP2EEIlu74G9Q9XtZ74Cz2cz77FjYuC//1TS89dfcP164jZ7e1XJrUMHVdnN0zNxW2xs5sUgRH5na5uYxCQVF6eG0CVPjo4ehago1Ww4ecPhhKayyZMjP7/HFydxKpmkseqfsKPPw8aq46WxqhDZTPck6NKlS7z//vssX76ciIgIypYty8yZM6lRo4beoeU83t5p2++LL9Qf7pdekhK5QqRF7H3Y1BlMMaqMrd/bT/+YDx6oim4hIbB0qWocmcDNTSU8wcGql4+TTJIWQjcJCY2fn2omnCA+Hs6dS72c94MHibeTsrJSV4mSJ0fly6shd6CKItSb97Cx6gg4MflhY9X50lhViGykaxJ0584d6tWrR+PGjVm+fDleXl6cPHkSDw8PPcPKuRo0UFXgHjckDtQnVq++Cm+/rYol9OoFDRtmzaRPIXI7TYMdb0D4KXD0gdo/Z3we0O3b8PffKvFZtUp9GJGgSJHEUtZBQepTaSFEzmU0qjlBpUurDy0SJAw9Ty05undPzUc6cUJd9U1gMECpUsmSo5bwTGk42Beu/Qcra0HDJeBeMdufqhD5ka5J0Lhx4/Dx8WHmzJnmdaVKldIxohzOaFRlsF98MeW2hDdt06apkqGzZqlJoL/8opZSpaBnT7X4+mZn1ELkbGdmwrk5YDBCvT/AzvPJ90nq0iX1ZickRJXpjY9P3Fa6dGJFtzp15IMIIfICg0FVkytRQg1lTaBpquFr8sTo8GG4dUsNuTtzRjU5TqpYEShkgiJnYGl1aD0agvqBu3u2Pi0h8htdk6AlS5bQsmVLXnrpJdavX0+xYsUYMGAAffr0SXX/6OhooqOjzd+HhYUBEBsbS2w2jJ1POEZ2HOuRihfHBtCApJ9Va8WKET9+PFqHDmrF0KEYtm3D6tdfMcyfj+HsWRg1CkaNwhQUhOmVV9CCg2UYTjbJEeeOSCnsCNa73sIAxFcchcm9Ztrm4Zw4gdXixRj++gurnTstNmmVK2Nq3x5T+/ZQpUriBxTx8ZYJUhrIeSMyQs4bHRUsqEZeNGxouf7GDQxHj2I4ehQefjUcPYrh6lW4dBUuJewYDdOHAcPQvL3RAgLQAgLg4VctIEAdI4vIuSMyIiedN+mJwaBpqdVbzh729vYADBkyhJdeeomdO3cycOBApk6dSs+ePVPsP2rUKEaPHp1i/Zw5c3BMGGubxz377bf4rF/PhQYNONeiBfZ37hDl4cGtChUeWcbTGB2N97ZtlFizhoIHD2J4+COPs7fnUr16nG/ShNsVKkjfEZGvWGnRNIp8F1ftPNetqrLVfiQYHnGlRtNwO3MG723b8N62DdcLFyw23/L350qdOlypXZuItM7dE0Lkezb37+Ny8SIuFy7gcuEc3ue243jxJtx+9H2i3dy4X7w49318LJZod3f5Py7yvYiICLp168a9e/dwdXV97L66JkG2trbUqFGDLVu2mNe988477Ny5k61bt6bYP7UrQT4+Pty8efOJTzQzxMbGsnr1apo3b45NektjZoZLl7AuVw5DXBxxW7eiJe+NkBbnzmH1++9Y/fYbhtOnzau1MmUwvfIKpu7d1SV+kal0P3dECla7B2A88yOaXWHiWuwC+8KWO8THY9iyBcPixeqqz7lz5k2atTVa48Zo7dtjatcu7UVL0knOG5ERct7kboYzP2Lc9DaGS/Fod0pgim+B4dQldeUoNPSR99M8PFJcNdICAqBYsTQnR3LuiIzISedNWFgYBQsWTFMSpOtwOG9vbyokK1UZEBDAwoULU93fzs4Ou1RKT9rY2GTri57dxzObNk2V8mzYEOs6dTL2GGXLwsiR8PHHsGmTmjs0fz6G06cxjhqFcfRoaNpUFVPo0CGxmo3IFLqdO8LSuflw5kfAgKHebGxciqv10dGwZo0qZb14sZpfl8DBAVq3hg4dMDz3HIaHBVyyoy2xnDciI+S8yaXK9wePirDxRQzR5zHaL4ERIeBVT1WlO3bMsgnskSNw+jSGO3cwbNkCST5YBsDFJWW1ugoV1Aeej5inKOeOyIiccN6k5/i6JkH16tXj+PHjFutOnDhByZIldYooB3vwQCVBAEOGPP3jGQyq2lyDBqrYQkgIzJwJ69bBv/+qxdUVOndWCVHdunKZXeQN4WdUbw6AisPBqTbMn68Sn6VLVUf5BO7u0K6dKmzQooV8KCCEyB6FGkKrXbD+edVHaE1jqDkVyrwK1aurJamoKFWRLnlRhpMn1d+07dvVkpSjI/j7WyZG5cqle+6iELmVrknQ4MGDCQwM5LPPPqNTp07s2LGD6dOnM336dD3Dypl++QXu3IEyZSxLdWYGZ2fo0UMtZ8/Cr7+qK0ShoTBjhlr8/FQy1KOHurSeVHw8bNyomrR6e6vE6hHzk4TQVXyM6gd0OwxOloU5++FfL3UFKIG3t+oVEhwMjRqlvyu8EEJkBqeS0GILbO0JFxbC9tfgzv6HjVWTvX2zt1eFWKpUsVwfEwOnTqVMjo4fh4gI2LNHLQ/ZAG1tbLDy94eKFS0TpLJl5e+hyFN0TYJq1qzJokWLGD58OJ988gmlSpViwoQJvPzyy3qGlfOYTPDtt+r2oEFZm2CUKqWGy40YARs2qGTozz/VJ0wffAAffQTNm6uE6IUXYNkyGDjQsndR8eLq6lJwcNbFKUR6XbgAk3vCP7vgGKCdAk6pbWXLJpayrlVLSlkLIXIGayfVRPXQGDg4Ek5MgrAjqtlqWsr529omJjFJxcWpct3JkiPt6FGMUVFw8KBaLGJ52FQ2+bA6Pz9IZaqCEDmdrkkQQNu2bWmb2Vc28pp//lGf5Li7q+QjO1hZqYaOQUEweTIsWKCGy23cCCtXqsXRUX2SlNylS6pJ64IFkggJfR07poa5hYTArl2W26pVS0x8KlaU4Z5CiJzJYAWVPwb3yrD1Fbj678PGqosz3lg1IaHx81MfaD4UFxXFul9+oXHhwlgnH1734EHi7aSsrNQHScmTo/LlZQixyNF0T4JEGnzzjfrar58aupbdXFygd2+1nDqVOFwuWZlgM01TbygHDYL27WVonMg+mga7d6vEZ9EiNXk4gQHwA1o3gHceNhAWQojcwqcDOG+BDe0h/DSsqguBv0Pxdpl3DKORiCJF0Nq0sUiO0DT1Pz95QYbDh+HePTVa5MQJ1Tg6gcGg/s4mT478/dX7CiF0JklQTrdnj+pCb20Nb72ldzTq055PPlFXiJo2ffR+CX8wN25U+wqRVeLiVKXDRYvUP+Dz5xO32dhAkybgfxr8TkGpZ6HFajDK0A0hRC7kUQVa7oRNHeH6epUQVR0LFYZl7dVsg0FVkytRAlq2TFyvaXD1aso5R4cPw61basjdmTNqREtSPj6pV6xzd8+65yBEMpIE5XQJc4E6dVJzbXKKa9fStt+sWfDMM+DmlqXhiHwmKkpVMFy0CJYsgZs3E7c5OqpS1sHB8NxzcG48HFoJ1i5Qf54kQEKI3M2+IDRZDbsHwckfYP8HqoJc7Z/AOpuHnxkMqpiMt3fKD0Zv3EiZHB05opKmCxfUsnKl5X28vVNPjgoWzL7nJPINSYJyskuX4I8/1O3Bg/WNJbm0Nof85Rc1N6hbN+jfXyVEQmREWJgqxLFokfoaHp64zdMzsZR18+aqpw/A1f/UhGKAWtPApWz2xy2EEJnNygZqfq/mCe16G879AWEnoOFf4OSjd3SKl5eqsNmokeX627dTDqs7ckQVWLpyRS1r1qR8rNSSo8KFZT6nyDBJgnKy774zN0elRg29o7HUoIG6MnXpkrocnpzBoK7+eHurP3YJpbZr14Y33lD9hxLeqArxKDduqCs9ISHqyk9MTOK2YsUSS1k3bKiGjCYVdR22vAxoUOY18O2anZELIUTWK/cGuAao4XF39sDKmtAgBLwC9Y7s0Tw9oV49tSQVFmaZHCXcPntW/S9Yv14tSXl4pJ4cFSsmyZF4IkmCcqrMbo6a2YxGVQa7Y0f1hyZpIpTwh+enn1T1rY0bYcoUWLgwsWHbkCGq0t0bb6jqNEIkOHdOze0JCVFzfUymxG1+fokV3WrUeHQpa80EW3tA1FVwqwDVJ2VL6EIIke0KN1LzhDa0T9JYdYpqrJqbuLqqD0pr17Zc/+CB6muU/MrR6dOqf+LmzWpJysUl9eSoRAlpgSDMJAnKqRKao5Ytm/nNUTNLcLAa6pZan6AJExLLYzdsqJZr1+Dnn1Vyd+6cmu/07bdqHHH//vD889KILT/SNPWJX0Ip6ySN+wB49tnExCcgIG2f7h39Cq6sBKMD1Juf/ePkhRAiOzn7QvPNsK0nXAhRjVXvHoBnvk7ZWDW3cXJS/weefdZyfVSUqkiXPDk6eRLu30/80DUpR0dVnS55clS6tFSyzYdy+W9GHpW0OerAgTn7FzM4WJXB3rhRjeP19lZD5VKLuXBhGD4c3ntPTYacMgWWLlVjf9esUfd9/XXo2zdnFYEQmU/TYOfOxMTnxInEbQaDOoc6dFDD3Xx90/fYN7bC/g/V7eqTMt5HQwghchMbZ6j/Jxz6FA6OguMT4d7htDdWzW3s7aFKFbUkFROj2nkkT46OH1e9DffsSflhm52d6muUPDkqW1Y+nM3DJAnKifRojvo0jMb0lcE2GqFNG7WcOwfTp8OPP6ok6tNPYexYNcm9f381yV0uXecNcXGwYUNiKeukVw9tbaFZM5X4PP88FCqUsWPE3IHNXUCLh5Jd1FwgIYTILwxWUHkkuFVSQ4Kv/gsra0OjJeAWoHd02cPWNjGJSSouTpXrTp4cHTsGkZFw4IBakkpoKps8OfLzU4mTyNUkCcqJ9G6Omp1KllRJz8iR6s3xlClq4uPixWopU0a9Dr17S4nM3CgqClavVld7/v5b9Y1I4OSkSlh36KASYlfXpzuWpsG21yDiPDiXUdXgZGKsECI/KvGiqoa5oT2En1KJUL05UCyHDq/PDgkJjZ+fZSNYk0l9IJtaOe/w8MTbSVlZqatEyZOj8uXVkDuRK0gSlNPktOao2cXWVlWM69xZ/bGZOlXNizp9Wg2fGzECXnpJXR2qW1fe3OZk9+6pEtYhIbB8uZrUmqBAAXWlJzhYXfmxt8+84578AS4uUqVj6/0BNk+ZVAkhRG7mUTVJY9UNsP55qPY5BLwn/0OTsrKCUqXU8txzies1TY1YSK0R7L17ahj3iRNqZEMCg0E9TvLkyN9fFWsQOUq6kiCTycT69evZuHEj586dIyIiAi8vL5555hmaNWuGj08OqU2fm+XU5qjZqUIFmDQJPv8c5s5VV4f27IHZs9VSpYqqKte9u/xRySmuXUssZb1mDcTGJm4rXjyxsEH9+ilLWWeGO/tgz8MqitW+hAI5rKS8EELowd4LGq+G3QPh1FTYNwzuHIDaP4K1tKl4LIMBfHzU0rJl4npNUw1fU0uObt1SQ+7OnFFTG5Ly8Um9Yp27e7Y+LZEoTe9GIiMjGT9+PFOmTOH27dtUq1aNokWL4uDgwKlTp/jrr7/o06cPLVq04OOPP6ZOnTpZHXfelJObo+rByUkVSnjtNTWJfupUlRQdOAADBqgrRN27q6tDySdGiqwXGppY2GDzZssy6f7+iYlP9epZ+6ljbDhs6gymGCjWDsoPzLpjCSFEbmO0hVpTwKMK7HoHzs2B+8dVY1XHfPph69MwGFQhJ29vVd02qRs3Uh9Wd/UqXLiglpUrLe/j7Z16ciRTALJcmpIgPz8/6taty4wZM2jevDk2qVTKOHfuHHPmzKFLly58+OGH9OnTJ9ODzfNycnNUPRkMUKuWWsaPV8Pkpk5VlV6mTlVLYKBKhjp2zNwhViKRpqlPuhISn337LLfXqKESnw4dVCnr7IppZ3+4f0L9M68zU4Z5CCFEasr1T2ysens3rKgBDRaBV129I8s7vLygUSO1JHX7tmUj2ITl4kVVFOrKFTWKIvljpZYcFS4s/+cySZqSoFWrVhHwhDc1JUuWZPjw4QwdOpTz589nSnD5Sk5vjppTeHjAoEGqdPjatWqo3F9/wZYtahk0CF59VRVTKFNG52DzAJMJduxQic+iRar/QgIrK5WwJ5SyLlEi++M7+wuEzgaDEQLngl2B7I9BCCFyi8JBSRqrHoQ1QaqITOleOgeWx3l6Qr16akkqLExVp0ueHJ09q64qrV+vlqQ8PFJPjooVk+QondKUBD0pAUrKxsaGMvLmM/1yQ3PUnMRggCZN1HLliiqxPX26+lTlq6/U0rKlmjvUtm3WzEPJq2Jj1R/dhFLWly8nbrO1hRYtVOLTrp36pEov947CzjfV7cqjoVB9/WIRQojcwrkUNN+iSmhfXATbeqt5Qs98qXdk+Y+ra+JIl6QePFCjXZInR6dPq/eKmzerJSkXF5UMBQRYJkclS0qrkUdI9zvDFStW4OzsTP366g3H999/z4wZM6hQoQLff/89Hh4emR5knpebmqPmRN7eqnrc8OGq+erUqWrMbcJSvDj06aPmFxUtqne0OVNEBKxapRKfv/9Wf2QTuLioEtbBwdC6dc4oRhEXCZs7Q3wEFG4KFYbpHZEQQuQeNs7QYAEc/AQOjYbj38K9Q1B7tt6RCVBzop99Vi1JRUWpinTJk6OTJ+H+fdi+XS1JOTqqebrJrxyVLp057zfj4zGsX0+xDRswODlB48a55n1supOgd999l3HjxgFw8OBB/ve//zFkyBDWrl3LkCFDmDlzZqYHmefltuaoOZW1NbRvr5YzZ9Twwp9/VleHRo6ETz5Rw7b691dXkPL7ZeO7d1XSGBICK1aoRChBwYLqdQwOVhM/c1pTuD1D1FAO+0IQOBuscscfXCGEyDEMVlBlFLhXgq094epqrNfUw9kkxWVyLHt7VQgqeTGomBj1PjJ5cnT8uPrfvmePWpKys1N9jZInR2XLQipz/1MVEgIDB2J98SI1QPW5LF4cJk5U7x9yuHQnQWfPnqXCwy68CxcupG3btnz22Wfs2bOHNm3aZHqA+UJ+ao6aXUqXhnHjVOKzYIGaO7R5MyxcqBY/P/V69+qlxurmF1evqia0ISHw33+qEEeCEiUSK7rVq5dzP8k5/6cq9QpQ9zdwKKJvPEIIkZuV6Kgaq65vjyH8FA15H8OVElDieb0jE2lla5uYxCQVF6c+FD5yxLIww9GjEBmpqu0eOGB5n4SmssmTIz8/yw9EQ0JUMaqklWFBVTru2FG998rhiVC6kyBbW1siHn5i/O+//9KjRw8APD09CQsLy9zo8oP82hw1u9jZwcsvq+XgQZUM/fabupz8v//Bhx+qBq39+6sxuXnx6tCZM4kV3bZutfyDVaFCYuLzzDM5//mHn4Xtr6vbFYaBdwt94xFCiLzAoxq02olpw4vY3NyEtukFaayaFyQkNH5+aiRMApMJzp1LvZx3eHji7aSsrNRVooTmr9Onp0yAQK0zGFShqvbtc+4HqmQgCapfvz5DhgyhXr167Nixg3nz5gFw4sQJiufX5p5PI2EuUOfO+bc5anapXBl++EFdIfr9d5UQHTigilL88otKAvr3h27d1Hjc3ErTVMKXUNFt/37L7bVqJZayLl9enxgzIj4GNneB2DAoWBeqfKJ3REIIkXfYFyK+0QrOLw7GN26VNFbNy6ysoFQptTz3XOJ6TVNTCFJrBHvvnvoA+cSJJz++pqmeSBs3QlBQlj2Np5XuJOi7775jwIABLFiwgClTplCsWDEAli9fTqtWrTI9wDxNmqPqw8VFVY3r1w+2bVPJ0Pz5sHcv9O0LQ4dCjx5qn4oV9Y42bUwm9VwSEp/TpxO3GY2qZ0FCKevcmmwf+BBu7QBbD6g3F6zSOGZZCCFE2ljZst+2Pz6V22LcN/hhY9UTDxurFtM7OpHVDAbw8VFLy5aJ6zVNDadPSIoWL07Z1yg1V65kXayZIN1JUIkSJfjnn39SrP824YqGSLukzVGrV9c7mvzHYIC6ddXyzTcwa5aqLHf6tPrZfPed+tm88YYaLpbTigPExsK6dWqY2+LFln9s7OzUH7CEUtYFcnn/nEtL4ejX6nbtn8GppL7xCCFEXmUwYCr7BkbPSrDpJbi9SzVWbbgICtbROzqhB4NBVeL19lbFkipXTlsS5O2d9bE9hQw3T7l+/TrXr1/HZDJZrK+SvGKFSJ00R81ZChZUV4CGDIF//1VXh5YsgQ0b1OLlBa+9pq4e+frqF+eDB6rs96JFqqrg3buJ21xdVU+kDh2gVau8U2Qj4hJs66lu+70NPi/oGo4QQuQLhRtDyx2wvr0qn/1vI6g1HUr31DsyobcGDdSokkuXUp8XZDCo7Q0aZH9s6ZDuJGj37t307NmTo0ePoj184gaDAU3TMBgMxMfHZ3qQeZI0R82ZrKxUM9AWLdS42Bkz1HLlCnzxhZpP1Lq1mjvUunX2TPi7c0clPCEhKgGKjEzcVqhQYinrxo1z3tWqp2WKhy0vQ/Qt8HgGnvlK74iEECL/cC4NLRIaq/4F23rB3QNQbRxYSRPyfMtoVGWwO3ZUCU/SRCihkMaECTm6KAJAulvIvvrqq/j5+bFlyxbOnDnD2bNnLb6KNJDmqLlD8eIwerSqoLJwITRrpn7Rly1TQ8zKlIHPPoNr1zL/2Jcvq6tRzZurRKdHD/jrL5UA+fqqOWQbNqj9pk9XV37yWgIEcOhTuL4erJ2h3jww5sHnKIQQOZmNCzRYCJVGqO+PfQPr20LMncffT+RtwcGqDHaxZHPFihfPFeWxIQNXgs6cOcPChQspW7ZsVsSTP0hz1NzFxkb9MgcHq6oo06bBzJkqOfrwQxg1Sm174w1VgCB5OdG0dlM+dSqxlPW2bZbbKlVKLGVdtWr+KFl6bR0c/lTdrjkVXMvpGo4QQuRbBitVkdO9MmztBVdWwsra0HAJuPnrHZ3QS3AwtG9P3Nq17Fu+nGqtW2P9qPc4OVC6rwQ1bdqU/clL7or0keaouZefH4wfr8bBzpoFtWurAgXz5qnkpmJFmDQpca5OSAj4+mLdvDk1vvkG6+bN1ZWckBB1VWnfPhg5UnV/LlcO3nsvMQGqU0cNvztxQpW8/uQTqFYtfyRAUTdgSzfQTFC6N5R6We+IhBBClHgJWmwGxxJw/ySsqg2Xl+sdldCT0YjWqBGXGjZEa9Qo1yRAkIErQT/++CM9e/bk0KFDVKpUCRsbyzK1zz8vHYYfS5qj5g0ODtCzp1r27lVD137/XXVhHjgQhg9XVedSq55y8SK8+KIa5nb9euJ6o1ElUh06qHk+yS8x5xeaCbb2hMgr4BoANSbrHZEQQogEDxursvFFuLEJ1j2n5ggFDM0fH9KJPCPdSdDWrVvZvHkzy5enzPylMEIaSHPUvOeZZ9S8nK++gtmzVUJ0+PCTy0dev67m8bRurRKftm3B0zN7Ys7Jjo6HK8vBaA/154N1Lm5cK4QQeZF9IWiyBna9BadnwL73VMGEWtOlsarINdI9HO7tt9+me/fuXLlyBZPJZLFIAvQE0hw1b3NzgzffVEPXJk5M230Smpv26CEJEMDNbbD/A3W7+kRwr6RvPEIIIVJntIVa06DGd2AwQuhsVUY74pLekQmRJum+EnTr1i0GDx5M4cKFsyKevCc+HjZuVCWW//5bmqPmBwaD6iuUFkn7/OR3MXdhc1fQ4qBEJyjTR++IhBBCPI7BAH5vqqHLm16C2zthZU1osAgK1tY7OiEeK91XgoKDg1m7dm1WxJL3PJwUT+PG0K0bzJ2r1tetq2tYIhuktUtyDu+mnG00Dba/Dg9CVV+KWtNlbLkQQuQWRZqoeUJuFdV8zn8bwZlf9Y5KiMdK95UgPz8/hg8fzqZNm6hcuXKKwgjvvPNOpgWXq4WEqCZSqXXS/fJLqFUrV9RQFxmUR7opZ5tTU+HCQrCygXp/gK2b3hEJIYRID+fS0GIrbOkOl5bAtp5JGqvmnophIv/IUHU4Z2dn1q9fz/r16y22GQwGSYJADYEbODD1N78JBg1SFcByUSlBkQ55pJtytrizH3Y/nCNX9QsoUFPfeIQQQmSMjQs0XAQHRsLhMXBsPNw7DPXmgq273tEJYSHdSdDZs2ezIo68ZeNGVQb5UTQNLlxQ+wUFZVtYIpsldFMeONDyfCheXCVAciUQYsNhc2cwRUPR58BfCoYIIUSuZrCCqp+qxqrbesGVFaqxaqMl4Fpe7+iEMEv3nCCRBleuZO5+IvcKDobQUOJWr2bXkCHErV4NZ89KApRg11sQdhwcikGdWTIPSAgh8oqSnaD5ZnD0gfsnVCIkjVVFDpKmJOiLL74gMjIyTQ+4fft2li5d+lRB5XoyKV4klYu7KWepM7/C2V/Up4b15oJ9Qb0jEkIIkZk8n4GWO8GrHsTeg/Vt4ejXj58uIEQ2SVMSdOTIEUqUKMGAAQNYvnw5N27cMG+Li4vjwIED/PDDDwQGBtK5c2dcXFyyLOAcKT4e1q1T1d/WrYPAQCj4mDd0BgP4+MikeJF/hR2HXQPU7UqjoJD8LgghRJ7kUFg1Vi3zGmgm2PsubO0J8VF6RybyuTTNCfr111/Zv38/3333Hd26dSMsLAyj0YidnR0REREAPPPMM7z++uv06tULe3v7LA06RwkJSTnno2BBuH079f1lUrzI7+KjYFMniHsAhZtAxQ/0jkgIIURWMtpBrRngXhX2DIbQ3+D+cdVPyLGo3tGJfCrNhRGqVq3KjBkzmDZtGgcOHODcuXNERkZSsGBBqlWrRsHHXfnIqx5VBvvmTfW1bFmIjFRlkhPIpHiR3+35nyqbaucFgbOldKoQQuQHBgOUfxvcKqjGqrd2wMoa0OAvKFhL7+hEPpTu6nBWVlZUq1aNatWqZUE4uUhaymBHRcGZM7BliyqC4O2thsDJFSCRX51fCCd/ULfr/goOMi9OCCHylSJN1TyhDc/DvSPwb0Oo/SOU6q53ZCKfSXcSJB56UhlsUNu3bJEy2EIAhIfC9tfU7YD3oGgrXcMRQgihE5cySRqr/g1bX1EjBKp+LqMDRLaREtkZJWWwhUg7Uyxs7qqqAxWoA1XH6B2REEIIPdm4QsO/oOKH6vujX8H6dhBzV8+oRD4iSVBGSRlsIdJu/0dwaxvYuEP9P8DKRu+IhBBC6M1gpT4Uq/cHGB3gynJYVQfCTugdmcgHJAnKqAYNVJGDRzV3lDLYQiiXl8PRL9XtOj+BU0l94xFCCJGzlOwMzTeBY3HVQmFlLbi8Uu+oRB6X7iRo5syZ5rLY+ZrRCBMnqtvJEyEpgy2EEnEZtvZQt8u9CT5SFVEIIUQqPJ+FlrugYODDxqpt4Og30lhVZJl0J0HDhg2jSJEivPbaa2zZsiUrYso9goNhwQIoVsxyffHiar2UwRb5mSketnaH6JvgUQ2e/VrviIQQQuRkDoWh6X9Q+tWHjVX/B9t6SWNVkSXSnQRdunSJX375hZs3bxIUFIS/vz/jxo3j6tWrWRFfzhccDKGhsHYtzJmjvp49KwmQEIfHwrW1YO0E9eaBMR81URZCCJExRjtVMrv6RDAY4eyv8G8QREqhKZG50p0EWVtb06FDBxYvXsyFCxfo06cPv//+OyVKlOD5559n8eLFmEymrIg15zIaVRnsrl3VVxkCJ/K7a+vh0Gh1u+YUcPXTNx4hhBC5h8EA5d+BxivA1gNubYcVNeDWTr0jE3nIUxVGKFy4MPXr16du3bpYWVlx8OBBevbsSZkyZVi3bl0mhSiEyFWibsKWbmooQ6meUOoVvSMSQgiRGxVpBi13gFsFiLwMqxvA2d/1jkrkERlKgq5du8bXX39NxYoVCQoKIiwsjH/++YezZ89y6dIlOnXqRM+ePTM7ViFETqeZ1PjtyMvg6g81vtM7IiGEELmZS1nVWLVoWzBFq7mme99X806FeArpToLatWuHj48Ps2bNok+fPly6dIm5c+fSrFkzAJycnPjf//7HhQsXMj1YIUQOd+xbuLwUrOzUPCAbZ70jEkIIkdslNFatMFx9f/RL2PA8xNzTNSyRu1mn9w6FChVi/fr11K1b95H7eHl5cfbs2acKTAiRy9zcAfuGqdvVJ4BHFV3DEUIIkYdYGaHaZ+BeGba/CpeXqcaqDRfLvFORIem+EvTTTz89NgECMBgMlCwpDRGFyDdi7sHmLqDFgU9HKNtP74iEEELkRb5dVWNVh2IQdgxW1oYrq/SOSuRC6U6C3nnnHSZNmpRi/XfffcegQYMyIyYhRG6iabCjDzw4C06+UHtGygbCQgghRGbxrA6tdkHBuhB7F9a1VsOxpbGqSId0J0ELFy6kXr16KdYHBgayYMGCTAlKCJGLnJoO5/8Eg7WaB2TrrndEQggh8jqHItB0LZTurYry7BmihsnFR+sdmcgl0p0E3bp1Czc3txTrXV1duXnzZqYEJYTIJe4ehD2D1O1qn0PBWrqGI4QQIh8x2kHtn+DZCWCwgjOzpLGqSLN0J0Fly5ZlxYoVKdYvX76c0qVLZ0pQQohcIO4BbOoE8VHg3Rr8h+gdkRBCiPzGYAD/gRC0HGzc4dY2WFETbu3SOzKRw6W7OtyQIUN46623uHHjBk2aNAFgzZo1jB8/ngkTJmR2fEKInGrX22pSqkNRqPuL+hROCCGE0IN3C9VYdUN7CDsK/zZQV4l8u+kdmcih0p0Evfrqq0RHRzN27Fg+/fRTAHx9fZkyZQo9evTI9ACFEDnQ2dlwZqZKfALngL2X3hEJIYTI71zLQcttsLmb6lm35WW4ewCqjFUltoVIIkMf3fbv35+LFy9y7do1wsLCOHPmjCRAQuQXYSdg5xvqdqWPoXAjfeMRQgghEti4qt5BFR72rTsyTl0dksaqIpmnGr/i5eWFs7N0hBci34iPgs2d1XygQkFQ8SO9IxJCCCEsWRlVsZ7A38For64KraoDYSf1jkzkIOlOgq5du8Yrr7xC0aJFsba2xmg0WixCiDxs77twZx/YFVT/XGR4gRBCiJzKtxs025iksWotuLJa76hEDpHuOUG9evXi/PnzjBgxAm9vbwzSFFGI/OHCIjjxnbpd91dwLKpvPEIIIcSTFKgBrXbChmBVOW5dK3hmPJQfKI2987l0J0GbNm1i48aNVKtWLQvCEWkVHw8bN8KVK+DtDQ0agFyIE1nmwTnY9qq6HTAUirbWNx4hhBAirRy8odla2Nlf9RLaM1gVTKg5RfUaEvlSuofD+fj4oGlaVsQi0igkBHx9oXFj6NZNffX1VeuFyHSmWNjcFWLvQoHaqsqOEEIIkZsY7aH2z/DsNw8bq86ENY0h8qrekQmdpDsJmjBhAsOGDSM0NDQLwhFPEhICHTvCxYuW6y9dUuslERKZ7sDHcHMr2LhBvT/AaKt3REIIIUT6GQzgPzixserNrbCyJtzerXdkQgfpToI6d+7MunXrKFOmDC4uLnh6elosIuvEx8PAgZDahbiEdYMGqf2EyBSXV8KRL9Tt2j+Bs6+u4QghhBBPLaGxqqs/RFyE1fUhdK7eUYlslu45QRMmTMiCMERabNyY8gpQUpoGFy6o/YKCsi0skVdFXoGtr6jb5fpDiRf1jUcIIYTILK7loMU22NINLi9TX+8ehKpj1HA5keelOwnq2bNnVsQh0uDKlczdT4hHMsXDlu4QfQPcq6gx1EIIIUReYusGDZfAgQ9VU9Ujn6tEqN7vqumqyNMylOqePn2ajz76iK5du3L9+nUAli9fzuHDhzM1OGHJ2ztz9xPikY58Dtf+A6Mj1JunJpQKIYQQeY2VEap9AXVng5UdXP4HVtaB+6f0jkxksXQnQevXr6dy5cps376dkJAQwsPDAdi/fz8jR47M9ABFogYNoHjxR5e1NxjAx0ftJ0SGXd8IBx/+Ltf8Adz89Y1HCCGEyGqlXobmG8GhKIQdVY1Vr/6rd1QiC6U7CRo2bBhjxoxh9erV2NomVolq0qQJ27Zty9TghCWjESZOTL0wQoIJE6RfkHgK0bfUuGjNBL6vQGkZ/iqEECKfKFATWu1S7SBi7sDaVnB80uPfeIlcK91J0MGDB+nQoUOK9YUKFeLmzZuZEpR4tPbt4VFF+L74AoKDszcekYdoGmztpSrluPipq0BCCCFEfuLgDc3WQakeoMXD7oGw/XWIj9Y7MpHJ0p0Eubu7cyWVmfd79+6lWLFimRKUeLQNG+D2bXBzg5UrYc4caN5cbZMLceKpHJ+gxkJb2UH9+WDjrHdEQgghRPYz2kOdWfDM+IeNVX+GNU0g8prekYlMlO4kqEuXLrz//vtcvXoVg8GAyWRi8+bNDB06lB49emRFjCKJ339XXzt1ghYtoGtXNUTOYIBFi0BqU4gMubUL9r2vbj/7DXhU1TceIYQQQk8GAwQMgUbLVLPwm1tgZQ24vUfvyEQmSXcS9Nlnn+Hv74+Pjw/h4eFUqFCBhg0bEhgYyEcffZQVMYqHoqLgzz/V7ZdfTlwfEAAJIxQ//zz74xK5XMw92NwZTLHg86LqCSSEEEIIKNryYWPV8omNVc/N0zsqkQnSnQTZ2toyY8YMzpw5wz///MPs2bM5duwYv/32G0aZkZ+lli6FsLDUK8B98IH6OncunD6d/bGJXErTYEc/CD8DTiWh9o+PLj8ohBBC5EeuftBiO3i3hvhI2NwF9n+oigiJXCvdSdAnn3xCREQEPj4+tGnThk6dOlGuXDkiIyP55JNPsiJG8dDs2eprt25glewnV706tGoFJhOMG5f9sYlc6vSPcH4eGKyh3h9g6653REIIIUTOY+sGjf6GgHfV94c/gw0vQGyYrmGJjEt3EjR69Ghzb6CkIiIiGD16dKYEJVK6cweWLVO3kw6FS+rDD9XXWbPg4sVsCUvkZncPwe531O2qY6FgHX3jEUIIIXIyKyM88yXU/U0VEbr0N6yqC/dlCE5ulO4kSNM0DKkMl9m/fz+ej6rdnAZffPEFBoOBQYMGZfgx8rIFCyAmBipXVktq6teHhg0hNhbGj8/e+EQuExeh5gHFR4F3SwgYqndEQgghRO5Qqjs026DKad87AitrwtU1ekcl0inNSZCHhweenp4YDAb8/Pzw9PQ0L25ubjRv3pxOnTplKIidO3cybdo0qlSpkqH75wcJQ+G6d3/8fglXg6ZNgxs3sjYmkYvtfkf94Xbwhrq/qhKgQgghhEibgrWg5S4oUOthY9WWcHyyNFbNRazTuuOECRPQNI1XX32V0aNH4+bmZt5ma2uLr68vdevWTXcA4eHhvPzyy8yYMYMxY8ak+/75wfnzqj+QwaBKYj9O8+ZQowbs2gUTJsDYsdkSoshNQufA6Z8AAwT+DvaF9I5ICCGEyH0ci0Kz9bC9L4T+pj5gvHsAanwPRlu9oxNPkOYkqGfPngCUKlWKwMBAbGxsMiWAN998k+eee45mzZo9MQmKjo4mOjqxY29YmJqMFhsbS2xsbKbE8zgJx8iOYyU1e7YVYKRhQxNFisTzpMO/956BTp2s+e47jUGD4nB3z44oxePode6kcP8k1jv6YQDiK3yAybM+TzyhhG5yzHkjchU5b0RGybmTEUao8SNWrpWwOjAcw+kfMd09QnzgPLAvrHdw2SInnTfpicGgaRm/bhcVFUVMTIzFOldX1zTf/48//mDs2LHs3LkTe3t7goKCqFatGhMmTEh1/1GjRqVafGHOnDk4Ov6/vTsPb6rK/wf+ztKdLtBCKW2hVECQXYrIDloWQRQQF0QE/bogMFJBVMaZQfEnFFQEEXDGGcFRAbeCG4IMWwsiSLXsVGQtpWXvRqFNk/P74zShaZM2TZPcpHm/nidPbu49ufeT9DS5n5xzzwmsVeye5PnnB+LMmRBMmfI7Bg06U2N5gwFISpLPGTfuCB588A8XREnuTi106HvjZYQZTuCSuj1+9p8DoeKw9kRERI7QpOw3JJS8DR8Uo1gVgT1+s5CvuUXpsLxKcXExHn30UeTn59eYk9Q6CSouLsZLL72EL774ApcvX66yXa/X27SfrKwsJCQkYNOmTaZrgWpKgiy1BMXGxuLSpUu1Sr7spdPpsGnTJgwaNMhhLWE12b8fSEjwga+vwNmztrfqrFqlwsSJWoSHC/z5ZxmCgpwaJtVAibpTmfr36dD8+T6EbzjKBu8FAqIViYNs5w71hjwP6w3Zi3XHAQozod0xGqqiYxCaAOi7/xsi9kGlo3Iqd6o3BQUFiIiIsCkJsrk7nNHMmTOxdetWLF++HOPHj8fSpUuRnZ2Nf/7zn0hOTrZ5P+np6bhw4QJuv/120zq9Xo/U1FS8//77KCkpqTL5qp+fH/z8/Krsy8fHx6VvuiuP93n5pMT33qtC48a2H3PcOGDOHODECRVWrvQBB91zD66uqyZnvwH+fB8AoOr5MXxC4lwfA9lNsXpDHo31huzFulMHjToAQ/cAO8dClbMB2l/GAYWHgU5z6v0gRO5Qb2pz/Fr/Nb777jssW7YMDzzwALRaLfr27Yu//e1vmDt3Lj777DOb93P33XfjwIEDyMjIMN0SEhIwbtw4ZGRkVEmAvJHBAKxeLZetzQ1kjVYLvPKKXH7rLaBCAxp5m2tngF+ekMttpwPRw5WNh4iIqD7zDQP6f39z+olDbwJpowFdoaJhkblaJ0FXrlxBfHw8AHn9z5UrVwAAffr0QWpqqs37CQ4ORocOHcxuQUFBCA8PR4cOHWobVr2UmionPQ0NBYYNq/3zH38ciI4Gzp0DPv7Y8fGRBzCUAT8/KofvbNQd6DxP6YiIiIjqP7UG6PoWcOfHcmLVs9/IiVWLTigdGZWrdRIUHx+PkydPAgDatm2LL774AoBsIQrjMGQOZZwb6MEHAX//2j/fzw+YOVMuz58PlJU5LjbyEAdmAxd3Aj4hQJ81HLKTiIjIleIfl8NoB0QB+YeADd2B3C1KR0WwIwl64oknsG/fPgDAK6+8gqVLl8Lf3x8vvPACZhrPuO20bds2q4MieJsbN4CvvpLLte0KV9FTTwEREcCJE8CaNY6JjTxEzibgUHnLT49/Aw3ilY2HiIjIG0X0AIb8KntklF4Btg4GMt/nxKoKq/XACC+88IJpOTExEUePHkV6ejpatWplGuWN6u6HH4D8fCAmBujXz0IBgx64mAZcz5G/LjTuK5teKwkKAl54AXj1VWDePODRRwF1/b4ujwDgei6w6zEAAmj1LNC8fo9MQ0RE5NYCo2WL0J5ngFOfAul/AfL2cWJVBdX5dLhFixYYPXo0GjVqhGeeecYRMREA4xgTFpOWrBTg2zhg80B5vcfmgfJxVorFfU2ZIq8rOnwYWLfOiUGTexAGYNd44MYFIKwjcPu7SkdERERE2gCg53+BLgsAqIDj/wa23C2/r8nlHNYmcPnyZfznP/9x1O682tWrsiUIsNAVLisFSBsDFJ81X1+cLddbSIRCQ4GpU+Xy3Llsfa33DicDuf8DNIFA78/lhy4REREpT6UCbpspR4/zCQEu7pDXCV3NUDoyr8OOUW7oq6+A0lKgY0fArIehQQ+kTwNgKYspX5eeJMtVkpQEBAYC6enATz85PmZyExd3Avv/IZcT3gdC2ykbDxEREVUVPQwYvBsIbg0UnwF+6gWc+VLpqLwKkyA3ZOwKV6UV6GJa1RYgMwIozpLlKomIAJ59Vi6/+aZDwiR3U3IF2DkWEHogbhwQP1HpiIiIiMia0LbAkN1A1BBAfx3Y8ZD8IVMYlI7MKzAJcjNnzgDbt8vlsWMrbbyeY9tOrJSbMQPw9QXS0uSN6hEh5ISoxVnyV6Xuy2WTOxEREbkv34aya1zbGfLxwTeAtAc4saoL2Dw63OjRo6vdnpeXV9dYCMDq1fK+f3+gefNKGwOibNuJlXLR0cDEicC//iVbgzZssDtMcjeZ7wHZ3wJqX6DPF4BPsNIRERERkS3UWuD2t+VgRnueAc6uk93j+n/D6S2cyOaWoNDQ0GpvLVq0wOOPP+7MWL2C1a5wgBwGOzCmmmergMBYWc6Kl18GNBpg40Zg7946hUru4ko6kFE+R1fXd4CGXRQNh4iIiOwQP0EOo+3fFMg/KAdMOL9V6ajqLZtbglasWOHMOAjA/v3AgQOyy9qYMRYKqDVAt8WymdQiAXRbZHG+IKP4eNnN7tNP5bxBX3/tiMhJMboCYMfDgEEHxIwC2kxROiIiIiKyV8SdwNC9QOpI4MpeYMsgoNt7QOvn2M3dwXhNkBsxtgINHw40bGilULPhgLaB5W1BcUD0fTUeZ9YseZ+SIucOIg8lBLBnElB0HAhsDtz5H35AEhERebrAaCAxVQ5yJPTA3inAr5MAfanSkdUrTILchMEArFolly12hTM69wNQVgT4RwED/wf0WgX0XQv4hAHXTgF/LK3xWLfdBhgv8Zo3r66Rk2JOfAScXg2oNEDv1fLiSiIiIvJ82gCg5ydAl/kAVMCf/wK2JHJiVQdiEuQmUlOBs2flxKbDh1dT8MTH8j7+cSDqbiBuLBA7Eug6X67f/3eg+FyNx/vrX+X96tXAiRN1Cp2UkHcI2PsXudzp/wGNeykbDxERETmWSgXc9hLQ/7vyiVXTOLGqAzEJchPGrnBjxgD+/lYK3bgAnFsvl1tOMN92y1NAeA+grBD4bXqNx+vWDRg6FNDrgfnz7Y+bFFBWDOx8WM4p0HSw/IAkIiKi+il6ODD4F6BBq/KJVXsDZ75SOiqPxyTIDdy4AXxZPknwY49VU/DUKkCUAeF3AKHtzLep1OVzw6iBM58DOZtqPK6xNWjlSiA7267QSQnpSUD+ITl6TK9P5N+ciIiI6q/QdsDQPUDTQYC+GNjxILB/NidWrQOePbmB9euB/HwgJgbo16+agidWyvvKrUBGjboCbcq7SP06GdDfqPa4ffvKW2kp8PbbtQ6blHBqDXD8QwAqoNengH8TpSMiIiIiV/BtCAxYD9z6gnx8cA6QNgbQFSkbl4diEuQGjF3hxo4F1Nb+Ilf3AXn75GSYLR6xvrNOc+RkqUV/AocX1HjsV1+V9//6F3DxYu3iJhcr/FNOogYA7V8Fmt6tbDxERETkWmot0G0hcOcKeU54di2wqRdQdFLpyDwOkyCFXb0KfP+9XK62K5xxQITo+wC/RtbL+YQAt78rlw/NlSfO1Rg8WF4fVFwMLF5se9zkYvoSYOcj8pqvxn2BjrOVjoiIiIiUEj8RuHub7BqfdwDY2B04v03ZmDwMkyCFff217I7WoQPQqZOVQgYdcOpTuRw/seadNn9I9hk1lAB7p8r5ZKxQqW62Br3/vuyWR24o4xXgSjrg2wjovUr+EkRERETeq3FPYOivQKNuQMllObHqseVKR+UxmAQpzNgVrvq5gTYAJRcB/0ggakjNO1WpgISlspk0ZyOQVf0IIvffL+cOys8HltY8zRC52tnvgMxFcvnOlUBgjJLREBERkbsIjAES04AWY+XgWb9OBvY8x4lVbcAkSEFZWcC2bXL50UerKXhypbyPe8z2FoCQ1sBtr8jl9CRAV2i1qFoNzJoll999F7h2zbZDkAtcywJ+mSiXb00CYkYoGQ0RERG5G20A0OszoEsy5MSqHwBbBwE3eLF3dZgEKWj1annfrx/QvLmVQiWXgezv5HK8lVHhrGk/C2hwC3D9nBxGsRqPPALExwOXLgEffli7w5CTGMqAnx8FSq8AjRLKZ40mIiIiqkSlAm57Gej/LaANBi6kyuuEru5TOjK3xSRIQZ+WX+ZT/dxAq+U1QQ1vB8I61u4AGn8g4X25/Md71f4jaLXAyy/L5bffBkpKancocoIDrwMXd8gPs95rAI2v0hERERGRO4u+FxhSPrHqtdPAT72AM18rHZVbYhKkkAMH5M3XFxgzppqCJ8tHhattK5BRs6FA7BhA6IFfn6t2Uq0JE4DoaDlx6n//a9/hyEFy/wccelMu9/gQCL5F2XiIiIjIM4TeBgzZDTRNLJ9YdQyw/zVOrFoJkyCFGAdEGDYMaNjQSqG8Q8CVvYBKKy94s1e3RYC2AXBpF3D8I6vF/PyAF1+Uy8nJQFmZ/YekOrh+Hvj5MQACuOVpoMXDSkdEREREnsSvETDgR3k9MQAcfB3Y8SAnVq2ASZACDAZg1Sq5XG1XOGMrUPS9gH9j+w8YGC0nUQWAjJeBG5esFn36aSAiAjhxAvj8c/sPSXYSBmDX48CN80Boe5nAEhEREdWWWgt0exfo8R9A7QNkpQCbegNFp5SOzC0wCVJAWpocGS40FBg+3EohQxlw8hO53NLOrnAVtfkLENZJXmSf8bLVYkFBwAsvyOW5c2XCRi50eAGQ+xOgCQD6fAFoA5WOiIiIiDzZLU+WT6waCeTtL59YdbvSUSmOSZACjF3hHngA8Pe3Uih3E3AjF/CLAJoNq/tB1Vqge/kEWic+Ai7utFp08mQgJAQ4fBj45pu6H5psdPFnYP/f5HLCEtmnl4iIiKiuGvcChhgnVr0EbEkEjn2gdFSKYhLkYiUlwJdfyuVqu8KdWCnvWzzquFHBGvcCbnlKLu+ZJEedsyAsDJg6VS6/+SYghGMOT9UouQLsHCsHsGgxFoh/UumIiIiIqD4JigUSU4EWj5RPrPqcnFzVyvlgfcckyMXWrwfy8uQobP37WylUehU4W94EEz/RsQF0SQb8woH8g0DmYqvFkpKAwEAgPR3YtMmxIVAlQgC7/w8oPiOHtLzjAznePxEREZEjaQOBXquAznMBqIBjy4Etg6q9Xry+YhLkYsa5gR59FFBbe/dPfw4YSuS8QA27ODYAv3CgywK5fOA14FqWxWKNGwPPPCOX33zTsSFQJX+8D5xdB6h9gT6fAz4hSkdERERE9ZVKBbSfBfT7pnxi1e3lE6vuVzoyl2IS5EJ5ecD338vlceOqKXiifFS4lhOd0yIQPxFo3Bsouwb8lmS12IsvynmMUlOBHTscHwYBuPIb8Hv5uORd3wIa3a5sPEREROQdYkaUT6x6C3DtFLCplxxBzkswCXKhr78GSkuB9u2BTp2sFCrIBC7/Aqg0QFx1mVIdqNRykASVRlb27PUWi0VHAxMnymW2BjmBrhDY8TBgKAVi7pcj+BERERG5SuhtwJA9QOTd8sfxtAeAA697xcSqTIJcyNgV7rHHqmngMbYCRd0DBEQ6L5iwjjcn0No7FSi7brHYyy/LbnsbNsjrg8hBhJAXJBb9CQTGAj0+4nVARERE5Hp+jYCBG4A2z8vHB14Ddjwkk6J6jEmQk+n1wLZtwPvvy3sAGDvWSmGDHjj5X7kc74C5gWrS8TUgMAa4dhI4NNdikfj4m/HOtVyE7HFiJXDqM9ka13u1/AAiIiIiUoJaCyQsrjCx6tfAT72Ba6eVjsxpmAQ5UUoKEBcHDBwI/KW8p5OvbzUtKue3ANezAd+GQPQI5wfo0wDoVj5C3JH5siueBbNmyfuUFDl3ENVR/hHZ+gYAnebI67OIiIiIlHbLk8DdWwH/JkDePmBDAnAhVemonIJJkJOkpABjxgBnz5qvLy2V61MsXXdmmhtoLKDxc3aIUswo2fXOoJNjxVuYFKh9e2DUKLmcnOyasOot/XXZxKwvBpoOAm57RemIiIiIiG5q3FtOrNqwq5xYdfPdwJ//Ujoqh2MS5AR6PTBtWvWTjCYlyXImpfnA2bVy2dFzA1VHpQK6vw9o/GVL1Ok1Fou9+qq8X7UKOHHCdeHVCwY9VBe2I7osFepdj8o5mvwjgZ6fyEEqiIiIiNxJUHNg0A6g+cNyYtU9zwK/TqlXE6vyDMwJ0tKqtgBVJASQlSXLmZz5UrYShLQDGiU4PUYzDeKB9uVZzm/TZUJWSbduwJAhMnFbsMC14Xm0rBTg2zhotw9CQslCaHJ+kOtbPevcgS+IiIiI6kIbKK9b7lw+RPCxZcCWwfVmYlUmQU6Qk2NHuZPlo8LFT1RmlLB2M4HgNsCNXGD/3ywWMbYGrVgBZGe7MDZPlZUCpI0Bii1kxAff8Kqx+ImIiMgDqVRA+7+WT6zaALiwTU6smndAbq/Q20V1Ybsc5MtDMAlygqioWpYr/BO4uEN2jYp7zGlxVUvjB3RfJpePLQOuVB29oW9feSstBd55x8XxeRqDHkifBqCaPpHpSR71YUFEREReKuY+YPAvsvfQtVPATz2B31826+2i3T4I+DbOY37kZRLkBH37AjEx1ht0VCogNlaWA3BzWOymg4HAZi6J0aKmd8tBGYQB2POcxRP0v/5V3v/zn8Cl+tEa6hxZKZZbgEwEUJwFXEyrpgwRERGRmwhrXz6x6l1yDqEjC6qe6xRny14wHpAIMQlyAo0GWLzY8jZjYrRokSwHYbg5QWpLF8wNVJPb3wF8QoArvwLHq44EMmSIvD6ouNj6a/Ra+UeBQ8nAxh7Azodse851G/tOEhERESnNLxzo/4PsGmdReQ8YD+jtwiTISUaPBlavrtoaFBMDfPWV3A4AuLAdKD4D+IQCMfe7PM4qAqKATv9PLmfMAq6fN9usUt1sDVqyBMivOoaC9xAG4NIeIOOvwPftgB/aAftmAZf32L6PABv7ThKRiXES6tWr5b3evb9niYjql8u/AGVF1RTwjN4uTIKcKDxcjgTXsCHw6afA1q3AyZMVEiCgwtxADwPaACXCrKr1ZKDh7YAuH/h9ZpXNI0cCt90mE6Bly1wfnqIMOiD3f8CvU4F1zYGfegCH5wEFR+UMy1FDgO4fACOzgMAYANYGuVABgbFA475WthORJRUnoX70UXkfF2dl7jUiInI8W3uxuHlvFyZBTrR+vbwfORIYNw4YMKC8C5yRrgjI+louu0NXOCO1Bui+HIAKOPUJcH6b+WY1MGuWXH73Xdk1rl4ruyb7tv78OJASCWwZBBxbClzPls3BzR8Eeq0CRl8EBm4AWj8rE6Buxv6ClROh8sfdFsn3mohsYm0S6uzsaiahJiIix7K1F4ub93bRKh1AfWZMgoYNs1Ig62t5gh3cGojo6bK4bBJxh5zL5s8PgF8nA/dkABpf0+ZHHgFmz5YTp374oZwctl4puQxkfwecXQfk/CTncDLyayxHSYkZJQeT0Phb3kfsaKDvV3KUuIoXDgbGyAQodrTl5xERANmSfu0aUFAAXL0KPPec5UmojeueeUb+0OTvD/j4WL75+lrfptUqM0MBEZFHadxXnssUZ8PyKLgqud3Ne7swCXKS48eBzEz5pTpokJVCxq5wLSe45zdvl7nA2RSg4AhwdCHQ/hXTJq0WePll4NlngbfeAiZNAvz8FIzVEa6dkUnP2XXAhVRAVLjQIChOJj2xo4CIXra34MSOBqLvR1nOVmT88iO63HkPtFED2QJE9ZpOBxQWyuTFeKv82NqtYrnCQsBgsP24ly/Llve60GprTpZqk1gpUY6IyKnUGtnbJW0MZO+WiomQ5/R2YRLkJMZWoD59gNBQCwWKTskJp6ACWo53XWC14dsQ6Po2sOtx4OAcoMUjQIM40+YJE4DXX5ddUf72N+D22+XcR337Vur2566EAPIPlyc+a6vOjRTW6WbiE9bJ/kRVrYFo0h/Z2mvo3KS/238okHcSArh+vXYJi7Wy16/XfLzaMLbuXLtWc9lbbgGCg2UiVtPN0oAKZWXy5ujX4Fo+UKtHwNdX5ZZJWm3Kqdlpn8g91YPeLkyCnKTGrnDGuYEi7wKCmrskJrvEPQYc/48cxS79eaD/t6ZNfn7A4MHAypXA22/ffEpMjBw+e7Q71n9hAC7tvpn4FB6rsFEFNO5dnviMlBOCEbk5vR4oKrI/Yal4c/QoawEBQEiI5VtwsPVtlW/+/sD27XIQhJr8+9/y+ktbGAy2JUulpe5drqzM0mtT48YN4MaNWv3J3I5a7d5Jmq3lPOKHQaLa8vDeLkyCnKC4WI4EBwDDh1soIARwsnxuoPiJrgrLPioV0H0ZsL5z+TUy35iG8k5JAT7+uOpTjBcpmw0FriR9KXB+q0x8sr8xH61E7Qs0TZSJT8x9gH8TxcIk71JSUnPCcvWqGgcOdMTXX2usJjq2tI7UhkplX6JSuXxwsGO7Zhknoc7OtnxdkEolt/etRRd0tVr+mOPpXXmFME+Kiot12LhxC/r2vQuAj+JJmq3ldLqqr81gkP8rJSUuf1sdSqVy/0TN+P+akxOIrCwgMNByMueOvfdJOXqhwbYjA/Djz2HIC+2CgU018IwUiEmQU2zdKj+wW7QA2rWzUODiDqDohBxZLHaUy+OrtdDbgHYvAoeTgb3PA00ToVcFYdo06xcpq1RAUhJw//0K/QKmKwJyfgSy1gHnfpDDfRtpg4Ho4TLxaTYU8AlRIEDyRAbDzQv17bnepWLZ0lJbjqgBYFuLpK9v7RMVS7fAQPfsgmSchHrMGPn5UvGzp8ok1F5GpZJ/f9/ysWuCgoBGjW6gRQvHJqLOJoRs1XJEUqV0wmfptZWW2vp/ryQfAIOqL+EByVxN5TgIimOkpMiBsc6e1QJIwMKFbt4bqBImQU7www/yftgwK/9kxlag5g8B2iCXxVUnHf4OnF4NXDsNHHwDaXnJVYaprUgIICsLeOwxICEBaNLk5i0yEoiIuPmF7TA3LgLZ38rEJ3cTYKjw06F/pGzBihkFRA4ENB7+0y/Vik5Xt4Sl4mNLiX9dNGhgPSEJCtLjwoU/0bVrKzRsqKk2sfH01gxbjB4tW5jll+7N9TExMgHyhC9dsq5ia4knE0J2LXXnJM36TeD6dT0MBg10OpXFzztrrXaexjgIijsmabUpq1QyZ5yyoHIdcbveQNVgEuRgQtRwPVBZMXD6C7kc70ZzA9VEGwh0ew9IvR848g6uifEA2tf4tDVr5M2Shg2rJkcVH1dcHxpq5R+96JS8tufsOtnCJioMJdXgFtnSFjMKiLgTULnhz9tkVcUL9et6vYujr4vQaGSdtKfbWMWyDRpU33Kh0xmwfv1RDBsWDx8fL2zisGD0aNnCnJYG5OR42GAs5BVUKnmCrdXK6+I8iU5XhvXr12PYsGHw8fHx4GTOvJylUSbrxyAo8rPP1YmaRiMHxHLb3kA2YhLkYEeOAKdPy19l77rLQoGstUBZobzovnEfl8dXJzH3AdH3AdnforfvZADbUHUiUHNjxsj34sIF4Px5eX/xovyV7OpVecvMrPnQPj7GpEigR5sDGNRuLXpEr0N0YIZZudKgrlC3GAVt3CggtL1btHfr9cD27SqkpkYjKEiFgQPd+0OhrvT6mltbbG2Nqc3wyLao7kL92nQb8/d3i6rltTQa2wc/ICL7aTQ3R2f0ZDUNgqJ0kmZrOUuD1+j18uZOg6AYewOlpbn3ZzWTIAcztgINHCj71ldxcqW8b/m4Z7ZMJLwH5G5CWGkqpt33Cd777vFqL1Jes6bqCb/BIJOfCxfMk6PKN+P6okI97mi5C6O6r8XIbutwS+QJ0770BjXSjvbF2r2jsC59JM5cagFA/kpvqUXJUktTw4bOuwbCU/rLCmH9Qv3adh9z5oX6dRllLDhY/jJLRETepb4OgqJUknbiBLB3b83x5uTUXEZJPCVwsIrXA1VxLQvI3SyXWz7uspgcKqgF0OEfwL5ZSH74RXyy5V5cvdaoVhcpq9VAeLi8WRw4AgD0JfK9OrsO4uw3UJVcuLlJ+OHkjcFIPz8K24+PwInsCJw/D5T5ypPcsjIgP1/ejh2r+SVptUDjxrYlTE2a2N69wRX9ZQ2GqsMj2zMpZUGB4/t4+/nZPyRyxbJBQWx1ISIiqjwIilK2bbNtyoKoKKeHUidMghwoPx/YsUMuWxwa+9QnAATQpD/QoKUrQ3OsttOBU5/AP/8wfv33q+j/4nLHXKSsKwCy18vre86tl90GUd7hzicUiL4XiBkFTdQQtPJpgFYAHq60CyGAvDzbW5ny8mTSlJNj+y8WwcE1tzKFhwN/+Uv1/WWffx7o1MnyaGO2tsYUFtbyPbZBdRfq29oK4y0X6hMREXkbZ0xZoAQmQQ6g18t+j998I0+o27QB4o2j2hr0wMU0oPgc8Mdyuc7d5waqicYXSFgGbB6AeP0/cSr9CaQdvsO+i5Svn5dz92StA85vBgwVxg8NiAJiRsqBDZr0l8etgUolu7c1bAjcemvNhy8tldco2Zo0lZbKxKOwEDh+3MbXaIEQ8sOjdWv791GRVuuYLmMNGrjn8MhERETkHurLlAVMguro5jUfN9edOyfXj+6eAqRPA4orjiWtAlQePv4nAET2l136Tv4Xmr3PYkDXt4G4CzJxUfUFqpsqq/B4hRHdfgZQ4b8nuM3NEd3Cuzv9uilfXyA6Wt5qIoRsfbElYcrKsu3aGF9foFGjuncZ44X6RERE5Cr1YcoCJkF1YO2aj6Ii4LPkFIxKGgMVKrcTCmDXeEAbAMR6QA2pTte3gDNfAXkZwNbEm+sDY4Bui2++PiGAqxk3E5+8A+b7aZRwM/EJaeu2Z/MqlRxwITS05hYcW/vLbtzo3iOnEBEREVlinLJg69Yy/PhjBu65pwsGDtS6fQuQEZMgO+n1Mvu11BdSrdJj0fhpEEJYP59PTwKi7wfUHlJTLLm4A9AXV11fnA2kjQE6vg6UXpaJz7XTN7erNLJ7W8woOYFpUKzLQnaV+tJfloiIiMgajQbo31/g2rVs9O/f2WMSIIBJkN3S0syb/yrq2zYNseFWNgIABFCcJa8VihzgjPCcz6CXXf0sKj/rP/CPm6s0AUDUEJn4RN8L+DVyeohKqi/9ZYmIiIjqIyZBdqpuJLGoMBuHGbvu5gOoV+diWqVrnaxoOhho/RwQNRjQWpo4qf6qD/1liYiIiOojJkF2qm7s85w8GwdGD3DzAdSrY2sCFz8RiB3pzEjcmqf3lyUiIiKqjzgYrp2M13xYuuYn7WhfZF2OgUFYuyBIBQTGAo09+IIQWxM4T070HMTYX7Zfv2z07y+YABEREREpjEmQnYzXfABVEyEBDZI+WWxlUITyld0WefagCI37ylHgUI8TPSIiIiKql5gE1YHxmo/Kc8zExADjXhkNVd+vALWf+cbAGKDvV54/PLZaI4fBBlA1EaoniR4RERER1Uu8JqiOjNd8pKXJwRKiomRXOY0GgH7YzYJdFsjJPxv3rT+JQexomdBVnhA2MEYmQJ6e6BERERFRvcQkyAE0GisTXl7cCRhKgIBmQLsX3XYS0DqJHS3nO7qYJgdLCIiqX4keEREREdU7TIKcKXeTvG86qH4mQEZqjefOd0REREREXofXBDlTjjEJSlQ2DiIiIiIiMmES5Cw3LgFXf5fLTIKIiIiIiNwGkyBnOb8FgADCOgIBTZWOhoiIiIiIyjEJcpaK1wMREREREZHbYBLkDEJUSILYFY6IiIiIyJ0wCXKGwj+Ba6cBtS/QpJ/S0RARERERUQVMgpzh/P/kfUQvQBukbCxERERERGSGSZAzGIfGjuL1QERERERE7oZJkKMZyspHhgMQyeuBiIiIiIjcDZMgR7uyF9DlA74NgUbdlI6GiIiIiIgqUTQJmjdvHrp3747g4GA0adIEI0eORGZmppIh1V1u+fVAkXcBao2ysRARERERURWKJkHbt2/HlClT8Msvv2DTpk3Q6XQYPHgwrl27pmRYdcP5gYiIiIiI3JpWyYNv2LDB7PHKlSvRpEkTpKeno18/DxxaWlcEXNollzk/EBERERGRW1I0CaosPz8fANCoUSOL20tKSlBSUmJ6XFBQAADQ6XTQ6XROj894DGvHUuVshtaggwhqiTL/5oALYiLPUFPdIbKE9YbswXpD9mLdIXu4U72pTQwqIYRwYiw2MxgMuO+++5CXl4cdO3ZYLPPaa6/h9ddfr7J+1apVCAwMdHaI1gk9wg2H0bp0LSINv+GUZhD2+U9RLh4iIiIiIi9TXFyMRx99FPn5+QgJCam2rNskQc899xx+/PFH7NixAzExMRbLWGoJio2NxaVLl2p8oY6g0+mwadMmDBo0CD4+PgAA1dm10GRMh+p6tqmc8G0EfbflEDGjnB4TeQZLdYeoJqw3ZA/WG7IX6w7Zw53qTUFBASIiImxKgtyiO9zUqVPx/fffIzU11WoCBAB+fn7w8/Orst7Hx8elb7rpeFkpwK5HAJjnkarSq9DuegTo+xUQO9plcZH7c3VdpfqB9YbswXpD9mLdIXu4Q72pzfEVHR1OCIGpU6di7dq12LJlC1q2bKlkOLVj0APp01A5AZLK16UnyXJEREREROQ2FE2CpkyZgk8//RSrVq1CcHAwcnNzkZubi+vXrysZlm0upgHFZ6spIIDiLFmOiIiIiIjchqJJ0PLly5Gfn48BAwYgKirKdPv888+VDMs213McW46IiIiIiFxC0WuC3GRMBvsERDm2HBERERERuYSiLUEerXFfIDAGgMpKARUQGCvLERERERGR22ASZC+1Bui2uPxB5USo/HG3RbIcERERERG5DSZBdRE7Wg6DHRhtvj4whsNjExERERG5KbeYJ8ijxY4Gou+Xo8Bdz5HXADXuyxYgIiIiIiI3xSTIEdQaIHKA0lEQEREREZEN2B2OiIiIiIi8CpMgIiIiIiLyKkyCiIiIiIjIqzAJIiIiIiIir8IkiIiIiIiIvAqTICIiIiIi8ipMgoiIiIiIyKswCSIiIiIiIq/CJIiIiIiIiLwKkyAiIiIiIvIqTIKIiIiIiMirMAkiIiIiIiKvwiSIiIiIiIi8CpMgIiIiIiLyKkyCiIiIiIjIqzAJIiIiIiIir8IkiIiIiIiIvAqTICIiIiIi8ipMgoiIiIiIyKswCSIiIiIiIq/CJIiIiIiIiLwKkyAiIiIiIvIqTIKIiIiIiMirMAkiIiIiIiKvwiSIiIiIiIi8CpMgIiIiIiLyKkyCiIiIiIjIqzAJIiIiIiIir8IkiIiIiIiIvAqTICIiIiIi8ipMgoiIiIiIyKswCSIiIiIiIq/CJIiIiIiIiLwKkyAiIiIiIvIqTIKIiIiIiMirMAkiIiIiIiKvwiSIiIiIiIi8CpMgIiIiIiLyKkyCiIiIiIjIqzAJIiIiIiIir8IkiIiIiIiIvAqTICIiIiIi8ipMgoiIiIiIyKswCSIiIiIiIq/CJIiIiIiIiLwKkyAiIiIiIvIqTIKIiIiIiMirMAkiIiIiIiKvwiSIiIiIiIi8CpMgIiIiIiLyKkyCiIiIiIjIqzAJIiIiIiIir8IkiIiIiIiIvAqTICIiIiIi8ipMgoiIiIiIyKswCSIiIiIiIq/CJIiIiIiIiLwKkyAiIiIiIvIqTIKIiIiIiMirMAkiIiIiIiKvwiSIiIiIiIi8CpMgIiIiIiLyKkyCiIiIiIjIqzAJIiIiIiIir8IkiIiIiIiIvAqTICIiIiIi8ipMgoiIiIiIyKswCSIiIiIiIq/CJIiIiIiIiLyKVukAiIiIasOgN+BM2hkU5hQiOCoYzfs2h1rD3/SIiMh2TIIcoLovZGd9WbvTSYA7xUJE9duRlCPYMG0DCs4WmNaFxIRg6OKhaDe6nYKRERGRJ2ESVEfVfSEDcMqXtTudBLhTLO7KoDfg9PbTuJp6FaeDTiN+YDyTRCI7HEk5gi/GfAEI8/UF2QX4YswXeOirh/i5Q0TkQp58jsMkqA6q/UJ+4AuLz6nrl7U7nQS4UyzuqnKSeHrhaSaJVO8IISD0AsIgbwa9wbRcq/XVlNXr9Ph+0vdVPm9kAPLu+0nfwy/UDxofDaACVCoVVGpV1WW1CiqVmy6rVC792xER2cvTz3FUQghLXykeoaCgAKGhocjPz0dISIjTj6fT6bB+/XoMGzYMGrUGi+MWm7WA2EwlW0umnZxWq2zZoDdUf0w792sPd4rFXVlLElF+jsMksSohBCBQ5xNmJdc7ct+GMgOysrLQrGkzqKBym7gqrycHc0BSVVJaAn9/f4ckZxYTSQWXoXafWNw9ya7tayjTlyE1LRX9+/eHr5+va98j8ijueo5Tm9yALUF2OpN2xr4ECAAEUJBVgGXtl8E/1P/mB7vxHqi6TgXcyLtR/THL9/tR748QGBFY5flVvkgq3lf+JbLStsrrC3MKbYrlq0e+QmjzUPmSrO3fhtde6zLGYo46Zi33J4TAj1N/rPZX6++e/g7Xr16Xq1x88u6oX+cdHhdPqC26iqtKh+AQKrUKKo38HFKpVVBr1KblmtbrrulQlFtU4zGCmwXDL8RP1qcKSXXlZWEof+zAZYv/7/YQkP8XddxhEWp+v4gsOYqjihyXCazlZWN87hCL8Xxo+5zt1s9xVMCGpA249f5b3fqHcLdIgpYuXYq33noLubm56Ny5M5YsWYI77rhD6bCqVZhTWOd9XM687IBIqsrene2U/drjyFdHlA7BbV2/ch3fPfWd0mF4LHtPpm1a74R9G5dr8zwhBDKPZaLdbe2g9dEq/hosrbe5bB1/6T217RQ+HvhxjeVGfzYacQPi6nSsuqgu8bJl2REJma5Uh7TUNPTp3QcarcYxSZ6dr8fZy85IZi0tu1Mszv7blZaUQqvV1uq5Dvv/Kd9XXX8AIIUJ+UP4mbQzin4e10TxJOjzzz/H9OnT8cEHH6BHjx5YtGgRhgwZgszMTDRp0kTp8KwKjgqu8z7umnsXmnRoYvrAMv7Pmz5YKt4DuHDwAlLnpNa4394v90Z4m3CL+6n8q6W9266cuIJ9K/bVGEuHsR0QElveHGll35Zeq81ljZ+TTty3PWWLzhfh0pFLNb4/kZ0jERobatfJtNNOVt1s3xZP7L2k64ROp8PV9VfRY1gP+Pj4KB2Oopr3bY6QmBAUZBfc/L+vSCW74Dbv29zlsZmFUbEFXSE6nQ4BWQGI7BLp9fWGaqdit//a1h0m1u6VzDpyuXIsV09exdldZ2usE45oMHAmxZOghQsX4umnn8YTTzwBAPjggw/www8/4KOPPsIrr7yicHTW1fiFXJ3yL+veL/WuVTNhu9HtkPFRRo0nAXe9eZdLrgk6uelkjbGM+mSUWzeFOoutv1oPXTTUrX8lIXIXao0aQxcPlX3QVTD/3CnPN4YuGuqVnzdE7kClkj9UUf1n6zmOIxoMnEnRJKi0tBTp6emYNWuWaZ1arUZiYiJ27dpVpXxJSQlKSkpMjwsK5DUpOp0OOp3O6fEaj6HT6QAfIPGdRKQ8kmL5C1lYWDY+BpD4diL0Bj30Bn2tYqj2mHXYrz3cKRZ3E3VnFIKjg1F4rtB6khgdgqg7o1xSd8kzmX3mEFqNaIXRa0Zj0/RNKMy++QtjSHQIEt9JRKsRrfhegfWG7Me6Q7Zw53Oc2hxP0dHhzp07h+joaPz888/o2bOnaf1LL72E7du3Y/fu3WblX3vtNbz++utV9rNq1SoEBgY6PV5L8nblIfvf2dBdvvmm+0T4IPr/ogHA6rawnmFOOWZd9uvpsbibvF15ODX/lNXtcS/Hef17RGQPoRcoOlyEsqtl0DbUosFtDfgLNBGRC7nrOU5xcTEeffRRm0aH86gkyFJLUGxsLC5duuSyIbI3bdqEQYMGmfWVNegNyNqRhaKcIjSIaoDYPrGmLhnVbasLZ+3X02NxN0fXHq36q3WM/NW67ai2CkZGnsDaZw5RdVhvyF6sO1Qb7niOU1BQgIiICPcfIjsiIgIajQbnz583W3/+/Hk0bdq0Snk/Pz/4+flVWe/j4+PSf9Yqx/MBWiW2slK4mm11CsJJ+7WHO8XiZjo+1BHtH2iPE1tPYMePO9Dnnj4eNZsyuQdXf8ZR/cB6Q/Zi3SFbuOM5Tm3qraJnYr6+vujWrRs2b95sWmcwGLB582azliEiT6bWqNGifws07NcQLfq3YAJERERE9YInn+MoPjrc9OnTMWHCBCQkJOCOO+7AokWLcO3aNdNocURERERERI6keBL08MMP4+LFi/jHP/6B3NxcdOnSBRs2bEBkZKTSoRERERERUT2keBIEAFOnTsXUqVOVDoOIiIiIiLyA53TcIyIiIiIicgAmQURERERE5FWYBBERERERkVdhEkRERERERF6FSRAREREREXkVJkFERERERORVmAQREREREZFXYRJERERERERehUkQERERERF5FSZBRERERETkVbRKB1AXQggAQEFBgUuOp9PpUFxcjIKCAvj4+LjkmFQ/sO6QPVhvyB6sN2Qv1h2yhzvVG2NOYMwRquPRSVBhYSEAIDY2VuFIiIiIiIjIHRQWFiI0NLTaMiphS6rkpgwGA86dO4fg4GCoVCqnH6+goACxsbHIyspCSEiI049H9QfrDtmD9YbswXpD9mLdIXu4U70RQqCwsBDNmjWDWl39VT8e3RKkVqsRExPj8uOGhIQo/kcmz8S6Q/ZgvSF7sN6QvVh3yB7uUm9qagEy4sAIRERERETkVZgEERERERGRV2ESVAt+fn6YPXs2/Pz8lA6FPAzrDtmD9YbswXpD9mLdIXt4ar3x6IERiIiIiIiIaostQURERERE5FWYBBERERERkVdhEkRERERERF6FSRAREREREXkVJkG1sHTpUsTFxcHf3x89evTAnj17lA6JXGTevHno3r07goOD0aRJE4wcORKZmZlmZW7cuIEpU6YgPDwcDRo0wAMPPIDz58+blTlz5gyGDx+OwMBANGnSBDNnzkRZWZlZmW3btuH222+Hn58fWrVqhZUrVzr75ZGLJCcnQ6VSISkpybSO9Yasyc7OxmOPPYbw8HAEBASgY8eO2Lt3r2m7EAL/+Mc/EBUVhYCAACQmJuLYsWNm+7hy5QrGjRuHkJAQhIWF4f/+7/9QVFRkVmb//v3o27cv/P39ERsbiwULFrjk9ZHj6fV6/P3vf0fLli0REBCAW265BW+88QYqjoHFekMAkJqaihEjRqBZs2ZQqVRYt26d2XZX1pMvv/wSbdu2hb+/Pzp27Ij169c7/PVaJMgma9asEb6+vuKjjz4Shw4dEk8//bQICwsT58+fVzo0coEhQ4aIFStWiIMHD4qMjAwxbNgw0bx5c1FUVGQqM2nSJBEbGys2b94s9u7dK+68807Rq1cv0/aysjLRoUMHkZiYKH7//Xexfv16ERERIWbNmmUqc+LECREYGCimT58uDh8+LJYsWSI0Go3YsGGDS18vOd6ePXtEXFyc6NSpk5g2bZppPesNWXLlyhXRokULMXHiRLF7925x4sQJsXHjRvHnn3+ayiQnJ4vQ0FCxbt06sW/fPnHfffeJli1biuvXr5vKDB06VHTu3Fn88ssvIi0tTbRq1UqMHTvWtD0/P19ERkaKcePGiYMHD4rVq1eLgIAA8c9//tOlr5cc48033xTh4eHi+++/FydPnhRffvmlaNCggVi8eLGpDOsNCSHE+vXrxauvvipSUlIEALF27Vqz7a6qJzt37hQajUYsWLBAHD58WPztb38TPj4+4sCBA05/D5gE2eiOO+4QU6ZMMT3W6/WiWbNmYt68eQpGRUq5cOGCACC2b98uhBAiLy9P+Pj4iC+//NJU5siRIwKA2LVrlxBCfuCo1WqRm5trKrN8+XIREhIiSkpKhBBCvPTSS6J9+/Zmx3r44YfFkCFDnP2SyIkKCwtF69atxaZNm0T//v1NSRDrDVnz8ssviz59+ljdbjAYRNOmTcVbb71lWpeXlyf8/PzE6tWrhRBCHD58WAAQv/76q6nMjz/+KFQqlcjOzhZCCLFs2TLRsGFDU10yHvvWW2919EsiFxg+fLh48sknzdaNHj1ajBs3TgjBekOWVU6CXFlPHnroITF8+HCzeHr06CGeffZZh75GS9gdzgalpaVIT09HYmKiaZ1arUZiYiJ27dqlYGSklPz8fABAo0aNAADp6enQ6XRmdaRt27Zo3ry5qY7s2rULHTt2RGRkpKnMkCFDUFBQgEOHDpnKVNyHsQzrmWebMmUKhg8fXuVvy3pD1nz77bdISEjAgw8+iCZNmqBr16748MMPTdtPnjyJ3Nxcs797aGgoevToYVZ3wsLCkJCQYCqTmJgItVqN3bt3m8r069cPvr6+pjJDhgxBZmYmrl696uyXSQ7Wq1cvbN68GX/88QcAYN++fdixYwfuueceAKw3ZBtX1hMlv7+YBNng0qVL0Ov1ZichABAZGYnc3FyFoiKlGAwGJCUloXfv3ujQoQMAIDc3F76+vggLCzMrW7GO5ObmWqxDxm3VlSkoKMD169ed8XLIydasWYPffvsN8+bNq7KN9YasOXHiBJYvX47WrVtj48aNeO655/D888/j448/BnDzb1/d91Jubi6aNGlitl2r1aJRo0a1ql/kOV555RU88sgjaNu2LXx8fNC1a1ckJSVh3LhxAFhvyDaurCfWyriiHmmdfgSiembKlCk4ePAgduzYoXQo5OaysrIwbdo0bNq0Cf7+/kqHQx7EYDAgISEBc+fOBQB07doVBw8exAcffIAJEyYoHB25qy+++AKfffYZVq1ahfbt2yMjIwNJSUlo1qwZ6w1RJWwJskFERAQ0Gk2VEZvOnz+Ppk2bKhQVKWHq1Kn4/vvvsXXrVsTExJjWN23aFKWlpcjLyzMrX7GONG3a1GIdMm6rrkxISAgCAgIc/XLIydLT03HhwgXcfvvt0Gq10Gq12L59O9577z1otVpERkay3pBFUVFRuO2228zWtWvXDmfOnAFw829f3fdS06ZNceHCBbPtZWVluHLlSq3qF3mOmTNnmlqDOnbsiPHjx+OFF14wtUSz3pAtXFlPrJVxRT1iEmQDX19fdOvWDZs3bzatMxgM2Lx5M3r27KlgZOQqQghMnToVa9euxZYtW9CyZUuz7d26dYOPj49ZHcnMzMSZM2dMdaRnz544cOCA2YfGpk2bEBISYjrZ6dmzp9k+jGVYzzzT3XffjQMHDiAjI8N0S0hIwLhx40zLrDdkSe/evasMw//HH3+gRYsWAICWLVuiadOmZn/3goIC7N6926zu5OXlIT093VRmy5YtMBgM6NGjh6lMamoqdDqdqcymTZtw6623omHDhk57feQcxcXFUKvNT+00Gg0MBgMA1huyjSvriaLfX04feqGeWLNmjfDz8xMrV64Uhw8fFs8884wICwszG7GJ6q/nnntOhIaGim3btomcnBzTrbi42FRm0qRJonnz5mLLli1i7969omfPnqJnz56m7cahjgcPHiwyMjLEhg0bROPGjS0OdTxz5kxx5MgRsXTpUg51XM9UHB1OCNYbsmzPnj1Cq9WKN998Uxw7dkx89tlnIjAwUHz66aemMsnJySIsLEx88803Yv/+/eL++++3OIRt165dxe7du8WOHTtE69atzYawzcvLE5GRkWL8+PHi4MGDYs2aNSIwMJBDHXuoCRMmiOjoaNMQ2SkpKSIiIkK89NJLpjKsNySEHLX0999/F7///rsAIBYuXCh+//13cfr0aSGE6+rJzp07hVarFW+//bY4cuSImD17NofIdkdLliwRzZs3F76+vuKOO+4Qv/zyi9IhkYsAsHhbsWKFqcz169fF5MmTRcOGDUVgYKAYNWqUyMnJMdvPqVOnxD333CMCAgJERESEmDFjhtDpdGZltm7dKrp06SJ8fX1FfHy82THI81VOglhvyJrvvvtOdOjQQfj5+Ym2bduKf/3rX2bbDQaD+Pvf/y4iIyOFn5+fuPvuu0VmZqZZmcuXL4uxY8eKBg0aiJCQEPHEE0+IwsJCszL79u0Tffr0EX5+fiI6OlokJyc7/bWRcxQUFIhp06aJ5s2bC39/fxEfHy9effVVsyGKWW9ICPmdYem8ZsKECUII19aTL774QrRp00b4+vqK9u3bix9++MFpr7silRAVphEmIiIiIiKq53hNEBEREREReRUmQURERERE5FWYBBERERERkVdhEkRERERERF6FSRAREREREXkVJkFERERERORVmAQREREREZFXYRJERERERERehUkQERGZOXXqFFQqFTIyMpQOxeTo0aO488474e/vjy5duigdjkUTJ07EyJEjTY8HDBiApKSkap8TFxeHRYsWOTUuIiKqikkQEZGbmThxIlQqFZKTk83Wr1u3DiqVSqGolDV79mwEBQUhMzMTmzdvtlouNzcXf/nLXxAfHw8/Pz/ExsZixIgR1T7HWVJSUvDGG284dJ8rV65EWFiYQ/dJROSNmAQREbkhf39/zJ8/H1evXlU6FIcpLS21+7nHjx9Hnz590KJFC4SHh1ssc+rUKXTr1g1btmzBW2+9hQMHDmDDhg0YOHAgpkyZYvex7dWoUSMEBwe7/LhERFQzJkFERG4oMTERTZs2xbx586yWee2116p0DVu0aBHi4uJMj41dtObOnYvIyEiEhYVhzpw5KCsrw8yZM9GoUSPExMRgxYoVVfZ/9OhR9OrVC/7+/ujQoQO2b99utv3gwYO455570KBBA0RGRmL8+PG4dOmSafuAAQMwdepUJCUlISIiAkOGDLH4OgwGA+bMmYOYmBj4+fmhS5cu2LBhg2m7SqVCeno65syZA5VKhddee83ifiZPngyVSoU9e/bggQceQJs2bdC+fXtMnz4dv/zyi6ncwoUL0bFjRwQFBSE2NhaTJ09GUVGRabuxtWXjxo1o164dGjRogKFDhyInJ8dURq/XY/r06QgLC0N4eDheeuklCCHM4qncHe7ChQsYMWIEAgIC0LJlS3z22WdVXkN1sW3btg1PPPEE8vPzoVKpzN6LkpISvPjii4iOjkZQUBB69OiBbdu2mfZ7+vRpjBgxAg0bNkRQUBDat2+P9evXW3wfiYi8AZMgIiI3pNFoMHfuXCxZsgRnz56t0762bNmCc+fOITU1FQsXLsTs2bNx7733omHDhti9ezcmTZqEZ599tspxZs6ciRkzZuD3339Hz549MWLECFy+fBkAkJeXh7vuugtdu3bF3r17sWHDBpw/fx4PPfSQ2T4+/vhj+Pr6YufOnfjggw8sxrd48WK88847ePvtt7F//34MGTIE9913H44dOwYAyMnJQfv27TFjxgzk5OTgxRdfrLKPK1euYMOGDZgyZQqCgoKqbK/YhUytVuO9997DoUOH8PHHH2PLli146aWXzMoXFxfj7bffxieffILU1FScOXPG7LjvvPMOVq5ciY8++gg7duzAlStXsHbt2mr+CjIhzcrKwtatW/HVV19h2bJluHDhglmZ6mLr1asXFi1ahJCQEOTk5Ji9F1OnTsWuXbuwZs0a7N+/Hw8++CCGDh1qeg+nTJmCkpISpKam4sCBA5g/fz4aNGhQbbxERPWaICIitzJhwgRx//33CyGEuPPOO8WTTz4phBBi7dq1ouLH9uzZs0Xnzp3Nnvvuu++KFi1amO2rRYsWQq/Xm9bdeuutom/fvqbHZWVlIigoSKxevVoIIcTJkycFAJGcnGwqo9PpRExMjJg/f74QQog33nhDDB482OzYWVlZAoDIzMwUQgjRv39/0bVr1xpfb7NmzcSbb75ptq579+5i8uTJpsedO3cWs2fPtrqP3bt3CwAiJSWlxuNV9uWXX4rw8HDT4xUrVggA4s8//zStW7p0qYiMjDQ9joqKEgsWLDA9Nr4/xr+bEPL1T5s2TQghRGZmpgAg9uzZY9p+5MgRAUC8++67tYotNDTUrMzp06eFRqMR2dnZZuvvvvtuMWvWLCGEEB07dhSvvfaa9TeBiMjLaBXMv4iIqAbz58/HXXfdZbH1w1bt27eHWn2z4T8yMhIdOnQwPdZoNAgPD6/SKtGzZ0/TslarRUJCAo4cOQIA2LdvH7Zu3WqxNeH48eNo06YNAKBbt27VxlZQUIBz586hd+/eZut79+6Nffv22fgKUaUrWnX+97//Yd68eTh69CgKCgpQVlaGGzduoLi4GIGBgQCAwMBA3HLLLabnREVFmd6f/Px85OTkoEePHqbtxvfHWhxHjhyBVqs1ez/atm1bZZADW2Kr7MCBA9Dr9ab33KikpMR0/dTzzz+P5557Dj/99BMSExPxwAMPoFOnTja+Y0RE9Q+7wxERubF+/fphyJAhmDVrVpVtarW6ykm3TqerUs7Hx8fssUqlsrjOYDDYHFdRURFGjBiBjIwMs9uxY8fQr18/UzlLXdOcoXXr1lCpVDh69Gi15U6dOoV7770XnTp1wtdff4309HQsXboUgPnADZben9okWvawNbbKioqKoNFokJ6ebva3OHLkCBYvXgwAeOqpp3DixAmMHz8eBw4cQEJCApYsWeLU10NE5M6YBBERubnk5GR899132LVrl9n6xo0bIzc31+zk3JFz+1QcTKCsrAzp6elo164dAOD222/HoUOHEBcXh1atWpndapP4hISEoFmzZti5c6fZ+p07d+K2226zeT+NGjXCkCFDsHTpUly7dq3K9ry8PABAeno6DAYD3nnnHdx5551o06YNzp07Z/NxACA0NBRRUVHYvXu3aZ3x/bGmbdu2VcpkZmaa4rI1Nl9fX+j1erN1Xbt2hV6vx4ULF6r8LZo2bWoqFxsbi0mTJiElJQUzZszAhx9+WKvXTURUnzAJIiJycx07dsS4cePw3nvvma0fMGAALl68iAULFuD48eNYunQpfvzxR4cdd+nSpVi7di2OHj2KKVOm4OrVq3jyyScByAvtr1y5grFjx+LXX3/F8ePHsXHjRjzxxBNVTtJrMnPmTMyfPx+ff/45MjMz8corryAjIwPTpk2rdbx6vR533HEHvv76axw7dgxHjhzBe++9Z+ra16pVK+h0OixZsgQnTpzAJ598YnXAhupMmzYNycnJWLduHY4ePYrJkyebJTSV3XrrrRg6dCieffZZ7N69G+np6XjqqacQEBBgKmNLbHFxcSgqKsLmzZtx6dIlFBcXo02bNhg3bhwef/xxpKSk4OTJk9izZw/mzZuHH374AQCQlJSEjRs34uTJk/jtt9+wdetWU0JLROSNmAQREXmAOXPmVOmu1q5dOyxbtgxLly5F586dsWfPnjpdO1RZcnIykpOT0blzZ+zYsQPffvstIiIiAMDUeqPX6zF48GB07NgRSUlJCAsLM7v+yBbPP/88pk+fjhkzZqBjx47YsGEDvv32W7Ru3bpW+4mPj8dvv/2GgQMHYsaMGejQoQMGDRqEzZs3Y/ny5QCAzp07Y+HChZg/fz46dOiAzz77rNphyK2ZMWMGxo8fjwkTJqBnz54IDg7GqFGjqn3OihUr0KxZM/Tv3x+jR4/GM888gyZNmpi22xJbr169MGnSJDz88MNo3LgxFixYYNr3448/jhkzZuDWW2/FyJEj8euvv6J58+YA5JDeU6ZMQbt27TB06FC0adMGy5Ytq/XrJiKqL1TC2Z2ciYiIiIiI3AhbgoiIiIiIyKswCSIiIiIiIq/CJIiIiIiIiLwKkyAiIiIiIvIqTIKIiIiIiMirMAkiIiIiIiKvwiSIiIiIiIi8CpMgIiIiIiLyKkyCiIiIiIjIqzAJIiIiIiIir8IkiIiIiIiIvMr/B1fo9enHHu1aAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# Map your precision field to the labels and colors you want in the legend\n",
+ "precision_label_map = {\n",
+ " \"_scalar_\": \"scalar\",\n",
+ " \"_binary_\": \"binary\",\n",
+ " \"_float32_ann\": \"float32_ann\",\n",
+ " \"_float32_ENN\": \"float32_ENN\",\n",
+ "}\n",
+ "\n",
+ "precision_color_map = {\n",
+ " \"_scalar_\": \"orange\",\n",
+ " \"_binary_\": \"red\",\n",
+ " \"_float32_ann\": \"blue\",\n",
+ " \"_float32_ENN\": \"purple\",\n",
+ "}\n",
+ "\n",
+ "# Assume latency_results is a list of lists. Each inner list corresponds to one precision type.\n",
+ "# Each dictionary in an inner list has keys: 'precision', 'top_k', 'num_candidates', 'latency_ms'\n",
+ "\n",
+ "# Flatten all measurements and find the unique top_k values\n",
+ "all_measurements = [m for precision_list in latency_results for m in precision_list]\n",
+ "unique_topk = sorted(set(m[\"top_k\"] for m in all_measurements))\n",
+ "\n",
+ "# For each top_k, create a separate plot\n",
+ "for k in unique_topk:\n",
+ " plt.figure(figsize=(10, 6))\n",
+ "\n",
+ " # For each precision type, filter out measurements for the current top_k value\n",
+ " for measurements in latency_results:\n",
+ " # Filter measurements with top_k equal to the current k\n",
+ " filtered = [m for m in measurements if m[\"top_k\"] == k]\n",
+ " if not filtered:\n",
+ " continue\n",
+ "\n",
+ " # Extract x (num_candidates) and y (latency) values\n",
+ " x = [m[\"num_candidates\"] for m in filtered]\n",
+ " y = [m[\"latency_ms\"] for m in filtered]\n",
+ "\n",
+ " # Determine the precision, label, and color from the first measurement in this filtered list\n",
+ " precision = filtered[0][\"precision\"]\n",
+ " label = precision_label_map.get(precision, precision)\n",
+ " color = precision_color_map.get(precision, \"blue\")\n",
+ "\n",
+ " # Plot the line for this precision type\n",
+ " plt.plot(x, y, marker=\"o\", color=color, label=label)\n",
+ "\n",
+ " # Label axes and add title including the top_k value\n",
+ " plt.xlabel(\"Number of Candidates\")\n",
+ " plt.ylabel(\"Latency (ms)\")\n",
+ " plt.title(f\"Search Latency vs Num Candidates for Top-K = {k}\")\n",
+ "\n",
+ " # Add a legend and grid, then show the plot\n",
+ " plt.legend()\n",
+ " plt.grid(True)\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 48,
+ "status": "ok",
+ "timestamp": 1756744779009,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "-yRDptxNXtUQ"
+ },
+ "outputs": [],
+ "source": [
+ "def measure_representational_capacity_retention_against_float_enn(\n",
+ " ground_truth_collection,\n",
+ " collection,\n",
+ " quantized_index_name, # This is used for both the quantized search and (with use_full_precision=True) for the baseline.\n",
+ " top_k_values, # List/array of top-k values to test.\n",
+ " num_candidates_values, # List/array of num_candidates values to test.\n",
+ " num_queries_to_test=1,\n",
+ "):\n",
+ " retention_results = {\"per_query_retention\": {}}\n",
+ " overall_retention = {} # overall_retention[top_k][num_candidates] = [list of retention values]\n",
+ "\n",
+ " # Initialize overall retention structure\n",
+ " for top_k in top_k_values:\n",
+ " overall_retention[top_k] = {}\n",
+ " for num_candidates in num_candidates_values:\n",
+ " if num_candidates < top_k:\n",
+ " continue\n",
+ " overall_retention[top_k][num_candidates] = []\n",
+ "\n",
+ " # Extract and store the precision name from the quantized index name.\n",
+ " precision_name = quantized_index_name.split(\"vector_index\")[1]\n",
+ " precision_name = precision_name.replace(\"quantized\", \"\").capitalize()\n",
+ " retention_results[\"precision_name\"] = precision_name\n",
+ " retention_results[\"top_k_values\"] = top_k_values\n",
+ " retention_results[\"num_candidates_values\"] = num_candidates_values\n",
+ "\n",
+ " # Load ground truth annotations\n",
+ " ground_truth_annotations = list(\n",
+ " ground_truth_collection.find().limit(num_queries_to_test)\n",
+ " )\n",
+ " print(f\"Loaded {len(ground_truth_annotations)} ground truth annotations\")\n",
+ "\n",
+ " # Process each ground truth annotation\n",
+ " for annotation in ground_truth_annotations:\n",
+ " # Use the ground truth wiki_id from the annotation.\n",
+ " ground_truth_wiki_id = annotation[\"wiki_id\"]\n",
+ "\n",
+ " # Process only queries that are questions.\n",
+ " for query_type, queries in annotation[\"queries\"].items():\n",
+ " if query_type.lower() not in [\"question\", \"questions\"]:\n",
+ " continue\n",
+ "\n",
+ " for query in queries:\n",
+ " # Prepare nested dict for this query\n",
+ " if query not in retention_results[\"per_query_retention\"]:\n",
+ " retention_results[\"per_query_retention\"][query] = {}\n",
+ "\n",
+ " # For each valid combination of top_k and num_candidates\n",
+ " for top_k in top_k_values:\n",
+ " if top_k not in retention_results[\"per_query_retention\"][query]:\n",
+ " retention_results[\"per_query_retention\"][query][top_k] = {}\n",
+ " for num_candidates in num_candidates_values:\n",
+ " if num_candidates < top_k:\n",
+ " continue\n",
+ "\n",
+ " # Baseline search: full precision using ENN (Float32)\n",
+ " baseline_result = custom_vector_search(\n",
+ " user_query=query,\n",
+ " collection=collection,\n",
+ " embedding_path=\"embedding\",\n",
+ " vector_search_index_name=quantized_index_name,\n",
+ " top_k=top_k,\n",
+ " num_candidates=num_candidates,\n",
+ " use_full_precision=True,\n",
+ " )\n",
+ " baseline_ids = {\n",
+ " res[\"wiki_id\"] for res in baseline_result[\"results\"]\n",
+ " }\n",
+ "\n",
+ " # Quantized search:\n",
+ " quantized_result = custom_vector_search(\n",
+ " user_query=query,\n",
+ " collection=collection,\n",
+ " embedding_path=\"embedding\",\n",
+ " vector_search_index_name=quantized_index_name,\n",
+ " top_k=top_k,\n",
+ " num_candidates=num_candidates,\n",
+ " use_full_precision=False,\n",
+ " )\n",
+ " quantized_ids = {\n",
+ " res[\"wiki_id\"] for res in quantized_result[\"results\"]\n",
+ " }\n",
+ "\n",
+ " # Compute retention for this combination\n",
+ " if baseline_ids:\n",
+ " retention = len(\n",
+ " baseline_ids.intersection(quantized_ids)\n",
+ " ) / len(baseline_ids)\n",
+ " else:\n",
+ " retention = 0\n",
+ "\n",
+ " # Store the results per query\n",
+ " retention_results[\"per_query_retention\"][query].setdefault(\n",
+ " top_k, {}\n",
+ " )[num_candidates] = {\n",
+ " \"ground_truth_wiki_id\": ground_truth_wiki_id,\n",
+ " \"baseline_ids\": sorted(baseline_ids),\n",
+ " \"quantized_ids\": sorted(quantized_ids),\n",
+ " \"retention\": retention,\n",
+ " }\n",
+ " overall_retention[top_k][num_candidates].append(retention)\n",
+ "\n",
+ " print(\n",
+ " f\"Query: '{query}' | top_k: {top_k}, num_candidates: {num_candidates}\"\n",
+ " )\n",
+ " print(f\" Ground Truth wiki_id: {ground_truth_wiki_id}\")\n",
+ " print(f\" Baseline IDs (Float32): {sorted(baseline_ids)}\")\n",
+ " print(\n",
+ " f\" Quantized IDs: {precision_name}: {sorted(quantized_ids)}\"\n",
+ " )\n",
+ " print(f\" Retention: {retention:.4f}\\n\")\n",
+ "\n",
+ " # Compute overall average retention per combination\n",
+ " avg_overall_retention = {}\n",
+ " for top_k, cand_dict in overall_retention.items():\n",
+ " avg_overall_retention[top_k] = {}\n",
+ " for num_candidates, retentions in cand_dict.items():\n",
+ " if retentions:\n",
+ " avg = sum(retentions) / len(retentions)\n",
+ " else:\n",
+ " avg = 0\n",
+ " avg_overall_retention[top_k][num_candidates] = avg\n",
+ " print(\n",
+ " f\"Overall Average Retention for top_k {top_k}, num_candidates {num_candidates}: {avg:.4f}\"\n",
+ " )\n",
+ "\n",
+ " retention_results[\"average_retention\"] = avg_overall_retention\n",
+ " return retention_results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "collapsed": true,
+ "executionInfo": {
+ "elapsed": 27232,
+ "status": "ok",
+ "timestamp": 1756744812157,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "URwqBqgGZGIq",
+ "outputId": "f0c15f19-243b-42a2-ba40-ca44b743606f"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Loaded 1 ground truth annotations\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 25\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 25\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _float32_ann: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 3434750, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 3434750, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _float32_ann: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Overall Average Retention for top_k 5, num_candidates 25: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 25: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 5000: 1.0000\n",
+ "Loaded 1 ground truth annotations\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 25\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 25\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _scalar_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _scalar_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Overall Average Retention for top_k 5, num_candidates 25: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 25: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 5000: 1.0000\n",
+ "Loaded 1 ground truth annotations\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 25\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [25391, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 5, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 25\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [25391, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [25391, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [25391, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [25391, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [25391, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [25391, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 10, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [70149799]\n",
+ " Quantized IDs: _binary_: [70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 50\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 31750, 3434750, 3524766, 12153654, 31591547, 42085878, 70149799]\n",
+ " Retention: 0.7500\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 3434750, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 3434750, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3434750, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 3434750, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 50, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 3524766, 17742072, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 3524766, 17742072, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 100\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 31750, 3434750, 3524766, 12153654, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 200\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 500\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 1000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Query: 'What happened in 2022?' | top_k: 100, num_candidates: 5000\n",
+ " Ground Truth wiki_id: 69407798\n",
+ " Baseline IDs (Float32): [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Quantized IDs: _binary_: [25391, 31750, 3434750, 3524766, 17742072, 31591547, 42085878, 70149799]\n",
+ " Retention: 1.0000\n",
+ "\n",
+ "Overall Average Retention for top_k 5, num_candidates 25: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 5, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 25: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 50: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 10, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 50: 0.7500\n",
+ "Overall Average Retention for top_k 50, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 50, num_candidates 5000: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 100: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 200: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 500: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 1000: 1.0000\n",
+ "Overall Average Retention for top_k 100, num_candidates 5000: 1.0000\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Access the database\n",
+ "DB_NAME = \"testing_datasets\"\n",
+ "db = mongo_client[DB_NAME]\n",
+ "\n",
+ "# Access collections\n",
+ "wiki_data_collection = db[\"wikipedia-22-12-en\"]\n",
+ "ground_truth_collection = db[\"wikipedia-22-12-en-annotation\"]\n",
+ "\n",
+ "overall_recall_results = []\n",
+ "top_k_values = [5, 10, 50, 100]\n",
+ "num_candidates_values = [25, 50, 100, 200, 500, 1000, 5000]\n",
+ "num_queries_to_test = 1\n",
+ "\n",
+ "for vector_search_index in vector_search_indices:\n",
+ " overall_recall_results.append(\n",
+ " measure_representational_capacity_retention_against_float_enn(\n",
+ " ground_truth_collection=ground_truth_collection,\n",
+ " collection=wiki_data_collection,\n",
+ " quantized_index_name=vector_search_index,\n",
+ " top_k_values=top_k_values,\n",
+ " num_candidates_values=num_candidates_values,\n",
+ " num_queries_to_test=num_queries_to_test,\n",
+ " )\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "executionInfo": {
+ "elapsed": 735,
+ "status": "ok",
+ "timestamp": 1756744825032,
+ "user": {
+ "displayName": "Javier Armendariz",
+ "userId": "14823381200026660254"
+ },
+ "user_tz": 360
+ },
+ "id": "QBVrxbA0aQEg",
+ "outputId": "8b92d723-ddf1-433f-f2f4-10bf1b83c5e5"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbTtJREFUeJzt3XmcTuX/x/H3PWP2McY6Yxhm7GsU0VCWyFgSSknKVkoou2ixVSaFSErqy5RvJdlSWZqskRBGiyVrZK8wxpj1vn5/+M39dZsZ5h5njOH1fDzmkXOd65zzOfd9me63c85124wxRgAAAACAa+KW1wUAAAAAwM2AcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBeCmMnr0aNlstrwu45Zjs9nUr1+/vC4jW1JTUzVs2DCFhobKzc1N7du3z+uSXNakSRM1adLEsXzw4EHZbDZFR0dfddvu3bsrLCws12rLLSdOnFDHjh1VtGhR2Ww2TZ48Oa9LAoAMCFfALSg6Olo2m83xU6BAAZUqVUrdu3fXkSNHcrTPHTt2aPTo0Tp48KC1xWYiISFBo0eP1urVq3P9WDeK9A/PNptN8+fPz7A+PVT+/fffeVBd/jJz5ky99dZb6tixoz7++GMNHDjwqtssXLhQrVq1UrFixeTp6amQkBA98sgjWrly5XWo+MYxbtw4LVq0KE+OPXDgQC1fvlwjRozQ7Nmz1bJly1w5Tvfu3Z1+P2b1071791w5/qXS/95PmDDBqd0Yo2eeeUY2m02jR4/O9TrSNWnSJNPXIrfeCyA/KpDXBQDIO2PHjlV4eLgSExP1008/KTo6WuvWrdNvv/0mb29vl/a1Y8cOjRkzRk2aNMn1fxVPSEjQmDFjJMnpX+8l6eWXX9bw4cNz9fh5bezYsXrwwQe5QpdDK1euVKlSpfT2229fta8xRj179lR0dLRuv/12DRo0SMHBwTp27JgWLlyoZs2aaf369WrQoMF1qDxrZcuW1YULF+Th4ZGrxxk3bpw6duyYJ1f7Vq5cqXbt2mnIkCG5epxnnnlGzZs3dywfOHBAI0eO1NNPP6177rnH0V6+fPlcrSMrxhj16dNHM2bM0CuvvHJdw5UklS5dWlFRUU5tISEh17UG4EZGuAJuYa1atVLdunUlSU899ZSKFSum8ePHa/HixXrkkUfyuLqcKVCggAoUuHl/tdWuXVuxsbFauHChHnzwwbwu57pKTEyUp6en3Nyu7aaLkydPKjAwMFt9J06cqOjoaA0YMECTJk1yCrQvvfSSZs+efUOMN5vN5vI/iOQ3rrxv2ZHVeIqIiFBERIRj+eeff9bIkSMVERGhxx9/3LLj59Rzzz2n6dOn66WXXtLYsWOv+/ELFSp0Q7wOwI2K2wIBOKT/q+y+ffuc2nft2qWOHTuqSJEi8vb2Vt26dbV48WLH+ujoaD388MOSpKZNmzpuFbn0tr2lS5fqnnvukZ+fnwoWLKg2bdro999/dzpO9+7d5e/vryNHjqh9+/by9/dX8eLFNWTIEKWlpUm6eJtM8eLFJUljxoxxHCv9X28ze+YqNTVVr776qsqXLy8vLy+FhYXpxRdfVFJSklO/sLAw3X///Vq3bp3q1asnb29vlStXTp988skVX7eUlBQVKVJEPXr0yLAuLi5O3t7eTv/aPnXqVFWvXl2+vr4qXLiw6tatq88+++yKx0j36KOPqlKlSho7dqyMMVfsGxYWlumtS5c/r7N69WrZbDbNnTtXY8aMUalSpVSwYEF17NhRZ8+eVVJSkgYMGKASJUrI399fPXr0yPDapfv0009VuXJleXt7q06dOlq7dm2GPkeOHFHPnj0VFBQkLy8vVa9eXTNnznTqk17TnDlz9PLLL6tUqVLy9fVVXFxclud7/vx5DR48WKGhofLy8lLlypU1YcIEx+uUfovVqlWr9Pvvv2c6Ti914cIFRUVFqUqVKpowYUKmVwqfeOIJ1atXT5L077//asiQIapZs6b8/f0VEBCgVq1aafv27Zme29y5c/X666+rdOnS8vb2VrNmzbR3794Mx5gxY4bKly8vHx8f1atXTz/88EOGPlk9c7Vo0SLVqFFD3t7eqlGjhhYuXJjpuU6YMEENGjRQ0aJF5ePjozp16mjevHlOfWw2m86fP6+PP/4401vjsvO+Sq6P//TbmI0xmjZtmuPY6fbv36+HH35YRYoUka+vr+666y59++23TvvIyXi6mi+//FJ16tSRj4+PihUrpscffzzDbdXpv9P279+vyMhI+fn5KSQkJFt/fzPTv39/TZs2TSNGjNBrr72W49qvVWpqquLj4/Ps+MCNLO//uQ3ADSP9eanChQs72n7//Xc1bNhQpUqV0vDhw+Xn56e5c+eqffv2mj9/vjp06KBGjRrp+eef1zvvvKMXX3xRVatWlSTHf2fPnq1u3bopMjJS48ePV0JCgt5//33dfffd2rZtm9NthGlpaYqMjFT9+vU1YcIEff/995o4caLKly+vZ599VsWLF9f777+vZ599Vh06dHBcvbntttuyPK+nnnpKH3/8sTp27KjBgwdr48aNioqK0s6dOzN82Ny7d686duyoJ598Ut26ddPMmTPVvXt31alTR9WrV890/x4eHurQoYMWLFigDz74QJ6eno51ixYtUlJSkh599FFJ0ocffqjnn39eHTt2VP/+/ZWYmKhffvlFGzdu1GOPPXbV98jd3V0vv/yyunbtavnVq6ioKPn4+Gj48OHau3evpk6dKg8PD7m5uen06dMaPXq04/bR8PBwjRw50mn7NWvW6IsvvtDzzz8vLy8vvffee2rZsqU2bdqkGjVqSLo4KcFdd93lmACjePHiWrp0qZ588knFxcVpwIABTvt89dVX5enpqSFDhigpKcnptb2UMUYPPPCAVq1apSeffFK1a9fW8uXLNXToUB05ckRvv/22ihcvrtmzZ+v1119XfHy849am9HF6uXXr1unff//VgAED5O7uftXXb//+/Vq0aJEefvhhhYeH68SJE/rggw/UuHFj7dixI8OtU2+88Ybc3Nw0ZMgQnT17Vm+++aa6dOmijRs3Ovr85z//0TPPPKMGDRpowIAB2r9/vx544AEVKVJEoaGhV6znu+++00MPPaRq1aopKipK//zzj3r06KHSpUtn6DtlyhQ98MAD6tKli5KTkzVnzhw9/PDD+uabb9SmTRtJF/8eP/XUU6pXr56efvppSf+7NS6772tOxn+jRo00e/ZsPfHEE7rvvvvUtWtXx7oTJ06oQYMGSkhI0PPPP6+iRYvq448/1gMPPKB58+apQ4cOTvvK7ni6mujoaPXo0UN33nmnoqKidOLECU2ZMkXr16/Xtm3bnK6wpaWlqWXLlrrrrrv05ptvatmyZRo1apRSU1NduvI0cOBAvfPOO3rhhRc0bty4bG93+vRpxz9OXYmvr698fX2v2u+PP/6Qn5+fkpOTFRQUpF69emnkyJG5fksqkG8YALecWbNmGUnm+++/N6dOnTKHDx828+bNM8WLFzdeXl7m8OHDjr7NmjUzNWvWNImJiY42u91uGjRoYCpWrOho+/LLL40ks2rVKqdjnTt3zgQGBppevXo5tR8/ftwUKlTIqb1bt25Gkhk7dqxT39tvv93UqVPHsXzq1CkjyYwaNSrDuY0aNcpc+qstNjbWSDJPPfWUU78hQ4YYSWblypWOtrJlyxpJZu3atY62kydPGi8vLzN48OAMx7rU8uXLjSTz9ddfO7W3bt3alCtXzrHcrl07U7169SvuKzMHDhwwksxbb71lUlNTTcWKFU2tWrWM3W53Ou9Tp045nU+3bt0y7Ktx48amcePGjuVVq1YZSaZGjRomOTnZ0d65c2djs9lMq1atnLaPiIgwZcuWdWqTZCSZn3/+2dH2559/Gm9vb9OhQwdH25NPPmlKlixp/v77b6ftH330UVOoUCGTkJDgVFO5cuUcbVeyaNEiI8m89tprTu0dO3Y0NpvN7N271+n8s/MeTJkyxUgyCxcuvGpfY4xJTEw0aWlpTm0HDhwwXl5eTmM6/dyqVq1qkpKSMhzv119/NcYYk5ycbEqUKGFq167t1G/GjBlGktN7mD4+Zs2a5WirXbu2KVmypDlz5oyj7bvvvjOSMrx/l7/GycnJpkaNGubee+91avfz88t0TGX3fc3p+Dfm4hjr27evU9uAAQOMJPPDDz842s6dO2fCw8NNWFiY4/1wdTxdavPmzU6vbfr7UqNGDXPhwgVHv2+++cZIMiNHjnS0pf9Oe+655xxtdrvdtGnTxnh6ejr9fc1M+vua/rtp6NChLtVuzP9+r13tJ7Pfp5fr2bOnGT16tJk/f7755JNPzAMPPGAkmUceecTluoCbFbcFArew5s2bq3jx4goNDVXHjh3l5+enxYsXO/5l+99//9XKlSv1yCOP6Ny5c/r777/1999/659//lFkZKT27Nlz1dkFY2JidObMGXXu3Nmx/d9//y13d3fVr19fq1atyrBN7969nZbvuece7d+/P0fnuGTJEknSoEGDnNoHDx4sSRluH6pWrZrTQ+vFixdX5cqVr3r8e++9V8WKFdMXX3zhaDt9+rRiYmLUqVMnR1tgYKD++usvbd68OUfnI/3v6tX27dstnbmta9euTv/6XL9+fceEDpeqX7++Dh8+rNTUVKf2iIgI1alTx7FcpkwZtWvXTsuXL1daWpqMMZo/f77atm0rY4zTeIiMjNTZs2e1detWp31269ZNPj4+V619yZIlcnd31/PPP+/UPnjwYBljtHTp0my/DunSbxkrWLBgtvp7eXk5nt9JS0vTP//8I39/f1WuXDnDeUlSjx49nK6cpI+79LH2888/6+TJk+rdu7dTv+7du6tQoUJXrOXYsWOKjY1Vt27dnPred999qlatWob+l77Gp0+f1tmzZ3XPPfdkWvflXHlfrRj/l1qyZInq1aunu+++29Hm7++vp59+WgcPHtSOHTuc+md3PF1J+vvSp08fp+fc2rRpoypVqmT4nSLJ6WsK0q/uJScn6/vvv8/WMU+cOCFJqlSpksv1fvrpp4qJibnqz6VXBLPyn//8R6NGjdKDDz6oJ554Ql999ZV69eqluXPn6qeffnK5NuBmxG2BwC1s2rRpqlSpks6ePauZM2dq7dq18vLycqzfu3evjDF65ZVX9Morr2S6j5MnT6pUqVJZHmPPnj2SLoaPzAQEBDgte3t7O56pSle4cGGdPn06W+d0uT///FNubm6qUKGCU3twcLACAwP1559/OrWXKVMmwz6yc/wCBQrooYce0meffaakpCR5eXlpwYIFSklJcQpXL7zwgr7//nvVq1dPFSpUUIsWLfTYY4+pYcOGLp1Xly5d9Oqrr2rs2LGWzdx2+bmnfyi//PazQoUKyW636+zZsypatKijvWLFihn2WalSJSUkJOjUqVNyc3PTmTNnNGPGDM2YMSPTGk6ePOm0HB4enq3a//zzT4WEhGQIQum3/F3+PmdH+tg8d+5ctvrb7XZNmTJF7733ng4cOOB0K9alr1O6y1/v9Ntx08daes2Xv64eHh4qV67cFWvJaltJmYa9b775Rq+99ppiY2OdnqfLzoyUp06dyvb7atX4T/fnn3+qfv36Gdovfd/Tb0mVsj+ernZM6eLreLkqVapo3bp1Tm1ubm4Z3q/0kJR+K/apU6ecxou/v7/8/f0dyy+88IKWLFmiZ555RoGBgerYsWO2683pa5tdgwcP1ocffqjvv/9ed911V64eC8gPCFfALaxevXqO2QLbt2+vu+++W4899ph2794tf39/2e12SdKQIUMUGRmZ6T4uDy2XS9/H7NmzFRwcnGH95TOtZefZlpzI7rTlWR3fZOPh80cffVQffPCBli5dqvbt22vu3LmqUqWKatWq5ehTtWpV7d69W998842WLVum+fPn67333tPIkSMd08tnt86XX35Z3bt311dffZVpn6zOOS0tLdPzzOrcr+U1uVT6WHj88cfVrVu3TPtc/uzctV5luBZVqlSRJP3666/ZCrDjxo3TK6+8op49e+rVV19VkSJF5ObmpgEDBjjO/VJWva7X6ocfftADDzygRo0a6b333lPJkiXl4eGhWbNmZWuiFVfeV6vGf07l5Xi6kjvvvNPpHwBGjRrlNMW6v7+/li5dqkaNGqlLly4KCAhQixYtsrXvy4NbVi4PdNmV/o8v//77r8vbAjcjwhUASRc/6EVFRalp06Z69913NXz4cMe/tnp4eDh970tmsvogn/7Ae4kSJa66j+xy5fudypYtK7vdrj179jhNXHDixAmdOXNGZcuWtaQm6eKD9yVLltQXX3yhu+++WytXrtRLL72UoZ+fn586deqkTp06KTk5WQ8++KBef/11jRgxwqXptB9//HG99tprGjNmjB544IEM6wsXLqwzZ85kaP/zzz+veuUjJ9KvUl7qjz/+kK+vr+NqZMGCBZWWlmbZWEhXtmxZff/99zp37pzT1atdu3Y51rvq7rvvVuHChfX555/rxRdfvGrwnzdvnpo2bar//Oc/Tu1nzpxRsWLFXD5+es179uxxuvKbkpKiAwcOOIX2K217ud27dzstz58/X97e3lq+fLnTletZs2Zl2Dazv3vFixd36X21avxLF8/z8vORru19z84xpYuv4+VX5Hfv3p3hmHa7Xfv373e6pe+PP/6QJMdkPp9++qkuXLjgWJ/Z38+iRYvqu+++U8OGDfXggw8qJibGacr4rFwe3LJyeaDLrvTbWC+/4wC4VfHMFQCHJk2aqF69epo8ebISExNVokQJNWnSRB988IGOHTuWof+pU6ccf/bz85OkDB/mIyMjFRAQoHHjxiklJeWK+8iu9BmtMgsOl2vdurUkafLkyU7tkyZNkiTHTGhWcHNzU8eOHfX1119r9uzZSk1NdbolUJL++ecfp2VPT09Vq1ZNxphMX58rSb96FRsb6zQ1frry5cvrp59+UnJysqPtm2++0eHDh106TnZt2LDB6Xazw4cP66uvvlKLFi3k7u4ud3d3PfTQQ5o/f75+++23DNvnZCyka926tdLS0vTuu+86tb/99tuy2Wxq1aqVy/v09fXVCy+8oJ07d+qFF17I9IrSf//7X23atEnSxffj8j5ffvnlVZ9LzErdunVVvHhxTZ8+3ek9jI6OvurYL1mypGrXrq2PP/5YZ8+edbTHxMRkeA7J3d1dNpvN6erGwYMHM32ez8/PL8OxXXlfrRz/0sX3fdOmTdqwYYOj7fz585oxY4bCwsIyfb7sWtWtW1clSpTQ9OnTnW6hXLp0qXbu3Jnp75RLx6UxRu+++648PDzUrFkzSRdv3WvevLnjJ6t//ChVqpRiYmLk5+enNm3a6Ndff71qvVY9cxUXF5fhKxiMMY4p4bO6uwG41XDlCoCToUOH6uGHH1Z0dLR69+6tadOm6e6771bNmjXVq1cvlStXTidOnNCGDRv0119/Ob7Dp3bt2nJ3d9f48eN19uxZeXl56d5771WJEiX0/vvv64knntAdd9yhRx99VMWLF9ehQ4f07bffqmHDhhk+EF+Nj4+PqlWrpi+++EKVKlVSkSJFVKNGDadnK9LVqlVL3bp104wZM3TmzBk1btxYmzZt0scff6z27duradOmlrxu6Tp16qSpU6dq1KhRqlmzZoZpvlu0aKHg4GA1bNhQQUFB2rlzp9599121adMm2xMnXCr92avY2NgM65566inNmzdPLVu21COPPKJ9+/bpv//9r+NqotVq1KihyMhIp6nYJTnd7vXGG29o1apVql+/vnr16qVq1arp33//1datW/X999/n+Naitm3bqmnTpnrppZd08OBB1apVS999952++uorDRgwIMfnPHToUP3++++aOHGiVq1apY4dOyo4OFjHjx/XokWLtGnTJv3444+SpPvvv19jx45Vjx491KBBA/3666/69NNPc3yV0MPDQ6+99pqeeeYZ3XvvverUqZMOHDigWbNmZWufUVFRatOmje6++2717NlT//77r+M7pi79jqI2bdpo0qRJatmypR577DGdPHlS06ZNU4UKFfTLL7847bNOnTr6/vvvNWnSJIWEhCg8PFz169fP9vtq9fgfPny4Pv/8c7Vq1UrPP/+8ihQpoo8//lgHDhzQ/Pnzr/kLpzPj4eGh8ePHq0ePHmrcuLE6d+7smIo9LCxMAwcOdOrv7e2tZcuWqVu3bqpfv76WLl2qb7/9Vi+++GKOrvZUrFhRy5cvV5MmTRQZGal169ZdcTxY9czV1q1b1blzZ3Xu3FkVKlTQhQsXtHDhQq1fv15PP/207rjjDkuOA+R713+CQgB5LX0q9s2bN2dYl5aWZsqXL2/Kly9vUlNTjTHG7Nu3z3Tt2tUEBwcbDw8PU6pUKXP//febefPmOW374YcfmnLlyhl3d/cM07KvWrXKREZGmkKFChlvb29Tvnx50717d6epu7t162b8/Pwy1HT59OrGGPPjjz+aOnXqGE9PT6dphDPrm5KSYsaMGWPCw8ONh4eHCQ0NNSNGjHCaXt6Yi1MWt2nTJsPxL5+6/ErsdrsJDQ3NdFpwY4z54IMPTKNGjUzRokWNl5eXKV++vBk6dKg5e/bsFfd76VTsl0t/P3XZVOzGGDNx4kRTqlQp4+XlZRo2bGh+/vnnLKdi//LLLzPd7+XjJLNp3/X/02T/97//NRUrVjReXl7m9ttvzzA1vzHGnDhxwvTt29eEhoYaDw8PExwcbJo1a2ZmzJhx1Zqu5Ny5c2bgwIEmJCTEeHh4mIoVK5q33nrLMV19uuxOxX6pefPmmRYtWpgiRYqYAgUKmJIlS5pOnTqZ1atXO/okJiaawYMHm5IlSxofHx/TsGFDs2HDhmy/3plNp26MMe+9954JDw83Xl5epm7dumbt2rUZ9pnVtvPnzzdVq1Y1Xl5eplq1ambBggWmW7duGaZi/89//uN436pUqWJmzZqV6d+lXbt2mUaNGhkfHx8jyWla9uy8rzkd/8ZkPhW7MRd/P3Xs2NEEBgYab29vU69ePfPNN9849cnJeEp3+VTs6b744gtz++23Gy8vL1OkSBHTpUsX89dffzn1Sf+dtm/fPtOiRQvj6+trgoKCzKhRozJM25+ZK/29/+GHH4yPj48JDw83R44ccfm8XLV//37z8MMPm7CwMOPt7W18fX1NnTp1zPTp0zP8HQNuZTZjrvOTswAAALeA7t27a968eU5XCgHc3HjmCgAAAAAsQLgCAAAAAAsQrgAAAADAAjxzBQAAAAAW4MoVAAAAAFiAcAUAAAAAFuBLhDNht9t19OhRFSxYUDabLa/LAQAAAJBHjDE6d+6cQkJCrvrl5ISrTBw9elShoaF5XQYAAACAG8Thw4dVunTpK/YhXGWiYMGCki6+gAEBAdf9+CkpKfruu+/UokULeXh4XPfjI/9hzCAnGDfICcYNXMWYQU7cSOMmLi5OoaGhjoxwJYSrTKTfChgQEJBn4crX11cBAQF5PpiQPzBmkBOMG+QE4wauYswgJ27EcZOdx4WY0AIAAAAALEC4AgAAAAALEK4AAAAAwAI8cwUAAIBbljFGqampSktLy+tScImUlBQVKFBAiYmJuf7euLu7q0CBApZ8BRPhCgAAALek5ORkHTt2TAkJCXldCi5jjFFwcLAOHz58Xb531tfXVyVLlpSnp+c17YdwBQAAgFuO3W7XgQMH5O7urpCQEHl6el6XD/HIHrvdrvj4ePn7+1/1i3uvhTFGycnJOnXqlA4cOKCKFSte0/EIVwAAALjlJCcny263KzQ0VL6+vnldDi5jt9uVnJwsb2/vXA1XkuTj4yMPDw/9+eefjmPmFBNaAAAA4JaV2x/ckT9YNQ4YTQAAAABgAcIVAAAAAFiAcAUAAABcg7Q0afVq6fPPL/43t2d1N8bo6aefVpEiRWSz2RQYGKgBAwbk7kGRLYQrAAAAIIcWLJDCwqSmTaXHHrv437Cwi+25ZdmyZYqOjtY333yjY8eOqUaNGpYfo0mTJhkC2z///KOWLVsqJCREXl5eCg0NVb9+/RQXF+fos2DBAt13330qXry4AgICFBERoeXLl1te342KcAUAAADkwIIFUseO0l9/ObcfOXKxPbcC1r59+1SyZEk1aNBAwcHBKlDg+kwA7ubmpnbt2mnx4sX6448/FB0dre+//169e/d29Fm7dq3uu+8+LVmyRFu2bFHTpk3Vtm1bbdu27brUmNcIVwAAAIAkY6Tz57P3ExcnPf/8xW0y248k9e9/sd/V9pXZPrLSvXt3Pffcczp06JBsNpvCwsIy9Dl9+rS6du2qwoULy9fXV61atdKePXsc6//55x917txZpUqVkq+vr2rWrKnPP//c6Rhr1qzRlClTZLPZZLPZdPDgQRUuXFjPPvus6tatq7Jly6pZs2bq06ePfvjhB8e2kydP1rBhw3TnnXeqYsWKGjdunCpWrKivv/46W+e3bNky3X333SpSpIjKlSuntm3bat++fY71Bw8elM1m04IFC9S0aVP5+vqqVq1a2rBhg6NPdHS0AgMDtXz5clWtWlX+/v5q2bKljh07lv0XOocIVwAAAICkhATJ3z97P4UKXbxClRVjLl7RKlTo6vtKSMh+jVOmTNHYsWNVunRpHTt2TJs3b87Qp3v37vr555+1ePFibdiwQcYYtW7dWikpKZKkxMRE1alTR99++61+++03Pf3003riiSe0adMmxzEiIiLUq1cvHTt2TMeOHVNoaGiG4xw9elQLFixQ48aNs6zXbrfr3LlzKlKkSLbO7/z58xo0aJA2bdqkr776Sm5uburQoYPsdrtTv5deeklDhgxRbGysKlWqpM6dOys1NdWxPiEhQRMmTNDs2bO1du1aHTp0SEOGDMlWDdeCLxEGAAAA8olChQqpYMGCcnd3V3BwcIb1e/bs0eLFi7V+/Xo1aNBAkvTpp58qNDRUixYt0sMPP6xSpUo5BY3nnntOy5cv19y5c1WvXj0VKlRInp6e8vX1zfQYnTt31ldffaULFy6obdu2+uijj7Ksd8KECYqPj9cjjzySrfN76KGHJF0MZSVKlNB//vMfBQUFaceOHU7Plg0ZMkRt2rSRJI0ZM0bVq1fX3r17VaVKFUlSSkqKpk+frvLly0uS+vXrp7Fjx2arhmvBlSsAAABAkq+vFB+fvZ8lS7K3zyVLrr4vX1/rzmHnzp0qUKCA6tev72grWrSoKleurJ07d0qS0tLS9Oqrr6pmzZoqUqSI/P39tXz5ch06dChbx3j77be1detWffXVV9q3b58GDRqUab/PPvtMY8aM0dy5c1WiRIls7XvPnj3q3LmzKlSooDJlyqhcuXKSlKG22267zfHnkiVLSpJOnjzpaPP19XUEq/Q+l67PLVy5AgAAACTZbJKfX/b6tmghlS598dbAzJ6Zstkurm/RQnJ3t7bOa/XWW29pypQpmjx5smrWrCk/Pz8NGDBAycnJ2do+ODhYwcHBqlKliooUKaJ77rlHr7zyiiPkSNKcOXP01FNP6csvv1Tz5s2zXVvbtm1VtmxZffDBBwoICJCvr69uu+22DLV5eHg4/myz2STJ6dbBS9en9zGuPNyWQ1y5AgAAAFzk7i5NmXLxz///2d4hfXny5OsfrKpWrarU1FRt3LjR0fbPP/9o9+7dqlatmiRp/fr1ateunR5//HHVqlVL5cqV0x9//OG0H09PT6Vl4wu70gNNUlKSo+3zzz9Xjx499Pnnnztu3cuO9DpffvllNWvWTJUrV9bp06ezvf2NgHAFAAAA5MCDD0rz5kmlSjm3ly59sf3BB69/TRUrVlS7du3Uq1cvrVu3Ttu3b9fjjz+uUqVKqV27do4+MTEx+vHHH7Vz504988wzOnHihNN+wsLCtHHjRh08eFB///237Ha7lixZolmzZum3337TwYMH9e2336p3795q2LChY9bCzz77TF27dtXEiRNVv359HT9+XMePH9fZs2evWnvhwoVVtGhRzZgxQ3v37tXatWuvyyQUViJcAQAAADn04IPSwYPSqlXSZ59d/O+BA3kTrNLNmjVLderU0f3336+IiAgZY7RkyRLHrXIvv/yy7rjjDkVGRqpJkyYKDg5W+/btnfYxZMgQubu7q1q1aipevLgOHTokHx8fffjhh7r77rtVtWpVDRw4UA888IC++eYbx3YzZsxQamqq+vbtq5IlSzp++vfvf9W63dzcNGfOHG3ZskW33XabXnzxRY0fP97S1ya32cz1uPkwn4mLi1OhQoV09uxZBQQEXPfjp6SkaMmSJWrdunWG+0WBzDBmkBOMG+QE4wauulHHTGJiog4cOKDw8HB5e3vndTm4jN1uV1xcnAICAuTmlvvXg640HlzJBly5AgAAAAALEK4AAAAA5LpDhw7J398/y5/sTgV/I2MqdgAAAAC5LiQkRLGxsVdcn98RrgAAAADkugIFCqhChQp5XUau4rZAAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAuBb2NOnEaung5xf/a0/L64pyJDo6WoGBgXldRr7GVOwAAABATh1eIG3pLyX89b8239JSnSlS6IN5VxfyBFeuAAAAgJw4vED6oaNzsJKkhCMX2w8vyJu68lBycnJel5CnCFcAAACAJBkjpZ7P3k9ynPTz85JMZju6+J+f+1/sd7V9mcz2kbV58+apZs2a8vHxUdGiRdW8eXOdP39ekjRz5kxVr15dXl5eKlmypPr16+fYbtKkSapZs6b8/PwUGhqqPn36KD4+Psvj7Nu3T+3atVNQUJD8/f1155136vvvv3fqExYWpldffVVdu3ZVQECAnn76aZfO5WbDbYEAAACAJKUlSHP9LdqZkS78Jc0rdPWuj8RLBfyytddjx46pc+fOevPNN9WhQwedO3dOP/zwg4wxev/99zVo0CC98cYbatWqlc6ePav169c7tnVzc9M777yj8PBw7d+/X3369NGwYcP03nvvZXqs+Ph4tW7dWq+//rq8vLz0ySefqG3bttq9e7fKlCnj6DdhwgSNHDlSo0aNytY53MwIVwAAAEA+cezYMaWmpurBBx9U2bJlJUk1a9aUJL322msaPHiw+vfv7+h/5513Ov48YMAAx5/DwsL02muvqXfv3lmGq1q1aqlWrVqO5VdffVULFy7U4sWLna6I3XvvvRo8eLAl55ffEa4AAAAASXL3vXgVKTtOrpVWt756vyZLpBKNrn7cbKpVq5aaNWummjVrKjIyUi1atFDHjh2VkpKio0ePqlmzZllu+/333ysqKkq7du1SXFycUlNTlZiYqISEBPn6ZqwhPj5eo0eP1rfffusIdRcuXNChQ4ec+tWtWzfb9d/seOYKAAAAkCSb7eLtedn5CW5xcVZA2bLameQberHf1fZly2ofGbm7uysmJkZLly5VtWrVNHXqVFWuXFknTpy44nYHDx7U/fffr9tuu03z58/Xli1bNG3aNElZT0IxZMgQLVy4UOPGjdMPP/yg2NhY1axZM0N/P7/s3dJ4KyBcAQAAAK5yc7843bqkjAHr/5frTL7Yz2I2m00NGzbUmDFjtG3bNnl6eiomJkZhYWFasWJFptts2bJFdrtdEydO1F133aVKlSrp6NGjVzzO+vXr1b17d3Xo0EE1a9ZUcHCwDh48aPn53Ey4LRAAAADIidAHpXvmZfE9V5Nz5XuuNm7cqBUrVqhFixYqUaKENm7cqFOnTqlq1aoaPXq0evfurRIlSqhVq1Y6d+6c1q9fr+eee04VKlRQSkqKpk6dqrZt22r9+vWaPn36FY9VsWJFLViwQG3btpXNZtMrr7wiu91u+TndTAhXAAAAQE6FPiiVaied+kG6cEzyKSkVvydXrlhJUkBAgNauXavJkycrLi5OZcuW1cSJE9WqVStJUmJiot5++20NGTJExYoVU8eOHSVdfFZr0qRJGj9+vEaMGKFGjRopKipKXbt2zfJYkyZNUs+ePdWgQQMVK1ZML7zwguLi4nLlvG4WhCsAAADgWri5S0FNrsuhqlatqmXLlmW5/plnntEzzzyT6bqBAwdq4MCBTm1PPPGE48/du3dX9+7dHcthYWFauXKlU/++ffs6LXOboDOeuQIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAACAa5GWJq1eLX3++cX/pqXl6uGaNGmiAQMGZLk+LCxMkydPztUakLkCeV0AAAAAkG8tWCD17y/99df/2kqXlqZMkR58ME9K2rx5s/z8/PLk2Lc6rlwBAAAAObFggdSxo3OwkqQjRy62L1iQJ2UVL15cvr6+uXqM5OTkXN1/fkW4AgAAACTJGOn8+ez9xMVJzz9/cZvM9iNdvKIVF3f1fWW2j6tITU1Vv379VKhQIRUrVkyvvPKKzP/v5/LbAm02mz766CN16NBBvr6+qlixohYvXuxYn5aWpieffFLh4eHy8fFR5cqVNWXKFKfjde/eXe3bt9frr7+ukJAQVa5cWWPHjlWNGjUy1Fa7dm298sorLp/TzSBPw9XatWvVtm1bhYSEyGazadGiRVfdZvXq1brjjjvk5eWlChUqKDo6Osu+b7zxhmw22xXvSQUAAAAkSQkJkr9/9n4KFbp4hSorxly8olWo0NX3lZDgcqkff/yxChQooE2bNmnKlCmaNGmSPvrooyz7jxkzRo888oh++eUXtW7dWl26dNG///4rSbLb7SpdurS+/PJL7dixQyNHjtSLL76ouXPnOu1jxYoV2r17t2JiYvTNN9+oZ8+e2rlzpzZv3uzos23bNv3yyy/q0aOHy+d0M8jTcHX+/HnVqlVL06ZNy1b/AwcOqE2bNmratKliY2M1YMAAPfXUU1q+fHmGvps3b9YHH3yg2267zeqyAQAAgDwVGhqqt99+W5UrV1aXLl303HPP6e23386yf/fu3dW5c2dVqFBB48aNU3x8vDZt2iRJ8vDw0JgxY1S3bl2Fh4erS5cu6tGjR4Zw5efnp48++kjVq1dX9erVVbp0aUVGRmrWrFmOPrNmzVLjxo1Vrly53DnxG1yehqtWrVrptddeU4cOHbLVf/r06QoPD9fEiRNVtWpV9evXTx07dswwkOLj49WlSxd9+OGHKly4cG6UDgAAgJuNr68UH5+9nyVLsrfPJUuuvq8cPB911113yWazOZYjIiK0Z88epWUxU+GlFxz8/PwUEBCgkydPOtqmTZumOnXqqHjx4vL399eMGTN06NAhp33UrFlTnp6eTm29evXS559/rsTERCUnJ+uzzz5Tz549XT6fm0W+mi1ww4YNat68uVNbZGRkhtv++vbtqzZt2qh58+Z67bXXrrrfpKQkJSUlOZbj4uIkSSkpKUpJSbn2wl2Ufsy8ODbyJ8YMcoJxg5xg3MBVN+qYSUlJkTFGdrtddrv9fyt8fLK3g+bNZStdWjpyRLZMnpkyNptUurRM8+aSu/uV92WMy89dpdeeLv3P6f+9fL27u7vTss1mU2pqqux2u+bMmaMhQ4ZowoQJuuuuu1SwYEFNmDBBmzZtctqfr6+v82slqU2bNvLy8tL8+fPl6emplJQUPfjggxn6uSr9+bHLzyO32O12GWOUkpIi98veL1fGbr4KV8ePH1dQUJBTW1BQkOLi4nThwgX5+Phozpw52rp1q9O9n1cTFRWlMWPGZGj/7rvvcn2mlSuJiYnJs2Mjf2LMICcYN8gJxg1cdaONmQIFCig4OFjx8fE5nvnOY9w4+XbrJmOzOQUs8/9XlBJef10p589bUu+lUlNT9dNPPzkuCEgX5zIoX768zp8/L7vdrsTERKf1Fy5ccFo2xjj6rF69WvXq1VOXLl0c6//44w+lpaU5XXRITU112ke6Tp066T//+Y88PDzUoUMHSy9QnDt3zpL9XE1ycrIuXLigtWvXKjU11WldggvPxOWrcHU1hw8fVv/+/RUTEyNvb+9sbzdixAgNGjTIsRwXF6fQ0FC1aNFCAQEBuVHqFaWkpCgmJkb33XefPDw8rvvxkf8wZpATjBvkBOMGrrpRx0xiYqIOHz4sf39/lz43OunSRcbHR7aBAzN8z5WZNEk+Dz6obF4Hc0mBAgX0119/acyYMXr66ae1detWffjhh3rrrbcUEBAgNzc3eXt7O32O9fHxcVq22WyOPtWrV9cXX3yhDRs2KDw8XP/973+1bds2hYeHO7bx8PBQgQIFMv1s3KdPH1WvXl2S9MMPP1jy+dkYo3PnzqlgwYJOtz/mlsTERPn4+KhRo0YZxkNmgTIr+SpcBQcH68SJE05tJ06cUEBAgHx8fLRlyxadPHlSd9xxh2N9Wlqa1q5dq3fffVdJSUkZLvNJkpeXl7y8vDK0e3h45Okvgbw+PvIfxgxygnGDnGDcwFU32phJS0uTzWaTm5ub3NyuYRqCjh2lDh2kH36Qjh2TSpaU7Z57ZLvarYDXqGvXrkpMTNRdd90ld3d39e/fX71793YEkfRzS5fZeaa39e7dW7GxsercubNsNps6d+6sPn36aOnSpY5tbDZbhn2mq1y5sho0aKB///1XERERlpxf+q2AWR3Tam5ubrLZbJmOU1fGbb4KVxEREVpy2cODMTExjjexWbNm+vXXX53W9+jRQ1WqVNELL7yQabACAAAArom7u9SkyXU73OrVqx1/fv/99zOsP3jwoNOyyeR5rjNnzjj+7OXlpVmzZjnN+iddfHQm3ZW+/sgYo6NHj6pPnz5XLvwWkKfhKj4+Xnv37nUsHzhwQLGxsSpSpIjKlCmjESNG6MiRI/rkk08kSb1799a7776rYcOGqWfPnlq5cqXmzp2rb7/9VpJUsGDBDF9k5ufnp6JFi2b6BWcAAAAAcu7UqVOaM2eOjh8/fst+t9Wl8jRc/fzzz2ratKljOf25p27duik6OlrHjh1zmgIyPDxc3377rQYOHKgpU6aodOnS+uijjxQZGXndawcAAABudSVKlFCxYsU0Y8YMvgJJeRyumjRpkullynSZXX5s0qSJtm3blu1jXHrZFAAAAIB1rvRZ/laUp18iDAAAAAA3C8IVAAAAbllceYFk3TggXAEAAOCWkz69titfEIubV/o4uNavC8hXU7EDAAAAVnB3d1dgYKBOnjwpSfL19b0uX1aL7LHb7UpOTlZiYmKufs+VMUYJCQk6efKkAgMDr/mrmwhXAAAAuCUFBwdLkiNg4cZhjNGFCxfk4+NzXUJvYGCgYzxcC8IVAAAAbkk2m00lS5ZUiRIllJKSktfl4BIpKSlau3atGjVqdM236l2Nh4fHNV+xSke4AgAAwC3N3d3dsg/XsIa7u7tSU1Pl7e2d6+HKSkxoAQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAF8jRcrV27Vm3btlVISIhsNpsWLVp01W1Wr16tO+64Q15eXqpQoYKio6Od1kdFRenOO+9UwYIFVaJECbVv3167d+/OnRMAAAAAgP+Xp+Hq/PnzqlWrlqZNm5at/gcOHFCbNm3UtGlTxcbGasCAAXrqqae0fPlyR581a9aob9+++umnnxQTE6OUlBS1aNFC58+fz63TAAAAAAAVyMuDt2rVSq1atcp2/+nTpys8PFwTJ06UJFWtWlXr1q3T22+/rcjISEnSsmXLnLaJjo5WiRIltGXLFjVq1Mi64gEAAADgEnkarly1YcMGNW/e3KktMjJSAwYMyHKbs2fPSpKKFCmSZZ+kpCQlJSU5luPi4iRJKSkpSklJuYaKcyb9mHlxbORPjBnkBOMGOcG4gasYM8iJG2ncuFJDvgpXx48fV1BQkFNbUFCQ4uLidOHCBfn4+Dits9vtGjBggBo2bKgaNWpkud+oqCiNGTMmQ/t3330nX19fa4rPgZiYmDw7NvInxgxygnGDnGDcwFWMGeTEjTBuEhISst03X4UrV/Xt21e//fab1q1bd8V+I0aM0KBBgxzLcXFxCg0NVYsWLRQQEJDbZWaQkpKimJgY3XffffLw8Ljux0f+w5hBTjBukBOMG7iKMYOcuJHGTfpdbdmRr8JVcHCwTpw44dR24sQJBQQEZLhq1a9fP33zzTdau3atSpcufcX9enl5ycvLK0O7h4dHnr6ZeX185D+MGeQE4wY5wbiBqxgzyIkbYdy4cvx89T1XERERWrFihVNbTEyMIiIiHMvGGPXr108LFy7UypUrFR4efr3LBAAAAHALytNwFR8fr9jYWMXGxkq6ONV6bGysDh06JOni7Xpdu3Z19O/du7f279+vYcOGadeuXXrvvfc0d+5cDRw40NGnb9+++u9//6vPPvtMBQsW1PHjx3X8+HFduHDhup4bAAAAgFtLnoarn3/+Wbfffrtuv/12SdKgQYN0++23a+TIkZKkY8eOOYKWJIWHh+vbb79VTEyMatWqpYkTJ+qjjz5yTMMuSe+//77Onj2rJk2aqGTJko6fL7744vqeHAAAAIBbSp4+c9WkSRMZY7JcHx0dnek227Zty3KbK+0PAAAAAHJLvnrmCgAAAABuVIQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAskKNwlZqaqu+//14ffPCBzp07J0k6evSo4uPjLS0OAAAAAPKLAq5u8Oeff6ply5Y6dOiQkpKSdN9996lgwYIaP368kpKSNH369NyoEwAAAABuaC5fuerfv7/q1q2r06dPy8fHx9HeoUMHrVixwtLiAAAAACC/cPnK1Q8//KAff/xRnp6eTu1hYWE6cuSIZYUBAAAAQH7i8pUru92utLS0DO1//fWXChYsaElRAAAAAJDfuByuWrRoocmTJzuWbTab4uPjNWrUKLVu3drK2gAAAAAg33D5tsAJEyaoZcuWqlatmhITE/XYY49pz549KlasmD7//PPcqBEAAAAAbnguh6vQ0FBt375dX3zxhbZv3674+Hg9+eST6tKli9MEFwAAAABwK3EpXKWkpKhKlSr65ptv1KVLF3Xp0iW36gIAAACAfMWlZ648PDyUmJiYW7UAAAAAQL7l8oQWffv21fjx45Wampob9QAAAABAvuTyM1ebN2/WihUr9N1336lmzZry8/NzWr9gwQLLigMAAACA/MLlcBUYGKiHHnooN2oBAAAAgHzL5XA1a9as3KgDAAAAAPI1l8NVulOnTmn37t2SpMqVK6t48eKWFQUAAAAA+Y3LE1qcP39ePXv2VMmSJdWoUSM1atRIISEhevLJJ5WQkJAbNQIAAADADc/lcDVo0CCtWbNGX3/9tc6cOaMzZ87oq6++0po1azR48ODcqBEAAAAAbngu3xY4f/58zZs3T02aNHG0tW7dWj4+PnrkkUf0/vvvW1kfAAAAAOQLLl+5SkhIUFBQUIb2EiVKcFsgAAAAgFuWy+EqIiJCo0aNUmJioqPtwoULGjNmjCIiIiwtDgAAAADyC5dvC5wyZYoiIyNVunRp1apVS5K0fft2eXt7a/ny5ZYXCAAAAAD5gcvhqkaNGtqzZ48+/fRT7dq1S5LUuXNndenSRT4+PpYXCAAAAAD5QY6+58rX11e9evWyuhYAAAAAyLdcfuYqKipKM2fOzNA+c+ZMjR8/3pKiAAAAACC/cTlcffDBB6pSpUqG9urVq2v69OmWFAUAAAAA+Y3L4er48eMqWbJkhvbixYvr2LFjlhQFAAAAAPmNy+EqNDRU69evz9C+fv16hYSEWFIUAAAAAOQ3Lk9o0atXLw0YMEApKSm69957JUkrVqzQsGHDNHjwYMsLBAAAAID8wOVwNXToUP3zzz/q06ePkpOTJUne3t564YUXNGLECMsLBAAAAID8wOVwZbPZNH78eL3yyivauXOnfHx8VLFiRXl5eeVGfQAAAACQL7j8zFU6f39/3XnnnSpYsKD27dsnu91uZV0AAAAAkK9kO1zNnDlTkyZNcmp7+umnVa5cOdWsWVM1atTQ4cOHLS8QAAAAAPKDbIerGTNmqHDhwo7lZcuWadasWfrkk0+0efNmBQYGasyYMblSJAAAAADc6LL9zNWePXtUt25dx/JXX32ldu3aqUuXLpKkcePGqUePHtZXCAAAAAD5QLavXF24cEEBAQGO5R9//FGNGjVyLJcrV07Hjx+3tjoAAAAAyCeyHa7Kli2rLVu2SJL+/vtv/f7772rYsKFj/fHjx1WoUCHrKwQAAACAfCDbtwV269ZNffv21e+//66VK1eqSpUqqlOnjmP9jz/+qBo1auRKkQAAAABwo8t2uBo2bJgSEhK0YMECBQcH68svv3Rav379enXu3NnyAgEAAAAgP8h2uHJzc9PYsWM1duzYTNdfHrYAAAAA4FaS4y8RBgAAAAD8D+EKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsEC2ZwtMl5aWpujoaK1YsUInT56U3W53Wr9y5UrLigMAAACA/MLlcNW/f39FR0erTZs2qlGjhmw2W27UBQAAAAD5isvhas6cOZo7d65at26dG/UAAAAAQL7k8jNXnp6eqlChQm7UAgAAAAD5lsvhavDgwZoyZYqMMblRDwAAAADkSy7fFrhu3TqtWrVKS5cuVfXq1eXh4eG0fsGCBZYVd6tLS0rWn29Pk/3QPrmVKa8yvZ/SoekfOZbDn+8jd2/Pi30Tk3XgnfcyXXfFY+Rwu7yQn2q9ntISk7V/8lQV3bpR+3fuVYUBz/G6AACAfCs/f7Zx+cpVYGCgOnTooMaNG6tYsWIqVKiQ048r1q5dq7Zt2yokJEQ2m02LFi266jarV6/WHXfcIS8vL1WoUEHR0dEZ+kybNk1hYWHy9vZW/fr1tWnTJpfquhEUmjtPHqGFVOGFgao07V1VeGGgPAILOi2rpK92Dxmm3UOGSSV9M113JTndLi/kp1qvp/TXpfKIIbr7yy9VecQQXhcAAJBv5fvPNiYPLVmyxLz00ktmwYIFRpJZuHDhFfvv37/f+Pr6mkGDBpkdO3aYqVOnGnd3d7Ns2TJHnzlz5hhPT08zc+ZM8/vvv5tevXqZwMBAc+LEiWzXdfbsWSPJnD17Nqendk12DBxs7JKxS8Zc8pPZ8qU/ma3bNXhopsfYNXhojrbLC/mp1uuJ1wXXKjk52SxatMgkJyfndSnIRxg3cBVjBtl1o362cSUb2IzJ2cNTp06d0u7duyVJlStXVvHixa8p5NlsNi1cuFDt27fPss8LL7ygb7/9Vr/99puj7dFHH9WZM2e0bNkySVL9+vV155136t1335Uk2e12hYaG6rnnntPw4cOzVUtcXJwKFSqks2fPKiAgIOcnlQNpiclSSV+5nUlTdia5T3/zMutrJNkD3XR+659y9/rfpdS0pGT53V5WbmftLm2XF/JTrdcTrwuskJKSolWrVqlp06YZbvEGssK4gasYM8iO7Hy2SSvsLtvRhOt+i6Ar2cDlZ67Onz+v5557Tp988onjC4Td3d3VtWtXTZ06Vb6+vjmrOhs2bNig5s2bO7VFRkZqwIABkqTk5GRt2bJFI0aMcKx3c3NT8+bNtWHDhiz3m5SUpKSkJMdyXFycpIu/DFJSUiw8g6vbP3mqKp9Jy3b/KwUwmyT3M3YFlAt1qYacbpcX8lOt1xOvC7KrQ14XgHyJcQNXMWZwrWySCpxO0+7JU1Vu8PPX9diu5AGXw9WgQYO0Zs0aff3112rYsKGki5NcPP/88xo8eLDef/99V3eZbcePH1dQUJBTW1BQkOLi4nThwgWdPn1aaWlpmfbZtWtXlvuNiorSmDFjMrR/9913uRoWM1N060ZVvq5HBAAAAPKHU1s3ateSJdf1mAkJCdnu63K4mj9/vubNm6cmTZo42lq3bi0fHx898sgjuRqucsuIESM0aNAgx3JcXJxCQ0PVokWL635b4P6de6Uvv7R0n7teHq3gp55yLB//6CNVeW20y9vlhfxU6/XE6wIrpKSlaN3adbq70d3ycOdWHWQP4wauYswgO7L72ab4HfVVv3Xr3C/oEul3tWWHy+EqISEhw5UhSSpRooRLqS4ngoODdeLECae2EydOKCAgQD4+PnJ3d5e7u3umfYKDg7Pcr5eXl7y8vDK0e3h4XPd7gysMeE5p41+w7JmrtMLuqvjSCKd7Uwu+NEJp776a5TGy2i4v5KdarydeF1ghJSVFboULKjC0FM9BINsYN3AVYwbZkd3PNhUGPCf36zyOXBm3Lk/FHhERoVGjRikxMdHRduHCBY0ZM0YRERGu7s7lY69YscKpLSYmxnFcT09P1alTx6mP3W7XihUrcr02q7h7e+qPHgMk/S84pbvSclbr9vUclOHDtbu3p/Y+Ocjl7fJCfqr1euJ1AQAAN5Ob5bONy1eupkyZosjISJUuXVq1atWSJG3fvl3e3t5avny5S/uKj4/X3r17HcsHDhxQbGysihQpojJlymjEiBE6cuSIPvnkE0lS79699e6772rYsGHq2bOnVq5cqblz5+rbb7917GPQoEHq1q2b6tatq3r16mny5Mk6f/68evTo4eqp5pkK46O05sQJ3bPkc7lfOrmFTU6jLa2wu/b1vDgIK/xnklPf9HWVJ7yZ6TEqT3hTu3OwXV7IT7VeT7wuAADgZnIzfLbJ0VTsCQkJ+vTTTx2TRFStWlVdunSRj4+PS/tZvXq1mjZtmqG9W7duio6OVvfu3XXw4EGtXr3aaZuBAwdqx44dKl26tF555RV1797daft3331Xb731lo4fP67atWvrnXfeUf369bNdV15OxS5dvHy+ZMkSRTZrrr/e+1D2Q/vkVqa8yvR+Soemf+RYDn++jyO9pyUm68A772W67kpyul1eyE+1Xk9picnaO3mqTm3dqOJ31M9X32KOvJX+u6Z169bcqoNsY9zAVYwZuOpG+2zjSjbI8fdc3cxulHDFLyFkF2MGOcG4QU4wbuAqxgxy4kYaN5Z/z9XixYvVqlUreXh4aPHixVfs+8ADD2S/UgAAAAC4SWQrXLVv317Hjx9XiRIl1L59+yz72Ww2paVl/wtwAQAAAOBmka1wZbfbM/0zAAAAAOAil6di/+STT5SUlJShPTk52TGrHwAAAADcalwOVz169NDZs2cztJ87dy5fTXcOAAAAAFZyOVwZY2SzZfze5L/++kuFChWypCgAAAAAyG+y/SXCt99+u2w2m2w2m5o1a6YCBf63aVpamg4cOKCWLVvmSpEAAAAAcKPLdrhKnyUwNjZWkZGR8vf3d6zz9PRUWFiYHnroIcsLBAAAAID8INvhatSoUZKksLAwderUSd7e3rlWFAAAAADkN9kOV+m6desm6eLsgCdPnswwNXuZMmWsqQwAAAAA8hGXw9WePXvUs2dP/fjjj07t6RNd8CXCAAAAAG5FLoer7t27q0CBAvrmm29UsmTJTGcOBAAAAIBbjcvhKjY2Vlu2bFGVKlVyox4AAAAAyJdc/p6ratWq6e+//86NWgAAAAAg33I5XI0fP17Dhg3T6tWr9c8//yguLs7pBwAAAABuRS7fFti8eXNJUrNmzZzamdACAAAAwK3M5XC1atWq3KgDAAAAAPI1l8NV48aNc6MOAAAAAMjXXH7mSpJ++OEHPf7442rQoIGOHDkiSZo9e7bWrVtnaXEAAAAAkF+4HK7mz5+vyMhI+fj4aOvWrUpKSpIknT17VuPGjbO8QAAAAADID1wOV6+99pqmT5+uDz/8UB4eHo72hg0bauvWrZYWBwAAAAD5hcvhavfu3WrUqFGG9kKFCunMmTNW1AQAAAAA+Y7L4So4OFh79+7N0L5u3TqVK1fOkqIAAAAAIL9xOVz16tVL/fv318aNG2Wz2XT06FF9+umnGjJkiJ599tncqBEAAAAAbnguT8U+fPhw2e12NWvWTAkJCWrUqJG8vLw0ZMgQPffcc7lRIwAAAADc8FwOVzabTS+99JKGDh2qvXv3Kj4+XtWqVZO/v39u1AcAAAAA+YLLtwX27NlT586dk6enp6pVq6Z69erJ399f58+fV8+ePXOjRgAAAAC44bkcrj7++GNduHAhQ/uFCxf0ySefWFIUAAAAAOQ32b4tMC4uTsYYGWN07tw5eXt7O9alpaVpyZIlKlGiRK4UCQAAAAA3umyHq8DAQNlsNtlsNlWqVCnDepvNpjFjxlhaHAAAAADkF9kOV6tWrZIxRvfee6/mz5+vIkWKONZ5enqqbNmyCgkJyZUiAQAAAOBGl+1w1bhxY0nSgQMHVKZMGdlstlwrCgAAAADyG5cntChbtqzWrVunxx9/XA0aNNCRI0ckSbNnz9a6dessLxAAAAAA8gOXw9X8+fMVGRkpHx8fbd26VUlJSZKks2fPaty4cZYXCAAAAAD5gcvh6rXXXtP06dP14YcfysPDw9HesGFDbd261dLiAAAAACC/cDlc7d69W40aNcrQXqhQIZ05c8aKmgAAAAAg33E5XAUHB2vv3r0Z2tetW6dy5cpZUhQAAAAA5Dcuh6tevXqpf//+2rhxo2w2m44ePapPP/1UQ4YM0bPPPpsbNQIAAADADS/bU7GnGz58uOx2u5o1a6aEhAQ1atRIXl5eGjJkiJ577rncqBEAAAAAbnguhyubzaaXXnpJQ4cO1d69exUfH69q1arJ399fFy5ckI+PT27UCQAAAAA3NJdvC0zn6empatWqqV69evLw8NCkSZMUHh5uZW0AAAAAkG9kO1wlJSVpxIgRqlu3rho0aKBFixZJkmbNmqXw8HC9/fbbGjhwYG7VCQAAAAA3tGzfFjhy5Eh98MEHat68uX788Uc9/PDD6tGjh3766SdNmjRJDz/8sNzd3XOzVgAAAAC4YWU7XH355Zf65JNP9MADD+i3337TbbfdptTUVG3fvl02my03awQAAACAG162bwv866+/VKdOHUlSjRo15OXlpYEDBxKsAAAAAEAuhKu0tDR5eno6lgsUKCB/f/9cKQoAAAAA8pts3xZojFH37t3l5eUlSUpMTFTv3r3l5+fn1G/BggXWVggAAAAA+UC2w1W3bt2clh9//HHLiwEAAACA/Crb4WrWrFm5WQcAAAAA5Gs5/hJhAAAAAMD/EK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALJDn4WratGkKCwuTt7e36tevr02bNmXZNyUlRWPHjlX58uXl7e2tWrVqadmyZU590tLS9Morryg8PFw+Pj4qX768Xn31VRljcvtUAAAAANzC8jRcffHFFxo0aJBGjRqlrVu3qlatWoqMjNTJkycz7f/yyy/rgw8+0NSpU7Vjxw717t1bHTp00LZt2xx9xo8fr/fff1/vvvuudu7cqfHjx+vNN9/U1KlTr9dpAQAAALgF5Wm4mjRpknr16qUePXqoWrVqmj59unx9fTVz5sxM+8+ePVsvvviiWrdurXLlyunZZ59V69atNXHiREefH3/8Ue3atVObNm0UFhamjh07qkWLFle8IgYAAAAA16pAXh04OTlZW7Zs0YgRIxxtbm5uat68uTZs2JDpNklJSfL29nZq8/Hx0bp16xzLDRo00IwZM/THH3+oUqVK2r59u9atW6dJkyZlWUtSUpKSkpIcy3FxcZIu3oaYkpKSo/O7FunHzItjI39izCAnGDfICcYNXMWYQU7cSOPGlRryLFz9/fffSktLU1BQkFN7UFCQdu3alek2kZGRmjRpkho1aqTy5ctrxYoVWrBggdLS0hx9hg8frri4OFWpUkXu7u5KS0vT66+/ri5dumRZS1RUlMaMGZOh/bvvvpOvr28Oz/DaxcTE5NmxkT8xZpATjBvkBOMGrmLMICduhHGTkJCQ7b55Fq5yYsqUKerVq5eqVKkim82m8uXLq0ePHk63Ec6dO1effvqpPvvsM1WvXl2xsbEaMGCAQkJC1K1bt0z3O2LECA0aNMixHBcXp9DQULVo0UIBAQG5fl6XS0lJUUxMjO677z55eHhc9+Mj/2HMICcYN8gJxg1cxZhBTtxI4yb9rrbsyLNwVaxYMbm7u+vEiRNO7SdOnFBwcHCm2xQvXlyLFi1SYmKi/vnnH4WEhGj48OEqV66co8/QoUM1fPhwPfroo5KkmjVr6s8//1RUVFSW4crLy0teXl4Z2j08PPL0zczr4yP/YcwgJxg3yAnGDVzFmEFO3AjjxpXj59mEFp6enqpTp45WrFjhaLPb7VqxYoUiIiKuuK23t7dKlSql1NRUzZ8/X+3atXOsS0hIkJub82m5u7vLbrdbewIAAAAAcIk8vS1w0KBB6tatm+rWrat69epp8uTJOn/+vHr06CFJ6tq1q0qVKqWoqChJ0saNG3XkyBHVrl1bR44c0ejRo2W32zVs2DDHPtu2bavXX39dZcqUUfXq1bVt2zZNmjRJPXv2zJNzBAAAAHBryNNw1alTJ506dUojR47U8ePHVbt2bS1btswxycWhQ4ecrkIlJibq5Zdf1v79++Xv76/WrVtr9uzZCgwMdPSZOnWqXnnlFfXp00cnT55USEiInnnmGY0cOfJ6nx4AAACAW0ieT2jRr18/9evXL9N1q1evdlpu3LixduzYccX9FSxYUJMnT9bkyZMtqhAAAAAAri5Pv0QYAAAAAG4WhCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMACeR6upk2bprCwMHl7e6t+/fratGlTln1TUlI0duxYlS9fXt7e3qpVq5aWLVuWod+RI0f0+OOPq2jRovLx8VHNmjX1888/5+ZpAAAAALjF5Wm4+uKLLzRo0CCNGjVKW7duVa1atRQZGamTJ09m2v/ll1/WBx98oKlTp2rHjh3q3bu3OnTooG3btjn6nD59Wg0bNpSHh4eWLl2qHTt2aOLEiSpcuPD1Oi0AAAAAt6A8DVeTJk1Sr1691KNHD1WrVk3Tp0+Xr6+vZs6cmWn/2bNn68UXX1Tr1q1Vrlw5Pfvss2rdurUmTpzo6DN+/HiFhoZq1qxZqlevnsLDw9WiRQuVL1/+ep0WAAAAgFtQgbw6cHJysrZs2aIRI0Y42tzc3NS8eXNt2LAh022SkpLk7e3t1Obj46N169Y5lhcvXqzIyEg9/PDDWrNmjUqVKqU+ffqoV69eWdaSlJSkpKQkx3JcXJyki7chpqSk5Oj8rkX6MfPi2MifGDPICcYNcoJxA1cxZpATN9K4caUGmzHG5GItWTp69KhKlSqlH3/8UREREY72YcOGac2aNdq4cWOGbR577DFt375dixYtUvny5bVixQq1a9dOaWlpjnCUHr4GDRqkhx9+WJs3b1b//v01ffp0devWLdNaRo8erTFjxmRo/+yzz+Tr62vF6QIAAADIhxISEvTYY4/p7NmzCggIuGLffBWuTp06pV69eunrr7+WzWZT+fLl1bx5c82cOVMXLlyQJHl6eqpu3br68ccfHds9//zz2rx58xWviF1+5So0NFR///33VV/A3JCSkqKYmBjdd9998vDwuO7HR/7DmEFOMG6QE4wbuIoxg5y4kcZNXFycihUrlq1wlWe3BRYrVkzu7u46ceKEU/uJEycUHByc6TbFixfXokWLlJiYqH/++UchISEaPny4ypUr5+hTsmRJVatWzWm7qlWrav78+VnW4uXlJS8vrwztHh4eefpm5vXxkf8wZpATjBvkBOMGrmLMICduhHHjyvHzbEILT09P1alTRytWrHC02e12rVixwulKVma8vb1VqlQppaamav78+WrXrp1jXcOGDbV7926n/n/88YfKli1r7QkAAAAAwCXy7MqVdPG5qG7duqlu3bqqV6+eJk+erPPnz6tHjx6SpK5du6pUqVKKioqSJG3cuFFHjhxR7dq1deTIEY0ePVp2u13Dhg1z7HPgwIFq0KCBxo0bp0ceeUSbNm3SjBkzNGPGjDw5RwAAAAC3hjwNV506ddKpU6c0cuRIHT9+XLVr19ayZcsUFBQkSTp06JDc3P53cS0xMVEvv/yy9u/fL39/f7Vu3VqzZ89WYGCgo8+dd96phQsXasSIERo7dqzCw8M1efJkdenS5XqfHgAAAIBbSJ6GK0nq16+f+vXrl+m61atXOy03btxYO3bsuOo+77//ft1///1WlAcAAAAA2ZKnXyIMAAAAADcLwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiiQ1wXciIwxkqS4uLg8OX5KSooSEhIUFxcnDw+PPKkB+QtjBjnBuEFOMG7gKsYMcuJGGjfpmSA9I1wJ4SoT586dkySFhobmcSUAAAAAbgTnzp1ToUKFrtjHZrITwW4xdrtdR48eVcGCBWWz2a778ePi4hQaGqrDhw8rICDguh8f+Q9jBjnBuEFOMG7gKsYMcuJGGjfGGJ07d04hISFyc7vyU1VcucqEm5ubSpcunddlKCAgIM8HE/IXxgxygnGDnGDcwFWMGeTEjTJurnbFKh0TWgAAAACABQhXAAAAAGABwtUNyMvLS6NGjZKXl1del4J8gjGDnGDcICcYN3AVYwY5kV/HDRNaAAAAAIAFuHIFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwdYOZNm2awsLC5O3trfr162vTpk15XRKuk7Vr16pt27YKCQmRzWbTokWLnNYbYzRy5EiVLFlSPj4+at68ufbs2ePU599//1WXLl0UEBCgwMBAPfnkk4qPj3fq88svv+iee+6Rt7e3QkND9eabb+b2qSEXRUVF6c4771TBggVVokQJtW/fXrt373bqk5iYqL59+6po0aLy9/fXQw89pBMnTjj1OXTokNq0aSNfX1+VKFFCQ4cOVWpqqlOf1atX64477pCXl5cqVKig6Ojo3D495IL3339ft912m+OLOSMiIrR06VLHesYLruaNN96QzWbTgAEDHG2MG1xu9OjRstlsTj9VqlRxrL9px4zBDWPOnDnG09PTzJw50/z++++mV69eJjAw0Jw4cSKvS8N1sGTJEvPSSy+ZBQsWGElm4cKFTuvfeOMNU6hQIbNo0SKzfft288ADD5jw8HBz4cIFR5+WLVuaWrVqmZ9++sn88MMPpkKFCqZz586O9WfPnjVBQUGmS5cu5rfffjOff/658fHxMR988MH1Ok1YLDIy0syaNcv89ttvJjY21rRu3dqUKVPGxMfHO/r07t3bhIaGmhUrVpiff/7Z3HXXXaZBgwaO9ampqaZGjRqmefPmZtu2bWbJkiWmWLFiZsSIEY4++/fvN76+vmbQoEFmx44dZurUqcbd3d0sW7bsup4vrt3ixYvNt99+a/744w+ze/du8+KLLxoPDw/z22+/GWMYL7iyTZs2mbCwMHPbbbeZ/v37O9oZN7jcqFGjTPXq1c2xY8ccP6dOnXKsv1nHDOHqBlKvXj3Tt29fx3JaWpoJCQkxUVFReVgV8sLl4cput5vg4GDz1ltvOdrOnDljvLy8zOeff26MMWbHjh1Gktm8ebOjz9KlS43NZjNHjhwxxhjz3nvvmcKFC5ukpCRHnxdeeMFUrlw5l88I18vJkyeNJLNmzRpjzMVx4uHhYb788ktHn507dxpJZsOGDcaYi8Hezc3NHD9+3NHn/fffNwEBAY6xMmzYMFO9enWnY3Xq1MlERkbm9inhOihcuLD56KOPGC+4onPnzpmKFSuamJgY07hxY0e4YtwgM6NGjTK1atXKdN3NPGa4LfAGkZycrC1btqh58+aONjc3NzVv3lwbNmzIw8pwIzhw4ICOHz/uND4KFSqk+vXrO8bHhg0bFBgYqLp16zr6NG/eXG5ubtq4caOjT6NGjeTp6enoExkZqd27d+v06dPX6WyQm86ePStJKlKkiCRpy5YtSklJcRo7VapUUZkyZZzGTs2aNRUUFOToExkZqbi4OP3++++OPpfuI70Pv5/yt7S0NM2ZM0fnz59XREQE4wVX1LdvX7Vp0ybDe8u4QVb27NmjkJAQlStXTl26dNGhQ4ck3dxjhnB1g/j777+VlpbmNIAkKSgoSMePH8+jqnCjSB8DVxofx48fV4kSJZzWFyhQQEWKFHHqk9k+Lj0G8i+73a4BAwaoYcOGqlGjhqSL76unp6cCAwOd+l4+dq42LrLqExcXpwsXLuTG6SAX/frrr/L395eXl5d69+6thQsXqlq1aowXZGnOnDnaunWroqKiMqxj3CAz9evXV3R0tJYtW6b3339fBw4c0D333KNz587d1GOmQJ4cFQBgub59++q3337TunXr8roU3OAqV66s2NhYnT17VvPmzVO3bt20Zs2avC4LN6jDhw+rf//+iomJkbe3d16Xg3yiVatWjj/fdtttql+/vsqWLau5c+fKx8cnDyvLXVy5ukEUK1ZM7u7uGWZJOXHihIKDg/OoKtwo0sfAlcZHcHCwTp486bQ+NTVV//77r1OfzPZx6TGQP/Xr10/ffPONVq1apdKlSzvag4ODlZycrDNnzjj1v3zsXG1cZNUnICDgpv6f5M3K09NTFSpUUJ06dRQVFaVatWppypQpjBdkasuWLTp58qTuuOMOFShQQAUKFNCaNWv0zjvvqECBAgoKCmLc4KoCAwNVqVIl7d2796b+XUO4ukF4enqqTp06WrFihaPNbrdrxYoVioiIyMPKcCMIDw9XcHCw0/iIi4vTxo0bHeMjIiJCZ86c0ZYtWxx9Vq5cKbvdrvr16zv6rF27VikpKY4+MTExqly5sgoXLnydzgZWMsaoX79+WrhwoVauXKnw8HCn9XXq1JGHh4fT2Nm9e7cOHTrkNHZ+/fVXp3AeExOjgIAAVatWzdHn0n2k9+H3083BbrcrKSmJ8YJMNWvWTL/++qtiY2MdP3Xr1lWXLl0cf2bc4Gri4+O1b98+lSxZ8ub+XZNnU2kggzlz5hgvLy8THR1tduzYYZ5++mkTGBjoNEsKbl7nzp0z27ZtM9u2bTOSzKRJk8y2bdvMn3/+aYy5OBV7YGCg+eqrr8wvv/xi2rVrl+lU7LfffrvZuHGjWbdunalYsaLTVOxnzpwxQUFB5oknnjC//fabmTNnjvH19WUq9nzs2WefNYUKFTKrV692mu42ISHB0ad3796mTJkyZuXKlebnn382ERERJiIiwrE+fbrbFi1amNjYWLNs2TJTvHjxTKe7HTp0qNm5c6eZNm1ank93i5wZPny4WbNmjTlw4ID55ZdfzPDhw43NZjPfffedMYbxguy5dLZAYxg3yGjw4MFm9erV5sCBA2b9+vWmefPmplixYubkyZPGmJt3zBCubjBTp041ZcqUMZ6enqZevXrmp59+yuuScJ2sWrXKSMrw061bN2PMxenYX3nlFRMUFGS8vLxMs2bNzO7du5328c8//5jOnTsbf39/ExAQYHr06GHOnTvn1Gf79u3m7rvvNl5eXqZUqVLmjTfeuF6niFyQ2ZiRZGbNmuXoc+HCBdOnTx9TuHBh4+vrazp06GCOHTvmtJ+DBw+aVq1aGR8fH1OsWDEzePBgk5KS4tRn1apVpnbt2sbT09OUK1fO6RjIP3r27GnKli1rPD09TfHixU2zZs0cwcoYxguy5/JwxbjB5Tp16mRKlixpPD09TalSpUynTp3M3r17Hetv1jFjM8aYvLlmBgAAAAA3D565AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAFwXBw8elM1mU2xsbF6X4rBr1y7ddddd8vb2Vu3atfO6nEx1795d7du3dyw3adJEAwYMuOI2YWFhmjx5cq7WBQDIiHAFALeI7t27y2az6Y033nBqX7RokWw2Wx5VlbdGjRolPz8/7d69WytWrMiy3/Hjx/Xcc8+pXLly8vLyUmhoqNq2bXvFbXLLggUL9Oqrr1q6z+joaAUGBlq6TwC4FRGuAOAW4u3trfHjx+v06dN5XYplkpOTc7ztvn37dPfdd6ts2bIqWrRopn0OHjyoOnXqaOXKlXrrrbf066+/atmyZWratKn69u2b42PnVJEiRVSwYMHrflwAwNURrgDgFtK8eXMFBwcrKioqyz6jR4/OcIvc5MmTFRYW5lhOv1Vt3LhxCgoKUmBgoMaOHavU1FQNHTpURYoUUenSpTVr1qwM+9+1a5caNGggb29v1ahRQ2vWrHFa/9tvv6lVq1by9/dXUFCQnnjiCf3999+O9U2aNFG/fv00YMAAFStWTJGRkZmeh91u19ixY1W6dGl5eXmpdu3aWrZsmWO9zWbTli1bNHbsWNlsNo0ePTrT/fTp00c2m02bNm3SQw89pEqVKql69eoaNGiQfvrpJ0e/SZMmqWbNmvLz81NoaKj69Omj+Ph4x/r0q0PLly9X1apV5e/vr5YtW+rYsWOOPmlpaRo0aJACAwNVtGhRDRs2TMYYp3ouvy3w5MmTatu2rXx8fBQeHq5PP/00wzlcqbbVq1erR48eOnv2rGw2m9NrkZSUpCFDhqhUqVLy8/NT/fr1tXr1asd+//zzT7Vt21aFCxeWn5+fqlevriVLlmT6OgLArYBwBQC3EHd3d40bN05Tp07VX3/9dU37WrlypY4ePaq1a9dq0qRJGjVqlO6//34VLlxYGzduVO/evfXMM89kOM7QoUM1ePBgbdu2TREREWrbtq3++ecfSdKZM2d077336vbbb9fPP/+sZcuW6cSJE3rkkUec9vHxxx/L09NT69ev1/Tp0zOtb8qUKZo4caImTJigX375RZGRkXrggQe0Z88eSdKxY8dUvXp1DR48WMeOHdOQIUMy7OPff//VsmXL1LdvX/n5+WVYf+mtdG5ubnrnnXf0+++/6+OPP9bKlSs1bNgwp/4JCQmaMGGCZs+erbVr1+rQoUNOx504caKio6M1c+ZMrVu3Tv/++68WLlx4hXfhYtA9fPiwVq1apXnz5um9997TyZMnnfpcqbYGDRpo8uTJCggI0LFjx5xei379+mnDhg2aM2eOfvnlFz388MNq2bKl4zXs27evkpKStHbtWv36668aP368/P39r1gvANzUDADgltCtWzfTrl07Y4wxd911l+nZs6cxxpiFCxeaS/93MGrUKFOrVi2nbd9++21TtmxZp32VLVvWpKWlOdoqV65s7rnnHsdyamqq8fPzM59//rkxxpgDBw4YSeaNN95w9ElJSTGlS5c248ePN8YY8+qrr5oWLVo4Hfvw4cNGktm9e7cxxpjGjRub22+//arnGxISYl5//XWntjvvvNP06dPHsVyrVi0zatSoLPexceNGI8ksWLDgqse73JdffmmKFi3qWJ41a5aRZPbu3etomzZtmgkKCnIslyxZ0rz55puO5fTXJ/19M+bi+ffv398YY8zu3buNJLNp0ybH+p07dxpJ5u2333aptkKFCjn1+fPPP427u7s5cuSIU3uzZs3MiBEjjDHG1KxZ04wePTrrFwEAbjEF8jDXAQDyyPjx43XvvfdmerUmu6pXry43t//dABEUFKQaNWo4lt3d3VW0aNEMV1EiIiIcfy5QoIDq1q2rnTt3SpK2b9+uVatWZXr1Y9++fapUqZIkqU6dOlesLS4uTkePHlXDhg2d2hs2bKjt27dn8wyV4Za8K/n+++8VFRWlXbt2KS4uTqmpqUpMTFRCQoJ8fX0lSb6+vipfvrxjm5IlSzpen7Nnz+rYsWOqX7++Y33665NVHTt37lSBAgWcXo8qVapkmJwiO7Vd7tdff1VaWprjNU+XlJTkeD7t+eef17PPPqvvvvtOzZs310MPPaTbbrstm68YANx8uC0QAG5BjRo1UmRkpEaMGJFhnZubW4YP8ykpKRn6eXh4OC3bbLZM2+x2e7brio+PV9u2bRUbG+v0s2fPHjVq1MjRL7Nb9HJDxYoVZbPZtGvXriv2O3jwoO6//37ddtttmj9/vrZs2aJp06ZJcp5wI7PXx5UAlxPZre1y8fHxcnd315YtW5zei507d2rKlCmSpKeeekr79+/XE088oV9//VV169bV1KlTc/V8AOBGRrgCgFvUG2+8oa+//lobNmxwai9evLiOHz/u9KHfyu+munQSiNTUVG3ZskVVq1aVJN1xxx36/fffFRYWpgoVKjj9uBKoAgICFBISovXr1zu1r1+/XtWqVcv2fooUKaLIyEhNmzZN58+fz7D+zJkzkqQtW7bIbrdr4sSJuuuuu1SpUiUdPXo028eRpEKFCqlkyZLauHGjoy399clKlSpVMvTZvXu3o67s1ubp6am0tDSntttvv11paWk6efJkhvciODjY0S80NFS9e/fWggULNHjwYH344YcunTcA3EwIVwBwi6pZs6a6dOmid955x6m9SZMmOnXqlN58803t27dP06ZN09KlSy077rRp07Rw4ULt2rVLffv21enTp9WzZ09JFydI+Pfff9W5c2dt3rxZ+/bt0/Lly9WjR48MH/6vZujQoRo/fry++OIL7d69W8OHD1dsbKz69+/vcr1paWmqV6+e5s+frz179mjnzp165513HLc4VqhQQSkpKZo6dar279+v2bNnZznRxpX0799fb7zxhhYtWqRdu3apT58+TkHpcpUrV1bLli31zDPPaOPGjdqyZYueeuop+fj4OPpkp7awsDDFx8drxYoV+vvvv5WQkKBKlSqpS5cu6tq1qxYsWKADBw5o06ZNioqK0rfffitJGjBggJYvX64DBw5o69atWrVqlSMoA8CtiHAFALewsWPHZrhtr2rVqnrvvfc0bdo01apVS5s2bbqmZ7Mu98Ybb+iNN95QrVq1tG7dOi1evFjFihWTJMfVprS0NLVo0UI1a9bUgAEDFBgY6PR8V3Y8//zzGjRokAYPHqyaNWtq2bJlWrx4sSpWrOjSfsqVK6etW7eqadOmGjx4sGrUqKH77rtPK1as0Pvvvy9JqlWrliZNmqTx48erRo0a+vTTT6843X1WBg8erCeeeELdunVTRESEChYsqA4dOlxxm1mzZikkJESNGzfWgw8+qKefflolSpRwrM9ObQ0aNFDv3r3VqVMnFS9eXG+++aZj3127dtXgwYNVuXJltW/fXps3b1aZMmUkXZw6vm/fvqpatapatmypSpUq6b333nP5vAHgZmEzuX2zNwAAAADcArhyBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGCB/wPEIQ6kwK0lLwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbeJJREFUeJzt3Xd4FFXfxvF7E9JDCD0JBBJ6NSgIBpQiSCgioCgiSlMUASVUwUZRKQoIIoroA1EeFZEmKsVIBxEQCBaKVEG6hQQIqXveP3izD0sCZMOEEPh+riuXmTNnZn6ze4i5MzNnbcYYIwAAAADANXHL6wIAAAAA4GZAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4ApBvjRgxQjabLa/LuOXYbDb17ds3r8vIlrS0NA0ZMkShoaFyc3NTu3bt8roklzVu3FiNGzd2LB88eFA2m00xMTFX3bZbt24KCwvLtdpyy4kTJ9ShQwcVLVpUNptNkyZNyuuSACBbCFfATS4mJkY2m83xVaBAAZUqVUrdunXTkSNHcrTPHTt2aMSIETp48KC1xWYhMTFRI0aM0KpVq3L9WDeKjF+ebTab5s2bl2l9Rqj866+/8qC6/GXGjBl666231KFDB3388cfq37//VbdZsGCBWrZsqWLFisnT01MhISF65JFHtGLFiutQ8Y1j9OjRWrhwYZ4cu3///lq2bJmGDRumWbNmqUWLFrlynG7dujn9fLzcV7du3XLl+BfL+Hc/fvx4p3ZjjJ555hnZbDaNGDEi1+vI8N133+nJJ59UjRo15O7ufsWQbrfb9eabbyo8PFze3t667bbb9Pnnn1+3WoEbSYG8LgDA9TFq1CiFh4crKSlJP/74o2JiYrRu3Tr9+uuv8vb2dmlfO3bs0MiRI9W4ceNc/6t4YmKiRo4cKUlOf72XpJdffllDhw7N1ePntVGjRunBBx/kCl0OrVixQqVKldLbb7991b7GGPXo0UMxMTG6/fbbNWDAAAUFBenYsWNasGCBmjZtqvXr16t+/frXofLLK1u2rM6fPy8PD49cPc7o0aPVoUOHPLnat2LFCrVt21aDBg3K1eM888wzatasmWP5wIEDevXVV/X000/rnnvucbSXL18+V+u4HGOMevfurenTp+uVV165ruHqs88+0xdffKE77rhDISEhV+z70ksvaezYserZs6fuvPNOffXVV3rsscdks9n06KOPXqeKgRsD4Qq4RbRs2VJ16tSRJD311FMqVqyYxo0bp0WLFumRRx7J4+pypkCBAipQ4Ob9MVarVi3FxcVpwYIFevDBB/O6nOsqKSlJnp6ecnO7thssTp48qcDAwGz1nTBhgmJiYhQdHa2JEyc6BdqXXnpJs2bNuiHGm81mc/kPIvmNK+9bdlxuPEVGRioyMtKx/NNPP+nVV19VZGSkHn/8ccuOn1PPPfecpk2bppdeekmjRo26rscePXq0PvzwQ3l4eOj+++/Xr7/+mmW/I0eOaMKECerTp4/effddSRf+H9OoUSMNHjxYDz/8sNzd3a9n6UCe4rZA4BaV8VfZffv2ObXv2rVLHTp0UJEiReTt7a06depo0aJFjvUxMTF6+OGHJUlNmjRx3DZz8W17S5Ys0T333CM/Pz8VLFhQrVu31m+//eZ0nG7dusnf319HjhxRu3bt5O/vr+LFi2vQoEFKT0+XdOE2meLFi0uSRo4c6ThWxl9vs3rmKi0tTa+99prKly8vLy8vhYWF6cUXX1RycrJTv7CwMN1///1at26d6tatK29vb5UrV06ffPLJFV+31NRUFSlSRN27d8+0LiEhQd7e3k5/bZ8yZYqqV68uX19fFS5cWHXq1NFnn312xWNkePTRR1WpUiWNGjVKxpgr9g0LC8vy1qVLn9dZtWqVbDab5syZo5EjR6pUqVIqWLCgOnTooPj4eCUnJys6OlolSpSQv7+/unfvnum1y/Dpp5+qcuXK8vb2Vu3atbVmzZpMfY4cOaIePXqoZMmS8vLyUvXq1TVjxgynPhk1zZ49Wy+//LJKlSolX19fJSQkXPZ8z507p4EDByo0NFReXl6qXLmyxo8f73idMm6xWrlypX777bcsx+nFzp8/rzFjxqhKlSoaP358llcKn3jiCdWtW1eS9M8//2jQoEGqWbOm/P39FRAQoJYtW2r79u1ZntucOXP0xhtvqHTp0vL29lbTpk21d+/eTMeYPn26ypcvLx8fH9WtW1dr167N1Odyz1wtXLhQNWrUkLe3t2rUqKEFCxZkea7jx49X/fr1VbRoUfn4+Kh27dqaO3euUx+bzaZz587p448/zvLWuOy8r5Lr4z/jNmZjjKZOneo4dob9+/fr4YcfVpEiReTr66u77rpL3377rdM+cjKerubLL79U7dq15ePjo2LFiunxxx/PdFt1xs+0/fv3KyoqSn5+fgoJCcnWv9+s9OvXT1OnTtWwYcP0+uuv57j2nAoJCcnW1dGvvvpKqamp6t27t6PNZrPp2Wef1Z9//qkNGzbkZpnADSfv/wQHIE9kPC9VuHBhR9tvv/2mBg0aqFSpUho6dKj8/Pw0Z84ctWvXTvPmzVP79u3VsGFDPf/883rnnXf04osvqmrVqpLk+O+sWbPUtWtXRUVFady4cUpMTNT777+vu+++W9u2bXO6jTA9PV1RUVGqV6+exo8fr++//14TJkxQ+fLl9eyzz6p48eJ6//339eyzz6p9+/aOqze33XbbZc/rqaee0scff6wOHTpo4MCB2rhxo8aMGaOdO3dm+mVz79696tChg5588kl17dpVM2bMULdu3VS7dm1Vr149y/17eHioffv2mj9/vj744AN5eno61i1cuFDJycmO22A+/PBDPf/88+rQoYP69eunpKQk/fzzz9q4caMee+yxq75H7u7uevnll9WlSxfLr16NGTNGPj4+Gjp0qPbu3aspU6bIw8NDbm5u+vfffzVixAjH7aPh4eF69dVXnbZfvXq1vvjiCz3//PPy8vLSe++9pxYtWmjTpk2qUaOGpAuTEtx1112OCTCKFy+uJUuW6Mknn1RCQoKio6Od9vnaa6/J09NTgwYNUnJystNrezFjjB544AGtXLlSTz75pGrVqqVly5Zp8ODBOnLkiN5++20VL15cs2bN0htvvKGzZ89qzJgxkv43Ti+1bt06/fPPP4qOjs7WX9n379+vhQsX6uGHH1Z4eLhOnDihDz74QI0aNdKOHTsy3UY1duxYubm5adCgQYqPj9ebb76pzp07a+PGjY4+//nPf/TMM8+ofv36io6O1v79+/XAAw+oSJEiCg0NvWI93333nR566CFVq1ZNY8aM0d9//63u3burdOnSmfpOnjxZDzzwgDp37qyUlBTNnj1bDz/8sL755hu1bt1a0oV/x0899ZTq1q2rp59+WtL/bo3L7vuak/HfsGFDzZo1S0888YTuu+8+denSxbHuxIkTql+/vhITE/X888+raNGi+vjjj/XAAw9o7ty5at++vdO+sjueriYmJkbdu3fXnXfeqTFjxujEiROaPHmy1q9fr23btjldYUtPT1eLFi1011136c0339TSpUs1fPhwpaWluXTlqX///nrnnXf0wgsvaPTo0dne7t9//3X8cepKfH195evrm+39Xsm2bdvk5+eX6d9Wxh8itm3bprvvvtuSYwH5ggFwU5s5c6aRZL7//ntz6tQpc/jwYTN37lxTvHhx4+XlZQ4fPuzo27RpU1OzZk2TlJTkaLPb7aZ+/fqmYsWKjrYvv/zSSDIrV650OtaZM2dMYGCg6dmzp1P78ePHTaFChZzau3btaiSZUaNGOfW9/fbbTe3atR3Lp06dMpLM8OHDM53b8OHDzcU/xuLi4owk89RTTzn1GzRokJFkVqxY4WgrW7askWTWrFnjaDt58qTx8vIyAwcOzHSsiy1btsxIMl9//bVTe6tWrUy5cuUcy23btjXVq1e/4r6ycuDAASPJvPXWWyYtLc1UrFjRREREGLvd7nTep06dcjqfrl27ZtpXo0aNTKNGjRzLK1euNJJMjRo1TEpKiqO9U6dOxmazmZYtWzptHxkZacqWLevUJslIMj/99JOj7Y8//jDe3t6mffv2jrYnn3zSBAcHm7/++stp+0cffdQUKlTIJCYmOtVUrlw5R9uVLFy40Egyr7/+ulN7hw4djM1mM3v37nU6/+y8B5MnTzaSzIIFC67a1xhjkpKSTHp6ulPbgQMHjJeXl9OYzji3qlWrmuTk5EzH++WXX4wxxqSkpJgSJUqYWrVqOfWbPn26keT0HmaMj5kzZzraatWqZYKDg83p06cdbd99952RlOn9u/Q1TklJMTVq1DD33nuvU7ufn1+WYyq772tOx78xF8ZYnz59nNqio6ONJLN27VpH25kzZ0x4eLgJCwtzvB+ujqeLbd682em1zXhfatSoYc6fP+/o98033xhJ5tVXX3W0ZfxMe+655xxtdrvdtG7d2nh6ejr9e81Kxvua8bNp8ODBLtVuzP9+rl3tK6ufp1fSunXrTOPo4nUX/9zLcO7cOSPJDB061OXzAPIzbgsEbhHNmjVT8eLFFRoaqg4dOsjPz0+LFi1y/GX7n3/+0YoVK/TII4/ozJkz+uuvv/TXX3/p77//VlRUlPbs2XPV2QVjY2N1+vRpderUybH9X3/9JXd3d9WrV08rV67MtE2vXr2clu+55x7t378/R+e4ePFiSdKAAQOc2gcOHChJmW4fqlatmtND68WLF1flypWvevx7771XxYoV0xdffOFo+/fffxUbG6uOHTs62gIDA/Xnn39q8+bNOTof6X9Xr7Zv327pzG1dunRxuuWnXr16jgkdLlavXj0dPnxYaWlpTu2RkZGqXbu2Y7lMmTJq27atli1bpvT0dBljNG/ePLVp00bGGKfxEBUVpfj4eG3dutVpn127dpWPj89Va1+8eLHc3d31/PPPO7UPHDhQxhgtWbIk269DhoxbxgoWLJit/l5eXo7nd9LT0/X333/L399flStXznRektS9e3enKycZ4y5jrP300086efKkevXq5dSvW7duKlSo0BVrOXbsmOLi4tS1a1envvfdd5+qVauWqf/Fr/G///6r+Ph43XPPPVnWfSlX3lcrxv/FFi9erLp16zpdBfH399fTTz+tgwcPaseOHU79szueriTjfendu7fTc26tW7dWlSpVMv1MkeT0MQUZV/dSUlL0/fffZ+uYJ06ckCRVqlTJ5Xo//fRTxcbGXvXr4iuC1+r8+fPy8vLK1J7xep0/f96yYwH5AbcFAreIqVOnqlKlSoqPj9eMGTO0Zs0ap/8h7t27V8YYvfLKK3rllVey3MfJkydVqlSpyx5jz549ki6Ej6wEBAQ4LXt7ezueqcpQuHBh/fvvv9k6p0v98ccfcnNzU4UKFZzag4KCFBgYqD/++MOpvUyZMpn2kZ3jFyhQQA899JA+++wzJScny8vLS/Pnz1dqaqpTuHrhhRf0/fffq27duqpQoYKaN2+uxx57TA0aNHDpvDp37qzXXntNo0aNsmzmtkvPPeOX8ktvPytUqJDsdrvi4+NVtGhRR3vFihUz7bNSpUpKTEzUqVOn5ObmptOnT2v69OmaPn16ljWcPHnSaTk8PDxbtf/xxx8KCQnJFIQybku69H3OjoyxeebMmWz1t9vtmjx5st577z0dOHDA6Vasi1+nDJe+3hm342aMtYyaL31dPTw8VK5cuSvWcrltJWUZ9r755hu9/vrriouLc3qeLjszUp46dSrb76tV4z/DH3/8oXr16mVqv/h9z7glVcr+eLraMaULr+OlqlSponXr1jm1ubm5ZXq/MkJSxq3Yp06dchov/v7+8vf3dyy/8MILWrx4sZ555hkFBgaqQ4cO2a43p6/ttfDx8cnyucykpCTHeuBWQrgCbhF169Z1zBbYrl073X333Xrssce0e/du+fv7y263S5IGDRqkqKioLPdxaWi5VMY+Zs2apaCgoEzrL51pLbdmkMrutOWXO77JxsPnjz76qD744AMtWbJE7dq105w5c1SlShVFREQ4+lStWlW7d+/WN998o6VLl2revHl677339Oqrrzqml89unS+//LK6deumr776Kss+lzvn9PT0LM/zcud+La/JxTLGwuOPP66uXbtm2efSZ+fy8pewKlWqSJJ++eWXbAXY0aNH65VXXlGPHj302muvqUiRInJzc1N0dLTj3C9m1et6rdauXasHHnhADRs21Hvvvafg4GB5eHho5syZ2ZpoxZX31arxn1M36i/1d955p9MfAIYPH+40xbq/v7+WLFmihg0bqnPnzgoICFDz5s2zte9Lg9vlXBrorkVwcLBWrlwpY4zTz6Fjx45J0lWncQduNoQr4Bbk7u6uMWPGqEmTJnr33Xc1dOhQx19bPTw8nD73JSuX+0U+44H3EiVKXHUf2eXK5zuVLVtWdrtde/bscXq4+sSJEzp9+rTKli1rSU3ShQfvg4OD9cUXX+juu+/WihUr9NJLL2Xq5+fnp44dO6pjx45KSUnRgw8+qDfeeEPDhg1zaTrtxx9/XK+//rpGjhypBx54INP6woUL6/Tp05na//jjj6te+ciJjKuUF/v999/l6+vruBpZsGBBpaenWzYWMpQtW1bff/+9zpw543T1ateuXY71rrr77rtVuHBhff7553rxxRevGvznzp2rJk2a6D//+Y9T++nTp1WsWDGXj59R8549e5yu/KampurAgQNOof1K215q9+7dTsvz5s2Tt7e3li1b5nTleubMmZm2zerfXvHixV16X60a/9KF87z0fKRre9+zc0zpwut46RX53bt3Zzqm3W7X/v37nW7p+/333yXJMZnPp59+6nSrXFb/PosWLarvvvtODRo00IMPPqjY2FinKeMv59LgdjmXBrprUatWLX300UfauXOn022oGZO11KpVy5LjAPkFz1wBt6jGjRurbt26mjRpkpKSklSiRAk1btxYH3zwgeMvjhc7deqU43s/Pz9JyvTLfFRUlAICAjR69GilpqZecR/ZlTGjVVbB4VKtWrWSJE2aNMmpfeLEiZLkmAnNCm5uburQoYO+/vprzZo1S2lpaU63BErS33//7bTs6empatWqyRiT5etzJRlXr+Li4pymxs9Qvnx5/fjjj0pJSXG0ffPNNzp8+LBLx8muDRs2ON1udvjwYX311Vdq3ry53N3d5e7uroceekjz5s3L8vNxcjIWMrRq1Urp6emOz9TJ8Pbbb8tms6lly5Yu79PX11cvvPCCdu7cqRdeeCHLK0r//e9/tWnTJkkX3o9L+3z55ZdXfS7xcurUqaPixYtr2rRpTu9hTEzMVcd+cHCwatWqpY8//ljx8fGO9tjY2EzPIbm7u8tmszld3Th48GCWz/P5+fllOrYr76uV41+68L5v2rTJaWrvc+fOafr06QoLC8vy+bJrVadOHZUoUULTpk1zuvVtyZIl2rlzZ5Y/Uy4el8YYvfvuu/Lw8FDTpk0lXbh1r1mzZo6vy/3xo1SpUoqNjZWfn59at26tX3755ar15sUzV23btpWHh4fee+89R5sxRtOmTVOpUqXy/EO3geuNK1fALSzjAx5jYmLUq1cvTZ06VXfffbdq1qypnj17qly5cjpx4oQ2bNigP//80/EZPrVq1ZK7u7vGjRun+Ph4eXl56d5771WJEiX0/vvv64knntAdd9yhRx99VMWLF9ehQ4f07bffqkGDBpl+Ib4aHx8fVatWTV988YUqVaqkIkWKqEaNGk7PVmSIiIhQ165dNX36dJ0+fVqNGjXSpk2b9PHHH6tdu3Zq0qSJJa9bho4dO2rKlCkaPny4atasmWkq4ubNmysoKEgNGjRQyZIltXPnTr377rtq3bp1tidOuFjGs1dxcXGZ1j311FOaO3euWrRooUceeUT79u3Tf//7X8fVRKvVqFFDUVFRTlOxS3K63Wvs2LFauXKl6tWrp549e6patWr6559/tHXrVn3//ff6559/cnTsNm3aqEmTJnrppZd08OBBRURE6LvvvtNXX32l6OjoHJ/z4MGD9dtvv2nChAlauXKlOnTooKCgIB0/flwLFy7Upk2b9MMPP0iS7r//fo0aNUrdu3dX/fr19csvv+jTTz/N8VVCDw8Pvf7663rmmWd07733qmPHjjpw4IBmzpyZrX2OGTNGrVu31t13360ePXron3/+cXzG1NmzZx39WrdurYkTJ6pFixZ67LHHdPLkSU2dOlUVKlTQzz//7LTP2rVr6/vvv9fEiRMVEhKi8PBw1atXL9vvq9Xjf+jQofr888/VsmVLPf/88ypSpIg+/vhjHThwQPPmzbvmD5zOioeHh8aNG6fu3burUaNG6tSpk2Mq9rCwMPXv39+pv7e3t5YuXaquXbuqXr16WrJkib799lu9+OKLmZ4vzY6KFStq2bJlaty4saKiorRu3borjgcrn7n6+eefHX/I2bt3r+Lj4x2ftxUREaE2bdpIkkqXLq3o6Gi99dZbSk1N1Z133qmFCxdq7dq1+vTTT/kAYdx6rvv8hACuq4yp2Ddv3pxpXXp6uilfvrwpX768SUtLM8YYs2/fPtOlSxcTFBRkPDw8TKlSpcz9999v5s6d67Tthx9+aMqVK2fc3d0zTcu+cuVKExUVZQoVKmS8vb1N+fLlTbdu3Zym7u7atavx8/PLVNOl06sbY8wPP/xgateubTw9PZ2mEc6qb2pqqhk5cqQJDw83Hh4eJjQ01AwbNsxpenljLkxZ3Lp160zHv3Tq8iux2+0mNDQ0y2nBjTHmgw8+MA0bNjRFixY1Xl5epnz58mbw4MEmPj7+ivu9eCr2S2W8n7pkKnZjjJkwYYIpVaqU8fLyMg0aNDA//fTTZadi//LLL7Pc76XjJKtp3/X/02T/97//NRUrVjReXl7m9ttvzzQ1vzHGnDhxwvTp08eEhoYaDw8PExQUZJo2bWqmT59+1Zqu5MyZM6Z///4mJCTEeHh4mIoVK5q33nrLMV19huxOxX6xuXPnmubNm5siRYqYAgUKmODgYNOxY0ezatUqR5+kpCQzcOBAExwcbHx8fEyDBg3Mhg0bsv16ZzWdujHGvPfeeyY8PNx4eXmZOnXqmDVr1mTa5+W2nTdvnqlatarx8vIy1apVM/Pnzzddu3bNNIX2f/7zH8f7VqVKFTNz5sws/y3t2rXLNGzY0Pj4+BhJTtOyZ+d9zen4NybrqdiNufDzqUOHDiYwMNB4e3ubunXrmm+++capT07GU4ZLp2LP8MUXX5jbb7/deHl5mSJFipjOnTubP//806lPxs+0ffv2mebNmxtfX19TsmRJM3z48EzT9mflSv/u165da3x8fEx4eLg5cuSIy+eVExf/rLn069Ip+tPT083o0aNN2bJljaenp6levbr573//e13qBG40NmOu89O0AAAAN5lu3bpp7ty5TlcKAdx6eOYKAAAAACxAuAIAAAAACxCuAAAAAMACPHMFAAAAABbgyhUAAAAAWIBwBQAAAAAW4EOEs2C323X06FEVLFhQNpstr8sBAAAAkEeMMTpz5oxCQkKu+oHlhKssHD16VKGhoXldBgAAAIAbxOHDh1W6dOkr9iFcZaFgwYKSLryAAQEB1/34qamp+u6779S8eXN5eHhc9+Mj/2HMICcYN8gJxg1cxZhBTtxI4yYhIUGhoaGOjHAlhKssZNwKGBAQkGfhytfXVwEBAXk+mJA/MGaQE4wb5ATjBq5izCAnbsRxk53HhZjQAgAAAAAsQLgCAAAAAAsQrgAAAADAAjxzBQAAgFuWMUZpaWlKT0/P61JwkdTUVBUoUEBJSUm5/t64u7urQIEClnwEE+EKAAAAt6SUlBQdO3ZMiYmJeV0KLmGMUVBQkA4fPnxdPnfW19dXwcHB8vT0vKb9EK4AAABwy7Hb7Tpw4IDc3d0VEhIiT0/P6/JLPLLHbrfr7Nmz8vf3v+oH914LY4xSUlJ06tQpHThwQBUrVrym4xGuAAAAcMtJSUmR3W5XaGiofH1987ocXMJutyslJUXe3t65Gq4kycfHRx4eHvrjjz8cx8wpJrQAAADALSu3f3FH/mDVOGA0AQAAAIAFCFcAAAAAYAHCFQAAAHAN0tOlVaukzz+/8N/cntXdGKOnn35aRYoUkc1mU2BgoKKjo3P3oMgWwhUAAACQQ/PnS2FhUpMm0mOPXfhvWNiF9tyydOlSxcTE6JtvvtGxY8dUo0YNy4/RuHHjTIHt77//VosWLRQSEiIvLy+Fhoaqb9++SkhIcPSZP3++7rvvPhUvXlwBAQGKjIzUsmXLLK/vRkW4AgAAAHJg/nypQwfpzz+d248cudCeWwFr3759Cg4OVv369RUUFKQCBa7PBOBubm5q27atFi1apN9//10xMTH6/vvv1atXL0efNWvW6L777tPixYu1ZcsWNWnSRG3atNG2bduuS415jXAFAAAASDJGOncue18JCdLzz1/YJqv9SFK/fhf6XW1fWe3jcrp166bnnntOhw4dks1mU1hYWKY+//77r7p06aLChQvL19dXLVu21J49exzr//77b3Xq1EmlSpWSr6+vatasqc8//9zpGKtXr9bkyZNls9lks9l08OBBFS5cWM8++6zq1KmjsmXLqmnTpurdu7fWrl3r2HbSpEkaMmSI7rzzTlWsWFGjR49WxYoV9fXXX2fr/JYuXaq7775bRYoUUbly5dSmTRvt27fPsf7gwYOy2WyaP3++mjRpIl9fX0VERGjDhg2OPjExMQoMDNSyZctUtWpV+fv7q0WLFjp27Fj2X+gcIlwBAAAAkhITJX//7H0VKnThCtXlGHPhilahQlffV2Ji9mucPHmyRo0apdKlS+vYsWPavHlzpj7dunXTTz/9pEWLFmnDhg0yxqhVq1ZKTU2VJCUlJal27dr69ttv9euvv+rpp5/WE088oU2bNjmOERkZqZ49e+rYsWM6duyYQkNDMx3n6NGjmj9/vho1anTZeu12u86cOaMiRYpk6/zOnTunAQMGaNOmTfrqq6/k5uam9u3by263O/V76aWXNGjQIMXFxalSpUrq1KmT0tLSHOsTExM1fvx4zZo1S2vWrNGhQ4c0aNCgbNVwLfgQYQAAACCfKFSokAoWLCh3d3cFBQVlWr9nzx4tWrRI69evV/369SVJn376qUJDQ7Vw4UI9/PDDKlWqlFPQeO6557Rs2TLNmTNHdevWVaFCheTp6SlfX98sj9GpUyd99dVXOn/+vNq0aaOPPvrosvWOHz9eZ8+e1SOPPJKt83vooYckXQhlJUqU0H/+8x+VLFlSO3bscHq2bNCgQWrdurUkaeTIkapevbr27t2rKlWqSJJSU1M1bdo0lS9fXpLUt29fjRo1Kls1XAuuXAEAAACSfH2ls2ez97V4cfb2uXjx1ffl62vdOezcuVMFChRQvXr1HG1FixZV5cqVtXPnTklSenq6XnvtNdWsWVNFihSRv7+/li1bpkOHDmXrGG+//ba2bt2qr776Svv27dOAAQOy7PfZZ59p5MiRmjNnjkqUKJGtfe/Zs0edOnVShQoVVKZMGZUrV06SMtV22223Ob4PDg6WJJ08edLR5uvr6whWGX0uXp9buHIFAAAASLLZJD+/7PVt3lwqXfrCrYFZPTNls11Y37y55O5ubZ3X6q233tLkyZM1adIk1axZU35+foqOjlZKSkq2tg8KClJQUJCqVKmiIkWK6J577tErr7ziCDmSNHv2bD311FP68ssv1axZs2zX1qZNG5UtW1YffPCBAgIC5Ovrq9tuuy1TbR4eHo7vbTabJDndOnjx+ow+xpWH23KIK1cAAACAi9zdpcmTL3z//7/bO2QsT5p0/YNV1apVlZaWpo0bNzra/v77b+3evVvVqlWTJK1fv15t27bV448/roiICJUrV06///670348PT2Vno0P7MoINMnJyY62zz//XN27d9fnn3/uuHUvOzLqfPnll9W0aVNVrlxZ//77b7a3vxEQrgAAAIAcePBBae5cqVQp5/bSpS+0P/jg9a+pYsWKatu2rXr27Kl169Zp+/btevzxx1WqVCm1bdvW0Sc2NlY//PCDdu7cqWeeeUYnTpxw2k9YWJg2btyogwcP6q+//pLdbtfixYs1c+ZM/frrrzp48KC+/fZb9erVSw0aNHDMWvjZZ5+pS5cumjBhgurVq6fjx4/r+PHjio+Pv2rthQsXVtGiRTV9+nTt3btXa9asuS6TUFiJcAUAAADk0IMPSgcPSitXSp99duG/Bw7kTbDKMHPmTNWuXVv333+/IiMjZYzR4sWLHbfKvfzyy7rjjjsUFRWlxo0bKygoSO3atXPax6BBg+Tu7q5q1aqpePHiOnTokHx8fPThhx/q7rvvVtWqVdW/f3898MAD+uabbxzbTZ8+XWlpaerTp4+Cg4MdX/369btq3W5ubpo9e7a2bNmi2267TS+++KLGjRtn6WuT22zmetx8mM8kJCSoUKFCio+PV0BAwHU/fmpqqhYvXqxWrVplul8UyApjBjnBuEFOMG7gqht1zCQlJenAgQMKDw+Xt7d3XpeDS9jtdiUkJCggIEBubrl/PehK48GVbMCVKwAAAACwAOEKAAAAQK47dOiQ/P39L/uV3angb2RMxQ4AAAAg14WEhCguLu6K6/M7whUAAACAXFegQAFVqFAhr8vIVdwWCAAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAANfCni6dWCUd/PzCf+3peV1RjsTExCgwMDCvy8jXmIodAAAAyKnD86Ut/aTEP//X5ltaqj1ZCn0w7+pCnuDKFQAAAJATh+dLazs4BytJSjxyof3w/LypKw+lpKTkdQl5inAFAAAASJIxUtq57H2lJEg/PS/JZLWjC//5qd+Fflfbl8lqH5c3d+5c1axZUz4+PipatKiaNWumc+fOSZJmzJih6tWry8vLS8HBwerbt69ju4kTJ6pmzZry8/NTaGioevfurbNnz172OPv27VPbtm1VsmRJ+fv7684779T333/v1CcsLEyvvfaaunTpooCAAD399NMuncvNhtsCAQAAAElKT5Tm+Fu0MyOd/1OaW+jqXR85KxXwy9Zejx07pk6dOunNN99U+/btdebMGa1du1bGGL3//vsaMGCAxo4dq5YtWyo+Pl7r1693bOvm5qZ33nlH4eHh2r9/v3r37q0hQ4bovffey/JYZ8+eVatWrfTGG2/Iy8tLn3zyidq0aaPdu3erTJkyjn7jx4/Xq6++quHDh2frHG5mhCsAAAAgnzh27JjS0tL04IMPqmzZspKkmjVrSpJef/11DRw4UP369XP0v/POOx3fR0dHO74PCwvT66+/rl69el02XEVERCgiIsKx/Nprr2nBggVatGiR0xWxe++9VwMHDrTk/PI7whUAAAAgSe6+F64iZcfJNdKqVlfv13ixVKLh1Y+bTREREWratKlq1qypqKgoNW/eXB06dFBqaqqOHj2qpk2bXnbb77//XmPGjNGuXbuUkJCgtLQ0JSUlKTExUb6+mWs4e/asRowYoW+//dYR6s6fP69Dhw459atTp06267/Z8cwVAAAAIEk224Xb87LzFdT8wqyAsl1uZ5Jv6IV+V9uX7XL7yMzd3V2xsbFasmSJqlWrpilTpqhy5co6ceLEFbc7ePCg7r//ft12222aN2+etmzZoqlTp0q6/CQUgwYN0oIFCzR69GitXbtWcXFxqlmzZqb+fn7Zu6XxVkC4AgAAAFzl5n5hunVJmQPW/y/XnnShn8VsNpsaNGigkSNHatu2bfL09FRsbKzCwsK0fPnyLLfZsmWL7Ha7JkyYoLvuukuVKlXS0aNHr3ic9evXq1u3bmrfvr1q1qypoKAgHTx40PLzuZlwWyAAAACQE6EPSvfMvcznXE3Klc+52rhxo5YvX67mzZurRIkS2rhxo06dOqWqVatqxIgR6tWrl0qUKKGWLVvqzJkzWr9+vZ577jlVqFBBqampmjJlitq0aaP169dr2rRpVzxWxYoVNX/+fLVp00Y2m02vvPKK7Ha75ed0MyFcAQAAADkV+qBUqq10aq10/pjkEywVvydXrlhJUkBAgNasWaNJkyYpISFBZcuW1YQJE9SyZUtJUlJSkt5++20NGjRIxYoVU4cOHSRdeFZr4sSJGjdunIYNG6aGDRtqzJgx6tKly2WPNXHiRPXo0UP169dXsWLF9MILLyghISFXzutmQbgCAAAAroWbu1Sy8XU5VNWqVbV06dLLrn/mmWf0zDPPZLmuf//+6t+/v1PbE0884fi+W7du6tatm2M5LCxMK1ascOrfp08fp2VuE3TGM1cAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAcC3S06VVq6TPP7/w3/T0XD1c48aNFR0dfdn1YWFhmjRpUq7WgKwVyOsCAAAAgHxr/nypXz/pzz//11a6tDR5svTgg3lS0ubNm+Xn55cnx77VceUKAAAAyIn586UOHZyDlSQdOXKhff78PCmrePHi8vX1zdVjpKSk5Or+8yvCFQAAACBJxkjnzmXvKyFBev75C9tktR/pwhWthISr7yurfVxFWlqa+vbtq0KFCqlYsWJ65ZVXZP5/P5feFmiz2fTRRx+pffv28vX1VcWKFbVo0SLH+vT0dD355JMKDw+Xj4+PKleurMmTJzsdr1u3bmrXrp3eeOMNhYSEqHLlyho1apRq1KiRqbZatWrplVdecfmcbgZ5Gq7WrFmjNm3aKCQkRDabTQsXLrzqNqtWrdIdd9whLy8vVahQQTExMZftO3bsWNlstivekwoAAABIkhITJX//7H0VKnThCtXlGHPhilahQlffV2Kiy6V+/PHHKlCggDZt2qTJkydr4sSJ+uijjy7bf+TIkXrkkUf0888/q1WrVurcubP++ecfSZLdblfp0qX15ZdfaseOHXr11Vf14osvas6cOU77WL58uXbv3q3Y2Fh988036tGjh3bu3KnNmzc7+mzbtk0///yzunfv7vI53QzyNFydO3dOERERmjp1arb6HzhwQK1bt1aTJk0UFxen6OhoPfXUU1q2bFmmvps3b9YHH3yg2267zeqyAQAAgDwVGhqqt99+W5UrV1bnzp313HPP6e23375s/27duqlTp06qUKGCRo8erbNnz2rTpk2SJA8PD40cOVJ16tRReHi4OnfurO7du2cKV35+fvroo49UvXp1Va9eXaVLl1ZUVJRmzpzp6DNz5kw1atRI5cqVy50Tv8Hlabhq2bKlXn/9dbVv3z5b/adNm6bw8HBNmDBBVatWVd++fdWhQ4dMA+ns2bPq3LmzPvzwQxUuXDg3SgcAAMDNxtdXOns2e1+LF2dvn4sXX31fOXg+6q677pLNZnMsR0ZGas+ePUq/zEyFF19w8PPzU0BAgE6ePOlomzp1qmrXrq3ixYvL399f06dP16FDh5z2UbNmTXl6ejq19ezZU59//rmSkpKUkpKizz77TD169HD5fG4W+Wq2wA0bNqhZs2ZObVFRUZlu++vTp49at26tZs2a6fXXX7/qfpOTk5WcnOxYTkhIkCSlpqYqNTX12gt3UcYx8+LYyJ8YM8gJxg1ygnEDV92oYyY1NVXGGNntdtnt9v+t8PHJ3g6aNZOtdGnpyBHZsnhmythsUunSMs2aSe7uV96XMS4/d5VRe4aM7zP+e+l6d3d3p2Wbzaa0tDTZ7XbNnj1bgwYN0vjx43XXXXepYMGCGj9+vDZt2uS0P19fX+fXSlLr1q3l5eWlefPmydPTU6mpqXrwwQcz9XNVxvNjl55HbrHb7TLGKDU1Ve6XvF+ujN18Fa6OHz+ukiVLOrWVLFlSCQkJOn/+vHx8fDR79mxt3brV6d7PqxkzZoxGjhyZqf27777L9ZlWriQ2NjbPjo38iTGDnGDcICcYN3DVjTZmChQooKCgIJ09ezbHM995jB4t365dZWw2p4Bl/v+KUuIbbyj13DlL6r1YWlqafvzxR8cFAenCXAbly5fXuXPnZLfblZSU5LT+/PnzTsvGGEefVatWqW7duurcubNj/e+//6709HSniw5paWlO+8jQsWNH/ec//5GHh4fat29v6QWKM2fOWLKfq0lJSdH58+e1Zs0apaWlOa1LdOGZuHwVrq7m8OHD6tevn2JjY+Xt7Z3t7YYNG6YBAwY4lhMSEhQaGqrmzZsrICAgN0q9otTUVMXGxuq+++6Th4fHdT8+8h/GDHKCcYOcYNzAVTfqmElKStLhw4fl7+/v0u+NTjp3lvHxka1//0yfc2UmTpTPgw8qm9fBXFKgQAH9+eefGjlypJ5++mlt3bpVH374od566y0FBATIzc1N3t7eTr/H+vj4OC3bbDZHn+rVq+uLL77Qhg0bFB4erv/+97/atm2bwsPDHdt4eHioQIECWf5u3Lt3b1WvXl2StHbtWkt+fzbG6MyZMypYsKDT7Y+5JSkpST4+PmrYsGGm8ZBVoLycfBWugoKCdOLECae2EydOKCAgQD4+PtqyZYtOnjypO+64w7E+PT1da9as0bvvvqvk5ORMl/kkycvLS15eXpnaPTw88vSHQF4fH/kPYwY5wbhBTjBu4Kobbcykp6fLZrPJzc1Nbm7XMA1Bhw5S+/bS2rXSsWNScLBs99wj29VuBbxGXbp0UVJSku666y65u7urX79+6tWrlyOIZJxbhqzOM6OtV69eiouLU6dOnWSz2dSpUyf17t1bS5YscWxjs9ky7TND5cqVVb9+ff3zzz+KjIy05PwybgW83DGt5ubmJpvNluU4dWXc5qtwFRkZqcWXPDwYGxvreBObNm2qX375xWl99+7dVaVKFb3wwgtZBisAAADgmri7S40bX7fDrVq1yvH9+++/n2n9wYMHnZZNFs9znT592vG9l5eXZs6c6TTrn3Th0ZkMV/r4I2OMjh49qt69e1+58FtAnoars2fPau/evY7lAwcOKC4uTkWKFFGZMmU0bNgwHTlyRJ988okkqVevXnr33Xc1ZMgQ9ejRQytWrNCcOXP07bffSpIKFiyY6YPM/Pz8VLRo0Sw/4AwAAABAzp06dUqzZ8/W8ePHb9nPtrpYnoarn376SU2aNHEsZzz31LVrV8XExOjYsWNOU0CGh4fr22+/Vf/+/TV58mSVLl1aH330kaKioq577QAAAMCtrkSJEipWrJimT5/ORyApj8NV48aNs7xMmSGry4+NGzfWtm3bsn2Miy+bAgAAALDOlX6XvxXl6YcIAwAAAMDNgnAFAACAWxZXXiBZNw4IVwAAALjlZEyv7coHxOLmlTEOrvXjAvLVVOwAAACAFdzd3RUYGKiTJ09Kknx9fa/Lh9Uie+x2u1JSUpSUlJSrn3NljFFiYqJOnjypwMDAa/7oJsIVAAAAbklBQUGS5AhYuHEYY3T+/Hn5+Phcl9AbGBjoGA/XgnAFAACAW5LNZlNwcLBKlCih1NTUvC4HF0lNTdWaNWvUsGHDa75V72o8PDyu+YpVBsIVAAAAbmnu7u6W/XINa7i7uystLU3e3t65Hq6sxIQWAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFggT8PVmjVr1KZNG4WEhMhms2nhwoVX3WbVqlW644475OXlpQoVKigmJsZp/ZgxY3TnnXeqYMGCKlGihNq1a6fdu3fnzgkAAAAAwP/L03B17tw5RUREaOrUqdnqf+DAAbVu3VpNmjRRXFycoqOj9dRTT2nZsmWOPqtXr1afPn30448/KjY2VqmpqWrevLnOnTuXW6cBAAAAACqQlwdv2bKlWrZsme3+06ZNU3h4uCZMmCBJqlq1qtatW6e3335bUVFRkqSlS5c6bRMTE6MSJUpoy5YtatiwoXXFAwAAAMBF8jRcuWrDhg1q1qyZU1tUVJSio6Mvu018fLwkqUiRIpftk5ycrOTkZMdyQkKCJCk1NVWpqanXUHHOZBwzL46N/Ikxg5xg3CAnGDdwFWMGOXEjjRtXashX4er48eMqWbKkU1vJkiWVkJCg8+fPy8fHx2md3W5XdHS0GjRooBo1alx2v2PGjNHIkSMztX/33Xfy9fW1pvgciI2NzbNjI39izCAnGDfICcYNXMWYQU7cCOMmMTEx233zVbhyVZ8+ffTrr79q3bp1V+w3bNgwDRgwwLGckJCg0NBQNW/eXAEBAbldZiapqamKjY3VfffdJw8Pj+t+fOQ/jBnkBOMGOcG4gasYM8iJG2ncZNzVlh35KlwFBQXpxIkTTm0nTpxQQEBApqtWffv21TfffKM1a9aodOnSV9yvl5eXvLy8MrV7eHjk6ZuZ18dH/sOYQU4wbpATjBu4ijGDnLgRxo0rx89Xn3MVGRmp5cuXO7XFxsYqMjLSsWyMUd++fbVgwQKtWLFC4eHh17tMAAAAALegPA1XZ8+eVVxcnOLi4iRdmGo9Li5Ohw4dknThdr0uXbo4+vfq1Uv79+/XkCFDtGvXLr333nuaM2eO+vfv7+jTp08f/fe//9Vnn32mggUL6vjx4zp+/LjOnz9/Xc8NAAAAwK0lT8PVTz/9pNtvv1233367JGnAgAG6/fbb9eqrr0qSjh075ghakhQeHq5vv/1WsbGxioiI0IQJE/TRRx85pmGXpPfff1/x8fFq3LixgoODHV9ffPHF9T05AAAAALeUPH3mqnHjxjLGXHZ9TExMltts27btsttcaX8AAAAAkFvy1TNXAAAAAHCjIlwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGCBHIWrtLQ0ff/99/rggw905swZSdLRo0d19uxZS4sDAAAAgPyigKsb/PHHH2rRooUOHTqk5ORk3XfffSpYsKDGjRun5ORkTZs2LTfqBAAAAIAbmstXrvr166c6dero33//lY+Pj6O9ffv2Wr58uaXFAQAAAEB+4fKVq7Vr1+qHH36Qp6enU3tYWJiOHDliWWEAAAAAkJ+4fOXKbrcrPT09U/uff/6pggULWlIUAAAAAOQ3Loer5s2ba9KkSY5lm82ms2fPavjw4WrVqpWVtQEAAABAvuHybYHjx49XixYtVK1aNSUlJemxxx7Tnj17VKxYMX3++ee5USMAAAAA3PBcDlehoaHavn27vvjiC23fvl1nz57Vk08+qc6dOztNcAEAAAAAtxKXwlVqaqqqVKmib775Rp07d1bnzp1zqy4AAAAAyFdceubKw8NDSUlJuVULAAAAAORbLk9o0adPH40bN05paWm5UQ8AAAAA5EsuP3O1efNmLV++XN99951q1qwpPz8/p/Xz58+3rDgAAAAAyC9cDleBgYF66KGHcqMWAAAAAMi3XA5XM2fOzI06AAAAACBfczlcZTh16pR2794tSapcubKKFy9uWVEAAAAAkN+4PKHFuXPn1KNHDwUHB6thw4Zq2LChQkJC9OSTTyoxMTE3agQAAACAG57L4WrAgAFavXq1vv76a50+fVqnT5/WV199pdWrV2vgwIG5USMAAAAA3PBcvi1w3rx5mjt3rho3buxoa9WqlXx8fPTII4/o/ffft7I+AAAAAMgXXL5ylZiYqJIlS2ZqL1GiBLcFAgAAALhluRyuIiMjNXz4cCUlJTnazp8/r5EjRyoyMtLS4gAAAAAgv3D5tsDJkycrKipKpUuXVkREhCRp+/bt8vb21rJlyywvEAAAAADyA5fDVY0aNbRnzx59+umn2rVrlySpU6dO6ty5s3x8fCwvEAAAAADygxx9zpWvr6969uxpdS0AAAAAkG+5/MzVmDFjNGPGjEztM2bM0Lhx4ywpCgAAAADyG5fD1QcffKAqVapkaq9evbqmTZtmSVEAAAAAkN+4HK6OHz+u4ODgTO3FixfXsWPHLCkKAAAAAPIbl8NVaGio1q9fn6l9/fr1CgkJsaQoAAAAAMhvXJ7QomfPnoqOjlZqaqruvfdeSdLy5cs1ZMgQDRw40PICAQAAACA/cDlcDR48WH///bd69+6tlJQUSZK3t7deeOEFDRs2zPICAQAAACA/cDlc2Ww2jRs3Tq+88op27twpHx8fVaxYUV5eXrlRHwAAAADkCy4/c5XB399fd955pwoWLKh9+/bJbrdbWRcAAAAA5CvZDlczZszQxIkTndqefvpplStXTjVr1lSNGjV0+PBhywsEAAAAgPwg2+Fq+vTpKly4sGN56dKlmjlzpj755BNt3rxZgYGBGjlyZK4UCQAAAAA3umw/c7Vnzx7VqVPHsfzVV1+pbdu26ty5syRp9OjR6t69u/UVAgAAAEA+kO0rV+fPn1dAQIBj+YcfflDDhg0dy+XKldPx48etrQ4AAAAA8olsh6uyZctqy5YtkqS//vpLv/32mxo0aOBYf/z4cRUqVMj6CgEAAAAgH8j2bYFdu3ZVnz599Ntvv2nFihWqUqWKateu7Vj/ww8/qEaNGrlSJAAAAADc6LIdroYMGaLExETNnz9fQUFB+vLLL53Wr1+/Xp06dbK8QAAAAADID7Idrtzc3DRq1CiNGjUqy/WXhi0AAAAAuJXk+EOEAQAAAAD/Q7gCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALJDt2QIzpKenKyYmRsuXL9fJkydlt9ud1q9YscKy4gAAAAAgv3A5XPXr108xMTFq3bq1atSoIZvNlht1AQAAAEC+4nK4mj17tubMmaNWrVrlRj0AAAAAkC+5/MyVp6enKlSokBu1AAAAAEC+5XK4GjhwoCZPnixjTG7UAwAAAAD5ksu3Ba5bt04rV67UkiVLVL16dXl4eDitnz9/vmXF3erSk1P0x9tTZT+0T25lyqtMr6d0aNpHjuXw53vL3dvzQt+kFB14570s113xGDncLi/kp1qvp/SkFO2fNEVFt27U/p17VSH6OV4XAACQb+Xn321cvnIVGBio9u3bq1GjRipWrJgKFSrk9OWKNWvWqE2bNgoJCZHNZtPChQuvus2qVat0xx13yMvLSxUqVFBMTEymPlOnTlVYWJi8vb1Vr149bdq0yaW6bgSF5syVR2ghVXihvypNfVcVXugvj8CCTssK9tXuQUO0e9AQKdg3y3VXktPt8kJ+qvV6ynhdKg8bpLu//FKVhw3idQEAAPlWvv/dxuShxYsXm5deesnMnz/fSDILFiy4Yv/9+/cbX19fM2DAALNjxw4zZcoU4+7ubpYuXeroM3v2bOPp6WlmzJhhfvvtN9OzZ08TGBhoTpw4ke264uPjjSQTHx+f01O7Jjv6DzR2ydglYy76ymr54q+s1u0aODjLY+waODhH2+WF/FTr9cTrgmuVkpJiFi5caFJSUvK6FOQjjBu4ijGD7LpRf7dxJRvYjMnZw1OnTp3S7t27JUmVK1dW8eLFrynk2Ww2LViwQO3atbtsnxdeeEHffvutfv31V0fbo48+qtOnT2vp0qWSpHr16unOO+/Uu+++K0my2+0KDQ3Vc889p6FDh2arloSEBBUqVEjx8fEKCAjI+UnlQHpSihTsK7fT6crOJPcZb15WfY0ke6Cbzm39Q+5e/7uUmp6cIr/by8ot3u7SdnkhP9V6PfG6wAqpqalauXKlmjRpkukWb+ByGDdwFWMG2ZGd323SC7vLdjTxut8i6Eo2cPmZq3Pnzum5557TJ5984vgAYXd3d3Xp0kVTpkyRr69vzqrOhg0bNqhZs2ZObVFRUYqOjpYkpaSkaMuWLRo2bJhjvZubm5o1a6YNGzZcdr/JyclKTk52LCckJEi68MMgNTXVwjO4uv2Tpqjy6fRs979SALNJcj9tV0C5UJdqyOl2eSE/1Xo98bogu9rndQHIlxg3cBVjBtfKJqnAv+naPWmKyg18/roe25U84HK4GjBggFavXq2vv/5aDRo0kHRhkovnn39eAwcO1Pvvv+/qLrPt+PHjKlmypFNbyZIllZCQoPPnz+vff/9Venp6ln127dp12f2OGTNGI0eOzNT+3Xff5WpYzErRrRtV+boeEQAAAMgfTm3dqF2LF1/XYyYmJma7r8vhat68eZo7d64aN27saGvVqpV8fHz0yCOP5Gq4yi3Dhg3TgAEDHMsJCQkKDQ1V8+bNr/ttgft37pW+/NLSfe56eYSCnnrKsXz8o49U5fURLm+XF/JTrdcTrwuskJqeqnVr1unuhnfLw51bdZA9jBu4ijGD7Mju7zbF76ineq1a5X5BF8m4qy07XA5XiYmJma4MSVKJEiVcSnU5ERQUpBMnTji1nThxQgEBAfLx8ZG7u7vc3d2z7BMUFHTZ/Xp5ecnLyytTu4eHx3W/N7hC9HNKH/eCZc9cpRd2V8WXhjndm1rwpWFKf/e1yx7jctvlhfxU6/XE6wIrpKamyq1wQQWGluI5CGQb4wauYswgO7L7u02F6Ofkfp3HkSvj1uWp2CMjIzV8+HAlJSU52s6fP6+RI0cqMjLS1d25fOzly5c7tcXGxjqO6+npqdq1azv1sdvtWr58ea7XZhV3b0/93j1a0v+CU4YrLV9u3b4eAzL9cu3u7am9Tw5webu8kJ9qvZ54XQAAwM3kZvndxuUrV5MnT1ZUVJRKly6tiIgISdL27dvl7e2tZcuWubSvs2fPau/evY7lAwcOKC4uTkWKFFGZMmU0bNgwHTlyRJ988okkqVevXnr33Xc1ZMgQ9ejRQytWrNCcOXP07bffOvYxYMAAde3aVXXq1FHdunU1adIknTt3Tt27d3f1VPNMhXFjtPrECd2z+HO5Xzy5hU1Ooy29sLv29bgwCCv8Z6JT34x1lce/meUxKo9/U7tzsF1eyE+1Xk+8LgAA4GZyM/xuk6Op2BMTE/Xpp586JomoWrWqOnfuLB8fH5f2s2rVKjVp0iRTe9euXRUTE6Nu3brp4MGDWrVqldM2/fv3144dO1S6dGm98sor6tatm9P27777rt566y0dP35ctWrV0jvvvKN69eplu668nIpdunD5fPHixYpq2kx/vveh7If2ya1MeZXp9ZQOTfvIsRz+fG9Hek9PStGBd97Lct2V5HS7vJCfar2e0pNStHfSFJ3aulHF76iXrz7FHHkr42dNq1atuFUH2ca4gasYM3DVjfa7jSvZIMefc3Uzu1HCFT+EkF2MGeQE4wY5wbiBqxgzyIkbadxY/jlXixYtUsuWLeXh4aFFixZdse8DDzyQ/UoBAAAA4CaRrXDVrl07HT9+XCVKlFC7du0u289msyk9PfsfgAsAAAAAN4tshSu73Z7l9wAAAACAC1yeiv2TTz5RcnJypvaUlBTHrH4AAAAAcKtxOVx1795d8fHxmdrPnDmTr6Y7BwAAAAAruRyujDGy2TJ/bvKff/6pQoUKWVIUAAAAAOQ32f4Q4dtvv102m002m01NmzZVgQL/2zQ9PV0HDhxQixYtcqVIAAAAALjRZTtcZcwSGBcXp6ioKPn7+zvWeXp6KiwsTA899JDlBQIAAABAfpDtcDV8+HBJUlhYmDp27Chvb+9cKwoAAAAA8ptsh6sMXbt2lXRhdsCTJ09mmpq9TJky1lQGAAAAAPmIy+Fqz5496tGjh3744Qen9oyJLvgQYQAAAAC3IpfDVbdu3VSgQAF98803Cg4OznLmQAAAAAC41bgcruLi4rRlyxZVqVIlN+oBAAAAgHzJ5c+5qlatmv7666/cqAUAAAAA8i2Xw9W4ceM0ZMgQrVq1Sn///bcSEhKcvgAAAADgVuTybYHNmjWTJDVt2tSpnQktAAAAANzKXA5XK1euzI06AAAAACBfczlcNWrUKDfqAAAAAIB8zeVnriRp7dq1evzxx1W/fn0dOXJEkjRr1iytW7fO0uIAAAAAIL9wOVzNmzdPUVFR8vHx0datW5WcnCxJio+P1+jRoy0vEAAAAADyA5fD1euvv65p06bpww8/lIeHh6O9QYMG2rp1q6XFAQAAAEB+4XK42r17txo2bJipvVChQjp9+rQVNQEAAABAvuNyuAoKCtLevXszta9bt07lypWzpCgAAAAAyG9cDlc9e/ZUv379tHHjRtlsNh09elSffvqpBg0apGeffTY3agQAAACAG57LU7EPHTpUdrtdTZs2VWJioho2bCgvLy8NGjRIzz33XG7UCAAAAAA3PJfDlc1m00svvaTBgwdr7969Onv2rKpVqyZ/f//cqA8AAAAA8gWXbwvs0aOHzpw5I09PT1WrVk1169aVv7+/zp07px49euRGjQAAAABww3M5XH388cc6f/58pvbz58/rk08+saQoAAAAAMhvsn1bYEJCgowxMsbozJkz8vb2dqxLT0/X4sWLVaJEiVwpEgAAAABudNkOV4GBgbLZbLLZbKpUqVKm9TabTSNHjrS0OAAAAADIL7IdrlauXCljjO69917NmzdPRYoUcazz9PRU2bJlFRISkitFAgAAAMCNLtvhqlGjRpKkAwcOqEyZMrLZbLlWFAAAAADkNy5PaFG2bFmtW7dOjz/+uOrXr68jR45IkmbNmqV169ZZXiAAAAAA5Acuh6t58+YpKipKPj4+2rp1q5KTkyVJ8fHxGj16tOUFAgAAAEB+4HK4ev311zVt2jR9+OGH8vDwcLQ3aNBAW7dutbQ4AAAAAMgvXA5Xu3fvVsOGDTO1FypUSKdPn7aiJgAAAADId1wOV0FBQdq7d2+m9nXr1qlcuXKWFAUAAAAA+Y3L4apnz57q16+fNm7cKJvNpqNHj+rTTz/VoEGD9Oyzz+ZGjQAAAABww8v2VOwZhg4dKrvdrqZNmyoxMVENGzaUl5eXBg0apOeeey43agQAAACAG57L4cpms+mll17S4MGDtXfvXp09e1bVqlWTv7+/zp8/Lx8fn9yoEwAAAABuaC7fFpjB09NT1apVU926deXh4aGJEycqPDzcytoAAAAAIN/IdrhKTk7WsGHDVKdOHdWvX18LFy6UJM2cOVPh4eF6++231b9//9yqEwAAAABuaNm+LfDVV1/VBx98oGbNmumHH37Qww8/rO7du+vHH3/UxIkT9fDDD8vd3T03awUAAACAG1a2w9WXX36pTz75RA888IB+/fVX3XbbbUpLS9P27dtls9lys0YAAAAAuOFl+7bAP//8U7Vr15Yk1ahRQ15eXurfvz/BCgAAAADkQrhKT0+Xp6enY7lAgQLy9/fPlaIAAAAAIL/J9m2Bxhh169ZNXl5ekqSkpCT16tVLfn5+Tv3mz59vbYUAAAAAkA9kO1x17drVafnxxx+3vBgAAAAAyK+yHa5mzpyZm3UAAAAAQL6W4w8RBgAAAAD8D+EKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAJ5Hq6mTp2qsLAweXt7q169etq0adNl+6ampmrUqFEqX768vL29FRERoaVLlzr1SU9P1yuvvKLw8HD5+PiofPnyeu2112SMye1TAQAAAHALy9Nw9cUXX2jAgAEaPny4tm7dqoiICEVFRenkyZNZ9n/55Zf1wQcfaMqUKdqxY4d69eql9u3ba9u2bY4+48aN0/vvv693331XO3fu1Lhx4/Tmm29qypQp1+u0AAAAANyC8jRcTZw4UT179lT37t1VrVo1TZs2Tb6+vpoxY0aW/WfNmqUXX3xRrVq1Urly5fTss8+qVatWmjBhgqPPDz/8oLZt26p169YKCwtThw4d1Lx58yteEQMAAACAa1Ugrw6ckpKiLVu2aNiwYY42Nzc3NWvWTBs2bMhym+TkZHl7ezu1+fj4aN26dY7l+vXra/r06fr9999VqVIlbd++XevWrdPEiRMvW0tycrKSk5MdywkJCZIu3IaYmpqao/O7FhnHzItjI39izCAnGDfICcYNXMWYQU7cSOPGlRryLFz99ddfSk9PV8mSJZ3aS5YsqV27dmW5TVRUlCZOnKiGDRuqfPnyWr58uebPn6/09HRHn6FDhyohIUFVqlSRu7u70tPT9cYbb6hz586XrWXMmDEaOXJkpvbvvvtOvr6+OTzDaxcbG5tnx0b+xJhBTjBukBOMG7iKMYOcuBHGTWJiYrb75lm4yonJkyerZ8+eqlKlimw2m8qXL6/u3bs73UY4Z84cffrpp/rss89UvXp1xcXFKTo6WiEhIeratWuW+x02bJgGDBjgWE5ISFBoaKiaN2+ugICAXD+vS6Wmpio2Nlb33XefPDw8rvvxkf8wZpATjBvkBOMGrmLMICdupHGTcVdbduRZuCpWrJjc3d114sQJp/YTJ04oKCgoy22KFy+uhQsXKikpSX///bdCQkI0dOhQlStXztFn8ODBGjp0qB599FFJUs2aNfXHH39ozJgxlw1XXl5e8vLyytTu4eGRp29mXh8f+Q9jBjnBuEFOMG7gKsYMcuJGGDeuHD/PJrTw9PRU7dq1tXz5ckeb3W7X8uXLFRkZecVtvb29VapUKaWlpWnevHlq27atY11iYqLc3JxPy93dXXa73doTAAAAAICL5OltgQMGDFDXrl1Vp04d1a1bV5MmTdK5c+fUvXt3SVKXLl1UqlQpjRkzRpK0ceNGHTlyRLVq1dKRI0c0YsQI2e12DRkyxLHPNm3a6I033lCZMmVUvXp1bdu2TRMnTlSPHj3y5BwBAAAA3BryNFx17NhRp06d0quvvqrjx4+rVq1aWrp0qWOSi0OHDjldhUpKStLLL7+s/fv3y9/fX61atdKsWbMUGBjo6DNlyhS98sor6t27t06ePKmQkBA988wzevXVV6/36QEAAAC4heT5hBZ9+/ZV3759s1y3atUqp+VGjRppx44dV9xfwYIFNWnSJE2aNMmiCgEAAADg6vL0Q4QBAAAA4GZBuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACyQ5+Fq6tSpCgsLk7e3t+rVq6dNmzZdtm9qaqpGjRql8uXLy9vbWxEREVq6dGmmfkeOHNHjjz+uokWLysfHRzVr1tRPP/2Um6cBAAAA4BaXp+Hqiy++0IABAzR8+HBt3bpVERERioqK0smTJ7Ps//LLL+uDDz7QlClTtGPHDvXq1Uvt27fXtm3bHH3+/fdfNWjQQB4eHlqyZIl27NihCRMmqHDhwtfrtAAAAADcgvI0XE2cOFE9e/ZU9+7dVa1aNU2bNk2+vr6aMWNGlv1nzZqlF198Ua1atVK5cuX07LPPqlWrVpowYYKjz7hx4xQaGqqZM2eqbt26Cg8PV/PmzVW+fPnrdVoAAAAAbkEF8urAKSkp2rJli4YNG+Zoc3NzU7NmzbRhw4Yst0lOTpa3t7dTm4+Pj9atW+dYXrRokaKiovTwww9r9erVKlWqlHr37q2ePXtetpbk5GQlJyc7lhMSEiRduA0xNTU1R+d3LTKOmRfHRv7EmEFOMG6QE4wbuIoxg5y4kcaNKzXYjDEmF2u5rKNHj6pUqVL64YcfFBkZ6WgfMmSIVq9erY0bN2ba5rHHHtP27du1cOFClS9fXsuXL1fbtm2Vnp7uCEcZ4WvAgAF6+OGHtXnzZvXr10/Tpk1T165ds6xlxIgRGjlyZKb2zz77TL6+vlacLgAAAIB8KDExUY899pji4+MVEBBwxb75KlydOnVKPXv21Ndffy2bzaby5curWbNmmjFjhs6fPy9J8vT0VJ06dfTDDz84tnv++ee1efPmK14Ru/TKVWhoqP7666+rvoC5ITU1VbGxsbrvvvvk4eFx3Y+P/Icxg5xg3CAnGDdwFWMGOXEjjZuEhAQVK1YsW+Eqz24LLFasmNzd3XXixAmn9hMnTigoKCjLbYoXL66FCxcqKSlJf//9t0JCQjR06FCVK1fO0Sc4OFjVqlVz2q5q1aqaN2/eZWvx8vKSl5dXpnYPD488fTPz+vjIfxgzyAnGDXKCcQNXMWaQEzfCuHHl+Hk2oYWnp6dq166t5cuXO9rsdruWL1/udCUrK97e3ipVqpTS0tI0b948tW3b1rGuQYMG2r17t1P/33//XWXLlrX2BAAAAADgInl25Uq68FxU165dVadOHdWtW1eTJk3SuXPn1L17d0lSly5dVKpUKY0ZM0aStHHjRh05ckS1atXSkSNHNGLECNntdg0ZMsSxz/79+6t+/foaPXq0HnnkEW3atEnTp0/X9OnT8+QcAQAAANwa8jRcdezYUadOndKrr76q48ePq1atWlq6dKlKliwpSTp06JDc3P53cS0pKUkvv/yy9u/fL39/f7Vq1UqzZs1SYGCgo8+dd96pBQsWaNiwYRo1apTCw8M1adIkde7c+XqfHgAAAIBbSJ6GK0nq27ev+vbtm+W6VatWOS03atRIO3bsuOo+77//ft1///1WlAcAAAAA2ZKnHyIMAAAAADcLwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiiQ1wXciIwxkqSEhIQ8OX5qaqoSExOVkJAgDw+PPKkB+QtjBjnBuEFOMG7gKsYMcuJGGjcZmSAjI1wJ4SoLZ86ckSSFhobmcSUAAAAAbgRnzpxRoUKFrtjHZrITwW4xdrtdR48eVcGCBWWz2a778RMSEhQaGqrDhw8rICDguh8f+Q9jBjnBuEFOMG7gKsYMcuJGGjfGGJ05c0YhISFyc7vyU1VcucqCm5ubSpcunddlKCAgIM8HE/IXxgxygnGDnGDcwFWMGeTEjTJurnbFKgMTWgAAAACABQhXAAAAAGABwtUNyMvLS8OHD5eXl1del4J8gjGDnGDcICcYN3AVYwY5kV/HDRNaAAAAAIAFuHIFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwdYOZOnWqwsLC5O3trXr16mnTpk15XRKukzVr1qhNmzYKCQmRzWbTwoULndYbY/Tqq68qODhYPj4+atasmfbs2ePU559//lHnzp0VEBCgwMBAPfnkkzp79qxTn59//ln33HOPvL29FRoaqjfffDO3Tw25aMyYMbrzzjtVsGBBlShRQu3atdPu3bud+iQlJalPnz4qWrSo/P399dBDD+nEiRNOfQ4dOqTWrVvL19dXJUqU0ODBg5WWlubUZ9WqVbrjjjvk5eWlChUqKCYmJrdPD7ng/fff12233eb4YM7IyEgtWbLEsZ7xgqsZO3asbDaboqOjHW2MG1xqxIgRstlsTl9VqlRxrL9px4zBDWP27NnG09PTzJgxw/z222+mZ8+eJjAw0Jw4cSKvS8N1sHjxYvPSSy+Z+fPnG0lmwYIFTuvHjh1rChUqZBYuXGi2b99uHnjgARMeHm7Onz/v6NOiRQsTERFhfvzxR7N27VpToUIF06lTJ8f6+Ph4U7JkSdO5c2fz66+/ms8//9z4+PiYDz744HqdJiwWFRVlZs6caX799VcTFxdnWrVqZcqUKWPOnj3r6NOrVy8TGhpqli9fbn766Sdz1113mfr16zvWp6WlmRo1aphmzZqZbdu2mcWLF5tixYqZYcOGOfrs37/f+Pr6mgEDBpgdO3aYKVOmGHd3d7N06dLrer64dosWLTLffvut+f33383u3bvNiy++aDw8PMyvv/5qjGG84Mo2bdpkwsLCzG233Wb69evnaGfc4FLDhw831atXN8eOHXN8nTp1yrH+Zh0zhKsbSN26dU2fPn0cy+np6SYkJMSMGTMmD6tCXrg0XNntdhMUFGTeeustR9vp06eNl5eX+fzzz40xxuzYscNIMps3b3b0WbJkibHZbObIkSPGGGPee+89U7hwYZOcnOzo88ILL5jKlSvn8hnhejl58qSRZFavXm2MuTBOPDw8zJdffunos3PnTiPJbNiwwRhzIdi7ubmZ48ePO/q8//77JiAgwDFWhgwZYqpXr+50rI4dO5qoqKjcPiVcB4ULFzYfffQR4wVXdObMGVOxYkUTGxtrGjVq5AhXjBtkZfjw4SYiIiLLdTfzmOG2wBtESkqKtmzZombNmjna3Nzc1KxZM23YsCEPK8ON4MCBAzp+/LjT+ChUqJDq1avnGB8bNmxQYGCg6tSp4+jTrFkzubm5aePGjY4+DRs2lKenp6NPVFSUdu/erX///fc6nQ1yU3x8vCSpSJEikqQtW7YoNTXVaexUqVJFZcqUcRo7NWvWVMmSJR19oqKilJCQoN9++83R5+J9ZPTh51P+lp6ertmzZ+vcuXOKjIxkvOCK+vTpo9atW2d6bxk3uJw9e/YoJCRE5cqVU+fOnXXo0CFJN/eYIVzdIP766y+lp6c7DSBJKlmypI4fP55HVeFGkTEGrjQ+jh8/rhIlSjitL1CggIoUKeLUJ6t9XHwM5F92u13R0dFq0KCBatSoIenC++rp6anAwECnvpeOnauNi8v1SUhI0Pnz53PjdJCLfvnlF/n7+8vLy0u9evXSggULVK1aNcYLLmv27NnaunWrxowZk2kd4wZZqVevnmJiYrR06VK9//77OnDggO655x6dOXPmph4zBfLkqAAAy/Xp00e//vqr1q1bl9el4AZXuXJlxcXFKT4+XnPnzlXXrl21evXqvC4LN6jDhw+rX79+io2Nlbe3d16Xg3yiZcuWju9vu+021atXT2XLltWcOXPk4+OTh5XlLq5c3SCKFSsmd3f3TLOknDhxQkFBQXlUFW4UGWPgSuMjKChIJ0+edFqflpamf/75x6lPVvu4+BjIn/r27atvvvlGK1euVOnSpR3tQUFBSklJ0enTp536Xzp2rjYuLtcnICDgpv6f5M3K09NTFSpUUO3atTVmzBhFRERo8uTJjBdkacuWLTp58qTuuOMOFShQQAUKFNDq1av1zjvvqECBAipZsiTjBlcVGBioSpUqae/evTf1zxrC1Q3C09NTtWvX1vLlyx1tdrtdy5cvV2RkZB5WhhtBeHi4goKCnMZHQkKCNm7c6BgfkZGROn36tLZs2eLos2LFCtntdtWrV8/RZ82aNUpNTXX0iY2NVeXKlVW4cOHrdDawkjFGffv21YIFC7RixQqFh4c7ra9du7Y8PDycxs7u3bt16NAhp7Hzyy+/OIXz2NhYBQQEqFq1ao4+F+8jow8/n24OdrtdycnJjBdkqWnTpvrll18UFxfn+KpTp446d+7s+J5xg6s5e/as9u3bp+Dg4Jv7Z02eTaWBTGbPnm28vLxMTEyM2bFjh3n66adNYGCg0ywpuHmdOXPGbNu2zWzbts1IMhMnTjTbtm0zf/zxhzHmwlTsgYGB5quvvjI///yzadu2bZZTsd9+++1m48aNZt26daZixYpOU7GfPn3alCxZ0jzxxBPm119/NbNnzza+vr5MxZ6PPfvss6ZQoUJm1apVTtPdJiYmOvr06tXLlClTxqxYscL89NNPJjIy0kRGRjrWZ0x327x5cxMXF2eWLl1qihcvnuV0t4MHDzY7d+40U6dOzfPpbpEzQ4cONatXrzYHDhwwP//8sxk6dKix2Wzmu+++M8YwXpA9F88WaAzjBpkNHDjQrFq1yhw4cMCsX7/eNGvWzBQrVsycPHnSGHPzjhnC1Q1mypQppkyZMsbT09PUrVvX/Pjjj3ldEq6TlStXGkmZvrp27WqMuTAd+yuvvGJKlixpvLy8TNOmTc3u3bud9vH333+bTp06GX9/fxMQEGC6d+9uzpw549Rn+/bt5u677zZeXl6mVKlSZuzYsdfrFJELshozkszMmTMdfc6fP2969+5tChcubHx9fU379u3NsWPHnPZz8OBB07JlS+Pj42OKFStmBg4caFJTU536rFy50tSqVct4enqacuXKOR0D+UePHj1M2bJljaenpylevLhp2rSpI1gZw3hB9lwarhg3uFTHjh1NcHCw8fT0NKVKlTIdO3Y0e/fuday/WceMzRhj8uaaGQAAAADcPHjmCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAHBdHDx4UDabTXFxcXldisOuXbt01113ydvbW7Vq1crrcrLUrVs3tWvXzrHcuHFjRUdHX3GbsLAwTZo0KVfrAgBkRrgCgFtEt27dZLPZNHbsWKf2hQsXymaz5VFVeWv48OHy8/PT7t27tXz58sv2O378uJ577jmVK1dOXl5eCg0NVZs2ba64TW6ZP3++XnvtNUv3GRMTo8DAQEv3CQC3IsIVANxCvL29NW7cOP377795XYplUlJScrztvn37dPfdd6ts2bIqWrRoln0OHjyo2rVra8WKFXrrrbf0yy+/aOnSpWrSpIn69OmT42PnVJEiRVSwYMHrflwAwNURrgDgFtKsWTMFBQVpzJgxl+0zYsSITLfITZo0SWFhYY7ljFvVRo8erZIlSyowMFCjRo1SWlqaBg8erCJFiqh06dKaOXNmpv3v2rVL9evXl7e3t2rUqKHVq1c7rf/111/VsmVL+fv7q2TJknriiSf0119/OdY3btxYffv2VXR0tIoVK6aoqKgsz8Nut2vUqFEqXbq0vLy8VKtWLS1dutSx3mazacuWLRo1apRsNptGjBiR5X569+4tm82mTZs26aGHHlKlSpVUvXp1DRgwQD/++KOj38SJE1WzZk35+fkpNDRUvXv31tmzZx3rM64OLVu2TFWrVpW/v79atGihY8eOOfqkp6drwIABCgwMVNGiRTVkyBAZY5zqufS2wJMnT6pNmzby8fFReHi4Pv3000zncKXaVq1ape7duys+Pl42m83ptUhOTtagQYNUqlQp+fn5qV69elq1apVjv3/88YfatGmjwoULy8/PT9WrV9fixYuzfB0B4FZAuAKAW4i7u7tGjx6tKVOm6M8//7ymfa1YsUJHjx7VmjVrNHHiRA0fPlz333+/ChcurI0bN6pXr1565plnMh1n8ODBGjhwoLZt26bIyEi1adNGf//9tyTp9OnTuvfee3X77bfrp59+0tKlS3XixAk98sgjTvv4+OOP5enpqfXr12vatGlZ1jd58mRNmDBB48eP188//6yoqCg98MAD2rNnjyTp2LFjql69ugYOHKhjx45p0KBBmfbxzz//aOnSperTp4/8/Pwyrb/4Vjo3Nze98847+u233/Txxx9rxYoVGjJkiFP/xMREjR8/XrNmzdKaNWt06NAhp+NOmDBBMTExmjFjhtatW6d//vlHCxYsuMK7cCHoHj58WCtXrtTcuXP13nvv6eTJk059rlRb/fr1NWnSJAUEBOjYsWNOr0Xfvn21YcMGzZ49Wz///LMefvhhtWjRwvEa9unTR8nJyVqzZo1++eUXjRs3Tv7+/lesFwBuagYAcEvo2rWradu2rTHGmLvuusv06NHDGGPMggULzMX/Oxg+fLiJiIhw2vbtt982ZcuWddpX2bJlTXp6uqOtcuXK5p577nEsp6WlGT8/P/P5558bY4w5cOCAkWTGjh3r6JOammpKly5txo0bZ4wx5rXXXjPNmzd3Ovbhw4eNJLN7925jjDGNGjUyt99++1XPNyQkxLzxxhtObXfeeafp3bu3YzkiIsIMHz78svvYuHGjkWTmz59/1eNd6ssvvzRFixZ1LM+cOdNIMnv37nW0TZ061ZQsWdKxHBwcbN58803Hcsbrk/G+GXPh/Pv162eMMWb37t1Gktm0aZNj/c6dO40k8/bbb7tUW6FChZz6/PHHH8bd3d0cOXLEqb1p06Zm2LBhxhhjatasaUaMGHH5FwEAbjEF8jDXAQDyyLhx43TvvfdmebUmu6pXry43t//dAFGyZEnVqFHDsezu7q6iRYtmuooSGRnp+L5AgQKqU6eOdu7cKUnavn27Vq5cmeXVj3379qlSpUqSpNq1a1+xtoSEBB09elQNGjRwam/QoIG2b9+ezTNUplvyruT777/XmDFjtGvXLiUkJCgtLU1JSUlKTEyUr6+vJMnX11fly5d3bBMcHOx4feLj43Xs2DHVq1fPsT7j9blcHTt37lSBAgWcXo8qVapkmpwiO7Vd6pdfflF6errjNc+QnJzseD7t+eef17PPPqvvvvtOzZo100MPPaTbbrstm68YANx8uC0QAG5BDRs2VFRUlIYNG5ZpnZubW6Zf5lNTUzP18/DwcFq22WxZttnt9mzXdfbsWbVp00ZxcXFOX3v27FHDhg0d/bK6RS83VKxYUTabTbt27bpiv4MHD+r+++/Xbbfdpnnz5mnLli2aOnWqJOcJN7J6fVwJcDmR3doudfbsWbm7u2vLli1O78XOnTs1efJkSdJTTz2l/fv364knntAvv/yiOnXqaMqUKbl6PgBwIyNcAcAtauzYsfr666+1YcMGp/bixYvr+PHjTr/0W/nZVBdPApGWlqYtW7aoatWqkqQ77rhDv/32m8LCwlShQgWnL1cCVUBAgEJCQrR+/Xqn9vXr16tatWrZ3k+RIkUUFRWlqVOn6ty5c5nWnz59WpK0ZcsW2e12TZgwQXfddZcqVaqko0ePZvs4klSoUCEFBwdr48aNjraM1+dyqlSpkqnP7t27HXVltzZPT0+lp6c7td1+++1KT0/XyZMnM70XQUFBjn6hoaHq1auX5s+fr4EDB+rDDz906bwB4GZCuAKAW1TNmjXVuXNnvfPOO07tjRs31qlTp/Tmm29q3759mjp1qpYsWWLZcadOnaoFCxZo165d6tOnj/7991/16NFD0oUJEv755x916tRJmzdv1r59+7Rs2TJ179490y//VzN48GCNGzdOX3zxhXbv3q2hQ4cqLi5O/fr1c7ne9PR01a1bV/PmzdOePXu0c+dOvfPOO45bHCtUqKDU1FRNmTJF+/fv16xZsy470caV9OvXT2PHjtXChQu1a9cu9e7d2ykoXapy5cpq0aKFnnnmGW3cuFFbtmzRU089JR8fH0ef7NQWFhams2fPavny5frrr7+UmJioSpUqqXPnzurSpYvmz5+vAwcOaNOmTRozZoy+/fZbSVJ0dLSWLVumAwcOaOvWrVq5cqUjKAPArYhwBQC3sFGjRmW6ba9q1ap67733NHXqVEVERGjTpk3X9GzWpcaOHauxY8cqIiJC69at06JFi1SsWDFJclxtSk9PV/PmzVWzZk1FR0crMDDQ6fmu7Hj++ec1YMAADRw4UDVr1tTSpUu1aNEiVaxY0aX9lCtXTlu3blWTJk00cOBA1ahRQ/fdd5+WL1+u999/X5IUERGhiRMnaty4capRo4Y+/fTTK053fzkDBw7UE088oa5duyoyMlIFCxZU+/btr7jNzJkzFRISokaNGunBBx/U008/rRIlSjjWZ6e2+vXrq1evXurYsaOKFy+uN99807HvLl26aODAgapcubLatWunzZs3q0yZMpIuTB3fp08fVa1aVS1atFClSpX03nvvuXzeAHCzsJncvtkbAAAAAG4BXLkCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsMD/AfQoNYPqmt5iAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeLFJREFUeJzt3XmcjeX/x/H3mX3GGGMZszAZuyxRZBqEImNJKCUpW5RQdlFpUJGKSKT6Zcm3omxtliZLlkRZKoWskZ1iMGa/fn/Md87XMTOcmWa5D6/n4zEPznWuc9/XOedqut+uz7mOzRhjBAAAAAD4V9wKewAAAAAAcD0gXAEAAABAHiBcAQAAAEAeIFwBAAAAQB4gXAEAAABAHiBcAQAAAEAeIFwBAAAAQB4gXAEAAABAHiBcAQAAAEAeIFwBcFmjR4+WzWYr7GHccGw2m/r371/Yw3BKSkqKhg8frvDwcLm5ual9+/aFPaQca9q0qZo2bWq/ffDgQdlsNs2ePfuaj+3evbsiIiLybWz55cSJE+rYsaNKliwpm82myZMnF/aQAMAphCvgOjd79mzZbDb7j4eHh8qUKaPu3bvryJEjuTrm77//rtGjR+vgwYN5O9gsxMfHa/To0VqzZk2+n8sqMi6ebTabFi5cmOn+jFB5+vTpQhida5k5c6Zef/11dezYUXPmzNGgQYOu+ZjFixerVatWKlWqlLy8vBQWFqaHHnpIq1atKoARW8e4ceO0ZMmSQjn3oEGDtGLFCo0cOVJz585Vy5Yt8+U83bt3d/j9mN1P9+7d8+X8l8v47/6NN95waDfG6Mknn5TNZtPo0aPzfRwZmjZtmuVrkdV7kZiYqGeffVZhYWHy9fVVZGSkYmNjC2ysgJV4FPYAABSMsWPHqnz58kpISNAPP/yg2bNna/369dqxY4d8fHxydKzff/9dY8aMUdOmTfP9X8Xj4+M1ZswYSXL413tJeuGFFzRixIh8PX9hGzt2rO6//35W6HJp1apVKlOmjN58881r9jXGqGfPnpo9e7ZuvfVWDR48WCEhITp27JgWL16sZs2aacOGDWrQoEEBjDx75cqV06VLl+Tp6Zmv5xk3bpw6duxYKKt9q1atUrt27TR06NB8Pc+TTz6p5s2b228fOHBAL774op544gndeeed9vaKFSvm6ziyY4xR37599d5772nUqFEFGq4kqWzZsho/frxDW1hYWKZ+3bt314IFCzRw4EBVrlxZs2fPVuvWrbV69Wo1atSooIYLWALhCrhBtGrVSvXq1ZMk9erVS6VKldKECRP0xRdf6KGHHirk0eWOh4eHPDyu319jderU0fbt27V48WLdf//9hT2cApWQkCAvLy+5uf27AouTJ08qMDDQqb4TJ07U7NmzNXDgQE2aNMkh0D7//POaO3euJeabzWbL8T+IuJqcvG/OyG4+RUVFKSoqyn77p59+0osvvqioqCg9+uijeXb+3Hr66ac1Y8YMPf/88xo7dmyBn79YsWLXfB02b96sefPm6fXXX7eH4a5du6pmzZoaPny4vv/++4IYKmAZlAUCN6iMf5Xdt2+fQ/uuXbvUsWNHlShRQj4+PqpXr56++OIL+/2zZ8/Wgw8+KEm666677KUil5ftLVu2THfeeaeKFCmiokWLqk2bNvrtt98cztO9e3f5+/vryJEjat++vfz9/RUUFKShQ4cqNTVVUnqZTFBQkCRpzJgx9nNl/OttVp+5SklJ0UsvvaSKFSvK29tbEREReu6555SYmOjQLyIiQvfee6/Wr1+v+vXry8fHRxUqVNCHH3541dctOTlZJUqUUI8ePTLdFxcXJx8fH4d/bZ86dapq1KghPz8/FS9eXPXq1dPHH3981XNkePjhh1WlShWNHTtWxpir9o2IiMiydOnKz+usWbNGNptNn376qcaMGaMyZcqoaNGi6tixo86dO6fExEQNHDhQpUuXlr+/v3r06JHptcvw0UcfqWrVqvLx8VHdunW1du3aTH2OHDminj17Kjg4WN7e3qpRo4Zmzpzp0CdjTPPmzdMLL7ygMmXKyM/PT3Fxcdk+34sXL2rIkCEKDw+Xt7e3qlatqjfeeMP+OmWUWK1evVq//fZblvP0cpcuXdL48eNVrVo1vfHGG1muFD722GOqX7++JOnvv//W0KFDVatWLfn7+ysgIECtWrXSzz//nOVz+/TTT/XKK6+obNmy8vHxUbNmzbR3795M53jvvfdUsWJF+fr6qn79+lq3bl2mPtl95mrJkiWqWbOmfHx8VLNmTS1evDjL5/rGG2+oQYMGKlmypHx9fVW3bl0tWLDAoY/NZtPFixc1Z86cLEvjnHlfpZzP/4wyZmOMpk2bZj93hv379+vBBx9UiRIl5OfnpzvuuENff/21wzFyM5+u5bPPPlPdunXl6+urUqVK6dFHH81UVp3xO23//v2Kjo5WkSJFFBYW5tR/v1kZMGCApk2bppEjR+rll1/O9dj/rZSUFF24cCHb+xcsWCB3d3c98cQT9jYfHx89/vjj2rhxow4fPlwQwwQso/D/CQ5Aocj4vFTx4sXtbb/99psaNmyoMmXKaMSIESpSpIg+/fRTtW/fXgsXLlSHDh3UuHFjPfPMM3rrrbf03HPP6eabb5Yk+59z585Vt27dFB0drQkTJig+Pl7vvPOOGjVqpG3btjmUEaampio6OlqRkZF644039O2332rixImqWLGinnrqKQUFBemdd97RU089pQ4dOthXb2655ZZsn1evXr00Z84cdezYUUOGDNGmTZs0fvx47dy5M9PF5t69e9WxY0c9/vjj6tatm2bOnKnu3burbt26qlGjRpbH9/T0VIcOHbRo0SK9++678vLyst+3ZMkSJSYm6uGHH5Ykvf/++3rmmWfUsWNHDRgwQAkJCfrll1+0adMmPfLII9d8j9zd3fXCCy+oa9eueb56NX78ePn6+mrEiBHau3evpk6dKk9PT7m5uemff/7R6NGj7eWj5cuX14svvujw+O+++07z58/XM888I29vb02fPl0tW7bU5s2bVbNmTUnpmxLccccd9g0wgoKCtGzZMj3++OOKi4vTwIEDHY750ksvycvLS0OHDlViYqLDa3s5Y4zuu+8+rV69Wo8//rjq1KmjFStWaNiwYTpy5IjefPNNBQUFae7cuXrllVd04cIFe2lTxjy90vr16/X3339r4MCBcnd3v+brt3//fi1ZskQPPvigypcvrxMnTujdd99VkyZN9Pvvv2cqnXr11Vfl5uamoUOH6ty5c3rttdfUpUsXbdq0yd7ngw8+0JNPPqkGDRpo4MCB2r9/v+677z6VKFFC4eHhVx3PN998owceeEDVq1fX+PHjdebMGfXo0UNly5bN1HfKlCm677771KVLFyUlJWnevHl68MEH9dVXX6lNmzaS0v877tWrl+rXr2+/aM4ojXP2fc3N/G/cuLHmzp2rxx57TPfcc4+6du1qv+/EiRNq0KCB4uPj9cwzz6hkyZKaM2eO7rvvPi1YsEAdOnRwOJaz8+laZs+erR49euj222/X+PHjdeLECU2ZMkUbNmzQtm3bHFbYUlNT1bJlS91xxx167bXXtHz5csXExCglJSVHK0+DBg3SW2+9pWeffVbjxo1z+nH//POP/R+nrsbPz09+fn7X7PfHH3+oSJEiSkpKUnBwsHr37q0XX3zRoSR127ZtqlKligICAhwem/EPEdu3b7/m/AWuKwbAdW3WrFlGkvn222/NqVOnzOHDh82CBQtMUFCQ8fb2NocPH7b3bdasmalVq5ZJSEiwt6WlpZkGDRqYypUr29s+++wzI8msXr3a4Vznz583gYGBpnfv3g7tx48fN8WKFXNo79atm5Fkxo4d69D31ltvNXXr1rXfPnXqlJFkYmJiMj23mJgYc/mvse3btxtJplevXg79hg4daiSZVatW2dvKlStnJJm1a9fa206ePGm8vb3NkCFDMp3rcitWrDCSzJdffunQ3rp1a1OhQgX77Xbt2pkaNWpc9VhZOXDggJFkXn/9dZOSkmIqV65sateubdLS0hye96lTpxyeT7du3TIdq0mTJqZJkyb226tXrzaSTM2aNU1SUpK9vXPnzsZms5lWrVo5PD4qKsqUK1fOoU2SkWR++ukne9uff/5pfHx8TIcOHextjz/+uAkNDTWnT592ePzDDz9sihUrZuLj4x3GVKFCBXvb1SxZssRIMi+//LJDe8eOHY3NZjN79+51eP7OvAdTpkwxkszixYuv2dcYYxISEkxqaqpD24EDB4y3t7fDnM54bjfffLNJTEzMdL5ff/3VGGNMUlKSKV26tKlTp45Dv/fee89IcngPM+bHrFmz7G116tQxoaGh5uzZs/a2b775xkjK9P5d+RonJSWZmjVrmrvvvtuhvUiRIlnOKWff19zOf2PS51i/fv0c2gYOHGgkmXXr1tnbzp8/b8qXL28iIiLs70dO59PlfvzxR4fXNuN9qVmzprl06ZK931dffWUkmRdffNHelvE77emnn7a3paWlmTZt2hgvLy+H/16zkvG+ZvxuGjZsWI7Gbsz/fq9d6yer36dX6tmzpxk9erRZuHCh+fDDD819991nJJmHHnrIoV+NGjUyzR1jjPntt9+MJDNjxowcPw/AlVEWCNwgmjdvrqCgIIWHh6tjx44qUqSIvvjiC/u/bP/9999atWqVHnroIZ0/f16nT5/W6dOndebMGUVHR2vPnj3X3F0wNjZWZ8+eVefOne2PP336tNzd3RUZGanVq1dnekyfPn0cbt95553av39/rp7j0qVLJUmDBw92aB8yZIgkZSofql69usOH1oOCglS1atVrnv/uu+9WqVKlNH/+fHvbP//8o9jYWHXq1MneFhgYqL/++ks//vhjrp6P9L/Vq59//jlPd27r2rWrw78+R0ZG2jd0uFxkZKQOHz6slJQUh/aoqCjVrVvXfvumm25Su3bttGLFCqWmpsoYo4ULF6pt27YyxjjMh+joaJ07d05bt251OGa3bt3k6+t7zbEvXbpU7u7ueuaZZxzahwwZImOMli1b5vTrkCGjZKxo0aJO9ff29rZ/fic1NVVnzpyRv7+/qlatmul5SVKPHj0cVk4y5l3GXPvpp5908uRJ9enTx6Ff9+7dVaxYsauO5dixY9q+fbu6devm0Peee+5R9erVM/W//DX+559/dO7cOd15551ZjvtKOXlf82L+X27p0qWqX7++wwYJ/v7+euKJJ3Tw4EH9/vvvDv2dnU9Xk/G+9O3b1+Fzbm3atFG1atUy/U6R5PA1BRmre0lJSfr222+dOueJEyckSVWqVMnxeD/66CPFxsZe8+fyFcHsfPDBB4qJidH999+vxx57TJ9//rl69+6tTz/9VD/88IO936VLl+Tt7Z3p8Rmv16VLl3L8PABXRlkgcIOYNm2aqlSponPnzmnmzJlau3atw/8Q9+7dK2OMRo0apVGjRmV5jJMnT6pMmTLZnmPPnj2S0sNHVq4sG/Hx8bF/pipD8eLF9c8//zj1nK70559/ys3NTZUqVXJoDwkJUWBgoP7880+H9ptuuinTMZw5v4eHhx544AF9/PHHSkxMlLe3txYtWqTk5GSHcPXss8/q22+/Vf369VWpUiW1aNFCjzzyiBo2bJij59WlSxe99NJLGjt2bJ7t3Hblc8+4KL+yfKdYsWJKS0vTuXPnVLJkSXt75cqVMx2zSpUqio+P16lTp+Tm5qazZ8/qvffe03vvvZflGE6ePOlwu3z58k6N/c8//1RYWFimIJRR8nfl++yMjLl5/vx5p/qnpaVpypQpmj59ug4cOOBQinX565Thytc7oxw3Y65ljPnK19XT01MVKlS46liye6ykLMPeV199pZdfflnbt293+DydMztSnjp1yun3Na/mf4Y///xTkZGRmdovf98zSlIl5+fTtc4ppb+OV6pWrZrWr1/v0Obm5pbp/coISRml2KdOnXKYL/7+/vL397fffvbZZ7V06VI9+eSTCgwMVMeOHZ0eb25fW2cNGTJE77//vr799lvdcccdktLDelafy0xISLDfD9xICFfADaJ+/fr23QLbt2+vRo0a6ZFHHtHu3bvl7++vtLQ0SdLQoUMVHR2d5TGuDC1XyjjG3LlzFRISkun+K3dac+azLbnh7Lbl2Z3fOPHh84cffljvvvuuli1bpvbt2+vTTz9VtWrVVLt2bXufm2++Wbt379ZXX32l5cuXa+HChZo+fbpefPFF+/byzo7zhRdeUPfu3fX5559n2Se755yamprl88zuuf+b1+RyGXPh0UcfVbdu3bLsc+Vn5wrzIqxatWqSpF9//dWpADtu3DiNGjVKPXv21EsvvaQSJUrIzc1NAwcOtD/3y+XV6/pvrVu3Tvfdd58aN26s6dOnKzQ0VJ6enpo1a5ZTG63k5H3Nq/mfW1a9qL/99tsd/gEgJibGYYt1f39/LVu2TI0bN1aXLl0UEBCgFi1aOHXsK4Nbdq4MdM7K+MeXv//+294WGhqaZVXDsWPHJGW9dTtwPSNcATcgd3d3jR8/XnfddZfefvttjRgxwv6vrZ6eng7f+5KV7C7kMz7wXrp06Wsew1k5+X6ncuXKKS0tTXv27HHYuODEiRM6e/asypUrlydjktI/eB8aGqr58+erUaNGWrVqlZ5//vlM/YoUKaJOnTqpU6dOSkpK0v33369XXnlFI0eOzNF22o8++qhefvlljRkzRvfdd1+m+4sXL66zZ89mav/zzz+vufKRGxmrlJf7448/5OfnZ1+NLFq0qFJTU/NsLmQoV66cvv32W50/f95h9WrXrl32+3OqUaNGKl68uD755BM999xz1wz+CxYs0F133aUPPvjAof3s2bMqVapUjs+fMeY9e/Y4rPwmJyfrwIEDDqH9ao+90u7dux1uL1y4UD4+PlqxYoXDyvWsWbMyPTar//aCgoJy9L7m1fyX0p/nlc9H+nfvuzPnlNJfxytX5Hfv3p3pnGlpadq/f79DSd8ff/whSfbNfD766COHUrms/vssWbKkvvnmGzVs2FD333+/YmNjHbaMz86VwS07VwY6Z2WUsV5ecVCnTh2tXr1acXFxDtUJGZu11KlTJ8fnAVwZn7kCblBNmzZV/fr1NXnyZCUkJKh06dJq2rSp3n33Xfu/OF7u1KlT9r8XKVJEkjJdzEdHRysgIEDjxo1TcnLyVY/hrIwdrbIKDldq3bq1JGny5MkO7ZMmTZIk+05oecHNzU0dO3bUl19+qblz5yolJcWhJFCSzpw543Dby8tL1atXlzEmy9fnajJWr7Zv3+6wNX6GihUr6ocfflBSUpK97auvvsq3bZA3btzoUG52+PBhff7552rRooXc3d3l7u6uBx54QAsXLtSOHTsyPT43cyFD69atlZqaqrffftuh/c0335TNZlOrVq1yfEw/Pz89++yz2rlzp5599tksV5T+85//aPPmzZLS348r+3z22WfX/FxidurVq6egoCDNmDHD4T2cPXv2Ned+aGio6tSpozlz5ujcuXP29tjY2EyfQ3J3d5fNZnNY3Th48GCWn+crUqRIpnPn5H3Ny/kvpb/vmzdv1saNG+1tFy9e1HvvvaeIiIgsP1/2b9WrV0+lS5fWjBkzHErfli1bpp07d2b5O+XyeWmM0dtvvy1PT081a9ZMUnrpXvPmze0/2f3jR5kyZRQbG6siRYqoTZs2+vXXX6853rz6zFVcXFymUj9jjH1L+MurGzp27KjU1FSHMtHExETNmjVLkZGR7BSIGw4rV8ANbNiwYXrwwQc1e/Zs9enTR9OmTVOjRo1Uq1Yt9e7dWxUqVNCJEye0ceNG/fXXX/bv8KlTp47c3d01YcIEnTt3Tt7e3rr77rtVunRpvfPOO3rsscd022236eGHH1ZQUJAOHTqkr7/+Wg0bNsx0QXwtvr6+ql69uubPn68qVaqoRIkSqlmzpsNnKzLUrl1b3bp103vvvaezZ8+qSZMm2rx5s+bMmaP27dvrrrvuypPXLUOnTp00depUxcTEqFatWpm2+W7RooVCQkLUsGFDBQcHa+fOnXr77bfVpk0bpzdOuFzGZ6+2b9+e6b5evXppwYIFatmypR566CHt27dP//nPf+yriXmtZs2aio6OdtiKXZJDuderr76q1atXKzIyUr1791b16tX1999/a+vWrfr2228dSotyom3btrrrrrv0/PPP6+DBg6pdu7a++eYbff755xo4cGCun/OwYcP022+/aeLEiVq9erU6duyokJAQHT9+XEuWLNHmzZvtX4h67733auzYserRo4caNGigX3/9VR999FGuVwk9PT318ssv68knn9Tdd9+tTp066cCBA5o1a5ZTxxw/frzatGmjRo0aqWfPnvr777/t3zF1+XcUtWnTRpMmTVLLli31yCOP6OTJk5o2bZoqVaqkX375xeGYdevW1bfffqtJkyYpLCxM5cuXV2RkpNPva17P/xEjRuiTTz5Rq1at9Mwzz6hEiRKaM2eODhw4oIULF/7rL5zOiqenpyZMmKAePXqoSZMm6ty5s30r9oiICA0aNMihv4+Pj5YvX65u3bopMjJSy5Yt09dff63nnnsu0+dLnVG5cmWtWLFCTZs2VXR0tNavX3/V+ZBXn7naunWrOnfurM6dO6tSpUq6dOmSFi9erA0bNuiJJ57QbbfdZu8bGRmpBx98UCNHjtTJkydVqVIlzZkzRwcPHsy0sgvcEAp+g0IABSljK/Yff/wx032pqammYsWKpmLFiiYlJcUYY8y+fftM165dTUhIiPH09DRlypQx9957r1mwYIHDY99//31ToUIF4+7unmlb9tWrV5vo6GhTrFgx4+PjYypWrGi6d+/usHV3t27dTJEiRTKN6crt1Y0x5vvvvzd169Y1Xl5eDtsIZ9U3OTnZjBkzxpQvX954enqa8PBwM3LkSIft5Y1J37K4TZs2mc5/5dblV5OWlmbCw8Oz3BbcGGPeffdd07hxY1OyZEnj7e1tKlasaIYNG2bOnTt31eNevhX7lTLeT12xFbsxxkycONGUKVPGeHt7m4YNG5qffvop263YP/vssyyPe+U8yWrbd/13m+z//Oc/pnLlysbb29vceuutmbbmN8aYEydOmH79+pnw8HDj6elpQkJCTLNmzcx77713zTFdzfnz582gQYNMWFiY8fT0NJUrVzavv/66fbv6DM5uxX65BQsWmBYtWpgSJUoYDw8PExoaajp16mTWrFlj75OQkGCGDBliQkNDja+vr2nYsKHZuHGj0693VtupG2PM9OnTTfny5Y23t7epV6+eWbt2baZjZvfYhQsXmptvvtl4e3ub6tWrm0WLFplu3bpl2or9gw8+sL9v1apVM7Nmzcryv6Vdu3aZxo0bG19fXyPJYVt2Z97X3M5/Y7Leit2Y9N9PHTt2NIGBgcbHx8fUr1/ffPXVVw59cjOfMly5FXuG+fPnm1tvvdV4e3ubEiVKmC5dupi//vrLoU/G77R9+/aZFi1aGD8/PxMcHGxiYmIybduflav9d79u3Trj6+trypcvb44cOZLj55VT+/fvNw8++KCJiIgwPj4+xs/Pz9StW9fMmDEj039jxhhz6dIlM3ToUBMSEmK8vb3N7bffbpYvX57v4wSsyGZMAX+aFgAA4DrTvXt3LViwwGGlEMCNh89cAQAAAEAeIFwBAAAAQB4gXAEAAABAHuAzVwAAAACQB1i5AgAAAIA8QLgCAAAAgDzAlwhnIS0tTUePHlXRokVls9kKezgAAAAACokxRufPn1dYWNg1v7CccJWFo0ePKjw8vLCHAQAAAMAiDh8+rLJly161D+EqC0WLFpWU/gIGBATk+/mSk5P1zTffqEWLFvL09Mz38+H6wLxBbjF3kBvMG+QG8wa5ZaW5ExcXp/DwcHtGuBrCVRYySgEDAgIKLFz5+fkpICCg0CcPXAfzBrnF3EFuMG+QG8wb5JYV544zHxdiQwsAAAAAyAOEKwAAAADIA4QrAAAAAMgDhCsAAAAAyAOEKwAAAADIA4QrAAAAAMgDhCsAAAAAyAOEKwAAAADIA4QrAAAAAMgDhCsAAAAAyAOEKwAAAADIA4QrAAAAAMgDhCsAAAAAyAMehT0AZC81OVW/rlqn+DPH5FcyVLXuvlPunu7p9yUk6cBb05V2aJ/cbqqo8s/0lbuPl3PH/RePLUiuMs7CkJqQpP2Tp6rk1k3av3OvKg18mtcGAABcF1z5OqdQV67Wrl2rtm3bKiwsTDabTUuWLLnmY9asWaPbbrtN3t7eqlSpkmbPnp2pz7Rp0xQRESEfHx9FRkZq8+bNeT/4fPbDZ4t04v0I1TlzlxroEdU5c5dOvB+hHz5bpN1Dh0uhfqr07CBVmfa2Kj07SAr1S2+/hn/z2ILkKuMsDBmvTdWRQ9Xos89UdeRQXhsAAHBdcPXrnEINVxcvXlTt2rU1bdo0p/ofOHBAbdq00V133aXt27dr4MCB6tWrl1asWGHvM3/+fA0ePFgxMTHaunWrateurejoaJ08eTK/nkae++GzRaqf1FEhxf5yaA8JOKL6Gx5QlYmvy+1sqsN9bmdTVWXi61edeLuHDs/1YwuSq4yzMPDaAACA69X1cJ1jM8aYwh6EJNlsNi1evFjt27fPts+zzz6rr7/+Wjt27LC3Pfzwwzp79qyWL18uSYqMjNTtt9+ut99+W5KUlpam8PBwPf300xoxYoRTY4mLi1OxYsV07tw5BQQE5P5JOSk5OVlLly5V69at5SY3nXg/QiHF/pKb7YqOaZIZIOlv6cq7JMlISivipsSps+Tm4VjxmZaSIp+nu8t20eT4sQXJVcZZGHhtkFdSU1P18y+/qPYtt8jd3b2whwMXwbxBbjBv4CxnrnNSi7vLdjS+wEsEc5INXOoKbOPGjWrevLlDW3R0tAYOHChJSkpK0pYtWzRy5Ej7/W5ubmrevLk2btyY7XETExOVmJhovx0XFycpPfQkJyfn4TPIWsY5kpOTtXPNRtUN/Cvrjrsk29/ZH8cmyf1imvx6dsvxGP7NYwuSq4yzMPDaICcaFPYA4JKYN8gN5g3ygk2Sxz+p2j15qioMeaZAz52TPOBS4er48eMKDg52aAsODlZcXJwuXbqkf/75R6mpqVn22bVrV7bHHT9+vMaMGZOp/ZtvvpGfn1/eDN4JsbGxOv/rDtWtkE2Hs04eKETSlaE6TtLxXD62ILnKOAsDrw0AALheOXmdc2rrJu1aujTfh3O5+Ph4p/u6VLjKLyNHjtTgwYPtt+Pi4hQeHq4WLVoUWFlgbGys7rnnHu309M8+RAU6d7zf+45T2FNPObQdfecdVX/xuVw9tiC5yjgLA68N8kpySrK+W/OdmjRtIk8Pz8IeDlwE8wa5wbyBs5y9zgm6LVKRrVsXwIj+J6OqzRkuFa5CQkJ04sQJh7YTJ04oICBAvr6+cnd3l7u7e5Z9QkJCsj2ut7e3vL29M7V7enrK07PgfhF4enqqzj1NdfT9sgoJOCI3tys+DldNMiV01c9cpRZ3V9VhQzLVohYdNkSpk0bJ7Wxqjh9bkFxlnIWB1wZ5JTk5WZ6+ngosGVigv+Pg2pg3yA3mDZzl7HVOpYFPy72A51JO5q5LfYlwVFSUVq5c6dAWGxurqKgoSZKXl5fq1q3r0CctLU0rV66097E6d093HQqaItmktDTHqZUmm8xj6X+/cheSjNv7eg7O8sLa3cdLex8fnKvHFiRXGWdh4LUBAADXq+vlOqdQw9WFCxe0fft2bd++XVL6Vuvbt2/XoUOHJKWX63Xt2tXev0+fPtq/f7+GDx+uXbt2afr06fr00081aNAge5/Bgwfr/fff15w5c7Rz50499dRTunjxonr06FGgz+3fuOPB+7XZa4GOx5VxaD8WV1abGy7UH0OGKS3Qcced1OLu+mPIMFV947Vsj1v1jddy/diC5CrjLAy8NgAA4Hp1PVznFOpW7GvWrNFdd92Vqb1bt26aPXu2unfvroMHD2rNmjUOjxk0aJB+//13lS1bVqNGjVL37t0dHv/222/r9ddf1/Hjx1WnTh299dZbioyMdHpchbkV++XLjqnJqfp11TrFnzkmv5KhqnX3nXL3TJ9sqQlJSqpWVb5/HtSxrj1V+t13nE7yqQlJOvDWdKUd2ie3myqq/DN9LfmvAK4yzsKQmpCkvZOn6tTWTQq6LdKlvrkchS+73znA1TBvkBvMG+SG1a5zcpINLPM9V1ZilXB1TZGR0ubN0pdfSvfem38DhCXxPyzkFnMHucG8QW4wb5BbVpo7OckGLvWZK1whY899flkBAAAAhY5w5cpSUtL/9HCpTR8BAACA6xLhypURrgAAAADLIFy5MsoCAQAAAMsgXLkyVq4AAAAAyyBcuTLCFQAAAGAZhCtXRlkgAAAAYBmEK1fGyhUAAABgGYQrV0a4AgAAACyDcOXKKAsEAAAALINw5cpYuQIAAAAsg3DlyghXAAAAgGUQrlxVWlr6j0RZIAAAAGABhCtXlbFqJbFyBQAAAFgA4cpVEa4AAAAASyFcuaqMnQIlygIBAAAACyBcuSpWrgAAAABLIVy5qoxwZbNJbryNAAAAQGHjqtxV8QXCAAAAgKUQrlwV33EFAAAAWArhylURrgAAAABLIVy5KsoCAQAAAEshXLkqVq4AAAAASyFcuSrCFQAAAGAphCtXRVkgAAAAYCmEK1fFyhUAAABgKYQrV0W4AgAAACyFcOWqKAsEAAAALIVw5apYuQIAAAAshXDlqghXAAAAgKUQrlwVZYEAAACApRCuXBUrVwAAAIClEK5cFeEKAAAAsBTClauiLBAAAACwFMKVq2LlCgAAALAUwpWrIlwBAAAAlkK4clWUBQIAAACWQrhyVaxcAQAAAJZCuHJVhCsAAADAUghXroqyQAAAAMBSCFeuipUrAAAAwFIIV66KcAUAAABYCuHKVVEWCAAAAFgK4cpVsXIFAAAAWArhylURrgAAAABLIVy5KsoCAQAAAEshXLkqVq4AAAAASyFcuSrCFQAAAGAphCtXRVkgAAAAYCmEK1fFyhUAAABgKYQrV0W4AgAAACyFcOWqKAsEAAAALIVw5apYuQIAAAAshXDlqghXAAAAgKUQrlwVZYEAAACApRCuXBUrVwAAAIClEK5cFeEKAAAAsBTClauiLBAAAACwFMKVq2LlCgAAALAUwpWryli5IlwBAAAAlkC4clUZK1eUBQIAAACWQLhyVZQFAgAAAJZCuHJVlAUCAAAAlkK4clWUBQIAAACWQrhyVZQFAgAAAJZCuHJVfM8VAAAAYCmEK1fFyhUAAABgKYQrV0W4AgAAACyFcOWqKAsEAAAALIVw5apYuQIAAAAshXDlqghXAAAAgKUQrlxRWlr6j0RZIAAAAGARhCtXlLFqJbFyBQAAAFhEoYeradOmKSIiQj4+PoqMjNTmzZuz7ZucnKyxY8eqYsWK8vHxUe3atbV8+XKHPqNHj5bNZnP4qVatWn4/jYJFuAIAAAAsp1DD1fz58zV48GDFxMRo69atql27tqKjo3Xy5Mks+7/wwgt69913NXXqVP3+++/q06ePOnTooG3btjn0q1Gjho4dO2b/Wb9+fUE8nYKTsVOgRFkgAAAAYBGFGq4mTZqk3r17q0ePHqpevbpmzJghPz8/zZw5M8v+c+fO1XPPPafWrVurQoUKeuqpp9S6dWtNnDjRoZ+Hh4dCQkLsP6VKlSqIp1NwWLkCAAAALKfQrsyTkpK0ZcsWjRw50t7m5uam5s2ba+PGjVk+JjExUT4+Pg5tvr6+mVam9uzZo7CwMPn4+CgqKkrjx4/XTTfdlO1YEhMTlZiYaL8dFxcnKb0MMfnyVaJ8knEOp8916ZI8JRmbTSmpqVJqav4NDpaV43kD/BdzB7nBvEFuMG+QW1aaOzkZg80YY/JxLNk6evSoypQpo++//15RUVH29uHDh+u7777Tpk2bMj3mkUce0c8//6wlS5aoYsWKWrlypdq1a6fU1FR7OFq2bJkuXLigqlWr6tixYxozZoyOHDmiHTt2qGjRolmOZfTo0RozZkym9o8//lh+fn559Izzjs/p04ru1UupHh76asGCwh4OAAAAcN2Kj4/XI488onPnzikgIOCqfV0qXJ06dUq9e/fWl19+KZvNpooVK6p58+aaOXOmLl26lOV5zp49q3LlymnSpEl6/PHHs+yT1cpVeHi4Tp8+fc0XMC8kJycrNjZW99xzjzyd+QzVwYPyrFJFxs9PKWfP5vv4YE05njfAfzF3kBvMG+QG8wa5ZaW5ExcXp1KlSjkVrgqtLLBUqVJyd3fXiRMnHNpPnDihkJCQLB8TFBSkJUuWKCEhQWfOnFFYWJhGjBihChUqZHuewMBAValSRXv37s22j7e3t7y9vTO1e3p6Fuib6fT5bLb0Pzw8Cn2yofAV9DzF9YO5g9xg3iA3mDfILSvMnZycv9A2tPDy8lLdunW1cuVKe1taWppWrlzpsJKVFR8fH5UpU0YpKSlauHCh2rVrl23fCxcuaN++fQoNDc2zsRe6jLpPfkkBAAAAllGouwUOHjxY77//vubMmaOdO3fqqaee0sWLF9WjRw9JUteuXR02vNi0aZMWLVqk/fv3a926dWrZsqXS0tI0fPhwe5+hQ4fqu+++08GDB/X999+rQ4cOcnd3V+fOnQv8+eWbjN0C2SkQAAAAsIxCvTrv1KmTTp06pRdffFHHjx9XnTp1tHz5cgUHB0uSDh06JDe3/+W/hIQEvfDCC9q/f7/8/f3VunVrzZ07V4GBgfY+f/31lzp37qwzZ84oKChIjRo10g8//KCgoKCCfnr5h3AFAAAAWE6hX533799f/fv3z/K+NWvWONxu0qSJfv/996seb968eXk1NOuiLBAAAACwnEItC0QusXIFAAAAWA7hyhURrgAAAADLIVy5IsoCAQAAAMshXLkiVq4AAAAAyyFcuSLCFQAAAGA5hCtXRFkgAAAAYDmEK1fEyhUAAABgOYQrV0S4AgAAACyHcOWKKAsEAAAALIdw5YpYuQIAAAAsh3DlighXAAAAgOUQrlwRZYEAAACA5RCuXBErVwAAAIDlEK5cEeEKAAAAsBzClSuiLBAAAACwHMKVK2LlCgAAALAcwpUrIlwBAAAAlkO4ckWUBQIAAACWQ7hyRaxcAQAAAJZDuHJFhCsAAADAcghXroiyQAAAAMByCFeuiJUrAAAAwHIIV66IcAUAAABYDuHKFVEWCAAAAFgO4coVsXIFAAAAWA7hyhURrgAAAADLIVy5IsoCAQAAAMshXLkiVq4AAAAAyyFcuSLCFQAAAGA5hCtXRFkgAAAAYDmEK1fEyhUAAABgOYQrV5SxckW4AgAAACyDcOWKMlauKAsEAAAALINw5YooCwQAAAAsh3DliigLBAAAACyHcOWKKAsEAAAALIdw5YooCwQAAAAsh3DliigLBAAAACyHcOWKKAsEAAAALIdw5YooCwQAAAAsh3DliigLBAAAACyHcOWKKAsEAAAALIdw5YooCwQAAAAsh3DliigLBAAAACyHcOWKKAsEAAAALIdw5YooCwQAAAAsh3DlatLS0n8kwhUAAABgIYQrV5OxaiVRFggAAABYCOHK1Vwerli5AgAAACyDcOVqMnYKlAhXAAAAgIUQrlwNZYEAAACAJRGuXE1GuLLZJDfePgAAAMAquDp3NRllgaxaAQAAAJZCuHI1fMcVAAAAYEmEK1dDuAIAAAAsiXDlaigLBAAAACyJcOVqWLkCAAAALIlw5WoIVwAAAIAlEa5cDWWBAAAAgCURrlwNK1cAAACAJRGuXA3hCgAAALAkwpWroSwQAAAAsCTClath5QoAAACwJMKVqyFcAQAAAJZEuHI1lAUCAAAAlpSrcJWSkqJvv/1W7777rs6fPy9JOnr0qC5cuJCng0MWWLkCAAAALCnHV+h//vmnWrZsqUOHDikxMVH33HOPihYtqgkTJigxMVEzZszIj3EiA+EKAAAAsKQcr1wNGDBA9erV0z///CNfX197e4cOHbRy5co8HRyyQFkgAAAAYEk5Xv5Yt26dvv/+e3l5eTm0R0RE6MiRI3k2MGSDlSsAAADAknK8cpWWlqbU1NRM7X/99ZeKFi2aJ4PCVRCuAAAAAEvKcbhq0aKFJk+ebL9ts9l04cIFxcTEqHXr1nk5NmSFskAAAADAknK8/PHGG2+oZcuWql69uhISEvTII49oz549KlWqlD755JP8GCMux8oVAAAAYEk5vkIPDw/Xzz//rPnz5+vnn3/WhQsX9Pjjj6tLly4OG1wgnxCuAAAAAEvKUVlgcnKyKlasqD179qhLly567bXXNH36dPXq1SvXwWratGmKiIiQj4+PIiMjtXnz5quef+zYsapYsaJ8fHxUu3ZtLV++/F8d0+VQFggAAABYUo7ClaenpxISEvLs5PPnz9fgwYMVExOjrVu3qnbt2oqOjtbJkyez7P/CCy/o3Xff1dSpU/X777+rT58+6tChg7Zt25brY7ocVq4AAAAAS8rxhhb9+vXThAkTlJJxkf8vTJo0Sb1791aPHj1UvXp1zZgxQ35+fpo5c2aW/efOnavnnntOrVu3VoUKFfTUU0+pdevWmjhxYq6P6XIIVwAAAIAl5fgK/ccff9TKlSv1zTffqFatWipSpIjD/YsWLXLqOElJSdqyZYtGjhxpb3Nzc1Pz5s21cePGLB+TmJgoHx8fhzZfX1+tX78+18fMOG5iYqL9dlxcnKT0MsTkjDK8fJRxDmfO5ZaQIHdJqe7uSiuAscG6cjJvgMsxd5AbzBvkBvMGuWWluZOTMeQ4XAUGBuqBBx7I6cMyOX36tFJTUxUcHOzQHhwcrF27dmX5mOjoaE2aNEmNGzdWxYoVtXLlSi1atMj+vVu5OaYkjR8/XmPGjMnU/s0338jPzy+nTy3XYmNjr9mn+h9/qLKkA4cO6belS/N/ULA8Z+YNkBXmDnKDeYPcYN4gt6wwd+Lj453um+NwNWvWrJw+JM9MmTJFvXv3VrVq1WSz2VSxYkX16NHjX5f8jRw5UoMHD7bfjouLU3h4uFq0aKGAgIB/O+xrSk5OVmxsrO655x55XmOjCrfvvpMkla9cWeX4XrEbWk7mDXA55g5yg3mD3GDeILesNHcyqtqckesP7pw6dUq7d++WJFWtWlVBQUE5enypUqXk7u6uEydOOLSfOHFCISEhWT4mKChIS5YsUUJCgs6cOaOwsDCNGDFCFSpUyPUxJcnb21ve3t6Z2j09PQv0zXTqfP9dpXP38ZE7v6Sggp+nuH4wd5AbzBvkBvMGuWWFuZOT8+d4Q4uLFy+qZ8+eCg0NVePGjdW4cWOFhYXp8ccfz9GSmZeXl+rWrauVK1fa29LS0rRy5UpFRUVd9bE+Pj4qU6aMUlJStHDhQrVr1+5fH9NlsKEFAAAAYEk5DleDBw/Wd999py+//FJnz57V2bNn9fnnn+u7777TkCFDcnys999/X3PmzNHOnTv11FNP6eLFi+rRo4ckqWvXrg6bU2zatEmLFi3S/v37tW7dOrVs2VJpaWkaPny408d0eYQrAAAAwJJyfIW+cOFCLViwQE2bNrW3tW7dWr6+vnrooYf0zjvvOH2sTp066dSpU3rxxRd1/Phx1alTR8uXL7dvSHHo0CG5uf0v/yUkJOiFF17Q/v375e/vr9atW2vu3LkKDAx0+pgujy8RBgAAACwpx+EqPj4+y6BSunTpHJUFZujfv7/69++f5X1r1qxxuN2kSRP9/vvv/+qYLo+VKwAAAMCSclwWGBUVpZiYGCUkJNjbLl26pDFjxlw/n2uyMsIVAAAAYEk5vkKfMmWKoqOjVbZsWdWuXVuS9PPPP8vHx0crVqzI8wHiCpQFAgAAAJaU43BVs2ZN7dmzRx999JH9i3k7d+6sLl26yNfXN88HiCuwcgUAAABYUq6u0P38/NS7d++8HguckbFyRbgCAAAALCXHn7kaP368Zs6cmal95syZmjBhQp4MCleRsXJFWSAAAABgKTkOV++++66qVauWqb1GjRqaMWNGngwKV0FZIAAAAGBJOQ5Xx48fV2hoaKb2oKAgHTt2LE8GhaugLBAAAACwpByHq/DwcG3YsCFT+4YNGxQWFpYng8JVUBYIAAAAWFKOlz969+6tgQMHKjk5WXfffbckaeXKlRo+fLiGDBmS5wPEFSgLBAAAACwpx1fow4YN05kzZ9S3b18lJSVJknx8fPTss89q5MiReT5AXIGyQAAAAMCScnyFbrPZNGHCBI0aNUo7d+6Ur6+vKleuLG9v7/wYH65EWSAAAABgSTn+zFUGf39/3X777SpatKj27duntLS0vBwXskNZIAAAAGBJToermTNnatKkSQ5tTzzxhCpUqKBatWqpZs2aOnz4cJ4PEFegLBAAAACwJKfD1XvvvafixYvbby9fvlyzZs3Shx9+qB9//FGBgYEaM2ZMvgwSl6EsEAAAALAkp5c/9uzZo3r16tlvf/7552rXrp26dOkiSRo3bpx69OiR9yOEI8oCAQAAAEtyeuXq0qVLCggIsN/+/vvv1bhxY/vtChUq6Pjx43k7OmRGWSAAAABgSU6Hq3LlymnLli2SpNOnT+u3335Tw4YN7fcfP35cxYoVy/sRwhFlgQAAAIAlOb380a1bN/Xr10+//fabVq1apWrVqqlu3br2+7///nvVrFkzXwaJy1AWCAAAAFiS01fow4cPV3x8vBYtWqSQkBB99tlnDvdv2LBBnTt3zvMB4gqUBQIAAACW5PQVupubm8aOHauxY8dmef+VYQv5hLJAAAAAwJJy/SXCKCSUBQIAAACWRLhyJWlp6T8S4QoAAACwGMKVK8lYtZIoCwQAAAAshnDlSi4PV6xcAQAAAJZCuHIlGTsFSoQrAAAAwGJyfIWempqq2bNna+XKlTp58qTSMj4D9F+rVq3Ks8HhCpQFAgAAAJaV43A1YMAAzZ49W23atFHNmjVls9nyY1zISka4stkkNxYdAQAAACvJcbiaN2+ePv30U7Vu3To/xoOr4QuEAQAAAMvK8fKHl5eXKlWqlB9jwbXwBcIAAACAZeU4XA0ZMkRTpkyRMSY/xoOr4QuEAQAAAMvK8VX6+vXrtXr1ai1btkw1atSQ5xWrKIsWLcqzweEKlAUCAAAAlpXjq/TAwEB16NAhP8aCa6EsEAAAALCsHIerWbNm5cc44AzKAgEAAADLyvVV+qlTp7R7925JUtWqVRUUFJRng0I2KAsEAAAALCvHG1pcvHhRPXv2VGhoqBo3bqzGjRsrLCxMjz/+uOLj4/NjjMhAWSAAAABgWTkOV4MHD9Z3332nL7/8UmfPntXZs2f1+eef67vvvtOQIUPyY4zIQFkgAAAAYFk5vkpfuHChFixYoKZNm9rbWrduLV9fXz300EN655138nJ8uBxlgQAAAIBl5XjlKj4+XsHBwZnaS5cuTVlgfqMsEAAAALCsHIerqKgoxcTEKCEhwd526dIljRkzRlFRUXk6OFyBskAAAADAsnJ8lT5lyhRFR0erbNmyql27tiTp559/lo+Pj1asWJHnA8RlKAsEAAAALCvHV+k1a9bUnj179NFHH2nXrl2SpM6dO6tLly7y9fXN8wHiMpQFAgAAAJaVqyUQPz8/9e7dO6/HgmuhLBAAAACwLKeu0r/44gu1atVKnp6e+uKLL67a97777suTgSELGWWBrFwBAAAAluNUuGrfvr2OHz+u0qVLq3379tn2s9lsSk1Nzaux4UqsXAEAAACW5dRVelpaWpZ/RwEjXAEAAACWleOt2D/88EMlJiZmak9KStKHH36YJ4NCNigLBAAAACwrx+GqR48eOnfuXKb28+fPq0ePHnkyKGSDlSsAAADAsnIcrowxstlsmdr/+usvFStWLE8GhWwQrgAAAADLcvoq/dZbb5XNZpPNZlOzZs3kcdkFfmpqqg4cOKCWLVvmyyDxX5QFAgAAAJbldLjK2CVw+/btio6Olr+/v/0+Ly8vRURE6IEHHsjzAeIyrFwBAAAAluX0VXpMTIwkKSIiQp06dZKPj0++DQrZIFwBAAAAlpXjq/Ru3bpJSt8d8OTJk5m2Zr/pppvyZmTIjLJAAAAAwLJyHK727Nmjnj176vvvv3doz9jogi8RzkesXAEAAACWleOr9O7du8vDw0NfffWVQkNDs9w5EPmEcAUAAABYVo6v0rdv364tW7aoWrVq+TEeXA1lgQAAAIBl5fh7rqpXr67Tp0/nx1hwLaxcAQAAAJaV43A1YcIEDR8+XGvWrNGZM2cUFxfn8IN8RLgCAAAALCvHV+nNmzeXJDVr1syhnQ0tCgBlgQAAAIBl5ThcrV69Oj/GAWewcgUAAABYVo6v0ps0aZIf44AzMlauCFcAAACA5eT4M1eStG7dOj366KNq0KCBjhw5IkmaO3eu1q9fn6eDwxUyVq4oCwQAAAAsJ8fhauHChYqOjpavr6+2bt2qxMRESdK5c+c0bty4PB8gLkNZIAAAAGBZOQ5XL7/8smbMmKH3339fnpetoDRs2FBbt27N08HhCpQFAgAAAJaV43C1e/duNW7cOFN7sWLFdPbs2bwYE7JDWSAAAABgWTkOVyEhIdq7d2+m9vXr16tChQp5Mihkg7JAAAAAwLJyHK569+6tAQMGaNOmTbLZbDp69Kg++ugjDR06VE899VR+jBEZKAsEAAAALCvHV+kjRoxQWlqamjVrpvj4eDVu3Fje3t4aOnSonn766fwYIzJQFggAAABYVo7Dlc1m0/PPP69hw4Zp7969unDhgqpXry5/f//8GB8uR1kgAAAAYFk5Lgvs2bOnzp8/Ly8vL1WvXl3169eXv7+/Ll68qJ49e+bHGJGBskAAAADAsnIcrubMmaNLly5lar906ZI+/PDDPBkUskFZIAAAAGBZTi+BxMXFyRgjY4zOnz8vHx8f+32pqalaunSpSpcunS+DxH9RFggAAABYltNX6YGBgbLZbLLZbKpSpUqm+202m8aMGZOng8MVKAsEAAAALMvpq/TVq1fLGKO7775bCxcuVIkSJez3eXl5qVy5cgoLC8uXQeK/KAsEAAAALMvpz1w1adJETZs21YEDB9S+fXs1adLE/hMVFZXrYDVt2jRFRETIx8dHkZGR2rx581X7T548WVWrVpWvr6/Cw8M1aNAgJSQk2O8fPXq0fYUt46datWq5GpvlUBYIAAAAWFaON7QoV66c1q9fr0cffVQNGjTQkSNHJElz587V+vXrc3Ss+fPna/DgwYqJidHWrVtVu3ZtRUdH6+TJk1n2//jjjzVixAjFxMRo586d+uCDDzR//nw999xzDv1q1KihY8eO2X9yOi7LoiwQAAAAsKwch6uFCxcqOjpavr6+2rp1qxITEyVJ586d07hx43J0rEmTJql3797q0aOHqlevrhkzZsjPz08zZ87Msv/333+vhg0b6pFHHlFERIRatGihzp07Z1rt8vDwUEhIiP2nVKlSOX2a1kRZIAAAAGBZOV4CefnllzVjxgx17dpV8+bNs7c3bNhQL7/8stPHSUpK0pYtWzRy5Eh7m5ubm5o3b66NGzdm+ZgGDRroP//5jzZv3qz69etr//79Wrp0qR577DGHfnv27FFYWJh8fHwUFRWl8ePH66abbsp2LImJifaQKKXvjChJycnJSs5YLcpHGee41rk8UlJkk5RszP9WsXDDcnbeAFdi7iA3mDfIDeYNcstKcycnY8hxuNq9e7caN26cqb1YsWI6e/as08c5ffq0UlNTFRwc7NAeHBysXbt2ZfmYRx55RKdPn1ajRo1kjFFKSor69OnjUBYYGRmp2bNnq2rVqjp27JjGjBmjO++8Uzt27FDRokWzPO748eOz3Onwm2++kZ+fn9PP6d+KjY296v1tEhLkIWnN+vWK37OnYAYFy7vWvAGyw9xBbjBvkBvMG+SWFeZOfHy8031zHK5CQkK0d+9eRUREOLSvX79eFSpUyOnhcmTNmjUaN26cpk+frsjISO3du1cDBgzQSy+9pFGjRkmSWrVqZe9/yy23KDIyUuXKldOnn36qxx9/PMvjjhw5UoMHD7bfjouLU3h4uFq0aKGAgIB8fU5SehqOjY3VPffcI8+rlPy5GyNJanrPPVLZsvk+Llibs/MGuBJzB7nBvEFuMG+QW1aaOxlVbc7Icbjq3bu3BgwYoJkzZ8pms+no0aPauHGjhg4dag84zihVqpTc3d114sQJh/YTJ04oJCQky8eMGjVKjz32mHr16iVJqlWrli5evKgnnnhCzz//vNzcMn+ELDAwUFWqVNHevXuzHYu3t7e8vb0ztXt6ehbom3nN8/33M1eevr587gp2BT1Pcf1g7iA3mDfIDeYNcssKcycn58/xhhYjRozQI488ombNmunChQtq3LixevXqpSeffFJPP/2008fx8vJS3bp1tXLlSntbWlqaVq5cqaioqCwfEx8fnylAubu7S5LMf1d1rnThwgXt27dPoaGhTo/NktLS0n8kdgsEAAAALCjHV+k2m03PP/+8hg0bpr179+rChQuqXr26/P39denSJfn6+jp9rMGDB6tbt26qV6+e6tevr8mTJ+vixYvq0aOHJKlr164qU6aMxo8fL0lq27atJk2apFtvvdVeFjhq1Ci1bdvWHrKGDh2qtm3bqly5cjp69KhiYmLk7u6uzp075/SpWkvGToESq1YAAACABeV6CcTLy0vVq1eXlL7b3qRJk/Taa6/p+PHjTh+jU6dOOnXqlF588UUdP35cderU0fLly+2bXBw6dMhhpeqFF16QzWbTCy+8oCNHjigoKEht27bVK6+8Yu/z119/qXPnzjpz5oyCgoLUqFEj/fDDDwoKCsrtU7WGy8MVK1cAAACA5Th9lZ6YmKjRo0crNjZWXl5eGj58uNq3b69Zs2bp+eefl7u7uwYNGpTjAfTv31/9+/fP8r41a9Y4DtbDQzExMYqJicn2eJdvD39duXwLSMIVAAAAYDlOX6W/+OKLevfdd9W8eXN9//33evDBB9WjRw/98MMPmjRpkh588EF7aR7yAWWBAAAAgKU5Ha4+++wzffjhh7rvvvu0Y8cO3XLLLUpJSdHPP/8sm82Wn2OE9L9wZbNJWeyKCAAAAKBwOX2V/tdff6lu3bqSpJo1a8rb21uDBg0iWBWUjLJASgIBAAAAS3I6XKWmpsrLy8t+28PDQ/7+/vkyKGQhY+WKkkAAAADAkpxeBjHGqHv37vYv201ISFCfPn1UpEgRh36LFi3K2xEiXUa4YuUKAAAAsCSnr9S7devmcPvRRx/N88HgKigLBAAAACzN6Sv1WbNm5ec4cC2UBQIAAACWxrZzroKyQAAAAMDSCFeugrJAAAAAwNIIV66CskAAAADA0ghXroKyQAAAAMDSCFeugrJAAAAAwNIIV66CskAAAADA0ghXroKyQAAAAMDSCFeugrJAAAAAwNIIV66CskAAAADA0ghXroKyQAAAAMDSCFeugrJAAAAAwNIIV66CskAAAADA0ghXroKyQAAAAMDSCFeugrJAAAAAwNIIV66CskAAAADA0ghXroKyQAAAAMDSCFeugrJAAAAAwNIIV66CskAAAADA0ghXroKyQAAAAMDSCFeugrJAAAAAwNIIV66CskAAAADA0ghXroKyQAAAAMDSCFeuIqMskJUrAAAAwJIIV66ClSsAAADA0ghXroINLQAAAABLI1y5Cja0AAAAACyNcOUqKAsEAAAALI1w5SooCwQAAAAsjXDlKigLBAAAACyNcOUqKAsEAAAALI1w5SooCwQAAAAsjXDlKigLBAAAACyNcOUqKAsEAAAALI1w5SooCwQAAAAsjXDlKigLBAAAACyNcOUqKAsEAAAALI1w5SooCwQAAAAsjXDlKigLBAAAACyNcOUqKAsEAAAALI1w5SooCwQAAAAsjXDlKigLBAAAACyNcOUqKAsEAAAALI1w5SooCwQAAAAsjXDlKigLBAAAACyNcOUqKAsEAAAALI1w5SooCwQAAAAsjXDlKigLBAAAACyNcOUqKAsEAAAALI1w5QrS0tJ/JMIVAAAAYFGEK1eQsWolURYIAAAAWBThyhVcHq5YuQIAAAAsiXDlCjJ2CpQIVwAAAIBFEa5cAWWBAAAAgOURrlxBRriy2SQ33jIAAADAirhSdwV8gTAAAABgeYQrV8AXCAMAAACWR7hyBXyBMAAAAGB5hCtXQFkgAAAAYHmEK1dAWSAAAABgeYQrV0BZIAAAAGB5hCtXQFkgAAAAYHmEK1dAWSAAAABgeYQrV0BZIAAAAGB5hCtXQFkgAAAAYHmEK1dAWSAAAABgeYQrV0BZIAAAAGB5hR6upk2bpoiICPn4+CgyMlKbN2++av/JkyeratWq8vX1VXh4uAYNGqSEhIR/dUzLoywQAAAAsLxCDVfz58/X4MGDFRMTo61bt6p27dqKjo7WyZMns+z/8ccfa8SIEYqJidHOnTv1wQcfaP78+XruuedyfUyXQFkgAAAAYHmFGq4mTZqk3r17q0ePHqpevbpmzJghPz8/zZw5M8v+33//vRo2bKhHHnlEERERatGihTp37uywMpXTY7oEygIBAAAAyyu0q/WkpCRt2bJFI0eOtLe5ubmpefPm2rhxY5aPadCggf7zn/9o8+bNql+/vvbv36+lS5fqsccey/UxJSkxMVGJiYn223FxcZKk5ORkJWeU5OWjjHNkdy7bpUvykJTm7q7UAhgPXMO15g2QHeYOcoN5g9xg3iC3rDR3cjKGQgtXp0+fVmpqqoKDgx3ag4ODtWvXriwf88gjj+j06dNq1KiRjDFKSUlRnz597GWBuTmmJI0fP15jxozJ1P7NN9/Iz88vp08t12JjY7Nsv2nbNt0q6eQ//2jT0qUFNh64huzmDXAtzB3kBvMGucG8QW5ZYe7Ex8c73del6szWrFmjcePGafr06YqMjNTevXs1YMAAvfTSSxo1alSujzty5EgNHjzYfjsuLk7h4eFq0aKFAgIC8mLoV5WcnKzY2Fjdc8898szic1W2Y8ckSaVDQ9W6det8Hw9cw7XmDZAd5g5yg3mD3GDeILesNHcyqtqcUWjhqlSpUnJ3d9eJEycc2k+cOKGQkJAsHzNq1Cg99thj6tWrlySpVq1aunjxop544gk9//zzuTqmJHl7e8vb2ztTu6enZ4G+mdmeLy1NkuTm5SU3fjHhCgU9T3H9YO4gN5g3yA3mDXLLCnMnJ+cvtA0tvLy8VLduXa1cudLelpaWppUrVyoqKirLx8THx8vNzXHI7u7ukiRjTK6O6RLYLRAAAACwvEItCxw8eLC6deumevXqqX79+po8ebIuXryoHj16SJK6du2qMmXKaPz48ZKktm3batKkSbr11lvtZYGjRo1S27Zt7SHrWsd0SewWCAAAAFheoV6td+rUSadOndKLL76o48ePq06dOlq+fLl9Q4pDhw45rFS98MILstlseuGFF3TkyBEFBQWpbdu2euWVV5w+pkviS4QBAAAAyyv0q/X+/furf//+Wd63Zs0ah9seHh6KiYlRTExMro/pkigLBAAAACyvUL9EGE6iLBAAAACwPMKVK6AsEAAAALA8wpUroCwQAAAAsDzClSugLBAAAACwPMKVK6AsEAAAALA8wpUroCwQAAAAsDzClStg5QoAAACwPMKVK+AzVwAAAIDlEa5cAWWBAAAAgOURrlwBZYEAAACA5RGuXAFlgQAAAIDlEa5cAWWBAAAAgOURrlwBZYEAAACA5RGuXAFlgQAAAIDlEa5cAWWBAAAAgOURrlwBZYEAAACA5RGuXAFlgQAAAIDlEa5cAWWBAAAAgOURrlwBZYEAAACA5RGuXAErVwAAAIDlEa5cAZ+5AgAAACyPcOUKKAsEAAAALI9w5QooCwQAAAAsj6UQV0BZIAAAQL4wxiglJUWpqamFPRRcJjk5WR4eHkpISMj398bd3V0eHh6y2Wz/+lhcrbsCygIBAADyXFJSko4dO6b4+PjCHgquYIxRSEiIDh8+nCeh51r8/PwUGhoqLy+vf3UcrtZdAWWBAAAAeSotLU0HDhyQu7u7wsLC5OXlVSAX8XBOWlqaLly4IH9/f7m55d8nmYwxSkpK0qlTp3TgwAFVrlz5X52PcOUKKAsEAADIU0lJSUpLS1N4eLj8/PwKezi4QlpampKSkuTj45Ov4UqSfH195enpqT///NN+ztxiQwtXQFkgAABAvsjvC3e4hryaB8wmV0BZIAAAAGB5hCtXQFkgAAAAYHmEK6tLS0v/kQhXAAAAFpOaKq1ZI33ySfqfBbGjuzFGTzzxhEqUKCGbzabAwEANHDgw/0+MayJcWV3GqpVEWSAAAICFLFokRURId90lPfJI+p8REent+Wn58uWaPXu2vvrqKx07dkw1a9bM83M0bdo0U2A7c+aMWrZsqbCwMHl7eys8PFz9+/dXXFycvc+iRYt0zz33KCgoSAEBAYqKitKKFSvyfHxWRbiyusvDFStXAAAAlrBokdSxo/TXX47tR46kt+dnwNq3b59CQ0PVoEEDhYSEyKOArhHd3NzUrl07ffHFF/rjjz80e/Zsffvtt+rTp4+9z9q1a3XPPfdo6dKl2rJli+666y61bdtW27ZtK5AxFjbCldVl7BQoEa4AAADykTHSxYvX/omLk555Jr1/VseQpAED0vs5c7ysjpOd7t276+mnn9ahQ4dks9kUERGRqc8///yjrl27qnjx4vLz81OrVq20Z88e+/1nzpxR586dVaZMGfn5+alWrVr65JNPHM7x3XffacqUKbLZbLLZbDp48KCKFy+up556SvXq1VO5cuXUrFkz9e3bV+vWrbM/dvLkyRo+fLhuv/12Va5cWePGjVPlypX15ZdfOvX8li9frkaNGqlEiRKqUKGC2rZtq3379tnvP3jwoGw2mxYtWqS77rpLfn5+ql27tjZu3GjvM3v2bAUGBmrFihW6+eab5e/vr5YtW+rYsWPOv9C5RLiyOsoCAQAACkR8vOTvf+2fYsXSV6iyY0z6ilaxYs4dLz7e+TFOmTJFY8eOVdmyZXXs2DH9+OOPmfp0795dP/30k7744gtt3LhRxhi1bt1ayf/9R/uEhATVrVtXX3/9tXbs2KEnnnhCjz32mDZv3mw/R1RUlHr37q1jx47p2LFjCg8Pz3Seo0ePatGiRWrSpEm2401LS9P58+dVokQJp57fxYsXNXjwYG3evFmff/653Nzc1KFDB6Vl7EHwX88//7yGDh2q7du3q0qVKurcubNSLrtujo+P1xtvvKG5c+dq7dq1OnTokIYOHerUGP4NlkKsLmOS2GwS38MAAABwQytWrJiKFi0qd3d3hYSEZLp/z549+uKLL7RhwwY1aNBAkvTRRx8pPDxcS5Ys0YMPPqgyZco4BI2nn35aK1as0Keffqr69eurWLFi8vLykp+fX5bn6Ny5sz7//HNdunRJbdu21f/93/9lO9433nhDFy5c0EMPPeTU83vggQckpYey0qVL64MPPlBwcLB+//13h8+WDR06VG3atJEkjRkzRjVq1NDevXtVrVo1SVJycrJmzJihihUrSpL69++vsWPHOjWGf4OrdavjC4QBAAAKhJ+fdOHCtX+WLnXueEuXOnc8P7+8ew47d+6Uh4eHIiMj7W0lS5ZU1apVtXPnTklSamqqXnrpJdWqVUslSpSQv7+/VqxYoUOHDjl1jjfffFNbt27V559/rn379mnw4MFZ9vv44481ZswYffrppypdurRTx96zZ486d+6sSpUq6aabblKFChUkKdPYbrnlFvvfQ0NDJUknT560t/n5+dmDVUafy+/PL1yxWx1fIAwAAFAgbDapSJFr92vRQipbNr00MKvPS9ls6fe3aCG5u+f9OP+t119/XVOmTNHkyZNVq1YtFSlSRAMHDlRSUpJTjw8JCVFISIiqVaumEiVK6M4779SoUaPsIUeS5s2bp169eumzzz5T8+bNnR5b27ZtVa5cOb377rsKCAiQn5+fbrnllkxj87zs2thms0mSQ+mg5xXXzjabTSYnH27LJVaurI4vEAYAALAUd3dpypT0v//3ut4u4/bkyYUTrG6++WalpKRo06ZN9rYzZ85o9+7dql69uiRpw4YNateunR599FHVrl1bFSpU0B9//OFwHC8vL6U68aVdGYEmMTHR3vbJJ5+oR48e+uSTT+yle87IGOcLL7ygZs2aqWrVqvrnn3+cfrwVEK6sjrJAAAAAy7n/fmnBAqlMGcf2smXT2++/v3DGVblyZbVr1069e/fW+vXr9fPPP+vRRx9VmTJl1K5dO3uf2NhYff/999q5c6eefPJJnThxwuE4ERER2rRpkw4ePKjTp08rLS1NS5cu1axZs7Rjxw4dPHhQX3/9tfr06aOGDRvady38+OOP1bVrV02cOFGRkZE6fvy4jh8/rnPnzl1z7MWLF1fJkiX13nvvae/evVq7dm2BbEKRlwhXVkdZIAAAgCXdf7908KC0erX08cfpfx44UHjBKsOsWbNUt25d3XvvvYqKipIxRkuXLrWXyr3wwgu67bbbFB0draZNmyokJETt27d3OMbQoUPl7u6u6tWrKygoSIcOHZKvr6/ef/99NWrUSDfffLMGDRqk++67T1999ZX9ce+9955SUlLUr18/hYaG2n8GDBhwzXG7ublp3rx52rJli2655RY999xzmjBhQp6+NvnNZgqi+NDFxMXFqVixYjp37pwCAgLy/XzJyclaunSpWrdunak+VNu2Sbfdlv7PIld+Sx1uaFedN8BVMHeQG8wb5IaV501CQoIOHDig8uXLy8fHp7CHgyukpaUpLi5OAQEBciuAHbOvNh9ykg1YubI6ygIBAAAAl0C4sjrKAgEAAHAdOHTokPz9/bP9cXYreCtjOcTq2C0QAAAA14GwsDBt3779qve7Oq7YrY6yQAAAAFwHPDw8VKlSpcIeRr6iLNDqKAsEAAAAXALhyuooCwQAAABcAuHK6igLBAAAAFwC4crqKAsEAAAAXALhyuooCwQAAABcAuHK6igLBAAAsK60VOnEGungJ+l/pqUW9ohybfbs2QoMDCzsYbg0rtitjrJAAAAAazq8SNoyQIr/639tfmWlulOk8PsLb1woNKxcWR1lgQAAANZzeJG0rqNjsJKk+CPp7YcXFc64CllSUlJhD6FQEa6sjrJAAACAgmGMlHLx2j9JcdJPz0gyWR0k/Y+fBqT3c+Z4JqvjZG/BggWqVauWfH19VbJkSTVv3lwXL16UJM2cOVM1atSQt7e3QkND1b9/f/vjJk2apFq1aqlIkSIKDw9X3759deHChWzPs2/fPrVr107BwcHy9/fX7bffrm+//dahT0REhF566SV17dpVAQEBeuKJJ3L0XK43XLFbHWWBAAAABSM1XvrUPw8OZKRLf0kLijnX/aELkkcRp7oeO3ZMnTt31muvvaYOHTro/PnzWrdunYwxeueddzR48GC9+uqratWqlc6dO6cNGzbYH+vm5qa33npL5cuX1/79+9W3b18NHz5c06dPz/JcFy5cUOvWrfXKK6/I29tbH374odq2bavdu3frpptusvd744039OKLLyomJsa553sdI1xZHWWBAAAA+K9jx44pJSVF999/v8qVKydJqlWrliTp5Zdf1pAhQzRgwAB7/9tvv93+94EDB9r/HhERoZdffll9+vTJNlzVrl1btWvXtt9+6aWXtHjxYn3xxRcOK2J33323hgwZkifPz9VxxW51lAUCAAAUDHe/9FWkazm5VlrT+tr9mi6VSjd27rxOql27tpo1a6ZatWopOjpaLVq0UMeOHZWcnKyjR4+qWbNm2T7222+/1fjx47Vr1y7FxcUpJSVFCQkJio+Pl59f5jFcuHBBo0eP1tdff20PdZcuXdKhQ4cc+tWrV8/p8V/v+MyV1VEWCAAAUDBstvTyvGv9hLRI3xVQtuwOJPmFp/dz5ni27I6Tmbu7u2JjY7Vs2TJVr15dU6dOVdWqVXXixImrPu7gwYO69957dcstt2jhwoXasmWLpk2bJin7TSiGDh2qxYsXa9y4cVq3bp22b9+uWrVqZepfpIhzJY03AsKV1VEWCAAAYC1u7unbrUvKHLD+e7vu5PR++cBms6lhw4YaM2aMtm3bJi8vL8XGxioiIkIrV67M8jFbtmxRWlqaJk6cqDvuuENVqlTR0aNHr3qeDRs2qHv37urQoYNq1aqlkJAQHTx4MB+e0fWDK3aroywQAADAesLvl+5ckM33XE3Ot++52rRpk1auXKkWLVqodOnS2rRpk06dOqWbb75Zo0ePVp8+fVS6dGm1atVK58+f14YNG/T000+rUqVKSk5O1tSpU9W2bVtt2LBBM2bMuOq5KleurEWLFqlt27ay2WwaNWqU0tLS8uV5XS+4Yrc6ygIBAACsKfx+qUw76dQ66dIxyTdUCroz31asJCkgIEBr167V5MmTFRcXp3LlymnixIlq1aqVJCkhIUFvvvmmhg4dqlKlSqljx46S0j+rNWnSJE2YMEEjR45U48aNNX78eHXt2jXbc02aNEk9e/ZUgwYNVKpUKT377LOKi4vLt+d2PSBcWR0rVwAAANbl5i4FNy2w0918881avnx5tvc/+eSTevLJJ7O8b9CgQRo0aJBD22OPPWb/e/fu3dW9e3f77YiICK1atcqhf79+/RxuUyboiM9cWR2fuQIAAABcAuHK6igLBAAAAFwC4crqKAsEAAAAXALhyuooCwQAAABcAuHK6igLBAAAAFwC4crqKAsEAAAAXALhyuooCwQAAABcAuHK6igLBAAAAFwC4crqKAsEAAAAXALhyspSU6WTJ9P/vmdP+m0AAABYR2qqtGaN9Mkn6X8WwPVa06ZNNXDgwGzvj4iI0OTJk/N9HMjMEuFq2rRpioiIkI+PjyIjI7V58+Zs+zZt2lQ2my3TT5s2bex9unfvnun+li1bFsRTyTuLFkkREdKPP6bffvXV9NuLFhXmqAAAAJAh43rtrrukRx5J/9MC12s//vijnnjiiUIdw42q0MPV/PnzNXjwYMXExGjr1q2qXbu2oqOjdTJjxeYKixYt0rFjx+w/O3bskLu7ux588EGHfi1btnTo98knnxTE08kbixZJHTtKf/3l2H7kSHo7AQsAAKBwWfh6LSgoSH5+fvl6jqSkpHw9vqsq9HA1adIk9e7dWz169FD16tU1Y8YM+fn5aebMmVn2L1GihEJCQuw/sbGx8vPzyxSuvL29HfoVL168IJ7Ov5eaKg0YIBmT+b6MtoEDKREEAADIa8ZIFy9e+ycuTnrmmatfrw0YkN7PmeNldZxrSElJUf/+/VWsWDGVKlVKo0aNkvnvca4sC7TZbPq///s/dejQQX5+fqpcubK++OIL+/2pqal6/PHHVb58efn6+qpq1aqaMmWKw/m6d++u9u3b65VXXlFYWJiqVq2qsWPHqmbNmpnGVqdOHY0aNSrHz+l6UKi7JCQlJWnLli0aOXKkvc3NzU3NmzfXxo0bnTrGBx98oIcfflhFihRxaF+zZo1Kly6t4sWL6+6779bLL7+skiVLZnmMxMREJSYm2m/HxcVJkpKTk5WcsaFEPso4R3Jysmzffy+PK/8F5HLGSIcPK2X1apkmTfJ9bLCuy+cNkBPMHeQG8wa5YeV5k5ycLGOM0tLSlJaWlt548aLcAgL+/cGNSV/RKlbMqe5pcXHSFdey1zJnzhz17NlTP/zwg3766Sf16dNHZcuWVe/evf87BPO/5yVpzJgxevXVVzVhwgS9/fbb6tKliw4cOKASJUooJSVFZcqU0fz581WyZEl9//336tOnj4KDg/XQQw/Zj7dy5UoVLVpUK1askCQVK1ZMY8aM0aZNm3T77bdLkrZt26ZffvlFCxYscDh/TmUExSufR35JS0uTMUbJyclyd3d3uC8n87dQw9Xp06eVmpqq4OBgh/bg4GDt2rXrmo/fvHmzduzYoQ8++MChvWXLlrr//vtVvnx57du3T88995xatWqljRs3ZnqxJGn8+PEaM2ZMpvZvvvkm35dULxcbG6sya9eqnhN9ty9bpiMXL+b7mGB9sbGxhT0EuCjmDnKDeYPcsOK88fDwUEhIiC5cuPC/EreLFxVYCGOJi4vLUVVSRhgaPXq0bDab2rZtqy1btujNN99Up06dlJaWpoSEBPuCgSQ9/PDD9j0Knn32WU2dOlVr1qxR8+bNJUmDBw+2923btq3Wrl2rTz75xL5vQXJysvz8/DRx4kR5eXnZ+95999167733VLVqVUnSe++9p4YNG6pUqVIO58+t8+fP/+tjOCMpKUmXLl3S2rVrlZLxVUj/FR8f7/RxXHp/7w8++EC1atVS/fr1Hdoffvhh+99r1aqlW265RRUrVtSaNWvUrFmzTMcZOXKkw4SKi4tTeHi4WrRooYC8+NeLa0hOTlZsbKzuueceeRUpIk2adM3H1GnVSrVZubqhXT5vPPkeNOQAcwe5wbxBblh53iQkJOjw4cPy9/eXj49PemPRoumrSNeybp3cLttMLTtpX38t3XnnNfsF+PlJNtu1z/tfHh4eioqKUrHLVsaaNGmiadOmqUiRInJzc5OPj4/DdWy9evXstwMCAhQQEKALFy7Y26ZPn65Zs2bp0KFDunTpkpKSklSnTh37/Z6enqpVq5ZKlSrlMJY+ffqoV69emjp1qtzc3LRw4UJNnDjxX19DG2N0/vx5FS1aVLYcvDa5lZCQIF9fXzVu3Ph/8+G/chISCzVclSpVSu7u7jpx4oRD+4kTJxQSEnLVx168eFHz5s3T2LFjr3meChUqqFSpUtq7d2+W4crb21ve3t6Z2j09PQv0F4Gnp6c87rpLKls2/cOQWdXf2mxS2bLp/bJYhcONp6DnKa4fzB3kBvMGuWHFeZOamiqbzSY3Nze5uV22DUHRotd+cHS0U9drbtHR+Xa9ljH2DBl/z/jzyvu9vb0dbmcEFjc3N82bN0/Dhg3TxIkTFRUVpaJFi+r111/Xpk2bHI7n7+/v+FpJateunfr166fPP/9cXl5eSk5O1kMPPZSpX05llAJe+Tzyi5ubm2w2W5ZzNSdzt1A3tPDy8lLdunW1cuVKe1taWppWrlypqKioqz72s88+U2Jioh599NFrnuevv/7SmTNnFBoa+q/HnO/c3aWMDxBemdIzbk+eTLACAAAoLBa4Xtu0aZPD7R9++EGVK1fO8iMw17JhwwY1aNBAffv21a233qpKlSpp3759Tj3Ww8ND3bp106xZszRr1iw9/PDD8vX1zfEYrheFvlvg4MGD9f7772vOnDnauXOnnnrqKV28eFE9evSQJHXt2tVhw4sMH3zwgdq3b59pk4oLFy5o2LBh+uGHH3Tw4EGtXLlS7dq1U6VKlRQdHV0gz+lfu/9+acECqUwZx/ayZdPb77+/cMYFAACAdIV8vXbo0CENHjxYu3fv1ieffKKpU6dqwIABuTpW5cqV9dNPP2nFihX6448/NGrUKP2Y8V2rTujVq5dWrVql5cuXq2fPnrkaw/Wi0D9z1alTJ506dUovvviijh8/rjp16mj58uX2TS4OHTqUaSlw9+7dWr9+vb755ptMx3N3d9cvv/yiOXPm6OzZswoLC1OLFi300ksvZVn6Z1n33y+1ayetWycdOyaFhqbX7LJiBQAAYA2FeL3WtWtXXbp0SfXr15e7u7sGDBiQ6y8OfvLJJ7Vt2zZ16tRJNptNnTt3Vt++fbVs2TKnHl+5cmU1aNBAf//9tyIjI3M1hutFoYcrSerfv7/69++f5X1r1qzJ1Fa1alX79oxX8vX1tW8P6fLc3aWmTQt7FAAAAMhOIVyvXX59/M4772S6/+DBgw63s7puPnv2rP3v3t7e9rK+y40fP97+99mzZ2c7HmOMjh49qr59+1594DcAS4QrAAAAAK7n1KlTmjdvno4fP27/WM+NjHAFAAAAIFdKly6tUqVK6b333lPx4sULeziFjnAFAAAAIFey+6jOjarQdwsEAAAAgOsB4QoAAAA3LFZeIOXdPCBcAQAA4Ibj6ekpSYqPjy/kkcAKMuZBxrzILT5zBQAAgBuOu7u7AgMDdfLkSUmSn5+fbDZbIY8KGdLS0pSUlKSEhIRM33mbl4wxio+P18mTJxUYGCj3f/kdZYQrAAAA3JBCQkIkyR6wYB3GGF26dEm+vr4FEnoDAwPt8+HfIFwBAADghmSz2RQaGqrSpUsrOTm5sIeDyyQnJ2vt2rVq3Ljxvy7VuxZPT89/vWKVgXAFAACAG5q7u3ueXVwjb7i7uyslJUU+Pj75Hq7yEhtaAAAAAEAeIFwBAAAAQB4gXAEAAABAHuAzV1nI+BKxuLi4AjlfcnKy4uPjFRcX51I1pShczBvkFnMHucG8QW4wb5BbVpo7GZnAmS8aJlxl4fz585Kk8PDwQh4JAAAAACs4f/68ihUrdtU+NuNMBLvBpKWl6ejRoypatGiB7KsfFxen8PBwHT58WAEBAfl+PlwfmDfILeYOcoN5g9xg3iC3rDR3jDE6f/68wsLCrvmFxqxcZcHNzU1ly5Yt8PMGBAQU+uSB62HeILeYO8gN5g1yg3mD3LLK3LnWilUGNrQAAAAAgDxAuAIAAACAPEC4sgBvb2/FxMTI29u7sIcCF8K8QW4xd5AbzBvkBvMGueWqc4cNLQAAAAAgD7ByBQAAAAB5gHAFAAAAAHmAcAUAAAAAeYBwBQAAAAB5gHBlAdOmTVNERIR8fHwUGRmpzZs3F/aQUEDWrl2rtm3bKiwsTDabTUuWLHG43xijF198UaGhofL19VXz5s21Z88ehz5///23unTpooCAAAUGBurxxx/XhQsXHPr88ssvuvPOO+Xj46Pw8HC99tpr+f3UkI/Gjx+v22+/XUWLFlXp0qXVvn177d6926FPQkKC+vXrp5IlS8rf318PPPCATpw44dDn0KFDatOmjfz8/FS6dGkNGzZMKSkpDn3WrFmj2267Td7e3qpUqZJmz56d308P+eidd97RLbfcYv9SzqioKC1btsx+P/MGznj11Vdls9k0cOBAextzB1caPXq0bDabw0+1atXs91+3c8agUM2bN894eXmZmTNnmt9++8307t3bBAYGmhMnThT20FAAli5dap5//nmzaNEiI8ksXrzY4f5XX33VFCtWzCxZssT8/PPP5r777jPly5c3ly5dsvdp2bKlqV27tvnhhx/MunXrTKVKlUznzp3t9587d84EBwebLl26mB07dphPPvnE+Pr6mnfffbegnibyWHR0tJk1a5bZsWOH2b59u2ndurW56aabzIULF+x9+vTpY8LDw83KlSvNTz/9ZO644w7ToEED+/0pKSmmZs2apnnz5mbbtm1m6dKlplSpUmbkyJH2Pvv37zd+fn5m8ODB5vfffzdTp0417u7uZvny5QX6fJF3vvjiC/P111+bP/74w+zevds899xzxtPT0+zYscMYw7zBtW3evNlERESYW265xQwYMMDeztzBlWJiYkyNGjXMsWPH7D+nTp2y33+9zhnCVSGrX7++6devn/12amqqCQsLM+PHjy/EUaEwXBmu0tLSTEhIiHn99dftbWfPnjXe3t7mk08+McYY8/vvvxtJ5scff7T3WbZsmbHZbObIkSPGGGOmT59uihcvbhITE+19nn32WVO1atV8fkYoKCdPnjSSzHfffWeMSZ8nnp6e5rPPPrP32blzp5FkNm7caIxJD/Zubm7m+PHj9j7vvPOOCQgIsM+V4cOHmxo1ajicq1OnTiY6Ojq/nxIKUPHixc3//d//MW9wTefPnzeVK1c2sbGxpkmTJvZwxdxBVmJiYkzt2rWzvO96njOUBRaipKQkbdmyRc2bN7e3ubm5qXnz5tq4cWMhjgxWcODAAR0/ftxhfhQrVkyRkZH2+bFx40YFBgaqXr169j7NmzeXm5ubNm3aZO/TuHFjeXl52ftER0dr9+7d+ueffwro2SA/nTt3TpJUokQJSdKWLVuUnJzsMHeqVaumm266yWHu1KpVS8HBwfY+0dHRiouL02+//Wbvc/kxMvrw++n6kJqaqnnz5unixYuKiopi3uCa+vXrpzZt2mR6f5k7yM6ePXsUFhamChUqqEuXLjp06JCk63vOEK4K0enTp5WamuowaSQpODhYx48fL6RRwSoy5sDV5sfx48dVunRph/s9PDxUokQJhz5ZHePyc8B1paWlaeDAgWrYsKFq1qwpKf199fLyUmBgoEPfK+fOteZFdn3i4uJ06dKl/Hg6KAC//vqr/P395e3trT59+mjx4sWqXr068wZXNW/ePG3dulXjx4/PdB9zB1mJjIzU7NmztXz5cr3zzjs6cOCA7rzzTp0/f/66njMehXJWAECe6Nevn3bs2KH169cX9lDgIqpWrart27fr3LlzWrBggbp166bvvvuusIcFCzt8+LAGDBig2NhY+fj4FPZw4CJatWpl//stt9yiyMhIlStXTp9++ql8fX0LcWT5i5WrQlSqVCm5u7tn2hnlxIkTCgkJKaRRwSoy5sDV5kdISIhOnjzpcH9KSor+/vtvhz5ZHePyc8A19e/fX1999ZVWr16tsmXL2ttDQkKUlJSks2fPOvS/cu5ca15k1ycgIOC6/h/j9c7Ly0uVKlVS3bp1NX78eNWuXVtTpkxh3iBbW7Zs0cmTJ3XbbbfJw8NDHh4e+u677/TWW2/Jw8NDwcHBzB1cU2BgoKpUqaK9e/de179vCFeFyMvLS3Xr1tXKlSvtbWlpaVq5cqWioqIKcWSwgvLlyyskJMRhfsTFxWnTpk32+REVFaWzZ89qy5Yt9j6rVq1SWlqaIiMj7X3Wrl2r5ORke5/Y2FhVrVpVxYsXL6Bng7xkjFH//v21ePFirVq1SuXLl3e4v27duvL09HSYO7t379ahQ4cc5s6vv/7qEM5jY2MVEBCg6tWr2/tcfoyMPvx+ur6kpaUpMTGReYNsNWvWTL/++qu2b99u/6lXr566dOli/ztzB9dy4cIF7du3T6Ghodf375tC20oDxpj0rdi9vb3N7Nmzze+//26eeOIJExgY6LAzCq5f58+fN9u2bTPbtm0zksykSZPMtm3bzJ9//mmMSd+KPTAw0Hz++efml19+Me3atctyK/Zbb73VbNq0yaxfv95UrlzZYSv2s2fPmuDgYPPYY4+ZHTt2mHnz5hk/Pz+2YndhTz31lClWrJhZs2aNwxa38fHx9j59+vQxN910k1m1apX56aefTFRUlImKirLfn7HFbYsWLcz27dvN8uXLTVBQUJZb3A4bNszs3LnTTJs2rdC3uMW/M2LECPPdd9+ZAwcOmF9++cWMGDHC2Gw288033xhjmDdw3uW7BRrD3EFmQ4YMMWvWrDEHDhwwGzZsMM2bNzelSpUyJ0+eNMZcv3OGcGUBU6dONTfddJPx8vIy9evXNz/88ENhDwkFZPXq1UZSpp9u3boZY9K3Yx81apQJDg423t7eplmzZmb37t0Oxzhz5ozp3Lmz8ff3NwEBAaZHjx7m/PnzDn1+/vln06hRI+Pt7W3KlCljXn311YJ6isgHWc0ZSWbWrFn2PpcuXTJ9+/Y1xYsXN35+fqZDhw7m2LFjDsc5ePCgadWqlfH19TWlSpUyQ4YMMcnJyQ59Vq9eberUqWO8vLxMhQoVHM4B19OzZ09Trlw54+XlZYKCgkyzZs3swcoY5g2cd2W4Yu7gSp06dTKhoaHGy8vLlClTxnTq1Mns3bvXfv/1OmdsxhhTOGtmAAAAAHD94DNXAAAAAJAHCFcAAAAAkAcIVwAAAACQBwhXAAAAAJAHCFcAAAAAkAcIVwAAAACQBwhXAAAAAJAHCFcAAAAAkAcIVwCAAnHw4EHZbDZt3769sIdit2vXLt1xxx3y8fFRnTp1Cns4Werevbvat29vv920aVMNHDjwqo+JiIjQ5MmT83VcAIDMCFcAcIPo3r27bDabXn31VYf2JUuWyGazFdKoCldMTIyKFCmi3bt3a+XKldn2O378uJ5++mlVqFBB3t7eCg8PV9u2ba/6mPyyaNEivfTSS3l6zNmzZyswMDBPjwkANyLCFQDcQHx8fDRhwgT9888/hT2UPJOUlJTrx+7bt0+NGjVSuXLlVLJkySz7HDx4UHXr1tWqVav0+uuv69dff9Xy5ct11113qV+/frk+d26VKFFCRYsWLfDzAgCujXAFADeQ5s2bKyQkROPHj8+2z+jRozOVyE2ePFkRERH22xmlauPGjVNwcLACAwM1duxYpaSkaNiwYSpRooTKli2rWbNmZTr+rl271KBBA/n4+KhmzZr67rvvHO7fsWOHWrVqJX9/fwUHB+uxxx7T6dOn7fc3bdpU/fv318CBA1WqVClFR0dn+TzS0tI0duxYlS1bVt7e3qpTp46WL19uv99ms2nLli0aO3asbDabRo8eneVx+vbtK5vNps2bN+uBBx5QlSpVVKNGDQ0ePFg//PCDvd+kSZNUq1YtFSlSROHh4erbt68uXLhgvz9jdWjFihW6+eab5e/vr5YtW+rYsWP2PqmpqRo8eLACAwNVsmRJDR8+XMYYh/FcWRZ48uRJtW3bVr6+vipfvrw++uijTM/hamNbs2aNevTooXPnzslmszm8FomJiRo6dKjKlCmjIkWKKDIyUmvWrLEf988//1Tbtm1VvHhxFSlSRDVq1NDSpUuzfB0B4EZAuAKAG4i7u7vGjRunqVOn6q+//vpXx1q1apWOHj2qtWvXatKkSYqJidG9996r4sWLa9OmTerTp4+efPLJTOcZNmyYhgwZom3btikqKkpt27bVmTNnJElnz57V3XffrVtvvVU//fSTli9frhMnTuihhx5yOMacOXPk5eWlDRs2aMaMGVmOb8qUKZo4caLeeOMN/fLLL4qOjtZ9992nPXv2SJKOHTumGjVqaMiQITp27JiGDh2a6Rh///23li9frn79+qlIkSKZ7r+8lM7NzU1vvfWWfvvtN82ZM0erVq3S8OHDHfrHx8frjTfe0Ny5c7V27VodOnTI4bwTJ07U7NmzNXPmTK1fv15///23Fi9efJV3IT3oHj58WKtXr9aCBQs0ffp0nTx50qHP1cbWoEEDTZ48WQEBATp27JjDa9G/f39t3LhR8+bN0y+//KIHH3xQLVu2tL+G/fr1U2JiotauXatff/1VEyZMkL+//1XHCwDXNQMAuCF069bNtGvXzhhjzB133GF69uxpjDFm8eLF5vL/HcTExJjatWs7PPbNN9805cqVczhWuXLlTGpqqr2tatWq5s4777TfTklJMUWKFDGffPKJMcaYAwcOGEnm1VdftfdJTk42ZcuWNRMmTDDGGPPSSy+ZFi1aOJz78OHDRpLZvXu3McaYJk2amFtvvfWazzcsLMy88sorDm2333676du3r/127dq1TUxMTLbH2LRpk5FkFi1adM3zXemzzz4zJUuWtN+eNWuWkWT27t1rb5s2bZoJDg623w4NDTWvvfaa/XbG65PxvhmT/vwHDBhgjDFm9+7dRpLZvHmz/f6dO3caSebNN9/M0diKFSvm0OfPP/807u7u5siRIw7tzZo1MyNHjjTGGFOrVi0zevTo7F8EALjBeBRirgMAFJIJEybo7rvvznK1xlk1atSQm9v/CiCCg4NVs2ZN+213d3eVLFky0ypKVFSU/e8eHh6qV6+edu7cKUn6+eeftXr16ixXP/bt26cqVapIkurWrXvVscXFxeno0aNq2LChQ3vDhg31888/O/kMlakk72q+/fZbjR8/Xrt27VJcXJxSUlKUkJCg+Ph4+fn5SZL8/PxUsWJF+2NCQ0Ptr8+5c+d07NgxRUZG2u/PeH2yG8fOnTvl4eHh8HpUq1Yt0+YUzoztSr/++qtSU1Ptr3mGxMRE++fTnnnmGT311FP65ptv1Lx5cz3wwAO65ZZbnHzFAOD6Q1kgANyAGjdurOjoaI0cOTLTfW5ubpku5pOTkzP18/T0dLhts9mybEtLS3N6XBcuXFDbtm21fft2h589e/aocePG9n5Zlejlh8qVK8tms2nXrl1X7Xfw4EHde++9uuWWW7Rw4UJt2bJF06ZNk+S44UZWr09OAlxuODu2K124cEHu7u7asmWLw3uxc+dOTZkyRZLUq1cv7d+/X4899ph+/fVX1atXT1OnTs3X5wMAVka4AoAb1Kuvvqovv/xSGzdudGgPCgrS8ePHHS768/K7qS7fBCIlJUVbtmzRzTffLEm67bbb9NtvvykiIkKVKlVy+MlJoAoICFBYWJg2bNjg0L5hwwZVr17d6eOUKFFC0dHRmjZtmi5evJjp/rNnz0qStmzZorS0NE2cOFF33HGHqlSpoqNHjzp9HkkqVqyYQkNDtWnTJntbxuuTnWrVqmXqs3v3bvu4nB2bl5eXUlNTHdpuvfVWpaam6uTJk5nei5CQEHu/8PBw9enTR4sWLdKQIUP0/vvv5+h5A8D1hHAFADeoWrVqqUuXLnrrrbcc2ps2bapTp07ptdde0759+zRt2jQtW7Ysz847bdo0LV68WLt27VK/fv30zz//qGfPnpLSN0j4+++/1blzZ/3444/at2+fVqxYoR49emS6+L+WYcOGacKECZo/f752796tESNGaPv27RowYECOx5uamqr69etr4cKF2rNnj3bu3Km33nrLXuJYqVIlJScna+rUqdq/f7/mzp2b7UYbVzNgwAC9+uqrWrJkiXbt2qW+ffs6BKUrVa1aVS1bttSTTz6pTZs2acuWLerVq5d8fX3tfZwZW0REhC5cuKCVK1fq9OnTio+PV5UqVdSlSxd17dpVixYt0oEDB7R582aNHz9eX3/9tSRp4MCBWrFihQ4cOKCtW7dq9erV9qAMADciwhUA3MDGjh2bqWzv5ptv1vTp0zVt2jTVrl1bmzdv/lefzbrSq6++qldffVW1a9fW+vXr9cUXX6hUqVKSZF9tSk1NVYsWLVSrVi0NHDhQgYGBDp/vcsYzzzyjwYMHa8iQIapVq5aWL1+uL774QpUrV87RcSpUqKCtW7fqrrvu0pAhQ1SzZk3dc889Wrlypd555x1JUu3atTVp0iRNmDBBNWvW1EcffXTV7e6zM2TIED322GPq1q2boqKiVLRoUXXo0OGqj5k1a5bCwsLUpEkT3X///XriiSdUunRp+/3OjK1Bgwbq06ePOnXqpKCgIL322mv2Y3ft2lVDhgxR1apV1b59e/3444+66aabJKVvHd+vXz/dfPPNatmypapUqaLp06fn+HkDwPXCZvK72BsAAAAAbgCsXAEAAABAHiBcAQAAAEAeIFwBAAAAQB4gXAEAAABAHiBcAQAAAEAeIFwBAAAAQB4gXAEAAABAHiBcAQAAAEAeIFwBAAAAQB4gXAEAAABAHiBcAQAAAEAe+H8KFSyFeZXdfwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbmNJREFUeJzt3XmcjeX/x/H3mTH7GGOfGYYZ+9oooqEskbEklJKUrZRQxhptlspSiCRS30z5KsmWytJkyZIQRsmSNbJXGGPMeq7fH35zvo4ZzHKPMbyej8c8ONd9nev+3Odcxrznvu/r2IwxRgAAAACAHHHJ6wIAAAAA4FZAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4ApAvjBgxQjabLa/LuO3YbDb17ds3r8vIlJSUFA0ZMkTBwcFycXFRu3bt8rqkLGvcuLEaN27seHzo0CHZbDZFRUVd97ndunVTSEhIrtWWW06ePKkOHTqoaNGistlsmjRpUl6XBADZRrgCbiFRUVGy2WyOrwIFCqhUqVLq1q2bjh49mq0xd+7cqREjRujQoUPWFpuB+Ph4jRgxQqtXr871fd0s0n54ttlsmj9/frrtaaHy77//zoPq8pdPPvlE77zzjjp06KBPP/1U/fv3v+5zFi5cqJYtW6pYsWJyd3dXUFCQHnvsMa1cufIGVHzzGD16tBYtWpQn++7fv7+WL1+uYcOGadasWWrRokWu7Kdbt25O3x+v9tWtW7dc2f/l0v7djx8/3qndGKPnnntONptNI0aMyPU60nz//fd6+umnVaNGDbm6ul4zpNvtdr399tsKDQ2Vp6en7rjjDn3xxRcZ9t21a5datGghX19fFSlSRE899ZROnz6dS0cB3BwK5HUBAKw3atQohYaGKiEhQT///LOioqK0bt067dixQ56enlkaa+fOnRo5cqQaN26c678Vj4+P18iRIyXJ6bf3kvTqq69q6NChubr/vDZq1Cg9/PDDnKHLppUrV6pUqVJ69913r9vXGKMePXooKipKd955pwYMGKCAgAAdP35cCxcuVNOmTbV+/XrVr1//BlR+dWXLltXFixfl5uaWq/sZPXq0OnTokCdn+1auXKm2bdtq0KBBubqf5557Ts2aNXM8PnjwoF5//XU9++yzuu+++xzt5cuXz9U6rsYYo969e2vGjBl67bXXbmi4+vzzz/Xll1/qrrvuUlBQ0DX7vvLKKxo7dqx69uypu+++W19//bWeeOIJ2Ww2Pf74445+f/31lxo2bKhChQpp9OjRiouL0/jx4/Xbb79p06ZNcnd3z+3DAvIE4Qq4BbVs2VJ16tSRJD3zzDMqVqyYxo0bp8WLF+uxxx7L4+qyp0CBAipQ4Nb9llWrVi3FxMRo4cKFevjhh/O6nBsqISFB7u7ucnHJ2cUUp06dkr+/f6b6TpgwQVFRUYqMjNTEiROdAu0rr7yiWbNm3RTzzWazZfkXIvlNVt63zLjafAoPD1d4eLjj8S+//KLXX39d4eHhevLJJy3bf3a98MILmj59ul555RWNGjXqhu579OjR+uijj+Tm5qYHH3xQO3bsyLDf0aNHNWHCBPXp00fvv/++pEv/xzRq1EiDBw/Wo48+KldXV8eYFy5c0JYtW1SmTBlJUt26dfXAAw8oKipKzz777I05OOAG47JA4DaQ9lvZ/fv3O7Xv3r1bHTp0UJEiReTp6ak6depo8eLFju1RUVF69NFHJUlNmjRxXDZz+WV7S5cu1X333ScfHx8VLFhQrVu31u+//+60n27dusnX11dHjx5Vu3bt5Ovrq+LFi2vQoEFKTU2VdOkymeLFi0uSRo4c6dhX2m9vM7rnKiUlRW+88YbKly8vDw8PhYSE6OWXX1ZiYqJTv5CQED344INat26d6tatK09PT5UrV06fffbZNV+35ORkFSlSRN27d0+3LTY2Vp6enk6/bZ8yZYqqV68ub29vFS5cWHXq1NHnn39+zX2kefzxx1WpUiWNGjVKxphr9g0JCcnw0qUr79dZvXq1bDab5s6dq5EjR6pUqVIqWLCgOnTooHPnzikxMVGRkZEqUaKEfH191b1793SvXZrZs2ercuXK8vT0VO3atbVmzZp0fY4ePaoePXqoZMmS8vDwUPXq1fXJJ5849Umrac6cOXr11VdVqlQpeXt7KzY29qrHe+HCBQ0cOFDBwcHy8PBQ5cqVNX78eMfrlHaJ1apVq/T7779nOE8vd/HiRY0ZM0ZVqlTR+PHjMzxT+NRTT6lu3bqSpH///VeDBg1SzZo15evrKz8/P7Vs2VLbt2/P8Njmzp2rt956S6VLl5anp6eaNm2qffv2pdvHjBkzVL58eXl5ealu3bpau3Ztuj5Xu+dq0aJFqlGjhjw9PVWjRg0tXLgww2MdP3686tevr6JFi8rLy0u1a9fWvHnznPrYbDZduHBBn376aYaXxmXmfZWyPv/TLmM2xmjq1KmOfac5cOCAHn30URUpUkTe3t6655579N133zmNkZ35dD1fffWVateuLS8vLxUrVkxPPvlkusuq076nHThwQBEREfLx8VFQUFCm/v1mpF+/fpo6daqGDRumN998M9u1Z1dQUFCmzo5+/fXXSk5OVu/evR1tNptNzz//vP766y9t2LDB0T5//nw9+OCDjmAlSc2aNVOlSpU0d+5caw8AuInk/a/lAOS6tPulChcu7Gj7/fff1aBBA5UqVUpDhw6Vj4+P5s6dq3bt2mn+/Plq3769GjZsqBdffFHvvfeeXn75ZVWtWlWSHH/OmjVLXbt2VUREhMaNG6f4+HhNmzZN9957r7Zt2+Z0GWFqaqoiIiJUr149jR8/Xj/88IMmTJig8uXL6/nnn1fx4sU1bdo0Pf/882rfvr3j7M0dd9xx1eN65pln9Omnn6pDhw4aOHCgNm7cqDFjxmjXrl3pftjct2+fOnTooKefflpdu3bVJ598om7duql27dqqXr16huO7ubmpffv2WrBggT788EOny1gWLVqkxMREx2UwH330kV588UV16NBB/fr1U0JCgn799Vdt3LhRTzzxxHXfI1dXV7366qvq0qWL5WevxowZIy8vLw0dOlT79u3TlClT5ObmJhcXF505c0YjRoxwXD4aGhqq119/3en5P/74o7788ku9+OKL8vDw0AcffKAWLVpo06ZNqlGjhqRLixLcc889jgUwihcvrqVLl+rpp59WbGysIiMjncZ844035O7urkGDBikxMfGqlwgZY/TQQw9p1apVevrpp1WrVi0tX75cgwcP1tGjR/Xuu++qePHimjVrlt566y3FxcVpzJgxkv43T6+0bt06/fvvv4qMjHT8lv1aDhw4oEWLFunRRx9VaGioTp48qQ8//FCNGjXSzp07011GNXbsWLm4uGjQoEE6d+6c3n77bXXu3FkbN2509PnPf/6j5557TvXr11dkZKQOHDighx56SEWKFFFwcPA16/n+++/1yCOPqFq1ahozZoz++ecfde/eXaVLl07Xd/LkyXrooYfUuXNnJSUlac6cOXr00Uf17bffqnXr1pIu/Tt+5plnVLduXcfZhLRL4zL7vmZn/jds2FCzZs3SU089pQceeEBdunRxbDt58qTq16+v+Ph4vfjiiypatKg+/fRTPfTQQ5o3b57at2/vNFZm59P1REVFqXv37rr77rs1ZswYnTx5UpMnT9b69eu1bds2pzNsqampatGihe655x69/fbbWrZsmYYPH66UlJQsnXnq37+/3nvvPb300ksaPXp0pp935swZxy+nrsXb21ve3t6ZHvdatm3bJh8fn3T/ttJ+EbFt2zbde++9Onr0qE6dOuW4guLKvkuWLLGkHuCmZADcMmbOnGkkmR9++MGcPn3aHDlyxMybN88UL17ceHh4mCNHjjj6Nm3a1NSsWdMkJCQ42ux2u6lfv76pWLGio+2rr74yksyqVauc9nX+/Hnj7+9vevbs6dR+4sQJU6hQIaf2rl27Gklm1KhRTn3vvPNOU7t2bcfj06dPG0lm+PDh6Y5t+PDh5vJvWTExMUaSeeaZZ5z6DRo0yEgyK1eudLSVLVvWSDJr1qxxtJ06dcp4eHiYgQMHptvX5ZYvX24kmW+++capvVWrVqZcuXKOx23btjXVq1e/5lgZOXjwoJFk3nnnHZOSkmIqVqxowsLCjN1udzru06dPOx1P165d043VqFEj06hRI8fjVatWGUmmRo0aJikpydHeqVMnY7PZTMuWLZ2eHx4ebsqWLevUJslIMr/88ouj7c8//zSenp6mffv2jrann37aBAYGmr///tvp+Y8//rgpVKiQiY+Pd6qpXLlyjrZrWbRokZFk3nzzTaf2Dh06GJvNZvbt2+d0/Jl5DyZPnmwkmYULF163rzHGJCQkmNTUVKe2gwcPGg8PD6c5nXZsVatWNYmJien299tvvxljjElKSjIlSpQwtWrVcuo3Y8YMI8npPUybHzNnznS01apVywQGBpqzZ8862r7//nsjKd37d+VrnJSUZGrUqGHuv/9+p3YfH58M51Rm39fszn9jLs2xPn36OLVFRkYaSWbt2rWOtvPnz5vQ0FATEhLieD+yOp8ut3nzZqfXNu19qVGjhrl48aKj37fffmskmddff93RlvY97YUXXnC02e1207p1a+Pu7u707zUjae9r2vemwYMHZ6l2Y/73fe16Xxl9P72W1q1bp5tHl2+7/PtemgsXLhhJZujQocaY/722n332Wbq+gwcPNpKc/u8BbiVcFgjcgpo1a6bixYsrODhYHTp0kI+PjxYvXuz4zfa///6rlStX6rHHHtP58+f1999/6++//9Y///yjiIgI7d2797qrC0ZHR+vs2bPq1KmT4/l///23XF1dVa9ePa1atSrdc3r16uX0+L777tOBAweydYxpv/kcMGCAU/vAgQMlKd3lQ9WqVXO6ab148eKqXLnydfd///33q1ixYvryyy8dbWfOnFF0dLQ6duzoaPP399dff/2lzZs3Z+t4pP+dvdq+fbulK7d16dLF6ZKfevXqORZ0uFy9evV05MgRpaSkOLWHh4erdu3ajsdlypRR27ZttXz5cqWmpsoYo/nz56tNmzYyxjjNh4iICJ07d05bt251GrNr167y8vK6bu1LliyRq6urXnzxRaf2gQMHyhijpUuXZvp1SJN2yVjBggUz1d/Dw8Nx/05qaqr++ecf+fr6qnLlyumOS5K6d+/udOYkbd6lzbVffvlFp06dUq9evZz6devWTYUKFbpmLcePH1dMTIy6du3q1PeBBx5QtWrV0vW//DU+c+aMzp07p/vuuy/Duq+UlffVivl/uSVLlqhu3bq69957HW2+vr569tlndejQIe3cudOpf2bn07WkvS+9e/d2us+tdevWqlKlSrrvKZKcPqYg7exeUlKSfvjhh0zt8+TJk5KkSpUqZbne2bNnKzo6+rpfl58RzKmLFy/Kw8MjXXva63Xx4kWnPzPTF7jVcFkgcAuaOnWqKlWqpHPnzumTTz7RmjVrnP6T27dvn4wxeu211/Taa69lOMapU6dUqlSpq+5j7969ki6Fj4z4+fk5Pfb09HTcU5WmcOHCOnPmTKaO6Up//vmnXFxcVKFCBaf2gIAA+fv7688//3Rqv/y6/6zsv0CBAnrkkUf0+eefKzExUR4eHlqwYIGSk5OdwtVLL72kH374QXXr1lWFChXUvHlzPfHEE2rQoEGWjqtz58564403NGrUKMtWbrvy2NN+KL/y8rNChQrJbrfr3LlzKlq0qKO9YsWK6casVKmS4uPjdfr0abm4uOjs2bOaMWOGZsyYkWENp06dcnocGhqaqdr//PNPBQUFpQtCaZclXfk+Z0ba3Dx//nym+tvtdk2ePFkffPCBDh486HQp1uWvU5orX++0y3HT5lpazVe+rm5ubipXrtw1a7nacyVlGPa+/fZbvfnmm4qJiXG6ny4zK1KePn060++rVfM/zZ9//ql69eqla7/8fU+7JFXK/Hy63j6lS6/jlapUqaJ169Y5tbm4uKR7v9JCUtql2KdPn3aaL76+vvL19XU8fumll7RkyRI999xz8vf3V4cOHTJdb3Zf25zw8vLK8L7MhIQEx/bL/8xMX+BWQ7gCbkF169Z1XOverl073XvvvXriiSe0Z88e+fr6ym63S5IGDRqkiIiIDMe4MrRcKW2MWbNmKSAgIN32K1day8y9LdmR2WXLr7Z/k4mbzx9//HF9+OGHWrp0qdq1a6e5c+eqSpUqCgsLc/SpWrWq9uzZo2+//VbLli3T/Pnz9cEHH+j11193LC+f2TpfffVVdevWTV9//XWGfa52zKmpqRke59WOPSevyeXS5sKTTz6prl27Ztjnynvn8vIHqypVqkiSfvvtt0wF2NGjR+u1115Tjx499MYbb6hIkSJycXFRZGSk49gvZ9XrmlNr167VQw89pIYNG+qDDz5QYGCg3NzcNHPmzEwttJKV99Wq+Z9dN+sP6nfffbfTLwCGDx/utMS6r6+vli5dqoYNG6pz587y8/NT8+bNMzX2lcHtaq4MdDkRGBioVatWyRjj9H3o+PHjkuS4/zAwMNCp/XLHjx9XkSJFMjyrBdwKCFfALc7V1VVjxoxRkyZN9P7772vo0KGO37a6ubk5fe5LRq72g3zaDe8lSpS47hiZlZXPdypbtqzsdrv27t3rdHP1yZMndfbsWZUtW9aSmqRLN94HBgbqyy+/1L333quVK1fqlVdeSdfPx8dHHTt2VMeOHZWUlKSHH35Yb731loYNG5al5bSffPJJvfnmmxo5cqQeeuihdNsLFy6ss2fPpmv/888/r3vmIzvSzlJe7o8//pC3t7fjbGTBggWVmppq2VxIU7ZsWf3www86f/6809mr3bt3O7Zn1b333qvChQvriy++0Msvv3zd4D9v3jw1adJE//nPf5zaz549q2LFimV5/2k179271+nMb3Jysg4ePOgU2q/13Cvt2bPH6fH8+fPl6emp5cuXO/0gO3PmzHTPzejfXvHixbP0vlo1/6VLx3nl8Ug5e98zs0/p0ut45Rn5PXv2pNun3W7XgQMHnC7p++OPPyTJsZjP7NmznS5/y+jfZ9GiRfX999+rQYMGevjhhxUdHe20ZPzVXBncrubKQJcTtWrV0scff6xdu3Y5XYaatlhLrVq1JEmlSpVS8eLF9csvv6QbY9OmTY5+wK2Ie66A20Djxo1Vt25dTZo0SQkJCSpRooQaN26sDz/8MMPfLJ4+fdrxdx8fH0lK98N8RESE/Pz8NHr0aCUnJ19zjMxKW9Eqo+BwpVatWkmSJk2a5NQ+ceJESXKshGYFFxcXdejQQd98841mzZqllJQUp0sCJemff/5xeuzu7q5q1arJGJPh63MtaWevYmJinJbGT1O+fHn9/PPPSkpKcrR9++23OnLkSJb2k1kbNmxwutzsyJEj+vrrr9W8eXO5urrK1dVVjzzyiObPn5/h5+NkZy6kadWqlVJTUx2fqZPm3Xfflc1mU8uWLbM8pre3t1566SXt2rVLL730UoZnlP773/9q06ZNki69H1f2+eqrr657X+LV1KlTR8WLF9f06dOd3sOoqKjrzv3AwEDVqlVLn376qc6dO+doj46OTncfkqurq2w2m9PZjUOHDmV4P5+Pj0+6fWflfbVy/kuX3vdNmzY5Le194cIFzZgxQyEhIRneX5ZTderUUYkSJTR9+nSny9mWLl2qXbt2Zfg95fJ5aYzR+++/Lzc3NzVt2lTSpUv3mjVr5vi62i8/SpUqpejoaPn4+Kh169b67bffrltvXtxz1bZtW7m5uemDDz5wtBljNH36dJUqVcrpQ7cfeeSRdN+XVqxYoT/++MPxER/ArYgzV8BtIu0DHqOiotSrVy9NnTpV9957r2rWrKmePXuqXLlyOnnypDZs2KC//vrL8Rk+tWrVkqurq8aNG6dz587Jw8ND999/v0qUKKFp06bpqaee0l133aXHH39cxYsX1+HDh/Xdd9+pQYMG6X4gvh4vLy9Vq1ZNX375pSpVqqQiRYqoRo0aTvdWpAkLC1PXrl01Y8YMnT17Vo0aNdKmTZv06aefql27dmrSpIklr1uajh07asqUKRo+fLhq1qyZbini5s2bKyAgQA0aNFDJkiW1a9cuvf/++2rdunWmF064XNq9VzExMem2PfPMM5o3b55atGihxx57TPv379d///tfx9lEq9WoUUMRERFOS7FLcrrca+zYsVq1apXq1aunnj17qlq1avr333+1detW/fDDD/r333+zte82bdqoSZMmeuWVV3To0CGFhYXp+++/19dff63IyMhsH/PgwYP1+++/a8KECVq1apU6dOiggIAAnThxQosWLdKmTZv0008/SZIefPBBjRo1St27d1f9+vX122+/afbs2dk+S+jm5qY333xTzz33nO6//3517NhRBw8e1MyZMzM15pgxY9S6dWvde++96tGjh/7991/HZ0zFxcU5+rVu3VoTJ05UixYt9MQTT+jUqVOaOnWqKlSooF9//dVpzNq1a+uHH37QxIkTFRQUpNDQUNWrVy/T76vV83/o0KH64osv1LJlS7344osqUqSIPv30Ux08eFDz58/P8QdOZ8TNzU3jxo1T9+7d1ahRI3Xq1MmxFHtISIj69+/v1N/T01PLli1T165dVa9ePS1dulTfffedXn755XT3l2ZGxYoVtXz5cjVu3FgRERFat27dNeeDlfdc/frrr45f5Ozbt0/nzp1zfN5WWFiY2rRpI0kqXbq0IiMj9c477yg5OVl33323Fi1apLVr12r27NlOZ4FffvllffXVV2rSpIn69eunuLg4vfPOO6pZs2aGnx0I3DJu+PqEAHJN2lLsmzdvTrctNTXVlC9f3pQvX96kpKQYY4zZv3+/6dKliwkICDBubm6mVKlS5sEHHzTz5s1zeu5HH31kypUrZ1xdXdMty75q1SoTERFhChUqZDw9PU358uVNt27dnJbu7tq1q/Hx8UlX05XLqxtjzE8//WRq165t3N3dnZYRzqhvcnKyGTlypAkNDTVubm4mODjYDBs2LN0Sv2XLljWtW7dOt/8rly6/FrvdboKDgzNcFtwYYz788EPTsGFDU7RoUePh4WHKly9vBg8ebM6dO3fNcS9fiv1Kae+nrliK3RhjJkyYYEqVKmU8PDxMgwYNzC+//HLVpdi/+uqrDMe9cp5ktOy7/n+Z7P/+97+mYsWKxsPDw9x5553pluY3xpiTJ0+aPn36mODgYOPm5mYCAgJM06ZNzYwZM65b07WcP3/e9O/f3wQFBRk3NzdTsWJF88477ziWq0+T2aXYLzdv3jzTvHlzU6RIEVOgQAETGBhoOnbsaFavXu3ok5CQYAYOHGgCAwONl5eXadCggdmwYUOmX++MllM3xpgPPvjAhIaGGg8PD1OnTh2zZs2adGNe7bnz5883VatWNR4eHqZatWpmwYIFpmvXrumW0P7Pf/7jeN+qVKliZs6cmeG/pd27d5uGDRsaLy8vI8lpWfbMvK/Znf/GZLwUuzGXvj916NDB+Pv7G09PT1O3bl3z7bffOvXJznxKc+VS7Gm+/PJLc+eddxoPDw9TpEgR07lzZ/PXX3859Un7nrZ//37TvHlz4+3tbUqWLGmGDx+ebtn+jFzr3/3atWuNl5eXCQ0NNUePHs3ycWXH5d9rrvy6con+1NRUM3r0aFO2bFnj7u5uqlevbv773/9mOO6OHTscr4+/v7/p3LmzOXHixA04IiDv2Iy5wXfYAgAA5GPdunXTvHnznM4UAoDEPVcAAAAAYAnCFQAAAABYgHAFAAAAABbgnisAAAAAsABnrgAAAADAAoQrAAAAALAAHyKcAbvdrmPHjqlgwYKy2Wx5XQ4AAACAPGKM0fnz5xUUFHTdDzEnXGXg2LFjCg4OzusyAAAAANwkjhw5otKlS1+zD+EqAwULFpR06QX08/OzZMzk5GR9//33at68udzc3CwZE7cP5g9ygvmD7GLuICeYP8iJm2n+xMbGKjg42JERroVwlYG0SwH9/PwsDVfe3t7y8/PL8wmC/If5g5xg/iC7mDvICeYPcuJmnD+ZuV2IBS0AAAAAwAKEKwAAAACwAOEKAAAAACzAPVcAAAC4bRljlJKSotTU1LwuBZdJTk5WgQIFlJCQkOvvjaurqwoUKGDJRzARrgAAAHBbSkpK0vHjxxUfH5/XpeAKxhgFBAToyJEjN+RzZ729vRUYGCh3d/ccjUO4AgAAwG3Hbrfr4MGDcnV1VVBQkNzd3W/ID/HIHLvdrri4OPn6+l73g3tzwhijpKQknT59WgcPHlTFihVztD/CFQAAAG47SUlJstvtCg4Olre3d16XgyvY7XYlJSXJ09MzV8OVJHl5ecnNzU1//vmnY5/ZxYIWAAAAuG3l9g/uyB+smgfMJgAAAACwAOEKAAAAACxAuAIAAAByIDVVWr1a+uKLS3/m9qruxhg9++yzKlKkiGw2m/z9/RUZGZm7O0WmEK4AAACAbFqwQAoJkZo0kZ544tKfISGX2nPLsmXLFBUVpW+//VbHjx9XjRo1LN9H48aN0wW2f/75Ry1atFBQUJA8PDwUHBysvn37KjY21tFnwYIFeuCBB1S8eHH5+fkpPDxcy5cvt7y+mxXhCgAAAMiGBQukDh2kv/5ybj969FJ7bgWs/fv3KzAwUPXr11dAQIAKFLgxC4C7uLiobdu2Wrx4sf744w9FRUXphx9+UK9evRx91qxZowceeEBLlizRli1b1KRJE7Vp00bbtm27ITXmNcIVAAAAIMkY6cKFzH3FxkovvnjpORmNI0n9+l3qd72xMhrjarp166YXXnhBhw8fls1mU0hISLo+Z86cUZcuXVS4cGF5e3urZcuW2rt3r2P7P//8o06dOqlUqVLy9vZWzZo19cUXXzjt48cff9TkyZNls9lks9l06NAhFS5cWM8//7zq1KmjsmXLqmnTpurdu7fWrl3reO6kSZM0ZMgQ3X333apYsaJGjx6tihUr6ptvvsnU8S1btkz33nuvihQponLlyqlNmzbav3+/Y/uhQ4dks9m0YMECNWnSRN7e3goLC9OGDRscfaKiouTv76/ly5eratWq8vX1VYsWLXT8+PHMv9DZRLgCAAAAJMXHS76+mfsqVOjSGaqrMebSGa1Cha4/Vnx85mucPHmyRo0apdKlS+v48ePavHlzuj7dunXTL7/8osWLF2vDhg0yxqhVq1ZKTk6WJCUkJKh27dr67rvvtGPHDj377LN66qmntGnTJsc+wsPD1bNnTx0/flzHjx9XcHBwuv0cO3ZMCxYsUKNGja5ar91u1/nz51WkSJFMHd+FCxc0YMAAbdq0SV9//bVcXFzUvn172e12p36vvPKKBg0apJiYGFWqVEmdOnVSSkqKY3t8fLzGjx+vWbNmac2aNTp8+LAGDRqUqRpygg8RBgAAAPKJQoUKqWDBgnJ1dVVAQEC67Xv37tXixYu1fv161a9fX5I0e/ZsBQcHa9GiRXr00UdVqlQpp6DxwgsvaPny5Zo7d67q1q2rQoUKyd3dXd7e3hnuo1OnTvr666918eJFtWnTRh9//PFV6x0/frzi4uL02GOPZer4HnnkEUmXQlmJEiX0n//8RyVLltTOnTud7i0bNGiQWrduLUkaOXKkqlevrn379qlKlSqSpOTkZE2fPl3ly5eXJPXt21ejRo3KVA05wZkrAAAAQJK3txQXl7mvJUsyN+aSJdcfy9vbumPYtWuXChQooHr16jnaihYtqsqVK2vXrl2SpNTUVL3xxhuqWbOmihQpIl9fXy1fvlyHDx/O1D7effddbd26VV9//bX279+vAQMGZNjv888/18iRIzV37lyVKFEiU2Pv3btXnTp1UoUKFVSmTBmVK1dOktLVdscddzj+HhgYKEk6deqUo83b29sRrNL6XL49t3DmCgAAAJBks0k+Ppnr27y5VLr0pUsDM7pnyma7tL15c8nV1do6c+qdd97R5MmTNWnSJNWsWVM+Pj6KjIxUUlJSpp4fEBCggIAAValSRUWKFNF9992n1157zRFyJGnOnDl65pln9NVXX6lZs2aZrq1NmzYqW7asPvzwQ/n5+cnb21t33HFHutrc3Nwcf7fZbJLkdOng5dvT+pis3NyWTZy5AgAAALLI1VWaPPnS3///Z3uHtMeTJt34YFW1alWlpKRo48aNjrZ//vlHe/bsUbVq1SRJ69evV9u2bfXkk08qLCxM5cqV0x9//OE0jru7u1Iz8YFdaYEmMTHR0fbFF1+oe/fu+uKLLxyX7mVGWp2vvvqqmjZtqsqVK+vMmTOZfv7NgHAFAAAAZMPDD0vz5kmlSjm3ly59qf3hh298TRUrVlTbtm3Vs2dPrVu3Ttu3b9eTTz6pUqVKqW3bto4+0dHR+umnn7Rr1y4999xzOnnypNM4ISEh2rhxow4dOqS///5bdrtdS5Ys0cyZM7Vjxw4dOnRI3333nXr16qUGDRo4Vi38/PPP1aVLF02YMEH16tXTiRMndOLECZ07d+66tRcuXFhFixbVjBkztG/fPq1Zs+aGLEJhJcIVAAAAkE0PPywdOiStWiV9/vmlPw8ezJtglWbmzJmqXbu2HnzwQYWHh8sYoyVLljgulXv11Vd11113KSIiQo0bN1ZAQIDatWvnNMagQYPk6uqqatWqqXjx4jp8+LC8vLz00Ucf6d5771XVqlXVv39/PfTQQ/r2228dz5sxY4ZSUlLUp08fBQYGOr769et33bpdXFw0Z84cbdmyRXfccYdefvlljRs3ztLXJrfZzI24+DCfiY2NVaFChXTu3Dn5+flZMmZycrKWLFmiVq1apbsGFLge5g9ygvmD7GLuICdu9vmTkJCggwcPKjQ0VJ6ennldDq5gt9sVGxsrPz8/ubjk/vmga82HrGQDzlwBAAAAgAUIVwAAAABy3eHDh+Xr63vVr8wuBX8zYyl2AAAAALkuKChIMTEx19ye3xGuAAAAAOS6AgUKqEKFCnldRq7iskAAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAADICXuqdHK1dOiLS3/aU/O6omyJioqSv79/XpeRr7EUOwAAAJBdRxZIW/pJ8X/9r827tFR7shT8cN7VhTzBmSsAAAAgO44skNZ2cA5WkhR/9FL7kQV5U1ceSkpKyusS8hThCgAAAJAkY6SUC5n7SoqVfnlRkslooEt//NLvUr/rjWUyGuPq5s2bp5o1a8rLy0tFixZVs2bNdOHCBUnSJ598ourVq8vDw0OBgYHq27ev43kTJ05UzZo15ePjo+DgYPXu3VtxcXFX3c/+/fvVtm1blSxZUr6+vrr77rv1ww8/OPUJCQnRG2+8oS5dusjPz0/PPvtslo7lVsNlgQAAAIAkpcZLc30tGsxIF/+S5hW6ftfH4qQCPpka9fjx4+rUqZPefvtttW/fXufPn9fatWtljNG0adM0YMAAjR07Vi1bttS5c+e0fv16x3NdXFz03nvvKTQ0VAcOHFDv3r01ZMgQffDBBxnuKy4uTq1atdJbb70lDw8PffbZZ2rTpo327NmjMmXKOPqNHz9er7/+uoYPH56pY7iVEa4AAACAfOL48eNKSUnRww8/rLJly0qSatasKUl68803NXDgQPXr18/R/+6773b8PTIy0vH3kJAQvfnmm+rVq9dVw1VYWJjCwsIcj9944w0tXLhQixcvdjojdv/992vgwIGWHF9+R7gCAAAAJMnV+9JZpMw4tUZa3er6/RovkUo0vP5+MyksLExNmzZVzZo1FRERoebNm6tDhw5KTk7WsWPH1LRp06s+94cfftCYMWO0e/duxcbGKiUlRQkJCYqPj5e3d/oa4uLiNGLECH333XeOUHfx4kUdPnzYqV+dOnUyXf+tjnuuAAAAAEmy2S5dnpeZr4Dml1YFlO1qg0newZf6XW8s29XGSM/V1VXR0dFaunSpqlWrpilTpqhy5co6efLkNZ936NAhPfjgg7rjjjs0f/58bdmyRVOnTpV09UUoBg0apIULF2r06NFau3atYmJiVLNmzXT9fXwyd0nj7YBwBQAAAGSVi+ul5dYlpQ9Y//+49qRL/Sxms9nUoEEDjRw5Utu2bZO7u7uio6MVEhKiFStWZPicLVu2yG63a8KECbrnnntUqVIlHTt27Jr7Wb9+vbp166b27durZs2aCggI0KFDhyw/nlsJlwUCAAAA2RH8sHTfvKt8ztWkXPmcq40bN2rFihVq3ry5SpQooY0bN+r06dOqWrWqRowYoV69eqlEiRJq2bKlzp8/r/Xr1+uFF15QhQoVlJycrClTpqhNmzZav369pk+ffs19VaxYUQsWLFCbNm1ks9n02muvyW63W35MtxLCFQAAAJBdwQ9LpdpKp9dKF49LXoFS8fty5YyVJPn5+WnNmjWaNGmSYmNjVbZsWU2YMEEtW7aUJCUkJOjdd9/VoEGDVKxYMXXo0EHSpXu1Jk6cqHHjxmnYsGFq2LChxowZoy5dulx1XxMnTlSPHj1Uv359FStWTC+99JJiY2Nz5bhuFYQrAAAAICdcXKWSjW/IrqpWraply5Zddftzzz2n5557LsNt/fv3V//+/Z3annrqKcffu3Xrpm7dujkeh4SEaOXKlU79+/Tp4/SYywSdcc8VAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAOREaqq0erX0xReX/kxNzdXdNW7cWJGRkVfdHhISokmTJuVqDchYgbwuAAAAAMi3FiyQ+vWT/vrrf22lS0uTJ0sPP5wnJW3evFk+Pj55su/bHWeuAAAAgOxYsEDq0ME5WEnS0aOX2hcsyJOyihcvLm9v71zdR1JSUq6On18RrgAAAABJMka6cCFzX7Gx0osvXnpORuNIl85oxcZef6yMxriOlJQU9e3bV4UKFVKxYsX02muvyfz/OFdeFmiz2fTxxx+rffv28vb2VsWKFbV48WLH9tTUVD399NMKDQ2Vl5eXKleurMmTJzvtr1u3bmrXrp3eeustBQUFqXLlyho1apRq1KiRrrZatWrptddey/Ix3QryNFytWbNGbdq0UVBQkGw2mxYtWnTd56xevVp33XWXPDw8VKFCBUVFRV2179ixY2Wz2a55TSoAAAAgSYqPl3x9M/dVqNClM1RXY8ylM1qFCl1/rPj4LJf66aefqkCBAtq0aZMmT56siRMn6uOPP75q/5EjR+qxxx7Tr7/+qlatWqlz5876999/JUl2u12lS5fWV199pZ07d+r111/Xyy+/rLlz5zqNsWLFCu3Zs0fR0dH69ttv1aNHD+3atUubN2929Nm2bZt+/fVXde/ePcvHdCvI03B14cIFhYWFaerUqZnqf/DgQbVu3VpNmjRRTEyMIiMj9cwzz2j58uXp+m7evFkffvih7rjjDqvLBgAAAPJUcHCw3n33XVWuXFmdO3fWCy+8oHffffeq/bt166ZOnTqpQoUKGj16tOLi4rRp0yZJkpubm0aOHKk6deooNDRUnTt3Vvfu3dOFKx8fH3388ceqXr26qlevrtKlSysiIkIzZ8509Jk5c6YaNWqkcuXK5c6B3+TyNFy1bNlSb775ptq3b5+p/tOnT1doaKgmTJigqlWrqm/fvurQoUO6iRQXF6fOnTvro48+UuHChXOjdAAAANxqvL2luLjMfS1Zkrkxlyy5/ljZuD/qnnvukc1mczwODw/X3r17lXqVlQovP+Hg4+MjPz8/nTp1ytE2depU1a5dW8WLF5evr69mzJihw4cPO41Rs2ZNubu7O7X17NlTX3zxhRISEpSUlKTPP/9cPXr0yPLx3Cry1WqBGzZsULNmzZzaIiIi0l3216dPH7Vu3VrNmjXTm2++ed1xExMTlZiY6HgcGxsrSUpOTlZycnLOC///sS7/E8gK5g9ygvmD7GLuICdu9vmTnJwsY4zsdrvsdvv/Nnh5ZW6AZs1kK11aOnpUtgzumTI2m1S6tEyzZpKr67XHMibL912l1Z4m7e9pf1653dXV1emxzWZTSkqK7Ha75syZo0GDBmn8+PG65557VLBgQY0fP16bNm1yGs/b29v5tZLUunVreXh4aP78+XJ3d1dycrIefvjhdP2yKu3+sSuPI7fY7XYZY5ScnCzXK96vrMzhfBWuTpw4oZIlSzq1lSxZUrGxsbp48aK8vLw0Z84cbd261enaz+sZM2aMRo4cma79+++/t3yllejoaEvHw+2F+YOcYP4gu5g7yImbdf4UKFBAAQEBiouLy/bKd26jR8u7a1cZm80pYJn/P6MU/9ZbSr5wwZJ6L5eSkqKff/7ZcUJAurSWQfny5XXhwgXZ7XYlJCQ4bb948aLTY2OMo8/q1atVt25dde7c2bH9jz/+UGpqqtNJh5SUFKcx0nTs2FH/+c9/5Obmpvbt21t6guL8+fOWjHM9SUlJunjxotasWaOUlBSnbfFZuCcuX4Wr6zly5Ij69eun6OhoeXp6Zvp5w4YN04ABAxyPY2NjFRwcrObNm8vPz8+S2pKTkxUdHa0HHnhAbm5uloyJ2wfzBznB/EF2MXeQEzf7/ElISNCRI0fk6+ubpZ8bnXTuLOPlJVv//uk+58pMnCivhx9WJs+DZUmBAgX0119/aeTIkXr22We1detWffTRR3rnnXfk5+cnFxcXeXp6Ov0c6+Xl5fTYZrM5+lSvXl1ffvmlNmzYoNDQUP33v//Vtm3bFBoa6niOm5ubChQokOHPxr1791b16tUlSWvXrrXk52djjM6fP6+CBQs6Xf6YWxISEuTl5aWGDRummw8ZBcqryVfhKiAgQCdPnnRqO3nypPz8/OTl5aUtW7bo1KlTuuuuuxzbU1NTtWbNGr3//vtKTExMd5pPkjw8POTh4ZGu3c3NzfJvBrkxJm4fzB/kBPMH2cXcQU7crPMnNTVVNptNLi4ucnHJwTIEHTpI7dtLa9dKx49LgYGy3XefbNe7FDCHunTpooSEBN1zzz1ydXVVv3791KtXL0cQSTu2NBkdZ1pbr169FBMTo06dOslms6lTp07q3bu3li5d6niOzWZLN2aaypUrq379+vr3338VHh5uyfGlXQp4tX1azcXFRTabLcP5mpX5m6/CVXh4uJZccfNgdHS0401s2rSpfvvtN6ft3bt3V5UqVfTSSy9lGKwAAACAHHF1lRo3vmG7W716tePv06ZNS7f90KFDTo9NBvdznT171vF3Dw8PzZw502nVP+nSrTNprvXxR8YYHTt2TL1797524beBPA1XcXFx2rdvn+PxwYMHFRMToyJFiqhMmTIaNmyYjh49qs8++0yS1KtXL73//vsaMmSIevTooZUrV2ru3Ln67rvvJEkFCxZM90FmPj4+Klq0aIYfcAYAAAAg+06fPq05c+boxIkTt+1nW10uT8PVL7/8oiZNmjgep9331LVrV0VFRen48eNOS0CGhobqu+++U//+/TV58mSVLl1aH3/8sSIiIm547QAAAMDtrkSJEipWrJhmzJjBRyApj8NV48aNMzxNmSaj04+NGzfWtm3bMr2Py0+bAgAAALDOtX6Wvx3l6YcIAwAAAMCtgnAFAACA2xZnXiBZNw8IVwAAALjtpC2vnZUPiMWtK20e5PRjA/LVUuwAAACAFVxdXeXv769Tp05Jkry9vW/Ih9Uic+x2u5KSkpSQkJCrn3NljFF8fLxOnTolf3//HH90E+EKAAAAt6WAgABJcgQs3DyMMbp48aK8vLxuSOj19/d3zIecIFwBAADgtmSz2RQYGKgSJUooOTk5r8vBZZKTk7VmzRo1bNgwx5fqXY+bm1uOz1ilIVwBAADgtubq6mrZD9ewhqurq1JSUuTp6Znr4cpKLGgBAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAXyNFytWbNGbdq0UVBQkGw2mxYtWnTd56xevVp33XWXPDw8VKFCBUVFRTltHzNmjO6++24VLFhQJUqUULt27bRnz57cOQAAAAAA+H95Gq4uXLigsLAwTZ06NVP9Dx48qNatW6tJkyaKiYlRZGSknnnmGS1fvtzR58cff1SfPn30888/Kzo6WsnJyWrevLkuXLiQW4cBAAAAACqQlztv2bKlWrZsmen+06dPV2hoqCZMmCBJqlq1qtatW6d3331XERERkqRly5Y5PScqKkolSpTQli1b1LBhQ+uKBwAAAIDL5Gm4yqoNGzaoWbNmTm0RERGKjIy86nPOnTsnSSpSpMhV+yQmJioxMdHxODY2VpKUnJys5OTkHFT8P2njWDUebi/MH+QE8wfZxdxBTjB/kBM30/zJSg35KlydOHFCJUuWdGorWbKkYmNjdfHiRXl5eTlts9vtioyMVIMGDVSjRo2rjjtmzBiNHDkyXfv3338vb29va4r/f9HR0ZaOh9sL8wc5wfxBdjF3kBPMH+TEzTB/4uPjM903X4WrrOrTp4927NihdevWXbPfsGHDNGDAAMfj2NhYBQcHq3nz5vLz87OkluTkZEVHR+uBBx6Qm5ubJWPi9sH8QU4wf5BdzB3kBPMHOXEzzZ+0q9oyI1+Fq4CAAJ08edKp7eTJk/Lz80t31qpv37769ttvtWbNGpUuXfqa43p4eMjDwyNdu5ubm+VvZm6MidsH8wc5wfxBdjF3kBPMH+TEzTB/srL/fPU5V+Hh4VqxYoVTW3R0tMLDwx2PjTHq27evFi5cqJUrVyo0NPRGlwkAAADgNpSn4SouLk4xMTGKiYmRdGmp9ZiYGB0+fFjSpcv1unTp4ujfq1cvHThwQEOGDNHu3bv1wQcfaO7cuerfv7+jT58+ffTf//5Xn3/+uQoWLKgTJ07oxIkTunjx4g09NgAAAAC3lzwNV7/88ovuvPNO3XnnnZKkAQMG6M4779Trr78uSTp+/LgjaElSaGiovvvuO0VHRyssLEwTJkzQxx9/7FiGXZKmTZumc+fOqXHjxgoMDHR8ffnllzf24AAAAADcVvL0nqvGjRvLGHPV7VFRURk+Z9u2bVd9zrXGAwAAAIDckq/uuQIAAACAmxXhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAAC2QrXKWkpOiHH37Qhx9+qPPnz0uSjh07pri4OEuLAwAAAID8okBWn/Dnn3+qRYsWOnz4sBITE/XAAw+oYMGCGjdunBITEzV9+vTcqBMAAAAAbmpZPnPVr18/1alTR2fOnJGXl5ejvX379lqxYoWlxQEAAABAfpHlM1dr167VTz/9JHd3d6f2kJAQHT161LLCAAAAACA/yfKZK7vdrtTU1HTtf/31lwoWLGhJUQAAAACQ32Q5XDVv3lyTJk1yPLbZbIqLi9Pw4cPVqlUrK2sDAAAAgHwjy5cFjh8/Xi1atFC1atWUkJCgJ554Qnv37lWxYsX0xRdf5EaNAAAAAHDTy3K4Cg4O1vbt2/Xll19q+/btiouL09NPP63OnTs7LXABAAAAALeTLIWr5ORkValSRd9++606d+6szp0751ZdAAAAAJCvZOmeKzc3NyUkJORWLQAAAACQb2V5QYs+ffpo3LhxSklJyY16AAAAACBfyvI9V5s3b9aKFSv0/fffq2bNmvLx8XHavmDBAsuKAwAAAID8Isvhyt/fX4888khu1AIAAAAA+VaWw9XMmTNzow4AAAAAyNeyHK7SnD59Wnv27JEkVa5cWcWLF7esKAAAAADIb7K8oMWFCxfUo0cPBQYGqmHDhmrYsKGCgoL09NNPKz4+PjdqBAAAAICbXpbD1YABA/Tjjz/qm2++0dmzZ3X27Fl9/fXX+vHHHzVw4MDcqBEAAAAAbnpZvixw/vz5mjdvnho3buxoa9Wqlby8vPTYY49p2rRpVtYHAAAAAPlCls9cxcfHq2TJkunaS5QowWWBAAAAAG5bWQ5X4eHhGj58uBISEhxtFy9e1MiRIxUeHm5pcQAAAACQX2T5ssDJkycrIiJCpUuXVlhYmCRp+/bt8vT01PLlyy0vEAAAAADygyyHqxo1amjv3r2aPXu2du/eLUnq1KmTOnfuLC8vL8sLBAAAAID8IFufc+Xt7a2ePXtaXQsAAAAA5FtZvudqzJgx+uSTT9K1f/LJJxo3bpwlRQEAAABAfpPlcPXhhx+qSpUq6dqrV6+u6dOnW1IUAAAAAOQ3WQ5XJ06cUGBgYLr24sWL6/jx45YUBQAAAAD5TZbDVXBwsNavX5+uff369QoKCrKkKAAAAADIb7K8oEXPnj0VGRmp5ORk3X///ZKkFStWaMiQIRo4cKDlBQIAAABAfpDlcDV48GD9888/6t27t5KSkiRJnp6eeumllzRs2DDLCwQAAACA/CDL4cpms2ncuHF67bXXtGvXLnl5ealixYry8PDIjfoAAAAAIF/I8j1XaXx9fXX33XerYMGC2r9/v+x2u5V1AQAAAEC+kulw9cknn2jixIlObc8++6zKlSunmjVrqkaNGjpy5IjlBQIAAABAfpDpcDVjxgwVLlzY8XjZsmWaOXOmPvvsM23evFn+/v4aOXJkrhQJAAAAADe7TN9ztXfvXtWpU8fx+Ouvv1bbtm3VuXNnSdLo0aPVvXt36ysEAAAAgHwg02euLl68KD8/P8fjn376SQ0bNnQ8LleunE6cOGFtdQAAAACQT2Q6XJUtW1ZbtmyRJP3999/6/fff1aBBA8f2EydOqFChQtZXCAAAAAD5QKYvC+zatav69Omj33//XStXrlSVKlVUu3Ztx/affvpJNWrUyJUiAQAAAOBml+lwNWTIEMXHx2vBggUKCAjQV1995bR9/fr16tSpk+UFAgAAAEB+kOlw5eLiolGjRmnUqFEZbr8ybAEAAADA7STbHyIMAAAAAPgfwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABggUyvFpgmNTVVUVFRWrFihU6dOiW73e60feXKlZYVBwAAAAD5RZbDVb9+/RQVFaXWrVurRo0astlsuVEXAAAAAOQrWQ5Xc+bM0dy5c9WqVavcqAcAAAAA8qUs33Pl7u6uChUq5EYtAAAAAJBvZTlcDRw4UJMnT5YxJjfqAQAAAIB8KcuXBa5bt06rVq3S0qVLVb16dbm5uTltX7BggWXF3e5SE5J08L0PZD+8Xy5lyiv0xd5y9XTP9efeaPmp1ryQmpCkA5OmqOjWjTqwa58qRL7A6wMAAG5Z+flnnyyfufL391f79u3VqFEjFStWTIUKFXL6yoo1a9aoTZs2CgoKks1m06JFi677nNWrV+uuu+6Sh4eHKlSooKioqHR9pk6dqpCQEHl6eqpevXratGlTluq6GewZNEQK9FaFl/qr0tT3VeGl/lKg96X2XHzujZafas0Laa9P5WGDdO9XX6nysEG8PgAA4JaV33/2yfKZq5kzZ1q28wsXLigsLEw9evTQww8/fN3+Bw8eVOvWrdWrVy/Nnj1bK1as0DPPPKPAwEBFRERIkr788ksNGDBA06dPV7169TRp0iRFRERoz549KlGihGW156Y9g4ao0oR30rW7nE1VpQnvaI+kyuPftvy5N1p+qjUv8PoAAIDbya3ws4/NZPPmqdOnT2vPnj2SpMqVK6t48eI5K8Rm08KFC9WuXbur9nnppZf03XffaceOHY62xx9/XGfPntWyZcskSfXq1dPdd9+t999/X5Jkt9sVHBysF154QUOHDs1ULbGxsSpUqJDOnTsnPz+/7B/UZZKTk7VkyRK1atUq3aWUl0tNSJICveVyNlUZLXJvJNn9XXRh659y9XA+PZqamCSfO8vK5Zw9y8+90fJTrXmB1wdWSk5O1qpVq9SkSZNrfv8BrsTcQU4wf5AVmfnZJ7Wwq2zH4m/4JYJZyQZZPnN14cIFvfDCC/rss88cHyDs6uqqLl26aMqUKfL29s5e1ZmwYcMGNWvWzKktIiJCkZGRkqSkpCRt2bJFw4YNc2x3cXFRs2bNtGHDhquOm5iYqMTERMfj2NhYSZe+KSQnJ1tSe9o41xvvwKQpqnw29arbbZJcz9rlVy44yzXk5Lk3Wn6qNS/w+iCr2ud1Aci3mDvICeYPrGKTVOBMqvZMmqJyA1+8ofvOSh7IcrgaMGCAfvzxR33zzTdq0KCBpEuLXLz44osaOHCgpk2bltUhM+3EiRMqWbKkU1vJkiUVGxurixcv6syZM0pNTc2wz+7du6867pgxYzRy5Mh07d9//73lYTE6Ovqa24tu3ajKlu4RAAAAuDWc3rpRu5csuaH7jI+Pz3TfLIer+fPna968eWrcuLGjrVWrVvLy8tJjjz2Wq+EqtwwbNkwDBgxwPI6NjVVwcLCaN29u6WWB0dHReuCBB655avzArn3SV19dd7zdr45QwDPPOLWd+PhjVXlzRLaee6Plp1rzAq8PrJScmqx1a9bp3ob3ys2VS3OQecwd5ATzB1mR2Z99it9VT/Vatcr9gi6TdlVbZmQ5XMXHx6c7MyRJJUqUyFKqy46AgACdPHnSqe3kyZPy8/OTl5eXXF1d5erqmmGfgICAq47r4eEhDw+PdO1ubm6WXyN8vTErRL6g1HEvXfOeq9TCrqr4yrB015sWfGWYUt9/I1vPvdHyU615gdcHVkpOTpZL4YLyDy7FfQ/IEuYOcoL5g6zI7M8+FSJfkOsNnk9Zmb9ZXoo9PDxcw4cPV0JCgqPt4sWLGjlypMLDw7M6XJb3vWLFCqe26Ohox37d3d1Vu3Ztpz52u10rVqzI9dqs4urprn1PXzqLduVKI2mP9/cYkOEP1Dl57o2Wn2rNC7w+AADgdnKr/OyT5TNXkydPVkREhEqXLq2wsDBJ0vbt2+Xp6anly5dnaay4uDjt27fP8fjgwYOKiYlRkSJFVKZMGQ0bNkxHjx7VZ599Jknq1auX3n//fQ0ZMkQ9evTQypUrNXfuXH333XeOMQYMGKCuXbuqTp06qlu3riZNmqQLFy6oe/fuWT3UPFN5/NvaI6nCfybK9bLFLVILu2p/jwHXXIIyJ8+90fJTrXmB1wcAANxOboWffbK1FHt8fLxmz57tWCSiatWq6ty5s7y8vLI0zurVq9WkSZN07V27dlVUVJS6deumQ4cOafXq1U7P6d+/v3bu3KnSpUvrtddeU7du3Zye//777+udd97RiRMnVKtWLb333nuqV69epuvKy6XYL5eakKSD730g++H9cilTXqEv9s50Ws/Jc2+0/FRrXkhNSNK+SVN0eutGFb+rXr76lHLcHLLz/QeQmDvIGeYPsutm+9knK9kg259zdSu7WcIVkIb5g5xg/iC7mDvICeYPcuJmmj+Wf87V4sWL1bJlS7m5uWnx4sXX7PvQQw9lvlIAAAAAuEVkKly1a9dOJ06cUIkSJdSuXbur9rPZbEpNvfoH4AIAAADArSpT4cput2f4dwAAAADAJVleiv2zzz5TYmJiuvakpCTHqn4AAAAAcLvJcrjq3r27zp07l679/Pnz+Wq5cwAAAACwUpbDlTFGNlv6z03+66+/VKhQIUuKAgAAAID8JtMfInznnXfKZrPJZrOpadOmKlDgf09NTU3VwYMH1aJFi1wpEgAAAABudpkOV2mrBMbExCgiIkK+vr6Obe7u7goJCdEjjzxieYEAAAAAkB9kOlwNHz5ckhQSEqKOHTvK09Mz14oCAAAAgPwm0+EqTdeuXSVdWh3w1KlT6ZZmL1OmjDWVAQAAAEA+kuVwtXfvXvXo0UM//fSTU3vaQhd8iDAAAACA21GWw1W3bt1UoEABffvttwoMDMxw5UAAAAAAuN1kOVzFxMRoy5YtqlKlSm7UAwAAAAD5UpY/56patWr6+++/c6MWAAAAAMi3shyuxo0bpyFDhmj16tX6559/FBsb6/QFAAAAALejLF8W2KxZM0lS06ZNndpZ0AIAAADA7SzL4WrVqlW5UQcAAAAA5GtZDleNGjXKjToAAAAAIF/L8j1XkrR27Vo9+eSTql+/vo4ePSpJmjVrltatW2dpcQAAAACQX2Q5XM2fP18RERHy8vLS1q1blZiYKEk6d+6cRo8ebXmBAAAAAJAfZDlcvfnmm5o+fbo++ugjubm5OdobNGigrVu3WlocAAAAAOQXWQ5Xe/bsUcOGDdO1FypUSGfPnrWiJgAAAADId7IcrgICArRv37507evWrVO5cuUsKQoAAAAA8pssh6uePXuqX79+2rhxo2w2m44dO6bZs2dr0KBBev7553OjRgAAAAC46WV5KfahQ4fKbreradOmio+PV8OGDeXh4aFBgwbphRdeyI0aAQAAAOCml+VwZbPZ9Morr2jw4MHat2+f4uLiVK1aNfn6+uZGfQAAAACQL2T5ssAePXro/Pnzcnd3V7Vq1VS3bl35+vrqwoUL6tGjR27UCAAAAAA3vSyHq08//VQXL15M137x4kV99tlnlhQFAAAAAPlNpi8LjI2NlTFGxhidP39enp6ejm2pqalasmSJSpQokStFAgAAAMDNLtPhyt/fXzabTTabTZUqVUq33WazaeTIkZYWBwAAAAD5RabD1apVq2SM0f3336/58+erSJEijm3u7u4qW7asgoKCcqVIAAAAALjZZTpcNWrUSJJ08OBBlSlTRjabLdeKAgAAAID8JssLWpQtW1br1q3Tk08+qfr16+vo0aOSpFmzZmndunWWFwgAAAAA+UGWw9X8+fMVEREhLy8vbd26VYmJiZKkc+fOafTo0ZYXCAAAAAD5QZbD1Ztvvqnp06fro48+kpubm6O9QYMG2rp1q6XFAQAAAEB+keVwtWfPHjVs2DBde6FChXT27FkragIAAACAfCfL4SogIED79u1L175u3TqVK1fOkqIAAAAAIL/Jcrjq2bOn+vXrp40bN8pms+nYsWOaPXu2Bg0apOeffz43agQAAACAm16ml2JPM3ToUNntdjVt2lTx8fFq2LChPDw8NGjQIL3wwgu5USMAAAAA3PSyHK5sNpteeeUVDR48WPv27VNcXJyqVasmX19fXbx4UV5eXrlRJwAAAADc1LJ8WWAad3d3VatWTXXr1pWbm5smTpyo0NBQK2sDAAAAgHwj0+EqMTFRw4YNU506dVS/fn0tWrRIkjRz5kyFhobq3XffVf/+/XOrTgAAAAC4qWX6ssDXX39dH374oZo1a6affvpJjz76qLp3766ff/5ZEydO1KOPPipXV9fcrBUAAAAAblqZDldfffWVPvvsMz300EPasWOH7rjjDqWkpGj79u2y2Wy5WSMAAAAA3PQyfVngX3/9pdq1a0uSatSoIQ8PD/Xv359gBQAAAADKQrhKTU2Vu7u743GBAgXk6+ubK0UBAAAAQH6T6csCjTHq1q2bPDw8JEkJCQnq1auXfHx8nPotWLDA2goBAAAAIB/IdLjq2rWr0+Mnn3zS8mIAAAAAIL/KdLiaOXNmbtYBAAAAAPlatj9EGAAAAADwP4QrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAvkebiaOnWqQkJC5OnpqXr16mnTpk1X7ZucnKxRo0apfPny8vT0VFhYmJYtW+bUJzU1Va+99ppCQ0Pl5eWl8uXL64033pAxJrcPBQAAAMBtLE/D1ZdffqkBAwZo+PDh2rp1q8LCwhQREaFTp05l2P/VV1/Vhx9+qClTpmjnzp3q1auX2rdvr23btjn6jBs3TtOmTdP777+vXbt2ady4cXr77bc1ZcqUG3VYAAAAAG5DeRquJk6cqJ49e6p79+6qVq2apk+fLm9vb33yyScZ9p81a5ZefvlltWrVSuXKldPzzz+vVq1aacKECY4+P/30k9q2bavWrVsrJCREHTp0UPPmza95RgwAAAAAcqpAXu04KSlJW7Zs0bBhwxxtLi4uatasmTZs2JDhcxITE+Xp6enU5uXlpXXr1jke169fXzNmzNAff/yhSpUqafv27Vq3bp0mTpx41VoSExOVmJjoeBwbGyvp0mWIycnJ2Tq+K6WNY9V4uL0wf5ATzB9kF3MHOcH8QU7cTPMnKzXkWbj6+++/lZqaqpIlSzq1lyxZUrt3787wOREREZo4caIaNmyo8uXLa8WKFVqwYIFSU1MdfYYOHarY2FhVqVJFrq6uSk1N1VtvvaXOnTtftZYxY8Zo5MiR6dq///57eXt7Z/MIMxYdHW3peLi9MH+QE8wfZBdzBznB/EFO3AzzJz4+PtN98yxcZcfkyZPVs2dPValSRTabTeXLl1f37t2dLiOcO3euZs+erc8//1zVq1dXTEyMIiMjFRQUpK5du2Y47rBhwzRgwADH49jYWAUHB6t58+by8/OzpPbk5GRFR0frgQcekJubmyVj4vbB/EFOMH+QXcwd5ATzBzlxM82ftKvaMiPPwlWxYsXk6uqqkydPOrWfPHlSAQEBGT6nePHiWrRokRISEvTPP/8oKChIQ4cOVbly5Rx9Bg8erKFDh+rxxx+XJNWsWVN//vmnxowZc9Vw5eHhIQ8Pj3Ttbm5ulr+ZuTEmbh/MH+QE8wfZxdxBTjB/kBM3w/zJyv7zbEELd3d31a5dWytWrHC02e12rVixQuHh4dd8rqenp0qVKqWUlBTNnz9fbdu2dWyLj4+Xi4vzYbm6usput1t7AAAAAABwmTy9LHDAgAHq2rWr6tSpo7p162rSpEm6cOGCunfvLknq0qWLSpUqpTFjxkiSNm7cqKNHj6pWrVo6evSoRowYIbvdriFDhjjGbNOmjd566y2VKVNG1atX17Zt2zRx4kT16NEjT44RAAAAwO0hT8NVx44ddfr0ab3++us6ceKEatWqpWXLljkWuTh8+LDTWaiEhAS9+uqrOnDggHx9fdWqVSvNmjVL/v7+jj5TpkzRa6+9pt69e+vUqVMKCgrSc889p9dff/1GHx4AAACA20ieL2jRt29f9e3bN8Ntq1evdnrcqFEj7dy585rjFSxYUJMmTdKkSZMsqhAAAAAAri9PP0QYAAAAAG4VhCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMACeR6upk6dqpCQEHl6eqpevXratGnTVfsmJydr1KhRKl++vDw9PRUWFqZly5al63f06FE9+eSTKlq0qLy8vFSzZk398ssvuXkYAAAAAG5zeRquvvzySw0YMEDDhw/X1q1bFRYWpoiICJ06dSrD/q+++qo+/PBDTZkyRTt37lSvXr3Uvn17bdu2zdHnzJkzatCggdzc3LR06VLt3LlTEyZMUOHChW/UYQEAAAC4DeVpuJo4caJ69uyp7t27q1q1apo+fbq8vb31ySefZNh/1qxZevnll9WqVSuVK1dOzz//vFq1aqUJEyY4+owbN07BwcGaOXOm6tatq9DQUDVv3lzly5e/UYcFAAAA4DZUIK92nJSUpC1btmjYsGGONhcXFzVr1kwbNmzI8DmJiYny9PR0avPy8tK6descjxcvXqyIiAg9+uij+vHHH1WqVCn17t1bPXv2vGotiYmJSkxMdDyOjY2VdOkyxOTk5Gwd35XSxrFqPNxemD/ICeYPsou5g5xg/iAnbqb5k5UabMYYk4u1XNWxY8dUqlQp/fTTTwoPD3e0DxkyRD/++KM2btyY7jlPPPGEtm/frkWLFql8+fJasWKF2rZtq9TUVEc4SgtfAwYM0KOPPqrNmzerX79+mj59urp27ZphLSNGjNDIkSPTtX/++efy9va24nABAAAA5EPx8fF64okndO7cOfn5+V2zb74KV6dPn1bPnj31zTffyGazqXz58mrWrJk++eQTXbx4UZLk7u6uOnXq6KeffnI878UXX9TmzZuveUbsyjNXwcHB+vvvv6/7AmZWcnKyoqOj9cADD8jNzc2SMXH7YP4gJ5g/yC7mDnKC+YOcuJnmT2xsrIoVK5apcJVnlwUWK1ZMrq6uOnnypFP7yZMnFRAQkOFzihcvrkWLFikhIUH//POPgoKCNHToUJUrV87RJzAwUNWqVXN6XtWqVTV//vyr1uLh4SEPD4907W5ubpa/mbkxJm4fzB/kBPMH2cXcQU4wf5ATN8P8ycr+82xBC3d3d9WuXVsrVqxwtNntdq1YscLpTFZGPD09VapUKaWkpGj+/Plq27atY1uDBg20Z88ep/5//PGHypYta+0BAAAAAMBl8uzMlXTpvqiuXbuqTp06qlu3riZNmqQLFy6oe/fukqQuXbqoVKlSGjNmjCRp48aNOnr0qGrVqqWjR49qxIgRstvtGjJkiGPM/v37q379+ho9erQee+wxbdq0STNmzNCMGTPy5BgBAAAA3B7yNFx17NhRp0+f1uuvv64TJ06oVq1aWrZsmUqWLClJOnz4sFxc/ndyLSEhQa+++qoOHDggX19ftWrVSrNmzZK/v7+jz913362FCxdq2LBhGjVqlEJDQzVp0iR17tz5Rh8eAAAAgNtInoYrSerbt6/69u2b4bbVq1c7PW7UqJF27tx53TEffPBBPfjgg1aUBwAAAACZkqcfIgwAAAAAtwrCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWKJDXBdyMjDGSpNjYWMvGTE5OVnx8vGJjY+Xm5mbZuLg9MH+QE8wfZBdzBznB/EFO3EzzJy0TpGWEayFcZeD8+fOSpODg4DyuBAAAAMDN4Pz58ypUqNA1+9hMZiLYbcZut+vYsWMqWLCgbDabJWPGxsYqODhYR44ckZ+fnyVj4vbB/EFOMH+QXcwd5ATzBzlxM80fY4zOnz+voKAgubhc+64qzlxlwMXFRaVLl86Vsf38/PJ8giD/Yv4gJ5g/yC7mDnKC+YOcuFnmz/XOWKVhQQsAAAAAsADhCgAAAAAsQLi6QTw8PDR8+HB5eHjkdSnIh5g/yAnmD7KLuYOcYP4gJ/Lr/GFBCwAAAACwAGeuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrm6QqVOnKiQkRJ6enqpXr542bdqU1yXhBluzZo3atGmjoKAg2Ww2LVq0yGm7MUavv/66AgMD5eXlpWbNmmnv3r1Off7991917txZfn5+8vf319NPP624uDinPr/++qvuu+8+eXp6Kjg4WG+//XZuHxpy2ZgxY3T33XerYMGCKlGihNq1a6c9e/Y49UlISFCfPn1UtGhR+fr66pFHHtHJkyed+hw+fFitW7eWt7e3SpQoocGDByslJcWpz+rVq3XXXXfJw8NDFSpUUFRUVG4fHnLZtGnTdMcddzg+iDM8PFxLly51bGfuILPGjh0rm82myMhIRxvzB1czYsQI2Ww2p68qVao4tt+yc8cg182ZM8e4u7ubTz75xPz++++mZ8+ext/f35w8eTKvS8MNtGTJEvPKK6+YBQsWGElm4cKFTtvHjh1rChUqZBYtWmS2b99uHnroIRMaGmouXrzo6NOiRQsTFhZmfv75Z7N27VpToUIF06lTJ8f2c+fOmZIlS5rOnTubHTt2mC+++MJ4eXmZDz/88EYdJnJBRESEmTlzptmxY4eJiYkxrVq1MmXKlDFxcXGOPr169TLBwcFmxYoV5pdffjH33HOPqV+/vmN7SkqKqVGjhmnWrJnZtm2bWbJkiSlWrJgZNmyYo8+BAweMt7e3GTBggNm5c6eZMmWKcXV1NcuWLbuhxwtrLV682Hz33Xfmjz/+MHv27DEvv/yycXNzMzt27DDGMHeQOZs2bTIhISHmjjvuMP369XO0M39wNcOHDzfVq1c3x48fd3ydPn3asf1WnTuEqxugbt26pk+fPo7HqampJigoyIwZMyYPq0JeujJc2e12ExAQYN555x1H29mzZ42Hh4f54osvjDHG7Ny500gymzdvdvRZunSpsdls5ujRo8YYYz744ANTuHBhk5iY6Ojz0ksvmcqVK+fyEeFGOnXqlJFkfvzxR2PMpbni5uZmvvrqK0efXbt2GUlmw4YNxphL4d7FxcWcOHHC0WfatGnGz8/PMV+GDBliqlev7rSvjh07moiIiNw+JNxghQsXNh9//DFzB5ly/vx5U7FiRRMdHW0aNWrkCFfMH1zL8OHDTVhYWIbbbuW5w2WBuSwpKUlbtmxRs2bNHG0uLi5q1qyZNmzYkIeV4WZy8OBBnThxwmmeFCpUSPXq1XPMkw0bNsjf31916tRx9GnWrJlcXFy0ceNGR5+GDRvK3d3d0SciIkJ79uzRmTNnbtDRILedO3dOklSkSBFJ0pYtW5ScnOw0f6pUqaIyZco4zZ+aNWuqZMmSjj4RERGKjY3V77//7uhz+RhpffhedetITU3VnDlzdOHCBYWHhzN3kCl9+vRR69at073HzB9cz969exUUFKRy5cqpc+fOOnz4sKRbe+4QrnLZ33//rdTUVKeJIUklS5bUiRMn8qgq3GzS5sK15smJEydUokQJp+0FChRQkSJFnPpkNMbl+0D+ZrfbFRkZqQYNGqhGjRqSLr237u7u8vf3d+p75fy53ty4Wp/Y2FhdvHgxNw4HN8hvv/0mX19feXh4qFevXlq4cKGqVavG3MF1zZkzR1u3btWYMWPSbWP+4Frq1aunqKgoLVu2TNOmTdPBgwd133336fz587f03CmQJ3sFAGRLnz59tGPHDq1bty6vS0E+UrlyZcXExOjcuXOaN2+eunbtqh9//DGvy8JN7siRI+rXr5+io6Pl6emZ1+Ugn2nZsqXj73fccYfq1aunsmXLau7cufLy8srDynIXZ65yWbFixeTq6ppu9ZOTJ08qICAgj6rCzSZtLlxrngQEBOjUqVNO21NSUvTvv/869clojMv3gfyrb9+++vbbb7Vq1SqVLl3a0R4QEKCkpCSdPXvWqf+V8+d6c+Nqffz8/G7p/whvB+7u7qpQoYJq166tMWPGKCwsTJMnT2bu4Jq2bNmiU6dO6a677lKBAgVUoEAB/fjjj3rvvfdUoEABlSxZkvmDTPP391elSpW0b9++W/p7D+Eql7m7u6t27dpasWKFo81ut2vFihUKDw/Pw8pwMwkNDVVAQIDTPImNjdXGjRsd8yQ8PFxnz57Vli1bHH1Wrlwpu92uevXqOfqsWbNGycnJjj7R0dGqXLmyChcufIOOBlYzxqhv375auHChVq5cqdDQUKfttWvXlpubm9P82bNnjw4fPuw0f3777TengB4dHS0/Pz9Vq1bN0efyMdL68L3q1mO325WYmMjcwTU1bdpUv/32m2JiYhxfderUUefOnR1/Z/4gs+Li4rR//34FBgbe2t978mwpjdvInDlzjIeHh4mKijI7d+40zz77rPH393da/QS3vvPnz5tt27aZbdu2GUlm4sSJZtu2bebPP/80xlxait3f3998/fXX5tdffzVt27bNcCn2O++802zcuNGsW7fOVKxY0Wkp9rNnz5qSJUuap556yuzYscPMmTPHeHt7sxR7Pvf888+bQoUKmdWrVzstaRsfH+/o06tXL1OmTBmzcuVK88svv5jw8HATHh7u2J62pG3z5s1NTEyMWbZsmSlevHiGS9oOHjzY7Nq1y0ydOjXPl7RFzg0dOtT8+OOP5uDBg+bXX381Q4cONTabzXz//ffGGOYOsuby1QKNYf7g6gYOHGhWr15tDh48aNavX2+aNWtmihUrZk6dOmWMuXXnDuHqBpkyZYopU6aMcXd3N3Xr1jU///xzXpeEG2zVqlVGUrqvrl27GmMuLcf+2muvmZIlSxoPDw/TtGlTs2fPHqcx/vnnH9OpUyfj6+tr/Pz8TPfu3c358+ed+mzfvt3ce++9xsPDw5QqVcqMHTv2Rh0icklG80aSmTlzpqPPxYsXTe/evU3hwoWNt7e3ad++vTl+/LjTOIcOHTItW7Y0Xl5eplixYmbgwIEmOTnZqc+qVatMrVq1jLu7uylXrpzTPpA/9ejRw5QtW9a4u7ub4sWLm6ZNmzqClTHMHWTNleGK+YOr6dixowkMDDTu7u6mVKlSpmPHjmbfvn2O7bfq3LEZY0zenDMDAAAAgFsH91wBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAbohDhw7JZrMpJiYmr0tx2L17t+655x55enqqVq1aeV1Ohrp166Z27do5Hjdu3FiRkZHXfE5ISIgmTZqUq3UBANIjXAHAbaJbt26y2WwaO3asU/uiRYtks9nyqKq8NXz4cPn4+GjPnj1asWLFVfudOHFCL7zwgsqVKycPDw8FBwerTZs213xOblmwYIHeeOMNS8eMioqSv7+/pWMCwO2IcAUAtxFPT0+NGzdOZ86cyetSLJOUlJTt5+7fv1/33nuvypYtq6JFi2bY59ChQ6pdu7ZWrlypd955R7/99puWLVumJk2aqE+fPtned3YVKVJEBQsWvOH7BQBcH+EKAG4jzZo1U0BAgMaMGXPVPiNGjEh3idykSZMUEhLieJx2qdro0aNVsmRJ+fv7a9SoUUpJSdHgwYNVpEgRlS5dWjNnzkw3/u7du1W/fn15enqqRo0a+vHHH52279ixQy1btpSvr69Kliypp556Sn///bdje+PGjdW3b19FRkaqWLFiioiIyPA47Ha7Ro0apdKlS8vDw0O1atXSsmXLHNttNpu2bNmiUaNGyWazacSIERmO07t3b9lsNm3atEmPPPKIKlWqpOrVq2vAgAH6+eefHf0mTpyomjVrysfHR8HBwerdu7fi4uIc29PODi1fvlxVq1aVr6+vWrRooePHjzv6pKamasCAAfL391fRokU1ZMgQGWOc6rnyssBTp06pTZs28vLyUmhoqGbPnp3uGK5V2+rVq9W9e3edO3dONpvN6bVITEzUoEGDVKpUKfn4+KhevXpavXq1Y9w///xTbdq0UeHCheXj46Pq1atryZIlGb6OAHA7IFwBwG3E1dVVo0eP1pQpU/TXX3/laKyVK1fq2LFjWrNmjSZOnKjhw4frwQcfVOHChbVx40b16tVLzz33XLr9DB48WAMHDtS2bdsUHh6uNm3a6J9//pEknT17Vvfff7/uvPNO/fLLL1q2bJlOnjypxx57zGmMTz/9VO7u7lq/fr2mT5+eYX2TJ0/WhAkTNH78eP3666+KiIjQQw89pL1790qSjh8/rurVq2vgwIE6fvy4Bg0alG6Mf//9V8uWLVOfPn3k4+OTbvvll9K5uLjovffe0++//65PP/1UK1eu1JAhQ5z6x8fHa/z48Zo1a5bWrFmjw4cPO+13woQJioqK0ieffKJ169bp33//1cKFC6/xLlwKukeOHNGqVas0b948ffDBBzp16pRTn2vVVr9+fU2aNEl+fn46fvy402vRt29fbdiwQXPmzNGvv/6qRx99VC1atHC8hn369FFiYqLWrFmj3377TePGjZOvr+816wWAW5oBANwWunbtatq2bWuMMeaee+4xPXr0MMYYs3DhQnP5fwfDhw83YWFhTs999913TdmyZZ3GKlu2rElNTXW0Va5c2dx3332OxykpKcbHx8d88cUXxhhjDh48aCSZsWPHOvokJyeb0qVLm3HjxhljjHnjjTdM8+bNnfZ95MgRI8ns2bPHGGNMo0aNzJ133nnd4w0KCjJvvfWWU9vdd99tevfu7XgcFhZmhg8fftUxNm7caCSZBQsWXHd/V/rqq69M0aJFHY9nzpxpJJl9+/Y52qZOnWpKlizpeBwYGGjefvttx+O01yftfTPm0vH369fPGGPMnj17jCSzadMmx/Zdu3YZSebdd9/NUm2FChVy6vPnn38aV1dXc/ToUaf2pk2bmmHDhhljjKlZs6YZMWLE1V8EALjNFMjDXAcAyCPjxo3T/fffn+HZmsyqXr26XFz+dwFEyZIlVaNGDcdjV1dXFS1aNN1ZlPDwcMffCxQooDp16mjXrl2SpO3bt2vVqlUZnv3Yv3+/KlWqJEmqXbv2NWuLjY3VsWPH1KBBA6f2Bg0aaPv27Zk8QqW7JO9afvjhB40ZM0a7d+9WbGysUlJSlJCQoPj4eHl7e0uSvL29Vb58ecdzAgMDHa/PuXPndPz4cdWrV8+xPe31uVodu3btUoECBZxejypVqqRbnCIztV3pt99+U2pqquM1T5OYmOi4P+3FF1/U888/r++//17NmjXTI488ojvuuCOTrxgA3Hq4LBAAbkMNGzZURESEhg0blm6bi4tLuh/mk5OT0/Vzc3Nzemyz2TJss9vtma4rLi5Obdq0UUxMjNPX3r171bBhQ0e/jC7Ryw0VK1aUzWbT7t27r9nv0KFDevDBB3XHHXdo/vz52rJli6ZOnSrJecGNjF6frAS47MhsbVeKi4uTq6urtmzZ4vRe7Nq1S5MnT5YkPfPMMzpw4ICeeuop/fbbb6pTp46mTJmSq8cDADczwhUA3KbGjh2rb775Rhs2bHBqL168uE6cOOH0Q7+Vn011+SIQKSkp2rJli6pWrSpJuuuuu/T7778rJCREFSpUcPrKSqDy8/NTUFCQ1q9f79S+fv16VatWLdPjFClSRBEREZo6daouXLiQbvvZs2clSVu2bJHdbteECRN0zz33qFKlSjp27Fim9yNJhQoVUmBgoDZu3OhoS3t9rqZKlSrp+uzZs8dRV2Zrc3d3V2pqqlPbnXfeqdTUVJ06dSrdexEQEODoFxwcrF69emnBggUaOHCgPvrooywdNwDcSghXAHCbqlmzpjp37qz33nvPqb1x48Y6ffq03n77be3fv19Tp07V0qVLLdvv1KlTtXDhQu3evVt9+vTRmTNn1KNHD0mXFkj4999/1alTJ23evFn79+/X8uXL1b1793Q//F/P4MGDNW7cOH355Zfas2ePhg4dqpiYGPXr1y/L9aampqpu3bqaP3++9u7dq127dum9995zXOJYoUIFJScna8qUKTpw4IBmzZp11YU2rqVfv34aO3asFi1apN27d6t3795OQelKlStXVosWLfTcc89p48aN2rJli5555hl5eXk5+mSmtpCQEMXFxWnFihX6+++/FR8fr0qVKqlz587q0qWLFixYoIMHD2rTpk0aM2aMvvvuO0lSZGSkli9froMHD2rr1q1atWqVIygDwO2IcAUAt7FRo0alu2yvatWq+uCDDzR16lSFhYVp06ZNObo360pjx47V2LFjFRYWpnXr1mnx4sUqVqyYJDnONqWmpqp58+aqWbOmIiMj5e/v73R/V2a8+OKLGjBggAYOHKiaNWtq2bJlWrx4sSpWrJilccqVK6etW7eqSZMmGjhwoGrUqKEHHnhAK1as0LRp0yRJYWFhmjhxosaNG6caNWpo9uzZ11zu/moGDhyop556Sl27dlV4eLgKFiyo9u3bX/M5M2fOVFBQkBo1aqSHH35Yzz77rEqUKOHYnpna6tevr169eqljx44qXry43n77bcfYXbp00cCBA1W5cmW1a9dOmzdvVpkyZSRdWjq+T58+qlq1qlq0aKFKlSrpgw8+yPJxA8CtwmZy+2JvAAAAALgNcOYKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAL/BxUh6DFx4hW+AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Detailed Average Retention Results:\n",
+ "\n",
+ "_float32_ann Embedding:\n",
+ "\n",
+ "Top-K: 5\n",
+ " NumCandidates: 25, Retention: 1.0000\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 10\n",
+ " NumCandidates: 25, Retention: 1.0000\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 50\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 100\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "_scalar_ Embedding:\n",
+ "\n",
+ "Top-K: 5\n",
+ " NumCandidates: 25, Retention: 1.0000\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 10\n",
+ " NumCandidates: 25, Retention: 1.0000\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 50\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 100\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "_binary_ Embedding:\n",
+ "\n",
+ "Top-K: 5\n",
+ " NumCandidates: 25, Retention: 1.0000\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 10\n",
+ " NumCandidates: 25, Retention: 1.0000\n",
+ " NumCandidates: 50, Retention: 1.0000\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 50\n",
+ " NumCandidates: 50, Retention: 0.7500\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n",
+ "\n",
+ "Top-K: 100\n",
+ " NumCandidates: 100, Retention: 1.0000\n",
+ " NumCandidates: 200, Retention: 1.0000\n",
+ " NumCandidates: 500, Retention: 1.0000\n",
+ " NumCandidates: 1000, Retention: 1.0000\n",
+ " NumCandidates: 5000, Retention: 1.0000\n"
+ ]
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# Define colors and labels for each precision type\n",
+ "precision_colors = {\"_scalar_\": \"orange\", \"_binary_\": \"red\", \"_float32_\": \"green\"}\n",
+ "\n",
+ "# Assume overall_retention_results is a list of dictionaries returned by your\n",
+ "# measure_representational_capacity_retention_against_float_enn function.\n",
+ "# Each dictionary should contain:\n",
+ "# - 'precision_name': the precision type (e.g., '_scalar_')\n",
+ "# - 'average_retention': a dict mapping each top_k to a dict mapping num_candidates\n",
+ "# to the average retention, e.g.,\n",
+ "# average_retention[top_k][num_candidates] = retention_value\n",
+ "\n",
+ "if overall_recall_results:\n",
+ " # Determine unique top_k values from the first result's average_retention keys\n",
+ " unique_topk = sorted(list(overall_recall_results[0][\"average_retention\"].keys()))\n",
+ "\n",
+ " for k in unique_topk:\n",
+ " plt.figure(figsize=(10, 6))\n",
+ " # For each precision type, plot retention vs. number of candidates at this top_k\n",
+ " for result in overall_recall_results:\n",
+ " precision_name = result.get(\"precision_name\", \"unknown\")\n",
+ " color = precision_colors.get(precision_name, \"blue\")\n",
+ " # Get candidate values from the average_retention dictionary for top_k k\n",
+ " candidate_values = sorted(result[\"average_retention\"][k].keys())\n",
+ " retention_values = [\n",
+ " result[\"average_retention\"][k][nc] for nc in candidate_values\n",
+ " ]\n",
+ "\n",
+ " plt.plot(\n",
+ " candidate_values,\n",
+ " retention_values,\n",
+ " marker=\"o\",\n",
+ " label=precision_name.strip(\"_\"),\n",
+ " color=color,\n",
+ " )\n",
+ "\n",
+ " plt.xlabel(\"Number of Candidates\")\n",
+ " plt.ylabel(\"Retention Score\")\n",
+ " plt.title(f\"Retention vs Number of Candidates for Top-K = {k}\")\n",
+ " plt.legend()\n",
+ " plt.grid(True)\n",
+ " plt.show()\n",
+ "\n",
+ " # Print detailed average retention results\n",
+ " print(\"\\nDetailed Average Retention Results:\")\n",
+ " for result in overall_recall_results:\n",
+ " precision_name = result.get(\"precision_name\", \"unknown\")\n",
+ " print(f\"\\n{precision_name} Embedding:\")\n",
+ " for k in sorted(result[\"average_retention\"].keys()):\n",
+ " print(f\"\\nTop-K: {k}\")\n",
+ " for nc in sorted(result[\"average_retention\"][k].keys()):\n",
+ " ret = result[\"average_retention\"][k][nc]\n",
+ " print(f\" NumCandidates: {nc}, Retention: {ret:.4f}\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "provenance": [
+ {
+ "file_id": "19v0-KnkMAf7gFvvW-prQUnTlJVrri96V",
+ "timestamp": 1756752603095
+ }
+ ]
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}