This project uses CUDA to optimize the search for hash fixpoints -- sequences of bytes whose SHA-1 hash begins with those bytes -- and the related problem of making a git commit that writes its own hash to a file.
For the meme. Being able to make a self-referential commit is pretty neat and being able to parallelize hash problems is useful in a variety of applications. Additionally, this project allowed me to gain a greater familiarity with the internals of SHA-1.
See cpu_demo/README.txt
.
First, the data is loaded in from the directory. We first read it as-is: digest type bits, prefixes (with lengths), and suffixes (with lengths). We then put these together into a single array for each layer, leaving the proper amount of space in the middle of the data for the hash of the prior layer and leaving space after before adding the length in accordance with the preprocessing steps of SHA-1. Then, we transfer all of this information to the GPU. We divide potential hashes among the available threads, and each one tries a hash, replacing the required data and walking up the tree, and checking if it found a fixpoint by comparing the final value to the input. If successful, it sets a global flag, causing all other threads to quit before trying any new hashes.
src/find_fixpoint.cpp
contains code whose function depends on the executable:- For
sha1-fixpoint
, sets up memory and calls the kernel caller on this memory to search for fixpoints of the prefix length defined infind_fixpoint.cu
. - For
tree-fixpoint
, sets up memory, including loading the data from the directory into astruct TreeData
in device space, and then calls the appropriate kernel caller.
- For
src/find_fixpoint.cu
contains the actual CUDA kernels and callerssrc/find_fixpoint.cuh
describes the caller functions insrc/find_fixpoint.cu
as well as some#define
s that are relevant throughout andstruct TreeData
.src/ta_utilities.cpp
andsrc/ta_utilities.hpp
allow the script to be "kind" when running on a shared server, selecting the coldest GPU to run on and enforcing a time limit
The Makefile produces two executables. For both, the first two arguments define (in order) the number of threads per block and the maximum number of blocks.
./tree-fixpoint
also takes a third argument -- the directory that encodes the
Merkel tree that we want to solve for a fixpoint in. (See cpu_demo/README.txt
for details on how this is formatted.)
I did some general optimization for the CPU version before transitioning to CUDA. For example, I tried to minimize memory copying and do all the SHA-1 preprocessing during initialization to avoid repeating work.
For the GPU, I was unable to find any good opportunities for shared memory, as it is inherent to hashes that even adjacent inputs will have very different outputs. So I configured CUDA to use some space that would be used for shared memory to increase the size of the L1 cache. Besides this, I tried to minimize conditionals that could cause warp divergence and unrolled several loops in the SHA-1 implementation.
This project was successful: the CPU version found a 6-hex-digit (3-byte) fixpoint in ~30 seconds on my laptop, while the CUDA version found an 8-hex-digit (4-byte) fixpoint in ~1 minute (despite a 256x increase in the search space). Due to the unpredictable nature of hashes, it is uncertain whether I just got lucky, but even in some test cases where no fixpoint was found, the program never took more than ~5 minutes to run.
Given the test repo's draft commit (enclosed as "test_repo_prefix8"),
the fixpoint 18b57d21
was found in 1.5 minutes.
When the code successfully finds a fixpoint:
$ ./tree-fixpoint 512 32767 test_repo_prefix8/
Index of the GPU with the lowest temperature: 1 (0 C)
Time limit for this program set to 360 seconds
finished loading data from disk to CPU
finished loading data from CPU to GPU
18b57d21 is a fixpoint
When the code exhausts all possibilities and no fixpoints are found:
$ ./tree-fixpoint 512 32767 test_repo_prefix8_nofix/
Index of the GPU with the lowest temperature: 1 (0 C)
Time limit for this program set to 360 seconds
finished loading data from disk to CPU
finished loading data from CPU to GPU
no fixpoints found :(