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Goal

● The goal of our project was to create an image classification and object 

detection model that simulates how one would be used in a self driving 

car

● Our model uses a neural network to draw boxes around and label 

objects in an image

● Brief overview of model architecture:

○ TensorFlow transfer learning image classifier

○ Object detection using:

■ Selective search

■ Non-maximum suppression



Background



Image Classification vs. Object Detection
● Image classification -

determining the classification 

of a given image (ex. Is this a 

photograph of a cat or a 

dog).

● Object detection  - detecting 

the an image of a certain 

class within a larger picture 

(ex. Within this picture of 

many animals, draw a 

bounding box around all 

relevant animals and identify 

them.)



Neural Networks

● “A neural network is a series of 

algorithms that endeavors to recognize 

underlying relationships in a set of data 

through a process that mimics the way 

the human brain operates. In this sense, 

neural networks refer to systems of 

neurons, either organic or artificial in 

nature.” (investopedia.com)

● It turns out that neural networks often 

produce generalizable results.

● Its best to view them as a black box.

https://www.investopedia.com/terms/n/neuralnetwork.asp#:~:text=A%20neural%20network%20is%20a,organic%20or%20artificial%20in%20nature.
https://en.wikipedia.org/wiki/Black_box


Convolutional Neural Networks

● A class of Neural Networks commonly 

used in computer vision applications

Wikipedia

https://en.wikipedia.org/wiki/Convolutional_neural_network


VGG16 (Simonyan and Zisserman)

● A CNN architecture developed by 

Oxford University researchers that 

showed high rates of success in 

image recognition.

● It showed that ‘deep’ Neural 

Networks might be more effective 

than ‘large’ neural networks.

Wiki

https://en.everybodywiki.com/VGG_Net


But how does a Neural Network actually work?

● Currently, the prevalent theory as 

to how a neural network works is 

that each layer is detecting a 

specific characteristic of the image 

that it sees, and as you travel 

through the layers of the network 

the layers begin detecting 

increasingly complex 

characteristics.



Transfer Learning

● The characteristic detecting 

nature of neural networks 

allows us to leverage pre-

trained networks on different 

problems with minimal changes. 

● The changes can be as minimal  

as retraining the last layer in the 

network but sometime can 

involve training several or more 

of the last layers in a network. 



Fine Tuning

Through tweaking the parameters of a neural network, one can try and maximize its 

accuracy. However, each tweak of the parameters has its positives and negatives.

● Running through the data numerous times (multiple epochs)

○ It can make up for small data sizes (+)

○ It can cause overtraining in the model (-)

● Increasing the size of the neural network

○ Accuracy can increase (+)

○ It becomes easier to overtrain the model (-)



TensorFlow Street Classifier



Data

● Since we wanted to simulate a model that might be used in a self 

driving car, we decided to train our network to recognize everyday 

objects found in city streets

● Classes:
○ Bicycle

○ Car

○ Motorcycle

○ Person

○ Train



Datasets

● We used the COCO (Common Objects in 

Context) Dataset as it contains high-quality 

images of these objects in the real-life 

scenes.

● We also used Open Images V6 Dataset to 

supplement some more images for the 

small sized classes.

● Both datasets contained labels and  

bounding boxes which we used as ground 

truth to train our model.

https://cocodataset.org/#home
https://storage.googleapis.com/openimages/web/index.html


Generating Train/Test Images

● All bounding boxes from every image in the datasets were cropped and 

saved inside of its class folder (crops of cars were stored in the ‘car’ folder, 

etc)

● These cropped images were then split into train and test folders

● Shift augmentations were performed for crops in the train folder in order 

to help the model learn more about the features of each class.

● These crops were then used to train the model

● Any image from the datasets which had no bounding boxes of the classes 

we were training the machine to recognize were sliced into quadrants, with 

each quarter being placed into a ‘background’ class folder

● The purpose of the background class is to allow the model to classify 

unknown objects as ‘background’ instead of mistakenly classifying it as one 

of the five other classes.

● In total the model was trained on over 848,000 cropped images



Classification Model

● Our model uses transfer learning using the 

MobileNetV2 architecture 

● The model ran for 20 epochs, the first 10 with a 

learning rate of 0.0001 and the last 10 with a 

learning rate of 0.00001

● After training, our model obtained a score of 

over 95% test accuracy

● The figure to the right is a confusion matrix, 

showing how accurate the model was for each of 

the 6 classes



Object Detection

● After classifying each image, the next step is object detection

● Object detection works by sending image crops into the classification model and 

drawing boxes around all crops that were classified as one of the non-background 

classes

● We tried two different methods of generating crops to send to into the classifier:

1. Sliding windows

2. Selective search



Sliding Windows

● Sliding windows works by passing a fixed-size rectangle across the image, 

cropping the image and saving the crop’s location on the original image. 

The image is then enlarged and the process is repeated in order to 

generate smaller boxes to help find smaller objects.

● The process of repeatedly enlarging the image is called pyramid scaling

● The crops are then sent to the classification model to be classified. The 

model outputs the original image with bounding boxes drawn around all 

crops which were classified as non-background objects



Example
Original Image 

Image crops with pyramid scaling



Selective Search
The sliding windows method had two main problems:

● It is a brute force method, so it took a long time to run

● The boxes all had a fixed size, so it was hard to classify multiple classes 

of objects that had different shapes

We decided to use an alternative method of generating bounding boxes...

Selective search:

● An algorithm that works by creating crops based on certain criteria in 

the image:

○ Color,  texture, shape, size

● This produces boxes of different shapes and sizes, and doesn’t work by 

repeatedly running brute-force across the image

● Crops are then sent to the model to be classified

● Our model uses selective search as it is faster and more accurate than 

sliding windows 

(Diagram from pyimagesearch.com)

https://www.pyimagesearch.com/2020/06/29/opencv-selective-search-for-object-detection/


Non-maximum Suppression (NMS)

● After the cropped regions are classified, many adjacent regions 

will be classified as the same object and will overlap with each 

other. In order to choose only the best crop for each object, we 

run a non-maximum suppression algorithm to remove all 

overlapping regions.

● How NMS works:

○ Select the crop whose classification the model is most confident 

about

○ Remove all bounding boxes whose overlap (based on the 

intersection over union (IOU) metric) is above a certain threshold

○ Output all remaining bounding boxes (ones which weren’t above 

the overlap threshold)



Before NMS After NMS



Results 

● Our model is able to classify 

images with relatively high 

accuracy

● We were successful in creating an 

image detection model that can 

detect if an object of any of our 

classes is in the image

● With our GitHub repo, you can 

download the data and train your 

own model

https://github.com/ndcantor/tensorflow-street-classifier


Further Exploration

● How we might be able to further improve our model:

○ Uneven training data class sizes led our model to be skewed toward the bigger 

classes. One way to prevent this would be to find more data to increase the size of 

the smaller classes

○ Another way to help this problem is to use a focal loss function. This loss function 

helps the model adjust its weights more evenly by more drastically adjusting 

weights when it mistakenly classifies an object of a smaller class than an object of a 

bigger class

○ Another aspect to improve is the accuracy of the bounding boxes. In order to have 

tighter boxes, we would be able to run a bounding box regression algorithm



Do it Yourself - How to Build and Run Our Model

Pre-requisites:

1. Python 3.7+
2. CUDA 10.0
3. cuDNN 7.5.1

Run:

1. To clone the repo - git clone https://github.com/ndcantor/tensorflow-street-classifier.git
2. Install required Python  libraries - pip3 install -r requirements.txt
3. Download data, build, train, and run inference on the model - python3 street_classifier.py
4. Results :

a. The model’s train, validation, and text accuracies will be printed on the screen
b. A  confusion matrix as well as sample test images will be saved to disk.

https://developer.nvidia.com/cuda-10.0-download-archive
https://developer.nvidia.com/cudnn
https://github.com/ndcantor/tensorflow-street-classifier.git

