Galileo_demos_v1.3

Muzzley Intel® Galileo Demos

Intro

The main goal of this demo is to explain how you can control your Intel® Galileo board and its
applications with a mobile device using Muzzley. This walkthrough explains in detail how you can
control a digital rgb LED strip and the Galileo board pins using a mobile device.

This demos were built with Node.js and require the Galileo to run with the Intel® |oT Devkit 1.0
image in the micro SD card.

Why Muzzley?

Muzzley is a technology that allows mobile control integration, making it easier and faster for
developers, also greatly increasing the user experience.

[HOOK SERVICES]

[VIRTUAL INTERFACES 9 LIBS/SDK’s i

— JS

@

NET

:Joli Y I

[INTEGRATIONS J

[PUSH UI/UX ?

TARGET: e L] . . .

In a very brief description, it allows you to develop your smartphone/tablet customized interface
and enables a message exchange system between your application and your smartphone,
making anything you need available on your device. Another good thing is that it is free for use.

The views are loaded into your mobile devices by pairing with your application Token / QR code.

https://www.google.com/url?q=https%3A%2F%2Fsoftware.intel.com%2Fen-us%2Fiotdevkit&sa=D&sntz=1&usg=AFQjCNEYUH_Fp2QPOgVkz0xBKZc_IxBPeQ
http://www.google.com/url?q=http%3A%2F%2Fiotdk.intel.com%2Fimages%2Fiot-devkit-201402201605-mmcblkp0.direct.bz2&sa=D&sntz=1&usg=AFQjCNHSz-3HrJ1DzhZ33P9vVU_UrFGsOg
http://www.google.com/url?q=http%3A%2F%2Fiotdk.intel.com%2Fimages%2Fiot-devkit-201402201605-mmcblkp0.direct.bz2&sa=D&sntz=1&usg=AFQjCNHSz-3HrJ1DzhZ33P9vVU_UrFGsOg

Galileo_demos_v1.3

Hardware requirements

The following equipment is required in order to run the demo

Intel® Galileo Board

Galileo is a micro controller board based on the Intel® Quark SoC X100Application
Processor, a 32-bit Intel
Pentium-class system on a
chip. It's the first board
based on Intel® architecture
designed to be hardware and
software pin-compatible with
Arduino shields designed for
the Uno R3. The pins are all
in the same locations as on
the Arduino Uno R3. This is
also known as the Arduino
1.0 pinout. Galileo s
designed to support shields
that operate at either 3.3V or
5V.

(http://www.intel.com/newsroom/kits/quark/galileo/pdfs/Intel_Galileo_Datasheet.pdf)

Micro SD Card

A micro SD card is required in order to use Linux as the operatingsystem, it is
suggested at least one with 1.5GB. If you computer doesn't have a micro SD drive you'll
probably need an adapter.

RGB Digital Led Strip

In this demo it was used a Digital RGB LED Waterproof Strip 98 LED
(http://www.adafruit.com/products/306), but it is possible to use any kind of digital LED
strip as long as they use the LPD8806 protocol.

http://www.google.com/url?q=http%3A%2F%2Fwww.intel.com%2Fnewsroom%2Fkits%2Fquark%2Fgalileo%2Fpdfs%2FIntel_Galileo_Datasheet.pdf&sa=D&sntz=1&usg=AFQjCNE7Ea6vvDjEovzYimiHLm_imHKGHA
http://www.google.com/url?q=http%3A%2F%2Fwww.adafruit.com%2Fproducts%2F306&sa=D&sntz=1&usg=AFQjCNEgVICz544Kr2EIEj3t7GfPJ0YepA

Galileo_demos_v1.3

Power Supply
It will be necessary at least one PSU to power up the Galileo board. We also had to use

another power supply (5V DC) because the strip was long and required more amperes in
order to be able to flash the white colour correctly. Shorter led strips can connect straight

to the on-board 5V pin.

Galileo_demos_v1.3

Hardware Setup

In the image below, a diagram of how to connect the digital LED strip to the Galileo using an
external power supplier is shown:

Galileo's Clock output is pin 13 and should connect to the LED strip Clock Input (Cl)
Galileo's Data output is pin 11 and should connect to the LED strip Data Input (Cl)

The maximum recommended voltage for the digital LED strip is 5v

If using an external power supply for the LED strip, ground must be shared between the
PSU and the Galileo ground

External Power Supply

+

13-RGB LED Strip Clockinput

11-RGB LED Strip Data input

- DI CI+
LPD8806

LED Strip

GND

Software Requirements

In order to run the demos you’ll just need to download or create a Linux image in the SD card
containing Node.js, npm and its dependencies.

Galileo_demos_v1.3

Setting up the SD card with the provided image

®© N

Update your board firmware if not updated already (v0.7.5 minimum). You can do it in
your Arduino IDE, by just clicking in the menu Help > Firmware Update

Insert your SD card in the host machine drive, use an adapter if necessary

Format the card (If using Linux check the device name with the command "fdisk -I" and
then you can format it with the command “mkfs.vfat /dev/sdb1” where /dev/sdb1 is the
drive given by the previous command)

Download the Intel® loT Devkit 1.0 image file from
http://iotdk.intel.com/images/iot-devkit-201402201605-mmcblkp0.direct.bz2

Unzip the downloaded file with the command “bunzip2
iot-devkit-201402201605-mmcblkp0.direct.bz2”.

Copy the image into the SD card using the command “dd
if=iot-devkit-201402201605-mmcblkp0.direct of=/dev/sdb2”

*If using Linux check the device name with the command "fdisk -I" where of=/dev/sdb2 is
the device given by “fdisk -I”

Unmount the SD card

Insert the SD card in the Galileo and power it

Setup your app on Muzzley Cloud

aRrON~

© N

Create your Muzzley account at www.muzzley.com if you don’t have one already
Create your app and name it e.g. MyLedStripApp

Create a widget and name it like LedWidget

Open the Muzzley widget editor

Go to git hub in directory
https://github.com/v0od0OoChild/MuzzleyGalileoDemos/tree/master/widget

Copy widget/widget.js contents to JavaScript field in the editor

Copy widget/widget.html contents to HTML field in the editor

Copy widget/widget.css contents to CSS field in the editor

Save your widget

Setting up the application

—_—

Find your Galileo IP address

Open a terminal and type ssh root@MY_GALILEO_IP

In your Galileo shell execute the following command in order to download and unzip this
demo "wget http://cdn.muzzley.com/intel/MuzzleyGalileoDemos_Devkit1.0.tar.gz -O -| tar
-zxvf-"

Go to the project path and edit the config file by typing 'vi config.js’

http://www.google.com/url?q=http%3A%2F%2Fiotdk.intel.com%2Fimages%2Fiot-devkit-201402201605-mmcblkp0.direct.bz2&sa=D&sntz=1&usg=AFQjCNHSz-3HrJ1DzhZ33P9vVU_UrFGsOg
http://www.google.com/url?q=http%3A%2F%2Fwww.muzzley.com&sa=D&sntz=1&usg=AFQjCNFM7iPlaKD2ehKt_-QXwBsyeeSRgg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fv0od0oChild%2FMuzzleyGalileoDemos%2Ftree%2Fmaster%2Fwidget&sa=D&sntz=1&usg=AFQjCNGedji_vfPX2LcUrC7Y1ojST8uamQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fv0od0oChild%2FMuzzleyGalileoDemos%2Ftree%2Fmaster%2Fwidget&sa=D&sntz=1&usg=AFQjCNGedji_vfPX2LcUrC7Y1ojST8uamQ
http://www.google.com/url?q=http%3A%2F%2Fcdn.muzzley.com%2Fintel%2FMuzzleyGalileoDemos_Devkit1.0.tar.gz&sa=D&sntz=1&usg=AFQjCNFB5u7vQ4Mo7fdCYrTiRWJpLY3hBQ

Galileo_demos_v1.3

o

In the editor, locate the following object:
ledStripe: {

ledsNum: 97,

spiDevice: '/dev/spidev1.0'
}
6. Adjust your LEDs number by changing the var ledsNum
7. Locate the following object:

muzzley: {
token: "123456789.."
}

8. Update the token var with you app appToken (given at Muzzley website). It refers to your
application token.
By default the Muzzley activities are dynamic, If you wish to have a static activity,
generate one at the Muzzley website in the tab My Apps>My App and clicking in the static
activities tab and then in the button generate.
If you are using a static activity you should also provide the generated activity to the
Muzzley object:
muzzley: {

token: "123456789..",

activityld: “My_static_activity”
}

Where the activityld is the the static one created in the Muzzley website.

9. Locate the object:
widgets:{
wmclnterface: "abcdef-ghij-4441-aaaa-bbbbbbb3a"
}
10. Update the var wmclnterface to your widget id (check widget details in Muzzley website)
11. You can now start the demo using the command “node galileo.js”.

Running the demos

Start the demo running the command “node galileo.js”.

As soon as you watch the leds start playing an animation, it means the muzzley application has
started and that you are ready to pair your device with it.

Use your muzzley mobile application and pair with the program. If you are using a static activity,
you can insert the activity code straight away or scan the qrcode at
http://www.muzzley.com/grcode/my_static_activity, where my_static_activity is your static
activity. If you are not using a static activity you need to find the generated activityld in the runtime
output and locate the following line “[info] Connected. activityld: My_activity _id”. Insert in the
Muzzley mobile app the activity id.

http://www.google.com/url?q=http%3A%2F%2Fwww.muzzley.com%2Fqrcode%2Fmy_static_activity&sa=D&sntz=1&usg=AFQjCNF_qnM40OfbrDqFnvKVTGRnSOc0Qw

Galileo_demos_v1.3

After the pair process you should have a visual interface in your mobile display. Multiple
simultaneous participants are allowed, but only one animation will be played at a time.

The Galileo pin debugger

This demo allows the user to read and write to the galileo board pins. Allowed values are 0 and 1
and the allowed directions are In and Out. Beware that you can only change a value if the
direction is set to Out.

By default the galileo pins 4, 5, 6, 7, 8, 9 and the on-board LED were made available (GPIOs 28,
17, 24, 27, 26, 19, 3).

Clicking on a pin will show you a popup which will allow you to do such operations. You can try
for instance connecting a LED to a specific pin and use the mobile device to turn it on and off
setting the direction to out and switching between values 0 and 1.

w -

PIN MAP LED STRIP

@] o ™ ° Hh
DOooDaoB
0 0 0 0 0 0
0

Galileo_demos_v1.3

The Galileo LED strip controller

This one allows the user to control a LED strip. You can fill it with colors or play some colorful
animations. Picking the color, selecting an effect or adjusting brightness will trigger the animation
with the selected parameters. The color palette is available on clicking the custom color button,
you can try slowly dragging your finger in the color palette and watch the LED strip changing
colors in real time.

0 orwe

PIN MAP LED STRIP

EFFECTS Fill Color =

CUSTOM COLOR

PALETTE COLOR

BRIGHTNESS

Galileo_demos_v1.3

Known Issues

e We are using Node.js to manipulate the LEDs. In order to make the code nonblocking,
we had to make the animations asynchronous. Sometimes the animations may not run
at the same speed.

e The animation queue is very small, if you have multiple participants connected and
queueing a long number of animations in a short time period, the first animations in the
queue will be discarded.

e In order to read the GPIO’s information, we are polling them each 5s, having multiple
participants at same time, may have a bit of delay updating the visual information in the
other participants’ views (It is possible to set the poll time shorter).

Useful links

e Project source on Github (https://github.com/vOodOoChild/MuzzleyGalileoDemos)
e Intel® loT Devkit (https://software.intel.com/en-us/iotdevkit)
e Galileo references and pin assignment (http://www.malinov.com/Home/sergey-s-blog)

http://www.google.com/url?q=http%3A%2F%2Fwww.malinov.com%2FHome%2Fsergey-s-blog&sa=D&sntz=1&usg=AFQjCNEz5BIQ9QkciARcU8zvdBPMNrmgcw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fv0od0oChild%2FMuzzleyGalileoDemos&sa=D&sntz=1&usg=AFQjCNFkGodpjL_xvIjWFhm0bcIvcQwxkA
https://www.google.com/url?q=https%3A%2F%2Fsoftware.intel.com%2Fen-us%2Fiotdevkit&sa=D&sntz=1&usg=AFQjCNEYUH_Fp2QPOgVkz0xBKZc_IxBPeQ
http://www.google.com/url?q=http%3A%2F%2Fwww.malinov.com%2FHome%2Fsergey-s-blog&sa=D&sntz=1&usg=AFQjCNEz5BIQ9QkciARcU8zvdBPMNrmgcw

