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1
Introduction

1.1 Who this book is for

The growing importance of colour science in manufacturing industry has

resulted in the availability of many excellent textbooks: existing texts or review

papers describe the history and development of the Commission Internationale

de l’Eclairage (CIE) system (Wyszecki and Stiles, 1982; Hunt, 1998), the

prediction of colour difference (McDonald, 1997a; Berns, 2000; Luo, 2002a) and

colour appearance (Fairchild, 1998), the relationship of the CIE system to the

human visual system (Wandell, 1995; Kaiser and Boynton, 1996), and

applications of colour science in technology (Green and MacDonald, 2002).

However, the field of colour science is becoming ever more technical and

although practitioners need to understand the theory and practice of colour

science they also need guidance on how to actually compute the various metrics,

indices and coordinates that are useful to the practising colour scientist. The

purpose of this book is to describe methods and algorithms for actually

computing colorimetric parameters and for carrying out applications such as

device characterization, transformations between colour spaces and computation

of various indices such as colour differences. A reasonable understanding of the

main principles of the CIE system is therefore assumed, although a revision aid is

provided in Section 1.3 in the form of a brief review of the CIE system of

colorimetry. The reader who wishes to explore the theoretical and historical

backgrounds of the topics covered by this book is encouraged to review the

alternative texts mentioned above and referred to within this text. We anticipate

that computer programmers, colour-image engineers and students of colour

science will find this book and the associated MATLAB code useful, but hope

that anyone with an interest in colour science will find the book enjoyable and

informative.

Computational Colour Science Using MATLAB. By Stephen Westland and Caterina Ripamonti.
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1.2 Why base this book upon MATLAB?

This book describes algorithms and mathematical procedures in colour science

and illustrates these procedures using the numerical software tool called

MATLAB. MATLAB provides several features that make it suitable for the

implementation of algorithms in general, and colour-science algorithms in

particular, and results in code that is easily understandable by the reader with

relatively little experience of writing software. These features include the use of

operations upon vectors and matrices to enable compact code that avoids the

excessive use of looping procedures, the provision of a massive library of

functions that the MATLAB programmer can call upon and the ease of use of

graphics functions to enable the user to easily and effectively visualise complex

data structures.

Most computer languages are very dependent upon a variety of ‘looping’

procedures to execute summations or to implement iterative techniques whereas

MATLAB enables these types of operations to be performed with a fraction of

the code. For example, if we have two variables x and y, each consisting of five

entries, and we wish to compute the product of the corresponding entries and

then sum the results to yield a single number, we might write code that in BASIC

looks like the following:

sum = 0

FOR i=1 TO 5

sum = sum + x(i)*y(i)

NEXT i

In MATLAB the four lines of BASIC code shown could be replaced by the single

line

sum = x*y;

Expressed in terms of linear algebra MATLAB will perform the inner product of

the vectors x and y automatically. In the MATLAB environment it is not

necessary to specify how many entries the variables contain, so long as the

dimensions of these variables define a valid matrix operation. A variable in

MATLAB can represent a single number, a vector or a whole matrix. The

operation given, for example, by

y = 2*x

will assign to y twice the value of x if x defines a single number, but twice the

value of every element in x if x is a vector or a matrix. The compact nature of

MATLAB code allows complex and sophisticated algorithms to be explained
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and demonstrated with clarity and accuracy. Moreover, the computation of

many colorimetric terms is ideally suited to a language that expresses variables in

terms of matrices and vectors. Some procedures are best explained or

implemented using loops, however, and for these situations MATLAB provides

for and while looping structures.

The second strength of MATLAB is that it includes an encyclopaedic

collection of subprograms, called M-files, for the solution of nearly any

numerical problem. Although this book is not principally concerned with generic

numerical analysis, but rather with particular colorimetric algorithms, the M-

files that are available with MATLAB are useful for many computations in

colour science. MATLAB provides many functions (such as those with the

ability to invert matrices) and if it was necessary to spend time explaining these in

detail or writing code to implement them it would detract from the main focus of

this book, which is colour science. The reader may wish to refer to other

textbooks (e.g. Press et al., 1993) that address implementations of numerical

analysis in programming languages such as C if they wish to convert the code in

this book into other programming languages.

MATLAB’s most spectacular feature is its capability to display graphics. Two-

or three-dimensional graphs are easily constructed by even a novice MATLAB

user. Thus

x = [1 2 3 4 5];

y = [3 5 7 9 11];

plot(x,y)

is sufficient code to plot a graph of the five values in the vector y against those in

the vector x. Experienced programmers will find it trivial to construct

sophisticated and informative graphs, and the ability to almost effortlessly

visualize data is one of main advantages of using MATLAB in a research

environment. MATLAB allows the user to answer complex ‘what if?’ questions

with just a handful of code lines.

MATLAB can be confusing, however, for new users who do not have a

reasonable understanding of linear algebra. For this reason, Chapter 3

provides a gentle introduction to MATLAB and Chapter 2 provides a basic

introduction to linear algebra and the notation that is used throughout this

book. Where possible the code that is presented has been written for clarity

rather than for efficiency or speed of computation to allow the reader to

understand the computational principles involved and to be able to implement

them in a wide variety of programming languages. In general, special

MATLAB commands have been avoided, even though their use may have

made the code more efficient, to reduce the effort that would be required to

translate the code into a language such as C or C++. One exception,

however, is the backslash operator, which is described in Chapter 3.

WHY BASE THIS BOOK UPON MATLAB? 3



Programmers who wish to use languages other than MATLAB may wish to

create their own version of the backslash operator in order to easily translate the

code within this book. All the MATLAB code contained within this book can be

downloaded from http://www.colourware.co.uk/compute/ and from

http://www.mathworks.com/matlabcentral/.

1.3 A brief review of the CIE system of colorimetry

Light is a term that we use to describe that range of wavelengths (approximately

380–780 nm) of electromagnetic radiation to which the human visual system is

sensitive. When we observe the light reflected from surfaces in a scene, or when

we look directly at the light emitted by light sources, we experience the sensation

of colour. Colour is just one attribute of a complex and not fully understood set

of properties that define the appearance of the world. Surfaces interact with light

in a complex and varied way that includes the processes of absorption,

scattering, refraction and diffraction, but it is the light that is reflected by the

surfaces in a scene that we use to identify those surfaces by their colour. The

reflectance properties of surfaces can be defined by the spectral reflectance

factors that are normally measured at regular intervals in the visible spectrum of

radiation. Typical reflectance spectrophotometers are able to measure the

reflectance factors at intervals of 10 nm in the range 400–700 nm (though some

instruments extend their measurement to shorter or longer wavelengths).

Reflectance factors are normally in the range 0–1 and represent the proportional

amount of light reflected in each wavelength interval. The light that we see when

we look at a point in a scene clearly depends upon the spectral power distribution

of the illuminating source and the reflectance properties of the surface at that

point. Our visual systems detect the reflected light using the light-sensitive sense

organs or retinas that form the inner lining of the back of the eyeball. Light

enters the eye through the pupil and is focused onto the retina by the lens. The

human retina consists of a mosaic of specialized cells called rods and cones that

contain pigments that respond to light. The chemical changes that take place

when the visual pigments in the rods and cones absorb light initiate electrical

impulses that are subsequently processed by a neural network of brain cells and

which eventually lead to the excitation of cells in various specialized areas of the

outer region of the brain known as the cortex. It is still unknown where in the

brain colour perception actually occurs, if indeed it occurs in any localized area,

but activity in the visual cortex at the back of the brain is strongly implicated.

The properties of the visual system have been reviewed elsewhere (e.g. Roberts,

2002) and only a minimal summary of the retinal processes is now presented

before methods for the measurement of colour are outlined.

The rods are responsible for our vision at low levels of illumination, referred to

as scotopic or night vision. At higher or photopic levels of illumination colour
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vision is mediated by the responses of the cones, of which there are three types,

with sensitivities peaking at 420 nm (short wavelengths), 530 nm (medium

wavelengths) and 560 nm (long wavelengths), termed S, M and L cones,

respectively (Bowmaker, 2002). The three classes of cones are not distributed

evenly throughout the retina (Williams et al., 1981). In the central or foveal

region, for example, only L and M cones are present and there are approximately

twice as many L cones as there are M cones. The S cones are rare throughout the

retina but are more concentrated in a ring around the fovea. The retina contains

several layers of cells and the signals generated by the transduction of light into

chemical and electrical energy in the cones activate the bipolar and ganglion cells

before leaving the eye via the optic nerve. The cones and rods each provide a

univariant response (Wandell, 1995; Westland, 2002) and the consequence of this

is that the individual classes of cones and rods are colour blind. That is, the

scotopic visual system can only perceive shades of grey and the three classes of

cones considered separately are also incapable of wavelength discrimination. At

least two classes of cones are required for colour vision. The photopic visual

system achieves colour vision by analysing the relative responses of the three

classes of cones in the eye.

The CIE developed a system for the specification of colour stimuli that was

recommended for widespread use in 1931. The most important principle that

allowed this development was additive colour mixing. Thus, all colour stimuli

can be matched by the additive mixture of three appropriately chosen primaries.

It had long been recognized that the amounts or intensities of the primaries

required to match a given stimulus effectively form a specification of the stimulus

in terms of the primaries that are used. The amounts of the primaries used for

any given stimulus are commonly known as the tristimulus values. It is possible

to determine the tristimulus values for any given stimulus using a device known

as a split-field or bipartite colorimeter. In such a device an observer views a

bipartite field. On one side of the field the stimulus is displayed; on the other side

the additive mixture of the three primaries is displayed. The observer adjusts the

intensities of each of the three primaries until the additive mixture is

indistinguishable from the stimulus. Under the matching condition the field

appears uniform to the observer and the tristimulus values can be read off from

the device and recorded.

The measurement of the colour-matching functions by observers was a

critical feature in the development of the 1931 CIE system of colorimetry

since it allowed the computation of the tristimulus values for a known

stimulus without the need to view the stimulus in a bipartite colorimeter. The

colour-matching functions are the amounts of three primaries required to

match one unit of intensity of a single wavelength of light, and were recorded

for small wavelength intervals throughout the visible spectrum. If red, green

and blue primaries are used and these are denoted by the symbols [R], [G]

and [B], and the tristimulus values are represented by the symbols R, G
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and B, then it is possible to write an equation to denote the matching

condition:

S � R½R� þ G½G� þ B½B�: ð1:1Þ
In this equation the symbol � means ‘is matched by’ and the stimulus is denoted

by S. If the tristimulus values are measured separately for each wavelength in the

visible spectrum, then we obtain the tristimulus values as functions of the

wavelength l: R(l), G(l) and B(l). These three functions of wavelength are

called colour-matching functions. The additivity and linearity of colour matches

allow an important property: if a stimulus S1 is matched by R1, G1 and B1 and a

stimulus S2 is matched by R2, G2 and B2, then it is possible to predict in advance

the tristimulus values that define a match to the stimulus defined by the additive

mixture S1+S2. Thus we can simply write

S1 þ S2 � ðR1 þ R2Þ½R� þ ðG1 þ G2Þ½G� þ ðB1 þ B2Þ½B�: ð1:2Þ
Since any real stimulus can be considered to be the sum of energy at many

different wavelengths, it is possible to predict the tristimulus values for any

stimulus in a similar way (without having to resort to physically determining a

visual match for that stimulus using a bipartite colorimeter) given that the

colour-matching functions are known.

In fact, experiments were carried out prior to the publication of the CIE

system by two groups of workers, headed by Wright in 1929 and Guild in 1931,

to determine colour-matching functions. The two groups of workers used

different primaries and consequently the two sets of colour-matching functions

were different. This raises an interesting question: Are the colour-matching

functions arbitrary, given that there is a very wide choice in the selection of the

primaries? Certainly, the actual tristimulus values obtained for a given stimulus

are arbitrary in that they would be different if a different set of primaries was

chosen. However, the matching condition is valid no matter which primaries are

selected subject to some simple criteria (for example, the primaries must be

independent; in other words, it must not be possible to match one of the

primaries using an additive mixture of the other two, etc.). This means that if two

stimuli are a visual match and are specified by the same tristimulus values under

Guild’s system, then they would also be a match under Wright’s system.

Furthermore, the two stimuli would be a match under a system defined by any

other set of three primaries.

It is possible to convert tristimulus values from one system to another by a

simple linear transform (see Chapter 2). It is also possible to compute the colour-

matching functions for a set of known primaries given the colour-matching

functions of another set of primaries. Thus, in 1931 the CIE transformed the two

sets of colour-matching functions obtained from experiments carried out by

Wright and Guild into a single set of colour-matching functions and reassuringly

found good agreement between the two sets of data. The CIE system as we know
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it today is based upon a transformation of the original colour-matching

functions averaged from Guild and Wright to a set of primaries known as X, Y

and Z. The colour-matching functions are known for each wavelength and are

therefore represented by x(l), y(l) and z(l).
The CIE also defined standard illuminants – tables of spectral power

distributions – that can be used to compute the colour signal for a surface

given the spectral reflectance factors of the surface. The introduction of tables of

illuminants allowed the computation of tristimulus values for surface colours as

well as for self-luminous colours. A practical formula for computing the CIE

1931 tristimulus values for a surface with spectral reflectance P(l) under an

illuminant of relative spectral power E(l) is

X ¼ kSEðlÞPðlÞxðlÞ,
Y ¼ kSEðlÞPðlÞyðlÞ,
Z ¼ kSEðlÞPðlÞzðlÞ,

ð1:3Þ

where k is 100/[S yðlÞEðlÞ�.
At each wavelength interval the product E(l)P(l) gives the amount of energy

in the stimulus at wavelength l and the amount of the primary required to match

this is given by multiplying this product by the colour-matching function at that

wavelength. In order to arrive at the amount of the primary required to match

the stimulus it is only necessary to sum across all wavelengths [Equation (1.3)].

Note that the implication of the normalizing factor k is that the absolute spectral

power distribution for the illuminant is not required so that, for surface colours

at least, Y¼ 100 for a perfect white surface [for which P(l)¼ 1 for all l].
Furthermore, note that a perfect white surface will give Y¼ 100 for any

illuminant E. This normalisation is reasonable given the processes of adaptation

that take place in our everyday vision. In order to appreciate these processes,

imagine a piece of white paper with reflectance of 1 at all wavelengths and a piece

of black coal with reflectance 0.01 at all wavelengths. Now consider viewing these

two surfaces indoors (under an equal-energy light source with 100 units of light

at each wavelength) and outdoors (under an equal-energy light source with

10 000 units of light at each wavelength). When viewed indoors the paper reflects

100 units of light at each wavelength whereas the coal reflects only 1 unit of light

at each wavelength, but the amount of light reflected outdoors is 10 000 and 100

for the paper and coal, respectively. Even though the paper reflects 100 times as

much light outdoors as it does indoors, the colour appearance of the paper

remains approximately constant under the two light sources. More surprisingly,

the coal reflects as much light outdoors as the paper does indoors and yet the

coal is veridically seen as black. This remarkable property of colour constancy is

central to our whole visual experience. The normalizing factor k in the CIE

system ensures that for a perfectly white surface the Y tristimulus value will

always be 100 irrespective of the quantity and quality of the illuminant. One

A BRIEF REVIEW OF THE CIE SYSTEM OF COLORIMETRY 7



consequence of this normalization is that it is only necessary to know the relative

energy of the illuminant at each wavelength.

The CIE (1931) colour-matching functions were derived from RGB colour-

matching experiments that used a bipartite field that subtended 28 (in terms of

visual angle) at the retina. A second set of colour-matching functions was

measured in 1964 using a larger (108) field size. The 1931 and 1964 colour-

matching functions are based on the same XYZ primaries but exhibit some

marked differences. One reason for this is that the distribution of cones (the light-

sensitive cells in the eye) is not uniform across the retina. For example, it is

known that there are no cones that contain short-wavelength-sensitive pigment

in the central region of the retina known as the fovea. The present situation

whereby there are two sets of colour-matching functions known as the 2-degree

(1931) and the 10-degree (1964) standard observers has served the colour

industry well over the last 70 years but is ultimately unsatisfactory. Users need to

make a choice based upon which set of colour-matching functions best represents

any given viewing situation. This presents problems from time to time when the

size of the stimulus is not exactly 28 or 108. The CIE is currently working towards

the development of a set of colour-matching functions that vary continuously for

a wide range of stimulus sizes.

The CIE XYZ tristimulus values specify a colour stimulus in terms of the

visual system. It is often useful, however, to compute the chromaticity

coordinates x and y from the tristimulus values:

x ¼ X=ðXþ Yþ ZÞ, y ¼ Y=ðXþ Yþ ZÞ: ð1:4Þ
The chromaticity diagram is derived by plotting y against x and this provides a

useful map of colour space. However, it should be noted that stimuli of identical

chromaticity but different luminance are collapsed onto the same point in the

two-dimensional plane of the chromaticity diagram. One of the benefits of the

chromaticity diagram is that, according to Grassman’s law, additive mixtures of

two primaries fall on a straight line joining the two points that represent the two

primaries in the chromaticity diagram. If three primaries are used, then the

gamut of the additive system is given by a triangle, with the vertices defined by

the chromaticities of the three primaries. The gamut of all physically realizable

colours is contained by the convex shape of the spectral locus and a straight line

that can be considered to be drawn between the two ends of the locus. It can

readily be seen that this is so if one considers any real colour stimulus to consist

of the additive sum of energy at individual wavelengths.

The CIE system of colorimetry is a system of colour specification. However, it

has two limitations which are important to understand. First, the system was

designed for colour specification rather than for colour appearance. The

chromaticities of a perfect reflecting diffuser will change as the illumination

changes. However, it has already been mentioned that the colour appearance of

such a surface would be expected to remain approximately constant under quite
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large changes in illumination. Secondly, the system is perceptually non-uniform.

For a given Euclidean distance between two points in XYZ space the magnitude

of the perceptual colour difference between the two stimuli represented by those

points can vary by an order of magnitude or more. This second limitation in

particular has presented industrial practitioners of colorimetry with serious

problems, and even today not all of those problems have been resolved.

Although it is useful to be able to state that two stimuli are a visual match (under

the strict conditions under which the colour-matching functions were derived) if

they have the same tristimulus values, it is also useful to be able to predict the

visual difference between two stimuli whose tristimulus values are not identical.

Ideally, we would like a uniform colour space in which equal distances in that

space correspond to equal perceptual differences.

A major advance was made by the CIE in 1976 with the introduction of the

CIELAB system of colour specification. This non-linear transform of the XYZ

values provided partial solutions to both the problems of colour appearance and

colour difference. The transformation from tristimulus values to L*a*b*

coordinates is given by

L* ¼ 116ðY=YnÞ1=3 � 16,

a* ¼ 500½ðX=XnÞ1=3 � ðY=YnÞ1=3�,
b* ¼ 200½ðY=YnÞ1=3 � ðZ=ZnÞ1=3�,

ð1:5Þ

where Xn, Yn and Zn are the tristimulus values of a specified white achromatic

stimulus (see Chapter 5 for the complete equations).

CIELAB provides a three-dimensional colour space where the a* and b* axes

form one plane and the lightness L* axis is orthogonal to this plane. The

CIELAB transform was intended to be used for surface colours (a separate

transform, CIELUV, was provided for use with self-luminous colour stimuli

such as those generated using additive colour-reproduction devices) and includes

several interesting features.

Firstly, the inclusion of difference signals crudely models processes that are

believed to take place in the human visual system. Thus, whereas the retina

initially captures responses derived from the cone spectral sensitivities, these

responses are combined at an early (retinal) stage of visual processing to provide

a luminance signal and two opponent signals that can be described as being

yellow-blue and red-green. Similarly, CIELAB represents colour stimuli as an

achromatic signal (L*) and two chromatic channels representing yellow-blue (b*)

and red-green (a*).

Secondly, the normalization by the illuminant achieves a colour space that

makes better predictions of colour appearance than the tristimulus space from

which it is derived. Thus, whereas the x and y chromaticities of a perfect white

surface vary with the illuminant, the CIELAB coordinates remain constant at

L* ¼ 100 and a* ¼ b* ¼ 0. CIELAB also allows the representation of a colour
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stimulus by dimensions of lightness, chroma and hue and it is therefore

reasonable to describe CIELAB as a colour-appearance space, whereas this label

is not appropriate for tristimulus space which is strictly only for colour

specification. However, if predictions of colour constancy using CIELAB are

compared with empirical measurements of colour constancy, then it is found that

the predictions are quite poor in general. The field of colour appearance has been

actively researched over the last decade in particular and several advanced colour

spaces (e.g. CIECAT94 and CIECAM97s) are now available for predicting

colour appearance.

Thirdly, the non-linear transform of tristimulus values in the CIELAB

equations allows the Euclidean distance between two points in the new space to

better predict the visual colour difference between the colour stimuli represented

by those two points. Consequently, the colour difference metric known as DEab*

and computed by the formula

DEab* ¼ ½ðDL*Þ2 þ ðDa*Þ2 þ ðDb*Þ2�1=2, ð1:6Þ
where DL*, for example, denotes the difference in L* between the two samples,

has been used effectively to quantify colour difference in a wide range of

industries. The values of DL*, Da* and Db* are given by

DL* ¼ L1*� L2*

Da* ¼ a1*� a2*

and

Db* ¼ b1*� b2*

where the subscripts refer to the two stimuli concerned.

Unfortunately, although CIELAB is more perceptually uniform than XYZ

space it is still a long way from being perceptually uniform. Industrial

practitioners of colour science would like to be able to apply a single tolerance

on the value of DE*ab that defines the perceptibility or acceptability boundaries

throughout colour space, but this is not possible. The last two decades of the

twentieth century saw a great deal of research into the development of effective

colour-difference formulae. The CMC formula (named after the Colour

Measurement Committee of the Society of Dyers and Colourists) was introduced

in 1983 and has been widely used in industry (Clarke et al., 1984). However, a

new recommendation for colour difference was recently introduced by the CIE

and is known as CIEDE2000 (Luo et al., 2001). CIEDE2000, like its predecessor

CMC, is not in itself a colour space (it computes colour difference starting from

differences in CIELAB space) but rather describes a method for combining and

weighting the differences that is more complex, and certainly more effective, than

simply measuring the Euclidean distance.
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Systems that are able to better predict colour difference and colour appearance

are currently active areas of research for colour scientists in academia and

industry. One of the factors that is actively driving research in these areas is the

need to be able to effectively communicate colour between image-capture and

image-reproduction devices. The proliferation of inexpensive colour-capture and

-display systems, in addition to the increasing commercial use of colour on the

Internet, requires increased understanding of (and ability to predict) colour

difference and colour appearance.

A wide range of readable and informative texts exist for the reader who would

like to explore the background and methods of the CIE system in more detail

(e.g. McDonald, 1997a; Hunt, 1998; Berns, 2000).
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2
Linear Algebra for Beginners

2.1 Some basic definitions

A matrix is a rectangular array of numbers and the numbers in the array are

called the entries in the matrix. A two-dimensional matrix with one dimension

equal to 1 is sometimes called a row matrix (a matrix with only one row) or a

column matrix (a matrix with only one column). A matrix with both dimensions

equal to 1 is simply a single number which we can also call a scalar. It is

conventional to denote matrices by boldface upper-case symbols and row or

column vectors by lower-case symbols. So, for example, the matrix A, where

A ¼
�
1 0
0 1

�

is a 2�2 matrix with four entries. Since only the diagonal entries (from top left to

bottom right) are non-zero we can state that A is a diagonal matrix (furthermore,

a diagonal matrix whose diagonal entries are all 1 is also called an identity

matrix).

Two matrices are defined to be equal if they have the same size and their

corresponding entries are equal. If A and B are matrices of the same size, then the

sum A+B is the matrix obtained by adding the entries of B to the corresponding

entries of A, and the difference A�B is the matrix obtained by subtracting the

entries of B from the corresponding entries of A. Only matrices of the same size

can be added or subtracted. As an example, if we defined the matrix B by

B ¼
�
1 2
3 4

�
,

then we can write that

Aþ B ¼
�
2 2
3 5

�

and that
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A� B ¼
�

0 �2
�3 �3

�
.

If A is an m�r matrix and B is an r�n matrix, then the product AB is the m�n

matrix whose entries are determined as follows. To find the entry in row i and

column j of AB, single out row i from matrix A and column j from matrix B,

multiply the corresponding entries from the row and column together and then

add up the resulting products. Thus

AB ¼
�
1 2
3 4

�
.

In order to see how the entries were created in AB, note that for the (i, j) entry

where i¼ j¼ 1, we took the values 1 and 0 from the first row of A and the values

1 and 4 from the first column of B to yield (1)(1)+(0)(3)¼ 1. Note that

multiplying matrix B by A resulted in matrix AB, which was the same as B. This

special situation occurred because matrix A is the identity matrix. We can

therefore note that multiplying a matrix by the identity matrix is like multiplying

a scalar by unity. It should also be clear that a matrix A may only be multiplied

by a matrix B if the number of columns in A is equal to the number of rows in B.

2.2 Solving systems of simultaneous equations

Imagine that we wish to solve a problem where we need to find the values of two

variables, x and y, and we are given knowledge of two relationships between the

two variables. For example, we might be told that the sum of the two variables is

6 and the difference between the two is 3. We can represent this problem by a pair

of simultaneous equations:

6 ¼ xþ y,

3 ¼ x� y.
ð2:1Þ

Many readers will be familiar with this sort of problem and will possess the

algebraic skills to rearrange these two equations into a form that enables one of

the variables to be eliminated. In this trivial example, we can simply add the two

equations together to give

9 ¼ 2x,

from which it is now obvious that x¼ 4.5 and (by subsequent substitution) that

y¼ 1.5.

However, it is often convenient to represent the problem in matrix form. The

two simultaneous (or coupled) linear equations can be written as a single matrix

equation of the form
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�
6
3

�
¼

�
1 1
1 �1

��
x
y

�
.

We can further simplify the notation by writing

a ¼ Mp, ð2:2Þ

where a and p are 2�1 column matrices and M is a 2�2 matrix. Note that the

‘inner’ dimensions of the terms that are being multiplied together match; thus

Mp is (2�2)(2�1). Matrices can only be multiplied together if their inner

dimensions match in this way and matrix multiplication is sometimes referred to

as computing the inner product. Note also that the dimensions of the result of

computing the inner product are given by the outer dimensions. Thus, the result

of a (2�2)(2�1) multiplication is a 2�1 matrix.

Matrix notation is concise and provides an alternative way to arrive at a

solution to Equation (2.1). In order to solve the problem we need to compute the

inverse of the matrix M. We denote the inverse of a matrix M as M�1 and define

it by

I ¼ MM�1,

where I is the identity matrix. Strictly, it is only possible to compute the inverse

for matrices that are square. However, approximation methods can be used to

compute the pseudoinverse of a non-square matrix and this procedure is denoted

by the + superscript symbol in this book, M+.

The identity matrix for M in our problem would be given by

I ¼
�
1 0
0 1

�
.

If we multiply a matrix by the identity matrix it is rather like multiplying a scalar

by 1; its effect can be ignored. Thus, we can now multiply both sides of Equation

(2.2) by the inverse of M to give

M�1a ¼ M�1Mp,

and since M�1M is the identity matrix we can write

p ¼ M�1a

to give an equation that will provide a solution p to the simultaneous equations

that were originally considered as Equation (2.1). All that is required is to be able

to compute the inverse of matrix M and then compute the product of M�1 and a.
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2.3 Transposes and inverses

If A is an m�n matrix, then the transpose of A, denoted by AT, is defined to be

the n�m matrix that results from interchanging the rows and columns of A; that

is, the first column of AT is the first row of A, the second column of AT is the

second row of A, and so forth.

If A is a square matrix and a matrix A�1 can be found such that

AA
�1 ¼ A

�1
A ¼ I,

where I is the identity matrix, then A is said to be invertible and A�1 is the inverse

of matrix A.

2.4 Linear and non-linear transforms

A linear transform is a type of function; a rule f that associates with each element

in a set A one and only one element in a set B (Anton, 1994). If f associates the

element b with the element a, then we write b ¼ f(a). For the most common

functions, A and B are sets of real numbers, in which case f is a real-valued

function of a real variable <. A function may associate a four-dimensional real

value <4 with a three-dimensional real value <3, in which case we say that f is a

transformation from <4 to <3, or that f maps <4 into <3. We denote this by

writing f: <4 ! <3.

The simultaneous equations

w1 ¼ 2x1 � 3x2 þ x3 � 5x4,

w2 ¼ 4x1 þ x2 � 2x3 þ x4,

w3 ¼ 5x1 � x2 þ 4x3,

define an example of a function f: <4 ! <3.

There are no squared or higher terms in this example and therefore we can

further say that it is a linear transform T: <4 ! <3. In matrix form this example

can be expressed as follows:

w1

w2

w3

2
4

3
5 ¼

2 �3 1 �5
4 1 �2 1
5 �1 4 0

2
4

3
5

x1

x2

x3

x4

2
664

3
775,

or more efficiently as

w ¼ Ax, ð2:3Þ
where w and x are 3�1 and 4�1 column matrices, respectively, and A is a 3�4

matrix. The matrix A is called the standard matrix for the linear transformation.
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For a given standard matrix A it is trivial to compute w given x. However, it is

not trivial to compute x given w. This situation corresponds, of course, to the

problem of solving simultaneous equations and in the example given by

Equation (2.3) there are four variables (the entries of the column matrix x) and

three equations. When the number of equations is less than the number of

variables we say that the system is under-determined (a system is said be over-

determined if the number of equations is greater than the number of variables).

A common method for solving for x in Equation (2.3) is to multiply both sides

of the equation by the inverse of the standard matrix which we denote A�1.

However, the inverse of a non-square matrix is not defined and therefore

numerical methods must be employed to compute the pseudoinverse matrix

denoted by A+.

Recall (Section 2.2) that the product of a matrix and its inverse yields the

identity matrix and therefore we can write

A
�1
w ¼ A

�1
Ax or x ¼ A

�1
w: ð2:4Þ

A solution for x is therefore possible if we can compute the inverse (or

pseudoinverse) of the standard matrix A.

Linear algebra can be used to find mappings between one set of data and

another and this is sometimes called function approximation. Now, the problem

is to find the standard matrix A given examples of data from each of the sets.

Imagine, for example, that we have a set of n camera RGB response values and

we wish to find a linear transform between the corresponding n known XYZ

tristimulus values. Formally, if we define T as the 36n matrix of tristimulus

values and C as the 36n matrix of camera values, then we seek a transformation

of type T: <3 ! <3 or explicitly in this case T: C!T. Thus, we need to find the

coefficients a11 to a33 for the following three equations:

X ¼ a11Rþ a12Gþ a13B,

Y ¼ a21Rþ a22Gþ a23B,

Z ¼ a31Rþ a32Gþ a33B.

In matrix algebra we need to find the 3�3 standard matrix A where

T ¼ AC. ð2:5Þ
Note that if we considered each row of A separately for the first row we can write

that

X ¼ a11Rþ a12Gþ a13B,

where X is the X tristimulus value, RGB are the camera values, and a11, a12 and

a13 are the coefficients that form the first row of A. If we now consider the n

known samples we can write
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x ¼ Ca1, ð2:6Þ
where x is the n61 column matrix of X tristimulus values and a1 is a 3�1 column

matrix that will be used to fill the first row of A. Equation (2.6) represents an

over-determined system for n>3 since there are n simultaneous equations and

three variables. Equation (2.6) can be solved by rearranging thus:

a1 ¼ C
�1
x, ð2:7Þ

where C�1 is replaced by C+ if n>3. Although it would be possible to solve A for

each row separately, a solution can be found directly from Equation (2.5) to yield

A ¼ C
�1
T, ð2:8Þ

or, in the more likely case that C is a non-square matrix,

A ¼ C
þ
T. ð2:9Þ

Linear algebra can also be used to find non-linear mappings between one set of

data and another. We may, for example, consider the following three equations:

X ¼ a11Rþ a12Gþ a13Bþ a14R
2 þ a15G

2 þ a16B
2,

Y ¼ a21Rþ a22Gþ a23Bþ a24R
2 þ a25G

2 þ a26B
2,

Z ¼ a31Rþ a32Gþ a33Bþ a34R
2 þ a35G

2 þ a36B
2.

This system can again be expressed in linear algebra form as

T ¼ AD, ð2:10Þ
where T is the 36n matrix of tristimulus values and D is the 66n matrix of

augmented camera values where each row contains six terms: R, G, B, R2, G2 and

B2. In order to define this transform we need to find the 366 standard matrix A.

The solution is again achieved using

A ¼ D
�1
T, ð2:11Þ

or, if D is a non-square matrix,

A ¼ D
þ
T. ð2:12Þ

Thus, it is evident that very similar methods can be used to determine both linear

and non-linear transforms. In fact, it is reasonable to consider that the linear

transform is simply a special case of a more general set of polynomial transforms.
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3
A Short Introduction to MATLAB

The key to using MATLAB successfully lies in the user’s ability to conceptualize

data as square, rectangular, column and row matrices. Whereas most

programming languages are based on ordinary algebra, whereby a symbol or

name is used to represent a single numerical quantity, in MATLAB every name is

assumed to be a matrix and the names can be manipulated via the rules of matrix

arithmetic. MATLAB commands can be entered directly to the MATLAB

Command Window at the >> prompt.

In order to illustrate the use of MATLAB let us consider the problem defined

by Equation (2.2) and examine how this problem could be solved using

MATLAB. To enter a 2�2 matrix called M we can write

>>M = [1 1; 1 - 1];

Note that the entries of M were entered within square brackets and that the rows

were separated by a semi-colon. The final semi-colon at the end of the line is

optional; if it is not present MATLAB will echo the values of M to the

Command Window when the Return key is pressed. To enter a 2�1 column

matrix p we would write

>>p = [6; 3];

In order to solve Equation (2.2) we need to compute the inverse of matrix M and

then multiply this by the matrix p. A major feature of MATLAB is that it

provides many built-in, high-level functions and the function inv returns the

inverse of a square matrix. Thus typing

>>inv(M)

results in
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ans =

0.5000 0.5000

0.5000 -0.5000

and the inverse of M is computed and displayed in the Command Window. At

any time it is possible to type the command whos and this displays a list of the

current variables and their dimensions; thus

>>whos

Name Size Bytes Class

M 2�2 32 double array

ans 2�2 32 double array

p 2�1 16 double array

Grand total is 10 elements using 80 bytes

Note that since we did not assign the output of the inv command to any variable

it was automatically assigned to the variable ans.

We can now compute the solution to Equation (2.2) easily by typing

>>a = inv(M)*p

a =

4.5000

1.5000

which gives, of course, the same result as that achieved by the substitution

method that was briefly described in Chapter 2.

In the following sections the basic properties of MATLAB are briefly

introduced and some of its useful functions are described.

3.1 Matrix operations

Matrices may be added, subtracted and multiplied using the conventional

symbols +, � and �. Matrices may also be easily augmented thus

>>M = [1 1; 1 -1];

>>M = [M; M]

M =

1 1

1 -1

1 1

1 -1
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places a copy of the original matrix M below the current contents of M and

hence produces a 4�2 matrix, whereas the command

>>M = [M M]

would produce a 2�4 matrix. Two matrices can be joined, side by side, provided

that they have the same number of rows. They can also be joined one on top of

the other, provided they have the same number of columns.

The colon operator is a special feature in MATLAB for constructing row

vectors of evenly spaced values. The statement

>>x = 1:6

x =

1 2 3 4 5 6

generates a row matrix x containing the integers from 1 to 6.

Individual elements of a matrix may be referenced by specifying their indices

within parentheses. Thus,

>>M = [1 1; 1 -1];

x = M(1,1)

x =

1

>>y = M(2,:)

y =

1 -1

In the preceding statement the colon operator selects the whole row. Similarly,

y = M(:,2) would select the whole of the second column. It is also possible to

edit a single entry in a matrix by addressing it directly. Thus,

>>M = [1 1; 1 -1];

>>M(1,1) = 2;

M =

2 1

1 -1

Note that whole rows or columns can easily be selected and manipulated (copied,

printed, operated upon). For example, the statement M(1,:) = 2*M(1,:)

would double every entry in the first row of the matrix M.

MATLAB provides many functions for entering and manipulating special

matrices including linspace, ones, eye, inv, length, diag and size. As an example,

the command
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w = linspace(400,700,31);

would generate a 31-dimensional vector containing the values 400, 410, 420, . . . ,

700 evenly spaced between 400 and 700. In order to discover the operation of

other functions use the help command such as

>>help size

SIZE Size of matrix.

D = SIZE(X), for M-by-N matrix X, returns the two-element

row vector D = [M, N] containing the number of rows

and columns in the matrix. For N-D arrays, SIZE(X) returns

a 1-by-N vector of dimension lengths. Trailing singleton

dimensions are ignored.

[M,N] = SIZE(X) returns the number of rows and columns in

separate output variables. [M1,M2,M3,...,MN] = SIZE(X)

returns the length of the first N dimensions of X.

M = SIZE(X,DIM) returns the length of the dimension

specified by the scalar DIM. For example, SIZE(X,1) returns

the number of rows.

See also LENGTH, NDIMS.

When entering matrices in MATLAB names must begin with a letter, contain

only letters or digits, and although they may be entered of any length, MATLAB

only retains the first 19 characters. During a MATLAB session the values of all

defined variables are stored in the workspace. The user may save the current list

of variables and their associated values using the save command. The command

savemyfile.mat, for example, will save the workspace as a special MATLAB

file and this may be recovered during a new session using the load command.

The command clear will remove all user-defined variables from the workspace.

The format of displayed numbers during a session can be changed using the

format command. Finally, it is important to note that MATLAB is case sensitive.

3.2 Computing the transpose and inverse of matrices

A matrix may be easily transposed in MATLAB using the ’ operator. Thus, if x

is a 3�1 column matrix, then the command

x = x’;

will convert x into a 1�3 row matrix.

The inv operator has already been introduced for computing the inverse of a

matrix when solving a pair of simultaneous equations. The inv command can
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only be used to invert matrices that are square. For non-square matrices

MATLAB provides the pinv command that computes a pseudoinverse. Whereas

the inverse of a matrix A is denoted by the symbol A�1, the pseudoinverse is

denoted by the symbol A+.

However, it is usually more efficient and accurate (Borse, 1997) to solve

systems of simultaneous equations using Gaussian elimination or, equivalently,

by using MATLAB’s backslash division. Thus Equation (2.2) may be solved as

follows:

x = M\p;

The backslash operator is used extensively throughout this book for computing

the pseudoinverse of non-square matrices (a common mistake is to confuse the

backslash operator with the forwardslash operator which MATLAB uses to

divide one matrix by another).

For many matrices the inv and pinv commands will generate identical results to

the backslash operator. However, in some circumstances the matrix is ill-

behaved. Consider the systems illustrated by the upper diagrams in Figure 3.1.

The top-left diagram shows a system of two simultaneous equations for which

there is an exact solution (given by the intersection of the two lines). The

equations that represent these two lines are neither contradictory nor simple

multiples of each other, whereas the top-right diagram shows two parallel lines

for which there is no solution. The equations that represent these two lines are

said to be inconsistent.

However, as the gradients of the two lines in the top-left diagram become more

and more similar computation of the exact solution can become difficult and can

change quite markedly with small changes in the lines themselves. A set of two

equations with two unknowns is termed ill-conditioned if a small change in any

of the coefficients will change the solution set from unique to either infinite or

empty (Borse, 1997).

It is also interesting to consider the systems represented by the lower diagrams

where two variables are represented by three equations (this is known as an over-

determined system). The bottom-left diagram illustrates an over-determined

system with an exact solution. However, there is no exact solution for the system

represented by the bottom-right diagram but an approximate solution may be

found. The system represented by the bottom-right diagram of Figure 3.1 is

typical of many that are encountered during solutions to colorimetric problems.

Consider the following MATLAB commands which represent and solve a

problem similar to that shown in the bottom-left diagram of Figure 3.1:

a = [1; 1; 2];

M = [1 -1; 1 1; 6 1];

x = M\a

COMPUTING THE TRANSPOSE AND INVERSE OF MATRICES 23



The solution to this problem is given by x¼ (0.3846, �0.1026). However, if we

multiply the top row of the system by a common factor, say 100, to yield the

following related problem:

a = [100; 1; 2];

M = [100 -100; 1 1; 6 1];

x = M\a

then the solution reported is x ¼ (0.4717, �0.5282). Note that if we represented

these two problems graphically, then they would be identical since multiplying an

equation by a common factor throughout does not change it. The difference in

the two solutions highlights an important property of the solution of such over-

determined systems in that the solution provided by pinv or the backslash

operator is a least-squares solution. That is, for a¼Mx the solution x is that

which minimizes the squares of the errors between actual values of the column

matrix a and predicted values of a given x. It is thus evident that multiplying one

row of the system by a common factor will change the solution because it

effectively changes the weight of that row in the solution. For the simple system

considered the backslash and pinv operators generate identical solutions and this
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could be predicted in advance because the system is well conditioned. The

condition number of a matrix is given by the MATLAB command cond, thus:

M = [1 -1; 1 1; 6 1];

cond(M)

ans =

4.4159

The condition number of a matrix M is defined as the product of the norm of M

and the norm of the inverse matrix M�1 (Borse, 1997). When the condition

number of a matrix is high it is especially important to use the backslash

operator rather than pinv.

3.3 M-files

A powerful property of MATLAB is that it offers the user the ability to write

scripts, known as M-files. Any simple text editor such as Notepad can be used to

write an M-file, but in later versions of MATLAB an Integrated Development

Environment (IDE) is provided with a special MATLAB editor. Commands can

be entered as a script in the same way that they would be entered into the

Command Window. If the script is saved with the .m extension, then the

commands can be executed by simply typing the name of the script. For example,

an M-file called test.m can be executed by typing test in the Command

Window. For some scripts it can be useful to place the command clear as the first

line in the script so that MATLAB script is started from a clean environment. Of

course, it is important to be careful to avoid using names for M-files that clash

with any of MATLAB’s built-in functions or M-file functions. Comments may

be placed in M-files by starting the line with the % symbol.

3.4 Using functions in MATLAB

Although it is possible to create quite complicated programs using combinations

of M-files (since one M-file can call another) most users will at some stage wish

to create their own functions. This can also be achieved using M-files. In fact,

many of the toolbox functions in MATLAB that perform some action on an

arbitrary input are in fact scripts stored as M-files. In order to see how a script

can be used to generate a function the following example illustrates a function

called treble that takes a single variable as input and produces three times that

variable as the output:
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function [out] = treble(in)

out = 3*in;

The text for the function treble should be saved in an M-file called treble.m. The

function is then available to the Command Window or to other M-files or

functions and is simply called in any of the following ways:

treble(x)

y = treble(x);

[y] = treble(x);

The last of these formats is useful since it allows for a function to return more

than one variable. Note also that the function treble will operate on a single

number, a row or column matrix or a matrix.

A wide variety of text books (Borse, 1997; Marchand, 1999) exist for the

reader who wishes to become more familiar with MATLAB before proceeding

with the remainder of this book.
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4
Computing CIE Tristimulus Values

4.1 Introduction

In the reproduction of colour and coloured images, trained experts known as

colourists have traditionally been responsible for the assessment of the colour

appearance of the colour match (Rich, 2002). Although this approach worked well

for many years, in today’s fast-moving global workplace more objective methods

are required. Colorimetry attempts to capture the essence of colour perception and

provides an objective procedure for accurate colour matching and reproduction.

Tristimulus values are the basis of colorimetry and their accurate calculation is

highly desired by industry for a wide range of applications. In order to compute the

tristimulus values for a surface that is defined by a set of spectral reflectance values

it is necessary to specify an illuminant and a set of colour-matching functions. The

spectral reflectance values, the relative energy of the illuminant and the colour-

matching functions must be multiplied together at each wavelength and then

summed. In some cases the surface is specified at a wavelength interval that is

smaller or larger than the wavelength interval of the illuminant data or the colour-

matching functions. This chapter reviews methods for computing tristimulus values

from spectral reflectance data and considers the use of interpolation and

extrapolation where appropriate.

4.2 Standard colour-matching functions

The CIE (see Chapter 1, Section 1.3 for a brief review) originally defined the

tristimulus values in terms of an integration over wavelength l, thus:

X ¼ k
R
EðlÞPðlÞxðlÞdl,

Y ¼ k
R
EðlÞPðlÞyðlÞdl,

Z ¼ k
R
EðlÞPðlÞzðlÞdl,

ð4:1Þ
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where E(l) is the relative spectral power distribution of an illuminant, x(l), y(l)
and z(l) are the colour-matching functions for the CIE 1931 or 1964 standard

observers, P(l) is the spectral reflectance of a surface and k is a normalizing

factor given by 100/
R
E(l)y(l)dl. The integration was originally specified to be

performed over the visible range of the electromagnetic spectrum between the

wavelengths 360 nm and 830 nm. Unfortunately, analytical expressions for the

colour-matching functions do not exist and so it is not possible in practice to

calculate the tristimulus values according to Equation (4.1). Furthermore, the

reflectance spectrum P(l) usually is measured at discrete intervals using

commercially available reflectance spectrophotometers and is therefore also

not available as an analytic expression. In 1986 the CIE adopted an alternative

practice for calculating tristimulus values based upon numerical integration

using wavelength intervals of 1 nm (CIE, 1986a). This leads to Equation (4.2)

where the summation is carried out over the visible range of wavelengths as

before:

X ¼ k
X830
360

EðlÞxðlÞPðlÞ,

Y ¼ k
X830
360

EðlÞyðlÞPðlÞ,

Z ¼ k
X830
360

EðlÞzðlÞPðlÞ.

ð4:2Þ

The colour-matching functions (for both the 1931 and 1964 standard observers)

are provided with seven significant figures by the CIE in tabular form at 1-nm

intervals between the wavelengths 360 nm and 830 nm in CIE Publication

number S2 (CIE, 1986a). These are the official sets of colour-matching functions

recommended by the CIE. However, for most practical applications it is

suggested that an abridged set of colour-matching functions may be used at 5-nm

intervals over the range 380–780 nm and these are provided in CIE Publication

number 15.2 (CIE, 1986b).

The 1931 colour-matching functions are recommended whenever correlation

with visual colour matching of fields of angular subtense between approximately

18 and 48 at the eye of the observer is desired. For larger angular subtenses the

1964 colour-matching functions should be used.

The use of the 5-nm colour-matching functions requires that the spectral

reflectance data (for surfaces) be known at 5-nm intervals. For practical

applications, the required data are often not available in an appropriate format

because of abridgement (measurement at intervals greater than 5 nm) or

truncation (omission of the data at the spectral extremes). Many modern

reflectance spectrophotometers, for example, provide data at 10-nm intervals in

the range 400–700 nm. For situations where the spectral data are abridged or

28 COMPUTING CIE TRISTIMULUS VALUES

sjsj



truncated, the CIE recommends the use of interpolation and extrapolation,

respectively (CIE, 1986b).

4.3 Interpolation methods

If reflectance data are available at 5-nm intervals, then the most accurate method

to compute tristimulus values is to use the 5-nm colour-matching and illuminant

data. Even if reflectance data are available at 10- or 20-nm intervals the 5-nm

data can be used if interpolation methods are applied to the reflectance data.

Another situation where interpolation methods may be important is where a user

is computing tristimulus values for a specific non-CIE illuminant. A problem

that the CIE has so far failed to solve is the disparity between illuminant spectral

power distributions and light sources that serve to correspond to these

illuminants. This is a particular problem with CIE illuminant D65, where

although there are many lamps that are used as D65 simulators there is, in fact,

no light source that replicates illuminant D65 exactly (Xu et al., 2003). A

practical solution to this problem is to measure the spectral power distribution of

the actual light source used in a specific viewing cabinet, for example, and to use

these measurements as the illuminant data in the colorimetric equations

[Equation (4.2)]. This approach is sensible; unfortunately many commercial

spectroradiometers provide radiance measurements at wavelength intervals of 4,

5 or 10 nm. Interpolation methods may be necessary to obtain the illuminant

data at 5-nm intervals. Interpolation methods are now briefly discussed before

alternative methods for computing tristimulus values are described.

A line can be drawn to fit exactly through any two points, a parabola through

any three points, and an nth-degree polynomial through any n+1 points. Thus, if

there are measurements of reflectance P(l) at n wavelengths an arbitrary

(n�1)th-degree polynomial

PðlÞ ¼ a1l
n�1 þ a2l

n�2 þ : : : þ an�1lþ an ð4:3Þ
that has n coefficients can be specified by the n independent relations. A method

for finding the coefficients a1–an can be envisaged if we consider Equation (4.3) at

each of the n wavelengths simultaneously to give the linear system

Pðl1Þ ¼ a1l
n�1
1 þ a2l

n�2
1 þ : : : þ an�1l1 þ an,

Pðl2Þ ¼ a1l
n�1
2 þ a2l

n�2
2 þ : : : þ an�1l2 þ an,

Pðl3Þ ¼ a1l
n�1
3 þ a2l

n�2
3 þ : : : þ an�1l3 þ an,

Pðl4Þ ¼ a1l
n�1
4 þ a2l

n�2
4 þ : : : þ an�1l4 þ an,

: : :

PðlnÞ ¼ a1l
n�1
n þ a2l

n�2
n þ : : : þ an�1ln þ an,

ð4:4Þ
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which represents n simultaneous equations and n unknowns. In terms of linear

algebra (see Chapter 2) Equations (4.4) can be efficiently represented by

Equation (4.5):

p ¼ Ma, ð4:5Þ
where p is an n61 column matrix of reflectance values, a is an n61 column

matrix containing the coefficients a1–an and M is a special n6n matrix known as

the Vandermonde matrix. For a third-order polynomial, for example, the

Vandermonde matrix would be constructed with the entries thus:

l3
1 l2

1 l1 1

l3
2 l2

2 l2 1

l3
3 l2

3 l3 1

l3
4 l2

4 l4 1

2
6664

3
7775.

The polynomial in Equation (4.3) is referred to as the Lagrange polynomial. It is

trivial to solve Equation (4.5) for the coefficients a using MATLAB’s backslash

operator: a¼M\p (see Chapter 3 for further information about the backslash

operator). Alternatively, MATLAB also provides the functions polyfit and

polyval that automatically fit and use polynomials, respectively. Thus the

following code fits a fifteenth-order Lagrange polynomial to 16 reflectance values

representing measurements at 20-nm intervals in the range 400–700 nm:

% r16 is a 1616 vector containing the spectral data

w16 = linspace(400,700,16);

[P,S] = polyfit(w16,r16,15);

x = linspace(400,700,301);

y = polyval(P,x);

The effect of the preceding code is illustrated in Figure 4.1(a) for a typical

reflectance curve. The circle symbols show the original reflectance data at 10-nm

intervals. These data were directly sub-sampled (at 400, 420, 440, . . ., 700 nm) to

give data at 20-nm intervals and the 20-nm data were then interpolated to yield

the fitted line. The solid line shows the polynomial fit illustrated at intervals of

1 nm. During the execution of the polyfit command MATLAB showed the

warning,

about to call polyfit

Warning: Polynomial is badly conditioned. Remove repeated

data points or try centering and scaling as described in

HELP POLYFIT.

which indicates a problem with the solution of the matrix equation.
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The problem occurs because of the construction of the Vandermonde matrix

which will contain values of wavelength to the power 15 when used to fit a series

of 16 reflectance values. There is clearly the likelihood of exceeding the storage

capacity that MATLAB allows for a variable. The problem can be solved by

modifying the code as follows so that the wavelength scale is centred and scaled.

More information on this process can be found by typing help polyfit. The effect

of the normalizing procedure can be seen by the solid line in Figure 4.1(b).

% r16 is a 1616 vector containing the spectral data

w16 = linspace(400,700,16);

[P,S,mu] = polyfit(w16,r16,15);

x = linspace(400,700,301);

y = polyval(P,x,[],mu);

Note, however, that even using the normalized wavelength scale although the

Lagrangian polynomial fits the 20-nm data exactly it would make quite poor

estimates (particularly towards the two ends of the spectrum) if it was used to

interpolate the 20-nm data to yield 10-nm intervals. This problem can be solved

by using a family of polynomials (each of which fits a relatively small number of

points) rather than trying to fit the whole spectrum with a single polynomial.

Indeed, CIE Publication Number 15.2 recommends that interpolation be carried
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out using a third-degree polynomial from neighbouring data within twice the

measurement interval (CIE, 1986b). This means that a Langrange interpolation

formula should be used for four data points (two either side of the point to be

interpolated). Interpolation is thus performed piecewise.

MATLAB provides some excellent interpolation functions and the most

widely used is interp1 which is used in the following way:

p = interp1(x,y,x1,<option>);

The vectors x and y are the data through which the interpolated curve must pass.

The points specified in the vector x1 are the points at which the vector p must be

estimated. The default option is a linear interpolation in which the y points are

simply connected by straight lines. This works surprisingly well for many

reflectance curves given that the sampling interval is 20 nm or less. Other options

include ‘cubic’ and ‘spline’. The cubic fit performs cubic interpolation piecemeal

in the way stipulated by the CIE. The results of interpolation to 20-nm data are

shown for the cubic and spline options in Figure 4.2.

In order to evaluate the performance of interpolation techniques a set of

reflectance spectra measured for 404 natural objects (Westland et al., 2000) at 10-

nm intervals were sub-sampled to generate data at 20-nm intervals. Interpolation

techniques were then used to fit the 20-nm data and to predict the reflectance at
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10-nm intervals. The original and interpolated spectra were compared and root-

mean-square (rms) errors computed for each sample. Table 4.1 shows the mean

and maximum rms values using several different interpolation techniques.

A general problem with Lagrange polynomials is that they are susceptible to

wild oscillations and, as a consequence, can lead to large associated errors when

used to interpolate data. An improvement is to successively increase the degree of

the fitted polynomial, one degree at a time, and to use the change in the

computed values from one step to the next as an indication of the errors. This

procedure is known as Neville’s algorithm. However, the results shown in Table

4.1 for a large number of reflectance spectra illustrate that the cubic Lagrange

polynomial is almost certainly adequate for any practical interpolation of

reflectance spectra. This may not be the case for the interpolation of spectral

power distributions of light sources, however, since these can be spiky.

For users who may wish to write code in languages other than MATLAB we

provide a function called pinterp that performs interpolation by cubic Langrange

polynomials and that contains no MATLAB library calls other than the

backslash operator. Table 4.1 shows that this function does not perform as well

as interp1 and so the simplicity of the code is at the cost of some accuracy.

However, pinterp does outperform MATLAB’s cubic spline interpolation and it

is suggested that for most practical purposes the code would provide adequate

interpolation.

Table 4.1 also shows (in parentheses) interpolation errors as CIELAB colour

differences DE*ab computed for illuminant D65 for the 1964 observer. Using this

colorimetric measure, the maximum errors for the cubic spline, cubic Lagrange

and pinterp fits are all comparable, although on average the cubic Lagrange still

performs best.

4.4 Extrapolation methods

A further problem that can occur when computing tristimulus values is that

many reflectance spectrophotometers provide reflectance data in the range 400–

700 nm and yet the 5-nm colour-matching functions are defined over 380–

780 nm. It is possible to extrapolate the reflectance data and the method
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Table 4.1 Performance of different interpolation methods on a large set of reflectance spectra

Interpolation method Mean rms (DE*ab) Maximum rms (DE*ab)

Fifteenth order Lagrange 0.2865 (1.7454) 3.4720 (18.3091)
Linear 0.0198 (0.4779) 0.0600 (1.3991)
Cubic spline 0.0082 (0.0330) 0.0297 (0.1305)

Cubic Lagrange 0.0002 (0.0051) 0.0092 (0.1508)
pinterp 0.0050 (0.0128) 0.0244 (0.1487)



recommended by the CIE is to extend the reflectance data by using the most

extreme value as an estimate of all values beyond that extreme (CIE, 1986b). So,

for example, if the calculation is being carried out at 10-nm intervals and the

reflectance data are in the range 400–700 nm, then values of reflectance at 710,

720, . . ., 780 nm are set equal to the value at 700 nm. A similar procedure applies

to the shorter wavelength. Although it could be suggested that more accurate

extrapolation methods could be employed it should be remembered that

extrapolation is far more dangerous than interpolation. Also, the fact that the

colour-matching functions have very small values below 400 nm and above

700 nm means that the errors that result from the CIE method generally are very

small and the risk of using sophisticated extrapolation techniques is not justified.

4.5 Tables of weights

Some practitioners prefer to use weighting tables where the terms E(l)x(l),
E(l)y(l) and E(l)z(l), as used in Equation (4.2), are pre-computed at each

wavelength interval. These weighting tables can be computed from the CIE

colour-matching functions and illuminants. The benefit to the user in using these

tables is that Equation (4.2) can be replaced by Equation (4.6),

X ¼ P
WxðlÞPðlÞ,

Y ¼ P
WyðlÞPðlÞ,

Z ¼ P
WzðlÞPðlÞ,

ð4:6Þ

where the weight vectors Wx , Wy and Wz also include the normalizing constant k

from Equation (4.2). The CIE recommends that such tables of weighting factors

should be provided for the full range of wavelengths, 360–830 nm, so that they

may be used for any degree of truncation by adding the weights at the

unmeasured wavelengths to those at the extreme measured wavelengths.

A set of useful weights is provided by the American Society for Testing and

Materials in E308-01 (ASTM, 2001). The E308-01 tables are provided only for

the range of wavelengths 360–780 nm but are suitable for most practical

applications. They are provided at 10- and 20-nm intervals. The fact that the

E308-01 tables are abridged to intervals of 10 and 20 nm has resulted in them

probably being the most widely used method for computing tristimulus values

since the 10-nm data, in particular, are suitable for direct use with reflectance

data obtained from most reflectance spectrophotometers without interpolation.

The ASTM publication provides the data in two main tables: ASTM Table 5

should be used with reflectance data that have been corrected for the spectral

bandpass of the instrument whereas ASTM Table 6 has the spectral-bandpass

correction built in and should be used with reflectance data that have not been
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corrected. The majority of reflectance spectrophotometers that are commercially

available do not correct for the spectral bandpass of the instrument.

The ASTM tables of weights are available in hard copy or electronic form

from the ASTM web site http://www.astm.org.

4.6 Correction for spectral bandpass

Figure 4.3 shows a triangular bandpass function for a typical reflectance

spectrophotometer. The triangular function is effectively the spectral sensitivity

of the spectrophotometer at wavelength li and it can be seen that the

spectrophotometer integrates energy between li�1 and liþ1. The effect of a

bandpass shape as shown in Figure 4.3 is that the measured reflectance data P 0

need to be corrected to obtain the true reflectance data P.

Stearns and Stearns (1988) and Venable (1989) have proposed methods for

spectral bandpass correction. The Stearns and Stearns correction is given by

Equation (4.7),

Pi ¼ �aP 0
i�1 þ ð1þ 2aÞP 0

i � aP 0
iþ1, ð4:7Þ

where a is equal to 0.083 and where, if the wavelength being corrected is the first

or last one in the sequence, Equation (4.8) is used,

Pi ¼ ð1þ aÞP 0
i � aP 0

i�1. ð4:8Þ
It is important to know, therefore, whether the spectral reflectance values from a

given reflectance spectrophotometer have been corrected for spectral bandpass

by the operating software in order that the correct tables of weights are used. The

bandpass correction is not built in to the CIE 1-nm and 5-nm data and therefore

if these sets of colour-matching functions are used, then it is important that the

reflectance data are corrected for bandpass dependence.

4.7 Chromaticity diagrams

Chromaticity coordinates are computed from tristimulus values according to

Equations (4.9),

x ¼ X=ðXþ Yþ ZÞ,
y ¼ Y=ðXþ Yþ ZÞ,
z ¼ Z=ðXþ Yþ ZÞ.

ð4:9Þ

Of course, it is evident that xþ yþ z ¼ 1 and therefore it is usual to quote just

two of the coordinates (by convention, x and y are selected) in addition to one of

the tristimulus values (Y is selected because, for the 1931 observer, it is equivalent
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to luminance expressed in units of cd/m2). It is sometimes useful to be able to

compute the tristimulus values from an x, y, Y specification and this can be

accomplished using Equations (4.10),

X ¼ xY=y,

Z ¼ ð1� x� yÞY=y. ð4:10Þ

The chromaticity coordinates provide a useful representation especially for

additive colour-reproduction devices where, for any luminance plane, the gamut

of the device is defined by the polygon whose vertices are the chromaticities of

the device primaries. Note, however, that such device gamuts are three-

dimensional so, for example, for a colour monitor it will not be possible to obtain

the full range of chromaticities at all luminance levels (Morovic, 2002).

The chromaticities of the spectral locus of a chromaticity diagram can be

obtained directly from the tables of weights as shown in Equations (4.11),

x ¼ WxðlÞ=½WyðlÞ þWyðlÞ þWzðlÞ�,
y ¼ WyðlÞ=½WxðlÞ þWyðlÞ þWzðlÞ�.

ð4:11Þ

The weights in Equations (4.11) can be replaced by the colour-matching

functions and in this case the chromaticity coordinates are computed for the

appropriate observer and for the equal-energy illuminant (illuminant E). Figure

4.4 shows the spectral locus that is generated using Equation (4.11) and the tables

of weights at 10-nm intervals. In order to generate a smooth spectral locus 5-nm

intervals or less are required.
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4.8 Implementations and Examples

4.8.1 Spectral bandpass correction

The function cband applies the Stearns–Stearns correction method [Equations

(4.7) and (4.8)] to a reflectance vector.

Box 1: cband.m

function [cP] = cband(P)

% function [cP] = cband(P)

% applies Stearns-Stearns spectral bandpass correction

% operates on matrix P of dimensions 1 by n

% where n is the number of wavelengths

% returns corrected matrix cP
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dim = size(P);

if (dim(1) == 1) | (dim(2) == 1)

P = P(:)’; % force to be a row matrix

else

disp(’P must be a row matrix’);

return;

end

a = 0.083;

n = length(P);

for i=2:n-1

cP(i) = -a*P(i-1) + (1 + 2*a)*P(i) - a*P(i+1);

end

cP(1) = (1 + a)*P(1) - a*P(2);

cP(n) = (1 + a)*P(n) - a*P(n-1);

The format for this function is

[cp] = cband(p)

where p is an n61 or 16n matrix. In cband the dimensions of p are checked to

ensure that only a single reflectance spectrum has been passed to the function.

The p matrix is then converted to a row matrix. The MATLAB command

p = p(:)

converts the matrix p into a column matrix and the transpose function is

added

p = p(:)’

to ensure that p is a row matrix.

This function operates on a single reflectance spectrum although it would be

relatively easy to modify the code so that it operates on an n6m matrix of m

reflectance spectra. The main purpose of this book is education rather than

producing the fastest and most efficient code, and therefore most of the functions

have been written to clearly demonstrate the computations involved. The following

modification of cband, however, demonstrates how the code would be changed to

allow more than one reflectance spectrum to be passed to the function:
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function [cp] = cband2(p)

% applies Stearns-Stearns spectral bandpass correction

% operates on matrix P of dimensions n by m

a = 0.083;

dim = size(p);

n = dim(1);

for i = 2:n-1

cp(i,:) = -a*p(i-1,:) + (1 + 2*a)*p(i,:) - a*p(i+1,:);

end

cp(1,:) = (1 + a)*p(1,:) - a*p(2,:);

cp(n,:) = (1 + a)*p(n,:) - a*p(n-1,:);

4.8.2 Reflectance interpolation

The CIE recommended method for interpolation of reflectance spectra is to use

cubic polynomial interpolation using two points either side of the wavelength to

be evaluated. If the reflectance spectrum is available at intervals of 20 nm, then

the value of reflectance at 470 nm, for example, would be calculated using a cubic

polynomial fitted through the reflectance at 440, 460, 480 and 500 nm. The

function pinterp takes an N-dimensional reflectance vector and applies piecewise

cubic polynomial interpolation to generate an additional point between each pair

of points in the vector. Most reflectance spectrophotometers provide reflectance

data at intervals of 10 nm and so can be used directly with the ASTM tables of

weights. Some older instruments only produce data at 20-nm intervals, however,

and therefore the most practical use of this function will be to reduce the

sampling interval from 20 nm to 10 nm. Thus, if the input to pinterp is a 16-

dimensional vector the output will be a 31-dimensional vector. This function

therefore effectively doubles the sampling rate of the input vector.

Box 2: pinterp.m

function [s] = pinterp(p)

% function [s] = pinterp(p)

% applies interpolation to double the sampling

% rate of the n by 1 matrix p

% returns interpolated matrix s
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dim = size(p);

if (dim(1) == 1) | (dim(2) == 1)

p = p(:)’; % force to be a row matrix

else

disp(’p must be a row matrix’);

return;

end

N = length(p);

for i=1:N-1

if (i==1)

index1 = i;

index2 = 1.5;

elseif (i==N-1)

index1 = i-2;

index2 = 3.5;

else

index1 = i-1;

index2 = 2.5;

end

tempy = p(index1:index1+3);

tempx = [1 2 3 4];

tempx = tempx(:);

tempy = tempy(:);

% Construct Vandermonde matrix.

V(:,3+1) = ones(length(tempx),1);

for j = 3:-1:1

V(:,j) = tempx.*V(:,j+1);

end

% Solve least squares problem

g = V\tempy;

r = tempy - V*g;

temp(i) = g(4) + g(3)*index2 + g(2)*index2*index2 +

g(1)*index2*index2*index2;

end

for i=1:N-1

s(i*2 - 1) = p(i);
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s(i*2) = temp(i);

end

s((N-1)*2 + 1) = p(N);

The format for this function is

[s] = pinterp(p)

where p is an n61 or 16n matrix. The function pinterp includes a special

MATLAB operator called ones that simply creates an array of 1s that will form

the rightmost column of the Vandermonde matrix [see Equation (4.5)]. Table 4.1

illustrates the performance of the pinterp function.

4.8.3 Computing tristimulus values

The function r2xyz computes XYZ tristimulus values using ASTM Table 5

colour-matching functions from the ASTM standard (ASTM, 2001). The

reflectance data should be in the range [0, 1] rather than in per cent format and

must be sampled at 10-nm intervals. Since ASTM Table 5 is used it is assumed

that the reflectance data have been corrected for the spectral bandpass properties

of the spectrophotometer that was used for their measurement. A typical call for

a reflectance spectrum sampled at 10-nm intervals in the range 400–700 nm

would be

[xyz] = r2xyz(p,400,700,’d65___64’);

where p represents a 3161 matrix. The second and third arguments relate to the

shortest and longest wavelengths available in the reflectance data. The fourth

argument specifies the illuminant and observer combination to be used.

Box 3: r2xyz.m

function [xyz] = r2xyz(p, startlam, endlam, obs)

% function [xyz] = r2xyz(p, startlam, endlam, obs)

% computes XYZ from reflectance p using a table of weights

% operates on matrix p of dimensions 1 by n for

% illuminants A, C, D50, D55, D65, D75, F2, F7, F9
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% and for the 1931 and 1964 observers

% set obs to ’d65___64 for D65 and 1964, for example

% the startlam and endlam variables denote the first and

% last wavelengths (eg. 400 and 700) for your reflectance

% which must be integers of 10 in the range 360-780

if ((endlam780) | (startlam5 360) | (rem(endlam,10)*=0) |

(rem(startlam,10)*=0))

disp(’start and end wavelengths must be divisible by 10’)

disp(’wavelength range must be 360-780 or less’);

return;

end

load weights.mat

% weights.mat contains the tables of weights

if strcmp(’a___64’,obs)

cie = a___64;

elseif strcmp(’a___31’, obs)

cie = a___31;

elseif strcmp(’c___64’, obs)

cie = a___64;

elseif strcmp(’c___31’, obs)

cie = c___31;

elseif strcmp(’d50___64’, obs)

cie = d50___64;

elseif strcmp(’d___50’, obs)

cie = d___50;

elseif strcmp(’d55___64’, obs)

cie = d55___64;

elseif strcmp(’d55___31’, obs)

cie = d55___31;

elseif strcmp(’d65___64’, obs)

cie = d65___64;

elseif strcmp(’d65___31’, obs)

cie = d65___31;

elseif strcmp(’d75___64’, obs)

cie = d75___64;

elseif strcmp(’d75___31’, obs)

cie = d75___31;

elseif strcmp(’f2___64’, obs)

cie = f2___64;

elseif strcmp(’f2___31’, obs)
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cie = f2___31;

elseif strcmp(’f7___64’, obs)

cie = f7___64;

elseif strcmp(’f7___31’, obs)

cie = f7___31;

elseif strcmp(’f9___64’, obs)

cie = f9___64;

elseif strcmp(’f9___31’, obs)

cie = f9___31;

else

disp(’unknown option obs’);

disp(’use d65___64 for D65 and 1964 observer’); return;

end

% check dimensions of P

dim = size(p);

if (dim(1) == 1) | (dim(2) == 1)

p = p(:)’; % force to be a row matrix

else

disp(’p must be a row matrix’);

return;

end

N = ((endlam-startlam)/10 + 1);

if (length(p)*= N)

disp(’check dimensions of p’); return;

end

% deal with possible truncation of reflectance

index1 = (startlam - 360)/10 + 1;

if (index14 1)

cie(index1,:) = cie(index1,:) + sum(cie(1:index1-

1,:));

end

index2 = index1 + N - 1;

if (index25 43)

cie(index2,:) = cie(index2,:) + sum(cie(index2+

1:43,:));

end

cie = cie(index1:index2,:);

xyz = (p*cie)*100/sum(cie(:,2));
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% note that 100/sum(cie(:,2)) is the normalising factor k

% so that Y = 100 for a perfect reflecting diffuser

The command load weights.mat loads the values of ASTM Table 5 and the

whos command would reveal the following variables:

Name Size Bytes Class

a___64 43x3 1032 double array

a___31 43x3 1032 double array

c___64 43x3 1032 double array

c___31 43x3 1032 double array

d50___64 43x3 1032 double array

d50___31 43x3 1032 double array

d55___64 43x3 1032 double array

d55___31 43x3 1032 double array

d65___64 43x3 1032 double array

d65___31 43x3 1032 double array

d75___64 43x3 1032 double array

d75___31 43x3 1032 double array

f2___64 43x3 1032 double array

f2___31 43x3 1032 double array

f7___64 43x3 1032 double array

f7___31 43x3 1032 double array

f9___64 43x3 1032 double array

f9___31 43x3 1032 double array

The file weights.mat therefore contains weights that represent the 1964 and 1931

colour-matching functions for the CIE illuminants A, C, D50, D55, D65, D75,

F2, F7 and F9. The leftmost column in the preceding list shows the valid

observer/illuminant options that can be used as the fourth argument in r2xyz.

The white points of the illuminants are given (ASTM, 2001) by Table 4.2.

Following some basic checks on the arguments to the function the issue of

truncation is addressed in the r2xyz code. If the reflectance data are only

available at 400 nm and higher, for example, then the values of the weights at

wavelengths lower than 400 nm are added to the value of the weights at 400 nm.

Summation of the product of the weights and the reflectance data is then

performed at 400 nm and upwards. This is equivalent to extending the reflectance

data below 400 nm using the value of reflectance at 400 nm. A similar process is

carried out for the upper wavelength that is available. This procedure is in

accordance with the CIE recommendation for dealing with truncated reflectance

data.
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4.8.4 Plotting the spectral locus

The following code was used to generate the rather jagged chromaticity plot

shown in Figure 4.4:

clear

% load the ASTM tables

load weights.mat

% d65___64 is a 4363 matrix

% the data at the extreme ends of the spectrum

% generate divide-by-zero and are not required

d = d65___64(4:37,:);

x = d(:,1)./(d(:,1) + d(:,2) + d(:,3));

y = d(:,2)./(d(:,1) + d(:,2) + d(:,3));

plot(x,y,’k-’)

axis([0 1 0 1])

xlabel(’CIE x’)

ylabel(’CIE y’)

The function plocus returns a 5962 matrix containing the chromaticity

coordinates of the spectral locus at 5-nm intervals between 430 nm and

720 nm. A typical call would be

[xy] = plocus(’d65___64’);
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Table 4.2 White points of illuminants used in r2xyz.m and other functions

1931 1964

X Y Z X Y Z

A 109.850 100.00 35.585 111.144 100.00 35.200

C 98.074 100.00 118.232 97.285 100.00 116.145
D50 96.422 100.00 82.521 96.720 100.00 81.427
D55 95.682 100.00 92.149 95.799 100.00 90.926

D65 95.047 100.00 108.883 94.811 100.00 107.304
D75 94.072 100.00 122.638 94.416 100.00 120.641
F2 99.186 100.00 67.393 103.279 100.00 69.027

F7 95.041 100.00 108.747 95.792 100.00 107.686
F9 100.962 100.00 64.350 103.863 100.00 65.607



which would provide the spectral locus for the 1964 observer using illuminant

D65. The function operates by first discarding the entries for very short and very

long wavelengths in the weights. This is justified because, not only do the

chromaticities change very little at the extreme ends of the spectrum but the

round-off errors become large relative to the small values of the weights at these

wavelengths [this can result in spurious values when Equations (4.10) are used].

The abridged tables are then interpolated using the function pinterp to increase

the sampling rate from 10 nm to 5 nm. Finally, Equations (4.11) are applied to

give the chromaticity coordinates of the spectral locus (Figure 4.5). An even

smoother plot of the spectral locus would be obtained if pinterp was called twice

within the plocus function.

Box 4: plocus.m

function [xy] = plocus(obs)

% function [xy] = plocus(obs)

% computes spectral locus xy using interpolated ASTM
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% weights

% see function r2xyz for valid values for obs

load weights.mat

if strcmp(’a___64’,obs)

cie = a___64;

elseif strcmp(’a___31’, obs)

cie = a___31;

elseif strcmp(’c___64’, obs)

cie = a___64;

elseif strcmp(’c___31’, obs)

cie = c___31;

elseif strcmp(’d50___64’, obs)

cie = d50___64;

elseif strcmp(’d___50’, obs)

cie = d___50;

elseif strcmp(’d55___64’, obs)

cie = d55___64;

elseif strcmp(’d55___31’, obs)

cie = d55___31;

elseif strcmp(’d65___64’, obs)

cie = d65___64;

elseif strcmp(’d65___31’, obs)

cie = d65___31;

elseif strcmp(’d75___64’, obs)

cie = d75___64;

elseif strcmp(’d75___31’, obs)

cie = d75___31;

elseif strcmp(’f2___64’, obs)

cie = f2___64;

elseif strcmp(’f2___31’, obs)

cie = f2___31;

elseif strcmp(’f7___64’, obs)

cie = f7___64;

elseif strcmp(’f7___31’, obs)

cie = f7___31;

elseif strcmp(’f9___64’, obs)

cie = f9___64;

elseif strcmp(’f9___31’, obs)

cie = f9___31;

else

disp(’unknown option obs’);
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disp(’use d65___64 for D65 and 1964 observer’); return;

end

% ignore the extreme wavelengths

cie = cie(8:37,:);

% interpolate to double the sampling rate

% the following three lines may be repeated

% for finer resolution

cie1(:,1) = pinterp(cie(:,1))’;

cie1(:,2) = pinterp(cie(:,2))’;

cie1(:,3) = pinterp(cie(:,3))’;

xy(:,1) = cie1(:,1)./sum(cie1’)’;

xy(:,2) = cie1(:,2)./sum(cie1’)’;
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5
Computing Colour Difference

5.1 Introduction

Although the system of colour specification introduced in 1931 by the CIE and

augmented in 1964 has served the colour industry well, there remain a number of

problems. One of the main problems is that in terms of visual perception it is

very non-uniform. Equal changes in x, y or Y do not correspond to perceived

differences of equal magnitude. Most attempts to develop more uniform spaces

have sought to find linear or non-linear transforms of the tristimulus values or

chromaticity coordinates to give a more uniform colour space. In 1976 the CIE

recommended two new colour spaces for general use (CIE, 1986b): CIE L*a*b*

and CIE L*u*v*, also known as CIELAB and CIELUV. CIELUV was intended

to be used to specify the colours of lights and other self-luminous sources,

whereas CIELAB was intended to be used for the specification of surface

colours. It is possible to compute a colour difference for two stimuli in CIELAB

space by calculating the Euclidean distance in the space between the two points

that represent the stimuli in the space [Equation (1.6)]. The CIELAB colour-

difference formula has been used extensively for quality control in industry but

its application is limited because although CIELAB space is more perceptually

uniform than the tristimulus space on which it is based, it is still far from being

perfectly uniform. The consequence of this is that for equal perceptual colour

differences between pairs of samples, the values of CIELAB colour difference

DE*ab computed between points representing the pairs in CIELAB space can vary

by an order of magnitude. Since 1976 attempts to generate better metrics for the

prediction of colour differences have concentrated on finding more sophisticated

measures of distance. A summary of the developments is not given in detail here

(see Smith, 1997; Berns 2000; Luo, 2002a) but the formulae for the three key

developments, CMC(l:c), CIE94 and CIEDE2000, are given. The CMC

equation, developed in the early 1980s, was a key development in colour science

and became a standard in certain countries and industries (Clarke et al., 1984). It
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was never adopted by the CIE as a standard, however, and by the early 1990s

there was some concern that the formula might be overly complex and that its

predictions might be poor in certain areas of colour space. The CIE

recommended the CIE94 equation (Berns, 1993) for use before a concerted

effort was made to develop a new formula. CIEDE2000 (Luo et al., 2001) was

developed following collaboration between scientists working in several

countries and has now been adopted as a CIE recommendation for the

prediction of small colour differences.

5.2 CIELAB and CIELUV colour space

Between 1940 and 1976 a great number of colour spaces, transformations of

XYZ, were proposed as uniform colour spaces. Some of these, such as

HunterLab and ANLAB, were quite successful but in 1976 the CIE agreed

upon two transformations that led to CIELAB and CIELUV.

The formulae for computing CIELAB coordinates are given in Equations

(5.1):

L* ¼ 116ðY=YnÞ1=3 � 16, if Y=Yn 4 0:008856,

L* ¼ 903:3ðY=YnÞ, if Y=Yn4 0:008856,

a* ¼ 500½fðX=XnÞ � fðY=YnÞ�,
b* ¼ 200½fðY=YnÞ � fðZ=ZnÞ�,

ð5:1Þ

where

fðIÞ ¼ ðIÞ1=3, if I4 0:008856,

fðIÞ ¼ 7.787ðIÞ þ 16=116, if I4 0:008856,

and where Xn, Yn and Zn are the tristimulus values of a specified white object

colour. For surface colours the values of Xn, Yn and Zn usually are computed for

the perfect reflecting diffuser and are therefore equivalent to the illuminant itself.

Since white surfaces tend to look chromatically neutral under an illumination to

which the visual system is adapted the values of Xn, Yn and Zn sometimes are

referred to as the neutral point. The axes L*, a* and b* form a rectangular or

Cartesian coordinate space where L* represents lightness, a* represents redness-

greenness and b* represents yellowness-blueness. Sometimes it is useful to

represent colour stimuli in a cylindrical space and for these purposes it is possible

to compute the polar coordinates C*ab and hab as shown in Equations (5.2) and

(5.3),

C*ab ¼ ða*2 þ b*2Þ1=2, ð5.2Þ
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hab ¼ tan�1ðb*=a*Þð180=pÞ, ð5.3Þ
where the term 180/p is necessary to convert the output of the inverse tan

function from radians to degrees. The polar coordinates are useful since the

differences in the chroma term C*ab can be correlated with differences in perceived

colourfulness, and differences in the hue term hab can be correlated with

differences in perceived hue. Equations (5.2) and (5.3) can easily be inverted

(Green, 2002a),

a* ¼ C* cosðhabp=180Þ, ð5.4Þ

b* ¼ C* sinðhabp=180Þ. ð5.5Þ
If the tristimulus values of the neutral are known, then it is possible to invert

Equations (5.1),

Y ¼ YnfðY=YnÞ3, if fðY=YnÞ4 ð0:008856Þ1=3,
Y ¼ YnðfðY=YnÞ � 16=116Þ=7.787Þ, if fðY=YnÞ4 ð0:008856Þ1=3,
X ¼ Xn fðX=XnÞ3, if fðX=XnÞ4 ð0:008856Þ1=3,
X ¼ XnðfðX=XnÞ � 16=116Þ=7.787Þ, if fðX=XnÞ4 ð0:008856Þ1=3,
Z ¼ ZnfðZ=ZnÞ3, if fðZ=ZnÞ4 ð0:008856Þ1=3,
Z ¼ ZnðfðZ=ZnÞ � 16=116Þ=7.787Þ, if fðZ=ZnÞ4 ð0:008856Þ1=3,

ð5.6Þ

where

fðY=YnÞ ¼ ðL*þ 16Þ=116,
fðX=XnÞ ¼ a*=500þ fðY=YnÞ

and

fðZ=ZnÞ ¼ fðY=YnÞ � b*=200.

The formulae for computing CIELUV coordinates are given as Equations (5.7),

L* ¼ 116ðY=YnÞ1=3 � 16, if Y=Yn 4 0:008856,

L* ¼ 903:3ðY=YnÞ, if Y=Yn4 0:008856,

u* ¼ 13L*ðu0 � u0nÞ,
v* ¼ 13L*ðv0 � v0nÞ,

ð5.7Þ

where u0 and v0 are the coordinates of the so-called uniform chromaticity space,

CIE 1976 UCS, which is a linear transform of the more usual xy chromaticity

space,
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u0 ¼ 4X=ðXþ 15Yþ 3ZÞ,
v0 ¼ 9Y=ðXþ 15Yþ 3ZÞ. ð5:8Þ

The subscript n in Equations (5.7) again refers to the neutral point. It is also

possible to compute polar coordinates for CIELUV,

C*uv ¼ ðu*2 þ v*2Þ1=2,
huv ¼ tan�1ðv*=u*Þð180=pÞ. ð5:9Þ

Whereas CIELAB was recommended for use with surface colours, CIELUV was

recommended for use with self-luminous colours (surface colours are sometimes

referred to as related colours since we rarely see a surface in isolation but rather

as part of a scene). One of the reasons for this is that the CIELUV space retains a

chromaticity diagram which is derived by plotting u0 against v0. An

approximately uniform chromaticity space is useful since the additive mixtures

of two stimuli all lie on the straight line in chromaticity space between the points

that represent the two stimuli. However, in the last couple of decades CIELAB

has become almost exclusively used for colour specification and the vast majority

of work on the prediction of colour difference and colour appearance has been

based upon CIELAB. It has been noted that there seems no reason to use

CIELUV over CIELAB (Fairchild, 1998).

5.3 CIELAB colour difference

The CIELAB space has become popular largely because of the associated colour-

difference metric [Equation (5.10)] that is computed as the Euclidean distance

between two points in CIELAB space,

DE*ab ¼ ½ðDL*Þ2 þ ðDa*Þ2 þ ðDb*Þ2�1=2, ð5:10Þ
where

DL* ¼ L*T � L*S,

Da* ¼ a*T � a*S,

Db* ¼ b*T � b*S,

and the subscripts refer to the standard (S) and the trial (T). In industrial

applications of colour difference it is common that one of the samples is a

standard and the other is a sample or trial that is supposed to be a visual match

to the standard.

An idea of the size of DE*ab units can be gained by considering that the

difference between a perfect white (L*¼ 100, a*¼ b*¼ 0) and a perfect black
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(L*¼ a*¼ b*¼ 0) is 100 DE*ab units, whereas industrial tolerances usually are

about 1.0 CIELAB units.

If we imagine DE*ab to be computed from polar coordinates, then we could

write an equivalent equation in terms of DL*, DC*ab and DH*ab,

DE*ab ¼ ½ðDL*Þ2 þ ðDC*abÞ2 þ ðDH*abÞ2�1=2, ð5:11Þ
where DH*ab is the difference in hue that is both commensurate with the other

variables of CIELAB colour difference and orthogonal to both DL* and DC*ab.
Whereas the other terms are computed as simple differences (DC* is simply the

difference between C* of the standard and the trial) DH*ab is defined by equating

Equations (5.10) and (5.11) to yield the algebraic expression given as Equation

(5.12) (Smith, 1997). Thus,

DH*ab ¼ ½ðDE*abÞ2 � ðDL*Þ2 � ðDC*abÞ2�1=2 ð5.12Þ
or simply

DH*ab ¼ ½ðDa*Þ2 þ ðDb*Þ2 � ðDC*abÞ2�1=2.
Sometimes an alternative method is used to compute a hue difference as given by

Equation (5.13),

DH*ab ¼ C*abDhabðp=180Þ, ð5.13Þ
where the term p/180 converts the difference in hue angle Dhab into radians.

However, Smith (1997) notes that this method is only applicable for small colour

differences away from the achromatic axis and prefers Equation (5.12) which is

more generally applicable.

Normally when a colour difference is computed between two samples one of

the samples is regarded as the standard and the other as the trial or batch. The

components of the colour difference therefore have a positive or negative sign

and are computed as, for example, the chroma of the trial minus the chroma of

the standard. Thus, if DC*ab4 0, then the trial is stronger than the standard,

whereas if DC*ab5 0, then the trial is weaker than the standard. Similarly, the

trial can be lighter or darker than the standard depending upon the sign of the

DL* component. However, the definition of the hue component of colour

difference as in Equation (5.12) leads to some ambiguity in the sign of DH*ab. By

convention, it is to be regarded as positive if it indicates that in terms of hue the

trial is anticlockwise from the standard and negative if it is clockwise.

The signs of the colour-difference components are most useful in determining

colour-difference descriptors between a trial and a standard. Whereas the

determination that the trial is either stronger or weaker and lighter or darker

than the standard derives simply from the sign of DL* or DC*ab, the

determination of hue difference descriptors is more complicated. The CIE
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recommends that two hue descriptors be assigned to any pair of samples. An

illustration is given by the standard and trial samples represented in Figure 5.1.

In Figure 5.1 the chroma of the trial is smaller than that of the standard and

therefore we can deduce that the trial is weaker than the standard. To derive a

hue difference descriptor we move from the standard to the trial in the hue circle

and note the first two axes that are crossed. In the example illustrated by

Figure 5.1, we move in a clockwise direction (as denoted by the arrow) and pass

through the red axis and then the blue axis. It is usual then to describe the trial as

being redder/bluer than the standard. Note that the value of DH*ab would be

assigned a negative sign since the trial is clockwise from the standard. Why

should the trial be described as being redder/bluer? Would it not be simpler to

use the closest axis and denote the trial as being redder? The answer is that the

correct choice of hue descriptor is difficult to predict in advance without

knowledge of the colour appearance of the samples (the issue of colour

appearance will be discussed in more detail in Chapter 6). If, in Figure 5.1, the

two samples appear yellow, then it would be reasonable to describe the trial as

being redder than the standard. However, if the colour appearance of the two

samples is essentially red, then it is not informative in terms of hue difference to

describe the trial as being redder than the standard; rather, in this case we would

say that the trial is bluer. For two samples in the first quadrant (that is, a* and b*

are both positive) it is possible for the two samples to appear yellow (which is

likely if the samples are close to the yellow axis) or red (which is likely if the

samples are closer to the red axis) and therefore most computer programs that
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compute colour difference report both possible hue-difference terms (redder/

bluer in the example).

Figure 5.1 emphasizes why the polar coordinates C*ab and hab usually are

preferred to the cartesian coordinates a* and b*. The fact that the trial has a

smaller a* value than the standard (Da*5 0) could be misinterpreted as

indicating that the standard is redder than the trial and yet the opposite is true in

terms of hue; the trial is redder/bluer than the standard. The possible error

occurs because the dimensions of human colour perception are brightness,

colourfulness and hue and these correlate with the polar coordinates lightness,

chroma and hue. It can be misleading to consider differences in a* and b* in

isolation since these confound differences in chroma and hue.

5.4 Optimized colour-difference formulae

5.4.1 CMC(l:c)

In the late 1970s a number of different formulae were being used by practitioners,

one of which was known as the JPC79 formula (the name derives from J. & P.

Coats whose laboratories developed the formula). The JPC79 formula was

effective but was known to be deficient in some areas (Smith, 1997) and a revised

version of the formula was published in 1984 by members of the Colour

Measurement Committee of the Society of Dyers and Colourists (Clarke et al.,

1984). This revised formula became known as CMC(l:c) which, like most modern

optimized colour-difference formulae, is based upon the CIELAB colour-

difference components DL*, DC*ab and DH*ab,

DECMCðl:cÞ ¼ ½ðDL*=ðlSLÞÞ2 þ ðDC*ab=ðcSCÞÞ2 þ ðDH*ab=SHÞ2�1=2, ð5:14Þ

where SL ¼ 0.040975L*S=ð1þ 0:01765L*SÞ, if L*S5 16,

but SL ¼ 0.511, if L*S 5 16,

and

SC ¼ 0:638þ 0:0638C*ab,S=ð1þ 0.0131C*ab,SÞ,
SH ¼ SCðTFþ 1� FÞ.

The terms T and F are given by

F ¼ ½ðC*ab,SÞ4=ððCab,SÞ4 þ 1900Þ�1=2

and

T ¼ 0:36þ j0:4 cosðhab,S þ 35Þj, if hab,S4164 or hab,S 5345,

T ¼ 0:56þ j0:2 cosðhab,S þ 168Þj, if 1645 hab,S 5 345.
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The subscript S, as in CS, denotes that the terms SL, SC, SH, F and T are

computed using the CIELAB lightness, chroma and hue angle (in degrees) of the

standard. The terms SL, SC and SH define the lengths of the semi-axes of the

tolerance ellipsoid at the position of the standard in CIELAB space in each of the

three directions (SL for lightness, SC for chroma and SH for hue). The ellipsoids

were fitted to visual tolerances determined from psychophysical experiments and

the semi-axes in the CMC(l:c) formula are used to effectively convert these

ellipsoids into spheres at each point in CIELAB space. The parametric terms l

and c constitute an important feature of the formula. These parameters allow the

relative tolerances of the lightness and chroma components to be modified. For

the textile industry it was recommended that l¼ c¼ 1 for perceptibility decisions,

whereas for acceptability decisions it was recommended that l¼ 2 with c¼ 1. The

reason for this difference is that it is considered that, in terms of acceptability,

differences in lightness should be weighted to be half as important as differences

in either chroma or hue. The CMC(l:c) formula has been widely used in a

number of industries and was adopted, for example, as a British Standard

(BS 6923) and an AATCC test method (AATCC 173). However, it was never

adopted as a CIE standard.

5.4.2 CIE94

Berns (2000) and others argued that the complexity of the CMC equation and

the use of large numbers of significant figures in its definition suggest a degree of

precision that cannot be supported on statistical grounds. Detailed analyses of

large sets of psychophysical data suggested that simple SL, SC and SH weighting

functions would be sufficient and this led to the publication of a new formula

known as CIE94 (Berns, 1993). The CIE94 formula is given by

DE*94 ¼ ½ðDL*=ðkLSLÞÞ2 þ ðDC*ab=ðkCSCÞÞ2 þ ðDH*ab=kCSHÞ2�1=2, ð5:15Þ

where

SL ¼ 1,

SC ¼ 1þ 0:045C*ab,S,

SH ¼ 1þ 0.015C*ab,S.

The parametric variables kL, kC and kH are all set to unity and the values of SC

and SH are computed using the CIELAB values of the standard. When neither

sample can logically be deemed a standard, the geometric mean of the two

samples should be used.
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5.4.3 CIEDE2000

The CIE have recently recommended for trial the CIEDE2000 colour-difference

formula for the evaluation of small colour differences (Luo et al., 2001). Note

that CIELAB DE*ab is still the current CIE recommendation for the evaluation of

large colour differences (DE*ab45).

The CIEDE2000 formula was agreed by a technical committee within Division

1 of the CIE (2001) and includes not only lightness, chroma and hue weighting

functions, but also an interactive term between the chroma and hue differences

for improving the performance for blue colours and a scaling factor for the

CIELAB a* scale for improving the performance for colours close to the

achromatic axis. The new formula is given by Equation (5.16),

DE00 ¼ ½ðDL0=ðkLSLÞÞ2 þ ðDC 0=ðkCSCÞÞ2 þ ðDH 0=ðkHSHÞÞ2
þ RTðDC 0=ðkCSCÞÞðDH 0=ðkHSHÞÞ�1=2, ð5:16Þ

where

SL ¼ 1þ ½0.015ðL0 � 50Þ2�=½20þ ðL0 � 50Þ2�1=2,
SC ¼ 1þ 0.045C 0,

SH ¼ 1þ 0:015C 0T.

The terms DL0, DC0 and DH0 are given by

DL0 ¼ L 0
T � L 0

S,

DC0 ¼ C 0
T � C 0

S,

DH0 ¼ 2ðC 0
TC

0
SÞ1=2 sinðDh0=2Þ,

where the subscripts S and T refer to the standard and trial, respectively, and

where

Dh0 ¼ h0T � h0S,

L0 ¼ L*,

a0 ¼ ð1þ GÞa*,
b0 ¼ b*,

C0 ¼ ða02 þ b02Þ1=2,

h0 ¼ tan�1ðb0=a0Þ.
and

The G and T terms are computed using

G ¼ 0:5� 0:5ðC*ab7=ðC*ab7 þ 257ÞÞ1=2

and
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T¼1�0:17cosðh 0�30Þþ0:24cosð2h 0Þþ0:32 cosð3h 0 þ6Þ�0:20 cosð4h 0 �63Þ.
Finally, the rotation term RT is given by

RT ¼ �sinð2DyÞRC,

where RC ¼ 2ðC07=ðC07 þ 257ÞÞ1=2 and Dy ¼ 30 expf�½ðh0 � 275Þ=25�2g.

Note that the arithmetic mean of the CIELAB values of the standard and trial

are used to compute the values of the terms such as SL. The CIEDE2000 formula

has been shown to outperform the CMC and CIE94 formulae by a large margin

(Luo et al., 2001).

Interestingly, the lightness component of the formula is very different from

those in earlier formulae. For example, the value of the function in the CMC

formula increases markedly as L* increases, implying that for equal differences in

L* the visual difference should be largest in the low L* region. The lightness

correction in the CIE94 formulae, on the other hand, implied that the CIELAB

L* scale was correct, so that equal differences in L* would yield equal visual

differences no matter what the value of L*. The SL formula in CIEDE2000,

however, was based upon new data (Heptinstall, 1999; Chou et al., 2001) so that

SL increases with L* only for L*450; for lower values of L* the value of SL

decreases as L* increases. It is still not at all clear why the new data upon which

CIEDE2000 was based should have been so different from the data upon which

the earlier formulae were based. Nevertheless, the evidence for CIEDE2000 is

convincing and there is strong confidence that the new formula is reliable (Cui et

al., 2001; Luo, 2002a).

5.5 Implementations and examples

5.5.1 Computing CIELAB and CIELUV coordinates

The function xyz2lab computes CIELAB L*a*b* coordinates from tristimulus

values. A typical call would be

[lab] = xyz2lab(xyz,’d65___64’);

where the variable xyz is a 361 vector of tristimulus values and lab returns the

CIELAB L*, a* and b* values. The white points are taken from Table 5 of the

ASTM standard (ASTM, 2001) which are reproduced in Table 4.2. Note that

the ASTM standard specifies that the white points listed at the bottom of each of

the tables in the standard should be used for the values of Xn, Yn and Zn during

computations where the neutral point is required. The listed white points

sometimes differ from the check sums for each of the tables because the tabulated
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data are rounded to three decimal places. The quoted white points are more

accurate than the sums of the rounded data in the columns. However, a

consequence of the ASTM recommendation is that the CIELAB values for a

sample with unit reflectance at every wavelength may not exactly satisfy L*¼ 100

and a*¼ b*¼ 0. For example, the XYZ values using ASTM Table 5.19

(illuminant D65 and 1964 observer) for a perfectly reflecting sample are

[94.809 100.00 107.307] but the ASTM white point for that illuminant/

observer is [94.811 100.00 107.304]. Consequently, the ratios X/Xn, Y/Yn and

Z/Zn for a perfectly reflecting sample are not exactly unity and the CIELAB

L*a*b* values returned from xyz2lab are [100.0000 �0.0035 �0.0019].

Box 5: xyz2lab.m

function [lab] = xyz2lab(xyz,obs)

% function [lab] = xyz2lab(xyz,obs)

% computes CIELAB LAB values from XYZ tristimulus values

% requires the illuminant/observer obs to define white

% point

% see function r2xyz for valid values for obs

if strcmp(’a___64’,obs)

white=[111.144 100.00 35.200];

elseif strcmp(’a___31’, obs)

white=[109.074 100.00 35.585];

elseif strcmp(’c___64’, obs)

white=[97.285 100.00 116.145];

elseif strcmp(’c___31’, obs)

white=[98.074 100.00 118.232];

elseif strcmp(’d50___64’, obs)

white=[96.720 100.00 81.427];

elseif strcmp(’d___50’, obs)

white=[96.422 100.00 82.521];

elseif strcmp(’d55___64’, obs)

white=[95.799 100.00 90.926];

elseif strcmp(’d55___31’, obs)

white=[95.682 100.00 92.149];

elseif strcmp(’d65___64’, obs)

white=[94.811 100.00 107.304];

elseif strcmp(’d65___31’, obs)

white=[95.047 100.00 108.883];

elseif strcmp(’d75___64’, obs)
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white=[94.416 100.00 120.641];

elseif strcmp(’d75___31’, obs)

white=[94.072 100.00 122.638];

elseif strcmp(’f2___64’, obs)

white=[103.279 100.00 69.027];

elseif strcmp(’f2___31’, obs)

white=[99.186 100.00 67.393];

elseif strcmp(’f7___64’, obs)

white=[95.792 100.00 107.686];

elseif strcmp(’f7___31’, obs)

white=[95.041 100.00 108.747];

elseif strcmp(’f9___64’, obs)

white=[103.863 100.00 65.607];

elseif strcmp(’f9___31’, obs)

white=[100.962 100.00 64.350];

else

disp(’unknown option obs’);

disp(’use d65___64 for D65 and 1964 observer’); return;

end

dim = size(xyz);

if (dim(1) == 1) | (dim(2) == 1)

xyz = xyz(:)’; % force to be a row matrix

else

disp(’xyz must be a row matrix’);

return;

end

if (xyz(2)/white(2) > 0.008856)

lab(1) = 116*(xyz(2)/white(2))^(1/3) - 16;

else

lab(1) = 903.3*(xyz(2)/white(2));

end

for i=1:3

if (xyz(i)/white(i) > 0.008856)

fx(i) = (xyz(i)/white(i))^(1/3);

else

fx(i) = 7.787*(xyz(i)/white(i)) + 16/116;

end

end
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lab(2) = 500*(fx(1)-fx(2));

lab(3) = 200*(fx(2)-fx(3));

To fully utilize the advantages of matrix algebra in MATLAB the function

xyz2lab could be written to accept a 36n matrix that would contain the

tristimulus values of n samples (where n is any positive integer) and would return

a 36n matrix of CIELAB values. However, in this book the functions generally

have not been written in this way and if transformations are required for n

samples, then the functions must be called n times using a programming loop. It

is relatively straightforward to invert the CIELAB equations if the white point is

known. A function called lab2xyz has been provided for this purpose and has the

following typical function call:

[xyz] = lab2xyz(lab,’d65___64’);

where the variable lab is a 361 vector of CIELAB L*, a* and b* values.

Box 6: lab2xyz.m

function [xyz] = lab2xyz(lab,obs)

% function [xyz] = lab2xyz(lab,obs)

% computes XYZ tristimulus values from CIELAB LAB values

% requires the illuminant/observer obs to define white

% point

% see function r2xyz for valid values for obs

if strcmp(’a___64’,obs)

white=[111.144 100.00 35.200];

elseif strcmp(’a___31’, obs)

white=[109.074 100.00 35.585];

elseif strcmp(’c___64’, obs)

white=[97.285 100.00 116.145];

elseif strcmp(’c___31’, obs)

white=[98.074 100.00 118.232];

elseif strcmp(’d50___64’, obs)

white=[96.720 100.00 81.427];

elseif strcmp(’d___50’, obs)

white=[96.422 100.00 82.521];
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elseif strcmp(’d55___64’, obs)

white=[95.799 100.00 90.926];

elseif strcmp(’d55___31’, obs)

white=[95.682 100.00 92.149];

elseif strcmp(’d65___64’, obs)

white=[94.811 100.00 107.304];

elseif strcmp(’d65___31’, obs)

white=[95.047 100.00 108.883];

elseif strcmp(’d75___64’, obs)

white=[94.416 100.00 120.641];

elseif strcmp(’d75___31’, obs)

white=[94.072 100.00 122.638];

elseif strcmp(’f2___64’, obs)

white=[103.279 100.00 69.027];

elseif strcmp(’f2___31’, obs)

white=[99.186 100.00 67.393];

elseif strcmp(’f7___64’, obs)

white=[95.792 100.00 107.686];

elseif strcmp(’f7___31’, obs)

white=[95.041 100.00 108.747];

elseif strcmp(’f9___64’, obs)

white=[103.863 100.00 65.607];

elseif strcmp(’f9___31’, obs)

white=[100.962 100.00 64.350];

else

disp(’unknown option obs’);

disp(’use d65___64 for D65 and 1964 observer’); return;

end

dim = size(lab);

if (dim(1) == 1) | (dim(2) == 1)

lab = lab(:)’; % force to be a row matrix

else

disp(’lab must be a row matrix’);

return;

end

% compute Y

if (((lab(1)+16)/116)^3 > 0.008856)

xyz(2) = white(2)*((lab(1)+16)/116)^3;

else

xyz(2) = white(2)*lab(1)/903.3;
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end

% compute fy for use later

fy = xyz(2)/white(2);

if (fy > 0.008856)

fy = fy^(1/3);

else

fy = 7.787*fy + 16/116;

end

% compute X

if ((lab(2)/500 + fy)^3 > 0.008856)

xyz(1) = white(1)*(lab(2)/500 + fy)^3;

else

xyz(1) = white(1)*((lab(2)/500 + fy) - 16/116)/7.787;

end

% compute Z

if ((fy - lab(3)/200)^3 > 0.008856)

xyz(3) = white(3)*(fy - lab(3)/200)^3;

else

xyz(3) = white(3)*((fy - lab(3)/200) - 16/116)/7.787;

end

The function xyz2luv computes CIELUV L*u*v* coordinates from tristimulus

values. A typical call would be

[luv] = xyz2luv(xyz,’d65___64’);

where xyz is a 361 column matrix of tristimulus values. The previous discussion

about the selection of the white point in xyz2lab is equally valid in the case of

xyz2luv. An alternative function call is also possible, however, so that the u0 and
v0 values of the CIE 1976 UCS can also be obtained:

[luv, uprime, vprime] = xyz2luv(xyz,’d65___64’);

In MATLAB whenever multiple outputs are returned from a function, typing the

function on its own

xyz2luv(xyz,’d65___64’)

will output only the first of these arguments (in this case the vector luv) and

assign it to the variable ans.
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Box 7: xyz2luv.m

function [luv,uprime,vprime] = xyz2luv(xyz,obs)

% function [luv,uprime,vprime] = xyz2luv(xyz,obs)

% computes CIELUV Luv values from XYZ tristimulus values

% uprime and vprime are the CIE 1976 UCS coordinates

% requires the illuminant/observer obs to define white

% point

% see function r2xyz for valid values for obs

if strcmp(’a___64’,obs)

white=[111.144 100.00 35.200];

elseif strcmp(’a___31’, obs)

white=[109.074 100.00 35.585];

elseif strcmp(’c___64’, obs)

white=[97.285 100.00 116.145];

elseif strcmp(’c___31’, obs)

white=[98.074 100.00 118.232];

elseif strcmp(’d50___64’, obs)

white=[96.720 100.00 81.427];

elseif strcmp(’d___50’, obs)

white=[96.422 100.00 82.521];

elseif strcmp(’d55___64’, obs)

white=[95.799 100.00 90.926];

elseif strcmp(’d55___31’, obs)

white=[95.682 100.00 92.149];

elseif strcmp(’d65___64’, obs)

white=[94.811 100.00 107.304];

elseif strcmp(’d65___31’, obs)

white=[95.047 100.00 108.883];

elseif strcmp(’d75___64’, obs)

white=[94.416 100.00 120.641];

elseif strcmp(’d75___31’, obs)

white=[94.072 100.00 122.638];

elseif strcmp(’f2___64’, obs)

white=[103.279 100.00 69.027];

elseif strcmp(’f2___31’, obs)

white=[99.186 100.00 67.393];

elseif strcmp(’f7___64’, obs)

white=[95.792 100.00 107.686];
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elseif strcmp(’f7___31’, obs)

white=[95.041 100.00 108.747];

elseif strcmp(’f9___64’, obs)

white=[103.863 100.00 65.607];

elseif strcmp(’f9___31’, obs)

white=[100.962 100.00 64.350];

else

disp(’unknown option obs’);

disp(’use d65___64 for D65 and 1964 observer’); return;

end

dim = size(xyz);

if (dim(1) == 1) | (dim(2) == 1)

xyz = xyz(:)’; % force to be a row matrix

else

disp(’xyz must be a row matrix’);

return;

end

% compute u’ v’ for sample

uprime = 4*xyz(1)/(xyz(1) + 15*xyz(2) + 3*xyz(3));

vprime = 9*xyz(2)/(xyz(1) + 15*xyz(2) + 3*xyz(3));

% compute u’ v’ for white

uprimew = 4*white(1)/(white(1) + 15*white(2) + ...

3*white(3));

vprimew = 9*white(2)/(white(1) + 15*white(2) + ...

3*white(3));

if (xyz(2)/white(2) > 0.008856)

luv(1) = 116*(xyz(2)/white(2))^(1/3) - 16;

else

luv(1) = 903.3*(xyz(2)/white(2));

end

luv(2) = 13*luv(1)*(uprime - uprimew);

luv(3) = 13*luv(1)*(vprime - vprimew);

A single function car2pol has been provided to compute polar coordinates

from cartesian coordinates. If the input to this function is a* and b*, then the

output is C*ab and hab, whereas if the input is u* and v*, then the output is C*uv and

huv.
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Box 8: car2pol.m

function [c,h] = car2pol(ab)

% function [c,h] = cartopol(ab)

% converts a*b* or u*v* into the polar coordinates

% of Chroma C and Hue H

% ab must be a row or column matrix 2 by 1 or 1 by 2

% see also pol2car

dim = size(ab);

if (dim(1) == 1) | (dim(2) == 1)

ab = ab(:)’; % force to be a row matrix

else

disp(’ab must be a row matrix’);

return;

end

if (dim(2)*= 2)

disp(’ab must be 2 by 1 or 1 by 2’);

return;

end

% compute the distance from the centre

c = sqrt(ab(1)*ab(1) + ab(2)*ab(2));

% compute the angular term

if (ab(1) == 0) & (ab(2) > 0)

h = 90;

elseif (ab(1) == 0) & (ab(2) < 0)

h = 270;

elseif (ab(1) < 0) & (ab(2) == 0)

h = 180;

elseif (ab(1) > 0) & (ab(2) == 0)

h = 0;

elseif (ab(1) == 0) & (ab(2) == 0)

h = 0;

else

h = atan(abs(ab(2))/abs(ab(1)));

h = 180*h/pi; % convert from radians to degrees

if ((ab(1) > 0) & (ab(2) > 0))

h = h; % first quadrant
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elseif ((ab(1) < 0) & (ab(2) > 0))

h = 180 - h; % second quadrant

elseif ((ab(1) < 0) & (ab(2) < 0))

h = 180 + h; % third quadrant

else

h = 360 - h; % fourth quadrant

end

end

The syntax for the function call is

[c,h] = car2pol(ab)

where ab is a 261 or 162 matrix and c and h are both 161 matrices whose

entries are the polar coordinates. Note that the code in car2pol could be

shortened considerably by the use of the atan2 command. Whereas the atan

MATLAB function returns the arctangent of the input element and requires that

the quadrant be determined from the polarities of the cartesian coordinates, the

atan2 command returns the four-quadrant arctangent directly.

The function pol2car is provided to return polar coordinates to cartesian

coordinates. The format for the function call is

[a,b] = pol2car(ch)

where ch is a 261 or 162 matrix containing the distance and angular terms and

a and b are both 161 matrices whose entries are the horizontal and vertical

components of the cartesian space.

Box 9: pol2car.m

function [a,b] = pol2car(ch)

% function [a,b] = pol2car(ch)

% converts the polar coordinates

% of Chroma C and Hue H

% ch must be a row or column matrix 2 by 1 or 1 by 2

% see also car2pol

dim = size(ch);

if (dim(1) == 1) | (dim(2) == 1)

ch = ch(:)’; % force to be a row matrix
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else

disp(’ch must be a row matrix’);

return;

end

if (dim(2)*= 2)

disp(’ch must be 2 by 1 or 1 by 2’);

return;

end

C = ch(1);

H = ch(2);

fx = tan(H*pi/180);

a = sqrt(C*C/(1 + fx*fx));

b = a*fx;

if (H < 90.0)

% first quadrant

a = abs(a);

b = abs(b);

elseif (H < 180)

% second quadrant

a = -abs(a);

b = abs(b);

elseif (H < 270)

% third quadrant

a = -abs(a);

b = -abs(b);

else

% fourth quadrant

a = abs(a);

b = -abs(b);

end

5.5.2 Computing colour difference

The function cielabde computes the CIELAB colour difference [Equation (5.10)]

from two L*, a*, b* triplets. This function also returns the component deltas,
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DL*, DC*ab, and DH*ab, in addition to the overall colour difference. A typical call

would be

[de, dl, dc, dh] = cielabde(lab1, lab2);

where lab1 and lab2 are 361 column matrices containing the L*, a* and b*

values of the standard and trial, respectively. A shorter function call is of course

also valid; thus

[de] = cielabde(lab1, lab2);

can be used if the individual component differences are not required.

Box 10: cielabde.m

function [de,dl,dc,dh] = cielabde(lab1,lab2)

% function [de,dl,dc,dh] = cielabde(lab1,lab2)

% computes colour difference from CIELAB values

% using CIELAB formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% see also cmcde, cie94de, and cie00de

dim = size(lab1);

if (dim(1) == 1) | (dim(2) == 1)

lab1 = lab1(:)’; % force to be a row matrix

else

disp(’lab1 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab1 must be 3 by 1 or 1 by 3’);

return;

end

dim = size(lab2);

if (dim(1) == 1) | (dim(2) == 1)

lab2 = lab2(:)’; % force to be a row matrix

else
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disp(’lab2 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab2 must be 3 by 1 or 1 by 3’);

return;

end

dl = lab2(1)-lab1(1);

dc = sqrt(lab2(2)^2 + lab2(3)^2) - sqrt(lab1(2)^2 + ...

lab1(3)^2);

dh=sqrt((lab2(2)-lab1(2))^2+(lab2(3)-lab1(3))^2-...

dc^2);

% get the polarity of the dh term

dh = dh*dhpolarity(lab1,lab2);

de = sqrt(dl^2 + dc^2 + dh^2);

The function cielabde uses Equation (5.12) to compute the hue difference. As

previously mentioned this returns the magnitude of the hue difference but the

sign is indeterminate. A separate function has therefore been written called

dhpolarity which returns +1 if the trial is anti-clockwise from the standard and

�1 if the trial is clockwise from the standard. The format for this function is

[p] = dhpolarity(lab1, lab2);

where lab1 and lab2 are the 361 column matrices containing the L*, a* and b*

values of the standard and trial, respectively.

Box 11: dhpolarity.m

function [p] = dhpolarity(lab1,lab2)

% function [p] = dhpolarity(lab1,lab2)

% computes polarity of hue difference
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% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% p is +1 if the hue of the trial (lab2) is anticlockwise

% from the standard (lab1) and -1 otherwise

[c1, h1] = car2pol([lab1(2) lab1(3)]);

[c2, h2] = car2pol([lab2(2) lab2(3)]);

p = (h2-h1);

if (p==0)

p = 1;

else

if (p>180)

p = p - 360;

end

p = p/abs(p);

end

The function cmcde operates in a similar way to cielabde but computes the

CMC(l:c) colour difference. A typical function call would be

[de, dl, dc, dh] = cmcde(lab1, lab2, paral, parac);

where the variables paral and parac represent the parametric values l and c.

Default values of 1 are used for both l and c if the number of arguments to the

function is less than four. Note that the component delta values that are also

returned are the CMC delta values rather than the CIELAB delta values. Note

also that the MATLAB trigonometric functions expect input in radians and

therefore the hue angle in degree must be multiplied by the factor p/180 when

computing the parameter T in Equation (5.14). The dimensions of the CMC

tolerance ellipsoids are computed based upon the CIELAB values of the first of

the triplets lab1 which is assumed to be the standard.

Box 12: cmcde.m

function [de,dl,dc,dh] = cmcde(lab1,lab2,paral,parac)

% function [de,dl,dc,dh] = cmcde(lab1,lab2,paral,parac)

% computes colour difference from CIELAB values

IMPLEMENTATIONS AND EXAMPLES 71



% using CMC(l:c) formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% The dl, dc and dh components are CMC deltas

% The defaults for paral and parac are 1

% see also cielabde, cie94de, and cie00de

dim = size(lab1);

if (dim(1) == 1) | (dim(2) == 1)

lab1 = lab1(:)’; % force to be a row matrix

else

disp(’lab1 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab1 must be 3 by 1 or 1 by 3’);

return;

end

dim = size(lab2);

if (dim(1) == 1) (dim(2) == 1)

lab2 = lab2(:)’; % force to be a row matrix

else

disp(’lab2 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab2 must be 3 by 1 or 1 by 3’);

return;

end

if (nargin<4)

disp(’using default values of l:c’)

paral=1; parac=1;

end

% first compute the CIELAB deltas

dl = lab2(1)-lab1(1);

dc = sqrt(lab2(2)^2 + lab2(3)^2) - sqrt(lab1(2)^2 +...

lab1(3)^2);

dh=sqrt((lab2(2)-lab1(2))^2+(lab2(3)-lab1(3))^2-...
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dc^2);

% get the polarity of the dh term

dh = dh*dhpolarity(lab1,lab2);

% now compute the CMC weights

if (lab1(1)<16)

Lweight = 0.511;

else

Lweight = (0.040975*lab1(1))/(1 + 0.01765*lab1(1));

end

[c,h] = car2pol([lab1(2) lab1(3)]);

% require C*ab and H*ab of standard

Cweight = 0.638 + (0.0638*c)/(1 + 0.0131*c);

if (164 < h & h < 345)

k1 = 0.56; k2 = 0.20; k3 = 168;

else

k1 = 0.36; k2 = 0.40; k3 = 35;

end

T = k1 + abs(k2*cos((h + k3)*pi/180));

F = sqrt((c^4)/(c^4 + 1900));

Hweight = Cweight*(T*F + 1 - F);

dl = dl/(Lweight*paral);

dc = dc/(Cweight*parac);

dh = dh/Hweight;

de = sqrt(dl^2 + dc^2 + dh^2);

The function cie94de computes the CIE94 equation and operates in a similar

manner to cielabde and cmcde with the following format:

[de, dl, dc, dh] = cie94de(lab1, lab2)

Box 13: cie94de.m

function [de,dl,dc,dh] = cie94de(lab1,lab2)

% function [de,dl,dc,dh] = cie94de(lab1,lab2)
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% computes colour difference from CIELAB values

% using the CIE94 formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% The dl, dc and dh components are CIE94 deltas

% see also cielabde, cmcde, and cie00de

dim = size(lab1);

if (dim(1) == 1) | (dim(2) == 1)

lab1 = lab1(:)’; % force to be a row matrix

else

disp(’lab1 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab1 must be 3 by 1 or 1 by 3’);

return;

end

dim = size(lab2);

if (dim(1) == 1) | (dim(2) == 1)

lab2 = lab2(:)’; % force to be a row matrix

else

disp(’lab2 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab2 must be 3 by 1 or 1 by 3’);

return;

end

dl = lab2(1)-lab1(1);

dc = sqrt(lab2(2)^2 + lab2(3)^2) - sqrt(lab1(2)^2 + ...

lab1(3)^2);

dh=sqrt((lab2(2)-lab1(2))^2+(lab2(3)-lab1(3))^2-...

dc^2);

% get the polarity of the dh term

dh = dh*dhpolarity(lab1,lab2);

% need to compute the weights

Lweight = 1.0;
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[c,h] = car2pol([lab1(2) lab1(3)]);

% require C*ab and H*ab of standard

Cweight = 1.0 + 0.045*c;

Hweight = 1.0 + 0.015*c;

dl = dl/Lweight;

dc = dc/Cweight;

dh = dh/Hweight;

de = sqrt(dl^2 + dc^2 + dh^2);

Finally, the function cie00de implements the CIEDE2000 colour-difference

metric:

[de, dl, dc, dh] = cie00de(lab1, lab2, paral, parac,

parah).

The CIEDE2000 formula allows for three parametric terms for lightness, chroma

and hue weightings, respectively. The default values for these parameters are all

set to unity. The implementation of the CIEDE2000 formula requires that the

hue values of the standard and trial be averaged. But the arithmetic mean cannot

simply be computed directly since this would give a mean hue of 1858 for the two
hues 208 and 3508, whereas the true average hue would be 58. The approach

taken here is to make use of the pol2car (Box 9) and car2pol (Box 8) functions.

Polar representations are converted to cartesian representations so that the

simple arithmetic means may be computed before returning to the polar

representation to recover the average hue (see Box 13).

In this code an alternative procedure has been implemented to compute the

hue difference:

DH ¼ 2ðCTCSÞ1=2sinðDh=2Þ, ð5.17Þ

where Dh is the hue of the trial minus the hue of the standard. This method gives

a relatively simple way to compute DH but a correction is still required to ensure

the correct sign is always computed. The correction is to subtract 360 from Dh if

Dh4180.

Box 14: cie00de.m

function [de,dl,dc,dh] = cie00de(lab1,lab2,paral,

parac,parah)
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% function [de,dl,dc,dh] = cie00de(lab1,lab2,paral,

% parac,parah)

% computes colour difference from CIELAB values

% using the CIEDE2000 formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% The dl, dc and dh components are CIEDE2000 deltas

% The defaults for paral, parac and parah are 1

% see also cielabde, cmcde, and cie94de

dim = size(lab1);

if (dim(1) == 1) | (dim(2) == 1)

lab1 = lab1(:)’; % force to be a row matrix

else

disp(’lab1 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab1 must be 3 by 1 or 1 by 3’);

return;

end

dim = size(lab2);

if (dim(1) == 1) | (dim(2) == 1)

lab2 = lab2(:)’; % force to be a row matrix

else

disp(’lab2 must be a row matrix’);

return;

end

if (dim(2)*= 3)

disp(’lab2 must be 3 by 1 or 1 by 3’);

return;

end

if (nargin<5)

disp(’using default values of parametric values’)

paral=1; parac=1; parah = 1;

end

% convert the cartesian a*b* to polar chroma and hue
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[c1,h1] = car2pol([lab1(2) lab1(3)]);

[c2,h2] = car2pol([lab2(2) lab2(3)]);

meanC = (c2+c1)/2;

% compute the G factor using the arithmetic mean chroma

G = 0.5 - 0.5*sqrt((meanC^7)/(meanC^7 + 25^7));

% transform the a* values

lab1(2) = (1 + G)*lab1(2);

lab2(2) = (1 + G)*lab2(2);

% recompute the polar coordinates using the new a*

[c1,h1] = car2pol([lab1(2) lab1(3)]);

[c2,h2] = car2pol([lab2(2) lab2(3)]);

% compute the mean values for use later

meanC = (c2+c1)/2;

meanL = (lab2(1)+lab1(1))/2;

[a1,b1] = pol2car([1,h1]);

[a2,b2] = pol2car([1,h2]);

a = (a1+a2)/2;

b = (b1+b2)/2;

[c,meanH] = car2pol([a b]);

% compute the basic delta values

dh = (h2-h1);

if (dh>180)

dh = dh - 360;

end

dl = lab2(1)-lab1(1);

dc = c2-c1;

dh = 2*sqrt(c1*c2)*sin((dh/2)*pi/180);

T = 1 - 0.17*cos((meanH-30)*pi/180) + 0.24*cos((2*-...

meanH)*pi/180);

T = T + 0.32*cos((3*meanH + 6)*pi/180) - ...

0.20*cos((4*meanH - 63)*pi/180);

dthe = 30*exp(-((meanH-275)/25)^2);

rc = 2*sqrt((meanC^7)/(meanC^7 + 25^7));

rt = -sin(2*dthe*pi/180)*rc;
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Lweight = 1 + (0.015*(meanL-50)^2)/sqrt(20 + (meanL- ...

50)^2);

Cweight = 1 + 0.045*meanC;

Hweight = 1 + 0.015*meanC*T;

dl = dl/(Lweight*paral);

dc = dc/(Cweight*parac);

dh = dh/(Hweight*parah);

de = sqrt(dl^2 + dc^2 + dh^2 + rt*dc*dh);

Users may wish to modify the scripts or to convert them into other

programming languages. In order to facilitate testing of any implementations

of these colour-difference equations Table 5.1 has been provided which lists 10

pairs of samples that Luo et al. (2001) have designed for testing the CIEDE2000

equation. The tristimulus values in Table 5.1 are for the 1964 observer and

illuminant D65 (Xn¼ 94.811, Yn¼ 100.000, Zn¼ 107.304). Table 5.2 lists the

colour-difference values for the CIELAB, CMC(1,1), CIE94 and CIEDE2000

equations. Table 5.3 provides more detailed information on the intermediate

stages for the CIEDE2000 equation.
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Table 5.1 Data for testing implementations of colour-difference equations reproduced from
Luo (2001). CIE tristmulus values (illuminant D65 and 1964 observer) are provided for 10
pairs of samples. The standard and trial data are denoted by subscripts S and T, respectively

Pair XS YS ZS XT YT ZT

1 19.410000 28.410000 11.576600 19.552500 28.640000 10.579100
2 22.480000 31.600000 38.480000 22.583300 31.370000 36.790100
3 28.995000 29.580000 35.750000 28.770400 29.740000 35.604500

4 4.140000 8.540000 8.030000 4.412900 8.510000 8.645300
5 4.960000 3.720000 19.590000 4.665100 3.810000 17.784800
6 15.600000 9.250000 5.020000 15.914800 9.150000 4.387200

7 73.000000 78.050000 81.800000 73.935100 78.820000 84.515600
8 73.995000 78.320000 85.306000 69.176200 73.400000 79.713000
9 0.704000 0.750000 0.972000 0.613873 0.650000 0.851025

10 0.220000 0.230000 0.325000 0.093262 0.100000 0.145292
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Table 5.2 Colour-difference values for the pairs from Table 5.1 computed for the CIELAB,
CMC(1:1), CIE94 and CIEDE2000 equations. Note that all the parametric values in

CIEDE2000 were set to unity

Pair CIELAB CMC(1:1) CIE94 CIEDE2000

1 3.1819 1.4282 1.3910 1.2644

2 2.2134 1.2549 1.2481 1.2630
3 1.5390 1.7684 1.2980 1.8731
4 4.6063 2.0258 1.8204 1.8645

5 6.5847 3.0870 2.5561 2.0373
6 3.8864 1.7490 1.4249 1.4146
7 1.5051 1.9009 1.4194 1.4440

8 2.3238 1.7026 2.3226 1.5381
9 0.9441 1.8032 0.9385 0.6378
10 1.3191 2.4493 1.3065 0.9082

Table 5.3 Colour-difference values and intermediate values for the pairs from Table 5.1
computed for the CIEDE2000 equation. Note that all the parametric values in CIEDE2000

were set to unity

Pair G T SL SC SH RT DE00

1 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644

2 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
3 0.4966 0.6952 1.1586 1.3092 1.0717 70.0032 1.8731
4 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645

5 0.0026 0.3636 1.4014 3.1597 1.2617 71.2537 2.0373
6 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
7 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4440

8 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
9 0.4999 0.9556 1.6517 1.1057 1.0337 70.0004 0.6378
10 0.5000 0.7827 1.7246 1.0383 1.0100 0.0000 0.9082





6
Chromatic-adaptation Transforms

and Colour Appearance

6.1 Introduction

The distinction between colour specification and colour appearance was touched

upon in the review of the CIE system presented in Chapter 1, Section 1.3.

Whereas the CIE system of colorimetry (based upon XYZ tristimulus values) is

clearly a system for colour specification, some advanced colour specification

models such as CIELAB could arguably be described as models of colour

appearance. The polar coordinates of CIELAB allow the description of a colour

stimulus in terms of three terms, lightness, chroma and hue, and these correlate

quite well with the perceptual attributes of brightness, colourfulness and hue.

Furthermore, the normalization procedures inherent in the transform from XYZ

to L*a*b* result in a* and b* values close to zero for a perfect reflecting diffuser

(or any surface whose spectral reflectance does not vary with wavelength)

irrespective of the illuminant. This is consistent with the fact that surfaces in

general tend to retain their colour appearance when viewed under a wide range

of light sources and contrasts with the properties of the XYZ system. CIELAB is

a relatively poor colour-appearance model, however, and this chapter describes

several advanced colour-appearance models (CAMs). The human visual system

has a remarkable ability to maintain the colour appearance of an object despite

quite large changes in the quality and intensity of the illumination. A white piece

of paper tends to look white whether it is viewed by daylight, Tungsten light or

candle light. It is generally considered that the human visual system achieves

colour constancy by some process that allows it to discount the effect of the

illumination. The term chromatic adaptation is often used to describe this

process and the chromatic adaptation is said to be complete if the effect of the

illumination is completely discounted. Most CAMs therefore include a

chromatic-adaptation transform (CAT). A CAT is a method for computing
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the corresponding colour under a reference illuminant for a stimulus defined

under a test illuminant. Corresponding colours are colours that have the same

appearance under different illumination.

Fairchild (1998) defines a CAM as any model that includes predictors of at

least the relative colour-appearance attributes of lightness, chroma and hue. The

attribute brightness is a visual perception according to which an area appears to

exhibit more or less light. Lightness is the brightness of an area judged relative to

the brightness of a similarly illuminated reference white. The lightness of a

sample is in the range 0–100 and is influenced by the surrounding background.

Colourfulness is that attribute of a visual sensation according to which an area

appears to exhibit more or less chromatic content. Hunt (1952) has shown that

the colourfulness of an object increases as the luminance increases so that a

typical outdoor scene appears much more colourful in bright sunlight than it

does on an overcast day (the Hunt effect). Chroma is the colourfulness of an area

judged as a proportion of the brightness of a similarly illuminated reference

white. The colourfulness of an area judged in proportion to its brightness is

called the saturation. Finally, hue is the attribute of a sensation according to

which an area appears to be similar to one, or to a proportion of two, of the

perceived colours red, yellow, green and blue.

In this chapter the basic principles that underlie CATs will be introduced and

three models (CIECAT94, CMCCAT97 and CMCCAT2000) will be described in

detail. The CIECAM97s CAM will then be described and CMCCAM2000 will

be introduced. Finally, MATLAB code will be presented for the CATs and

CAMs described in this chapter.

6.2 CATs

In psychophysical studies of chromatic adaptation it is useful to define the

concept of corresponding colours (colours that have the same appearance under

different illumination). In a typical colour-appearance experiment to determine

the corresponding colour of a grey surface or chip under a test light source (for

example, corresponding to illuminant A) observers adapt to the chip viewed

under illuminant A and are then asked to memorize the colour of the chip. The

observers are then adapted to the reference light source (often corresponding to

illuminant D65) and requested to select a chip, from a large number of different

coloured chips, that matches the memorized colour of the original chip that was

viewed under the test illumination. If the chip is a perfectly neutral grey, then it

would have the chromaticity under D65 corresponding to the D65 illuminant

itself and the chromaticity under A corresponding to illuminant A. In Figure 6.1,

these points are denoted by an asterix (*) and a cross (+), respectively. If the

observer is able to discount the change in illumination perfectly, then the colour

appearance of a given surface will be the same under both the test and reference
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illuminations. Therefore the observer would select the same grey chip under

the reference illumination as was viewed under the test illumination. Usually,

in such experiments the corresponding colours are not those predicted by a

process that discounts the illumination change perfectly. In Figure 6.1 the

corresponding colour (*) determined under the reference illuminant (D65) to

match a neutral chip viewed under illuminant A (+) is shown for a hypothetical

experiment.

Fairchild (1998) has classified chromatic-adaptation mechanisms into two

groups: sensory and cognitive. Sensory chromatic-adaptation mechanisms refer

to those that respond automatically to the stimulus and are thought to relate to

control mechanisms in the sensitivities of the long-, medium- and short-

wavelength-sensitive cone classes. Cognitive chromatic-adaptation mechanisms

refer to higher level cognitive processes that may relate to our understanding of

scene content. Research has shown that chromatic-adaptation mechanisms are

quite rapid, being 50% complete after 4 s, 90% complete after 70 s, and 99%

complete after 110 s (Fairchild and Lennie, 1992; Fairchild and Reniff, 1995).

A CAT is a method for computing the corresponding colour under a reference

illuminant for a stimulus defined under a test illuminant. Most modern CATs are
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Figure 6.1 Schematic diagram to show the chromaticities of a test stimulus (+) under

illuminant A, the stimulus under illuminant D65 ( ) and the hypothetical psychophysically
measured corresponding colour (*)



at least loosely based on the von Kries model of adaptation. The likely

mechanism underlying this process is that under a reddish light, for example, the

long-wavelength-sensitive cones in particular will adapt and so become less

sensitive. Under a bluish light, however, the sensitivity of the long-wavelength-

sensitive cones will increase. In this way, the idea is that the cone responses for a

given surface will stay almost the same even when the illumination is changed,

and that the visual system will be able to use the cone excitations to provide a

constant appearance for a surface when the illumination changes even though

the spectral distribution of light entering the eye is changed.

The changes in sensitivity can be modelled for a static visual system by

assuming that the cone responses for a surface under one illuminant can be

predicted from those under another illuminant by simple scaling factors. Thus,

the long-wavelength response for a surface viewed under one light source can be

obtained by multiplying the long-wavelength response for the surface viewed

under a different light source by a scalar. The scalar values may be different for

each cone class but critically do not depend upon the reflectance or chromaticity

of the sample. In terms of linear algebra we can state that the cone responses for

(a sample viewed under) one illuminant can be related to those for another

illuminant by a linear transform. Since the linear transform’s system matrix has

non-zero entries only along the major diagonal, it is referred to as a diagonal

transform. Thus, for example, the cone responses under one illuminant

(represented by the 361 column matrix e1) are related to the cone responses

under a second illuminant (represented by the 361 column matrix e2) by the

diagonal matrix D, thus

e2 ¼ De1, ð6:1Þ
where the coefficients of the diagonal matrix are given by the ratios of the long-,

medium-, and short-wavelength-sensitive cone responses for a white object

viewed under each of the two illuminants,

D ¼
L2/L1 0 0
0 M2/M1 0
0 0 S2/S1

2
4

3
5.

The von Kries law is sometimes called the coefficient law or the scaling law since

it assumes that the effect of an illumination change can be modelled simply by

scaling the tristimulus values or cone responses by scalars or coefficients (the

diagonal elements of D). When the von Kries adaptation transform is performed

using cone space, Terstiege (1972) has termed this a genuine von Kries

transformation, whereas in practice it is often carried out in CIE XYZ space or in

an RGB space when it is referred to as a wrong von Kries transformation.

Analyses of experimental data suggest that although Equation (6.1) cannot

perfectly predict the performance of observers in psychophysical experiments,

psychophysical data can be modelled by such a system at least to a first-order
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approximation (Wandell, 1995). However, Finlayson has shown that a diagonal

mapping is always possible between two real three-dimensional spaces (<3) if the

spaces are first subject to a specific linear transformation. He argues that if the

tristimulus values or cone responses are first transformed by a linear transform

into a suitable RGB space, then a diagonal transform can effectively discount the

illumination (Finlayson and Süsstrunk, 2000). The first linear transform is

sometimes called a sharp transform since it can be shown to convert the cone

responses into a set of channels whose spectral sensitivities are sharper than those

that have been measured for humans. We can therefore consider a generalized

CAT based upon Equation (6.2) where c1 and c2 refer to the tristimulus values of

the sample under the two illuminants,

c2 ¼ M�1
CATD MCAT c1, ð6:2Þ

and the diagonal matrix D is now composed from the white points of the two

illuminants in the RGB space. In Equation (6.2) the tristimulus values are first

subject to a linear transform (MCAT) which converts them into RGB space and

then to a diagonal transform (D) to apply the illuminant correction, and finally a

linear transform (M�1
CAT) to convert back to tristimulus space. Finlayson has

derived the RGB or sharp transform as given by MCAT¼MSHARP,

MSHARP ¼
1.2694 �0.0988 �0.1706

�0.8364 1.8006 0.0357
0.0297 �0.0315 1.0018

2
4

3
5.

The most popular CATs are consistent with Finlayson’s idea, and the

procedure of subjecting the tristimulus values of a stimulus under one illuminant

by a 363 linear transform MCAT, followed by a diagonal transform D, and

finally followed by the inverse linear transform M�1
CAT to return to tristimulus

space is ubiquitous in CAT research. Often researchers refer to the RGB space in

which the diagonal transform takes place as cone space, although the term is

being used loosely in this sense.

A number of CATs are currently in use and most transform the tristimulus

values into an RGB space before applying the diagonal transform. The RGB

space differs slightly between the different transforms; that is, the 363 linear

transform MCAT is different for each CAT. However, more significant differences

between the transforms are found in the way in which the elements of the

diagonal transform are computed and in which properties of the observing field

are used to compute these elements.

Hunt (1998) classified the observing field into five areas: the colour element,

the proximal field, the background, the surround and the adapting field, and

these areas are shown schematically in Figure 6.2. The colour element is the

central area of the observing field and this typically is a uniform patch of

approximately 28 of visual angle. The proximal field is the immediate
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environment of the colour element extending for approximately 28 from the edge

of the colour element. The colour element and its proximal field are considered

to be viewed against the background, a region extending approximately 108 in

every direction from the edge of the proximal field. The surround is the field

outside of the background. Finally, the adapting field is the total environment

within which the colour element, the proximal field and the background are

viewed.

It is common practice to follow Moroney’s terminology so that the term

adopted white is used to describe the computational white point used in various

model calculations, whereas the term adapted white is used to define the white

point to which a human observer is considered to be adapted to (Moroney,

2000).

6.2.1 CIECAT94

In 1994 the CIE recommended a CAT developed by Nayatani and his workers

(Nayatani et al., 1990, 1999) known as CIECAT94. Unlike the simple von Kries

model, CIECAT94 takes into account the luminance level used and the degree of

adaptation. This model therefore led the way for a plethora of modern CATs

that currently dominate the colour literature. However, a number of studies have

shown that the complexity of the CIECAT94 model is not justified by its

performance (e.g. Sueeprasan, 2003).

The first stage of the transform is to convert the XYZ values of the sample

under the test conditions to RGB values using a linear transform shown as

Equations (6.3):
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Figure 6.2 Schematic diagram to show the observing field for the description of colour
appearance according to Hunt (1998)



R ¼ 0.40024Xþ 0.70760Y� 0.08081Z,

G ¼ �0:22630Xþ 1:16532Yþ 0:04570Z,

B ¼ 0:00000Xþ 0:00000Y� 0:91822Z.

ð6:3Þ

The corresponding values RC, GC and BC under the reference illuminant are

computed according to Equations (6.4),

RC ¼ ðY0PR þ nÞK1=bðRRÞ½ðRþ nÞ=ðY0hPi þ nÞ�bðRTÞ=bðRRÞ � n,

GC ¼ ðY0QR þ nÞK1=bðGRÞ½ðGþ nÞ=ðY0hQi þ nÞ�bðGTÞ=bðGRÞ � n,

BC ¼ ðY0SR þ nÞK1=bðBRÞ½ðBþ nÞ=ðY0hSi þ nÞ�bðBTÞ=bðBRÞ � n,

ð6:4Þ

where n is a noise term (n¼ 0.1) and the other parameters are computed

according to the following steps:

Step 1: Compute the chromaticity correlates PT, QT, ST and PR, QR, SR using

PT ¼ ð0.48105xT þ 0.78841yT � 0.08081Þ=yT,
QT ¼ ð�0.27200xT þ 1.11962yT � 0.08081Þ=yT
ST ¼ ð0.48105xT þ 0.78841yT � 0.08081Þ=yT,

and

PR ¼ ð0.48105xR þ 0.78841yR � 0.08081Þ=yR,
QR ¼ ð�0.27200xR þ 1.11962yR � 0.08081Þ=yR,
SR ¼ ð0.48105xR þ 0.78841yR � 0.08081Þ=yR,

where xR, yR and xT, yT are the chromaticity coordinates of the reference and test

illuminants, respectively.

Step 2: Compute the coefficient a for adaptation using

a ¼ 0:115 logðLTÞ þ 0:0025ðL*� 50Þ þ 0:22Dþ 0:51,

where the factor D¼ 1.0 for object colours and D¼ 0.0 for luminous colours

(intermediate values of D may be used for projected colour slides) and the value

of a is capped to have a maximum amax¼ 1.0. The value of LT is the luminance

(cd/m2) of the adapting test field and L* is the CIE lightness of the sample under

the test illuminant.

Step 3: Compute the adapting chromaticity correlates hPi, hQi, and hSi using
hPi ¼ aPT þ ð1� aÞPR,

hQi ¼ aQT þ ð1� aÞQR,

hSi ¼ aST þ ð1� aÞSR.
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Step 4: Compute the effective adapting responses of the test (RT, GT, BT) and

reference (RR, GR, BR) conditions using

RT ¼ LThPi,
GT ¼ LThQi,
BT ¼ LThSi,

and

RR ¼ LRPR,

GR ¼ LRQR,

BR ¼ LRSR.

Step 5: Compute the exponents of the red, green and blue transformations b(RT),

b(GT), b(BT) and b(RR), b(GR), b(BR) using

bðRTÞ ¼ ð6.469þ 6.326R0:4495
T Þ=ð6.469þ R0.4495

T Þ,
bðGTÞ ¼ ð6.469þ 6.326G0.4495

T Þ=ð6.469þ G0.4495
T Þ,

bðRRÞ ¼ ð6.469þ 6.326R0.4495
R Þ=ð6.469þ R0:4495

R Þ,
bðGRÞ ¼ ð6.469þ 6.326G0.4495

R Þ=ð6.469þ G0.4495
R Þ,

bðBTÞ ¼ 0.7844ð8.414þ 8.091B0.5128
T Þ=ð8.414þ B0.5128

T Þ,
bðBRÞ ¼ 0.7844ð8.414þ 8.091B0:5128

R Þ=ð8.414þ B0.5128
R Þ.

Step 6: Compute the coefficient K using

K ¼ p/q,

where

p ¼ ½ðYhPi þ nÞ/ð20hPi þ nÞ�2bðRTÞ=3½ðYhQi þ nÞ/ð20hQi þ nÞ�bðGTÞ=3

and

q ¼ ½ðYPR þ nÞ/ð20PR þ nÞ�2bðRRÞ=3½ðYQR þ nÞ/ð20QR þ nÞ�bðGRÞ=3,

and where Y is the luminance factor (per cent) of the test adapting field.

Finally, the inverse of Equations (6.3) is used to transform the correlated RGB

values into correlated XYZ values,

XR ¼ 1.85995RR � 1.12939GR þ 0.21990BR,

YR ¼ 0.36119RR þ 0.63881GR þ 0.00000BR,

ZR ¼ 0.00000RR þ 0.00000GR þ 1.08906BR.

ð6:5Þ
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6.2.2 CMCCAT97

The CMCCAT97 CAT (Luo and Hunt, 1998b) is a modified version of the

Bradford (BFD) CAT (Lam, 1985) and is used in the CIECAM97s CAM. It is

essentially based on the form of Equation (6.2) where MCAT¼MBFD, and

MBFD ¼
0.8951 0.2664 �0.1614

�0.7502 1.7135 0.0367
0.0389 �0.0685 1.0296

2
4

3
5.

However, in CMCCAT97 the transformation to RGB space is performed upon

the tristimulus values normalized by the Y value of the sample. Thus,

R ¼ 0.8951X/Yþ 0.2664Y/Y� 0.1614Z/Y,

G ¼ �0.7502X/Yþ 1.7135Y/Yþ 0.0367Z/Y,

B ¼ 0:0389X/Y� 0:0685Y/Yþ 1:0296Z/Y,

ð6:6Þ

where X, Y and Z are the tristimulus values of the sample under the test

illuminant.

Note that this stage is equivalent to multiplying the 361 column matrix of

normalized tristimulus values by the 363 matrix MBFD. The XYZ values of the

adopted test and reference illuminants must also be subject to the generic form of

Equations (6.6) to yield RWT, GWT, BWT, and RWR, GWR, BWR, respectively. To

avoid confusion, the equations for these transforms are given in full by

Equations (6.7) and (6.8),

RWT ¼ 0:8951XWT=YWT þ 0:2664YWT=YWT � 0:1614ZWT=YWT,

GWT ¼ �0:7502XWT=YWT þ 1:7135YWT=YWT þ 0:0367ZWT=YWT,

BWT ¼ 0:0389XWT=YWT � 0:0685YWT=YWT þ 1:0296ZWT=YWT,

ð6:7Þ

and

RWR ¼ 0:8951XWR=YWR þ 0:2664YWR=YWR � 0:1614ZWR=YWR,

GWR ¼ �0:7502XWR=YWR þ 1:7135YWR=YWR þ 0:0367ZWR=YWR,

BWR ¼ 0:0389XWR=YWR � 0:0685YWR=YWR þ 1:0296ZWR=YWR,

ð6:8Þ

where XWT, YWT, ZWT and XWR, YWR, ZWR are the tristimulus values of the

adopted test and reference illuminants, respectively.

CMCCAT97 incorporates the degree of adaptation D and this is computed

using Equation (6.9),

D ¼ F� F=½1þ 2ðL1=4
A Þ þ L2

A=300�, ð6:9Þ
where F¼ 1 for surfaces seen under typical viewing conditions, F¼ 0.9 for

surfaces seen under dim or dark conditions and LA is the luminance (cd/m2) of

the adapting test field. The degree of adaptation D is then used with the ratios of
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the white points of the illuminants to convert the RGB values of the sample to the

RGB values of the corresponding colour,

RC ¼ ½DðRWR=RWTÞ þ 1�D�R,
GC ¼ ½DðGWR=GWTÞ þ 1�D�G, ð6:10Þ

BC ¼
� ½DðBWR=B

P
WTÞ þ 1�D�BP, if BC 4 0,

� ½DðBWR=B
P
WTÞ þ 1�D�jBjP, otherwise,

where

P ¼ ðBWT=BWRÞ0:0834.
Note that when D¼ 1, the transform [Equations (6.10)] is quite close to the form

of a von Kries or diagonal transform except that a non-linearity is applied to the

B channel.

Finally, the corresponding RGB values are converted back to tristimulus

values by multiplying them by the inverse of MBFD to yield the normalized

tristimulus values which finally can be converted by multiplying each by the Y

tristimulus value of the sample under the test illuminant,

XC ¼ Yð0:9870RC � 0:1471GC þ 0:1600BCÞ,
YC ¼ Yð0:4323RC þ 0:5184GC þ 0:0493BCÞ,

ð6:11Þ

and

ZC ¼ Yð�0:0085RC þ 0:0400GC þ 0:9685BCÞ.

6.2.3 CMCCAT2000

There is some uncertainty over the reversibility of the CMCCAT97 transform

which arises because of the power function in Equations (6.10). Although this

problem has been solved by a small revision (Li et al., 2000) a further weakness

of the CMCCAT97 is that it was derived by fitting only a relatively small data

set. Further work resulted in the development of a new CAT that was accepted

by the Colour Measurement Committee and known as CMCCAT2000 (Li et al.,

2002). In CMCCAT2000 the power function was removed so that the transform

is fully reversible and the model was fitted to all available data sets.

Consequently the linear transform component, MCMCCAT2000, of CMCCAT2000

is slightly different from that of CMCCAT97 and is shown below,

MCMCCAT2000 ¼
0:7982 0:3389 �0:1371

�0:5918 1:5512 0:0406
0:0008 0:0239 0:9753

2
4

3
5.
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The first step in CMCCAT2000 is to transform the tristimulus values of the

sample under the test illuminant to RGB values using Equations (6.12),

R ¼ 0:7982X=Yþ 0:3389Y=Y� 0:1371Z=Y,

G ¼ �0:5918X=Yþ 1:5512Y=Yþ 0:0406Z=Y,
ð6:12Þ

and

B ¼ 0:0008X=Yþ 0:0239Y=Yþ 0:9753Z=Y,

where X, Y and Z are the tristimulus values of the sample. Again, note that the

normalized tristimulus values are used as the input to the linear transform

[Equations (6.12)]. Similar transforms are computed for the test and reference

illuminants to produce RWT, GWT, BWT and RWR, GWR, BWR, respectively.

Note that this stage is equivalent to multiplying the 361 column matrix of

normalized tristimulus values by the 363 matrix MCMCCAT2000. CMCCAT2000

incorporates the degree of adaptationD and this is computed by Equation (6.13),

D ¼ F
�
0:08 log½0:5ðLAT þ LARÞ� þ 0:76� 0:45ðLAT � LARÞ=ðLAT þ LARÞ

�
,

ð6:13Þ
where the parameter F¼ 1.0 for average viewing conditions, F¼ 0.8 for dim and

dark surround conditions and LAT and LAR are the luminances of the test and

reference adapting fields, respectively (note that CMCCAT97 did not account for

the luminance of the reference field).

The degree of adaptation D is then used to convert the RGB values of the

sample to the RGB values of the corresponding colour,

RC ¼ ½DðRWR=RWTÞ þ 1�D�R,
GC ¼ ½DðGWR=GWTÞ þ 1�D�G,
BC ¼ ½DðBWR=BWTÞ þ 1�D�B.

ð6:14Þ

Note that when D¼ 1, the transform [Equations (6.14)] is simply a diagonal

transform of the RGB values.

Finally, the corresponding RGB values are converted back to tristimulus

values by multiplying them by the inverse of MCMCCAT2000. This procedure yields

the normalized tristimulus values which finally can be converted by multiplying

each by the Y tristimulus value of the sample under the test illuminant,

XC ¼ Yð1:0765RC � 0:2377GC þ 0:1612BCÞ,
YC ¼ Yð0:4110RC þ 0:5543GC þ 0:0347BCÞ,
ZC ¼ Yð�0:0110RC � 0:0134GC þ 1:0243BCÞ.

ð6:15Þ

A slight revision of CMCCAT2000, known as CAT02, has been developed

whereby the matrix MCAT02 was derived by fitting all the available data sets apart

from one (which was excluded on the basis that it refers to narrowband light

sources that are unlikely to be encountered in practical situations).
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6.3 CAMs

According to Fairchild’s definition of a CAM, CIELAB can be considered to be

a CAM but it makes relatively poor predictions of colour appearance in most

cases. The main problem of using CIELAB as a CAM is demonstrated by the

simple example where a grey patch is shown surrounded by either a white

background or a black background (Figure 6.3).

The CIELAB colour coordinates for the two grey patches shown in Figure 6.3

are identical but the colour appearances of the two grey patches are quite

different. Although the normalization of the tristimulus values by the white point

in the computation of CIELAB values attempts to deal with some issues of

colour appearance (those caused by the ability of the visual system to

compensate for changes in the illumination) it does not contain any spatial

component. Yet in everyday viewing the colours that we see are almost always

related colours. That is, we see colours in relation to the surrounding colours in a

scene. A CAM should, for example, be able to predict an increase in lightness

when a grey paper is viewed against a dark background compared with when it is

viewed against a light background. For many technologies, of course, colour

appearance is not important and basic colorimetry is sufficient (Berns, 2000). So,

for example, if we wish to compare a trial fabric sample with a standard we are

often only concerned with whether the trial matches the standard rather than

with what the two samples actually look like. The importance of this distinction

(see Westland, 2002) is critical if the recent work on colour appearance is to be

understood.
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6.3.1 CIECAM97s

In 1997 the CIE Technical Committee TC1-34 agreed to adopt a CAM known as

CIECAM97s (Luo and Hunt, 1998a). CIECAM97s comprises two parts: the first

part is a CAT that computes the corresponding tristimulus values; the second

part calculates a set of colour-appearance descriptors for the corresponding

tristimulus values. The particular CAT that is used in CIECAM97s is known as

CMCCAT97 (Luo and Hunt, 1998b) and this is described in Section 6.2.2.

CIECAM97s includes a forward and a reverse mode. The forward mode

transforms the tristimulus values of a sample under a non-daylight illuminant,

such as A, to those for the corresponding colour under a daylight illuminant (in

fact, the equal-energy illuminant) and then computes some terms that describe

the colour appearance of the sample under the daylight illuminant. The reverse

mode is used to predict the tristimulus values under a non-daylight illuminant

based upon the colour-appearance descriptors for a sample viewed in daylight.

The output of the forward mode is a set of attributes that predict colour

appearance: brightness, lightness, colourfulness, chroma, saturation and hue.

The predictions from the CIECAM97s model are in agreement with a number

of colour-appearance phenomena such as chromatic adaptation (CMCCAT97 is

included within CIECAM97s), Hunt’s effect, Stevens’ effect (Stevens and

Stevens, 1963) and the surround effect (Bartleson and Breneman, 1967).

However, there are certain well-known colour-appearance phenomena that

CIECAM97s cannot predict (Luo, 2002b).

The forward mode considers a sample viewed under a (non-white) test

illuminant against an achromatic background and computes the corresponding

colour-appearance attributes for the sample under a (white) reference illuminant.

The starting data required for the forward transform include the tristimulus

values of the sample in the test illuminant (X, Y, Z), the adopted white in the test

illuminant (XWT, YWT, ZWT), the reference white in the reference illuminant (XWR,

YWR, ZWR), the Y tristimulus value of the achromatic background against which

the patch is viewed (YB), and the luminance (in units of cd/m2) of the reference

white (LW) and the achromatic background (LA) against which the sample is

viewed.

The model requires that values are assigned to four parameters, F, c, FLL and

NC. Different values are recommended for these parameters depending upon the

viewing conditions (Luo, 2002b). However, for large moderately illuminated

scenes the following values should be used: F¼ 1.0, c¼ 0.690, FLL¼ 0.0 and

NC¼ 1.0. The following steps describe in detail the computation of the forward

mode of CIECAM97s.

Step 1: Calculate the RGB values for the test sample (R, G, B) and for the

reference white under the test (RWT, GWT, BWT) and reference fields (RWR, GWR,

BWR) using Equations (6.6). Note that this stage is equivalent to multiplying the
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361 column matrix of normalized tristimulus values by the 363 matrix MBFD.

The XYZ values of the sample are used with Equations (6.6) to compute the

RGB values for the sample; XWT, YWT, ZWT and XWR, YWR, ZWR are used to

compute RWT, GWT, BWT and RWR, GWR, BWR, respectively.

Step 2: Calculate the corresponding RGB values for the test sample (RC, GC, BC)

and for the reference white (RWC, GWC, BWC) using Equations (6.10).

Step 3: Calculate the luminance level adaptation factor (FL), the chromatic

background induction factor (NCB) and the brightness background induction

factor (NBB),

FL ¼ K4ðLAÞ þ 0:1ð1� K4Þ2ð5LAÞ1=3, ð6:16Þ
where K¼ 1/(5LA+1), NCB¼NBB¼ 0.725(1/n)0.2 and n¼YB/YW.

Step 4: Calculate the corresponding tristimulus values for the test sample (R 0, G 0,
B 0) and for the reference white (R 0

W, G
0
W, B

0
W),

R0

G0

B0

2
64

3
75 ¼ MHM

�1
BFD

RCY

GCY

BCY

2
64

3
75, ð6:17Þ

where

M�1
BFD ¼

0:9870 � 0:1471 0:1600

0:4323 0:5184 0:0493

�0:0085 0:0400 0:9685

2
64

3
75

and

MH ¼
0:38971 0:68898 � 0:07868

�0:22981 1:18340 0:04641

0:00000 0:00000 1:00000

2
64

3
75.

Step 5: Calculate the cone responses after adaptation for the test sample (R 0
a, G

0
a,

B 0
a) and for the reference white (R 0

aW, G
0
aW, B

0
aW),

R 0
a ¼ 1þ ½40ðFLR

0=100Þ0:73�=½ðFLR
0=100Þ0:73 þ 2�,

G 0
a ¼ 1þ ½40ðFLG

0=100Þ0:73�=½FLG
0=100Þ0:73 þ 2�,

B 0
a ¼ 1þ ½40ðFLB

0=100Þ0:73�=½ðFLB
0=100Þ0:73 þ 2�,

ð6:18Þ

and where, if R 0
a5 0,

R 0
a ¼ 1� ½40ð�R 0=100Þ0:73�=½ð�R 0=100Þ0:73 þ 2�.
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Step 6: Calculate the red-green (a) and yellow-blue (b) opponent correlates,

a ¼ R 0
a � 12G 0

a=11þ B0
a=11,

b ¼ ðR 0
a þ G 0

a � 2B0
aÞ=9.

ð6:19Þ

Step 7: Calculate the hue angle (h),

h ¼ tan�1ðb=aÞ ð180=pÞ. ð6:20Þ
Step 8: Calculate the eccentricity factor (e) and the hue quadrature (H),

H ¼ H1 þ ½100ðh� h1Þ=e1�=½ðh� h1Þ=e1 þ ðh2 � h1Þ=e2�,
e ¼ e1 þ ðe2 � e1Þðh� h1Þ=ðh2 � h1Þ,

ð6:21Þ

where H1 is either 0, 100, 200 or 300 depending upon whether red, yellow, green

or blue respectively, is the hue having the nearest lower value of h. Table 6.1

shows the values of H, h and e for the unique hues.

The values of e1 and h1 are the values of e and h for the unique hue having the

nearest lower value of h; the values of e2 and h2 are the values of e and h for the

unique hue having the nearest higher value of h.

Step 9: Calculate the achromatic response of the sample (A) and of the reference

white (AW),

A ¼ ½2R0
a þ G0

a þ B0
a=20� 2:05�NBB,

AW ¼ ½2R0
aW þ G0

aW þ B0
aW=20� 2:05�NBB.

ð6:22Þ

Step 10: Calculate the lightness of the sample (J),

J ¼ 100ðA=AWÞcz, ð6:23Þ
where z¼ 1 + FLLn

1/2.

Step 11: Calculate the brightness of the sample (Q),

Q ¼ ð1:24=cÞðJ=100Þ0:67ðAW þ 3Þ0:9. ð6:24Þ
Step 12: Calculate the saturation of the sample (s),

s ¼ ½5000ða2 þ b2Þ1=210eNCNBB=13�=½R0
a þ G0

aW þ 21B0
a=20�. ð6:25Þ
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Table 6.1 Values of H, h and e for the unique hues

Red Yellow Green Blue Red

H 0 100 200 300 400

h 20.14 90.00 164.25 237.53 380.14
e 0.8 0.7 1.0 1.2 0.8



Step 13: Calculate the chroma of the sample (C),

C ¼ 2:44s0:69ðJ=100Þ0:67nð1:64� 0:29nÞ. ð6:26Þ

Step 14: Calculate the colourfulness of the sample (M),

M ¼ CF 0:15
L . ð6:27Þ

6.3.2 CMCCAM2000

Although CIECAM97s is widely used in the colour-management industry a

number of alternative models have been produced. Currently there is much focus

on the nature of the CAT that should be used (recall that CIECAM97s uses

CMCCAT97). Nayatani et al. (1999) have recently proposed an alternative CAT

and a further transform MSHARP has been developed based directly upon the

principle of chromatic sharpening (Finlayson and Süsstrunk, 2000). Luo and his

colleagues (Li et al., 2002) have developed CMCCAT2000 and this has been

adopted by the Colour Measurement Committee (CMC) of the Society of Dyers

and Colourists. It has been claimed that CMCCAT2000 gives a prediction to

almost all of the available data sets that is more accurate than any of the other

published transforms (Li et al., 2002). CMCCAT2000 is the CAT that forms the

basis of a colour-appearance model known as CMCCAM2000.

6.4 Implementations and examples

6.4.1 CATs

The function cmccat97 implements CMCCAT97 and the format for the function is

[xyzc] = cmccat97(xyz, xyzt, xyzr, la, f)

where xyz is a 361 matrix of the tristimulus values for the sample under the test

illuminant, xyzt and xyzr are 361 matrices whose entries hold the white points

of the adopted test and reference illuminants, respectively, and la and f are

parameters (both 161). The parameter la holds the luminance of the adapting

test field and this has a default value of 100 cd/m2. The parameter f has a default

value of 1.0 and this corresponds to typical viewing conditions (a value of 0.9

should be used for dark or dim conditions).
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Box 15: cmccat97.m

function [xyzc] = cmccat97(xyz,xyzt,xyzr,la,f)

% function [xyzc] = cmccat97(xyz,xyzt,xyzr,la,f)

% implements the CMCCAT97 chromatic adaptation transform

% operates on 1 by 3 matrix xyz containing tristimulus

% values of the stimulus under the test illuminant

% xyzt and xyzr are 1 by 3 matrices containing the

% white points for the test and reference conditions

% f has default value 1

% la is the luminance of the adapting test field

% and has default value of 100

% xyzc contains the tristimulus values of the

% stimulus under the reference illuminant

% see also cmccat00

% check the arguments

xyz = xyz(:); % force to be a column matrix

xyzt = xyzt(:); % force to be a column matrix

xyzr = xyzr(:); % force to be a column matrix

if (length(xyz)*= 3)

disp(’first argument must be 3 by 1 or 1 by 3’); return;

end

if (length(xyzt) *= 3)

disp(’second argument must be 3 by 1 or 1 by 3’); return;

end

if (length(xyzr) *= 3)

disp(’third argument must be 3 by 1 or 1 by 3’); return;

end

if (nargin54)

disp(’using default values of LA and F’)

la = 100.0; f = 1.0;

end

% define the matrix for the transform to ’cone’ space

M(1,:) = [0.8951 0.2664 -0.1614];

M(2,:) = [-0.7502 1.7135 0.0367];

M(3,:) = [0.0389 -0.0685 1.0296];
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% implement step 1: normalise xyz and transform to rgb

rgb = M*(xyz/xyz(2));

rgbt = M*(xyzt/xyzt(2));

rgbr = M*(xyzr/xyzr(2));

% implement step 2: compute d, the degree of adaptation

d = f - f/(1 + 2*(la^0.25) + la*la/300);

% clip d if it is outside the range [0,1]

if (d50)

d = 0;

elseif (d41)

d = 1;

end

p = (rgbt(3)/rgbr(3))^0.0834;

% implement step 3: compute corresponding rgb values

rgbc(1) = rgb(1)*(d*rgbr(1)/rgbt(1) + 1 - d);

rgbc(2) = rgb(2)*(d*rgbr(2)/rgbt(2) + 1 - d);

rgbc(3) = (d*(rgbr(3)/(rgbt(3)^p)) + 1 -

d)*abs(rgb(3))^p;

if (rgb(3)5 0)

rgbc(3) = -rgbc(3);

end

% implement step 4: convert from rgb to xyz

xyzc = inv(M)*(rgbc’*xyz(2));

The default values of the parameters will be used if the following form of the

function call is used:

[xyzc] = cmccat97(xyz, xyzt, xyzr).

The function returns a 361 matrix xyzc containing the corresponding

tristimulus value for the sample under the reference illuminant. The corre-

sponding colour under illuminant D65 for a sample with tristimulus values of

34.1827, 39.2556 and 14.8082 under illuminant A would be generated using the

following MATLAB code,

xyz = [34.1827 39.2556 14.8082];

xyzt = [111.144 100.00 35.200];
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xyzr = [94.811 100.00 107.304];

[xyzc] = cmccat97(xyz, xyzt, xyzr, 100.0, 1.0).

The corresponding tristimulus values that result from this computation are

displayed along with test and corresponding values for three other samples in

Table 6.2 which is provided to allow programmers to quickly check the fidelity of

their own implementations of CMCCAT97.
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Table 6.2 Data for testing implementations of CMCCAT97. Tristimulus values (XYZ) under
illuminant A are shown for four Munsell surfaces with the corresponding values (XCYCZC) for

illuminant D65 for the 1964 standard observer. The parameters LA and F are fixed at 100 and
1, respectively

X 34.1827 52.1707 11.9082 43.4214

Y 39.2556 35.6248 11.3118 43.2444
Z 14.8082 2.0716 12.0749 4.1055
D 0.9754 0.9754 0.9754 0.9754

p 0.9080 0.9080 0.9080 0.9080
XC 29.7637 40.6782 12.7074 33.2293
YC 40.7096 32.5784 12.2382 42.5732

ZC 43.6411 6.8944 33.4816 11.9849

Figure 6.4 Relationship of adaptation factor D with luminance of the adapting test field for
CMCCAT97



Note that when the luminance LA of the adapting test field is 100 cd/m2 the

degree of adaptation D is computed as 0.9080. In fact, the adaptation factor is

related to LA as shown in Figure 6.4.

Figure 6.5 illustrates the effect of the degree of adaptation on the

corresponding colours predicted by CMCCAT97 for the samples from Table

6.2. The + and * symbols represent the chromaticities of the samples for

illuminants A and D65, respectively, whereas the represents the corresponding

colours predicted for D65 from the chromaticities under A for various degrees of

adaptation.

The function cmccat00 implements CMCCAT2000 and the format for the

function is

[xyzc] = cmccat00(xyz, xyzt, xyzr, lt, lw, f),

where xyz is a 361 matrix of the tristimulus values for the sample under the test

illuminant, xyzt and xyzr are the white points of the adopted test and reference

illuminants, respectively, and lt, lw and f are parameters. The parameters lt and

lw hold the luminances of the adapting test and reference fields, respectively, and
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Figure 6.5 Chromaticities for four Munsell samples under illuminant A (+) and D65 (*)
with corresponding colours predicted for D65 from A based upon CMCCAT97 for varying
degrees of adaption ( )



have default values of 100 cd/m2. The parameter f has a default value of 1.0 and

this corresponds to typical viewing conditions (a value of 0.9 should be used for

dark or dim conditions).

Box 16: cmccat00.m

function [xyzc] = cmccat00(xyz,xyzt,xyzr,lt,lw,f)

% function [xyzc] = cmccat00(xyz,xyzt,xyzr,lt,lw,f)

% implements CMCCAT2000 chromatic adaptation transform

% operates on 1 by 3 matrix xyz containing tristimulus

% values of the stimulus under the test illuminant

% xyzt and xyzr are 1 by 3 matrices containing the

% white points for the test and reference conditions

% f has default value 1

% lt is the luminance of the adapting test field

% and has default value of 100

% lw is the luminance of the adapting reference field

% and has default value of 100

% xyzc contains the tristimulus values of the

% stimulus under the reference illuminant

% check the arguments

xyz = xyz(:); % force to be a column matrix

xyzt = xyzt(:); % force to be a column matrix

xyzr = xyzr(:); % force to be a column matrix

if (length(xyz)*= 3)

disp(’first argument must be 3 by 1 or 1 by 3’); return;

end

if (length(xyzt) *= 3)

disp(’second argument must be 3 by 1 or 1 by 3’); return;

end

if (length(xyzr) *= 3)

disp(’third argument must be 3 by 1 or 1 by 3’); return;

end

if (nargin54)

disp(’using default values of lt, lw and f’)

lt = 100.0; lw = 100.0; f = 1.0;

end
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% define the matrix for the transform to ’cone’ space

M(1,:) = [0.7982 0.3389 -0.1371];

M(2,:) = [-0.5918 1.5512 0.0406];

M(3,:) = [0.0008 0.0239 0.9753];

% implement step 1: normalise xyz and transform to rgb

rgb = M*(xyz/xyz(2));

rgbt = M*(xyzt/xyzt(2));

rgbr = M*(xyzr/xyzr(2));

% implement step 2: compute d, the degree of adaptation

d = f*(0.08*log10(lt+lw) + 0.76 - 0.45*(lt-lw)/(lt+lw));

% clip d if it is outside the range [0,1]

if (d50)

d = 0;

elseif (d41)

d = 1;

end

% implement step 3: compute corresponding rgb values

rgbc(1) = rgb(1)*(d*rgbr(1)/rgbt(1) + 1 - d);

rgbc(2) = rgb(2)*(d*rgbr(2)/rgbt(2) + 1 - d);

rgbc(3) = rgb(3)*(d*rgbr(3)/rgbt(3) + 1 - d);

% implement step 4: convert from rgb to xyz

xyzc = inv(M)*(rgbc’*xyz(2));

The default values of the parameters will be used if the following form of the

function call is used,

[xyzc] = cmccat00(xyz, xyzt, xyzr)

The degree of adaptation depends upon the luminances of both the test and

reference illuminants as illustrated by Figure 6.6, which was generated by the

following MATLAB code:

f = 1;

x = linspace(0,10,21); % variable for lt

y = linspace(0,10,21); % variable for lw

z = zeros(21,21);
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for j = 1:21

for i = 1:21

lt = x(i);

lw = y(j);

d = f*(0.08*log10(lt+lw) + 0.76 - 0.45*(lt-lw)/

(lt+lw));

if (d>1)

d = 1;

end

z(i,j) = d;

end

end

z(1,1) = 1;

surf(x,y,z)

colormap(‘grey’)
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luminance values for CMCCAT2000



The samples that were used to test CMCCAT97 (Table 6.2) have also been used

to test CMCCAT2000 (Table 6.3) for comparison.

6.4.2 Computing colour appearance

The forward mode of the CIECAM97s CAM has been implemented by the

function ciecam97s. The format for this function is

[j,c,h,m,hq,s,q,cd] = ciecam97s(xyz,xyzw,la,yb,p),

where xyz and xyzw are 361 column matrices containing the tristimulus values

of the colour stimulus and the adopted white, respectively, under the test

illuminant, la is the luminance of the achromatic background in units of cd/m2,

yb is the Y value of achromatic background, and the parameter p is a 461

column matrix containing the four surround parameters F, c, FLL and NC . The

ciecam97s function outputs eight variables. The first seven variables correspond

to the lightness ( j), chroma (c), hue quadrature (hq), colourfulness (m), hue

angle (h), Saturation (s) and brightness (q) of the colour stimulus under the

reference illuminant. The eighth output parameter, cd, is a string that contains

the colour descriptor.

Box 17: ciecam97s.m

function [j,c,hq,m,h,s,q,cd] = ciecam97s(xyz,xyzw,

la,yb,para)

% function [j,c,hq,m,h,s,q,cd] = ciecam97s(xyz,xyzw,

% la,yb,para)
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Table 6.3 Data for testing implementations of CMCCAT2000. Tristimulus values (XYZ)
under illuminant A are shown for four Munsell surfaces with the corresponding values

(XCYCZC) for illuminant D65 for the 1964 standard observer. The parameters LT, LW and F
are fixed at 100, 100, and 1, respectively

X 34.1827 52.1707 11.9082 43.4214

Y 39.2556 35.6248 11.3118 43.2444
Z 14.8082 2.0716 12.0749 4.1055
D 0.9441 0.9441 0.9441 0.9441

XC 29.7512 41.6879 12.7603 33.9602
YC 40.3041 33.5491 11.9818 42.8973
ZC 43.2750 7.5182 34.3499 13.5004



% implements the CIECAM97s colour appearance model

% operates on 1 by 3 matrix xyz containing tristimulus

% values of the stimulus under the test illuminant

% xyzt and xyzr are 1 by 3 matrices containing the

% white points for the test and reference conditions

% la and yb are the luminance and Y tristimulus values of

% the achromatic background against which the sample is

% viewed

% para is a 1 by 4 matrix containing c, Nc, Fll and F

c = para(1); nc = para(2);

fll = para(3); f = para(4);

MH = [0.38971 0.68898 -0.07868; -0.22981 1.18340 0.04641;

0.0 0.0 1.0];

MBFD = [0.8951 0.2664 -0.1614; -0.7502 1.7135 0.0367;

0.0389 -0.0685 1.0296];

% white in reference light

x = 0.3333; y = 0.3333; Y = 100.00;

xyzwr(1) = x*Y/y; xyzwr(2) = Y; xyzwr(3) = (1-x-y)*Y/y;

xyzwr = xyzwr’;

% step 1

rgb = MBFD*(xyz/xyz(2));

rgbw = MBFD*(xyzw/xyzw(2));

rgbwr = MBFD*(xyzwr/xyzwr(2));

% step 2

d = f - f/(1 + 2*(la^0.25) + (la^2)/300);

p = (rgbw(3)/rgbwr(3))^0.0834;

rgbc(1) = (d*(rgbwr(1)/rgbw(1)) + 1 - d)*rgb(1);

rgbc(2) = (d*(rgbwr(2)/rgbw(2)) + 1 - d)*rgb(2);

rgbc(3) = (d*(rgbwr(3)/(rgbw(3)^p)) + 1 - d)*

abs(rgb(3))^p; if (rgb(3) 50)

rgbc(3) = -rgbc(3);

end

rgbwc(1) = (d*(rgbwr(1)/rgbw(1)) + 1 - d)*rgbw(1);

rgbwc(2) = (d*(rgbwr(2)/rgbw(2)) + 1 - d)*rgbw(2);

rgbwc(3) = (d*(rgbwr(3)/(rgbw(3)^p)) + 1 - d)*...

abs(rgbw(3))^p; if (rgbw(3)50)

rgbwc(3) = -rgbwc(3);
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end

% step 3

k = 1/(5*la + 1);

n = yb/xyzw(2);

ncb = 0.725*(1/n)^0.2;

nbb = ncb;

fl = (k^4)*la + 0.1*((1-k^4)^2)*((5*la)^(1/3));

% step 4

rgbp = MH*inv(MBFD)*(rgbc*xyz(2))’;

rgbpw = MH*inv(MBFD)*(rgbwc*xyzw(2))’;

% step 5

rgbpa = zeros(3,1);

for i = 1:3

x = fl*rgbp(i)/100;

y = abs(x)^0.73;

if x50

rgbpa(i) = 1.0 - 40.0*y/(y+2.0);

else

rgbpa(i) = 1.0 + 40.0*y/(y+2.0);

end

end

rgbpwa = zeros(3,1);

for i = 1:3

x = fl*rgbpw(i)/100;

y = abs(x)^0.73;

if x50

rgbpwa(i) = 1.0 - 40.0*y/(y+2.0);

else

rgbpwa(i) = 1.0 + 40.0*y/(y+2.0);

end

end

% step 6

a = rgbpa(1) - 12*rgbpa(2)/11 + rgbpa(3)/11;

b = (rgbpa(1) + rgbpa(2) - 2*rgbpa(3))/9;

% step 7

[C,h] = car2pol([a b]);

% note that C is not used
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% step 8

ehH = [ 20.14 90.00 164.25 237.53 380.14

0.8 0.7 1.0 1.2 0.8

0.0 100.0 200.0 300.0 400.0 ];

hh = h;

if h5ehH(1,1)

hh = 360+ehH(1,1);

end

for k = 1:4

if hh 5ehH(1,k+1)

i = k;

break;

end

end

e = ehH(2,i)+(ehH(2,i+1)-ehH(2,i))*(hh-ehH(1,i))/

(ehH(1,i+1)-ehH(1,i));

hq=ehH(3,i)+100.0*( (hh-ehH(1,i))/ehH(2,i) )/

((hh-ehH(1,i))/ehH(2,i)+(ehH(1,i+1)-hh)/ehH(2,i+1));

k = floor(hq/100);

Hp = floor(100.0*(hq/100-k)+0.5);

if k == 0

Hc(1).Colour = ’Yellow’;

Hc(2).Colour = ’Red’;

end

if k == 1

Hc(1).Colour = ’Green’;

Hc(2).Colour = ’Yellow’;

end

if k == 2

Hc(1).Colour = ’Blue’;

Hc(2).Colour = ’Green’;

end

if k == 3

Hc(1).Colour = ’Red’;

Hc(2).Colour = ’Blue’;

end

Hc(1).Portion = Hp;

Hc(2).Portion = 100-Hp;

cd = sprintf(’%2.2f %s %2.2f %s’,Hc(1).Portion, Hc(1).

Colour, Hc(2).Portion, Hc(2).Colour);
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% step 9

A = (2*rgbpa(1) + rgbpa(2) + rgbpa(3)/20 - 2.05)*nbb;

Aw = (2*rgbpwa(1) + rgbpwa(2) + rgbpwa(3)/20 - 2.05)*nbb;

% step 10

z = 1 + sqrt(fll*n);

j = 100*(A/Aw)^(c*z);

% step 11

q = (1.24/c)*((j/100)^0.67)*((Aw + 3)^0.9);

% step 12

s = (5000*sqrt(a^2+b^2)*e*10*nc*nbb/13)/(rgbpa(1) +...

rgbpa(2) + 21*rgbpa(3)/20);

% step 13

c = 2.44*s^0.69*(j/100.)^(0.67*n)*(1.64-0.29^n);

% step

14 m = c*fl^0.15;

An example of the function is provided by the following code segment:

clear

% test sample

x = 0.3618; y = 0.4483; Y = 23.93;

xyz(1) = x*Y/y; xyz(2) = Y; xyz(3) = (1-x-y)*Y/y;

% white in test light

x = 0.4476; y = 0.4074; Y = 90.00;

xyzw(1) = x*Y/y; xyzw(2) = Y; xyzw(3) = (1-x-y)*Y/y;

xyz = xyz’;

xyzw = xyzw’;

yb = 18.0;

la = 200;

lw = la*100/yb;
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f = 1.0;

c = 0.69;

fll = 1.0;

nc = 1.0;

para = [f c fll nc];

[j,C,hq,m,h,s,q,cd] = ciecam97s(xyz,xyzw,la,yb,para)

The output of the ciecam97s function for the set of input values shown is

j = 34.6984

c = 39.6202

hq = 239.4437

m = 39.6202

h = 190.0318

s = 86.9153

q = 17.8702

cd = 39.00 Blue 61.00 Green
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7
Characterization of Computer

Displays

7.1 Introduction

Linear transforms are fundamental to the study of colorimetry and have many

applications, especially in the characterization of imaging devices such as

monitors, cameras and printers. Device calibration is concerned with setting the

imaging device to a known state and ensures that the device is producing

consistent results. Characterization is the relationship between device coordi-

nates (usually RGB or CMYK) and some device-independent colour space such

as CIE XYZ (Fairchild, 1998; Johnson, 2002). Green (2002b) argues that there

are three main methods for achieving this mapping: physical models, look-up

tables and numerical methods. Physical models often include terms for various

properties of the device such as the absorbance, scattering and reflectance of

colorants. The Kubelka–Munk model is an example of a physical model that can

be used as the basis of a characterization method for a printer (Kang, 1994;

Johnson, 1996). Similarly, the gain–offset–gamma model (also known as GOG)

is a physical model of a computer- or visual-display unit based on a cathode-ray

tube (CRT) that can be used for the characterization of most display monitors.

Look-up tables define the mapping between a device space and a CIE colour

space at a series of discrete measured coordinates within the colour space and

may interpolate the values for intermediate coordinates. For numerical methods

a series of coefficients is determined, usually based upon a set of measured

samples, without prior assumptions about the physical behaviour of the device or

its associated media. Examples of numerical methods include linear transforms,

non-linear transforms or polynomials and artificial neural networks. A key

property of any transform is whether it can easily be inverted. The advantage of

a linear transform is that it is trivial to invert whereas many empirical models are

not easily inverted (Iino and Berns, 1998). If inversion is not possible, then
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iteration may be required to perform the inverse mapping (Hardeberg, 2001).

Bala (2003) provides an excellent source of further information on computa-

tional methods for device characterization.

For many devices the process of characterization can be considered to consist

of two stages. The first stage performs a linearization, sometimes termed gamma

correction, for certain devices. The second stage transforms the linearized values

into the CIE XYZ tristimulus values. Practical device characterization will

almost certainly require, in addition, that the spatial and temporal properties of

the device be accounted for. Johnson (2002) notes that, even if a non-linear

transform is used, usually it is better to perform the linearization process and

then use approximately linear values as input to the non-linear transform.

In this chapter we describe some methods for the characterization of

computer-display devices or monitors.

7.2 Gamma

The luminance generated by a computer monitor generally is not a linear

function of the applied signal. Most CRT devices exhibit a power-law response

to voltage so that the luminance produced at the face of the display is

approximately proportional to the applied voltage raised to a power in the range

2.35–2.55 (Poynton, 2002). The value of the exponent of this power function is

sometimes called the gamma of the CRT or monitor. Figure 7.1 shows the

relationship between applied voltage and displayed luminance for a typical CRT

at three different settings of picture control (sometimes referred to as contrast).

In a typical 8-bit digital-to-analogue converter (DAC), the lowest voltage

shown in Figure 7.1 will be coded by the value 0, whereas the highest voltage will

be coded by the value 255 (28�1).

The relationship between the voltage applied to the CRT’s phosphors and the

displayed luminance can be approximated by the gamma relationship

L ¼ Vg, ð7:1Þ
where L is the luminance of the display, V is the applied voltage (this is linearly

related to the RGB values) and g is the gamma.

7.3 The GOG model

Although all vacuum tubes, including CRTs, exhibit an inherent non-linearity,

the term gamma is commonly used to represent the non-linearity of the entire

opto-electonic transfer function of the display system. Berns et al. (1993a, 1993b)

have studied the relationship between the digital monitor values (sometimes

referred to as DAC values) and the displayed luminance for a range of typical
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CRT devices. Equation (7.2) describes a realistic relationship between the

luminance Lr and DAC value dr for the red channel (Berns and Katoh, 2002),

Lr ¼ klr½ar½ðnmax � nminÞðLUTðdrÞ=ð2N � 1ÞÞ þ nmin� þ br � ncr�gr ð7:2Þ
where LUT is a function that represents the video look-up table, N is the number

of bits in the DAC, nmin and nmax are the minimum and maximum voltages of the

video-signal generator, ar and br are the CRT video amplifier gain and offset, ncr
is the cut-off voltage defining zero beam current, lr is the gamma of the channel

and klr is a spectral constant accounting for the particular CRT phosphors and

faceplate combination. In addition, Lr¼ 0 if ncr4ar [(nmax�nmin)(LUT(dr)/

(2N�1)) + nmin]+br. Similar relationships can be expressed for the blue and

green channels in a display device.

Generally, an accurate physical model of monitor behaviour is not used for the

purposes of characterization. Rather, the relationship between luminance L and

DAC d/(2N�1) is generalized to yield

L ¼ ðad=ð2N � 1Þ þ bÞg, ð7:3Þ
where it can be useful to think of the coefficients a and b as the system gain and

offset, respectively. This generalized relationship is known as the gain–offset–

gamma (GOG) model (Berns and Katoh, 2002). The implication of this equation

is that although the CRT has an inherent fixed gamma, the effective gamma of a

system will be dependent upon how the offset and gain controls are set. In
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Figure 7.1 Typical transfer function of a CRT at three different settings of the picture

control. Reproduced from Poynton (2002) with permission from the author



practice, a relationship of the form shown as Equation (7.3) is used to map the

normalized DAC values (dr/(2
N�1), dg/(2

N�1), and db/(2
N�1)) to the linearized

normalized DAC values (R, G, and B). Thus, for the red channel the following

equation can be used,

R ¼ ðadr=ð2N � 1Þ þ ð1� aÞÞg, ð7:4Þ

where the normalization procedure requires that the system gain and offset are

equal to unity. Since there are three model parameters but only two degrees of

freedom, a minimum of two radiometric measurements are required per channel.

The advantage of minimizing the number of measurements required to

characterize the monitor is important since it is widely recognized that when

making the measurements a time of at least 80 s must be allowed for the colour to

stabilize (Berns et al., 1993a, 1993b). It is only practicable to allow this time for

relatively small numbers of measurements. Berns et al. (1993a) recommend

measuring neutral colours where the load is placed equally across all three

channels rather than highly chromatic colours where the load is placed on only

one of the gun amplifiers. As few as two neutral colours need be measured in

order to be able to determine the parameters of Equation (7.4) for all three

channels.

7.4 Device-independent transformation

Once the GOG model [Equation (7.4)] has been used to linearize the DAC

values, the values can be related to tristimulus values using a simple linear

transform,
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Yr,max Yg,max Yb,max

Zr,max Zg,max Zb,max

2
64

3
75

R

G

B

2
64

3
75, ð7:5Þ

where RGB are the linearized and normalized (in the range 0–1) DAC values.

Three measurements are required in order to specify the system matrix for

Equation (7.5). The tristimulus values XYZ must be measured for each of the

guns at the maximum DAC value (2N�1, where N is the number of bits in the

DAC). The XYZ values of the red gun at maximum intensity form the first

column of the system matrix [Equation (7.5)] and the XYZ values for the green

and blue guns form the second and third columns, respectively. Once each of the

guns has been measured for maximum DAC values the system matrix for

Equation (7.5) is known.
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7.5 Typical characterization procedure

Before making radiometric measurements for characterization the monitor

should be placed in the position where it will be used and then turned on (for

most monitors a deguassing process takes place whenever the monitor is initially

powered up). Sufficient time should be allowed for the monitor to warm up. The

warm-up time required for a monitor to stabilize after initial power-up varies for

different devices but can range from 15min to 3 h or more (Berns et al., 1993b).

For accurate characterization it is important that the monitor exhibits good

spatial independence and channel independence. Spatial independence can be

assessed by measuring the colour difference between a white patch displayed in

the centre of the screen with a black surround and a physically identical white

patch with a white surround. Berns et al. (1993b) measured spatial independence

using this technique for five different monitors and found CIELAB colour

differences between 2.6 (for the best monitor) and 17.4 (for the worst monitor).

Channel independence can be assessed by computing the colour difference

between full-field white and the prediction of the full-field white obtained by

adding the tristimulus values of the full-field pure red, green and blue conditions.

Berns et al. found that the channel-independence error can be minimized by

reducing the maximum value of luminance that can be displayed. Experience

suggests that for many monitors a maximum display luminance of about 80 cd/m2

provides a suitable compromise between being able to achieve good character-

ization and being able to display reasonable brightness levels.

For characterization purposes it is recommended that patches be displayed at

the centre of the monitor against a neutral field set at about one-fifth of the

luminance of the maximum brightness in order that the measurements are taken

in typical conditions. A spectroradiometer or spectrocolorimeter should be used

to measure the luminance and chromaticities of each of the calibration patches

[note that Equation (4.10) can be used to recover the tristimulus values from the

luminance and two of the chromaticity coordinates]. Three measurements are

needed to obtain the maximum tristimulus values of each of the guns. The digital

input values [dr dg db] for these patches for a system with 8 bits per channel

should be [255 0 0], [0 255 0] and [0 0 255]. These three measurements should

be used to define the system matrix for Equation (7.5).

Measurements of as few as two neutral patches are then made in order to allow

the parameters of the GOG model to be computed but in practice normally

about five neutral patches are used (Luo, 2003). The tristimulus values of the

neutral samples are measured using a spectroradiometer and then Equation (7.5)

is inverted to predict the linearized normalized DAC values RGB. For each of the

neutral samples and for each channel the normalized DAC values and the

linearized normalized DAC values are then known, and therefore the GOG

parameters may be determined using a multidimensional optimization technique

such as the simplex algorithm.
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Whereas CRT devices exhibit a power-law relationship between the DAC

values and the output luminance, liquid crystal display (LCD) devices often

exhibit an electro-optic response that is better modelled as a sigmoidal or S-

shaped function (Sharma, 2002). Many LCD manufacturers, however, build

correction tables into the video card that result in the LCD response mimicking

the response of a CRT with a power law of about 2.0 (Bala, 2003).

7.6 Implementations and examples

Measurements were made (Owens, 2002a) for a typical monitor and are used in

this section to illustrate the implementation of a typical characterization

procedure. Figure 7.2 shows the luminance values measured for a range of

different monitor values for each channel separately; the typical non-linear

response is evident.

The brightness setting of the monitor was adjusted so that the white was

approximately 90 cd/m2. The tristimulus values of each of the channels at

maximum output were then measured to allow the linear transform from

linearized normalized DAC values to be written as
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Five neutral measurements were made to allow the GOG parameters to be

estimated. Table 7.1 lists the details of the eight measurements in total that were

used for the characterization of the monitor.

Seven test samples were also measured (not shown in Table 7.1) for testing the

characterization model. The following MATLAB code illustrates how the data in

Table 7.1 can be used to characterize the display using the functions testgog and

compgog, which are then described.

clear

% define the dac RGB and XYZ values of the known samples

r = [255 0 0 29.67 16.30 2.12]; % R = 255; G = 0; B = 0

g = [0 255 0 26.62 54.90 10.28]; % R = 0; G = 255; B = 0

b = [0 0 255 17.78 8.48 91.51]; % R = 0; G = 0; B = 255

% define the dac RGB and XYZ values of the neutral samples

% each row contains R G B X Y Z

N = [40 40 40 2.25 2.42 2.94; 90 90 90 8.26 8.95 11.38; ...

140 140 140 19.84 21.50 27.79; 190 190 190 37.93 ...

41.10 53.13; 240 240 240 63.23 68.30 88.79];

% define the dac RGB and XYZ values of the test samples

T = [200 200 100 34.62 42.20 19.09; 100 100 200 17.80 ...

14.50 54.53; 200 100 50 21.46 17.30 5.95; 25 150 250 ...

25.58 25.30 90.46; 250 50 25 29.73 17.80 3.47; 175 ...

250 50 38.51 59.50 13.62; 25 10 50 1.65 1.28 3.81];

% specify the matrix A to convert RGB to XYZ
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Table 7.1 Measured data for the monitor characterization example

dr dg db X Y Z

255 0 0 29.67 16.30 2.12
0 255 0 26.62 54.90 10.28
0 0 255 17.78 8.48 91.51

40 40 40 2.25 2.42 2.94
90 90 90 8.26 8.95 11.38
140 140 140 19.84 21.50 27.79

190 190 190 37.93 41.10 53.13
240 240 240 63.23 68.30 88.79



A = [r(4) g(4) b(4); r(5) g(5) b(5); r(6) g(6) b(6)];

% compute the matrix AI to convert XYZ to RGB

AI = inv(A);

% obtain the XYZ values of the neutral patches

NXYZ = N(:,4:6);

% compute the RGB values of the neutral patches

NRGB = (AI*NXYZ’)’;

% obtain the normalised dac values of the neutral patches

DRGB = N(:,1:3)/255;

% compute the GOG values for each channel

x1 = linspace(0,1,10);

x = [1, 1];

options = optimset;

x=fminsearch(’gogtest’,x,options,DRGB(:,1),NRGB(:,1));

gogvals(1,:) = x;

figure

plot(DRGB(:,1),NRGB(:,1),’r*’)

y1 = compgog(gogvals(1,:),x1);

hold on

plot(x1,y1,’r-’)

x = [1, 1];

options = optimset;

x=fminsearch(’gogtest’,x,options,DRGB(:,2),NRGB(:,2));

gogvals(2,:) = x;

hold on

plot(DRGB(:,2),NRGB(:,2),’g*’)

y1 = compgog(gogvals(2,:),x1);

hold on

plot(x1,y1,’g-’)

x = [1, 1];

options = optimset;

options.TolFun = 0.0000001;

x=fminsearch(’gogtest’,x,options,DRGB(:,3),NRGB(:,3));

gogvals(3,:) = x;

hold on
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plot(DRGB(:,3),NRGB(:,3),’b*’)

y1 = compgog(gogvals(3,:),x1);

hold on

plot(x1,y1,’b-’)

disp(’gog values’)

disp(gogvals)

RGB = zeros(3+length(N(:,1)),3);

RDACS = [R(1); G(1); B(1); N(:,1)]/255;

RGB(:,1) = compgog(gogvals(1,:), RDACS);

RDACS = [R(2); G(2); B(2); N(:,2)]/255;

RGB(:,2) = compgog(gogvals(2,:), RDACS);

RDACS = [R(3); G(3); B(3); N(:,3)]/255;

RGB(:,3) = compgog(gogvals(3,:), RDACS);

XYZ = (A*RGB’)’;

AXYZ = [R(4:6); G(4:6); B(4:6); N(:,4:6)];

for i = 1:8

[lab1] = xyz2lab(XYZ(i,:),’d65___64’);

[lab2] = xyz2lab(AXYZ(i,:),’d65___64’);

[thisDE] = cielabde(lab1,lab2);

de(i) = thisDE;

end

disp (’known values’)

disp(de)

RGB = zeros(length(T(:,1)),3);

RDACS = [T(:,1)]/255;

RGB(:,1) = compgog(gogvals(1,:), RDACS);

RDACS = [T(:,2)]/255;

RGB(:,2) = compgog(gogvals(2,:), RDACS);

RDACS = [T(:,3)]/255;

RGB(:,3) = compgog(gogvals(3,:), RDACS);

XYZ = (A*RGB’)’;

AXYZ = [T(:,4:6)];

clear de
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% now compute the error for the test samples

for i = 1:7

[lab1] = xyz2lab(XYZ(i,:),’d65___64’);

[lab2] = xyz2lab(AXYZ(i,:),’d65___64’);

[thisDE] = cielabde(lab1,lab2);

de(i) = thisDE;

end

disp(’test values’)

disp(de)

In the preceding code the matrices r, g and b contain the DAC RGB values

and the measured XYZ values for the pure channel colours. The matrix

N contains the data for the five neutral samples (see Table 7.1) and the

matrix T contains data for the seven test samples. The function gogtest computes

the root-mean-squared error between actual DAC values and the predicted DAC

values. The required inputs to the gogtest function are gogs (a 261 column

matrix containing the gamma and gain terms, respectively), dacs (an n61

column matrix of normalized RGB values) and rgbs (an n61 column matrix of

predicted RGB values). The predicted RGB values are obtained by inverting

Equation (7.6) and using the measured XYZ values. The format of the call to

gogtest is

[err] = gogtest(gogs,dacs,rgbs)

where the returned 161 matrix err contains the error using the GOG parameters

defined by gogs. This function is useful since it allows gogs to be optimized for

the minimum value of err using a suitable optimization method.

Box 18: gogtest.m

function [err] = (gogs,dacs,rgbs)

% function [err] = gogtest(gogs,dacs,rgbs)

% computes the error between measured and predicted

% linearized dac values for a given set of GOG values

% gogs is a 2 by 1 matrix that contains the gamma and gain

% dacs is an n by 1 matrix that contains the actual RGB values
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% obtained by dividing the RGB values by 255

% rgbs is an n by 1 matrix that is obtained from a linear

% transform of measured XYZ values

gamma = gogs(1);

gain = gogs(2);

% force to be row matrices

dacs = dacs(:)’;

rgbs = rgbs(:)’;

if (length(dacs) *= length(rgbs))

disp(’dacs and rgbs vectors must be the same length’);

err = 0;

return

end

% compute gog model predictions

for i = 1:length(dacs)

if (gain*dacs(i) + (1-gain)) 5= 0

pred(i) = 0;

else

pred(i) = (gain*dacs(i) + (1-gain))^gamma;

end

end

% force to be a row matrix

pred = pred(:)’;

% compute rms error

err = sqrt((sum((rgbs-pred).*(rgbs-pred)))/...

length(dacs));

The MATLAB function fminsearch performs a multidimensional uncon-

strained non-linear minimization. Once the parameters have been determined,

the function compgog can be used to implement the GOG model. The format of

the call to compgog is

[rgb] = compgog(gogs,dacs)

where the returned n61 matrix rgb contains linearized R, G or B values for the n

samples defined by dacs.
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Box 19: compgog.m

function [rgb] = compgog(gogs,dacs)

% function [rgb] = compgog(gogs,dacs)

% computes the linearized RGB values

% from the normalized RGB values

% for a given set of gog values

% gog is a 2 by 1 matrix that contains the gamma and gain

% dacs is an n by 1 matrix that contains the RGB values

% rgb is an n by 1 matrix of linearized RGB values

gamma = gogs(1);

gain = gogs(2);

for i = 1:length(dacs)

if (gain*dacs(i) + (1-gain)) 5= 0

rgb(i) = 0;

else

rgb(i) = (gain*dacs(i) + (1-gain))^gamma;

end

end

% force output to be a column vector

rgb = rgb(:);

The characterization performance for the eight stimuli defined in Table 7.1 and

the additional seven test samples (these were not used in the characterization

procedure) is, on average, just under 1.7 CIELAB units.

An additional function, rgb2xyz, has been provided to convert RGB DAC

values (in the range 0–255) to CIE XYZ values directly. The format of the

rgb2xyz function is

[xyz] = rgb2xyz(dacs, gogvals, A),

where dacs is a 361 matrix of RGB DAC values and the returned 361 matrix

xyz contains the predicted CIE values. The 362 matrix gogvals must contain the

gamma and gain terms of the GOG model for each of the three channels,

whereas the matrix A must contain the 363 matrix that transforms linearized

RGB values to XYZ values.
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Box 20: rgb2xyz.m

function [XYZ] = rgb2xyz(dacs, gogs, A)

% function [XYZ] = rgb2xyz(dacs, gogs, A)

% converts RGB DACS from a monitor to CIE XYZ

% dacs is a 3 by 1 matrix containing the RGB DACS (0-255)

% gogs is a 2 by 1 matrix containing the gamma and gain

% A is a 3 by 3 matrix to transform RGB to XYZ

dacs = dacs(:)’; % force to be a row matrix

if (length(dacs) *= 3)

disp(’DACS must be 3 by 1 or 1 by 3’); return;

end

dacs = dacs/255;

RGB(1) = compgog(gogs(1,:), dacs(1));

RGB(2) = compgog(gogs(2,:), dacs(2));

RGB(3) = compgog(gogs(3,:), dacs(3));

RGB = RGB(:);

XYZ = A*RGB;

The inverse function xyz2rgb is also provided.

Box 21: xyz2rgb.m

function [dacs] = xyz2rgb(XYZ)

% function [dacs] = xyz2rgb(XYZ, gogvals, A)

% converts XYZ to RGB DACS for a monitor

% XYZ is a 3 by 1 matrix containing the XYZ values

% gogvals is a 3 by 2 matrix containing the gamma and gain

% for each of the three channels

% A is a 3 by 3 matrix to transform RGB to XYZ
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RGB = inv(A)*XYZ;

dacs(1) = compigog(gogvals(1,:), RGB(1));

dacs(2) = compigog(gogvals(2,:), RGB(2));

dacs(3) = compigog(gogvals(3,:), RGB(3));

dacs = dacs*255;

if (dacs(1)4255)

dacs(1) = 255;

end

if (dacs(2)4255)

dacs(2) = 255;

end

if (dacs(3)4255)

dacs(3) = 255;

end

if (dacs(1)50)

dacs(1) = 0;

end

if (dacs(2)50)

dacs(2) = 0;

end

if (dacs(3)50)

dacs(3) = 0;

end

dacs = dacs(:);

The function xyz2rgb requires an inverse version of the compgog function and

this is provided with the compigog function.

Box 22: compigogs.m

function [dacs] = compigog(gogs,rgb)

% function [dacs] = compgog(gogs,rgb)

% computes the normalized RGB values
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% from the linearized RGB values

% for a given set of gog values

% gog is a 2 by 1 matrix that contains the gamma and gain

% dacs is an n by 1 matrix that contains the RGB values

% rgb is an n by 1 matrix of linearized RGB values

gamma = gogs(1);

gain = gogs(2);

for i = 1:length(rgb)

dacs(i) = ((rgb(i)^(1/gamma)) - (1-gain))/gain;

end

% force output to be a column vector

rgb = rgb(:);
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8
Characterization of Cameras

8.1 Introduction

Some general comments regarding characterization can be found in Chapter 7,

Section 7.1. For input devices such as scanners and cameras it is important to

note that effective characterization is only practicable if the device does not

perform automatic white-point balancing. Automatic white-point balancing is

where the RGB values of each pixel in the captured image are transformed so

that the pixel for the brightest patch in the image scene is denoted as white with

equal RGB values (normally R¼G¼ B¼ 255). White-point balancing can be

useful if the aim is to capture a pleasing image, since the human visual system is

able to discount the colour of the light source so that surfaces tend to retain their

daylight appearance. For colorimetric characterization, however, this setting

should be disabled if at all possible.

The most efficient method for characterizing a digital camera or scanner is to

image a chart containing a set of colours of known tristimulus values (Johnson,

2002). Such charts commonly include neutral patches that may be used to

linearize the camera RGB outputs and coloured patches that may be used to

characterize a transform from linearized RGB values to CIE XYZ values. In the

late 1980s a working group of the ANSI IT8 (Image Technology Committee

No. 8) was created to define standard targets to be used in the characterization

of scanners and printers (McDowell, 2002). The IT8 committee chose to

colorimetrically define the colours that should appear in the target, but then

allow individual manufacturers to produce targets to meet these requirements.

Two standards were developed, ANSI IT8.7/1 and ANSI IT8.7/2, for

transmission and reflectance modes, respectively, and they were combined into

a single ISO standard (ISO 12641:1997). Two further charts that are sometimes

used for device characterization are the Macbeth ColorChecker chart (which

contains 24 patches) and the Macbeth ColorChecker DC chart (which contains

over 200 patches).
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8.2 Correction for non-linearity

Although the response of charge-coupled diode (CCD) material is approximately

linearly related to the intensity of the light falling on it, it is unlikely that the RGB

outputs of a scanner or digital camera will be linearly related to the XYZ

tristimulus values of the surfaces in the scene. The raw channel responses are

invariably processed by on-board software in an attempt to generate RGB

responses that are more closely matched to the colour-matching functions than

are allowed by current methods for producing filters. Typically, the raw RGB

values may be transformed by a 363 linear matrix to give the output RGB

values. Furthermore, many manufacturers impose a non-linearity during this

‘matrix-mixing’ stage to approximately match the inverse of the non-linearity of

display systems or as part of the solution to provide high signal-to-noise ratios. It

is therefore common to consider a correction for non-linearity as the first stage of

a camera- or scanner-characterization process. For a digital camera we may, for

example, consider a relation of the form

Cc ¼ ðC 0
cÞp, ð8:1Þ

where C ’c is the raw response of the camera channel c, p is an exponent for the

channel, and Cc is a transformed camera response for that channel that is linear

to the channel input. A set of grey-scale samples is often used to empirically

determine the exponent p. Thus, the raw camera responses are determined for a

range of grey samples under a constant and known light source. The XYZ values

then can easily be computed for the grey samples and linearization is achieved by

finding the value of the exponent p such that there is a linear relationship

between Cc and Y for the set of grey samples.

However, in order to correctly determine p [according to Equation (8.1)] we

need to know the values of Cc and C ’c for each of the grey patches. The value of

C ’c is the input to the channel and the value of Cc is the channel response

following non-linear processing (Thomson and Westland, 2002). The input to the

channel may easily be computed if the spectral reflectance of the sample, the

spectral power of the illumination and the channel sensitivity are all known.

Unfortunately, it is usually the case that the channel sensitivity is not known. If p

is determined so that there is a linear relationship between Cc and Y, then it is

clear that the Y colour-matching function or photopic sensitivity is being used as

a crude estimate of the channel sensitivity. For grey samples imaged under an

equal-energy illuminant, Y and C ’c are approximately linearly related but this

proportionality decreases for increasingly chromatic samples and light sources. It

is interesting to note that if the channel sensitivity was known, and the true

values of C ’c could be computed, then it would not be necessary to use grey

samples to linearize the channel responses; any samples could be used. Since the

spectral sensitivities generally are not known, however, linearization is typically

established using achromatic samples. The grey samples of the Macbeth
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ColorChecker provide a convenient grey scale for this purpose. Some workers

choose to linearize the camera responses with the appropriate tristimulus values

(X for the red channel, Y for the green channel and Z for the blue channel) or

with the average reflectance of the samples.

Figure 8.1 illustrates the relationship between the RGB values (CR, CG and CB)

measured using a typical good-quality colour camera and the average spectral

reflectance values for the achromatic samples of the Macbeth ColorChecker.

Note that for a good-quality camera the camera responses often exhibit an

approximately linear relationship with the mean reflectance or Y tristimulus

value of the grey samples.

8.3 Device-independent representation

If a linear relationship exists between the device’s channel outputs and the

tristimulus values, then it is possible to determine the transform to XYZ from as

few as three known samples. Thus, if we represent the n known XYZ values by

the 36n matrix T and the n recorded RGB values by the 36n matrix C, then

T ¼ AC, ð8:2Þ
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Figure 8.1 Measured camera response for red ( ), green ( ) and blue (*) channels for
neutral ColorChecker patches of known reflectance



where A is the 363 system matrix. If three suitable samples are available, then

the linear system is exactly determined. Further samples could be used, to over-

determine the system, but are only strictly necessary if a linear transform does

not exist between the two colour spaces. In this situation it is usually preferable

to use a non-linear transform. Johnson (2002) notes that, even if a non-linear

transform is used, it is usually better to perform a linearization process and then

use approximately linear values as input to the non-linear transform.

Various non-linear transforms can be used such as

X ¼ a11Rþ a12Gþ a13Bþ a14R
2 þ a15G

2 þ a16B
2 þ a17RGBþ a18,

Y ¼ a21Rþ a22Gþ a23Bþ a24R
2 þ a25G

2 þ a26B
2 þ a27RGBþ a28,

Z ¼ a31Rþ a32Gþ a33Bþ a34R
2 þ a35G

2 þ a36B
2 þ a37RGBþ a38,

ð8:3Þ

where, in this case, a total of 24 coefficients need to be determined. In matrix

notation we can write

T ¼ AD, ð8:4Þ
where the system matrix A is now a 368 matrix of the coefficients a11–a38. The

matrix D is the 86n column matrix of augmented device responses [in the case of

Equation (8.3) this is given by the terms R, G, B, R2, G2, B2, RGB and 1].

The system is determined by computing the pseudoinverse (see Chapter 2,

Section 2.4) of the augmented matrix; thus

A ¼ DþT. ð8:5Þ
As an alternative to linear or non-linear transforms of this type it is also possible

to use a neural network to perform a mapping from C to T. However, it has been

shown that neural networks offer no advantage over polynomial transforms for

camera characterization (Cheung and Westland, 2002) and yet can be difficult

and time-consuming to train.

8.4 Implementations and examples

The first stage in characterizing an input device such as a scanner or a camera is

to linearize the measured RGB values. Table 8.1 lists the camera RGB values and

the mean reflectances for the grey samples of the Macbeth ColorChecker chart

which were measured using a typical high-end digital camera (Cheung and

Westland, 2002). Note that the first row of data in Table 8.1 does not show

measured values but implies that the camera gives a zero response for a zero

signal.

Figure 8.1 shows the relationship between the camera responses and the mean

reflectance P for the neutral patches of the ColorChecker. It is noticeable that

there is an approximately linear relationship between the RGB values and the P
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values; this is quite typical for a high-end camera. For low-end cameras the

relationship often is very non-linear. Linearization may be achieved by plotting

the camera response for each channel and then fitting the data with a low-order

polynomial. The fitted polynomial is then used to transform the raw camera

responses to linear camera responses.

A function called getlincam has been written to perform the polynomial fitting

for the three channels.

Box 23: getlincam.m

function [out] = getlincam(p,RGB,graphs)

% function [out] = getlincam(p,RGB,graphs)

% function to compute polynomial fits for camera

% grey-scale data. The inputs are p (a set of n by

% 1 mean reflectance values) and RGB ( a set of 3 by

% n RGB triplets). If graphs is set to ’on’ then

% a plot of the fits is generated

r = RGB(1,:)/255;

g = RGB(2,:)/255;

b = RGB(3,:)/255;

ref = p/100;

if nargin53

plotgraphs = 0;
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Table 8.1 Measurements used for the camera characterization.
The first column gives the mean reflectance for the neutral

samples of the Macbeth ColorChecker and the second to fourth
columns give the recorded camera responses

P R G B

0 0 0 0
28.71 53 85 57
35.20 64 103 70

41.71 77 122 83
48.30 89 141 95
57.09 107 170 115

65.31 122 194 129
75.88 143 223 149
85.44 160 249 162



else

plotgraphs = strcmp(’on’,graphs);

end

% fit the low-order polynomials

[pr1,sr1]=polyfit(r,ref,3);

[pg1,sg1]=polyfit(g,ref,3);

[pb1,sb1]=polyfit(b,ref,3);

% plot graphs if the plotgraphs variable is set

if (plotgraphs)

figure

subplot(3,2,1)

plot(r,ref,’ko’);

[pr1,sr1]=polyfit(r,ref,3);

x = linspace(0,1,11);

y = polyval(pr1,x);

hold on

plot(x,y,’k-’);

ylabel(’Y’)

xlabel(’R channel’);

axis([0 1 0 1])

subplot(3,2,2)

py = polyval(pr1,r);

plot(ref,py,’ko’);

hold on

plot([0 1], [0 1], ’k-’);

axis([0 1 0 1])

disp(255*py’)

subplot(3,2,3)

plot(g,ref,’ko’);

x = linspace(0,1,11);

y = polyval(pg1,x);

hold on

plot(x,y,’k-’);

ylabel(’Y’)

xlabel(’G channel’);

axis([0 1 0 1])

subplot(3,2,4)

py = polyval(pg1,g);
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plot(ref,py,’ko’);

hold on

plot([0 1], [0 1], ’k-’);

axis([0 1 0 1])

disp(255*py’)

subplot(3,2,5)

plot(b,ref,’ko’);

x = linspace(0,1,11);

y = polyval(pb1,x);

hold on

plot(x,y,’k-’);

ylabel(’Y’)

xlabel(’B channel’);

axis([0 1 0 1])

subplot(3,2,6)

py = polyval(pb1,b);

plot(ref,py,’bo’);

hold on

plot([0 1], [0 1], ’k-’);

axis([0 1 0 1])

disp(255*py’)

end

out = [pr1; pg1; pb1];

The format for this function is

[CALDATA] = getlincam(p, RGB, graphs)

where p is an n61 matrix containing the mean reflectance of the n neutral

patches and RGB is a 36n matrix containing the corresponding RGB values.

Note that the first step in getlincam is to normalize the camera data for each of

the three channels to be in the range [0, 255] and therefore there is an assumption

that the data are in 8-bit-per-channel format.

In the getlincam script the built-in MATLAB function polyfit is used to fit a

third-order polynomial for each channel. The output of the function is a 364

matrix CALDATA, each row of which contains the polynomial coefficients for

one of the channels. An optional input argument graphs can be set to ‘on’ or
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‘off’ to generate or suppress plots of the polynomial fits for visual evaluation of

the goodness of the linearization. The default value of graphs is ‘off’.

Figure 8.2 gives an example of the graphical output from getlincam using the

data in Table 8.1 to fill the p and RGB matrices. The right-hand column of

Figure 8.2 shows the transformed RGB data plotted against the mean reflectance

for each of the neutral samples. Linear relationships are observed for each of the

three channels.

A further function, lincam, has been written which uses the polynomial fits

obtained from getlincam to convert raw RGB values into linearized RGB values.

Box 24: lincam.m

function [RGBout] = lincam(caldata, RGB)

% function [RGBout] = lincam(caldata,RGB)

% computes linearized camera values using
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grey patches (Table 8.1) and the polynomial fits (–). The right-hand column shows the
transformed camera responses plotted against value (*) and, for comparison, the ideal linear
responses (–)



% polynomial transforms obtained from getlincam

% caldata is a 3 by 4 matrix produced from getlincam.m

% RGB is an n by 3 matrix of RGB values (in range 0-255)

RGB = RGB/255;

imsize = size(RGB);

RGB = reshape(RGB, prod(imsize)/3, 3);

for i=1:3

x = polyval(caldata(i,:),RGB(:,i));

RGB(:,i) = x*255;

end

RGB(RGB0) = 0;

RGB(RGB255) = 255;

RGBout = reshape(RGB,imsize);

The format for lincam is

[tRGB] = lincam(CALDATA,RGB)

where CALDATA is a 364 matrix obtained from getlincam and RGB is an

m6n63 matrix of camera RGB values where the image size is m6n. The output

of the function is an m6n63 matrix of linearized camera RGB values. Unlike

many of the functions in the earlier part of this book, this function operates on

the whole image with a single function call. In this respect the MATLAB

function reshape is extremely useful.

An image may be read into MATLAB using the simple instruction

image = imread(‘test.tif’);

where test.tif is the name of the image file. For an RGB image of size

1276101, for example, the variable image would now be defined by

image 127610163 38481 uint8 array

It is necessary to use the double command, thus

image = double(image);

in order to convert the variable image from UINT format to DOUBLE format.

IMPLEMENTATIONS AND EXAMPLES 135



In the code for lincam (Box 24) the data are normalized (assuming 8 bits per

channel) and then the size of the image is obtained. The reshape command is then

used to convert, for the example, the 127610163 data into a flatter 1282763

format. Each column of the new format holds the data for one of the R, G or

B channels. Following the polynomial transform, the data can be reshaped

back to the original 127610163 format. If a point-operation was applied

to an image and the R, G and B channels could be treated as the same, then

the reshape command would be used to generate a 3853261 structure. In

lincam, however, the polynomial transform is different for each of the three

channels.

An interesting feature of the getlincam and lincam functions is that the data

from each of the three channels are balanced for the neutral samples and this is

evident in Figure 8.2. In Table 8.1, for example, the RGB values of the brightest

neutral patch can be seen to be [160, 249, 162]. This is not ideal because such a

patch would not appear to be neutral if it was displayed on a typical monitor.

The transformed RGB values of the white patch output from lincam, however,

are [217, 218, 217]. This process may be described as channel balancing, where

the original imbalance results from the combined properties of the camera and

the spectral power distribution of the light under which the images are taken. For

certain applications, channel balancing may be a desirable property of the

linearization function implemented by getlincam although, for other applica-

tions, it would be possible to modify the function so that channel balancing did

not occur. The concept of channel balancing should not be confused with that of

white-point balancing. The latter is a property of a great number of

commercially available digital cameras and means that the brightest point in

any captured image is converted to RGB values of [255, 255, 255]. This property

is very undesirable if accurate characterization or even calibration is required

since the RGB values obtained for a given patch may vary depending upon the

properties of other patches in the image. If a digital camera performs white-point

balancing, then this property must be disabled before attempting device

characterization. Note that it is not desirable that the maximum values of the

channel outputs are only 160 and 162 for the red and blue channels (Table 8.1)

since the full 8-bit resolution of the device is not being exploited. In general, if the

gain settings of the individual channels can be adjusted, then this should be set so

that for a very white patch the channels give responses close to (but not equal to)

255.

Cheung and Westland (2004) have conducted a study of camera characteriza-

tion and specifically have compared the ability of polynomials and neural

networks to carry out this task (neural networks are described in more detail in

Chapter 9). In this study using the Agfa StudioCam camera 192 samples from the

centre of the Macbeth DC ColorChecker were used as training samples and the

24 samples of the Macbeth ColorChecker were used as test samples. The training

samples were used to train the neural network and to determine the coefficients
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of the polynomial transform. The camera RGB values were linearized and

corrected for spatial non-uniformity (of lighting and camera CCD response) and

used to predict CIE XYZ values using either the neural network or the

polynomial. The test samples were used to assess the characterization

performance for the various models that were used.

For the models based upon a neural network, multilayer perceptrons (MLPs)

were used that always had three input units and three output units, but the

number of hidden units was varied (the implementation of a neural network for

printer characterization using MATLAB’s neural network toolbox is described

in Chapter 9). The networks were trained using the Levenberg–Marquardt

optimization procedure.

Various polynomial transforms were attempted as detailed in Table 8.2. These

polynomials always attempted to map camera RGB values to CIE tristimulus

values. A 1926m matrix was constructed from the training set where each row

contained the m RGB terms (see Table 8.2) for one of the samples. A linear

system is then assumed where the 1926m matrix is multiplied by an m63 matrix

of coefficients to yield the 19263 matrix of tristimulus values. The values of the

coefficients were determined using the training set by multiplying the

pseudoinverse of the 1926m matrix of augmented RGB values by the 19263

matrix of tristimulus values. Once the coefficients are determined it is trivial to

compute the tristimulus values of the samples in the training set and the samples

in the test set.

Figure 8.3 shows the median CIELAB colour differences of the m63

polynomials for various values of m (see Table 8.2), whereas Figure 8.4 show the

training and testing error for the neural networks with n hidden layers.
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Table 8.2 Polynomial models used in the camera characterization study by Cheung and
Westland (2004)

m63 Augmented matrix

363 [R G B]

563 [R G B RGB 1]

763 [R G B RG RB GB 1]

863 [R G B RG RB GB RGB 1]

1063 [R G B RG RB GB R2 G2 B2 1]

1163 [R G B RG RB GB R2 G2 B2 RGB 1]

1463 [R G B RG RB GB R2 G2 B2 RGB R3 G3 B3 1]

1663 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R3 G3 B3]

1763 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R3 G3 B3 1]

1963 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R

B2G R3 G3 B3]

2063 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R

B2G R3 G3 B3 1]

2263 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R

B2G R3 G3 B3 R2GB RG2B RGB2]



It is evident that the performance of the best neural network and polynomial

models produces a test error of about 2 CIELAB units. It is not surprising that

the two systems should provide equivalent performance. Training the neural

networks can be quite time consuming, however, and there are many parameters

to determine, such as the number of hidden units, the transfer functions for the

units in the network, the learning rule, the parameters of the learning rule, and so

on and so forth. Furthermore, each time the network is trained from different

random initial weights a different transform is achieved. The results shown in
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Figure 8.3 Effect of number of terms (m) in the polynomial model on training and testing
performance (median colour difference)

Figure 8.4 Effect of number of hidden units (n) in the neural-network model on training and
testing performance (median colour difference)



Figure 8.4 are in fact the average results from training each network five times.

By contrast, it is relatively straightforward to develop the polynomial systems

and relatively fewer decisions regarding parameters need to be made. There

seems little reason therefore to use neural networks for device characterization.

Figures 8.5 and 8.6 show the effect of reducing the size of the training set for

the best neural and polynomial models. The 192 samples of the full training set

were progressively subsampled and new networks and polynomial systems were
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Figure 8.5 Effect of number of training samples on training and testing performance (median
colour difference) for the 1663 polynomial model

Figure 8.6 Effect of number of training samples on training and testing performance (median
colour difference) for the neural network with 18 hidden units.



derived. The performance on the training set is then the median colour difference

using the reduced training on which the system was trained and the performance

of the test set was as before. Both systems show a surprising degree of robustness

with test performance, only degrading substantially for training set sizes less than

50. Note that for the polynomial system in particular, that the training error

reduces for small training set sizes. If a proper independent test set was not used

to evaluate the performance of the modes, then the use of a small set of training

samples could lead to an optimistic view of the performance of the

characterization models.
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9
Characterization of Printers

9.1 Introduction

Some general comments regarding characterization can be found in Chapter 7,

Section 7.1. Physical models tend to play a more important role in the

characterization of printers than they do with other imaging devices. One reason

for this is that the relationship between printer inputs and CIE tristimulus values

is usually extremely non-linear. In addition, however, there is a great deal of

theory that has been developed to predict the colour of printing inks from

colorant concentration values in a wider context. The Kubelka–Munk theory,

for example, has been used for more than half a century to predict spectral

reflectance from colorant concentration values. Artificial neural networks have

also been used quite widely to find mappings between vectors of colorant

concentration values and spectral reflectance values. Numerous technologies are

used in printers and this is another reason why different and specific models are

used to characterize the devices. Most printers use three or four primaries: cyan,

magenta, yellow and black. Note that the primaries of a subtractive colour-

mixing process are quite different from those (typically red, green and blue) for

an additive colour mixing process. For both additive and subtractive devices the

primaries are normally selected to enable the greatest gamut of colours to be

reproduced. In a subtractive process, the intensities of the red, green and blue

light in the print are indirectly controlled by the amount of the cyan, magenta,

and yellow ink deposited, respectively. Some printers – typically dye-sublimation

printers – operate by depositing a layer of ink where the thickness of the ink is

varied to control the colour of the print. Other printers, however, such as most

laser printers, use a half-tone process. For half-tone printers a fixed thickness of

ink is deposited in a pattern of dots, and tonal and colour variation is achieved

by varying either the size or the frequency of the dots. It is not unreasonable

therefore that different physical models are used for different printers depending

upon the technology that the printer uses. Nevertheless, the aim of printer
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characterization is the same as in camera or monitor characterization. Device

coordinates (cyan, magenta, yellow and black) are converted into device-

independent CIE XYZ values. In this chapter the use of physical models for the

characterization of printers is described. There is particular emphasis on the

Kubelka–Munk and Neugebauer models for device characterization of half-tone

printers. Finally, in Section 9.5 two examples of printer characterization are

detailed; one for a half-tone printer and one for a continuous-tone printer.

9.2 Physical models

Characterization of input and display devices is predominantly achieved through

linear and non-linear transforms. However, although these techniques are also

often used for the characterization of printers, physical models are also

important for these devices. Physical printer models can be categorized into

two types (Green, 2002b): (i) those that aim to predict the relationship between

reflectance and dot area or colorant strength; and (ii) those that predict the

colour of different colorant combinations, in terms of either colorimetry or

spectral reflectance. It may be useful to consider these two models as processes of

colorant and colour prediction, respectively, and to recognize that they are

inversely related. Thus, many models can be used to predict reflectance or

tristimulus values from colorant information but can then be inverted to predict

colorant information.

Many printing systems print solid-colour ink in a dot pattern. Such half-tone

systems provide tonal variation by varying either the size of the dots or their

frequency. The measured reflectance of a half-tone system may be predicted by

spatially averaging the colours of the dots and the substrate on which the dots

are printed. A weighted average for each pixel in the image usually is computed

based upon the proportional areas of the dots and the substrate. Models such as

Neugebauer and Murray–Davies are used for this purpose and such models can

also take into account mechanical and optical dot gain. Mechanical dot gain is

the phenomenon where the printed dot is physically larger than it should be

because of ink spreading during the printing process. Optical dot gain is where

there is an apparent gain in the size of the dot caused by scattering the substrate.

Substrate scattering is responsible for light being absorbed by the ink dot even

when it strikes the substrate directly on an unprinted area. When more than one

colour is printed, the second colour can overprint the first. The Neugebauer

model must include the colour of the substrate, the primary colours and the

overprint colours. For a typical printing system the number of possible overprint

colours usually is quite small and therefore it may not be unreasonable to

measure them directly. In certain circumstances, however, it may be necessary to

predict the overprint colour and the Kubelka–Munk theory may be used for this

purpose (Bala, 2003).
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The Kubelka–Munk theory characterizes each colorant using the absorption K

and scattering S coefficients at each wavelength. The theory can be difficult to

apply since specific calibration samples are required to allow estimation of the K

and S values (Nobbs, 1985).

9.3 Neural networks

The field of artificial neural networks (ANNs) defines a set of computational

methods that were inspired from studies of how humans process information to

solve problems. There are many different types of ANNs and the reader is

recommended to study the extensive literature that is now available to explain

the principles and algorithms of neural computing (e.g. Rumelhart and

McClelland, 1986; Kohonen, 1988; Aleksander and Morton, 1991; Haykin,

1994). This chapter includes only a cursory analysis of just one class of neural

network known as a multilayer perceptron (MLP). Despite the large variety of

network structures that have been developed, the majority of practical

applications of neural computing are in fact based upon MLPs.

An MLP consists of layers of processing units known as neurones, or simply

units. Each unit receives input and performs some function upon this input to

produce an output. The function between input and output for any unit is known

as the activation function, or the transfer function, and normally is non-linear. A

typical non-linear transfer function is the sigmoid (S-shaped) function, but linear

transfer functions sometimes are used for the units in the output layer. The input

for each unit is the weighted sum of the outputs from all the units in the previous

layer. The units in the first layer (known as the input layer) receive their input

from an input vector and those in the last layer (known as the output layer)

generate an output vector. Each unit in the hidden and output units also receives

weighted input from a bias unit whose output is fixed at unity. The network as a

whole can be thought of as a universal function approximater that attempts to

find a mapping between input vectors and output vectors (Figure 9.1). Such

networks are interesting because, in principle, they can perform any valid

mapping to any arbitrary degree of accuracy. A valid mapping is one that is

computable.

The number of units in the input and output layers is determined from the

nature of the problem being solved. If, for example, the network is being used to

perform a mapping between a four-dimensional vector and a one-dimensional

vector ( f : <4 ! <1), then the number of units in the input and output layers

would be four and one, respectively. However, the number of hidden layers and

the number of units in each hidden layer must be determined empirically. For

ANNs it is important to distinguish between the training mode and the testing

mode. During the training mode, examples of an input–output pair are presented

to the network, the error between the desired output and the actual output (using
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the current set of weights) is computed, and the values of the weights are

modified to reduce this error. This process is repeated for each input–output pair

in the training set and the presentation of the whole training set in this way is

known as a training epoch. Training may require thousands or even hundreds of

thousands of epochs and typically the training procedure is very computationally

intensive. However, at the end of the training period the values of the weights are

fixed. During the testing mode, input vectors are presented to the network and

output vectors are computed. The performance of the network in testing mode

using the data from the training set is known as the training error. A common

problem with MLPs is that they are prone to over-fitting the training data. As the

number of hidden layers or units in the network increases, the training error

should decrease. In the limit a sufficiently complex MLP can produce a training

error of zero; such a network, however, may exhibit poor generalization

performance. Generalization is the ability of the network to perform using data

that was not used during the training period. A second data set, known as a

testing data set, is therefore used to determine the testing error. Of course, the

training and testing data sets should be drawn from the same population so that

they both represent, in a statistical sense, the problem being addressed by the

network.
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9.4 Characterization of half-tone printers

9.4.1 Correction for non-linearity

If we consider a single ink printed on a substrate in a half-tone pattern and

denote the reflectance of the unprinted substrate by Pw and the reflectance of

the solid ink by Ps, then the Murray–Davies relationship (Yule, 1967) predicts

the measured reflectance P of the print. The value of P is related to the sum of the

reflectances of the two components weighted by their fractional area coverage,

P ¼ APs þ ð1� AÞPw, ð9:1Þ
where A is the proportional area of the paper that is covered by ink.

Equation (9.1) can be inverted to predict the proportional dot area,

A ¼ ðPw � PÞ=ðPw � PsÞ. ð9:2Þ
The simple Murray–Davies equation does not take dot gain into account. Yule

and Nielsen (1951) proposed a correction to the Murray–Davies equation,

P ¼ ½AðPsÞ1=2 þ ð1� AÞðPwÞ1=2�2. ð9:3Þ
Equation (9.3) results in a non-linear relationship between the area coverage A

and the resulting reflectance P. The generalized Yule–Nielsen equation allows an

exponent n so that

P ¼ ½AðPsÞ1=n þ ð1� AÞðPwÞ1=n�n, ð9:4Þ
where n usually is given a value between 1.0 (for a glossy substrate) and 2.0 (for a

matt substrate). This non-linear relationship is required to account for the

phenomenon of optical dot gain. Optical dot gain is the phenomenon that half-

tone prints usually appear darker than expected [based on Equation (9.1)]

because some light that strikes the unprinted substrate is absorbed by the ink

dots. This occurs because of light scattering in the substrate (Figure 9.2).

In addition to optical dot gain it is also necessary to consider mechanical dot

gain, which is the phenomenon where the printed dots usually are physically

larger than their target sizes because of flow of the wet ink when it is applied to

the substrate. The effect of mechanical dot gain is that a non-linear relationship

exists between the digital input count d and the dot coverage A. For given values

of d and P, the optimum area coverage A may be computed using

A ¼
X

ðPsðlÞ1=n � PðlÞ1=nÞðPsðlÞ1=n � PwðlÞ1=nÞ=
X

ðPsðlÞ1=n � PwðlÞ1=nÞ,
ð9:5Þ

where it is assumed that there are no inter-colorant interactions (Bala, 2003).

Thus, Pj is measured for a number of levels dj and then Equation (9.5) is used to

determine Aj. This procedure yields pairs of [dj Aj] from which a continuous

function can be derived that maps the digital count d to dot area coverage A.
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Some alternative methods for determining dot areas that minimize the error in

CIELAB colour-difference units are also available (Bala, 1999).

9.4.2 Device-independent representation

For half-tone printers, device-independent representation is normally obtained

by finding a mapping between the proportional dot coverages for the inks and

the spectral reflectance of the print, from which it is then trivial to compute XYZ

values. Alternative methods may use neural networks to find a mapping either

from dot coverages to reflectance or even directly to CIE XYZ values. The most

common method for predicting reflectance involves the Neugebauer model which

takes into account the various overlapping binary mixtures. For example, if

cyan, magenta and yellow inks are considered, then the resulting reflectance will

be a function of the reflectances of the unprinted substrate Pw, the three solid

colours (Pc, Pm, Py) and the four overlap colour combinations of cyan+magenta

(blue Pb), cyan+yellow (green Pg), yellow+magenta (red Pr) and black Pk. If the

fractional areas of these eight areas are represented by Ac, Am, etc. then we can

write

P ¼ AwPw þ AcPc þ AmPm þ AyPy þ AbPb þ AgPg þ AyPy þ AkPk. ð9:6Þ
It is evident that the Neugebauer model is a straightforward extension of the

Murray–Davies equation [Equation (9.1)] which assumes that the reflectance of a

spatial area is the additive combination of the reflectances of the primary colours

and their overlapping areas. In the original Neugebauer equations the approach

was used to predict the broadband reflectance in the short-, medium- and long-

wavelength portions of the spectrum and, indeed, modern versions of

Neugebauer sometimes operate using XYZ tristimulus values. However the n-

modified spectral Neugebauer approach [illustrated for a CMY system by
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Figure 9.2 Light that strikes the unprinted area of the substrate may be absorbed by the ink
because of scattering of light within the substrate



Equation (9.6)] has been shown to be most accurate (Bala, 2003). In the n-

modified Neugebauer model all the reflectances are raised to the power 1/n as in

Equation (9.5).

In order to implement the Neugebauer approach the digital counts are first

converted into the dot coverage areas using a tone-reproduction curve, as

described in the previous section. A method to compute the actual areas of the

primary and secondary colours is then required. For the three-colour example,

the proportional areas of the eight colour regions can be computed using

Demichel’s equation (Green, 2002c),

Aw ¼ ð1� cÞð1�mÞð1� cÞ,
Ac ¼ cð1�mÞð1� yÞ,
Am ¼ mð1� cÞð1� yÞ,
Ay ¼ yð1� cÞð1�mÞ,
Ab ¼ cmð1� yÞ,
Ag ¼ cyð1�mÞ,
Ar ¼ myð1� cÞ,
Ak ¼ cmy,

ð9:7Þ

where c, m and y are the proportional dot areas of the three primary colours

obtained from the tone-reproduction curves. Demichel’s equation has been

shown (Viggiano, 1990) to work reasonably well for rotated half-tone screen

configurations where the screens for cyan, magenta and yellow are placed at

different angles that are carefully selected to avoid moiré artifacts.

It is important to note, however, that Equations (9.7) make certain

assumptions concerning the amount of overlap between the primary colours.

If we consider the case where c¼ 0.4, y¼ 0.4 and m¼ 0, then Demichels’s

equation will predict Aw¼ 0.36, Ac¼ 0.24, Ay¼ 0.24 and Ag¼ 0.16. However, it

would be possible for the cyan and magenta dots to be printed without overlap

(Aw¼ 0.20, Ac¼ 0.40, Ay¼ 0.40 and Ag¼ 0.00), with total overlap (Aw¼ 0.60,

Ac¼ 0.00, Ay¼ 0.00 and Ag¼ 0.40) or with any intermediate amount of overlap.

The primaries normally are printed at different screen angles and the relationship

between these two angles is one of several factors that could affect the degree of

overlap. The dot-on-dot half-tone configuration, for example, places the primary

dots at the same screen angle and phase so that they maximally overlap. In

practice it has been shown that a weighted combination of the Demichel model

and the dot-on-dot model can give good performance (Bala, 2003).

9.4.3 The Kubelka–Munk model

The Neugebauer models assume that the reflectance (for spectral Neugebauer

approaches) or tristimulus values (for tristimulus Neugebauer approaches) are
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known for the over-printed area of the secondary colours. So, for example, to

implement where yellow dots are over-printed with cyan dots we need to know

the colour of the over-print area where cyan ink falls on yellow ink.

When inks are printed on top of each other or are mixed together and then

printed, subtractive colour mixing takes place and additivity of reflectance values

is not valid. For subtractive mixing the densities of the inks are approximately

additive, where the density D is related to the reflectance P,

D ¼ � log10 P. ð9:8Þ
So, for example, if two inks have reflectance 0.4 and 0.8 at a certain wavelength

and they are mixed together in equal proportions, then the mean of the density

contributions will be 0.0969/2+0.3979/2¼ 0.2474 corresponding to a reflectance

of 0.566 (this compares with a value of 0.600 if the reflectances are directly

averaged). Accurate prediction for subtractive mixing often requires application

of the Kubelka–Munk theory of radiation transfer that characterizes each ink or

colorant in terms of its absorption and scattering properties.

The Kubelka–Munk theory (Nobbs, 1985, 1997; McDonald, 1997b) has been

used to predict the reflectance of inks, plastics, paints, textiles and other

materials. The theory characterizes each colorant using the absorption K and

scattering S coefficients that are functions of wavelength and relates these

coefficients to the body reflectance of a sample. The body reflectance is the

reflectance of a surface if the interactions of light at the air/medium interface are

discounted. The body reflectance R is related to the measured reflectance P by

the following equation,

RðlÞ ¼ ½PðlÞ � re�=½ð1� reÞð1� riÞ þ riðPðlÞ � reÞ� ð9:9Þ
for the case where P is measured with a spectrophotometer with the specular

component included. The variables re and ri are the external and internal

reflectance coefficients of the boundary. The inverse of Equation (9.9) is given by

Equation (9.10),

PðlÞ ¼ re þ ½ð1� reÞð1� riÞRðlÞ�=½1� reRðlÞ�. ð9:10Þ
For an opaque sample the body reflectance is related to the K and S coefficients

by Equation (9.11),

K=S ¼ ð1� RÞ2=2R, ð9:11Þ
and the inverse relationship is given by

R ¼ 1þ K=S� ½ð1þ K=SÞ2 � 1�1=2. ð9:12Þ
Thus, for opaque samples only the ratio of K to S is required at each wavelength

in order to predict the reflectance R. In the case of dyed textiles the dyes

themselves do not scatter light and the only scattering comes from the textile
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fibres to which the dyes are applied. The application of the Kubelka–Munk

theory to opaque dyed textiles is therefore often referred to as the one-constant

version of the theory. For many pigmented surface coatings, such as paints, the

pigments both absorb and scatter and the two-constant theory is required.

However, Equation (9.12) can still be used to predict the reflectance of the

surface coating if it is applied at a thickness that achieves opacity. For

translucent printing inks, however, the reflectance of the paper upon which the

ink is printed makes a contribution to the reflectance of the system and therefore

Equation (9.12) must be replaced by

R ¼ ½ðRg � R1Þ=R1 � ðR1Rg � 1Þ expfð1=R1 � R1ÞSxg�=
½ðRg � R1Þ � ðRg � 1=R1Þ expfð1=R1 � R1ÞSxg�, ð9:13Þ

where Rg is the reflectance of the substrate and R1 is the reflectance [as defined

by Equation (9.12)] of an opaque layer of the pigmented layer. The scattering

coefficient S is defined for a unit thickness of the layer and x is the thickness of

the layer. According to the theory the values of K and S should be linearly

related to the pigment volume concentration in the layer and to the thickness of

the layer. However, in practice severe departures from linearity can occur

(Nobbs, 1997). In order to predict the reflectance for a mixture of colorants or

inks the K and S contributions are determined for each component and then

assumed to be additive in order to allow the computation of K and S for the layer

and thus, via Equation (9.13), the reflectance R. In all cases, once the body

reflectance is known Equation (9.11) can be used to yield a prediction of the

reflectance P.

The Kubelka–Munk theory is routinely used for the prediction of reflectance

for systems of printing inks (for example, in lithography) and forms the basis of

computer match-prediction systems. However, one of the difficulties in applying

the theory to the characterization of printers is in determining the values of K

and S for the individual inks. One method to determine K and S is to print each

colorant over two different substrates or papers (for example, a white and a

black) and then to use Equation (9.13) to set up a system of two simultaneous

equations with two variables (K and S). For many printing systems it is difficult

to obtain these samples, especially since it is required that the surface properties

(roughness, etc.) of the two substrates must be identical. An alternative approach

is to treat the Kubelka–Munk coefficients as free parameters and to derive their

values based on an optimization routine and a set of samples of known

reflectance (Bala, 2003).

The Kubelka–Munk model could be used to predict the overlap areas in a

half-tone printing process and Neugebauer-type models could then be used to

predict the reflectance of a given area. The traditional Kubelka–Munk theory

assumes that the printed layer is homogeneous, however, whereas for half-tone

printing one ink is printed on top of another to generate a more layered
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structure. Nevertheless, applications of modified Kubelka–Munk models to the

characterization of printers have been reported in the literature (Kang, 1994;

Emmel and Hersch, 2000).

9.5 Implementations and examples

This section contains two examples of printer characterization; one for a half-

tone printer and one for a continuous-tone printer.

9.5.1 Half-tone printer

Figure 9.3 shows the reflectance spectra for three inks printed at full coverage

(solid colour) over white using a half-tone process. In order to characterize the

tone-reproduction curves of the three inks each was printed and measured at

target digital coverage proportional areas between 0 and 1 at intervals of 0.1. The

function gettrc uses Equation (9.5) to compute the actual area coverage for each

target area coverage given the value of n.
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Box 25: gettrc.m

function [p] = gettrc(dig,R,W,Solid,n,graphs);

% function [p] = gettrc(dig,R,W,Solid,n,graphs)

% gettrc function to compute the trc for an ink

% function [p] = gettrc(dig,R,W,Solid,n,graphs);

% dig is an 1 by n matrix of target area coverages

% R is an n by m matrix of measured reflectance values

% W is a 1 by m matrix of reflectance for the white substrate

% Solid is a 1 by m matrix of reflectance for the solid ink

% n is a free parameter > 0

% graphs = ’on’ for graphical display

% p is a matrix containing the coefficients of a polynomial

% to relate target coverage to actual coverage

if nargin < 6

plotgraphs = 0;

else

plotgraphs = strcmp(’on’,graphs);

end

graphs = 1;

num = length(dig);

R = R.^(1/n);

W = W.^(1/n);

Solid = Solid.^(1/n);

for i = 1:num

c(i) = sum((Solid - R(i,:)).*(Solid - W))/sum((Solid ...

- W).*(Solid - W));

end

c = 1-c;

[p,s] = polyfit(dig,c,3);

if (plotgraphs)

figure

plot(dig,c,’k*’)
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x = linspace(0,1,101);

y = polyval(p,x);

hold on

plot(x,y,’k-’)

end

The built-in MATLAB function polyfit is then used to fit a third-order

polynomial between the actual and target coverage areas and the coefficients of

this fit are returned in the matrix p. The full syntax for gettrc is

function [p] = gettrc(dig,R,w,solid,n,graphs)

where dig is a 16r matrix of target area coverages, R is an r6m matrix of

measured reflectance values, w is a 16m matrix of reflectance for the white

substrate, solid is a 16mmatrix of reflectance for the solid ink, n is a 161 matrix

containing the free parameter [see Equation (9.5)] to determine the non-linearity,

r is the number of target coverage areas, m is the number of wavelengths

(usually 31) at which the reflectance data are measured and graphs¼ ‘on’

causes a plot of the actual versus target areas to be generated. Once the

characteristics of the tone-reproduction curve have been established using gettrc

any target coverage can be converted to the actual coverage using the polyval

command:

actual = polyval(p,target)

where target and actual are 161 matrices that hold the target and actual area

coverage values and p is the output of the gettrc function. Figures 9.4 and 9.5

show the result of the gettrc function for n¼ 1 and n¼ 20, respectively, for each

of the three inks.

The optimum value of n may be found to give the lowest prediction error

for the reflectances of the inks printed on their own at various coverage

areas and in mixture with other inks. For this example application, a value

of n¼ 20 was found to be optimum. The tone reproduction curves allow the

target areas to be converted to actual areas and these may be used with

the n-modified Neugebauer equations to predict the spectral reflectance

for combinations of inks. For a single ink, and measurements at 31

wavelengths between 400 and 700 nm, the colour difference between the

predicted reflectance and the measured reflectance is predicted using the

following code:
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c = polyval(p,dig);

for w = 1:31

pred(w) = (c*(solid(w))^(1/n)+(1-c)*(W(w)^(1/n)))^n;

end

xyzm = r2xyz(meas, 400, 700, ’d65___64’);

xyzp = r2xyz(pred, 400, 700, ’d65___64’);

labm = xyz2lab(xyzm, ’d65___64’);

labp = xyz2lab(xyzp, ’d65___64’);

thisDE = cmcde(labm, labp)

where solid and w are 1631 matrices containing the reflectances of the ink

printed at full coverage and the white substrate itself, dig is a 161 matrix

containing the target proportional area coverage of the ink for this print, p

contains the tone-reproduction curve for this ink (see the gettrc function) and n is

a 161 matrix containing the degree of linearity.
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For a binary mixture, the following code would be used:

c1 + polyval(p1, dig1);

c2 polyval(p2, dig2);

% get the areas using Dimechel

A1 = c1*(1-c2);

A2 = c2*(1-c1);

Aw = (1-c1)*(1-c2);

Ao = c1*c2;

for w = 1:31

pred(w) = (Ab*(solid1(w))^(1/n) + ...

At*(solid2(w))^(1/n) + ...

Ao*(overlap(w))^(1/n) + Aw*(W(w))^(1/n))^n;
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end

xyzm = r2xyz(meas, 400, 700, ’d65___64’);

xyzp = r2xyz(pred, 400, 700, ’d65___64’);

labm = xyz2lab(xyzm, ’d65___64’);

labp = xyz2lab(xyzp, ’d65___64’);

thisDE = cmcde(labm, labp)

where c1 and c2 are the target area coverages for the inks printed first and

second, respectively, solid1 and solid2 are the solid ink colours for the two inks,

p1 and p2 are the respective tone-reproduction curves and overlap is a 1631

matrix containing the reflectance of the overlap region. The entries of overlap

may be measured from a print of the solid colour of one ink over another or it

could be predicted using a Kubelka–Munk (or some other) model.

9.5.2 Continuous-tone printer

An example of the characterization of a continuous-tone printer is provided from

Sueeprasan (2003) who used a third-order masking model to characterize a

Kodak Color Proofer 9000A printer that is based upon dye-sublimation

technology. The data collected by Sueeprasan is used here to directly compare

characterization models based upon neural networks and polynomial trans-

forms. Two sets of data were obtained: a set of training data contained 729

colours and a set of test data contained 144 colours. For both sets the RGB

inputs to the printer driver were available and the CIE XYZ values for illuminant

D65 were measured (Figures 9.6 and 9.7).

In this example characterization, mappings are developed between the printer

RGB values and the CIE XYZ values. For many practical situations a mapping

that predicts RGB values based upon XYZ values would be more useful. To test

such a mapping requires that the RGB values predicted by the mapping are

physically reproduced using the imaging device and the CIE vales measured and

compared with the target values. This testing procedure is necessary in many

cases but is time consuming. For this example, the advantage of the RGB!XYZ

mapping is that a single test set can be created and used to evaluate various

characterization methods. The XYZ values of the test set are known. Evaluation

of the methods using the test set is achieved simply by comparing the XYZ values

from the model with the actual XYZ values that were measured for the test set.

A characterization was first developed using a neural network and the training

samples. The input to the network was a 36729 array of RGB values. The

original range of RGB values was [0, 255] but they were scaled to be in the range

[0, 1] before presenting them to the network. The output to the network was a

36729 array of L*a*b* values and these were also scaled to be approximately in

the range [0.1, 0.9]. It is important to take into account the range of the output
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vectors and the nature of the transfer or activation function on the units of the

output layer since some functions are only able to output data in a certain range.

The sigmoid activation function, for example, which was used in this study can

only output values in the range [0, 1] and the extreme values of this range are

only achieved with input values to the function that are infinitely large. For use

with the sigmoid activation function it is quite common to scale the output

vectors to a range [0.1, 0.9]. An MLP network was used with a single hidden

layer. The number of units in the input and output layers was three and, initially,

six units were used in the hidden layer. The network was created using the

MATLAB command

net =newff([0 1; 0 1; 0 1], [6, 3], {’logsig’ ’logsig’});

which creates a feed-forward network (or MLP). The first argument to the

function specifies that there are three input units and declares the range of values

that are expected (this allows appropriate scaling to be automatically carried out

if the data do not span an appropriate range). The second argument to the

function specifies that there is one hidden unit and declares the number of units

in the hidden and output layers. The final argument declares the use of the

sigmoid activation function for the hidden and output layers.
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The following two MATLAB commands set the weights of the network to

initial values and specify the number of epochs for training,

net = init(net);

net.trainParam.epochs = 1000;

The network can now be trained using the single command

net = train(net, input, output);

where the input and output matrices are the 36729 arrays of RGB and L*a*b*

values, respectively. During the training process MATLAB generates a graph

showing how the error between the actual and predicted output matrices changes

with the number of epochs that have elapsed. An example of that graph is

illustrated by Figure 9.8 for one particular training run and it is evident that most

of the training took place in the first few hundred epochs. The default training

algorithm is based upon Levenberg–Marquardt optimization, which is an

extremely efficient method for training an MLP.
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After training the network performance was tested using the MATLAB

command

poutput = sim(net,input);

which generates the predicted output matrix poutput for the matrix input given

the state of the network net. The target and predicted output values were re-

scaled to the original values of the CIELAB space and the colour difference was

computed for each of the 729 samples. The median CIELAB colour difference

was 3.47 (maximum 12.89). This error is referred to as the training or

memorization error. The testing or generalization error was computed by

using the sim command with the training input matrix containing the 144

samples and the median colour difference was found to be 3.16 (maximum

11.87). There is no reason why, as in this case, the testing error may not be less

than the training error. However, the testing error should always be used as the

indication of the network’s ability to predict output for input vectors that were

not used during the training process.

The number of units in the hidden layer was varied and the above process

repeated. Table 9.1 lists the performances that were obtained. The performance

of the neural network was compared with that of a third-order masking or

158 CHARACTERIZATION OF PRINTERS

Figure 9.8 Typical learning behaviour of a neural network trained to map from RGB to
L*a*b*



polynomial model. The model used by Sueeprasan (2003) was a third-order

masking model that predicted colorimetric densities from printer RGB values.

The colorimetric densities were computed by the terms log(X/Xn), log(Y/Yn) and

log(Z/Zn), where the subscript n referred to the white point (as can be seen from

Table 4.2 the white point for illuminant D65 and the 1931 observer is

Xn¼ 95.047, Yn¼ 100.00 and Zn¼ 108.883). The mapping was accomplished

by the linear system

P ¼ AC, ð9:14Þ
where P is a 72963 matrix of 1�R/255, 1�G/255 and 1�B/255 terms for each of

the 729 training samples, A is a 729620 matrix of augmented colorimetic

densities and C is a 2063 matrix of coefficients that defines the mapping. Each

row of the augmented matrix contains the following terms: R, G, B, RG, RB, GB,

R2, G2, B2, R2G, R2B, G2R, G2B, B2R, B2G, R3, G3, B3, RGB and 1. The

coefficients C were determined using

C ¼ A
þ
P, ð9:15Þ

which minimizes the least-squared error between the target and predicted

colorimetric densities.

The following code illustrates how the third-order model was implemented

and tested,

clear

load train.mat

% trainrgb is a 729 by 3 matrix of RGB values

% trainxyz is a 729 by 3 matrix of XYZ values

load test.mat

% testrgb is a 144 by 3 matrix of RGB values
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polynomial model

Memorization Generalization

Layers Minimum Median Maximum Minimum Median Maximum

4 0.34 4.37 16.59 0.41 3.90 12.14
6 0.28 3.84 12.89 0.41 3.16 11.87

8 0.31 2.92 9.43 0.44 3.84 11.36
10 0.21 2.81 9.96 0.37 4.23 11.04
12 0.21 2.29 9.32 0.77 4.29 10.28

Polynomial
2063 0.37 3.99 9.99 0.52 4.01 10.59



% testxyz is a 144 by 3 matrix of XYZ values

white = [95.047 100.000 108.883];

trainrgb = 1 - trainrgb/255;

testrgb = 1 - testrgb/255;

traintarget = zeros(729,3);

for i = 1:729

traintarget(i,:) = log(trainxyz(i,:)./white);

end

% the construction of the augmented matrix is shown in

% full below for clarity

trainmat = zeros(729,20);

for i = 1:729

trainmat(i,1) trainrgb(i,1);

trainmat(i,2) = trainrgb(i,2);

trainmat(i,3) = trainrgb(i,3);

trainmat(i,4) = trainrgb(i,1)*trainrgb(i,2);

trainmat(i,5) = trainrgb(i,1)*trainrgb(i,3);

trainmat(i,6) = trainrgb(i,2)*trainrgb(i,3);

trainmat(i,7) = trainrgb(i,1)*trainrgb(i,1);

trainmat(i,8) = trainrgb(i,2)*trainrgb(i,2);

trainmat(i,9) = trainrgb(i,3)*trainrgb(i,3);

trainmat(i,10) = trainrgb(i,1)*trainrgb(i,1*...

trainrgb(i,2);

trainmat(i,11) trainrgb(i,1)*trainrgb(i,1)*...

trainrgb(i,3);

trainmat(i,12) = trainrgb(i,2)*trainrgb(i,2)*...

trainrgb(i,1);

trainmat(i,13) = trainrgb(i,2)*trainrgb(i,2)*...

trainrgb(i,3);

trainmat(i,14) = trainrgb(i,3)*trainrgb(i,3)*...

trainrgb(i,1);

trainmat(i,15) = trainrgb(i,3)*trainrgb(i,3)*...

trainrgb(i,2);

trainmat(i,16) = trainrgb(i,1)*trainrgb(i,1)*...

trainrgb(i,1);

trainmat(i,17) trainrgb(i,2)*trainrgb(i,2)*...

trainrgb(i,2);

trainmat(i,18) = trainrgb(i,3)*trainrgb(i,3)*...

trainrgb(i,3);
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trainmat(i,19) = trainrgb(i,1)*trainrgb(i,2)*...

trainrgb(i,3);

trainmat(i,20) = 1;

end

% compute the coefficients using the pinv command

a = pinv(trainmat)*traintarget;

% now implement the model

ptraintarget = trainmat*a;

% convert the predicted densities back to XYZ values

for i = 1:729

ptraintarget(i,:) = exp(ptraintarget(i,:)).*white;

end

% compute CIELAB Delta E values

de = zeros(729,1);

for i = 1:729

lab1 = xyz2lab(trainxyz(i,:),’d65___31’);

lab2 = xyz2lab(ptraintarget(i,:),’d65___31’);

de(i,:) = cielabde(lab1, lab2);

end

% no semicoln on this line so that the results are displayed

perf = [min(de) mean(de) max(de)]

% compute the augmented matrix for the test set

testmat = zeros(729,20);

for i = 1:144

testmat(i,1) = testrgb(i,1);

testmat(i,2) = testrgb(i,2);

testmat(i,3) = testrgb(i,3);

testmat(i,4) = testrgb(i,1)*testrgb(i,2);

testmat(i,5) = testrgb(i,1)*testrgb(i,3);

testmat(i,6) = testrgb(i,2)*testrgb(i,3);

testmat(i,7) = testrgb(i,1)*testrgb(i,1);

testmat(i,8) = testrgb(i,2)*testrgb(i,2);

testmat(i,9) = testrgb(i,3)*testrgb(i,3);

testmat(i,10) = testrgb(i,1)*testrgb(i,1)*

testrgb(i,2);

testmat(i,11) = testrgb(i,1)*testrgb(i,1)*

testrgb(i,3);

testmat(i,12) = testrgb(i,2)*testrgb(i,2)*

testrgb(i,1);
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testmat(i,13) = testrgb(i,2)*testrgb(i,2)*...

testrgb(i,3);

testmat(i,14) = testrgb(i,3)*testrgb(i,3)*...

testrgb(i,1);

testmat(i,15) = testrgb(i,3)*testrgb(i,3)*...

testrgb(i,2);

testmat(i,16) = testrgb(i,1)*testrgb(i,1)*...

testrgb(i,1);

testmat(i,17) = testrgb(i,2)*testrgb(i,2)*...

testrgb(i,2);

testmat(i,18) = testrgb(i,3)*testrgb(i,3)*...

testrgb(i,3);

testmat(i,19) = testrgb(i,1)*

testrgb(i,2)*testrgb(i,3);

testmat(i,20) = 1;

end

% implement the model for the test set

ptesttarget = testmat*a;

% convert the densities to XYZ values

for i = 1:144

ptesttarget(i,:) = exp(ptesttarget(i,:)).*white;

end

% compute the CIELAB Delta E values

de1 = zeros(144,1);

for i = 1:144

lab1 =; xyz2lab(testxyz(i,:),’d65___31’);

lab2 = xyz2lab(ptesttarget(i,:),’d65___31’);

de1(i,:) = cielabde(lab1, lab2);

end

% display the test results

perf = [min(de1) mean(de1) max(de1)]

The results of the third-order model are shown in Table 9.1, and it can be seen

that the performance is rather similar to the performance of the neural network.
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10
Multispectral Imaging

10.1 Introduction

The characterization of a digital colour camera so that the device-dependent

RGB values may be transformed to device-independent coordinates such as XYZ

values effectively converts the camera into an imaging colorimeter, and this has

many practical uses. However, in imaging science there are limitations to this

approach. Many applications require that some illuminant-independent

measure, such as the spectral reflectance values, be determined at each pixel

location in a scene and this may be achieved by using an imaging spectro-

photometer. Although imaging spectrophotometers are becoming commercially

available often they are expensive and there is current interest in exploring to

what extent spectral values may be recovered from a standard three-channel

camera system or from a camera system with relatively few channels. The term

multispectral imaging sometimes is used to define this field of research. This

definition is confusing, however, since even the normal RGB image representa-

tion may be described as being multispectral in some sense. In this chapter,

however, the term multispectral imaging will be used to define techniques and

methods that may be used to recover spectral information from camera systems

with a small number of channels (typically in the range 3–8). We distinguish

multispectral imaging from the term hyperspectral imaging which we use to

describe techniques where spectral values are measured using imaging devices

with a large number of channels (typically in the range 16–40). Clearly there are

situations where the distinction between multispectral and hyperspectral may

become blurred. Indeed, we note that the goal of both multispectral imaging and

hyperspectral imaging is the same, namely to recover a spectral image. The

reader is directed to Hardeberg (2001) for an excellent review of this area. We

begin this chapter with a brief review of some computational approaches to the

problem of colour constancy because many of the methods of multispectral

imaging were, in fact, inspired by a computational analysis of the problem of
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colour constancy. The problem of whether the visual system might be able to

recover the spectral properties of objects in a scene from the cone excitations has

been studied extensively and analyses of this problem are relevant for

multispectral imaging. We describe some computational procedures for spectral

recovery using multispectral imaging and finally describe some applications of

these procedures for reflectance recovery and camera characterization.

10.2 Computational colour constancy and linear models

Colour constancy, the phenomenon by which surfaces tend to retain their

approximate daylight colour appearance when viewed under a wide range of

different light sources, was described in Chapter 6. It is still a mystery how the

visual system is able to discount the effect of the illumination when the colour

signal that reaches the eye depends just as much on the spectral power

distribution of the illuminant as it does on the spectral reflectance of the surfaces

in the scene (Hurlbert, 1991). One possible mechanism that could account for

colour constancy is adaptation of the light receptors or cones. Such a possibility

was first put forward by Von Kries and is consistent with the chromatic-

adaptation transforms that were described in Chapter 6. However, adaptation is

a relatively slow process and yet colour constancy seems to occur almost

instantaneously as we move from one light source to another in our everyday

lives. An alternative approach to adaptation was postulated by Land and

McCann (1971) who suggested that the visual system may use some

computational process to recover signals that are independent of the illumination

in a scene. In their computational analysis, known as the Retinex theory, Land

and McCann called these signals lightnesses, biological correlates of reflectance

that were computed by each of the three channels in the visual system. Later, the

term integrated reflectance was introduced (McCann et al., 1976) to describe the

illuminant-invariant signals. A number of researchers have since investigated to

what extent the visual system might actually be able to recover spectral

reflectances for points in a scene from the corresponding triplets of cone

excitations.

There are serious limitations on what we can achieve when we set out to

estimate surface reflectance from cone excitations. For example, theoretically

there is an infinite number of combinations of the surface-reflectance functions P

and illuminant power distributions E that could produce a given colour signal S.

In addition, the visual system does not measure S directly, but rather it encodes

the absorption rates of the three different cone types. It seems that if P and E

were not constrained in some way, then the cone excitations would provide little

useful information; fortunately there are some strong constraints on both P

and E.
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Suppose we have a device with three colour sensors, whose spectral

responsivities are Rk(l), k¼ 1,2,3. The three sensor responses for a colour signal

S(l) will be

r1 ¼
X
l

R1ðlÞSðlÞ,

r2 ¼
X
l

R2ðlÞSðlÞ,

r3 ¼
X
l

R3ðlÞSðlÞ,

ð10.1Þ

which we can group into a single matrix equation:

r ¼ Ms, ð10:2Þ
where r is a 361 matrix containing the sensor responses, the rows of the 3631

matrix M are the sensor spectral responsivities and the 3161 matrix s is the

colour signal (this assumes that the spectral sensitivities of the channels and

the spectral power of the colour signal are represented at 31 wavelengths in the

visible spectrum). The key question is: Is it possible to compute s, given both r

and M? Mathematically, we can rearrange Equation (10.2) by multiplying each

side of the equation by the pseudoinverse of the matrix M so that

s ¼ Mþr. ð10.3Þ
Unfortunately, since M is not a square matrix it is not trivial to compute the

inverse and computational procedures must be used to estimate the inverse

matrix M+. Estimates of s from Equation (10.3) are likely to be widely

inaccurate. In simple terms, Equations (10.2) and (10.3) represent a set of three

simultaneous equations with 31 unknowns; in mathematical terms this is an

under-determined system.

To simplify the problem, imagine that the surface is viewed under an equal

energy light source so that E(l) ¼ 1 for all l. We can now write

r ¼ Mp, ð10.4Þ
where the 3161 matrix p is the spectral reflectance. Although it may still appear

that three sensor responses are insufficient to estimate p we know there are strong

constraints on the variability of the spectral reflectances of surfaces (Maloney,

1986). [There are also known constraints (Judd et al., 1964) on the variability of

natural daylight.]

The natural constraints on surfaces and lights are usefully illustrated through

their representation by linear models. Typically, a set of basis functions Bj (where

j is 1, . . ., n) are defined such that, for example, each reflectance spectrum Pi is

defined by a linear sum of the basis functions,

Pi ¼ Bjai,j, ð10.5Þ
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where ai,j is the weight of the jth basis function for the ith sample. The basis

functions are themselves functions of wavelength but are not constrained to be

between the range [0,1] nor even to be positive at all wavelengths. The number of

basis functions n usually is quite small and the weights for each reflectance

spectrum define a projection of the reflectance spectrum onto the n-dimensional

space of the basis functions. Such linear models of reflectance spectra and

illuminant power distributions are useful because they provide an efficient

method for representing and storing P and E. The linear models are also useful

because they lead to simple estimation algorithms for P and E given the three

sensor responses r (r could be the responses of the cones in the human visual

system or the responses of a trichromatic imaging system).

We can therefore rewrite Equation (10.4) as

r ¼ MBa, ð10.6Þ

where the columns of the 3163 matrix B hold the first three basis functions of a

linear model of reflectance spectra and the 361 matrix a holds the weights that

define the particular spectrum that we are trying to recover (note that p¼ Ba). If

we group together the term MB (multiplying a 3631 matrix by a 3163 matrix),

then we can see that this is a 363 matrix whose entries are all known. The only

unknown is a, the weights. We can therefore rearrange Equation (10.6) to

produce

a ¼ ðMBÞ�1
r, ð10.7Þ

which allows a to be computed by standard procedures. Once a has been

determined the reflectance spectrum can be recovered using p¼ Ba. This analysis

illustrates two aspects of the role of linear models. First, linear models represent

a priori knowledge about the likely set of inputs. Linear models may be used to

allow spectral information to be recovered from three sensor responses.

Secondly, linear models work smoothly with the imaging equations. Since the

imaging equations are linear, the estimation methods remain linear and simple.

Figure 10.1 shows a set of five typical reflectance spectra (Westland et al.,

2000) and it is clear that generally they are smooth functions of wavelength. In

fact, the spectra illustrated by Figure 10.1 were measured for surfaces of natural

objects (leaves, petals, etc.) but the reflectance of the surface of the output of a

CMYK printer or a painted sample would most likely appear similarly smooth.

This is because the smoothness originates from fundamental mechanisms by

which matter interacts with light (Maloney, 1986).

An alternative way to represent the constraints of surface reflectance spectra is

by their Fourier representations which are found to be band limited. Thus, if the

Fourier amplitude spectrum is computed for a reflectance spectrum the energy

quickly falls off with increasing spectral frequency (spectral frequency typically is

expressed in units of cycles per nanometer). Above the band limit there is zero
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energy. Estimates of the band limit for natural and man-made surfaces are in the

region 0.15–0.20 cyc/nm (Maloney, 1986; Westland et al., 2000).

The basis functions that describe a particular set of reflectance spectra can be

obtained using a procedure called singular value decomposition (Hardeberg,

2001). Imagine an n6w matrix P that contains n spectra each sampled at w

wavelengths. Singular value decomposition decomposes the matrix P thus,

P ¼ UWVT, ð10.8Þ

where U and V are n6n and w6w matrices, respectively. The matrix W is an

n6wmatrix where diagonal entries denote singular values of P (Pratt, 1978). The

columns of U are the eigenvectors of the matrix PPT and these may be used as

the basis functions. Similarly, the columns of V are the eigenvectors of PTP.

Computer code (in the C programming language) to perform a singular value

decomposition of a matrix is readily available (e.g. Press et al., 1993). MATLAB

provides the commands svd and svds which can be readily used to generate the

eigenvectors for a set of data.

Strictly speaking, for Principal Components Analysis (PCA), the mean of P

should subtracted from P to yield a new matrix and it is the eigenvectors from
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Figure 10.1 Typical reflectance spectra for five natural surfaces



the singular value decomposition of this matrix that yield the principal

components. In practice, however, it is not always necessary to subtract the

mean to use a linear model of reflectance. If we use a linear model to represent a

set of reflectance spectra, then a given sample in the set is given by the linear sum

of the basis functions weighted by coefficients so that

PðlÞ ¼ a1B1ðlÞ þ a2B2ðlÞ þ a3B3ðlÞ : : : anBnðlÞ, ð10.9Þ

and if all n basis functions are used all the spectra in the set can be reconstructed

perfectly using appropriate values of the weights a1 . . . an. However, the benefit of

techniques such as PCA is that it is possible to represent data efficiently by only

using a small number of basis functions. The first basis function maximally

represents the variance in the data, and subsequent basis functions maximally

represent the remaining variance. It has been shown that more than 95% of the

variance in a set of reflectance spectra can be represented by using just the first

three basis functions (Maloney, 1986; Owens, 2002b). Figure 10.2 shows the first
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reflectance spectrum (solid line) approximated by one (b), two (c) and three (d) basis functions

from (a)



three basis functions (also known as eigenvectors) computed for a set of

reflectance spectra measured from a CMYK printing process. The figure shows

the approximation of one of the spectra by one, two and three basis functions.

When three basis functions are used the approximation is quite a good fit to the

measured values.

It is not trivial, however, to ascertain how many basis functions are required

for an accurate representation without reference to the purpose of the

representation. Owens (2002b) measured the reflectance spectra of a set of

natural surfaces collected from the grounds of Keele University and compared

these with a set of Munsell reflectance spectra. Figure 10.3(a) shows how the

mean-squared error for the two sets monotonically decreases with the number of

basis functions if a set of basis functions derived from the Keele data is used to

represent the Keele data and a set of basis functions from the Munsell data is

used to represent the Munsell data. In Figure 10.3(b), however, it can be seen

that at least six basis functions are required if average CIELAB DE values of

about 1 are required.
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Figure 10.3 (a) Plot of the mean-square error (MSE) as a function of number of basis
functions for Keele (*) and Munsell (+) data; (b) plot of mean CIELAB DE as a function of

number of basis functions for Keele (*) and Munsell (+) data



10.3 Surface and illuminant estimation algorithms

Most algorithms for reflectance estimation rely on two essential components

(Brill, 1979). First, we need a method of representing our knowledge about the

likely surface and illuminant functions (for example, linear models). Secondly,

most modern estimation methods assume that the illumination varies either

slowly or not at all across the image. This assumption is important because it

means that the illumination adds very few extra parameters that need to be

estimated.

Consider an image with p distinct spatial positions. We expect to obtain three

cone excitations at each position in the image so the number of measurements is

3p in total. If we can use a three-dimensional model for the surfaces, then there

are a total of 3p unknown surface coefficients. If the illuminant is known, then

the problem is easy to solve since we have as many measurements (3p) as

unknowns (3p). If the illuminant is not known and can vary from point to point,

then there will be 6p unknown parameters (at each point, three parameters for

the surface and three parameters for the illuminant) and the problem cannot be

solved. If the illuminant is constant across the image we have only three

additional parameters (thus 3p+3 unknowns and 3p measurements) and by

making some modest assumptions we can proceed with the estimation algorithm.

Modern estimation algorithms work by finding a method to overcome the

mismatch between the measurements and the unknowns. The majority of

algorithms infer the illumination parameters by making one additional

assumption about the image contents. For example, if we know the reflectance

function of just one object in the scene, then we can use the sensor responses

from that object to estimate the illuminant. This is often implemented in terms of

the assumption that the average of all the surfaces in the image is grey – the so-

called grey-world assumption ( Land, 1986; Wandell, 1995). Other algorithms are

based on the assumption that the brightest surface in the image is a uniform

perfect reflector (Wandell, 1995). Another interesting idea is that we can identify

specularities in the image from glossy surfaces (D’Zmura and Lennie, 1986;

Tominaga and Wandell, 1990).

A second group of estimation algorithms compensates for the mismatch in

measurements and parameters by suggesting ways to acquire more data.

Maloney and Wandell (1986) showed that by adding a fourth sensor one can

estimate the surface and illuminant. Similarly, D’Zmura and Iverson (1993a,

1993b) explored the possibility of observing the same surface under different

illuminants. However, even if the illuminant is known the number of unknowns

may be greater than 3p if it is assumed that a linear model with greater than three

dimensions is required to represent the reflectance spectra. Multispectral imaging

is a technique that uses more than three channels so that sufficient information

about the scene is captured to allow spectral recovery to an accuracy greater than

that which would be possible using a three-dimensional linear model.
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10.4 Techniques for multispectral imaging

In this section we consider some typical techniques to allow reflectance recovery

using multispectral imaging.

10.4.1 The Hardeberg method

The method proposed by Hardeberg (1999) assumes a linear camera model

[Equation (10.1)] and has similarities to the method of reflectance recovery

proposed by Maloney and Wandell (1986). For a single surface, the Hardeberg

method is based upon Equation (10.10), so that

r ¼ Ka, ð10.10Þ
where r is an r61 matrix of sensor responses, K is an r6n system matrix and a is

an n61 column matrix of weights that defines the surface in the space of basis

functions. Since it is known (Maloney, 1986; Owens, 2002b) that a linear model

of at least six basis functions is required for the accurate representation of

reflectance spectra, r must be at least size 661. Most practical multispectral

imaging systems therefore consist of at least six separate channels and this may

be achieved by a filter wheel containing a number of different filters and a

monochrome camera system.

If we consider the case where r¼ n¼ 3, then the 363 matrix K would be

obtained from the product of the 3631 matrix of the sensor spectral sensitivities

(weighted by the illuminant power distribution) and the 3163 matrix of the basis

functions of the linear model. The entries of K are thus known.

The reflectance of the surface may be recovered by manipulating Equation

(10.10) to yield

a ¼ K�1r, ð10.11Þ
where the inverse K71 may easily be computed if r¼ n (when K is a square

matrix). An alternative procedure to using more sensor classes is to use more

than one light source. For example, if an image is taken using a trichromatic

camera using one light source and then the same image is taken using a second

light source, then it allows the construction of a matrix K with six rows and

consequently allows a linear model of reflectance spectra with six basis functions.

It is important, however, that the spectral power distributions of the two or more

light sources are as unrelated as possible and that they contain power throughout

the whole visible spectrum (Connah et al., 2001).

Hardeberg (1999) has also considered the situation where r4n so that the

number of sensor classes exceeds the number of basis functions in the linear

model of reflectance. This leads to Equation (10.12),

a ¼ Kþr, ð10.12Þ
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where the pseudoinverse of the non-square matrix K is computed. Equation

(10.12) refers to an over-determined system, but this technique can actually lead

to improved estimates when compared with the case r¼ n. There are two reasons

why an over-determined system may be useful. First, for a system based upon r

sensors the r rows of K may not be independent. This can happen if the spectral

sensitivities of the channels are correlated with each other (or, for a system using

two light sources, if the spectral power distributions of the light sources are

correlated). Secondly, estimates of a when r¼ n may suffer if the system is noisy

so that the matrix r is known with low precision.

10.4.2 The Imai and Berns method

Imai and Berns (1999) have developed a method for reflectance recovery based

directly upon Equations (10.10) and (10.11). They assume a linear relationship

between the sensor outputs r of the imaging system and the representation of the

surface in an r-dimensional basis space by the weights a. However, unlike the

Hardeberg method, Imai and Berns find the entries of K using an empirical least-

squares analysis. The method is simple and effective because for the Hardeberg

method it is necessary to determine the space of basis functions in which the

reflectance spectra will be represented, to measure the spectral power distribution

of the light source and to determine the spectral sensitivities of the imaging

system. The method proposed by Imai and Berns, however, requires only the first

of these steps, namely the determination of the basis functions, and the entries of

K are then found by optimization.

10.4.3 Methods based on maximum smoothness

One problem with methods for reflectance recovery that use basis functions is

that the recovered reflectance cannot be guaranteed to be within the range [0, 1].

The methods described in Sections 10.4.1 and 10.4.2 do not always yield

physically reasonable solutions. An alternative approach to reflectance recovery

is to replace the constraint imposed by the linear model of basis functions with

some other constraint. One possibility is to employ a constraint of maximum

smoothness (Li and Luo, 2001).

10.5 Implementations and examples

10.5.1 Deriving a set of basis functions

Principal Component Analysis (PCA) may be performed using MATLAB’s

singular value decomposition function svds. Consider the 100 observations of
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two variables x and y as illustrated in Figure 10.4. The principal components of

these data are obtained by creating what is called a centred matrix (by

subtracting from each observation the mean x and y values) and then using the

svds command. The svds function can be called with two arguments where the

first argument is the matrix of data (with the number of samples along the rows

and the dimensions along the column) and the second argument is the number of

basis functions or eigenvectors that are computed. So, for example, the code

load xydata.mat

% x is a 100 � 1 matrix

% y is a 100 � 1 matrix

cx = x - mean(x);

cy = y - mean(y);

data = [cx cy];

[u,s,v] = svds(data,2);

results in the 262 matrix V which, for the data in Figure 10.4, has the values

shown in Equation (10.13):

V ¼ 0:3655 �0:9308
0:9308 0:3655

� �
, ð10.13Þ
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Figure 10.4 Plot of 100 observations of two variables x and y



where the first column of V represents the first component and the second

column represents the second component. We can use these components to

create two new axes, z1 and z2, where

z1 ¼ 0:3655xþ 0:9308y,

z2 ¼ �0:9308xþ 0:3655y.
ð10.14Þ

The MATLAB code

tdata = v’*data’;

transforms the xy data in the data matrix into the dimensions of z1 and z2. The

data in Figure 10.4 are redrawn in Figure 10.5 using the new orthogonal axes z1
and z2 from which it is clear that the new axes more appropriately describe the

variation in the data set.

The basis functions that describe a particular set of reflectance spectra can

similarly be obtained using MATLAB’s singular value decomposition function

svds. The following MATLAB code has been used to generate the basis functions

for a set of 404 reflectance spectra using two methods and to generate Figure

10.6.
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clear

load spectra.txt

% spectra is a 404 by 31 matrix

w=linspace(400,700,31);

% compute the mean spectrum

mspec = mean(spectra);

% create a new centred matrix

dspec = spectra;

for i=1:404

dspec(i,:) = spectra(i,:)-mspec;

end

% compute the first three basis functions

[u,s,v]=svds(spectra,3);

[u,s,v1]=svds(dspec,3);

% generate the plots

subplot(2,2,1)

plot(w,spectra,’k-’)
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Figure 10.6 Computation of basis functions: (a) the set of 404 reflectance spectra; (b) average

reflectance spectrum of the set; (c) basis functions derived without subtracting the mean from
the set; (d) basis functions derived after subtracting the mean from the set



xlabel(’wavelength’)

title(’(a)’)

subplot(2,2,2)

plot(w,mspec,’k-’)

xlabel(’wavelength’)

title(’(b)’)

subplot(2,2,3)

plot(w,v,’k-’)

xlabel(’wavelength’)

title(’(c)’)

subplot(2,2,4)

plot(w,v1,’k-’)

xlabel(’wavelength’)

title(’(d)’)

The lower left (c) and lower right (d) panes of Figure 10.6 show the first three

basis functions computed from the raw set of reflectance spectra and from a

centred set of spectra (where the mean is first subtracted), respectively. Although

the two sets of basis functions look quite different if we correct for the arbitrary

sign of the functions it can be seen that there are only small differences between

the two sets of basis functions (Figure 10.7).

10.5.2 Representation of reflectance spectra in a linear model

The computation of the basis functions using svds allows us to write

P ¼ Ba, ð10.15Þ
where P is the w6n matrix of reflectance spectra, B is the w6m matrix of basis

functions, and a is the m6n matrix of coefficients, where n is the number of

samples, w is the number of wavelength intervals at which the samples are

represented and m is the number of basis functions in the linear model. The

coefficient matrix a thus allows each reflectance spectrum to be represented by

just m coefficients. The central goal of PCA is to reduce the dimensionality of a

data set whilst retaining as much as possible of the variation present in the data

set (Jolliffe, 1986). It is relatively straightforward to compute the coefficient

matrix a by rearranging Equation (10.16),

a ¼ BþP, ð10.16Þ
where B+ denotes the pseudoinverse of the matrix of basis functions B. We note,

however, that if the basis functions are orthonormal, then Equation (10.16) is

equivalent to Equation (10.17),
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a ¼ BTP, ð10.17Þ
where BT denotes the transpose of the matrix B. A set of vectors is called an

orthogonal set if all pairs of distinct vectors in the set are orthogonal. An

orthogonal set in which each vector has norm 1 is called orthonormal (Anton,

1994). Two non-zero vectors are orthogonal if and only if their dot product is

zero. If b1 is a 16w row matrix representing the first basis function and b2 is a

w61 column matrix representing the second basis function, then we can say that

b1 and b2 are orthogonal if Equation (10.18) is satisfied,

b1b2 ¼ 0. ð10.18Þ
The norm of a matrix can be computed by the MATLAB function norm. The

norm of a matrix is also called the length of the matrix. Matrix b1 will be of

length 1 if Equation (10.19) is satisfied,

bT1 b1 ¼ 1. ð10:19Þ
The special property of orthonormality allows Equation (10.17) to be used

instead of Equation (10.16) because the transpose of a matrix of length 1 is equal

to its inverse. Equation (10.17) is clearly easier to implement in a programming
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Figure 10.7 The basis functions computed without subtracting the mean reflectance (*) are
compared with the basis functions computed after subtracting the mean reflectance (+)



language such as C than Equation (10.16) which requires the computation of a

pseudoinverse.

The following code has been used to implement linear models using six basis

functions for the case where the mean is subtracted from a set of 404 reflectance

spectra and for the case where the mean is not subtracted. The reconstructed

spectra have been computed and the CIELAB DE values have been calculated

between the target and reconstructed spectra (Table 10.1). It is evident from

Table 10.1 that lower reconstruction errors result when the mean is subtracted

from the spectra before using the svds command but that the difference between

the two methods is quite small. Note, however, that for other data sets it may be

possible to find the opposite effect, namely that the basis functions computed

without subtracting the mean from the data generate the lower DE values:

clear

load spectra.txt

% spectra is a 404 by 31 matrix of reflectance values

mspec = mean(spectra);

dspec = spectra;

for i=1:404

dspec(i,:) = spectra(i,:)-mspec;

end

[u,s,v]=svds(spectra,6);

[u,s,v1]=svds(dspec,6);

spectra=spectra’;

dspec = dspec’;

% compute the coefficients in basis space

a = pinv(v)*spectra;

a1 = pinv(v1)*dspec;

% reconstruct the spectra from the basis functions

pspectra = v*a;

pdspec = v1*a1;
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Table 10.1 Reconstruction errors for linear models using six basis functions

Method Median DE Maximum DE

Without subtracting the mean 0.89 13.24

After subtracting the mean 0.81 12.58



for i=1:404

pdspec(:,i) = pdspec(:,i)+mspec’;

end

% compute the reconstruction errors

de1 = zeros(404,1); de2 = zeros(404,1);

for i=1:404

xyzt = r2xyz(spectra(:,i),400,700,’d65___64’);

xyz1 = r2xyz(pspectra(:,i),400,700,’d65___64’);

xyz2 = r2xyz(pdspec(:,i),400,700,’d65___64’);

labt = xyz2lab(xyzt,’d65___64’);

lab1 = xyz2lab(xyz1,’d65___64’);

lab2 = xyz2lab(xyz2,’d65___64’);

thisde1 = cielabde(labt,lab1);

thisde2 = cielabde(labt,lab2);

de1(i) = thisde1;

de2(i) = thisde2;

end

result = [median(de1) max(de1) median(de2) max(de2)]

10.5.3 Estimation of reflectance spectra from tristimulus values

Despite the fact that spectral reflectance factors are almost always smooth

functions of wavelength and are highly constrained it is not possible to

accurately compute reflectance spectra from tristimulus values. Clearly, since

metamerism exists, the mapping from T!P, where T is a 36n matrix of

tristimulus values and P is a 316n matrix of reflectance values, is a one-to-many

mapping. However, the use of linear models and basis functions allows the

estimation of a possible reflectance spectrum corresponding to a target triplet of

tristimulus values.

We can represent the computation of the tristimulus values t for a given

reflectance spectrum p by the linear system

t ¼ Mp, ð10.20Þ

where M is a 3631 matrix whose rows contain the wavelength-by-wavelength

product of the illuminant with one of the three colour-matching functions. We

can try to solve Equation (10.20) directly by rearranging to give

p ¼ Mþt, ð10.21Þ
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but estimates of p are likely to be wildly inaccurate. Figure 10.8 shows the

predicted reflectance spectra for six samples using this method.

If we use the a priori knowledge of the smoothness of reflectance spectra, then

the problem may be better constrained and more accurate predictions may be

possible. The a priori knowledge is represented by the basis functions. So, for

example, if we use a linear model with three basis functions, then the 316n

matrix of reflectance spectra P in Equation (10.20) can be replaced by Ba, where

B is a 3163 matrix of basis functions and A is a 36n matrix of coefficients to

produce Equation (10.22),

T ¼ MBA. ð10.22Þ
MB is a 363 matrix and therefore Equation (10.22) now represents a linear

system with three constraints and three unknowns and can be easily solved using

Equation (10.23),

A ¼ ðMBÞ�1
T. ð10.23Þ
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Figure 10.8 Target (solid lines) and predicted (dotted lines) spectral reflectance factors
computed using Equation (10.21) for six samples



Now, since P¼ BA, we can write an equation to recover the reflectance spectra

thus,

P ¼ BðMBÞ�1
T. ð10.24Þ

Figure 10.9 shows the predicted reflectance spectra using this method for the

same six samples as are shown in Figure 10.8. The basis functions were computed

from a set of 404 samples that contained these six samples. The accuracy of the

reconstructed spectra in Figure 10.9 is much improved compared with those in

Figure 10.8 and all of the predicted reflectance spectra are within the range [0, 1].

However, if we consider all 404 samples, 82 still contain predicted reflectance

factors outside of the range [compared with 129 samples for the method based

upon Equation (10.21)].

Clearly, additional constraints are necessary if this method is to generate

physically reasonable reflectance factors in all cases. However, a function called

xyz2r has been provided based upon this method. A typical call would be

[P] = xyz2r(XYZ, obs);
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Figure 10.9 Target (solid lines) and predicted (dotted lines) spectral reflectance factors
computed using Equation (10.24) for six samples



where, the matrix XYZ is an n63 matrix of tristimulus values and obs is a string

that defines the illuminant/observer combination (e.g. ‘d65_64’). A matrix P is

returned with the reflectance values with size 316n.

Box 26: xyz2r.m

function [P] = xyz2r(XYZ, obs)

% function [P] = xyz2r(XYZ, obs)

% estimates reflectance P from XYZ trimulus values

% matrix XYZ must be n by 3

% illuminants A, C, D50, D55, D65, D75, F2, F7, F9

% set obs to ’d65___64 for D65 and 1964, for example

% matrix P is returned as an n by 31 matrix

% check dimensions of XYZ

dim = size(XYZ);

if (dim(2)*= 3)

disp(’XYZ must be n by 3’);

return;

end

load evectors.mat

% loads the 31 by 3 matrix v containing three basis

functions

load weights % contains the tables of weights

if strcmp(’a___64’,obs)

cie = a___64;

elseif strcmp(’a___31’, obs)

cie = a___31;

elseif strcmp(’c___64’, obs)

cie = a___64;

elseif strcmp(’c___31’, obs)

cie = c___31;

elseif strcmp(’d50___64’, obs)

cie = d50___64;

elseif strcmp(’d___50’, obs)

cie = d___50;

elseif strcmp(’d55___64’, obs)

cie = d55___64;
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elseif strcmp(’d55___31’, obs)

cie = d55___31;

elseif strcmp(’d65___64’, obs)

cie = d65___64;

elseif strcmp(’d65___31’, obs)

cie = d65___31;

elseif strcmp(’d75___64’, obs)

cie = d75___64;

elseif strcmp(’d75___31’, obs)

cie = d75___31;

elseif strcmp(’f2___64’, obs)

cie = f2___64;

elseif strcmp(’f2___31’, obs)

cie = f2___31;

elseif strcmp(’f7___64’, obs)

cie = f7___64;

elseif strcmp(’f7___31’, obs)

cie = f7___31;

elseif strcmp(’f9___64’, obs)

cie = f9___64;

elseif strcmp(’f9___31’, obs)

cie = f9___31;

else

disp(’unknown option obs’);

disp(’use d65___64 for D65 and 1964 observer’); return;

end

% the basis functions are only available in the range

400-700nm

M = cie(5:35,:);

M(1,:) = M(1,:) + sum(cie(1:4,:));

M(31,:) = M(31,:) + sum(cie(36:43,:));

Q = v’*M

a = XYZ*inv(v’*M)

P = a*v’;

10.5.4 Estimation of reflectance spectra from camera responses

The following MATLAB code implements the method of Imai and Berns (1999)

to predict reflectance spectra from camera RGB responses. The data that were
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introduced in Chapter 8 (Cheung and Westland, 2004) were used for this

analysis. Thus RGB values were available from the Agfa StudioCam camera for

192 samples from the Macbeth DC Colorchecker (the training samples) and the

24 samples of the Macbeth Colorchecker (the test samples). The RGB values

were linearized and corrected for spatial non-uniformity of the device and

illumination (see Chapter 8) and were saved along with the reflectance spectra for

each of the samples in a file called agfa.mat.

clear

load agfa.mat

% refldc is a 192 by 31 matrix of reflectance

% reflck is a 24 by 31 matrix of reflectance

% rgbdc is a 192 by 3 matrix of RGB values

% rgbck is a 24 by 3 matrix of RGB values

% compute the basis functions from the Macbeth DC samples

[u,s,v] = svds(refldc,3);

% compute the matrix of weights for the Macbeth DC samples

adc = pinv(v)*refldc’;

% assume that T=Ma and solve for M

M = rgbdc’*pinv(adc);

% use the linear transform M to predict the weights

% from the camera values

padc = inv(M)*rgbdc’;

pack = inv(M)*rgbck’;

% now reconstruct the spectra

prefldc = v*padc;

prefldc = prefldc’;

preflck = v*pack;

preflck = preflck’;

% compute the colour differences for the reconstructions

deck = zeros(24,1);

dedc = zeros(192,1);

for i=1:192

xyzt = r2xyz(refldc(i,:),400,700,’d65___64’);

xyzp = r2xyz(prefldc(i,:),400,700,’d65___64’);

labt = xyz2lab(xyzt,’d65___64’);

labp = xyz2lab(xyzp,’d65___64’);
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de = cielabde(labt,labp);

dedc(i) = de;

end

for i=1:24

xyzt = r2xyz(reflck(i,:),400,700,’d65___64’);

xyzp = r2xyz(preflck(i,:),400,700,’d65___64’);

labt = xyz2lab(xyzt,’d65___64’);

labp = xyz2lab(xyzp,’d65___64’);

de = cielabde(labt,labp);

deck(i) = de;

end

10.5.5 Fourier operations on reflectance spectra

The Fourier properties of reflectance spectra may be computed using the

MATLAB function fft. For a more complete description of Fourier analysis of

discrete signals using MATLAB, the reader is directed towards the text by

Carlson (1998). The fft command decomposes a signal into its frequency and

phase components. Equation 10.25 shows a hypothetical reflectance function P

that is a function of wavelength l,

PðlÞ ¼ bþ A cosð2pflþ fÞ. ð10.25Þ
The signal P may be represented entirely by the value of its offset b, its amplitude

A, its frequency f and its phase f. The frequency may be represented in terms of

cycles per nanometer. So, for example, if b¼ 0.5, A¼ 0.5, f¼ 0.005 cyc/nm and

f¼ 0, then we would obtained the signal shown (between the wavelengths 360

and 780 nm) by Figure 10.10.

The spectrum shown in Figure 10.10 consists of a single spectral frequency of

0.005 cyc/nm or (0.005)*300¼ 1.5 cycles in the visible spectrum (400–700 nm).

Fourier analysis involves taking a signal (such as a reflectance curve) and

decomposing it into an amplitude spectrum and a phase spectrum. The

amplitude spectrum provides information about the spectral frequencies that

are present in the reflectance data and the phase spectrum provides information

about the phases of these components. If the data are band limited, then there

will be a limiting spectral frequency (known as the band limit) above which there

is no further energy. The amplitude and frequency information can be obtained

using the following two MATLAB commands,

four___amp = abs(fft(p));

four___phase = angle(fft(p));
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where p is a 1�w row matrix and w is the number of wavelength intervals at

which the signal is represented. If p is a 1�31 row matrix (representing

reflectance data at 10-nm intervals in the range 400–700 nm), then four_amp and

four_phase will also be 1�31 row matrices. Figure 10.11 shows a typical

reflectance specrum [Figure 10.11(a)] and the 31-dimensional vector four___amp

that results. The first 16 values are the amplitudes at evenly spaced spectral

frequencies between zero (also known as the DC) and the Nyquist limit (see

Carlson, 1998). The Nyquist limit is half the sampling rate and since the

sampling rate is 31, the Nyquist limit is 31/2 cycles per 300 nm or 0.0517 cyc/nm.

The subsequent 15 values are the amplitudes for the negative frequencies; these

are a mirror-image of those for the positive frequencies and are thus often

discarded to create the plots shown in Figure 10.11(c) and also Figure 10.11(d).

Figure 10.11(c) shows that the amplitude generally falls off as the spectral

frequency increases, indicating that the reflectance data are band limited. Apart

from the DC component, Figure 10.11(c) also shows that the frequency with the

greatest amplitude is 0.0034 cyc/nm, which corresponds to about a single

complete cycle in the range 400–700 nm.

The Fourier representation is useful for analysing properties of reflectance

spectra and also for performing various operations such as smoothing

(convolution in the wavelength domain may be achieved by a multiplication in
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the Fourier domain). Following operations upon the matrices four_amp and

four_phase, the corresponding data in the reflectance domain may be obtained

using the commands

four___x = four___amp.*cos(four___phase);

four___y = four___amp.*sin(four___phase);

rec___p = real(ifft(complex(four___x,four___y)));
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Figure 10.11 Fourier analysis of the reflectance curve: (a) original reflectance data at 31
wavelength intervals; (b) 3161 vector of amplitude information; (c) plot of amplitude vs.

positive frequencies; (d) plot of phase vs. positive frequencies





11
Colour Toolbox

The following list details the functions that have been written as part of this

book. These programs form a computational toolbox. All these functions can be

downloaded from http://www.colourware.co.uk/compute/ and from

http://www.mathworks.com/matlabcentral/. To install the toolbox we

recommend that these files be placed in a directory called colour in MATLAB’s

toolbox directory. For example, this may be c:\Program Files\MATLABp65\

toolbox\colour\ but the exact pathname will depend upon how MATLAB was

installed. If the colour directory is then added to MATLAB’s environment path,

then the colour toolbox will be available as any other toolbox.

11.1 cband.m (Box 1)

% function [cP] = cband(P)

% applies Stearns Stearns spectral bandpass correction

% operates on matrix P of dimensions 1 by n

% where n is the number of wavelengths

% returns corrected matrix cP

11.2 pinterp.m (Box 2)

% function [s] = pinterp(p)

% applies interpolation to double the sampling

% rate of the n by 1 matrix p

% returns interpolated matrix s
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11.3 r2xyz.m (Box 3)

% function [xyz] = r2xyz(p, startlam, endlam, obs)

% computes XYZ from reflectance p using a table of weights

% operates on matrix p of dimensions 1 by n for

% illuminants A, C, D50, D55, D65, D75, F2, F7, F9

% and for the 1931 and 1964 observers

% set obs to ’d65___64 for D65 and 1964, for example

% the startlam and endlam variables denote the first and

% last wavelengths (eg. 400 and 700) for your reflectance

% which must be integers of 10 in the range 360-780

11.4 plocus.m (Box 4)

% function [xy] = plocus(obs)

% computes spectral locus xy using interpolated ASTM

% weights

% see function r2xyz for valid values for obs

11.5 xyz2lab.m (Box 5)

% function [lab] = xyz2lab(xyz,obs)

% computes CIELAB LAB values from XYZ tristimulus values

% requires the illuminant/observer obs to define white

% point

% see function r2xyz for valid values for obs

11.6 lab2xyz.m (Box 6)

% function [xyz] = lab2xyz(lab,obs)

% computes XYZ tristimulus values from CIELAB LAB values

% requires the illuminant/observer obs to define white

% point

% see function r2xyz for valid values for obs
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11.7 xyz2luv.m (Box 7)

% function [luv,uprime,vprime] = xyz2luv(xyz,obs)

% computes CIELUV Luv values from XYZ tristimulus values

% uprime and vprime are the CIE 1976 UCS coordinates

% requires the illuminant/observer obs to define white

% point

% see function r2xyz for valid values for obs

11.8 car2pol.m (Box 8)

% function [c,h] = cartopol(ab)

% converts a*b* or u*v* into the polar coordinates

% of Chroma C and Hue H

% ab must be a row or column matrix 2 by 1 or 1 by 2

% see also pol2car

11.9 pol2car (Box 9)

% function [a,b] = pol2car(ch)

% converts the polar coordinates

% of Chroma C and Hue H

% ch must be a row or column matrix 2 by 1 or 1 by 2

% see also car2pol

11.10 cielabde.m (Box 10)

% function [de,dl,dc,dh] = cielabde(lab1,lab2)

% computes colour difference from CIELAB values

% using CIELAB formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% see also cmcde, cie94de, and cie00de
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11.11 dhpolarity (Box 11)

% function [p] = dhpolarity(lab1,lab2)

% computes polarity of hue difference

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% p is +1 if the hue of the trial (lab2) is anticlockwise

% from the standard (lab1) and -1 otherwise

11.12 cmcde.m (Box 12)

% function [de,dl,dc,dh] = cmcde(lab1,lab2,paral,parac)

% computes colour difference from CIELAB values

% using CMC(l:c) formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% The dl, dc and dh components are CMC deltas

% The defaults for paral and parac are 1

% see also cielabde, cie94de, and cie00de

11.13 cie94de.m (Box 13)

% function [de,dl,dc,dh] = cie94de(lab1,lab2)

% computes colour difference from CIELAB values

% using the CIE94 formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% The dl, dc and dh components are CIE94 deltas

% see also cielabde, cmcde, and cie00de
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11.14 cie00de.m (Box 14)

% function [de,dl,dc,dh] = cie00de(lab1,lab2,paral,

parac,parah)

% computes colour difference from CIELAB values

% using the CIEDE2000 formula

% lab1 and lab2 must be 3 by 1 or 1 by 3 matrices

% and contain L*, a* and b* values

% The dl, dc and dh components are CIEDE2000 deltas

% The defaults for paral, parac and parah are 1

% see also cielabde, cmcde, and cie94de

11.15 cmccat97.m (Box 15)

% function [xyzc] = cmccat97(xyz,xyzt,xyzr,la,f)

% implements the CMCCAT97 chromatic adaptation transform

% operates on 1 by 3 matrix xyz containing tristimulus

% values of the stimulus under the test illuminant

% xyzt and xyzr are 1 by 3 matrices containing the

% white points for the test and reference conditions

% f has default value 1

% la is the luminance of the adapting test field

% and has default value of 100

% xyzc contains the tristimulus values of the

% stimulus under the reference illuminant

% see also cmccat00

11.16 cmccat00.m (Box 16)

% function [xyzc] = cmccat00(xyz,xyzt,xyzr,lt,lw,f)

% implements CMCCAT2000 chromatic adaptation transform

% operates on 1 by 3 matrix xyz containing tristimulus

% values of the stimulus under the test illuminant

% xyzt and xyzr are 1 by 3 matrices containing the

% white points for the test and reference conditions

% f has default value 1
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% lt is the luminance of the adapting test field

% and has default value of 100

% lw is the luminance of the adapting reference field

% and has default value of 100

% xyzc contains the tristimulus values of the

% stimulus under the reference illuminant

11.17 ciecam97s.m (Box 17)

% function [j,c,hq,m,h,s,q,cd]=ciecam97s(xyz,xyzw,

la,yb,para)

% implements the CIECAM97s colour appearance model

% operates on 1 by 3 matrix xyz containing tristimulus

% values of the stimulus under the test illuminant

% xyzt and xyzr are 1 by 3 matrices containing the

% white points for the test and reference conditions

% la and yb are the luminance and Y tristimulus values of

% the achromatic background against which the sample is

% viewed

% para is a 1 by 4 matrix containing c, Nc, Fll and F

11.18 gogtest.m (Box 18)

% function [err] = gogtest(gogs,dacs,rgbs)

% computes the error between measured and predicted

% linearized dac values for a given set of GOG values

% gogs is a 2 by 1 matrix that contains the gamma and gain

% dacs is an n by 1 matrix that contains the actual RGB values

% obtained by dividing the RGB values by 255

% rgbs is an n by 1 matrix that is obtained from a linear

% transform of measured XYZ values
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11.19 compgog.m (Box 19)

% function [rgb] = compgog(gogs,dacs)

% computes the linearized RGB values

% from the normalized RGB values

% for a given set of gog values

% gog is a 2 by 1 matrix that contains the gamma and gain

% dacs is an n by 1 matrix that contains the RGB values

% rgb is an n by 1 matrix of linearized RGB values

11.20 rgb2xyz.m (Box 20)

% function [XYZ] = rgb2xyz(dacs, gogs, A)

% converts RGB DACS from a monitor to CIE XYZ

% dacs is a 3 by 1 matrix containing the RGB DACS (0-255)

% gogs is a 2 by 1 matrix containing the gamma and gain

% A is a 3 by 3 matrix to transform RGB to XYZ

11.21 xyz2rgb.m (Box 21)

% function [dacs] = xyz2rgb(XYZ, gogvals, A)

% converts XYZ to RGB DACS for a monitor

% XYZ is a 3 by 1 matrix containing the XYZ values

% gogvals is a 3 by 2 matrix containing the gamma and gain

% for each of the three channels

% A is a 3 by 3 matrix to transform RGB to XYZ

11.22 compigog (Box 22)

% function [dacs] = compgog(gogs,rgb)

% computes the normalized RGB values

% from the linearized RGB values

% for a given set of gog values

% gog is a 2 by 1 matrix that contains the gamma and gain

% dacs is an n by 1 matrix that contains the RGB values

% rgb is an n by 1 matrix of linearized RGB values
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11.23 getlincam.m (Box 23)

% function [out] = getlincam(p,RGB,graphs)

% function to compute polynomial fits for camera

% grey-scale data. The inputs are p (a set of n by

% 1 mean reflectance values) and RGB ( a set of 3 by

% n RGB triplets). If graphs is set to ’on’ then

% a plot fo the fits is generated

11.24 lincam (Box 24)

% function [RGBout] = lincam(caldata,RGB)

% computes linearized camera values using

% polynomial transforms obtained from getlincam

% caldata is a 3 by 4 matrix produced from getlincam.m

% RGB is an n by 3 matrix of RGB values (in range 0-255)

11.25 gettrc (Box 25)

% function [p] =; gettrc(dig,R,W,Solid,n,graphs)

% gettrc function to compute the trc for an ink

% function [p] =; gettrc(dig,R,W,Solid,n,graphs);

% dig is an 1 by n matrix of target area coverages

% R is an n by m matrix of measured reflectance values

% W is a 1 by m matrix of reflectance for the white substrate

% Solid is a 1 by m matrix of reflectance for the solid ink

% n is a free parameter 4 0

% graphs =; ’on’ for graphical display

% p is a matrix containing the coefficients of a polynomial

to

% relate target coverage to actual coverage
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11.26 r2xyz (Box 26)

% function [P] =; xyz2r(XYZ, obs)

% estimates refletcance P from XYZ trimulus values

% matrix XYZ must be n by 3

% illuminants A, C, D50, D55, D65, D75, F2, F7, F9

% set obs to ’d65___64 for D65 and 1964, for example

% matrix P is returned as an n by 31 matrix
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