-
Notifications
You must be signed in to change notification settings - Fork 1
/
preprocessing.py
354 lines (308 loc) · 12.9 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
'''
****************NOTE*****************
CREDITS DUE TO : Thomas Kipf
since datasets are the same as those in kipf's implementation,
Their preprocessing source was used as-is.
*************************************
'''
import torch
import numpy as np
import sys
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
import sklearn.preprocessing as preprocess
from scipy.sparse import csr_matrix
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def load_data_email(dataset_str, data_path):
"""Read the data and preprocess the task information."""
dataset_G = data_path + "{}.edgelist".format(dataset_str)
dataset_L = data_path + "labels-{}.txt".format(dataset_str)
label_raw, nodes = [], []
with open(dataset_L, 'r') as file_to_read:
while True:
lines = file_to_read.readline()
if not lines:
break
node, label = lines.split()
if label == 'label': continue
label_raw.append(int(label))
nodes.append(int(node))
label_raw = np.array(label_raw)
print(label_raw)
#lb = preprocess.LabelBinarizer()
#labels = lb.fit_transform(label_raw)
G = nx.read_edgelist(open(dataset_G, 'rb'), nodetype=int)
adj = nx.adjacency_matrix(G, nodelist=nodes)
#features = sp.csr_matrix(adj)
# task information
degreeNode = np.sum(adj, axis=1).A1
degreeNode = degreeNode.astype(np.int32)
features = np.zeros((degreeNode.size, degreeNode.max()+1))
features[np.arange(degreeNode.size),degreeNode] = 1
features = sp.csr_matrix(features)
return adj, features, label_raw
def load_data_networks(dataset_str, data_path):
"""Read the data and preprocess the task information."""
dataset_G = data_path+"{}-airports.edgelist".format(dataset_str)
dataset_L = data_path+"labels-{}-airports.txt".format(dataset_str)
label_raw, nodes = [], []
with open(dataset_L, 'r') as file_to_read:
while True:
lines = file_to_read.readline()
if not lines:
break
node, label = lines.split()
if label == 'label': continue
label_raw.append(int(label))
nodes.append(int(node))
label_raw = np.array(label_raw)
print(label_raw)
#lb = preprocess.LabelBinarizer()
#labels = lb.fit_transform(label_raw)
G = nx.read_edgelist(open(dataset_G, 'rb'), nodetype=int)
adj = nx.adjacency_matrix(G, nodelist=nodes)
#features = sp.csr_matrix(adj)
# task information
degreeNode = np.sum(adj, axis=1).A1
degreeNode = degreeNode.astype(np.int32)
features = np.zeros((degreeNode.size, degreeNode.max()+1))
features[np.arange(degreeNode.size),degreeNode] = 1
features = sp.csr_matrix(features)
return adj, features, label_raw
def load_data(dataset, data_path):
# load the data: x, tx, allx, graph
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
'''
fix Pickle incompatibility of numpy arrays between Python 2 and 3
https://stackoverflow.com/questions/11305790/pickle-incompatibility-of-numpy-arrays-between-python-2-and-3
'''
with open(data_path + "/ind.{}.{}".format(dataset, names[i]), 'rb') as rf:
u = pkl._Unpickler(rf)
u.encoding = 'latin1'
cur_data = u.load()
objects.append(cur_data)
# objects.append(
# pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb')))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(data_path + "/ind.{}.test.index".format(dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range - min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
return adj, features, np.argmax(labels, 1)
def load_dblp(data_path):
path = data_path + '/dblp_graph.txt'
features = np.loadtxt(data_path + '/dblp.txt', dtype=float)
labels = np.loadtxt(data_path + '/dblp_label.txt', dtype=int)
n, _ = features.shape
idx = np.array([i for i in range(n)], dtype=np.int32)
idx_map = {j: i for i, j in enumerate(idx)}
edges_unordered = np.genfromtxt(path, dtype=np.int32)
edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape)
adj = sp.csr_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(n, n), dtype=np.float32)
features = sp.csr_matrix(features)
# build symmetric adjacency matrix
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = adj + sp.eye(adj.shape[0])
#adj = normalize(adj)
#adj_norm = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels
def load_acm(data_path):
path = data_path + '/acm_graph.txt'
features = np.loadtxt(data_path + '/acm.txt', dtype=float)
labels = np.loadtxt(data_path + '/acm_label.txt', dtype=int)
n, _ = features.shape
idx = np.array([i for i in range(n)], dtype=np.int32)
idx_map = {j: i for i, j in enumerate(idx)}
edges_unordered = np.genfromtxt(path, dtype=np.int32)
edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape)
adj = sp.csr_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(n, n), dtype=np.float32)
features = sp.csr_matrix(features)
# build symmetric adjacency matrix
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = adj + sp.eye(adj.shape[0])
#adj = normalize(adj)
#adj_norm = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels
def load_wiki(data_path):
f = open(data_path + '/graph.txt','r')
adj, xind, yind = [], [], []
for line in f.readlines():
line = line.split()
xind.append(int(line[0]))
yind.append(int(line[1]))
adj.append([int(line[0]), int(line[1])])
f.close()
##print(len(adj))
f = open(data_path + '/group.txt','r')
label = []
for line in f.readlines():
line = line.split()
label.append(int(line[1]))
f.close()
f = open(data_path+'/tfidf.txt','r')
fea_idx = []
fea = []
adj = np.array(adj)
adj = np.vstack((adj, adj[:,[1,0]]))
adj = np.unique(adj, axis=0)
labelset = np.unique(label)
labeldict = dict(zip(labelset, range(len(labelset))))
label = np.array([labeldict[x] for x in label])
adj = sp.csr_matrix((np.ones(len(adj)), (adj[:,0], adj[:,1])), shape=(len(label), len(label)))
for line in f.readlines():
line = line.split()
fea_idx.append([int(line[0]), int(line[1])])
fea.append(float(line[2]))
f.close()
fea_idx = np.array(fea_idx)
features = sp.csr_matrix((fea, (fea_idx[:,0], fea_idx[:,1])), shape=(len(label), 4973))#.toarray()
scaler = preprocess.MinMaxScaler()
features = preprocess.normalize(features, norm='l2')
#features = scaler.fit_transform(features)
#features = torch.FloatTensor(features)
return adj, features, label
def sparse_to_tuple(sparse_mx):
if not sp.isspmatrix_coo(sparse_mx):
sparse_mx = sparse_mx.tocoo()
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
values = sparse_mx.data
shape = sparse_mx.shape
return coords, values, shape
def preprocess_graph(adj):
adj = sp.coo_matrix(adj)
adj_ = adj + sp.eye(adj.shape[0])
rowsum = np.array(adj_.sum(1))
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
return sparse_to_tuple(adj_normalized)
def preprocess_graph1(adj):
adj = sp.coo_matrix(adj)
adj_ = adj + sp.eye(adj.shape[0])
rowsum = np.array(adj_.sum(1))
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
return adj_normalized
def preprocess_graph2(adj, layer, norm='sym', renorm=True):
adj = sp.coo_matrix(adj)
ident = sp.eye(adj.shape[0])
if renorm:
adj_ = adj + ident
else:
adj_ = adj
rowsum = np.array(adj_.sum(1))
if norm == 'sym':
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
laplacian = ident - adj_normalized
elif norm == 'left':
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -1.).flatten())
adj_normalized = degree_mat_inv_sqrt.dot(adj_).tocoo()
laplacian = ident - adj_normalized
reg = [2/3] * (layer)
adjs = []
for i in range(len(reg)):
adjs.append(ident-(reg[i] * laplacian))
return adjs
def laplacian(adj):
rowsum = np.array(adj.sum(1))
degree_mat = sp.diags(rowsum.flatten())
lap = degree_mat - adj
return torch.FloatTensor(lap.toarray())
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def mask_test_edges(adj):
# Function to build test set with 10% positive links
# NOTE: Splits are randomized and results might slightly deviate from reported numbers in the paper.
# TODO: Clean up.
# Remove diagonal elements
adj = adj - sp.dia_matrix((adj.diagonal()[np.newaxis, :], [0]), shape=adj.shape)
adj.eliminate_zeros()
# Check that diag is zero:
assert np.diag(adj.todense()).sum() == 0
adj_triu = sp.triu(adj)
adj_tuple = sparse_to_tuple(adj_triu)
edges = adj_tuple[0]
edges_all = sparse_to_tuple(adj)[0]
num_test = int(np.floor(edges.shape[0] / 10.))
num_val = int(np.floor(edges.shape[0] / 20.))
all_edge_idx = list(range(edges.shape[0]))
np.random.shuffle(all_edge_idx)
val_edge_idx = all_edge_idx[:num_val]
test_edge_idx = all_edge_idx[num_val:(num_val + num_test)]
test_edges = edges[test_edge_idx]
val_edges = edges[val_edge_idx]
train_edges = np.delete(edges, np.hstack([test_edge_idx, val_edge_idx]), axis=0)
def ismember(a, b, tol=5):
rows_close = np.all(np.round(a - b[:, None], tol) == 0, axis=-1)
return np.any(rows_close)
test_edges_false = []
while len(test_edges_false) < len(test_edges):
idx_i = np.random.randint(0, adj.shape[0])
idx_j = np.random.randint(0, adj.shape[0])
if idx_i == idx_j:
continue
if ismember([idx_i, idx_j], edges_all):
continue
if test_edges_false:
if ismember([idx_j, idx_i], np.array(test_edges_false)):
continue
if ismember([idx_i, idx_j], np.array(test_edges_false)):
continue
test_edges_false.append([idx_i, idx_j])
val_edges_false = []
while len(val_edges_false) < len(val_edges):
idx_i = np.random.randint(0, adj.shape[0])
idx_j = np.random.randint(0, adj.shape[0])
if idx_i == idx_j:
continue
if ismember([idx_i, idx_j], train_edges):
continue
if ismember([idx_j, idx_i], train_edges):
continue
if ismember([idx_i, idx_j], val_edges):
continue
if ismember([idx_j, idx_i], val_edges):
continue
if val_edges_false:
if ismember([idx_j, idx_i], np.array(val_edges_false)):
continue
if ismember([idx_i, idx_j], np.array(val_edges_false)):
continue
val_edges_false.append([idx_i, idx_j])
assert ~ismember(test_edges_false, edges_all)
assert ~ismember(val_edges_false, edges_all)
assert ~ismember(val_edges, train_edges)
assert ~ismember(test_edges, train_edges)
assert ~ismember(val_edges, test_edges)
data = np.ones(train_edges.shape[0])
# Re-build adj matrix
adj_train = sp.csr_matrix((data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape)
adj_train = adj_train + adj_train.T
# NOTE: these edge lists only contain single direction of edge!
return adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false