
Object Detection in

TensorFlow

Nissim Cantor, Avi Radinsky, Jacob Silbiger

GitHub: https://github.com/ndcantor/tensorflow-street-classifier

https://github.com/ndcantor/tensorflow-street-classifier

Our Mentor, Gershom Kutliroff

● Chief Science Officer, Taranis

● CTO & Founder, ClearVuze

● Principle Engineer, Intel

● CTO & Founder, Omek Interactive

● Chief Scientist, IDT Video Technologies

Linkedin

https://www.linkedin.com/in/gershom-kutliroff-9a89611/

Goal

● The goal of our project was to create an image classification and object

detection model that simulates how one would be used in a self driving

car

● Our model uses a neural network to draw boxes around and label

objects in an image

● Brief overview of model architecture:

○ TensorFlow transfer learning image classifier

○ Object detection using:

■ Selective search

■ Non-maximum suppression

Background

Image Classification vs. Object Detection
● Image classification -

determining the classification

of a given image (ex. Is this a

photograph of a cat or a

dog).

● Object detection - detecting

the an image of a certain

class within a larger picture

(ex. Within this picture of

many animals, draw a

bounding box around all

relevant animals and identify

them.)

Neural Networks

● “A neural network is a series of

algorithms that endeavors to recognize

underlying relationships in a set of data

through a process that mimics the way

the human brain operates. In this sense,

neural networks refer to systems of

neurons, either organic or artificial in

nature.” (investopedia.com)

● It turns out that neural networks often

produce generalizable results.

● Its best to view them as a black box.

https://www.investopedia.com/terms/n/neuralnetwork.asp#:~:text=A%20neural%20network%20is%20a,organic%20or%20artificial%20in%20nature.
https://en.wikipedia.org/wiki/Black_box

Convolutional Neural Networks

● A class of Neural Networks commonly

used in computer vision applications

Wikipedia

https://en.wikipedia.org/wiki/Convolutional_neural_network

VGG16 (Simonyan and Zisserman)

● A CNN architecture developed by

Oxford University researchers that

showed high rates of success in

image recognition.

● It showed that ‘deep’ Neural

Networks might be more effective

than ‘large’ neural networks.

Wiki

https://en.everybodywiki.com/VGG_Net

But how does a Neural Network actually work?

● Currently, the prevalent theory as

to how a neural network works is

that each layer is detecting a

specific characteristic of the image

that it sees, and as you travel

through the layers of the network

the layers begin detecting

increasingly complex

characteristics.

Transfer Learning

● The characteristic detecting

nature of neural networks

allows us to leverage pre-

trained networks on different

problems with minimal changes.

● The changes can be as minimal

as retraining the last layer in the

network but sometime can

involve training several or more

of the last layers in a network.

Fine Tuning

Through tweaking the parameters of a neural network, one can try and maximize its

accuracy. However, each tweak of the parameters has its positives and negatives.

● Running through the data numerous times (multiple epochs)

○ It can make up for small data sizes (+)

○ It can cause overtraining in the model (-)

● Increasing the size of the neural network

○ Accuracy can increase (+)

○ It becomes easier to overtrain the model (-)

TensorFlow Street Classifier

Data

● Since we wanted to simulate a model that might be used in a self

driving car, we decided to train our network to recognize everyday

objects found in city streets

● Classes:
○ Bicycle

○ Car

○ Motorcycle

○ Person

○ Train

Datasets

● We used the COCO (Common Objects in

Context) Dataset as it contains high-quality

images of these objects in the real-life

scenes.

● We also used Open Images V6 Dataset to

supplement some more images for the

small sized classes.

● Both datasets contained labels and

bounding boxes which we used as ground

truth to train our model.

https://cocodataset.org/#home
https://storage.googleapis.com/openimages/web/index.html

Generating Train/Test Images

● All bounding boxes from every image in the datasets were cropped and

saved inside of its class folder (crops of cars were stored in the ‘car’ folder,

etc)

● These cropped images were then split into train and test folders

● Shift augmentations were performed for crops in the train folder in order

to help the model learn more about the features of each class.

● These crops were then used to train the model

● Any image from the datasets which had no bounding boxes of the classes

we were training the machine to recognize were sliced into quadrants, with

each quarter being placed into a ‘background’ class folder

● The purpose of the background class is to allow the model to classify

unknown objects as ‘background’ instead of mistakenly classifying it as one

of the five other classes.

● In total the model was trained on over 848,000 cropped images

Classification Model

● Our model uses transfer learning using the

MobileNetV2 architecture

● The model ran for 20 epochs, the first 10 with a

learning rate of 0.0001 and the last 10 with a

learning rate of 0.00001

● After training, our model obtained a score of

over 95% test accuracy

● The figure to the right is a confusion matrix,

showing how accurate the model was for each of

the 6 classes

Object Detection

● After classifying each image, the next step is object detection

● Object detection works by sending image crops into the classification model and

drawing boxes around all crops that were classified as one of the non-background

classes

● We tried two different methods of generating crops to send to into the classifier:

1. Sliding windows

2. Selective search

Sliding Windows

● Sliding windows works by passing a fixed-size rectangle across the image,

cropping the image and saving the crop’s location on the original image.

The image is then enlarged and the process is repeated in order to

generate smaller boxes to help find smaller objects.

● The process of repeatedly enlarging the image is called pyramid scaling

● The crops are then sent to the classification model to be classified. The

model outputs the original image with bounding boxes drawn around all

crops which were classified as non-background objects

Example
Original Image

Image crops with pyramid scaling

Selective Search
The sliding windows method had two main problems:

● It is a brute force method, so it took a long time to run

● The boxes all had a fixed size, so it was hard to classify multiple classes

of objects that had different shapes

We decided to use an alternative method of generating bounding boxes...

Selective search:

● An algorithm that works by creating crops based on certain criteria in

the image:

○ Color, texture, shape, size

● This produces boxes of different shapes and sizes, and doesn’t work by

repeatedly running brute-force across the image

● Crops are then sent to the model to be classified

● Our model uses selective search as it is faster and more accurate than

sliding windows

(Diagram from pyimagesearch.com)

https://www.pyimagesearch.com/2020/06/29/opencv-selective-search-for-object-detection/

Non-maximum Suppression (NMS)

● After the cropped regions are classified, many adjacent regions

will be classified as the same object and will overlap with each

other. In order to choose only the best crop for each object, we

run a non-maximum suppression algorithm to remove all

overlapping regions.

● How NMS works:

○ Select the crop whose classification the model is most confident

about

○ Remove all bounding boxes whose overlap (based on the

intersection over union (IOU) metric) is above a certain threshold

○ Output all remaining bounding boxes (ones which weren’t above

the overlap threshold)

Before NMS After NMS

Results

● Our model is able to classify

images with relatively high

accuracy

● We were successful in creating an

image detection model that can

detect if an object of any of our

classes is in the image

● With our GitHub repo, you can

download the data and train your

own model

https://github.com/ndcantor/tensorflow-street-classifier

Further Exploration

● How we might be able to further improve our model:

○ Uneven training data class sizes led our model to be skewed toward the bigger

classes. One way to prevent this would be to find more data to increase the size of

the smaller classes

○ Another way to help this problem is to use a focal loss function. This loss function

helps the model adjust its weights more evenly by more drastically adjusting

weights when it mistakenly classifies an object of a smaller class than an object of a

bigger class

○ Another aspect to improve is the accuracy of the bounding boxes. In order to have

tighter boxes, we would be able to run a bounding box regression algorithm

Do it Yourself - How to Build and Run Our Model

Pre-requisites:

1. Python 3.7+
2. CUDA 10.0
3. cuDNN 7.5.1

Run:

1. To clone the repo - git clone https://github.com/ndcantor/tensorflow-street-classifier.git
2. Install required Python libraries - pip3 install -r requirements.txt
3. Download data, build, train, and run inference on the model - python3 street_classifier.py
4. Results :

a. The model’s train, validation, and text accuracies will be printed on the screen
b. A confusion matrix as well as sample test images will be saved to disk.

https://developer.nvidia.com/cuda-10.0-download-archive
https://developer.nvidia.com/cudnn
https://github.com/ndcantor/tensorflow-street-classifier.git

