diff --git a/.gitignore b/.gitignore index a31bf7e0091f4..1bcd0165761ac 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,6 @@ *~ +*.#* +*#*# *.swp *.ipr *.iml @@ -16,6 +18,7 @@ third_party/libmesos.so third_party/libmesos.dylib conf/java-opts conf/*.sh +conf/*.cmd conf/*.properties conf/*.conf conf/*.xml diff --git a/.rat-excludes b/.rat-excludes index fb6323daf9211..9fc99d7fca35d 100644 --- a/.rat-excludes +++ b/.rat-excludes @@ -20,6 +20,7 @@ log4j.properties.template metrics.properties.template slaves spark-env.sh +spark-env.cmd spark-env.sh.template log4j-defaults.properties bootstrap-tooltip.js @@ -58,3 +59,4 @@ dist/* .*iws logs .*scalastyle-output.xml +.*dependency-reduced-pom.xml diff --git a/bin/spark-sql b/bin/spark-sql index ae096530cad04..9d66140b6aa17 100755 --- a/bin/spark-sql +++ b/bin/spark-sql @@ -24,7 +24,7 @@ set -o posix CLASS="org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver" -CLASS_NOT_FOUND_EXIT_STATUS=1 +CLASS_NOT_FOUND_EXIT_STATUS=101 # Figure out where Spark is installed FWDIR="$(cd "`dirname "$0"`"/..; pwd)" diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala index 5ed3575816a38..d132ecb3f9989 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala @@ -54,7 +54,7 @@ object SparkSubmit { private val SPARK_SHELL = "spark-shell" private val PYSPARK_SHELL = "pyspark-shell" - private val CLASS_NOT_FOUND_EXIT_STATUS = 1 + private val CLASS_NOT_FOUND_EXIT_STATUS = 101 // Exposed for testing private[spark] var exitFn: () => Unit = () => System.exit(-1) @@ -172,7 +172,7 @@ object SparkSubmit { // All cluster managers OptionAssigner(args.master, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, sysProp = "spark.master"), OptionAssigner(args.name, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, sysProp = "spark.app.name"), - OptionAssigner(args.jars, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, sysProp = "spark.jars"), + OptionAssigner(args.jars, ALL_CLUSTER_MGRS, CLIENT, sysProp = "spark.jars"), OptionAssigner(args.driverMemory, ALL_CLUSTER_MGRS, CLIENT, sysProp = "spark.driver.memory"), OptionAssigner(args.driverExtraClassPath, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, @@ -183,6 +183,7 @@ object SparkSubmit { sysProp = "spark.driver.extraLibraryPath"), // Standalone cluster only + OptionAssigner(args.jars, STANDALONE, CLUSTER, sysProp = "spark.jars"), OptionAssigner(args.driverMemory, STANDALONE, CLUSTER, clOption = "--memory"), OptionAssigner(args.driverCores, STANDALONE, CLUSTER, clOption = "--cores"), @@ -261,7 +262,7 @@ object SparkSubmit { } // In yarn-cluster mode, use yarn.Client as a wrapper around the user class - if (clusterManager == YARN && deployMode == CLUSTER) { + if (isYarnCluster) { childMainClass = "org.apache.spark.deploy.yarn.Client" if (args.primaryResource != SPARK_INTERNAL) { childArgs += ("--jar", args.primaryResource) diff --git a/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala b/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala index c4ef8b63b0071..d25c29113d6da 100644 --- a/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala +++ b/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala @@ -67,6 +67,7 @@ private[spark] class HistoryPage(parent: HistoryServer) extends WebUIPage("") { } private val appHeader = Seq( + "App ID", "App Name", "Started", "Completed", @@ -81,7 +82,8 @@ private[spark] class HistoryPage(parent: HistoryServer) extends WebUIPage("") { val duration = UIUtils.formatDuration(info.endTime - info.startTime) val lastUpdated = UIUtils.formatDate(info.lastUpdated) - {info.name} + {info.id} + {info.name} {startTime} {endTime} {duration} diff --git a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala index 2a3bd6ba0b9dc..432b552c58cd8 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala @@ -489,23 +489,24 @@ private[spark] class Master( // First schedule drivers, they take strict precedence over applications // Randomization helps balance drivers val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE)) - val aliveWorkerNum = shuffledAliveWorkers.size + val numWorkersAlive = shuffledAliveWorkers.size var curPos = 0 + for (driver <- waitingDrivers.toList) { // iterate over a copy of waitingDrivers // We assign workers to each waiting driver in a round-robin fashion. For each driver, we // start from the last worker that was assigned a driver, and continue onwards until we have // explored all alive workers. - curPos = (curPos + 1) % aliveWorkerNum - val startPos = curPos var launched = false - while (curPos != startPos && !launched) { + var numWorkersVisited = 0 + while (numWorkersVisited < numWorkersAlive && !launched) { val worker = shuffledAliveWorkers(curPos) + numWorkersVisited += 1 if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) { launchDriver(worker, driver) waitingDrivers -= driver launched = true } - curPos = (curPos + 1) % aliveWorkerNum + curPos = (curPos + 1) % numWorkersAlive } } diff --git a/core/src/main/scala/org/apache/spark/network/nio/Connection.scala b/core/src/main/scala/org/apache/spark/network/nio/Connection.scala index 74074a8dcbfff..18172d359cb35 100644 --- a/core/src/main/scala/org/apache/spark/network/nio/Connection.scala +++ b/core/src/main/scala/org/apache/spark/network/nio/Connection.scala @@ -460,7 +460,7 @@ private[spark] class ReceivingConnection( if (currId != null) currId else super.getRemoteConnectionManagerId() } - // The reciever's remote address is the local socket on remote side : which is NOT + // The receiver's remote address is the local socket on remote side : which is NOT // the connection manager id of the receiver. // We infer that from the messages we receive on the receiver socket. private def processConnectionManagerId(header: MessageChunkHeader) { diff --git a/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala b/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala index 09d3ea306515b..5aa7e94943561 100644 --- a/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala +++ b/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala @@ -501,7 +501,7 @@ private[nio] class ConnectionManager( def changeConnectionKeyInterest(connection: Connection, ops: Int) { keyInterestChangeRequests += ((connection.key, ops)) - // so that registerations happen ! + // so that registrations happen ! wakeupSelector() } @@ -832,7 +832,7 @@ private[nio] class ConnectionManager( } /** - * Send a message and block until an acknowldgment is received or an error occurs. + * Send a message and block until an acknowledgment is received or an error occurs. * @param connectionManagerId the message's destination * @param message the message being sent * @return a Future that either returns the acknowledgment message or captures an exception. diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala index 2f45d192e1d4d..5c5ecc8434d78 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala @@ -34,7 +34,7 @@ private[spark] class SparkDeploySchedulerBackend( var client: AppClient = null var stopping = false var shutdownCallback : (SparkDeploySchedulerBackend) => Unit = _ - var appId: String = _ + @volatile var appId: String = _ val registrationLock = new Object() var registrationDone = false diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index c76b7af18481d..ed063844323af 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -1382,15 +1382,15 @@ private[spark] object Utils extends Logging { } /** - * Default number of retries in binding to a port. + * Default maximum number of retries when binding to a port before giving up. */ val portMaxRetries: Int = { if (sys.props.contains("spark.testing")) { // Set a higher number of retries for tests... - sys.props.get("spark.ports.maxRetries").map(_.toInt).getOrElse(100) + sys.props.get("spark.port.maxRetries").map(_.toInt).getOrElse(100) } else { Option(SparkEnv.get) - .flatMap(_.conf.getOption("spark.ports.maxRetries")) + .flatMap(_.conf.getOption("spark.port.maxRetries")) .map(_.toInt) .getOrElse(16) } diff --git a/core/src/test/scala/org/apache/spark/deploy/JsonProtocolSuite.scala b/core/src/test/scala/org/apache/spark/deploy/JsonProtocolSuite.scala index 2a58c6a40d8e4..3f1cd0752e766 100644 --- a/core/src/test/scala/org/apache/spark/deploy/JsonProtocolSuite.scala +++ b/core/src/test/scala/org/apache/spark/deploy/JsonProtocolSuite.scala @@ -115,11 +115,13 @@ class JsonProtocolSuite extends FunSuite { workerInfo.lastHeartbeat = JsonConstants.currTimeInMillis workerInfo } + def createExecutorRunner(): ExecutorRunner = { new ExecutorRunner("appId", 123, createAppDesc(), 4, 1234, null, "workerId", "host", new File("sparkHome"), new File("workDir"), "akka://worker", new SparkConf, ExecutorState.RUNNING) } + def createDriverRunner(): DriverRunner = { new DriverRunner(new SparkConf(), "driverId", new File("workDir"), new File("sparkHome"), createDriverDesc(), null, "akka://worker") diff --git a/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala b/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala index 22b369a829418..0c324d8bdf6a4 100644 --- a/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala +++ b/core/src/test/scala/org/apache/spark/deploy/SparkSubmitSuite.scala @@ -154,6 +154,7 @@ class SparkSubmitSuite extends FunSuite with Matchers { sysProps("spark.app.name") should be ("beauty") sysProps("spark.shuffle.spill") should be ("false") sysProps("SPARK_SUBMIT") should be ("true") + sysProps.keys should not contain ("spark.jars") } test("handles YARN client mode") { diff --git a/dev/run-tests b/dev/run-tests index 53148d23f385f..5f6df17b509a3 100755 --- a/dev/run-tests +++ b/dev/run-tests @@ -141,17 +141,20 @@ echo "=========================================================================" { # If the Spark SQL tests are enabled, run the tests with the Hive profiles enabled. + # This must be a single argument, as it is. if [ -n "$_RUN_SQL_TESTS" ]; then SBT_MAVEN_PROFILES_ARGS="$SBT_MAVEN_PROFILES_ARGS -Phive" fi if [ -n "$_SQL_TESTS_ONLY" ]; then - SBT_MAVEN_TEST_ARGS="catalyst/test sql/test hive/test" + # This must be an array of individual arguments. Otherwise, having one long string + #+ will be interpreted as a single test, which doesn't work. + SBT_MAVEN_TEST_ARGS=("catalyst/test" "sql/test" "hive/test" "hive-thriftserver/test") else - SBT_MAVEN_TEST_ARGS="test" + SBT_MAVEN_TEST_ARGS=("test") fi - echo "[info] Running Spark tests with these arguments: $SBT_MAVEN_PROFILES_ARGS $SBT_MAVEN_TEST_ARGS" + echo "[info] Running Spark tests with these arguments: $SBT_MAVEN_PROFILES_ARGS ${SBT_MAVEN_TEST_ARGS[@]}" # NOTE: echo "q" is needed because sbt on encountering a build file with failure #+ (either resolution or compilation) prompts the user for input either q, r, etc @@ -159,7 +162,7 @@ echo "=========================================================================" # QUESTION: Why doesn't 'yes "q"' work? # QUESTION: Why doesn't 'grep -v -e "^\[info\] Resolving"' work? echo -e "q\n" \ - | sbt/sbt "$SBT_MAVEN_PROFILES_ARGS" "$SBT_MAVEN_TEST_ARGS" \ + | sbt/sbt "$SBT_MAVEN_PROFILES_ARGS" "${SBT_MAVEN_TEST_ARGS[@]}" \ | grep -v -e "info.*Resolving" -e "warn.*Merging" -e "info.*Including" } diff --git a/docs/README.md b/docs/README.md index fdc89d2eb767a..79708c3df9106 100644 --- a/docs/README.md +++ b/docs/README.md @@ -20,12 +20,16 @@ In this directory you will find textfiles formatted using Markdown, with an ".md read those text files directly if you want. Start with index.md. The markdown code can be compiled to HTML using the [Jekyll tool](http://jekyllrb.com). -To use the `jekyll` command, you will need to have Jekyll installed. -The easiest way to do this is via a Ruby Gem, see the -[jekyll installation instructions](http://jekyllrb.com/docs/installation). -If not already installed, you need to install `kramdown` and `jekyll-redirect-from` Gems -with `sudo gem install kramdown jekyll-redirect-from`. -Execute `jekyll build` from the `docs/` directory. Compiling the site with Jekyll will create a directory +`Jekyll` and a few dependencies must be installed for this to work. We recommend +installing via the Ruby Gem dependency manager. Since the exact HTML output +varies between versions of Jekyll and its dependencies, we list specific versions here +in some cases: + + $ sudo gem install jekyll -v 1.4.3 + $ sudo gem uninstall kramdown -v 1.4.1 + $ sudo gem install jekyll-redirect-from + +Execute `jekyll` from the `docs/` directory. Compiling the site with Jekyll will create a directory called `_site` containing index.html as well as the rest of the compiled files. You can modify the default Jekyll build as follows: diff --git a/docs/_config.yml b/docs/_config.yml index d3ea2625c7448..7bc3a78e2d265 100644 --- a/docs/_config.yml +++ b/docs/_config.yml @@ -3,6 +3,11 @@ markdown: kramdown gems: - jekyll-redirect-from +# For some reason kramdown seems to behave differently on different +# OS/packages wrt encoding. So we hard code this config. +kramdown: + entity_output: numeric + # These allow the documentation to be updated with nerw releases # of Spark, Scala, and Mesos. SPARK_VERSION: 1.0.0-SNAPSHOT diff --git a/docs/configuration.md b/docs/configuration.md index 99faf51c6f3db..a6dd7245e1552 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -657,7 +657,7 @@ Apart from these, the following properties are also available, and may be useful spark.port.maxRetries 16 - Maximum number of retries when binding to a port before giving up. + Default maximum number of retries when binding to a port before giving up. diff --git a/docs/spark-standalone.md b/docs/spark-standalone.md index c791c81f8bfd0..99a8e43a6b489 100644 --- a/docs/spark-standalone.md +++ b/docs/spark-standalone.md @@ -307,7 +307,7 @@ tight firewall settings. For a complete list of ports to configure, see the By default, standalone scheduling clusters are resilient to Worker failures (insofar as Spark itself is resilient to losing work by moving it to other workers). However, the scheduler uses a Master to make scheduling decisions, and this (by default) creates a single point of failure: if the Master crashes, no new applications can be created. In order to circumvent this, we have two high availability schemes, detailed below. -# Standby Masters with ZooKeeper +## Standby Masters with ZooKeeper **Overview** @@ -347,7 +347,7 @@ There's an important distinction to be made between "registering with a Master" Due to this property, new Masters can be created at any time, and the only thing you need to worry about is that _new_ applications and Workers can find it to register with in case it becomes the leader. Once registered, you're taken care of. -# Single-Node Recovery with Local File System +## Single-Node Recovery with Local File System **Overview** diff --git a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala index 04fbc9dbab8d1..2c8b245955d12 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala @@ -392,7 +392,7 @@ object VertexRDD { */ def apply[VD: ClassTag]( vertices: RDD[(VertexId, VD)], edges: EdgeRDD[_, _], defaultVal: VD): VertexRDD[VD] = { - VertexRDD(vertices, edges, defaultVal, (a, b) => b) + VertexRDD(vertices, edges, defaultVal, (a, b) => a) } /** @@ -419,7 +419,7 @@ object VertexRDD { (vertexIter, routingTableIter) => val routingTable = if (routingTableIter.hasNext) routingTableIter.next() else RoutingTablePartition.empty - Iterator(ShippableVertexPartition(vertexIter, routingTable, defaultVal)) + Iterator(ShippableVertexPartition(vertexIter, routingTable, defaultVal, mergeFunc)) } new VertexRDD(vertexPartitions) } diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/ShippableVertexPartition.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/ShippableVertexPartition.scala index dca54b8a7da86..5412d720475dc 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/ShippableVertexPartition.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/ShippableVertexPartition.scala @@ -36,7 +36,7 @@ private[graphx] object ShippableVertexPartition { /** Construct a `ShippableVertexPartition` from the given vertices without any routing table. */ def apply[VD: ClassTag](iter: Iterator[(VertexId, VD)]): ShippableVertexPartition[VD] = - apply(iter, RoutingTablePartition.empty, null.asInstanceOf[VD]) + apply(iter, RoutingTablePartition.empty, null.asInstanceOf[VD], (a, b) => a) /** * Construct a `ShippableVertexPartition` from the given vertices with the specified routing @@ -44,10 +44,28 @@ object ShippableVertexPartition { */ def apply[VD: ClassTag]( iter: Iterator[(VertexId, VD)], routingTable: RoutingTablePartition, defaultVal: VD) - : ShippableVertexPartition[VD] = { - val fullIter = iter ++ routingTable.iterator.map(vid => (vid, defaultVal)) - val (index, values, mask) = VertexPartitionBase.initFrom(fullIter, (a: VD, b: VD) => a) - new ShippableVertexPartition(index, values, mask, routingTable) + : ShippableVertexPartition[VD] = + apply(iter, routingTable, defaultVal, (a, b) => a) + + /** + * Construct a `ShippableVertexPartition` from the given vertices with the specified routing + * table, filling in missing vertices mentioned in the routing table using `defaultVal`, + * and merging duplicate vertex atrribute with mergeFunc. + */ + def apply[VD: ClassTag]( + iter: Iterator[(VertexId, VD)], routingTable: RoutingTablePartition, defaultVal: VD, + mergeFunc: (VD, VD) => VD): ShippableVertexPartition[VD] = { + val map = new GraphXPrimitiveKeyOpenHashMap[VertexId, VD] + // Merge the given vertices using mergeFunc + iter.foreach { pair => + map.setMerge(pair._1, pair._2, mergeFunc) + } + // Fill in missing vertices mentioned in the routing table + routingTable.iterator.foreach { vid => + map.changeValue(vid, defaultVal, identity) + } + + new ShippableVertexPartition(map.keySet, map._values, map.keySet.getBitSet, routingTable) } import scala.language.implicitConversions diff --git a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala index cc86bafd2d644..42d3f21dbae98 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala @@ -99,4 +99,15 @@ class VertexRDDSuite extends FunSuite with LocalSparkContext { } } + test("mergeFunc") { + // test to see if the mergeFunc is working correctly + withSpark { sc => + val verts = sc.parallelize(List((0L, 0), (1L, 1), (1L, 2), (2L, 3), (2L, 3), (2L, 3))) + val edges = EdgeRDD.fromEdges(sc.parallelize(List.empty[Edge[Int]])) + val rdd = VertexRDD(verts, edges, 0, (a: Int, b: Int) => a + b) + // test merge function + assert(rdd.collect.toSet == Set((0L, 0), (1L, 3), (2L, 9))) + } + } + } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala index 70e23033c8754..54ee930d61003 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala @@ -18,13 +18,17 @@ package org.apache.spark.mllib.linalg import com.github.fommil.netlib.{BLAS => NetlibBLAS, F2jBLAS} +import com.github.fommil.netlib.BLAS.{getInstance => NativeBLAS} + +import org.apache.spark.Logging /** * BLAS routines for MLlib's vectors and matrices. */ -private[mllib] object BLAS extends Serializable { +private[mllib] object BLAS extends Serializable with Logging { @transient private var _f2jBLAS: NetlibBLAS = _ + @transient private var _nativeBLAS: NetlibBLAS = _ // For level-1 routines, we use Java implementation. private def f2jBLAS: NetlibBLAS = { @@ -197,4 +201,328 @@ private[mllib] object BLAS extends Serializable { throw new IllegalArgumentException(s"scal doesn't support vector type ${x.getClass}.") } } + + // For level-3 routines, we use the native BLAS. + private def nativeBLAS: NetlibBLAS = { + if (_nativeBLAS == null) { + _nativeBLAS = NativeBLAS + } + _nativeBLAS + } + + /** + * C := alpha * A * B + beta * C + * @param transA whether to use the transpose of matrix A (true), or A itself (false). + * @param transB whether to use the transpose of matrix B (true), or B itself (false). + * @param alpha a scalar to scale the multiplication A * B. + * @param A the matrix A that will be left multiplied to B. Size of m x k. + * @param B the matrix B that will be left multiplied by A. Size of k x n. + * @param beta a scalar that can be used to scale matrix C. + * @param C the resulting matrix C. Size of m x n. + */ + def gemm( + transA: Boolean, + transB: Boolean, + alpha: Double, + A: Matrix, + B: DenseMatrix, + beta: Double, + C: DenseMatrix): Unit = { + if (alpha == 0.0) { + logDebug("gemm: alpha is equal to 0. Returning C.") + } else { + A match { + case sparse: SparseMatrix => + gemm(transA, transB, alpha, sparse, B, beta, C) + case dense: DenseMatrix => + gemm(transA, transB, alpha, dense, B, beta, C) + case _ => + throw new IllegalArgumentException(s"gemm doesn't support matrix type ${A.getClass}.") + } + } + } + + /** + * C := alpha * A * B + beta * C + * + * @param alpha a scalar to scale the multiplication A * B. + * @param A the matrix A that will be left multiplied to B. Size of m x k. + * @param B the matrix B that will be left multiplied by A. Size of k x n. + * @param beta a scalar that can be used to scale matrix C. + * @param C the resulting matrix C. Size of m x n. + */ + def gemm( + alpha: Double, + A: Matrix, + B: DenseMatrix, + beta: Double, + C: DenseMatrix): Unit = { + gemm(false, false, alpha, A, B, beta, C) + } + + /** + * C := alpha * A * B + beta * C + * For `DenseMatrix` A. + */ + private def gemm( + transA: Boolean, + transB: Boolean, + alpha: Double, + A: DenseMatrix, + B: DenseMatrix, + beta: Double, + C: DenseMatrix): Unit = { + val mA: Int = if (!transA) A.numRows else A.numCols + val nB: Int = if (!transB) B.numCols else B.numRows + val kA: Int = if (!transA) A.numCols else A.numRows + val kB: Int = if (!transB) B.numRows else B.numCols + val tAstr = if (!transA) "N" else "T" + val tBstr = if (!transB) "N" else "T" + + require(kA == kB, s"The columns of A don't match the rows of B. A: $kA, B: $kB") + require(mA == C.numRows, s"The rows of C don't match the rows of A. C: ${C.numRows}, A: $mA") + require(nB == C.numCols, + s"The columns of C don't match the columns of B. C: ${C.numCols}, A: $nB") + + nativeBLAS.dgemm(tAstr, tBstr, mA, nB, kA, alpha, A.values, A.numRows, B.values, B.numRows, + beta, C.values, C.numRows) + } + + /** + * C := alpha * A * B + beta * C + * For `SparseMatrix` A. + */ + private def gemm( + transA: Boolean, + transB: Boolean, + alpha: Double, + A: SparseMatrix, + B: DenseMatrix, + beta: Double, + C: DenseMatrix): Unit = { + val mA: Int = if (!transA) A.numRows else A.numCols + val nB: Int = if (!transB) B.numCols else B.numRows + val kA: Int = if (!transA) A.numCols else A.numRows + val kB: Int = if (!transB) B.numRows else B.numCols + + require(kA == kB, s"The columns of A don't match the rows of B. A: $kA, B: $kB") + require(mA == C.numRows, s"The rows of C don't match the rows of A. C: ${C.numRows}, A: $mA") + require(nB == C.numCols, + s"The columns of C don't match the columns of B. C: ${C.numCols}, A: $nB") + + val Avals = A.values + val Arows = if (!transA) A.rowIndices else A.colPtrs + val Acols = if (!transA) A.colPtrs else A.rowIndices + + // Slicing is easy in this case. This is the optimal multiplication setting for sparse matrices + if (transA){ + var colCounterForB = 0 + if (!transB) { // Expensive to put the check inside the loop + while (colCounterForB < nB) { + var rowCounterForA = 0 + val Cstart = colCounterForB * mA + val Bstart = colCounterForB * kA + while (rowCounterForA < mA) { + var i = Arows(rowCounterForA) + val indEnd = Arows(rowCounterForA + 1) + var sum = 0.0 + while (i < indEnd) { + sum += Avals(i) * B.values(Bstart + Acols(i)) + i += 1 + } + val Cindex = Cstart + rowCounterForA + C.values(Cindex) = beta * C.values(Cindex) + sum * alpha + rowCounterForA += 1 + } + colCounterForB += 1 + } + } else { + while (colCounterForB < nB) { + var rowCounter = 0 + val Cstart = colCounterForB * mA + while (rowCounter < mA) { + var i = Arows(rowCounter) + val indEnd = Arows(rowCounter + 1) + var sum = 0.0 + while (i < indEnd) { + sum += Avals(i) * B(colCounterForB, Acols(i)) + i += 1 + } + val Cindex = Cstart + rowCounter + C.values(Cindex) = beta * C.values(Cindex) + sum * alpha + rowCounter += 1 + } + colCounterForB += 1 + } + } + } else { + // Scale matrix first if `beta` is not equal to 0.0 + if (beta != 0.0){ + f2jBLAS.dscal(C.values.length, beta, C.values, 1) + } + // Perform matrix multiplication and add to C. The rows of A are multiplied by the columns of + // B, and added to C. + var colCounterForB = 0 // the column to be updated in C + if (!transB) { // Expensive to put the check inside the loop + while (colCounterForB < nB) { + var colCounterForA = 0 // The column of A to multiply with the row of B + val Bstart = colCounterForB * kB + val Cstart = colCounterForB * mA + while (colCounterForA < kA) { + var i = Acols(colCounterForA) + val indEnd = Acols(colCounterForA + 1) + val Bval = B.values(Bstart + colCounterForA) * alpha + while (i < indEnd){ + C.values(Cstart + Arows(i)) += Avals(i) * Bval + i += 1 + } + colCounterForA += 1 + } + colCounterForB += 1 + } + } else { + while (colCounterForB < nB) { + var colCounterForA = 0 // The column of A to multiply with the row of B + val Cstart = colCounterForB * mA + while (colCounterForA < kA){ + var i = Acols(colCounterForA) + val indEnd = Acols(colCounterForA + 1) + val Bval = B(colCounterForB, colCounterForA) * alpha + while (i < indEnd){ + C.values(Cstart + Arows(i)) += Avals(i) * Bval + i += 1 + } + colCounterForA += 1 + } + colCounterForB += 1 + } + } + } + } + + /** + * y := alpha * A * x + beta * y + * @param trans whether to use the transpose of matrix A (true), or A itself (false). + * @param alpha a scalar to scale the multiplication A * x. + * @param A the matrix A that will be left multiplied to x. Size of m x n. + * @param x the vector x that will be left multiplied by A. Size of n x 1. + * @param beta a scalar that can be used to scale vector y. + * @param y the resulting vector y. Size of m x 1. + */ + def gemv( + trans: Boolean, + alpha: Double, + A: Matrix, + x: DenseVector, + beta: Double, + y: DenseVector): Unit = { + + val mA: Int = if (!trans) A.numRows else A.numCols + val nx: Int = x.size + val nA: Int = if (!trans) A.numCols else A.numRows + + require(nA == nx, s"The columns of A don't match the number of elements of x. A: $nA, x: $nx") + require(mA == y.size, + s"The rows of A don't match the number of elements of y. A: $mA, y:${y.size}}") + if (alpha == 0.0) { + logDebug("gemv: alpha is equal to 0. Returning y.") + } else { + A match { + case sparse: SparseMatrix => + gemv(trans, alpha, sparse, x, beta, y) + case dense: DenseMatrix => + gemv(trans, alpha, dense, x, beta, y) + case _ => + throw new IllegalArgumentException(s"gemv doesn't support matrix type ${A.getClass}.") + } + } + } + + /** + * y := alpha * A * x + beta * y + * + * @param alpha a scalar to scale the multiplication A * x. + * @param A the matrix A that will be left multiplied to x. Size of m x n. + * @param x the vector x that will be left multiplied by A. Size of n x 1. + * @param beta a scalar that can be used to scale vector y. + * @param y the resulting vector y. Size of m x 1. + */ + def gemv( + alpha: Double, + A: Matrix, + x: DenseVector, + beta: Double, + y: DenseVector): Unit = { + gemv(false, alpha, A, x, beta, y) + } + + /** + * y := alpha * A * x + beta * y + * For `DenseMatrix` A. + */ + private def gemv( + trans: Boolean, + alpha: Double, + A: DenseMatrix, + x: DenseVector, + beta: Double, + y: DenseVector): Unit = { + val tStrA = if (!trans) "N" else "T" + nativeBLAS.dgemv(tStrA, A.numRows, A.numCols, alpha, A.values, A.numRows, x.values, 1, beta, + y.values, 1) + } + + /** + * y := alpha * A * x + beta * y + * For `SparseMatrix` A. + */ + private def gemv( + trans: Boolean, + alpha: Double, + A: SparseMatrix, + x: DenseVector, + beta: Double, + y: DenseVector): Unit = { + + val mA: Int = if(!trans) A.numRows else A.numCols + val nA: Int = if(!trans) A.numCols else A.numRows + + val Avals = A.values + val Arows = if (!trans) A.rowIndices else A.colPtrs + val Acols = if (!trans) A.colPtrs else A.rowIndices + + // Slicing is easy in this case. This is the optimal multiplication setting for sparse matrices + if (trans){ + var rowCounter = 0 + while (rowCounter < mA){ + var i = Arows(rowCounter) + val indEnd = Arows(rowCounter + 1) + var sum = 0.0 + while(i < indEnd){ + sum += Avals(i) * x.values(Acols(i)) + i += 1 + } + y.values(rowCounter) = beta * y.values(rowCounter) + sum * alpha + rowCounter += 1 + } + } else { + // Scale vector first if `beta` is not equal to 0.0 + if (beta != 0.0){ + scal(beta, y) + } + // Perform matrix-vector multiplication and add to y + var colCounterForA = 0 + while (colCounterForA < nA){ + var i = Acols(colCounterForA) + val indEnd = Acols(colCounterForA + 1) + val xVal = x.values(colCounterForA) * alpha + while (i < indEnd){ + val rowIndex = Arows(i) + y.values(rowIndex) += Avals(i) * xVal + i += 1 + } + colCounterForA += 1 + } + } + } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala index b11ba5d30fbd3..5711532abcf80 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala @@ -17,12 +17,16 @@ package org.apache.spark.mllib.linalg -import breeze.linalg.{Matrix => BM, DenseMatrix => BDM} +import breeze.linalg.{Matrix => BM, DenseMatrix => BDM, CSCMatrix => BSM} + +import org.apache.spark.util.random.XORShiftRandom + +import java.util.Arrays /** * Trait for a local matrix. */ -trait Matrix extends Serializable { +sealed trait Matrix extends Serializable { /** Number of rows. */ def numRows: Int @@ -37,8 +41,46 @@ trait Matrix extends Serializable { private[mllib] def toBreeze: BM[Double] /** Gets the (i, j)-th element. */ - private[mllib] def apply(i: Int, j: Int): Double = toBreeze(i, j) + private[mllib] def apply(i: Int, j: Int): Double + + /** Return the index for the (i, j)-th element in the backing array. */ + private[mllib] def index(i: Int, j: Int): Int + + /** Update element at (i, j) */ + private[mllib] def update(i: Int, j: Int, v: Double): Unit + + /** Get a deep copy of the matrix. */ + def copy: Matrix + /** Convenience method for `Matrix`-`DenseMatrix` multiplication. */ + def multiply(y: DenseMatrix): DenseMatrix = { + val C: DenseMatrix = Matrices.zeros(numRows, y.numCols).asInstanceOf[DenseMatrix] + BLAS.gemm(false, false, 1.0, this, y, 0.0, C) + C + } + + /** Convenience method for `Matrix`-`DenseVector` multiplication. */ + def multiply(y: DenseVector): DenseVector = { + val output = new DenseVector(new Array[Double](numRows)) + BLAS.gemv(1.0, this, y, 0.0, output) + output + } + + /** Convenience method for `Matrix`^T^-`DenseMatrix` multiplication. */ + def transposeMultiply(y: DenseMatrix): DenseMatrix = { + val C: DenseMatrix = Matrices.zeros(numCols, y.numCols).asInstanceOf[DenseMatrix] + BLAS.gemm(true, false, 1.0, this, y, 0.0, C) + C + } + + /** Convenience method for `Matrix`^T^-`DenseVector` multiplication. */ + def transposeMultiply(y: DenseVector): DenseVector = { + val output = new DenseVector(new Array[Double](numCols)) + BLAS.gemv(true, 1.0, this, y, 0.0, output) + output + } + + /** A human readable representation of the matrix */ override def toString: String = toBreeze.toString() } @@ -59,11 +101,98 @@ trait Matrix extends Serializable { */ class DenseMatrix(val numRows: Int, val numCols: Int, val values: Array[Double]) extends Matrix { - require(values.length == numRows * numCols) + require(values.length == numRows * numCols, "The number of values supplied doesn't match the " + + s"size of the matrix! values.length: ${values.length}, numRows * numCols: ${numRows * numCols}") override def toArray: Array[Double] = values - private[mllib] override def toBreeze: BM[Double] = new BDM[Double](numRows, numCols, values) + private[mllib] def toBreeze: BM[Double] = new BDM[Double](numRows, numCols, values) + + private[mllib] def apply(i: Int): Double = values(i) + + private[mllib] def apply(i: Int, j: Int): Double = values(index(i, j)) + + private[mllib] def index(i: Int, j: Int): Int = i + numRows * j + + private[mllib] def update(i: Int, j: Int, v: Double): Unit = { + values(index(i, j)) = v + } + + override def copy = new DenseMatrix(numRows, numCols, values.clone()) +} + +/** + * Column-majored sparse matrix. + * The entry values are stored in Compressed Sparse Column (CSC) format. + * For example, the following matrix + * {{{ + * 1.0 0.0 4.0 + * 0.0 3.0 5.0 + * 2.0 0.0 6.0 + * }}} + * is stored as `values: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]`, + * `rowIndices=[0, 2, 1, 0, 1, 2]`, `colPointers=[0, 2, 3, 6]`. + * + * @param numRows number of rows + * @param numCols number of columns + * @param colPtrs the index corresponding to the start of a new column + * @param rowIndices the row index of the entry. They must be in strictly increasing order for each + * column + * @param values non-zero matrix entries in column major + */ +class SparseMatrix( + val numRows: Int, + val numCols: Int, + val colPtrs: Array[Int], + val rowIndices: Array[Int], + val values: Array[Double]) extends Matrix { + + require(values.length == rowIndices.length, "The number of row indices and values don't match! " + + s"values.length: ${values.length}, rowIndices.length: ${rowIndices.length}") + require(colPtrs.length == numCols + 1, "The length of the column indices should be the " + + s"number of columns + 1. Currently, colPointers.length: ${colPtrs.length}, " + + s"numCols: $numCols") + + override def toArray: Array[Double] = { + val arr = new Array[Double](numRows * numCols) + var j = 0 + while (j < numCols) { + var i = colPtrs(j) + val indEnd = colPtrs(j + 1) + val offset = j * numRows + while (i < indEnd) { + val rowIndex = rowIndices(i) + arr(offset + rowIndex) = values(i) + i += 1 + } + j += 1 + } + arr + } + + private[mllib] def toBreeze: BM[Double] = + new BSM[Double](values, numRows, numCols, colPtrs, rowIndices) + + private[mllib] def apply(i: Int, j: Int): Double = { + val ind = index(i, j) + if (ind < 0) 0.0 else values(ind) + } + + private[mllib] def index(i: Int, j: Int): Int = { + Arrays.binarySearch(rowIndices, colPtrs(j), colPtrs(j + 1), i) + } + + private[mllib] def update(i: Int, j: Int, v: Double): Unit = { + val ind = index(i, j) + if (ind == -1){ + throw new NoSuchElementException("The given row and column indices correspond to a zero " + + "value. Only non-zero elements in Sparse Matrices can be updated.") + } else { + values(index(i, j)) = v + } + } + + override def copy = new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values.clone()) } /** @@ -82,6 +211,24 @@ object Matrices { new DenseMatrix(numRows, numCols, values) } + /** + * Creates a column-majored sparse matrix in Compressed Sparse Column (CSC) format. + * + * @param numRows number of rows + * @param numCols number of columns + * @param colPtrs the index corresponding to the start of a new column + * @param rowIndices the row index of the entry + * @param values non-zero matrix entries in column major + */ + def sparse( + numRows: Int, + numCols: Int, + colPtrs: Array[Int], + rowIndices: Array[Int], + values: Array[Double]): Matrix = { + new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values) + } + /** * Creates a Matrix instance from a breeze matrix. * @param breeze a breeze matrix @@ -93,9 +240,84 @@ object Matrices { require(dm.majorStride == dm.rows, "Do not support stride size different from the number of rows.") new DenseMatrix(dm.rows, dm.cols, dm.data) + case sm: BSM[Double] => + new SparseMatrix(sm.rows, sm.cols, sm.colPtrs, sm.rowIndices, sm.data) case _ => throw new UnsupportedOperationException( s"Do not support conversion from type ${breeze.getClass.getName}.") } } + + /** + * Generate a `DenseMatrix` consisting of zeros. + * @param numRows number of rows of the matrix + * @param numCols number of columns of the matrix + * @return `DenseMatrix` with size `numRows` x `numCols` and values of zeros + */ + def zeros(numRows: Int, numCols: Int): Matrix = + new DenseMatrix(numRows, numCols, new Array[Double](numRows * numCols)) + + /** + * Generate a `DenseMatrix` consisting of ones. + * @param numRows number of rows of the matrix + * @param numCols number of columns of the matrix + * @return `DenseMatrix` with size `numRows` x `numCols` and values of ones + */ + def ones(numRows: Int, numCols: Int): Matrix = + new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(1.0)) + + /** + * Generate an Identity Matrix in `DenseMatrix` format. + * @param n number of rows and columns of the matrix + * @return `DenseMatrix` with size `n` x `n` and values of ones on the diagonal + */ + def eye(n: Int): Matrix = { + val identity = Matrices.zeros(n, n) + var i = 0 + while (i < n){ + identity.update(i, i, 1.0) + i += 1 + } + identity + } + + /** + * Generate a `DenseMatrix` consisting of i.i.d. uniform random numbers. + * @param numRows number of rows of the matrix + * @param numCols number of columns of the matrix + * @return `DenseMatrix` with size `numRows` x `numCols` and values in U(0, 1) + */ + def rand(numRows: Int, numCols: Int): Matrix = { + val rand = new XORShiftRandom + new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(rand.nextDouble())) + } + + /** + * Generate a `DenseMatrix` consisting of i.i.d. gaussian random numbers. + * @param numRows number of rows of the matrix + * @param numCols number of columns of the matrix + * @return `DenseMatrix` with size `numRows` x `numCols` and values in N(0, 1) + */ + def randn(numRows: Int, numCols: Int): Matrix = { + val rand = new XORShiftRandom + new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(rand.nextGaussian())) + } + + /** + * Generate a diagonal matrix in `DenseMatrix` format from the supplied values. + * @param vector a `Vector` tat will form the values on the diagonal of the matrix + * @return Square `DenseMatrix` with size `values.length` x `values.length` and `values` + * on the diagonal + */ + def diag(vector: Vector): Matrix = { + val n = vector.size + val matrix = Matrices.eye(n) + val values = vector.toArray + var i = 0 + while (i < n) { + matrix.update(i, i, values(i)) + i += 1 + } + matrix + } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala index a45781d12e41e..6af225b7f49f7 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala @@ -33,7 +33,7 @@ import org.apache.spark.SparkException * * Note: Users should not implement this interface. */ -trait Vector extends Serializable { +sealed trait Vector extends Serializable { /** * Size of the vector. diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala index 1952e6734ecf7..5d70c914f14b0 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala @@ -126,4 +126,115 @@ class BLASSuite extends FunSuite { } } } + + test("gemm") { + + val dA = + new DenseMatrix(4, 3, Array(0.0, 1.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 3.0)) + val sA = new SparseMatrix(4, 3, Array(0, 1, 3, 4), Array(1, 0, 2, 3), Array(1.0, 2.0, 1.0, 3.0)) + + val B = new DenseMatrix(3, 2, Array(1.0, 0.0, 0.0, 0.0, 2.0, 1.0)) + val expected = new DenseMatrix(4, 2, Array(0.0, 1.0, 0.0, 0.0, 4.0, 0.0, 2.0, 3.0)) + + assert(dA multiply B ~== expected absTol 1e-15) + assert(sA multiply B ~== expected absTol 1e-15) + + val C1 = new DenseMatrix(4, 2, Array(1.0, 0.0, 2.0, 1.0, 0.0, 0.0, 1.0, 0.0)) + val C2 = C1.copy + val C3 = C1.copy + val C4 = C1.copy + val C5 = C1.copy + val C6 = C1.copy + val C7 = C1.copy + val C8 = C1.copy + val expected2 = new DenseMatrix(4, 2, Array(2.0, 1.0, 4.0, 2.0, 4.0, 0.0, 4.0, 3.0)) + val expected3 = new DenseMatrix(4, 2, Array(2.0, 2.0, 4.0, 2.0, 8.0, 0.0, 6.0, 6.0)) + + gemm(1.0, dA, B, 2.0, C1) + gemm(1.0, sA, B, 2.0, C2) + gemm(2.0, dA, B, 2.0, C3) + gemm(2.0, sA, B, 2.0, C4) + assert(C1 ~== expected2 absTol 1e-15) + assert(C2 ~== expected2 absTol 1e-15) + assert(C3 ~== expected3 absTol 1e-15) + assert(C4 ~== expected3 absTol 1e-15) + + withClue("columns of A don't match the rows of B") { + intercept[Exception] { + gemm(true, false, 1.0, dA, B, 2.0, C1) + } + } + + val dAT = + new DenseMatrix(3, 4, Array(0.0, 2.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 3.0)) + val sAT = + new SparseMatrix(3, 4, Array(0, 1, 2, 3, 4), Array(1, 0, 1, 2), Array(2.0, 1.0, 1.0, 3.0)) + + assert(dAT transposeMultiply B ~== expected absTol 1e-15) + assert(sAT transposeMultiply B ~== expected absTol 1e-15) + + gemm(true, false, 1.0, dAT, B, 2.0, C5) + gemm(true, false, 1.0, sAT, B, 2.0, C6) + gemm(true, false, 2.0, dAT, B, 2.0, C7) + gemm(true, false, 2.0, sAT, B, 2.0, C8) + assert(C5 ~== expected2 absTol 1e-15) + assert(C6 ~== expected2 absTol 1e-15) + assert(C7 ~== expected3 absTol 1e-15) + assert(C8 ~== expected3 absTol 1e-15) + } + + test("gemv") { + + val dA = + new DenseMatrix(4, 3, Array(0.0, 1.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 3.0)) + val sA = new SparseMatrix(4, 3, Array(0, 1, 3, 4), Array(1, 0, 2, 3), Array(1.0, 2.0, 1.0, 3.0)) + + val x = new DenseVector(Array(1.0, 2.0, 3.0)) + val expected = new DenseVector(Array(4.0, 1.0, 2.0, 9.0)) + + assert(dA multiply x ~== expected absTol 1e-15) + assert(sA multiply x ~== expected absTol 1e-15) + + val y1 = new DenseVector(Array(1.0, 3.0, 1.0, 0.0)) + val y2 = y1.copy + val y3 = y1.copy + val y4 = y1.copy + val y5 = y1.copy + val y6 = y1.copy + val y7 = y1.copy + val y8 = y1.copy + val expected2 = new DenseVector(Array(6.0, 7.0, 4.0, 9.0)) + val expected3 = new DenseVector(Array(10.0, 8.0, 6.0, 18.0)) + + gemv(1.0, dA, x, 2.0, y1) + gemv(1.0, sA, x, 2.0, y2) + gemv(2.0, dA, x, 2.0, y3) + gemv(2.0, sA, x, 2.0, y4) + assert(y1 ~== expected2 absTol 1e-15) + assert(y2 ~== expected2 absTol 1e-15) + assert(y3 ~== expected3 absTol 1e-15) + assert(y4 ~== expected3 absTol 1e-15) + withClue("columns of A don't match the rows of B") { + intercept[Exception] { + gemv(true, 1.0, dA, x, 2.0, y1) + } + } + + val dAT = + new DenseMatrix(3, 4, Array(0.0, 2.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 3.0)) + val sAT = + new SparseMatrix(3, 4, Array(0, 1, 2, 3, 4), Array(1, 0, 1, 2), Array(2.0, 1.0, 1.0, 3.0)) + + assert(dAT transposeMultiply x ~== expected absTol 1e-15) + assert(sAT transposeMultiply x ~== expected absTol 1e-15) + + gemv(true, 1.0, dAT, x, 2.0, y5) + gemv(true, 1.0, sAT, x, 2.0, y6) + gemv(true, 2.0, dAT, x, 2.0, y7) + gemv(true, 2.0, sAT, x, 2.0, y8) + assert(y5 ~== expected2 absTol 1e-15) + assert(y6 ~== expected2 absTol 1e-15) + assert(y7 ~== expected3 absTol 1e-15) + assert(y8 ~== expected3 absTol 1e-15) + } } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/BreezeMatrixConversionSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BreezeMatrixConversionSuite.scala index 82d49c76ed02b..73a6d3a27d868 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/BreezeMatrixConversionSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BreezeMatrixConversionSuite.scala @@ -19,7 +19,7 @@ package org.apache.spark.mllib.linalg import org.scalatest.FunSuite -import breeze.linalg.{DenseMatrix => BDM} +import breeze.linalg.{DenseMatrix => BDM, CSCMatrix => BSM} class BreezeMatrixConversionSuite extends FunSuite { test("dense matrix to breeze") { @@ -37,4 +37,26 @@ class BreezeMatrixConversionSuite extends FunSuite { assert(mat.numCols === breeze.cols) assert(mat.values.eq(breeze.data), "should not copy data") } + + test("sparse matrix to breeze") { + val values = Array(1.0, 2.0, 4.0, 5.0) + val colPtrs = Array(0, 2, 4) + val rowIndices = Array(1, 2, 1, 2) + val mat = Matrices.sparse(3, 2, colPtrs, rowIndices, values) + val breeze = mat.toBreeze.asInstanceOf[BSM[Double]] + assert(breeze.rows === mat.numRows) + assert(breeze.cols === mat.numCols) + assert(breeze.data.eq(mat.asInstanceOf[SparseMatrix].values), "should not copy data") + } + + test("sparse breeze matrix to sparse matrix") { + val values = Array(1.0, 2.0, 4.0, 5.0) + val colPtrs = Array(0, 2, 4) + val rowIndices = Array(1, 2, 1, 2) + val breeze = new BSM[Double](values, 3, 2, colPtrs, rowIndices) + val mat = Matrices.fromBreeze(breeze).asInstanceOf[SparseMatrix] + assert(mat.numRows === breeze.rows) + assert(mat.numCols === breeze.cols) + assert(mat.values.eq(breeze.data), "should not copy data") + } } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/MatricesSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/MatricesSuite.scala index 9c66b4db9f16b..5f8b8c4b72697 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/MatricesSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/MatricesSuite.scala @@ -36,4 +36,80 @@ class MatricesSuite extends FunSuite { Matrices.dense(3, 2, Array(0.0, 1.0, 2.0)) } } + + test("sparse matrix construction") { + val m = 3 + val n = 2 + val values = Array(1.0, 2.0, 4.0, 5.0) + val colPtrs = Array(0, 2, 4) + val rowIndices = Array(1, 2, 1, 2) + val mat = Matrices.sparse(m, n, colPtrs, rowIndices, values).asInstanceOf[SparseMatrix] + assert(mat.numRows === m) + assert(mat.numCols === n) + assert(mat.values.eq(values), "should not copy data") + assert(mat.colPtrs.eq(colPtrs), "should not copy data") + assert(mat.rowIndices.eq(rowIndices), "should not copy data") + } + + test("sparse matrix construction with wrong number of elements") { + intercept[IllegalArgumentException] { + Matrices.sparse(3, 2, Array(0, 1), Array(1, 2, 1), Array(0.0, 1.0, 2.0)) + } + + intercept[IllegalArgumentException] { + Matrices.sparse(3, 2, Array(0, 1, 2), Array(1, 2), Array(0.0, 1.0, 2.0)) + } + } + + test("matrix copies are deep copies") { + val m = 3 + val n = 2 + + val denseMat = Matrices.dense(m, n, Array(0.0, 1.0, 2.0, 3.0, 4.0, 5.0)) + val denseCopy = denseMat.copy + + assert(!denseMat.toArray.eq(denseCopy.toArray)) + + val values = Array(1.0, 2.0, 4.0, 5.0) + val colPtrs = Array(0, 2, 4) + val rowIndices = Array(1, 2, 1, 2) + val sparseMat = Matrices.sparse(m, n, colPtrs, rowIndices, values) + val sparseCopy = sparseMat.copy + + assert(!sparseMat.toArray.eq(sparseCopy.toArray)) + } + + test("matrix indexing and updating") { + val m = 3 + val n = 2 + val allValues = Array(0.0, 1.0, 2.0, 3.0, 4.0, 0.0) + + val denseMat = new DenseMatrix(m, n, allValues) + + assert(denseMat(0, 1) === 3.0) + assert(denseMat(0, 1) === denseMat.values(3)) + assert(denseMat(0, 1) === denseMat(3)) + assert(denseMat(0, 0) === 0.0) + + denseMat.update(0, 0, 10.0) + assert(denseMat(0, 0) === 10.0) + assert(denseMat.values(0) === 10.0) + + val sparseValues = Array(1.0, 2.0, 3.0, 4.0) + val colPtrs = Array(0, 2, 4) + val rowIndices = Array(1, 2, 0, 1) + val sparseMat = new SparseMatrix(m, n, colPtrs, rowIndices, sparseValues) + + assert(sparseMat(0, 1) === 3.0) + assert(sparseMat(0, 1) === sparseMat.values(2)) + assert(sparseMat(0, 0) === 0.0) + + intercept[NoSuchElementException] { + sparseMat.update(0, 0, 10.0) + } + + sparseMat.update(0, 1, 10.0) + assert(sparseMat(0, 1) === 10.0) + assert(sparseMat.values(2) === 10.0) + } } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/util/TestingUtils.scala b/mllib/src/test/scala/org/apache/spark/mllib/util/TestingUtils.scala index 29cc42d8cbea7..30b906aaa3ba4 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/util/TestingUtils.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/util/TestingUtils.scala @@ -17,7 +17,7 @@ package org.apache.spark.mllib.util -import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.mllib.linalg.{Matrix, Vector} import org.scalatest.exceptions.TestFailedException object TestingUtils { @@ -169,4 +169,67 @@ object TestingUtils { override def toString = x.toString } + case class CompareMatrixRightSide( + fun: (Matrix, Matrix, Double) => Boolean, y: Matrix, eps: Double, method: String) + + /** + * Implicit class for comparing two matrices using relative tolerance or absolute tolerance. + */ + implicit class MatrixWithAlmostEquals(val x: Matrix) { + + /** + * When the difference of two vectors are within eps, returns true; otherwise, returns false. + */ + def ~=(r: CompareMatrixRightSide): Boolean = r.fun(x, r.y, r.eps) + + /** + * When the difference of two vectors are within eps, returns false; otherwise, returns true. + */ + def !~=(r: CompareMatrixRightSide): Boolean = !r.fun(x, r.y, r.eps) + + /** + * Throws exception when the difference of two vectors are NOT within eps; + * otherwise, returns true. + */ + def ~==(r: CompareMatrixRightSide): Boolean = { + if (!r.fun(x, r.y, r.eps)) { + throw new TestFailedException( + s"Expected \n$x\n and \n${r.y}\n to be within ${r.eps}${r.method} for all elements.", 0) + } + true + } + + /** + * Throws exception when the difference of two matrices are within eps; otherwise, returns true. + */ + def !~==(r: CompareMatrixRightSide): Boolean = { + if (r.fun(x, r.y, r.eps)) { + throw new TestFailedException( + s"Did not expect \n$x\n and \n${r.y}\n to be within " + + "${r.eps}${r.method} for all elements.", 0) + } + true + } + + /** + * Comparison using absolute tolerance. + */ + def absTol(eps: Double): CompareMatrixRightSide = CompareMatrixRightSide( + (x: Matrix, y: Matrix, eps: Double) => { + x.toArray.zip(y.toArray).forall(x => x._1 ~= x._2 absTol eps) + }, x, eps, ABS_TOL_MSG) + + /** + * Comparison using relative tolerance. Note that comparing against sparse vector + * with elements having value of zero will raise exception because it involves with + * comparing against zero. + */ + def relTol(eps: Double): CompareMatrixRightSide = CompareMatrixRightSide( + (x: Matrix, y: Matrix, eps: Double) => { + x.toArray.zip(y.toArray).forall(x => x._1 ~= x._2 relTol eps) + }, x, eps, REL_TOL_MSG) + + override def toString = x.toString + } + } diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index 2f1e05dfcc7b1..3280e662fa0b1 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -37,7 +37,9 @@ object MimaExcludes { Seq( MimaBuild.excludeSparkPackage("deploy"), MimaBuild.excludeSparkPackage("graphx") - ) + ) ++ + MimaBuild.excludeSparkClass("mllib.linalg.Matrix") ++ + MimaBuild.excludeSparkClass("mllib.linalg.Vector") case v if v.startsWith("1.1") => Seq( diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index ab9f8ba120e83..12ac82293df76 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -336,7 +336,7 @@ object TestSettings { fork := true, javaOptions in Test += "-Dspark.test.home=" + sparkHome, javaOptions in Test += "-Dspark.testing=1", - javaOptions in Test += "-Dspark.ports.maxRetries=100", + javaOptions in Test += "-Dspark.port.maxRetries=100", javaOptions in Test += "-Dspark.ui.enabled=false", javaOptions in Test += "-Dsun.io.serialization.extendedDebugInfo=true", javaOptions in Test ++= System.getProperties.filter(_._1 startsWith "spark") diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py index cb09c191bed71..b43606b7304c5 100644 --- a/python/pyspark/rdd.py +++ b/python/pyspark/rdd.py @@ -2061,8 +2061,12 @@ def _jrdd(self): self._jrdd_deserializer = NoOpSerializer() command = (self.func, self._prev_jrdd_deserializer, self._jrdd_deserializer) + # the serialized command will be compressed by broadcast ser = CloudPickleSerializer() pickled_command = ser.dumps(command) + if pickled_command > (1 << 20): # 1M + broadcast = self.ctx.broadcast(pickled_command) + pickled_command = ser.dumps(broadcast) broadcast_vars = ListConverter().convert( [x._jbroadcast for x in self.ctx._pickled_broadcast_vars], self.ctx._gateway._gateway_client) diff --git a/python/pyspark/sql.py b/python/pyspark/sql.py index 8f6dbab240c7b..42a9920f10e6f 100644 --- a/python/pyspark/sql.py +++ b/python/pyspark/sql.py @@ -27,7 +27,7 @@ from array import array from operator import itemgetter -from pyspark.rdd import RDD, PipelinedRDD +from pyspark.rdd import RDD from pyspark.serializers import BatchedSerializer, PickleSerializer, CloudPickleSerializer from pyspark.storagelevel import StorageLevel from pyspark.traceback_utils import SCCallSiteSync @@ -975,7 +975,11 @@ def registerFunction(self, name, f, returnType=StringType()): command = (func, BatchedSerializer(PickleSerializer(), 1024), BatchedSerializer(PickleSerializer(), 1024)) - pickled_command = CloudPickleSerializer().dumps(command) + ser = CloudPickleSerializer() + pickled_command = ser.dumps(command) + if pickled_command > (1 << 20): # 1M + broadcast = self._sc.broadcast(pickled_command) + pickled_command = ser.dumps(broadcast) broadcast_vars = ListConverter().convert( [x._jbroadcast for x in self._sc._pickled_broadcast_vars], self._sc._gateway._gateway_client) diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index 0b3854347ad2e..7301966e48045 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -434,6 +434,12 @@ def test_large_broadcast(self): m = self.sc.parallelize(range(1), 1).map(lambda x: len(bdata.value)).sum() self.assertEquals(N, m) + def test_large_closure(self): + N = 1000000 + data = [float(i) for i in xrange(N)] + m = self.sc.parallelize(range(1), 1).map(lambda x: len(data)).sum() + self.assertEquals(N, m) + def test_zip_with_different_serializers(self): a = self.sc.parallelize(range(5)) b = self.sc.parallelize(range(100, 105)) diff --git a/python/pyspark/worker.py b/python/pyspark/worker.py index 252176ac65fec..d6c06e2dbef62 100644 --- a/python/pyspark/worker.py +++ b/python/pyspark/worker.py @@ -77,10 +77,12 @@ def main(infile, outfile): _broadcastRegistry[bid] = Broadcast(bid, value) else: bid = - bid - 1 - _broadcastRegistry.remove(bid) + _broadcastRegistry.pop(bid) _accumulatorRegistry.clear() command = pickleSer._read_with_length(infile) + if isinstance(command, Broadcast): + command = pickleSer.loads(command.value) (func, deserializer, serializer) = command init_time = time.time() iterator = deserializer.load_stream(infile) diff --git a/sbin/start-thriftserver.sh b/sbin/start-thriftserver.sh index 4ce40fe750384..ba953e763faab 100755 --- a/sbin/start-thriftserver.sh +++ b/sbin/start-thriftserver.sh @@ -27,7 +27,7 @@ set -o posix FWDIR="$(cd "`dirname "$0"`"/..; pwd)" CLASS="org.apache.spark.sql.hive.thriftserver.HiveThriftServer2" -CLASS_NOT_FOUND_EXIT_STATUS=1 +CLASS_NOT_FOUND_EXIT_STATUS=101 function usage { echo "Usage: ./sbin/start-thriftserver [options] [thrift server options]"