-
Notifications
You must be signed in to change notification settings - Fork 1
/
model_cora.py
570 lines (503 loc) · 29.1 KB
/
model_cora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Authors : Nairouz Mrabah (mrabah.nairouz@courrier.uqam.ca)
# @License : MIT License
import os
import torch
import csv
import sklearn
import numpy as np
import torch.nn as nn
import seaborn as sns
import metrics as mt
import networkx as nx
import torch.nn.functional as F
import matplotlib.pyplot as plt
import scipy.sparse as sp
from torch.nn import Parameter
from tqdm import tqdm
from torch.optim import Adam, SGD, RMSprop
from sklearn import metrics
from torch.optim.lr_scheduler import StepLR
from sklearn.manifold import TSNE
from munkres import Munkres
from sklearn.cluster import KMeans
from scipy.sparse import csr_matrix
from preprocessing import sparse_to_tuple, preprocess_graph
from sklearn.neighbors import NearestNeighbors
class Clustering_Metrics:
def __init__(self, true_label, predict_label):
self.true_label = true_label
self.pred_label = predict_label
def clusteringAcc(self):
# best mapping between true_label and predict label
l1 = list(set(self.true_label))
numclass1 = len(l1)
l2 = list(set(self.pred_label))
numclass2 = len(l2)
if numclass1 != numclass2:
print('Class Not equal, Error!!!!')
return 0
cost = np.zeros((numclass1, numclass2), dtype=int)
for i, c1 in enumerate(l1):
mps = [i1 for i1, e1 in enumerate(self.true_label) if e1 == c1]
for j, c2 in enumerate(l2):
mps_d = [i1 for i1 in mps if self.pred_label[i1] == c2]
cost[i][j] = len(mps_d)
# match two clustering results by Munkres algorithm
m = Munkres()
cost = cost.__neg__().tolist()
indexes = m.compute(cost)
# get the match results
new_predict = np.zeros(len(self.pred_label))
for i, c in enumerate(l1):
# correponding label in l2:
c2 = l2[indexes[i][1]]
# ai is the index with label==c2 in the pred_label list
ai = [ind for ind, elm in enumerate(self.pred_label) if elm == c2]
new_predict[ai] = c
acc = metrics.accuracy_score(self.true_label, new_predict)
f1_macro = metrics.f1_score(self.true_label, new_predict, average='macro')
precision_macro = metrics.precision_score(self.true_label, new_predict, average='macro')
recall_macro = metrics.recall_score(self.true_label, new_predict, average='macro')
f1_micro = metrics.f1_score(self.true_label, new_predict, average='micro')
precision_micro = metrics.precision_score(self.true_label, new_predict, average='micro')
recall_micro = metrics.recall_score(self.true_label, new_predict, average='micro')
return acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro
def evaluationClusterModelFromLabel(self):
nmi = metrics.normalized_mutual_info_score(self.true_label, self.pred_label)
ari = metrics.adjusted_rand_score(self.true_label, self.pred_label)
acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro = self.clusteringAcc()
print('ACC=%f, f1_macro=%f, precision_macro=%f, recall_macro=%f, f1_micro=%f, precision_micro=%f, recall_micro=%f, NMI=%f, ARI_RAND_SCORE=%f' % (acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro, nmi, ari))
fh = open('recoder.txt', 'a')
fh.write('ACC=%f, f1_macro=%f, precision_macro=%f, recall_macro=%f, f1_micro=%f, precision_micro=%f, recall_micro=%f, NMI=%f, ARI_RAND_SCORE=%f' % (acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro, nmi, ari) )
fh.write('\r\n')
fh.flush()
fh.close()
return acc, nmi, ari, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro
class ClusterAssignment(nn.Module):
def __init__(self, cluster_number, embedding_dimension, alpha, cluster_centers=None):
super(ClusterAssignment, self).__init__()
self.embedding_dimension = embedding_dimension
self.cluster_number = cluster_number
self.alpha = alpha
if cluster_centers is None:
initial_cluster_centers = torch.zeros(self.cluster_number, self.embedding_dimension, dtype=torch.float)
nn.init.xavier_uniform_(initial_cluster_centers)
else:
initial_cluster_centers = cluster_centers
self.cluster_centers = Parameter(initial_cluster_centers)
def forward(self, inputs):
norm_squared = torch.sum((inputs.unsqueeze(1) - self.cluster_centers) ** 2, 2)
numerator = 1.0 / (1.0 + (norm_squared / self.alpha))
power = float(self.alpha + 1) / 2
numerator = numerator ** power
return numerator / torch.sum(numerator, dim=1, keepdim=True)
class GraphConvSparse(nn.Module):
def __init__(self, input_dim, output_dim, activation = F.relu, **kwargs):
super(GraphConvSparse, self).__init__(**kwargs)
self.weight = random_uniform_init(input_dim, output_dim)
self.activation = activation
def forward(self, inputs, adj):
x = inputs
x = torch.mm(x, self.weight)
x = torch.mm(adj, x)
outputs = self.activation(x)
return outputs
def purity_score(y_true, y_pred):
contingency_matrix = sklearn.metrics.cluster.contingency_matrix(y_true, y_pred)
return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix)
def random_uniform_init(input_dim, output_dim):
init_range = np.sqrt(6.0 / (input_dim + output_dim))
initial = torch.rand(input_dim, output_dim)*2*init_range - init_range
return nn.Parameter(initial)
def generate_unconflicted_data_index(p, beta_1, beta_2):
unconf_indices = []
conf_indices = []
p = p.detach().cpu().numpy()
confidence1 = p.max(1)
confidence2 = np.zeros((p.shape[0],))
a = np.argsort(p, axis=1)[:,-2]
for i in range(p.shape[0]):
confidence2[i] = p[i,a[i]]
if (confidence1[i] > beta_1) and (confidence1[i] - confidence2[i]) > beta_2:
unconf_indices.append(i)
else:
conf_indices.append(i)
unconf_indices = np.asarray(unconf_indices, dtype=int)
conf_indices = np.asarray(conf_indices, dtype=int)
return unconf_indices, conf_indices
def generate_sep_index(emb, centers, p):
emb = emb.detach().cpu().numpy()
centers = centers.detach().cpu().numpy()
p = p.detach().cpu().numpy()
nn = NearestNeighbors(n_neighbors= 1, algorithm='ball_tree').fit(emb)
_, indices = nn.kneighbors(centers)
indices_sep = np.zeros((emb.shape[0], centers.shape[0]-2), dtype=int)
assignments_index = np.argsort(p, axis=1)
first_center_index = indices[assignments_index[:,-1]]
second_center_index = indices[assignments_index[:,-2]]
for i in range(emb.shape[0]):
k = 0
for j in indices:
if (j != first_center_index[i]) and (j != second_center_index[i]):
indices_sep[i, k] = j
k+=1
return indices_sep
def negative_embeddings(z_mu_pos, z_sigma2_log_pos, emb_pos):
idx = torch.randperm(emb_pos.shape[0])
z_mu_neg = z_mu_pos[idx,:]
z_sigma2_log_neg = z_sigma2_log_pos[idx,:]
emb_neg = emb_pos[idx,:]
return z_mu_neg, z_sigma2_log_neg, emb_neg
def target_distribution(p, unconflicted_ind, conflicted_ind):
p = p.detach().cpu().numpy()
q = np.zeros(p.shape)
q[conflicted_ind] = p[conflicted_ind]
q[unconflicted_ind, np.argmax(p[unconflicted_ind], axis=1)] = 1
q = torch.tensor(q, dtype=torch.float32).to("cuda:4")
return q
def evaluate_links(adj, labels):
count_links = {"nb_links": 0,
"nb_false_links": 0,
"nb_true_links": 0}
for i, line in enumerate(adj):
for j in range(line.indices.size):
if line.indices[j] > i:
count_links["nb_links"] += 1
if labels[i] == labels[line.indices[j]]:
count_links["nb_true_links"] += 1
else:
count_links["nb_false_links"] += 1
return count_links
class CVGAE(nn.Module):
def __init__(self, **kwargs):
super(CVGAE, self).__init__()
self.num_neurons = kwargs['num_neurons']
self.num_features = kwargs['num_features']
self.embedding_size = kwargs['embedding_size']
self.nClusters = kwargs['nClusters']
if kwargs['activation'] == "ReLU":
self.activation = F.relu
if kwargs['activation'] == "Sigmoid":
self.activation = F.sigmoid
if kwargs['activation'] == "Tanh":
self.activation = F.tanh
self.alpha = kwargs['alpha']
self.gamma_1 = kwargs['gamma_1']
self.gamma_2 = kwargs['gamma_2']
self.gamma_3 = kwargs['gamma_3']
# VGAE training parameters
self.base_gcn = GraphConvSparse(self.num_features, self.num_neurons, self.activation)
self.gcn_mean = GraphConvSparse(self.num_neurons, self.embedding_size, activation=lambda x:x)
self.gcn_logsigma2 = GraphConvSparse(self.num_neurons, self.embedding_size, activation=lambda x:x)
self.assignment = ClusterAssignment(self.nClusters, self.embedding_size, self.alpha)
self.kl_loss = nn.KLDivLoss(reduction='batchmean')
def generate_centers(self, emb_unconf):
y_pred = self.predict(emb_unconf)
nn = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(emb_unconf.detach().cpu().numpy())
_, indices = nn.kneighbors(self.assignment.cluster_centers.detach().cpu().numpy())
return indices[y_pred]
def update_graph(self, adj, emb, labels, unconf_indices):
count_target_links = {"nb_added_links": 0,
"nb_false_added_links": 0,
"nb_true_added_links": 0,
"nb_deleted_links": 0,
"nb_false_deleted_links": 0,
"nb_true_deleted_links": 0}
y_pred = self.predict(emb)
emb_unconf = emb[unconf_indices]
adj_pos = adj.tolil()
idx = unconf_indices[self.generate_centers(emb_unconf)]
for i, k in enumerate(unconf_indices):
adj_k_pos = adj_pos[k].tocsr().indices
if not(np.isin(idx[i], adj_k_pos)) and (y_pred[k] == y_pred[idx[i]]):
if labels[k] == labels[idx[i]]:
count_target_links["nb_true_added_links"] += 1
else:
count_target_links["nb_false_added_links"] += 1
count_target_links["nb_added_links"] += 1
adj_pos[k, idx[i]] = 1
for j in adj_k_pos:
if np.isin(j, unconf_indices) and (np.isin(idx[i], adj_k_pos)) and (y_pred[k] != y_pred[j]):
if labels[k] == labels[j]:
count_target_links["nb_true_deleted_links"] += 1
else:
count_target_links["nb_false_deleted_links"] += 1
count_target_links["nb_deleted_links"] += 1
adj_pos[k, j] = 0
adj_pos = adj_pos - sp.dia_matrix((adj_pos.diagonal()[np.newaxis, :], [0]), shape=adj_pos.shape)
adj_pos = adj_pos.tocsr()
adj_pos.eliminate_zeros()
adj_norm_pos = preprocess_graph(adj_pos)
pos_weight = float(adj_pos.shape[0] * adj_pos.shape[0] - adj_pos.sum()) / adj_pos.sum()
norm_pos = adj_pos.shape[0] * adj_pos.shape[0] / float((adj_pos.shape[0] * adj_pos.shape[0] - adj_pos.sum()) * 2)
adj_label_pos = adj_pos + sp.eye(adj_pos.shape[0])
adj_label_pos = sparse_to_tuple(adj_label_pos)
adj_norm_pos = torch.sparse.FloatTensor(torch.LongTensor(adj_norm_pos[0].T), torch.FloatTensor(adj_norm_pos[1]), torch.Size(adj_norm_pos[2])).to("cuda:4")
adj_label_pos = torch.sparse.FloatTensor(torch.LongTensor(adj_label_pos[0].T), torch.FloatTensor(adj_label_pos[1]), torch.Size(adj_label_pos[2])).to("cuda:4")
weight_mask_pos = adj_label_pos.to_dense().view(-1) == 1
weight_tensor_pos = torch.ones(weight_mask_pos.size(0))
weight_tensor_pos[weight_mask_pos] = pos_weight
weight_tensor_pos = weight_tensor_pos.to("cuda:4")
return adj_pos, adj_norm_pos, adj_label_pos, weight_tensor_pos, norm_pos, count_target_links
@staticmethod
def update_features(features):
features_dense = features.to_dense()
idx = np.random.permutation(features_dense.shape[0])
features_neg = features_dense[idx,:]
indices = torch.nonzero(features_neg).t()
values = features_neg[indices[0], indices[1]]
features_neg = torch.sparse.FloatTensor(indices, values, features_neg.size())
return features_neg
def compute_separtion_loss(self, z_mu_pos, z_sigma2_log_pos, sep_ind, unconflicted_ind):
# Preparing negative signals
z_mu_neg_tensor = z_mu_pos[sep_ind,:][unconflicted_ind]
z_mu_pos_tensor = z_mu_pos[unconflicted_ind].unsqueeze(1).repeat_interleave(self.nClusters-2, dim=1)
# Computing the separation loss
KL_neg = (1 / z_mu_pos.shape[0]) * torch.einsum("ijk,ijk->ij", (z_mu_pos_tensor - z_mu_neg_tensor), (z_mu_pos_tensor - z_mu_neg_tensor))
Loss_sep = torch.mean(torch.log(1 + torch.mean(torch.exp(-KL_neg), dim=1)), dim=0)
return Loss_sep
def pretrain(self, features, adj_norm, adj_label, y, weight_tensor, norm, optimizer="Adam", epochs=200, lr=0.01, save_path="./CVGAE/results/", dataset="Cora"):
if optimizer == "SGD":
opti = SGD(self.parameters(), lr=lr, momentum=0.9, weight_decay = 0.001)
elif optimizer == "RMSProp":
opti = RMSprop(self.parameters(), lr=lr, weight_decay = 0.001)
else:
opti = Adam(self.parameters(), lr=lr)
logfile = open(save_path + dataset + '/pretrain/log_train' + '.csv', 'w')
logwriter = csv.DictWriter(logfile, fieldnames=['iter', 'acc', 'nmi', 'ari', 'pur', 'f1_macro', 'f1_micro', 'precision_macro', 'precision_micro', 'recall_macro', 'recall_micro', 'loss'])
logwriter.writeheader()
km = KMeans(n_clusters=self.nClusters, n_init=20)
##############################################################
# Training loop
print("")
print('Training......')
epoch_bar = tqdm(range(epochs))
acc_best = 0
y_pred_best = 0
for epoch in epoch_bar:
opti.zero_grad()
z_mu, z_sigma2_log, z, hidden = self.encode(features, adj_norm)
adj_out = self.decode(z)
adj_out_np = adj_out.detach().cpu().numpy()
index = np.where(adj_out_np > 0.5)
adj_out_csr = csr_matrix((np.ones((index[0].shape)), index), shape=adj_out_np.shape, dtype=int)
Loss_recons = norm * F.binary_cross_entropy(adj_out.view(-1), adj_label.to_dense().view(-1), weight=weight_tensor)
Loss_reg = - (0.5 / adj_out.size(0)) * (1 + z_sigma2_log - z_mu**2 - torch.exp(z_sigma2_log)).sum(1).mean()
loss = Loss_recons + Loss_reg
loss.backward()
opti.step()
##############################################################
# Evaluation
epoch_bar.write('Loss pretraining = {:.4f}'.format(loss))
print("")
print("loss reconstruction: " + str(Loss_recons.detach().cpu().numpy()))
print("loss regularization: " + str(Loss_reg.detach().cpu().numpy()))
print("loss: " + str(loss.detach().cpu().numpy()))
y_pred = km.fit_predict(z.detach().cpu().numpy())
cm = Clustering_Metrics(y, y_pred)
acc, nmi, ari, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro = cm.evaluationClusterModelFromLabel()
pur = purity_score(y, y_pred)
##############################################################
# Save logs
logdict = dict(iter=epoch, acc=acc, nmi=nmi, ari=ari, pur=pur, f1_macro=f1_macro, f1_micro=f1_micro, precision_macro=precision_macro, precision_micro=precision_micro, recall_macro=recall_macro, recall_micro=recall_micro, loss=loss.detach().cpu().numpy())
logwriter.writerow(logdict)
logfile.flush()
if acc > acc_best:
##############################################################
# Saving Graph Structures
#graph = {'graph': adj_out_csr}
#np.save(save_path + dataset + '/pretrain/graph_pretrain_'+ str(epoch) + '.npy', graph)
##############################################################
# Saving 2D Embedded space
#tsne = TSNE()
#tsne_results = tsne.fit_transform(z.detach().cpu().numpy())
#plt.figure()
#sns.set(rc={'figure.figsize':(11.7,8.27)})
#palette = sns.color_palette("bright", self.nClusters)
#sns.set_style("white")
#clusterviz = sns.scatterplot(tsne_results[:, 0], tsne_results[:, 1], hue=y, legend='brief', palette=palette)
#plt.savefig(save_path + dataset + "/pretrain/vis_tsne_" + str(epoch) + ".png", dpi=400)
##############################################################
# Initialize the centers
centers = torch.tensor(km.cluster_centers_, dtype=torch.float, requires_grad=True)
self.assignment.state_dict()["cluster_centers"].copy_(centers)
##############################################################
# Saving model
acc_best = acc
y_pred_best = y_pred
torch.save(self.state_dict(), save_path + dataset + '/pretrain/model_pretrain.pk')
#data = {'emb': z.detach().cpu().numpy(), 'hidden': hidden.detach().cpu().numpy()}
#np.save(save_path + dataset + '/pretrain/data_pretrain.npy', data)
print("Best accuracy : ", acc_best)
return y_pred_best, y
def train(self, features, adj_norm, adj_label, adj, y, weight_tensor, norm, optimizer="Adam", epochs=200, lr=0.01, beta_1=0.3, beta_2=0.15, save_path="./CVGAE/results/", dataset="Cora"):
self.load_state_dict(torch.load(save_path + dataset + '/pretrain/model_pretrain.pk'))
if optimizer == "Adam":
opti = Adam(self.parameters(), lr=lr, weight_decay=1e-3)
elif optimizer == "RMSProp":
opti = RMSprop(self.parameters(), lr=lr, weight_decay=0.01)
else:
opti = SGD(self.parameters(), lr=lr, momentum=0.9, weight_decay=0.01)
lr_s = StepLR(opti, step_size=120, gamma=0.9)
if not os.path.exists(save_path):
os.makedirs(save_path)
logfile = open(save_path + dataset + '/train/log_train.csv', 'w')
logwriter = csv.DictWriter(logfile, fieldnames=['iter', 'acc', 'nmi', 'ari', 'pur', 'f1_macro', 'f1_micro',
'precision_macro', 'precision_micro', 'recall_macro', 'recall_micro', 'acc_unconf', 'nmi_unconf',
'acc_conf', 'nmi_conf', 'nb_unconf', 'nb_conf', 'nb_links',
'nb_false_links', 'nb_true_links', 'nb_added_links', 'nb_false_added_links',
'nb_true_added_links', 'nb_dropped_links', 'nb_false_dropped_links',
'nb_true_dropped_links', 'Loss_recons', 'Loss_clus', 'Loss_reg',
'Loss_sep', 'Loss_comp', 'Loss'])
logwriter.writeheader()
epoch_bar = tqdm(range(epochs))
##############################################################
# Preparing positive signals
adj_norm_pos = adj_norm
adj_label_pos = adj_label
features_pos = features
norm_pos = norm
##############################################################
# Training loop
print('\n')
print('Training......')
acc_best = 0
for epoch in epoch_bar:
opti.zero_grad()
z_mu_pos, z_sigma2_log_pos, emb_pos, hidden_pos = self.encode(features_pos, adj_norm_pos)
p_pos = self.assignment(z_mu_pos)
adj_out_pos = self.decode(emb_pos)
if epoch % 20 == 0:
unconflicted_ind, conflicted_ind = generate_unconflicted_data_index(p_pos, beta_1, beta_2)
sep_ind = generate_sep_index(emb_pos, self.assignment.cluster_centers, p_pos)
q_pos = target_distribution(p_pos, unconflicted_ind, conflicted_ind)
adj_pos, adj_norm_pos, adj_label_pos, weight_tensor_pos, norm_pos, count_target_links = self.update_graph(adj, emb_pos, y, unconflicted_ind)
count_links = evaluate_links(adj_pos, y)
##############################################################
# Stopping condition
if unconflicted_ind.shape[0] > (features_pos.shape[0] * 0.8):
break
##############################################################
# Loss
Loss_recons = norm_pos * F.binary_cross_entropy(adj_out_pos.view(-1), adj_label_pos.to_dense().view(-1), weight=weight_tensor_pos)
Loss_clus = 2 * self.kl_loss(torch.log(p_pos), q_pos)
Loss_reg = torch.mean((1 / z_mu_pos.shape[0]) * torch.sum(z_mu_pos ** 2 + torch.exp(z_sigma2_log_pos) - 1 - z_sigma2_log_pos, dim=1))
Loss_comp = Loss_recons + self.gamma_1 * Loss_clus + self.gamma_2 * Loss_reg
Loss_sep = self.compute_separtion_loss(z_mu_pos, z_sigma2_log_pos, sep_ind, unconflicted_ind)
Loss = Loss_comp + self.gamma_3 * Loss_sep
##############################################################
# Evaluation
acc_unconf, nmi_unconf, acc_conf, nmi_conf = self.compute_acc_and_nmi_conflicted_data(unconflicted_ind, conflicted_ind, emb_pos, y)
epoch_bar.write('Loss training = {:.4f}'.format(Loss.detach().cpu().numpy()))
print("")
print("loss reconstruction: " + str(Loss_recons.detach().cpu().numpy()))
print("loss clustering: " + str(Loss_clus.detach().cpu().numpy()))
print("loss regularisation: " + str(Loss_reg.detach().cpu().numpy()))
print("loss compactness: " + str(Loss_comp.detach().cpu().numpy()))
print("loss separability: " + str(Loss_sep.detach().cpu().numpy()))
print("loss: " + str(Loss.detach().cpu().numpy()))
y_pred = self.predict(emb_pos)
cm = Clustering_Metrics(y, y_pred)
acc, nmi, ari, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro = cm.evaluationClusterModelFromLabel()
pur = purity_score(y, y_pred)
##############################################################
# Update learnable parameters
Loss.backward()
opti.step()
lr_s.step()
##############################################################
# Save logs
logdict = dict(iter=epoch, acc=acc, nmi=nmi, ari=ari, pur=pur, f1_macro=f1_macro, f1_micro=f1_micro,
precision_macro=precision_macro, precision_micro=precision_micro,
recall_macro=recall_macro, recall_micro=recall_micro,
acc_unconf=acc_unconf, nmi_unconf=nmi_unconf, acc_conf=acc_conf,
nb_links=count_links["nb_links"],
nb_false_links=count_links["nb_false_links"],
nb_true_links=count_links["nb_true_links"],
nb_added_links=count_target_links["nb_added_links"],
nb_false_added_links=count_target_links["nb_false_added_links"],
nb_true_added_links=count_target_links["nb_true_added_links"],
nb_dropped_links=count_target_links["nb_deleted_links"],
nb_false_dropped_links=count_target_links["nb_false_deleted_links"],
nb_true_dropped_links=count_target_links["nb_true_deleted_links"],
nmi_conf=nmi_conf, nb_unconf=unconflicted_ind.shape[0], nb_conf=conflicted_ind.shape[0],
Loss_recons=Loss_recons.detach().cpu().numpy(), Loss_clus=Loss_clus.detach().cpu().numpy(),
Loss_reg=Loss_reg.detach().cpu().numpy(), Loss_sep=Loss_sep.detach().cpu().numpy(),
Loss_comp=Loss_comp.detach().cpu().numpy(), Loss=Loss.detach().cpu().numpy())
logwriter.writerow(logdict)
logfile.flush()
#if epoch % 50 == 0:
##############################################################
# Saving Graph Structures
#G = nx.convert_matrix.from_scipy_sparse_matrix(adj_pos)
#i = 0
#for node in G.nodes():
# G.nodes[node]['category'] = y[i]
# i += 1
# put together a color map, one color for a category
#color_map = {0:'b', 1:'g', 2:'r', 3:'c', 4:'m', 5:'y', 6:'k'}
# construct a list of colors then pass to node_color
#pos = nx.spring_layout(G)
#nx.draw_networkx_nodes(G, pos , node_color=[color_map[G.nodes[node]['category']] for node in G.nodes()], alpha=0.6, node_size=20)
#nx.draw_networkx_edges(G, pos, width=0.5, edge_color='0.75', alpha=0.5)
#nx.write_graphml_lxml(G, save_path + dataset + "/train/adj_pos_epoch_" + str(epoch) + ".graphml")
##############################################################
# TNSE
#tsne = TSNE()
#tsne_results = tsne.fit_transform(emb_pos.detach().cpu().numpy())
#plt.figure()
#sns.set(rc={'figure.figsize':(11.7,8.27)})
#palette = sns.color_palette("bright", self.nClusters)
#sns.set_style("white")
#sns.scatterplot(tsne_results[:,0], tsne_results[:,1], hue=y, legend='brief', palette=palette)
#plt.savefig(save_path + dataset + "/train/vis_tsne_" + str(epoch) + ".png", dpi=400)
##############################################################
# Save model
if (acc > acc_best):
acc_best = acc
y_pred_best = y_pred
torch.save(self.state_dict(), save_path + dataset + '/train/model_cluster.pk')
print("Best accuracy : ", acc_best)
return y_pred_best, y
def predict(self, z):
p = self.assignment(z).detach().cpu().numpy()
return np.argmax(p, axis=1)
def encode(self, features, adj):
hidden = self.base_gcn(features, adj)
mean = self.gcn_mean(hidden, adj)
log_sigma2 = self.gcn_logsigma2(hidden, adj)
gaussian_noise = torch.randn(features.size(0), self.embedding_size).to("cuda:4")
sampled_z = gaussian_noise * torch.exp(log_sigma2 / 2) + mean
return mean, log_sigma2, sampled_z, hidden
@staticmethod
def decode(z):
A_pred = torch.sigmoid(torch.matmul(z, z.t()))
return A_pred
def compute_acc_and_nmi_conflicted_data(self, unconf_indices, conf_indices, emb, y):
if unconf_indices.size == 0:
print(' '*8 + "Empty list of unconflicted data")
acc_unconf = 0
nmi_unconf = 0
else:
print("\nNumber of Unconflicted points : ", len(unconf_indices))
emb_unconf = emb[unconf_indices]
y_unconf = y[unconf_indices]
y_pred_unconf = self.predict(emb_unconf)
acc_unconf = mt.acc(y_unconf, y_pred_unconf)
nmi_unconf = mt.nmi(y_unconf, y_pred_unconf)
print(' '*8 + '|==> acc unconflicted data: %.4f, nmi unconflicted data: %.4f <==|'% (acc_unconf, nmi_unconf))
if conf_indices.size == 0:
print(' '*8 + "Empty list of conflicted data")
acc_conf = 0
nmi_conf = 0
else:
print("Number of conflicted points : ", len(conf_indices))
emb_conf = emb[conf_indices]
y_conf = y[conf_indices]
y_pred_conf = self.predict(emb_conf)
acc_conf = mt.acc(y_conf, y_pred_conf)
nmi_conf = mt.nmi(y_conf, y_pred_conf)
print(' '*8 + '|==> acc conflicted data: %.4f, nmi conflicted data: %.4f <==|'% (mt.acc(y_conf, y_pred_conf), mt.nmi(y_conf, y_pred_conf)))
return acc_unconf, nmi_unconf, acc_conf, nmi_conf