
NeoFS Technical Specification Revision: c7b14cab

Blockchain components

NeoFS Sidechain Governance

NeoFS uses the sidechain as a database to store meta-information about the network: network map,
audit results, containers, key mappings and network settings and several supplementary thins.

The sidechain works on the same principles as the mainnet: there are no free transactions, the com-
mittee chooses the consensus nodes, etc. It gives many advantages, for example, limited GAS Utility
Token supply prevents some kinds of DoS attacks, and the one can use the same Neo3 mainnet tool
stack to work with NeoFS sidechain information.

To effectively work with sidechain we need to solve the following problems:

• How the mainnet committee can control Inner Ring nodes and the consensus nodes of the
sidechain?

• How Storage Nodes and Inner Ring nodes get sidechain GAS Utility Token to send transactions?

NeoFS Governancemodel solves these problems with seven “Alphabet” sidechain contracts and first
seven Inner Ring nodes bound to those contracts, acting as the sidechain committee.

Alphabet contracts

Alphabet contracts are seven smart contracts deployed in the sidechain, named after the first seven
Glagolitic12 script letters: Az(�), Buky(�), Vedi(�), Glagoli(�), Dobro(�), Jest(�), Zhivete(�). These con-
tracts hold 100,000,000 sidechain NEO Token on their accounts (approximately 14,285,000 for each).
By storing NEO Token on the contract accounts, we protect it from unauthorized use by malicious
sidechain nodes. Contracts do not transfer NEO and use it to vote for sidechain Validator nodes and
to emit GAS Utility Token.

Alphabet Inner Ring nodes

Alphabet Inner Ring nodes are the first seven nodes in the Inner Ring list that are logically boundwith
one-to-one relation to Alphabet contracts. They are the voting nodes making all decisions in the Ne-
oFS network. All other Inner Ring nodes take care of Data Audit, Storage Node attributes verification
and other technical tasks.

Being Alphabet node implies running the sidechain Consensus Node using the same key pair as the
NeoFS Inner Ring node instance. Hence, Alphabet node candidate must:
12https://en.wikipedia.org/wiki/Glagolitic_script

Neo Saint Petersburg Competence Center 14

https://en.wikipedia.org/wiki/Glagolitic_script

NeoFS Technical Specification Revision: c7b14cab

• Setup NeoFS Inner Ring node instance
• Setup NeoFS sidechain full node using same key pair
• Register the same key in mainnet NeoFS Inner Ring candidates list
• Register the same key in sidechain committee candidates list

Alphabet contracts invocation

Contracts cannot distribute utility token or vote by themselves. To do these operations, Inner Ring
nodes invoke alphabet contract methods. Alphabet Inner Ring nodes can invoke only corresponding
alphabetical contracts. One node invokes one contract.

NeoFS IR

NeoFS Sidechain

IR ⰀIR ⰁIR ⰂIR ⰃIR ⰄIR ⰅIR ⰆIRIR Candidate

SC ⰀSC ⰁSC ⰂSC ⰃSC ⰄSC ⰅSC ⰆSC NetmapSC Audit

Figure 3: Inner Ring to Alphabet SC relation

Alphabetic contracts have hardcoded indexes. Contracts authenticate method invoker by using the
list of Inner Ring node keys fromNetmap Smart Contract. This scheme helps to limit malicious Alpha-
bet Inner Ring node actions andmake network more resiliant to Inner Ring nodes losses.

Neo Saint Petersburg Competence Center 15

NeoFS Technical Specification Revision: c7b14cab

IR Ⰰ

IR Ⰰ

IR Ⰱ

IR Ⰱ

SC Ⰰ

SC Ⰰ

SC Netmap

SC Netmap

alt [successful case]

Emit()

InnerRingList()

[]PublicKeysvalid invoker

emit gas

[panic case]

Emit()

InnerRingList()

[]PublicKeysinvalid invoker

panic

Figure 4: Alphabet SC invocation by Inner Ring nodes

Utility token distribution

InnerRingnodes invokeEmit()method incorrespondingalphabetical contracts. Thismethod trans-
fers all it’s NEO Token to it’s account, thereby producing utility token emission. Within the same invo-
cation context, the contract transfers a shareof the availableGASUtility Token to all Inner Ringwallets.
Contract will keep the 1

8 ’th part on it’s balance as an emergency reserve.

𝐼𝑛𝑛𝑒𝑟𝑅𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐺 ⋅ 7
8 ⋅ 1

𝑁

Neo Saint Petersburg Competence Center 16

NeoFS Technical Specification Revision: c7b14cab

𝐺 - contract’s GAS Utility Token amount
𝑁 - length of Inner Ring list

After receiving GAS Utility Token, the nodes of the Inner Ring can periodically transfer a share to all
registered Storage nodes and use the received utility token for sidechain operations: change epochs,
register new containers, save data audit results, etc.

Storage nodes have limited supply of GAS Utility Token to prevent malicious actions and DoS attacks.
Depending on Storage Node activity and reputation records it will get different utility token amount,
normally enough to perform all required operations. Sidechain GAS and mainnet GAS are different
tokens, hence Storage Nodes don’t spend rewards for operations and can’t convert sidechain utility
token into mainnet GAS Utility Token or vice versa.

Changing sidechain validators

Beforehand, Alphabet Inner Ring node candidates register validator keys in the list of candidates for
the sidechain committee. When sidechain Netmap smart contract send notification on Inner Ring
nodes list updates, Alphabet Inner Ring nodes invoke Vote([]keys)method of all Alphabet smart
contracts to gather signatures and then make them vote for sidechain Committee. Each Alphabet
contract votes for the keys proposed by sending VotesPerKey votes for each key. Normally, there
is just one key per node, hence N equals 1.

𝑉 𝑜𝑡𝑒𝑠𝑃𝑒𝑟𝐾𝑒𝑦 = 𝐴
𝑁

𝐴 - contract’s NEO amount
𝑁 - length of proposed keys list

Changing the Inner Ring list

Inner Ring nodes follow a self regulation process, allowing them to vote for substitution for dead or
malfunctioning nodeswith newones from the candidate list. Only Alphabet nodes prepare new Inner
Ring nodes lists and vote for it, but all nodes listed theremust confirm their participation via the same
voting mechanism.

The voting procedure uses sidechain Voting smart contract, but the list of candidates is taken from
mainnet NeoFS contract. When Inner Ring nodes agree on the updated list, it’s submitted tomainnet
NeoFS smart contract and thenmirrored back to Netmap smart contract on sidechain.

By usingEmit() andVote()methods of Alphabetic smart contracts, Inner Ring nodes take full con-
trol of the sidechain. They control validator keys and utility token distribution. Thus, if the mainnet

Neo Saint Petersburg Competence Center 17

NeoFS Technical Specification Revision: c7b14cab

committee will control list of Inner Ring nodes, then it will control sidechain as well.

The mainnet Committee can set the list of priority candidates for Alphabet Inner Ring nodes in main-
net DesignationContract. Nodes from that list will be voted for becoming Alphabet Inner Ring
nodes and substitute current Alphabet nodes, if they confirm the following requirements:

• Node’s key is registered as a candidate in mainnet NeoFS smart contract
• Node’s key is registered as a sidechain committee candidate
• Node is not listed as inactive in sidechain Netmap contract

The DesignationContract list may contain any number of valid candidates, the voting process
will make sure as many of them, as possible, are in the first seven active inner Ring nodes. If there is
not enough appropriate candidates, the rest will be taken from the regular candidates list. If there are
toomany, only the first seven suitable nodes will be used.

The voting algorithm is the same for each Inner Ring node and starts in the following cases:

• New Epoch
• Notification frommainnet DesignationContract on Inner Ring nodes list change
• Notification from sidechain Netmap contract on inactive Inner Ring nodes list change

All Inner Ring nodes listen for notifications from Voting contract and if they see themselves in the new
InnerRingnodes list, they confirm their participationby sending the same list inPrepare()method.
Only newly added nodes need to confirm their participation with a transaction. If the node is already
in the active Inner Ring list, it doesn’t need to send confirmation.

When there are enough Alphabet signatures and all required candidate signatures sent with Pre-
pare()method, the last invocation will update the list and finish voting round.

Active Alphabet Inner Ring nodes will be waiting for the round to end and locally test invoke En-
dRound()method. Whenvoting round timeout comesand round isnot finishedsuccesfullybyagree-
ing on a new list, one of the Alphabet nodes will invoke EndRound() and settle the round results.

If by the end of the voting round some newly added nodes didn’t confirm their participation, they are
added to Netmap smart contract’s inactive list. This will trigger a new voting round without those
inactive nodes.

If there are not enough candidates, Inner Ring nodes will accept the best list they can gather.

When the new list is agreed,Voting smart contract sends notification. All Alphabet nodes react with
invocation of UpdateInnerRing() ofmainnet NeoFS smart contract. When themajority of Alpha-
bet nodes send the update and mainnet list is updated, it will be mirrored by Alphabet Inner Ring
nodes in sidechain Netmap smart contract.

Neo Saint Petersburg Competence Center 18

NeoFS Technical Specification Revision: c7b14cab

Take inactive list from sidechain Netmap contract

Take candiate list from mainnet DesignationContract and filter out inactive or invalid nodes

There is no need
to change IR list

yes

Are first seven candidates in active IR list?

no

Are there inactive nodes in active IR list or need to change IR number?
yes

May be cached
at previous step

Take candiate list from mainnet DesignationContract and filter out inactive or invalid nodes

Alphabet IR list
must only be
changed by 1/3-1
nodes at once

Calculate Alphabet IR change

Take current IR list non-Alphabet tail and filter out inactive or invalid nodes

Take candiate list from mainnet NeoFS contract and filter out inactive or invalid nodes

Append new candidates to IR list tail

no

Enough IR nodes left?

Invoke Prepare() method of Voting smart contract with new IR list

Figure 5: Inner Ring Alphabet node voting algorithm

Neo Saint Petersburg Competence Center 19

NeoFS Technical Specification Revision: c7b14cab

NeoFS
contract

NeoFS
contract

Netmap
contract

Netmap
contract

Voting
contract

Voting
contract

IR Ⰰ

IR Ⰰ

IR Ⰱ

IR Ⰱ

IR Ⰲ

IR Ⰲ

IR 1

IR 1

IR 2

IR 2

IR 3

IR 3

Failed voting

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2}) Each list calculated deterministically
by each Alphabet IR node

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2})

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2})Need 2/3+1 Alphabet IR votes

Notify

NotifyOnly new IR nodes in the list send confirmation

Prepare({Ⰰ,Ⰱ,Ⰲ,1,2})Regular IR confirm only,
without list recalculation

EndRound() Alphabet IR nodes wait for timeout
and then invoke round results settlement

SetInactiveIR({1})

Notify

Notify

Notify

New voting round

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Notify

Notify

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})

Prepare({Ⰰ,Ⰱ,Ⰲ,2,3})Got new IR List!

Notify

Notify

Notify

Update IR list

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

Update IR list

Notify

Notify

Notify

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

UpdateInnerRing({Ⰰ,Ⰱ,Ⰲ,2,3})

Update IR list

Figure 6: Inner Ring list update in mainnet and sidechain

Neo Saint Petersburg Competence Center 20

