
ROSPlan: Planning in the Robot Operating System

Michael Cashmore, Maria Fox,
Derek Long, Daniele Magazzeni,

and Bram Ridder
King’s College London

London WC2R 2LS
firstname.lastname@kcl.ac.uk

Arnau Carreraa, Narcı́s Palomerasb,
Natàlia Hurtósb, and Marc Carrerasa

University of Girona
17071 Girona, Spain

afirstname.lastname@udg.edu
bnlastname@eia.udg.edu

Abstract

The Robot Operating System (ROS) is a set of software li-
braries and tools used to build robotic systems. ROS is known
for a distributed and modular design. Given a model of the
environment, task planning is concerned with the assembly
of actions into a structure that is predicted to achieve goals.
This can be done in a way that minimises costs, such as time
or energy. Task planning is vital in directing the actions of
a robotic agent in domains where a causal chain could lock
the agent into a dead-end state. Moreover, planning can be
used in less constrained domains to provide more intelligent
behaviour. This paper describes the ROSPLAN framework,
an architecture for embedding task planning into ROS sys-
tems. We provide a description of the architecture and a case
study in autonomous robotics. Our case study involves au-
tonomous underwater vehicles in scenarios that demonstrate
the flexibility and robustness of our approach.

1 Introduction
Planning is concerned with organising instances of actions in
order to achieve certain goals (Ghallab, Nau, and Traverso
2004). It begins with a domain model describing the ac-
tions available to the planner and a description of the cur-
rent state. The actions are then assembled into a structure
that is causally valid, with an attempt to optimise some cost
function. In order to do this, planning must forecast interac-
tions with future constraints, avoid moving the executor into
dead-end situations, and still achieve the goals.

The Robot Operating System (ROS) (Quigley et al. 2009)
is a set of software libraries and tools used in building
robotic systems. ROS has become a popular platform for
robotics research and has also proved a flexible foundation
on which to build robotic control via task planning (Bernar-
dini, Fox, and Long 2014; Cashmore et al. 2014; Dornhege,
Hertle, and Nebel 2013).

Combining task planning and robotics presents several
challenges, in particular:
• Given a domain model that matches the capabilities of the

robot, an initial state must be generated that matches the
current environment.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Actions planned by the task planner, on an abstracted
model of the world, must be made concrete and dis-
patched to lower level controllers.

• Plans must be executed according to some strategy. This
must account for action failure, plan failure due to igno-
rance or change in a dynamic environment, and changing
mission requirements.
We introduce ROSPLAN1. ROSPLAN is a framework for

embedding a generic task planner in a ROS system. The ar-
chitecture is highly modular and deals with the stated chal-
lenges by providing tools to: automatically generate the ini-
tial state from the knowledge parsed from sensor data and
stored in a knowledge base; automate calls to the planner,
then post-process and validate the plan; handle the main dis-
patch loop, taking into account changing environment and
action failure; and match planned actions to ROS action
messages for lower level controllers.

Integrating planning with robotics through a plan exe-
cution architecture has been done successfully by others,
for example by McGann et al. (2008) in the T-REX sys-
tem. T-REX is a timeline based plan execution architec-
ture supporting distributed deliberation amongst a collection
of reactors. Each physical component of the robotic sys-
tem comprises one or more inter-dependent reactors which
are responsible for evolving state variables on the different
timelines. Each reactor has a look-ahead, determining how
far ahead it can plan, and a latency, bounding the planning
time available to it. The system is synchronised using a
clock, and concurrent activity is achieved by enforcing inter-
dependencies between the timelines of the relevant state
variables. Generative planning is done using the Europa sys-
tem (Frank and Jonsson 2003) with a timeline-based mod-
elling language. T-REX has been used successfully to plan
and execute underwater AUV missions at the Monterey Bay
Aquarium Research Institute (MBARI) (Graham et al. 2012;
Py, Rajan, and McGann 2010; Magazzeni et al. 2014).
Task planning has also been embedded into robotic sys-
tems in a number of other ways. In particular, Ponzoni
et al. (2014) describe a configurable anytime meta-planner
that drives a (PO)MDP planner, anticipating the probabilis-
tic evolution of the system; Srivastava et al. (2014) provide

1The source code and documentation for ROSPlan can be ob-
tained from https://github.com/KCL-Planning/ROSPlan

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

333

Napoelon
Highlight

Napoelon
Highlight

Napoleon BlownApart


Napoleon BlownApart
This is from Preview

Napoleon BlownApart
This is from Preview

Napoleon BlownApart




an interface between task and motion planning, reasoning
about geometric constraints and communicating those to a
task planner; and Gaschler et al. (2013) use a knowledge-
of-volumes approach, which treats volumes as an interme-
diary representation between continuous-valued robot mo-
tions and discrete symbolic actions. Tennorth et al have
explored the connection between planning, execution and
knowledge management in a significant body of work, in-
cluding (Tenorth, Bartels, and Beetz 2014; Tenorth and
Beetz 2009). There is also considerable work exploring
the planning-execution connection, including RAP (Firby
1987), work of Beetz and McDemott (1994), PRS (Ingrand
et al. 1996), Simmon’s Task Description Language (1992)
and subsequent work (Kortenkamp and Simmons 2008), the
IxTeT-Exec system (Lemai-Chenevier and Ingrand 2004)
and IDEA (Muscettola et al. 2002). Although these systems
all confront similar problems in mediating between sensor-
actuator level behaviour and the symbolic representations
and causal reasoning used in planning, they present different
approaches to managing the levels of abstraction, the dele-
gation of executive control from planner to lower levels, the
handling of uncertainty and the precise mix of planned and
reactive behaviour.

This paper describes a framework for linking generic
task-planning with an execution interface provided by ROS.
While T-REX, and other plan execution frameworks devel-
oped to date, are powerful and effective, they exploit individ-
ual and specific methods and languages that are not widely
adopted standards. By contrast, our approach links two stan-
dards together: PDDL2.1, the temporal and numeric stan-
dard planning domain description language, and the Robot
Operating System (ROS). Our objective is to provide a mod-
ular architecture into which different temporal planners can
easily be plugged: for example, POPF (Coles et al. 2010)
(used in the case study described in this paper) can be re-
placed by Temporal Fast Downward (Eyerich, Mattmüller,
and Röger 2012), LPG (Gerevini and Serina 2002), UPMur-
phi (Della Penna, Magazzeni, and Mercorio 2012), or any
other planner capable of reasoning with PDDL2.1. With
an appropriately implemented plan dispatcher, even non-
temporal planners and planning models can be exploited.
A new robotics application requiring planning can then be
achieved simply by providing the relevant ROS action mes-
sages for the controllers of the robotic system. We see our
main contribution to be the provision of an open standard
and implementation of an integrated task planning and exe-
cution framework that brings together all of these standard-
ised components.

We demonstrate our approach with a case study plan-
ning inspection and valve-turning missions for autonomous
underwater vehicles (AUVs). In these missions an AUV
equipped with a manipulator is placed in an underwater
structure, with the task to inspect certain areas and to ensure
that valves are turned to correct angles. The AUV has no
initial knowledge of the structure, the location of the valve
panel, or the angles of the valves. We run the mission in
both simulation and live trials with an instantiation of ROS-
PLAN. To illustrate its generality, we point out that the same
architecture has been instantiated to control two different

physical AUVs and one simulated AUV, each performing
a different variety of missions with different PDDL domain
descriptions. ROSPlan is also used with the Festo Robotino
platform in the EU FP7 Squirrel project2.

2 Architecture
The ROSPLAN framework is intended to run with any
PDDL 2.1 (Fox and Long 2003) domain and planner, and to
automate the planning process in ROS, coordinating the ac-
tivities of lower level controllers. An overview of the ROS-
PLAN framework is shown in figure 1.

Figure 1: General overview of the ROSPLAN framework
(red box), consisting of the Knowledge Base and Planning
System ROS nodes. Sensor data is passed continuously to
ROSPlan, used to construct planning problem instances and
inform the dispatch of the plan (blue boxes). Actions are
dispatched as ROS actions and executed by lower-level con-
trollers (green box) which respond reactively to immediate
events and provide feedback.

ROSPLAN includes two ROS nodes, the Knowledge Base
and the Planning System. The Knowledge Base is simply a
collection of interfaces, and is intended to collate the up-to-
date model of the environment. The Planning System acts as
a wrapper for the planner, and also dispatches the plan. The
Planning System:
• builds the initial state automatically – as a PDDL problem

instance – from the knowledge stored in the Knowledge
Base;

• passes the PDDL problem instance to the planner and
post-processes, then validates the plan; and

• dispatches each action, deciding when to reformulate and
re-plan.
The architecture can be described in three parts: knowl-

edge gathering, planning, and dispatch.
Knowledge gathering refers to the process of populating

the Knowledge Base, generally from sensor data, parsed
to correspond to the domain (such as waypoints generated
from a geometric map) and as real information used to di-
rect the low-level planners (such as the real coordinates of

2The authors acknowledge support for this research from EU
FP7 projects PANDORA (288273) and Squirrel (610532) and from
the UK Engineering and Physical Sciences Research Council.

334

Napoelon
Highlight

Napoelon
Highlight



those waypoints). The Knowledge Base is then used in three
ways by the Planning System:
• to generate the PDDL problem file;
• when translating PDDL actions to ROS action messages,

to populate the messages with real data; and
• to notify the planner if there is a change in the environ-

ment that may invalidate the plan.
The first is described as a part of planning, the rest as part
of dispatch. The architectural overview is shown in figure 2,
using an example instantiation of the Knowledge Base de-
scribed further in Section 3.

Figure 2: Architectural overview of the ROSPLAN frame-
work. Blue boxes are ROS nodes. An example instantia-
tion of the Knowledge Base is illustrated. Sensor data is
interpreted for addition to the ontology, and actions are dis-
patched as ROS actions from the Planning System. The
Planning System (PS) and Knowledge Base (KB) communi-
cate during construction of the intial state and plan dispatch.
During dispatch the PS will update the KB with the plan-
ning filter, and the KB may notify the PS of changes to the
environment.

Knowledge Gathering
To use the ROSPLAN framework a user must first instan-
tiate the Knowledge Base. In figure 2 this is shown as an
ontology. The ontology is then used to implement the ROS
interface used by the Planning System. This ontology imple-
mentation of the Knowledge Base is described in Section 3.
The Knowledge Base is modular, to exploit the structural
similarities between many robotics planning domains. For
example, in our case study we represent the areas the AUV
can move between as waypoints. For this reason the Knowl-
edge Base and domain contain waypoints, and this transla-
tion is handled by a generic component.

The Knowledge Base is updated as soon as new informa-
tion becomes available. Each change to the Knowledge Base
is checked against a planning filter supplied by the Planning
System. If the filter contains the object, or object type, that
has been added or removed, a notification message is sent to
the Planning System. This alerts the Planning System that

1: procedure PLAN DISPATCH(Domain D, Mission M )
2: while M contains goals do
3: I := generateProblem(D,M);
4: P := plan(D, I);
5: F := constructF ilter(D, I, P );
6: while execute do
7: a := pop(P );
8: dispatch(a);
9: while actionExecuting do

10: if filterV iolated then
11: execute := ⊥;
12: cancel(a);
13: end if
14: end while
15: execute := execute ∧ actionSuccess(a);
16: end while
17: end while
18: end procedure

Figure 3: Detail of the plan, re-plan and dispatch loop
used in ROSPLAN. generateProblem(D,M) automati-
cally generates a PDDL problem instance from the model.
constructF ilter(D, I, P ) extracts the filter, used by the
Knowledge Base. These procedures are explained fully in
the text.

something has changed in the environment that could poten-
tially invalidate the plan. The construction of the filter is
handled by the Planning System, and described below.

The Knowledge Base interface is used by the Planning
System to generate the PDDL problem instance by supply-
ing an initial state and goals. This is done through an inter-
face comprised of ROS services.

Planning and Dispatch
The Planning System constructs a PDDL problem instance,
sends this to an external PDDL planner, extracts a filter from
the plan, dispatches the actions, and handles re-planning.
This is illustrated in figure 3.

To generate the PDDL problem (line 3 of figure 3),
the Planning System parses the supplied domain file, then
queries the Knowledge Base for the object instances, facts,
and fluents that comprise the initial state, and also the cur-
rent goals. This problem file is then handed to a PDDL plan-
ner (line 4), which produces a plan. ROSPLAN can be used
with any planner, so long as it can handle the syntactic re-
quirements of the domain. In our case study we use an any-
time version of POPF, a temporal and numeric planner. The
amount of time allowed for planning is provided as a pa-
rameter to the node. Once the plan has been found it can
be validated using the Plan Validation Tool (VAL) (Howey,
Long, and Fox 2004), which is included in ROSPLAN.

The filter is constructed (line 5) by taking the intersec-
tion of static facts in the problem instance with the union
of all preconditions of actions in the plan. In addition, each
object instance involved in these facts is added to the filter.
For example, suppose we have a PDDL domain with the ob-
ject type waypoint, the static fact (connected ?from

335

Napoelon
Highlight



?to - waypoint) and the do hover fast action shown
in figure 4. For each do hover fast action scheduled in the
plan, the waypoint instances bound to from and to and
the ground fact (connected ?from ?to) are included
in the filter. If these objects are removed, or altered in the
Knowledge Base, a notification will be sent to the Planning
System, as described above.

( : d u r a t i v e−a c t i o n d o h o v e r f a s t
: p a r a m e t e r s ( ? v − v e h i c l e

? from ? t o − waypo in t )
: d u r a t i o n ( = ? d u r a t i o n

(\ ( d i s t a n c e ? from ? t o ) ( v e l ? v ) ) )
: c o n d i t i o n ( and

( a t s t a r t ( a t ? v ? from ) )
( a t s t a r t ( c o n n e c t e d ? from ? t o ) ) )

: e f f e c t ( and
( a t s t a r t ( n o t ( a t ? v ? from ) ) )
( a t end ( n e a r ? v ? t o ) ) )

)

Figure 4: The do hover fast action for the inspection and
valve turning task.

The action is dispatched by linking the PDDL action to
a ROS action message (lines 7 − 8). The relationship be-
tween the high-level PDDL actions and low-level control
has been investigated in many ways (Srivastava et al. 2014;
Gaschler et al. 2013; Geib et al. 2006; McGann et al. 2008;
Kortenkamp and Simmons 2008). To take advantage of pre-
existing work, the translation layer can be instantiated as a
separate node. The Planning System will dispatch PDDL
actions – using a message type defined by ROSPLAN – to
the intermediate layer, where the translation can be carried
out. As well as this, ROSPLAN includes several modules,
similar to those provided by the Knowledge Base, that cor-
respond to common actions found in robotics domains. For
example, the mapping from movement actions (analogous to
the waypoint example in the Knowledge Base) to the move-
base library in ROS.

In ROSPLAN, re-planning is based on reformulation of
the problem. There are three reasons that the system may
re-plan:

1. the current action returns failure;
2. the Knowledge Base informs the planner of a change that

invalidates the plan, or of new information important to
the mission;

3. the current action, or plan, has gone significantly over or
under budget (such as time or energy).

In the case of (1), the dispatch loop is broken (line 15), the
problem instance is rebuilt from the current model of the
environment, and a new plan is generated. In the case of
(2) or (3), the current action may still be executing. In these
cases the original plan is re-validated and then, if found to
be invalid, the current action is cancelled and the dispatch
loop broken as before (lines 10− 13).

3 Planning with ROSPLAN
In this section we discuss implementing a ROS system with
ROSPLAN. In particular we consider the scenario of plan-
ning inspection and valve-turning missions for autonomous
underwater vehicles (AUVs). This scenario is fully de-
scribed in section 4. To build a plan-based control archi-
tecture with ROSPLAN the user must supply:

1. ROS action messages,
2. components to interpret the sensor data,
3. a PDDL domain file, and
4. an instantiation of the Knowledge Base.
As mentioned in sections 1 and 2, ROS libraries already ex-
ist for (1), (2) and (4), and they need only to be linked to
ROSPlan. The contribution of ROSPLAN is an open, stan-
dard framework to link these existing components together,
and to automate the planning and dispatch process.

With respect to our case study, we describe our instanti-
ation of the Knowledge Base; then the construction of the
PDDL problem instance and integration with the planner;
finally, we discuss plan dispatch.

Instantiating the Knowledge Base
The Knowledge Base was implemented in our case study
to include an ontology, using the Web Ontology Language
(OWL) (Hitzler et al. 2009). An ontology is a way to repre-
sent knowledge that can be expressed by description logics.
Tenorth et al. (2010) combines semantic knowledge with
spatial data to form a semantic map of the environment, at-
taching semantic information to a spatial map using an on-
tology in a ROS framework for indoor household tasks. We
used a similar approach in instantiating the Knowledge Base
for our case study.

The interface to the ontology was adpated to the Knowl-
edge Base interface and is used by ROSPLAN to construct
the initial state of the problem. Then, the ontology interface
was augmented to check information against the planning
filter when the information is added or removed.

The onotolgy is used to store symbolic representation of
the environment. This includes: locations that the AUV can
visit, inspection points the AUV is intended to observe, the
valve panels, and the valves. The objects, and the relation-
ships between them are derived from sensor data throughout
the execution of a plan and collated in the ontology.

The possible trajectories the AUV can traverse are deter-
mined by a set of waypoints. As mentioned in section 2, we
use a generic component to handle the description and con-
struction of waypoints. These waypoints are created using
a probabilistic road map (PRM) (Kavraki, P. Svestka, and
Overmars 1996), and stored in the ontology. We use an oc-
tomap to check if a waypoint collides with an obstacle in the
world. Similarly we use the octomap to determine whether
the AUV can traverse between two waypoints. The octomap
is built from sensor data and continuously updated. If an
edge or waypoint is discovered to be colliding with the en-
vironment, then it is removed from the ontology.

We use another component to describe valve panels and
valves. This component simply listens to the feature match-
ing process described in section 4 and adds discovered ob-
jects to the ontology.

336



Finally, inspection points are added to the ontology.
These are areas that must be observed by the AUV. The PRM
is augmented with additional waypoints – called strategic
waypoints – these waypoints are stored in the ontology to
provide a denser collection of waypoints around points of
interest (in our case the possible locations of valve panels
and unexplored space).

PDDL domain and problem instance
The domain for the valve turning mission is partially shown
in figure 5. The do hover controlled and do hover fast ac-
tions are used to move an AUV between connected way-
points. After using do hover fast the position of the AUV
must be corrected. There are two modes of movement used
by the vehicle: one for the correct position action and con-
trolled movement, another for fast movement.

The inspection points can be observed from possibly
many waypoints, with varying amounts of visibility. Ob-
serving an inspection point from a waypoint increases
the (observed ?ip) function by the visibility amount,
(obs ?ip ?wp). An inpsection point ip is fully ob-
served when (observed ip) >= 1.

The valves must be corrected before some deadline, spec-
ified by a timed-initial-literal (Hoffmann and Edelkamp
2005). At the deadline the valve becomes blocked and
cannot be turned. Before the deadline, the turn valve ac-
tion can be used to change (valve state ?v) to equal
(valve goal ?v). After turning the valve, the AUV’s
position must be corrected, and the panel re-examined.

When reformulating the problem for (re-)planning the
Planning System queries the Knowledge Base for instances
of all object types and their attributes, the problem instance
is automatically generated and passed to the planner. An ex-
ample problem instance from our case study is shown in fig-
ure 6. In this problem there are five mission goals on a single
valve. The time windows are known a priori and stored in
the ontology as with the information derived from sensors.

Plan Dispatch
Plans are produced by POPF, a temporal metric planner
widely used in the AI Planning community, which can cope
with a wide variety of common features (Piacentini et al.
2013; Fox, Long, and Magazzeni 2012).

As described in Section 2, each PDDL action is linked to
a ROS action message and dispatched. This translation is
performed by separate components, corresponding to those
used in the Knowledge Base. For example, figure 7 shows
the translation of a PDDL action (do hover controlled) to a
GotoWithYawRequest ROS message from the COLA2 con-
trol architecture for AUVs (Palomeras et al. 2012). This
translation is performed by a component paired with the
PRM generation. This component performs the translation
of each do hover fast action by first fetching the real coor-
dinates from the Knowledge Base.

The plans are dispatched by sending the ROS actions to
the lower-level controllers. The dispatcher is agnostic to the
choice of lower level controller, allowing us to run ROS-
PLAN in both simulation and physical trials with no changes.

( d e f i n e ( domain v a l v e t u r n i n g )
. . .
( : t y p e s

waypo in t i n s p e c t i o n p o i n t
v e h i c l e p a n e l v a l v e )

( : p r e d i c a t e s
( a t ? v − v e h i c l e ?wp − waypo in t )
( n e a r ? v − v e h i c l e ?wp − waypo in t )
( c o n n e c t e d ?wp1 ?wp2 − waypo in t )
( c a n s e e ?v−v e h i c l e

? ip−i n s p e c t i o n p o i n t ?wp−waypo in t )
( canexamine ? v − v e h i c l e

? p − p a n e l ?wp − waypo in t )
( c a n r e a c h ?v−v e h i c l e

?p−p a n e l ?wp−waypo in t )
( examined ? p − p a n e l )
( on ? a − v a l v e ? p − p a n e l )
( v a l v e b l o c k e d ? a − v a l v e )
( v a l v e f r e e ? a − v a l v e )

)
( : f u n c t i o n s

( d i s t a n c e ? from ? t o − waypo in t )
( o b s e r v e d ? i p − i n s p e c t i o n p o i n t )
( obs ? i p − i n s p e c t i o n p o i n t

?wp − waypo in t )
( v a l v e g o a l ? va − v a l v e )
( v a l v e s t a t e ? va − v a l v e )
( v a l v e g o a l c o m p l e t e d ? va − v a l v e )

)
( : a c t i o n d o h o v e r c o n t r o l l e d . . . )
( : a c t i o n d o h o v e r f a s t . . . )
( : a c t i o n c o r r e c t p o s i t i o n . . . )
( : a c t i o n o b s e r v e i n s p e c t i o n p o i n t . . . )
( : a c t i o n e x a m i n e p a n e l . . . )
( : a c t i o n t u r n v a l v e . . . ) )

Figure 5: Fragment of the domain for the inspection and
valve turning task.

4 Case study
We demonstrate our approach with a case study planning in-
spection and valve-turning missions for autonomous under-
water vehicles (AUVs). The scenario was run in a simulation
environment (UWSim) and in physical trials. The scenario
involved a single AUV performing a valve turning mission.

The mission seeks to achieve persistent autonomy, with
the key goal to show significantly reduced frequency of as-
sistance requests during subsea inspection and intervention.
This requires a strategic capability on the part of the vehi-
cles, which can be achieved by planning over long-horizon
activities, selecting sequences of actions that will achieve
long-term objectives. Ensuring that the planning model re-
mains robust requires careful matching of the model to the
real world, including dynamically updating the model from
continuous sensing actions.

The AUV was told to correct the positions of four valves,
without prior knowledge of the size of the tank, existing ob-
stacles, or location of the valve panel. The valve panel was
placed nearby one of eight locations in an otherwise empty
tank (as shown in Figure 8).

337



( d e f i n e ( problem v a l v e t a s k )
( : domain v a l v e t u r n i n g )
( : o b j e c t s

auv − v e h i c l e
wp1 . . . wp20 − waypo in t
p1 − p a n e l
v1 − v a l v e )

( : i n i t
( a t auv wp1 )
( c a n r e a c h auv wp8 p1 )
( on v1 p1 ) ( v a l v e b l o c k e d v1 )
(= ( v a l v e g o a l v1 ) 0 )
(= ( v a l v e s t a t e v1 ) 0 )
(= ( v a l v e g o a l c o m p l e t e d v1 ) 0 )

; ; VALVE TIME WINDOW
( a t 1 ( n o t ( v a l v e b l o c k e d v1 ) ) )
( a t 1 ( v a l v e f r e e v1 ) )
( a t 1 (= ( v a l v e g o a l v1 ) 1 4 4 ) )
( a t 251 ( v a l v e b l o c k e d v1 ) )
( a t 251 ( n o t ( v a l v e f r e e v1 ) ) )
. . .
( c o n n e c t e d wp1 wp2 )
(= ( d i s t a n c e wp1 wp2 ) 5 . 0 7 2 )
( c o n n e c t e d wp2 wp1 )
(= ( d i s t a n c e wp2 wp1 ) 5 . 0 7 2 )
. . . )

( : g o a l ( and
(>= ( v a l v e g o a l c o m p l e t e d v1 ) 5 ) ) ) )

Figure 6: Fragment of the problem instance for the inspec-
tion and valve turning tasks.

PDDL action

423.199:
(do hover controlled auv wp2 wp36)

[10.726]

GotoWithYawRequest

north lat:=0.012, east lon:=2.146,
z:=1.383, altitude mode:=False,
yaw := 1.541, tolerance := 0.3

Figure 7: An example conversion from the PDDL action
do hover controlled to a GotoWithYawRequest action. The
real values are extracted from the Knowledge Base by the
action dispatcher before the action is sent to the movement
controller.

The expected mission outcome is for the AUV to first ex-
plore the space and observe the possible valve panel loca-
tions (inspection points) in an efficient way. Once a valve
panel has been located, the remaining inspection actions will
be discarded and the AUV will move to the panel and closely
inspect the valves. Finally, having detected the current an-
gles of the valves, the AUV will use its gripper to correct the
positions of any misaligned valves.

We aim to show from this study that the ROSPLAN

Figure 8: Scenario for the valve turning task. The possible
locations of the valve panel are shown by the dark circles
on opposite sides of the tank. The tank is roughly 5m wide,
with 8m between opposing panel locations.

framework:
1. through task planning queries, generates a reasonable plan

to achieve the mission goals;
2. is able to adapt to unexpected discoveries or changes in

the environment, in a way that is more intelligent than
simple reactive behaviour; and

3. is robust to inaccuracy of the sensors and low-level con-
trollers and other uncertaintry in the real world.
The problem itself is simple in task planning terms. How-

ever, as the ROSPLAN framework is general with respect to
choice of domain and planner, here we focus on the chal-
lenges encountered at the meta-level; in dynamically con-
structing the problem and dispatching the plan. The valve
turning mission involves:

1. a series of planned and uninterrupted dispatched actions
(searching for the valve panel),

2. the discovery of new information, interrupting the execu-
tion of a plan (the discovery of a valve panel),

3. action failure (the temperamental turning of valves under-
water) and sensor inaccuracies (in the detected position of
the panel, and angles of the valves).

Thus, the valve turning mission is a suitable example for our
three aims.

Girona 500 I-AUV
The Girona 500 I-AUV (Ribas et al. 2012) is a compact and
lightweight AUV with hovering capabilities, shown in fig-
ure 9. The vehicle can be actuated in surge, sway, heave and
yaw (ψ), while it is stable in roll (Φ) and pitch (θ). The pay-
load area is equipped with an ECA CSIP manipulator which
is an under-actuated manipulator with 4 degrees of freedom
(DoF). This manipulator can control the Cartesian position
(x,y,z) and the roll (Φ) of the end-effector. However, be-
cause it is under-actuated, pitch and yaw are defined by the
Cartesian position.

The manipulator has a custom end-effector that includes a
compliant passive gripper to absorb small impacts, designed
in a V-Shape to easily drive the handle of a T-bar valve to-
wards its center. It also contains a force/torque sensor to de-
tect the contact force, keep grasping, and control the torque
needed to turn the valves.

338



Figure 9: Girona 500 AUV in the water tank, equipped with
the manipulator and a customised end-effector. In the back-
ground there is a mock-up of a valve panel.

Action Implementation
The Girona 500 AUV uses a simultaneous localisation and
mapping algorithm (SLAM), based on an EKF filter, to
acheive a robust vehicle localisation. The EKF-SLAM com-
bines the information of different navigation sensors (i.e. an
AHRS, a DLV and a depth sensor) with a motion model to
obtain an estimation of the vehicle position. It also uses de-
tected landmarks in the environment to improve the AUV
position, and maintain a map of their location. In our imple-
mentation, the valve panel (see figure 10) is a landmark. To
identify the panel, a vision algorithm analyses the images
gathered by the AUV’s main camera and compares them
with a template image of the panel. Then, when a suffi-
cient number of features are matched across both images,
the presence of the panel is identified, and its position/orien-
tation accurately estimated. This process is embodied in the
action observe inspection point.

Once the position of the panel is known, it is possible to
estimate the valves’ orientations, which corresponds to the
examine panel action. The action extracts a region of inter-
est around the expected valve position and applies a Hough
transform to estimate the main line orientation.

The Girona 500 can be controlled by means of body force
and velocity requests, and waypoints requests. A cascade
control scheme is used to link these controllers: the pose
controller generates the desired velocity as output, which is
the input for the velocity controller. This in turn generates
the force and torque that are fed to the force controller to
finally obtain the required setpoints for each thruster.

Two motion modes have been implemented to guide the
vehicle. The first (do hover controlled and correct position)
follows the cascade scheme moving the AUV holonomi-
cally. However, if the waypoint is far from the vehicle’s
current position this motion mode becomes too slow. Then,
a variation of the line-of-sight pure pursuit algorithm de-
scribed by Fossen (Fossen 2011) is used (do hover fast).

To perform the valve turning action (turn valve) we have
implemented a learning by demonstration algorithm (LbD).
LbD is a machine learning technique designed to transfer the

knowledge from an expert to a machine through an abstrac-
tion process that generalises a task from a set of operator
demonstrations. Here we address a particular case study, tar-
geting valve turning. However, the implementation through
a LbD algorithm can be easily adapted to other manipulation
actions, and is ideal for facing new tasks.

The LbD algorithm used in this action is an extension of
dynamic movement primitives (DMP). DMP is a technique
where the learned skill is encapsulated in a superposition of
basis motion fields. Unlike other methods, DMP dynami-
cally generates the required commands to perform the re-
production of the task trajectory. This makes the approach
more robust to external perturbations.

In our particular implementation, the extended version of
the DMP (Carrera et al. 2014) learns a trajectory of 8 DoF
to represent the position (x, y, z) and orientation (yaw) of
the AUV and the position (x, y, z) and alignment (roll) of
the end-effector. Because this trajectory is recorded with
respect to a valve center, the model learned for changing the
reference valve is good enough for grasping any other valve.
The roll motion performed to turn the valve is not included in
the learning algorithm. Instead, a simple controller executes
the turn for any rotation angle once the valve is grasped.

Figure 10: Camera image of the valve panel, taken from the
AUV’s end-effector.

Outcome
The physical trials were successful, with the AUV correcting
all the valves. Replanning was performed for two reasons:
intially discovering the panel, and when a turn valve action
failed. The turn valve action did not have a perfect success
rate, as sometimes the valve would be missed by the gripper,
or knocked when the AUV retreated from the panel.

In the first case, the panel was discovered by the AUV’s
main camera as described above. The position of the valve
panel was entered into the Knowledge Base by the visual de-
tection component, as described in section 3. This change of
information violated the mission filter, prompting a replan.
A notification was sent to the dispatcher and the current ac-
tion was canceled (in this case a do hover controlled). The
Planning System queried the Knowledge Base to construct a

339



PDDL action ROS action message
0.000: (observe inspection point auv wp1 ip3) [10.000] -
10.001: (correct position auv wp1) [10.000] GotoWithYawRequest
20.002: (do hover fast auv wp1 wp2) [35.848] GotoWithYawRequest
55.851: (correct position auv wp2) [10.000] GotoWithYawRequest
65.852: (observe inspection point auv wp2 ip4) [10.000] -
75.853: (correct position auv wp2) [10.000] GotoWithYawRequest
85.854: (do hover controlled auv wp2 wp23) [16.710] GotoWithYawRequest
... ...
423.199: (do hover fast auv wp2 wp36) [10.726] GotoWithYawRequest
433.926: (correct position auv wp36) [10.000] GotoWithYawRequest
443.927: (observe inspection point auv wp36 ip9) [10.000] -
0.000: (turn valve auv wp1 p0 v1) [100.000] valve turning action
100.001: (correct position auv wp1) [10.000] GotoWithYawRequest
110.002: (turn valve auv wp1 p0 v3) [100.000] valve turning action
210.003: (correct position auv wp1) [10.000] GotoWithYawRequest
220.004: (turn valve auv wp1 p1 v2) [100.000] valve turning action
... ...
1310.002: (correct position auv wp1) [10.000] GotoWithYawRequest
1311.003: (turn valve auv wp1 02 v4) [100.000] valve turning action

Figure 11: Fragments of two PDDL plans produced during the valve turning mission. The first plan fragment shows the
beginning and end of an inspection mission, searching for the valve panel. The second fragment shows the plan to correct the
valves, once the panel has been found.

new problem instance, which included the newly discovered
panel, and then passed this to the planner.

In the second case – when a turn valve action failed – the
action itself did not return failure, as the learned action does
not self-validate. Instead, the action incorporated an exam-
ination of the panel following the attempted turn. This ex-
amination updated the angle of the valve in the Knowledge
Base. If the turn valve action failed, then the planning filter
would be violated and a replan would take place. The new
plan would repeat the attempt to correct the valve.

Figure 11 shows fragments of the plans generated during
the valve turning mission. The table shows the PDDL ac-
tions and their corresponding ROS action messages. The
observe PDDL action does not have a corresponding ROS
action, as the visual sensing is continuous and passive. The
observe action merely causes the AUV to wait for several
seconds after orienting itself towards the inspection point
– this aids the visual detection. The two movement types,
fast (do hover fast) and controlled (do hover controlled and
correct position), have the same action type: GotoWith-
YawRequest. This ROS action message is shown in more
detail in figure 7. These messages are sent to different action
servers depending upon the movement type, as described
above. Finally, the valve turning action message is sent to
the LbD controller described above.

In the physical trials the inspection points did not line up
with the borders of the tank, nor with the actual location of
the valve panel. This was due to safety concerns; it is better
to keep the AUV further from the walls, as any drift in the
accuracy of its current estimated position could cause it to
collide. This proved to highlight a strength of the approach.
As the PDDL problem and its underlying PRM are generated
dynamically from the sensor data, once the valve panel was
discovered the waypoints of the new PRM would be reposi-
tioned to allow the AUV access to the valve panel – closer

than the safety constraints would have allowed. Simultane-
ously, the real position of the panel would be known, and
used as a landmark to help keep the AUV’s estimated posi-
tion accurate, removing the need for the safety net.

5 Conclusion
In this paper we have introduced the ROSPLAN planning
framework for ROS. We have proposed this architecture
as a standard solution to embedding a task planner in the
PDDL family into a robotic system. While others have pro-
posed similar architectures, we have focussed on providing
a standardised solution for the integration, through ROS, of
modern heuristic search planners with robotic systems. We
have described the architecture in detail, and shown its suc-
cess in application. Our case study, which considers the
persistently autonomous behaviour of underwater vehicles,
demonstrates the flexibility and robustness of reasoning dy-
namically over the environment combined with reformula-
tion and replanning. The planner remains in constant com-
munication with the knowledge base throughout plan exe-
cution, and each replanning cycle relies on knowledge dis-
covery and the autonomous construction of a revised initial
and goal state description. ROS provides the framework for
this communication, so that the burden on the application
designer is focused on defining the PDDL domain descrip-
tion. Then, existing action messages and other ROS compo-
nents specific to the robotic systems being deployed can be
simply linked together. We use ROSPLAN as an open, stan-
dard framework to link existing ROS components to plan-
ning tools. We have implemented several original compo-
nents, used in our case study, that can be re-used in other
robotics applications. We propose partial PDDL domain de-
scriptions that match these components, such as a standard-
ised waypoint description.

340



References
Beetz, M., and McDermott, D. 1994. Improving Robot Plans Dur-
ing Their Execution. In Proc. International Conference on AI Plan-
ning Systems (AIPS).
Bernardini, S.; Fox, M.; and Long, D. 2014. Planning the Be-
haviour of Low-Cost Quadcopters for Surveillance Missions. In
Proc. Int. Conf. on Automated Planning and Scheduling (ICAPS).
Carrera, A.; Palomeras, N.; Ribas, D.; Kormushev, P.; and Car-
reras, M. 2014. An intervention-auv learns how to perform an
underwater valve turning. In OCEANS - Taipei, 2013 MTS/IEEE.
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Magazzeni,
D. 2014. AUV Mission Control Via Temporal Planning. In Proc.
Int. Conf. on Robots and Automation (ICRA).
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proc. Int. Conf. on Automated
Planning and Scheduling (ICAPS), 42–49.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A univer-
sal planning system for hybrid domains. Applic. Intell. 36(4):932–
959.
Dornhege, C.; Hertle, A.; and Nebel, B. 2013. Lazy Evaluation
and Subsumption Caching for Search-Based Integrated Task and
Motion Planning. In Proc. IROS workshop on AI-based robotics.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Using the context-
enhanced additive heuristic for temporal and numeric planning. In
Towards Service Robots for Everyday Environments. 49–64.
Firby, R. J. 1987. An investigation into reactive planning in com-
plex domains. In Proc. National conference on Artificial intelli-
gence (AAAI), 202–206.
Fossen, T. I. 2011. Handbook of marine craft hydrodynamics and
motion control. John Wiley & Sons, Ltd.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. Journal of AI Research
(JAIR) 20:61–124.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based policies
for efficient multiple battery load management. J. Artif. Intell. Res.
(JAIR) 44:335–382.
Frank, J., and Jonsson, A. 2003. Constraint-based attribute and
interval planning. Journal of Constraints 8(4).
Gaschler, A.; Petrick, R. P. A.; Giuliani, M.; Rickert, M.; and
Knoll, A. 2013. KVP: A knowledge of volumes approach to robot
task planning. In Proc. Int. Conf. on Intelligent Robots and Systems
(IROS), 202–208.
Geib, C.; Mourão, K.; Petrick, R.; Pugeault, N.; Steedman, M.;
Krueger, N.; and Wörgötter, F. 2006. Object Action Complexes as
an Interface for Planning and Robot Control. In Proc. Humanoids-
06 Workshop: Towards Cognitive Humanoid Robots.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on lo-
cal search for planning graphs. In Proc. Int. Conf. on Automated
Planning and Scheduling (AIPS). AAAI Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
Theory and Practice. Morgan Kaufmann.
Graham, R.; Py, F.; Das, J.; Lucas, D.; Maughan, T.; and Rajan, K.
2012. Exploring Space-Time Tradeoffs in Autonomous Sampling
for Marine Robotics. In Proc. Int. Symp. Experimental Robotics.
Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P. F.; and
Rudolph, S., eds. 2009. OWL 2 Web Ontology Language: Primer.
W3C Recommendation. Available at http://www.w3.org/TR/owl2-
primer/ (Nov 2014).
Hoffmann, J., and Edelkamp, S. 2005. The Deterministic Part of
IPC-4: An Overview. Journal of AI Research (JAIR) 24:519–579.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic Plan
Validation, Continuous Effects and Mixed Initiative Planning Us-
ing PDDL. In Proc. Int. Conf. on Tools with AI (ICTAI), 294–301.
Ingrand, F.; Chatilla, R.; Alami, R.; and Robert, F. 1996. PRS: a
high level supervision and control language for autonomous mobile
robots. In IEEE Int.l Conf. on Robotics and Automation.
Kavraki, L. E.; P. Svestka, J.-C. L.; and Overmars, M. H. 1996.
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. In IEEE Trans. on Robotics and Automation.
Kortenkamp, D., and Simmons, R. G. 2008. Robotic Systems Ar-
chitectures and Programming. In Springer Handbook of Robotics.
Springer. 187–206.
Lemai-Chenevier, S., and Ingrand, F. 2004. Interleaving Temporal
Planning and Execution in Robotics Domains. In Proceedings of
the National Conference on Artificial Intelligence (AAAI).
Magazzeni, D.; Py, F.; Fox, M.; Long, D.; and Rajan, K. 2014. Pol-
icy learning for autonomous feature tracking. Autonomous Robots
37(1):47–69.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.; and
McEwen, R. S. 2008. A deliberative architecture for AUV control.
In Proc. Int. Conf. on Robotics and Automation (ICRA).
Muscettola, N.; Dorais, G.; Fry, C.; Levinson, R.; and Plaunt,
C. 2002. IDEA: Planning at the Core of Autonomous Reac-
tive Agents. In Proc. of AIPS Workshop on On-line Planning and
Scheduling.
Palomeras, N.; El-Fakdi, A.; Carreras, M.; and Ridao, P. 2012.
COLA2: A Control Architecture for AUVs. IEEE Journal of
Oceanic Engineering 37(4):695–716.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2013. Com-
bining a Temporal Planner with an External Solver for the Power
Balancing Problem in an Electricity Network. In Proc. Int. Conf.
on Automated Planning and Scheduling (ICAPS).
Ponzoni, C.; Chanel, C.; Lesire, C.; and Teichteil-Knigsbuch, F.
2014. A Robotic Execution Framework for Online Probabilis-
tic (Re)Planning. In Proc. Int. Conf. on Automated Planning and
Scheduling (ICAPS).
Py, F.; Rajan, K.; and McGann, C. 2010. A systematic agent
framework for situated autonomous systems. In Proc. of Int. Conf.
on Autonomous Agents and Multi-Agent Systems (AAMAS).
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs,
J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-source Robot
Operating System. In ICRA workshop on open source software,
volume 3.
Ribas, D.; Palomeras, N.; Ridao, P.; Carreras, M.; and Mallios, A.
2012. Girona 500 AUV: From Survey to Intervention. Mechatron-
ics, IEEE/ASME Transactions on 17(1):46–53.
Simmons, R. 1992. Concurrent planning and execution for au-
tonomous robots. IEEE Control Systems 12(1):46–50.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.; and
Abbeel., P. 2014. Combined Task and Motion Planning through
an Extensible Planner-Independent Interface Layer. In Proc. Int.
Conf. on Robotics and Automation (ICRA).
Tenorth, M., and Beetz, M. 2009. KnowRob – Knowledge Process-
ing for Autonomous Personal Robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 4261–4266.
Tenorth, M.; Bartels, G.; and Beetz, M. 2014. Knowledge-based
Specification of Robot Motions. In Proc. European Conf. on AI
(ECAI).
Tenorth, M.; Kunze, L.; Jain, D.; and Beetz, M. 2010.
KNOWROB-MAP - knowledge-linked semantic object maps. In
Humanoids, 430–435.

341




