diff --git a/db/databaseintro.html b/db/databaseintro.html index 3569dd34983..c400ab6e0ed 100644 --- a/db/databaseintro.html +++ b/db/databaseintro.html @@ -36,7 +36,7 @@

Attribute data import and export

Further conversion tools: diff --git a/db/db.select/db.select.html b/db/db.select/db.select.html index 175151cbe55..58ceba5443d 100644 --- a/db/db.select/db.select.html +++ b/db/db.select/db.select.html @@ -62,7 +62,7 @@

Execute multiple SQL statements

 cat file.sql
 SELECT * FROM busstopsall WHERE cat = 1
-SELECT cat FROM busstopsall WHERE cat > 4 AND cat < 8
+SELECT cat FROM busstopsall WHERE cat > 4 AND cat < 8
 
 db.select input=file.sql
 
diff --git a/db/drivers/mysql/grass-mesql.html b/db/drivers/mysql/grass-mesql.html index 1cbe952da41..3e2299b0d88 100644 --- a/db/drivers/mysql/grass-mesql.html +++ b/db/drivers/mysql/grass-mesql.html @@ -14,9 +14,9 @@

Driver and database name

before use of the driver. In the name of database it is possible to use 3 variables:

diff --git a/db/drivers/mysql/grass-mysql.html b/db/drivers/mysql/grass-mysql.html index 8fdbc831a31..c49c58407d9 100644 --- a/db/drivers/mysql/grass-mysql.html +++ b/db/drivers/mysql/grass-mysql.html @@ -14,7 +14,7 @@

Creating a MySQL database

A new database is created within MySQL:
-mysql> CREATE DATABASE mydb;
+mysql> CREATE DATABASE mydb;
 
See the MySQL manual for details. @@ -27,21 +27,21 @@

Driver and database name

The parameter 'database' can be given in two formats:

Examples of connection parameters: -

+
 db.connect driver=mysql database=mytest
 db.connect driver=mysql database='dbname=mytest,host=test.grass.org'
-
+

Data types

@@ -51,16 +51,16 @@

Data types

BLOB, LONGBLOB) are not not supported. If a table with binary column(s) is used in GRASS a warning is printed and only the supported columns are -returned in query results. +returned in query results. -
  • Columns of type SET and ENUM are represented as string (VARCHAR). +
  • Columns of type SET and ENUM are represented as string (VARCHAR).
  • Very large integers in columns of type BIGINT can be lost or corrupted because GRASS does not support 64 bin integeres -on most platforms. +on most platforms.
  • GRASS does not currently distinguish types TIMESTAMP and -DATETIME. Both types are in GRASS interpreted as TIMESTAMP. +DATETIME. Both types are in GRASS interpreted as TIMESTAMP.
  • Indexes

    @@ -81,11 +81,12 @@

    Privileges

    to other users you have to ask your MySQL server administrator to grant select privilege to them on the MySQL database used for that mapset. For example, to allow everybody to read data -in from your database 'mydb':
    -
    +in from your database 'mydb':
    +
    +
     shell> mysql --user=root mysql
     mysql> GRANT SELECT ON mydb.* TO ''@'%';
    -
    +

    Schemas

    diff --git a/db/drivers/postgres/grass-pg.html b/db/drivers/postgres/grass-pg.html index cb707fa9314..3950c0dd315 100644 --- a/db/drivers/postgres/grass-pg.html +++ b/db/drivers/postgres/grass-pg.html @@ -115,7 +115,7 @@

    Example: Import from PostGIS

    Geometry Converters

    @@ -292,7 +292,7 @@

    GCP Map Display Statusbar

    SEE ALSO

    - wxGUI
    + wxGUI, wxGUI components
    diff --git a/gui/wxpython/gmodeler/g.gui.gmodeler.html b/gui/wxpython/gmodeler/g.gui.gmodeler.html index a840768abeb..0bf5fa743b0 100644 --- a/gui/wxpython/gmodeler/g.gui.gmodeler.html +++ b/gui/wxpython/gmodeler/g.gui.gmodeler.html @@ -460,7 +460,7 @@

    Defining loops

    SEE ALSO

    - wxGUI
    + wxGUI, wxGUI components
    diff --git a/gui/wxpython/iclass/g.gui.iclass.html b/gui/wxpython/iclass/g.gui.iclass.html index f1cf34ba897..3ce1bd580e6 100644 --- a/gui/wxpython/iclass/g.gui.iclass.html +++ b/gui/wxpython/iclass/g.gui.iclass.html @@ -82,7 +82,7 @@

    DESCRIPTION

    SEE ALSO

    - wxGUI
    + wxGUI, wxGUI components, Interactive Scatter Plot Tool
    diff --git a/gui/wxpython/image2target/g.gui.image2target.html b/gui/wxpython/image2target/g.gui.image2target.html index f24c6fa2a0d..35b9c7023dd 100644 --- a/gui/wxpython/image2target/g.gui.image2target.html +++ b/gui/wxpython/image2target/g.gui.image2target.html @@ -26,11 +26,11 @@

    DESCRIPTION

    manipulate and analyze GCPs are provided in the toolbar. This panel can be moved out of the GCP manager window by either dragging with the caption or by clicking on the pin button on the right in the caption. - This panel can also be placed below the map displays by dragging. + This panel can also be placed below the map displays by dragging.
  • The two panels in the lower part are used for map and GCP display, the left pane showing a map from the source project and the right pane showing a reference map from the target project. Numbered Ground - Control Points are shown on both map displays. + Control Points are shown on both map displays.
  • Components of the GCP Manager

    @@ -291,7 +291,7 @@

    GCP Map Display Statusbar

    SEE ALSO

    - wxGUI
    + wxGUI, wxGUI components
    diff --git a/gui/wxpython/mapswipe/g.gui.mapswipe.html b/gui/wxpython/mapswipe/g.gui.mapswipe.html index 58c2e28d264..ae4fe135a0f 100644 --- a/gui/wxpython/mapswipe/g.gui.mapswipe.html +++ b/gui/wxpython/mapswipe/g.gui.mapswipe.html @@ -39,7 +39,7 @@

    DESCRIPTION

    SEE ALSO

    - wxGUI
    + wxGUI, wxGUI components
    diff --git a/gui/wxpython/photo2image/g.gui.photo2image.html b/gui/wxpython/photo2image/g.gui.photo2image.html index f958f9baf7e..af113100511 100644 --- a/gui/wxpython/photo2image/g.gui.photo2image.html +++ b/gui/wxpython/photo2image/g.gui.photo2image.html @@ -32,7 +32,7 @@

    Screenshot of g.gui.photo2image

    -Screenshot of g.gui.photo2image +Screenshot of g.gui.photo2image
    Figure: Screenshot of g.gui.photo2image
    @@ -40,7 +40,7 @@

    Screenshot of g.gui.photo2image

    For a detailed operation manual please read

    -wxGUI
    +wxGUI, wxGUI components
    diff --git a/gui/wxpython/psmap/g.gui.psmap.html b/gui/wxpython/psmap/g.gui.psmap.html index 02fc0d9960f..068b2ae6724 100644 --- a/gui/wxpython/psmap/g.gui.psmap.html +++ b/gui/wxpython/psmap/g.gui.psmap.html @@ -18,9 +18,9 @@

    DESCRIPTION

    Possible output files:

    @@ -38,23 +38,23 @@

    DESCRIPTION

    Currently supported ps.map instructions:

    CARTOGRAPHIC COMPOSER TOOLBAR

    @@ -203,7 +203,7 @@

    CARTOGRAPHIC COMPOSER TOOLBAR

    SEE ALSO

    - wxGUI
    + wxGUI, wxGUI components
    diff --git a/gui/wxpython/rdigit/g.gui.rdigit.html b/gui/wxpython/rdigit/g.gui.rdigit.html index becb12affd7..7705ef8c7be 100644 --- a/gui/wxpython/rdigit/g.gui.rdigit.html +++ b/gui/wxpython/rdigit/g.gui.rdigit.html @@ -74,9 +74,9 @@

    EXAMPLES

    SEE ALSO

    - wxGUI
    - wxGUI components,
    - r.in.poly (backend of digitizer),
    + wxGUI, + wxGUI components, + r.in.poly (backend of digitizer), g.gui.vdigit
    diff --git a/gui/wxpython/rlisetup/g.gui.rlisetup.html b/gui/wxpython/rlisetup/g.gui.rlisetup.html index 1dc786e0b10..7539eeb739f 100644 --- a/gui/wxpython/rlisetup/g.gui.rlisetup.html +++ b/gui/wxpython/rlisetup/g.gui.rlisetup.html @@ -78,76 +78,76 @@

    Usage details

    1. Choose file name and maps to use for setting: -
        -
      • Name for new configuration file(required): the name - of new configuration file
      • -
      • Raster map name to use to select areas (required): +
          +
        • Name for new configuration file(required): the name + of new configuration file
        • +
        • Raster map name to use to select areas (required): the name of raster map used for selecting sampling areas
        • -
        • Vector map to overlay (optional): name of a +
        • Vector map to overlay (optional): name of a vector map used for selecting sampling areas
        • -
        +
    2. Set the sampling frame. The sample frame is a rectangular area which contains all the areas to analyze. It can be defined in three ways: -
        -
      • Whole map layer: the sample frame is the whole map
      • -
      • Keyboard setting: the user enters the coordinates in - cells of upper left corner of sampling frame and its length in - rows and columns.
      • -
      • Draw the sample frame: the user draws the sample frame - on map using mouse.
      • -
      +
        +
      • Whole map layer: the sample frame is the whole map
      • +
      • Keyboard setting: the user enters the coordinates in + cells of upper left corner of sampling frame and its length in + rows and columns.
      • +
      • Draw the sample frame: the user draws the sample frame + on map using mouse.
      • +
    3. Set the sample areas. The sample areas are simply the areas to analyze. They can be defined in five ways (see the picture below): -
        -
      • Whole map layer: the sample area is the whole sample - frame
      • -
      • Regions: the user enters the number of areas and then - draws them using mouse.
      • -
      • Sample units: they are areas of rectangular or circular - shape. The user can define them using keyboard or mouse. -
          -
        • keyboard: the user define the shape of sample unists and - their disposition: -
            -
          • Random non overlapping: the user specifies - the number of sample units and they are placed in a - random way at runtime. It is guaranteed that the - areas do not intersect themselves.
          • -
          • Systematic contiguous: the defined sample - is placed covering the sample frame, side by side - across rows.
          • -
          • Systematic non contiguous: the same as above, - but here ever rectangle is spaced from another by - a specified number of cells.
          • -
          • Stratified random: the sample frame is - divided in n strats of rows and m strats of columns - (n and m are given by user), then the specified - number of sample areas are placed in a random way, - one for every m*n areas defined by strats.
          • -
          • Centered over sites: the sample areas - are placed into sample frame centering them on points - in site file.
          • -
          -
        • -
        • mouse: the user chooses the shape and then draws the - specified number of sample areas on map.
        • -
        +
          +
        • Whole map layer: the sample area is the whole sample + frame
        • +
        • Regions: the user enters the number of areas and then + draws them using mouse.
        • +
        • Sample units: they are areas of rectangular or circular + shape. The user can define them using keyboard or mouse. +
            +
          • keyboard: the user define the shape of sample unists and + their disposition: +
              +
            • Random non overlapping: the user specifies + the number of sample units and they are placed in a + random way at runtime. It is guaranteed that the + areas do not intersect themselves.
            • +
            • Systematic contiguous: the defined sample + is placed covering the sample frame, side by side + across rows.
            • +
            • Systematic non contiguous: the same as above, + but here ever rectangle is spaced from another by + a specified number of cells.
            • +
            • Stratified random: the sample frame is + divided in n strats of rows and m strats of columns + (n and m are given by user), then the specified + number of sample areas are placed in a random way, + one for every m*n areas defined by strats.
            • +
            • Centered over sites: the sample areas + are placed into sample frame centering them on points + in site file.
            • +
            +
          • +
          • mouse: the user chooses the shape and then draws the + specified number of sample areas on map.
          • +
        • -
        • Moving Window: the user defines a rectangular or - circular area, it is moved over all the raster increasing only - of a cell for every move(in columns if possible, if not in rows). - It produces a new raster containing the result of all analysis.
        • -
        • Select areas from the overlaid vector map: - the sample areas are defined by the vector map selected above. - For every cat in vector map, the procedure prompts the - user if they want to include it as sample area. - The resulting configuration file can be used only with the - specified raster map, and the procedure can be used only if - whole map layer is selected as sampling frame.
        • -
        +
      • Moving Window: the user defines a rectangular or + circular area, it is moved over all the raster increasing only + of a cell for every move(in columns if possible, if not in rows). + It produces a new raster containing the result of all analysis.
      • +
      • Select areas from the overlaid vector map: + the sample areas are defined by the vector map selected above. + For every cat in vector map, the procedure prompts the + user if they want to include it as sample area. + The resulting configuration file can be used only with the + specified raster map, and the procedure can be used only if + whole map layer is selected as sampling frame.
      • +
    @@ -165,7 +165,7 @@

    NOTES

    Screenshots of the wizard window frames:
    - +
     g.gui.rlisetup: First frame of wizard for selecting existing configuration files or creating a new one @@ -328,7 +328,7 @@

    REFERENCES

    SEE ALSO

    -r.li - package overview
    +r.li - package overview, r.li.daemon

    diff --git a/gui/wxpython/timeline/g.gui.timeline.html b/gui/wxpython/timeline/g.gui.timeline.html index a9d07affdf5..443e07417b4 100644 --- a/gui/wxpython/timeline/g.gui.timeline.html +++ b/gui/wxpython/timeline/g.gui.timeline.html @@ -26,8 +26,8 @@

    NOTES

    SEE ALSO

    - Temporal data processing
    - wxGUI
    + Temporal data processing, + wxGUI, wxGUI components
    diff --git a/gui/wxpython/tplot/g.gui.tplot.html b/gui/wxpython/tplot/g.gui.tplot.html index f5293668ba9..10ddafa6245 100644 --- a/gui/wxpython/tplot/g.gui.tplot.html +++ b/gui/wxpython/tplot/g.gui.tplot.html @@ -20,7 +20,7 @@

    DESCRIPTION

  • add title to the plot, and
  • export the time series values to a CSV file (x axis data has date time string format, if you want to use for calculating simple regression model in the - R environment, + R environment, LibreOffice etc., you will obtain a different calculated formula
    y = a + b*x
    because these software packages use a reference date other than @@ -65,8 +65,8 @@

    NOTES

    SEE ALSO

    - Temporal data processing
    - wxGUI
    + Temporal data processing, + wxGUI, wxGUI components
    diff --git a/gui/wxpython/vdigit/g.gui.vdigit.html b/gui/wxpython/vdigit/g.gui.vdigit.html index 7b0c7165063..d02064b997f 100644 --- a/gui/wxpython/vdigit/g.gui.vdigit.html +++ b/gui/wxpython/vdigit/g.gui.vdigit.html @@ -159,57 +159,57 @@

    DIGITIZER TOOLBAR

    • Break selected lines/boundaries at intersection
      Split - given vector line or boundary into two lines on given position - (based on v.clean, - tool=break).
    • + given vector line or boundary into two lines on given position + (based on v.clean, + tool=break).
    • Connect two selected lines/boundaries
      Connect selected - lines or boundaries, the first given line is connected to the - second one. The second line is broken if necessary on each intersection. - The lines are connected only if distance between them is not greater - than snapping threshold value.
    • + lines or boundaries, the first given line is connected to the + second one. The second line is broken if necessary on each intersection. + The lines are connected only if distance between them is not greater + than snapping threshold value.
    • Copy categories
      Copy category settings of - selected vector feature to other vector - features. Layer/category pairs of source vector features are - appended to the target feature category settings. Existing - layer/category pairs are not removed from category settings of - the target features.
    • + selected vector feature to other vector + features. Layer/category pairs of source vector features are + appended to the target feature category settings. Existing + layer/category pairs are not removed from category settings of + the target features.
    • Copy features from (background) vector map
      Make identical copy of - selected vector features. If a background vector map has been - selected from the Layer Manager, copy features from background - vector map, not from the currently modified vector map.
    • + selected vector features. If a background vector map has been + selected from the Layer Manager, copy features from background + vector map, not from the currently modified vector map.
    • Copy attributes
      Duplicate attributes settings of - selected vector feature to other vector features. New - category(ies) is appended to the target feature category - settings and attributes duplicated based on category settings - of source vector features. Existing layer/category pairs are - not removed from category settings of the target - features.
    • + selected vector feature to other vector features. New + category(ies) is appended to the target feature category + settings and attributes duplicated based on category settings + of source vector features. Existing layer/category pairs are + not removed from category settings of the target + features.
    • Feature type conversion
      Change feature type of selected - geometry features. Points are converted to centroids, - centroids to points, lines to boundaries and boundaries to - lines.
    • + geometry features. Points are converted to centroids, + centroids to points, lines to boundaries and boundaries to + lines.
    • Flip selected lines/boundaries
      Flip direction of - selected linear features (lines or boundaries).
    • + selected linear features (lines or boundaries).
    • Merge selected lines/boundaries
      Merge (at least two) - selected vector lines or boundaries. The geometry of the - merged vector lines can be changed. If the second line from - two selected lines is in opposite direction to the first, it - will be flipped. See also - module v.build.polylines.
    • + selected vector lines or boundaries. The geometry of the + merged vector lines can be changed. If the second line from + two selected lines is in opposite direction to the first, it + will be flipped. See also + module v.build.polylines.
    • Snap selected lines/boundaries (only to nodes)
      Snap - vector features in given threshold. See also - module v.clean. Note that - this tool supports only snapping to nodes. Snapping to vector - features from background vector map is not currently - supported.
    • + vector features in given threshold. See also + module v.clean. Note that + this tool supports only snapping to nodes. Snapping to vector + features from background vector map is not currently + supported.
    • Split line/boundary
      Split selected line or boundary on given position.
    • @@ -218,7 +218,7 @@

      DIGITIZER TOOLBAR

      min/max length value (linear features or dangles).
    • Z-bulk labeling of 3D lines
      Assign z coordinate values to 3D - vector lines in bounding box. This is useful for labeling contour lines.
    • + vector lines in bounding box. This is useful for labeling contour lines.
    @@ -248,9 +248,9 @@

    DIGITIZER TOOLBAR

    NOTES

    Mouse button functions:
    -
    Left - select or deselect features
    -
    Control+Left - cancel action or undo vertex when digitizing lines
    -
    Right - confirm action
    +
    Left - select or deselect features
    +
    Control+Left - cancel action or undo vertex when digitizing lines
    +
    Right - confirm action

    @@ -288,8 +288,8 @@

    REFERENCES

    SEE ALSO

    -wxGUI
    -wxGUI components + wxGUI, + wxGUI components

    diff --git a/imagery/i.aster.toar/i.aster.toar.html b/imagery/i.aster.toar/i.aster.toar.html index 7442ce91766..793d0834447 100644 --- a/imagery/i.aster.toar/i.aster.toar.html +++ b/imagery/i.aster.toar/i.aster.toar.html @@ -9,9 +9,9 @@

    DESCRIPTION

    The order of input bands is

      -
    • VNIR: 1,2,3N,3B -
    • SWIR: 4,5,6,7,8,9 -
    • TIR: 10,11,12,13,14 +
    • VNIR: 1,2,3N,3B
    • +
    • SWIR: 4,5,6,7,8,9
    • +
    • TIR: 10,11,12,13,14
    in one comma-separated list. diff --git a/imagery/i.atcorr/i.atcorr.html b/imagery/i.atcorr/i.atcorr.html index 0b905d87aad..bf122963aba 100644 --- a/imagery/i.atcorr/i.atcorr.html +++ b/imagery/i.atcorr/i.atcorr.html @@ -837,14 +837,14 @@

    Atmospheric correction of a Sentinel-2 band

    particular scene and band. To create a 6S file, we need to obtain the following information:
      -
    • geometrical conditions, -
    • moth, day, decimal hours in GMT, decimal longitude and latitude of measurement, -
    • atmospheric model, -
    • aerosol model, -
    • visibility or aerosol optical depth, -
    • mean target elevation above sea level, -
    • sensor height and, -
    • sensor band. +
    • geometrical conditions,
    • +
    • moth, day, decimal hours in GMT, decimal longitude and latitude of measurement,
    • +
    • atmospheric model,
    • +
    • aerosol model,
    • +
    • visibility or aerosol optical depth,
    • +
    • mean target elevation above sea level,
    • +
    • sensor height and,
    • +
    • sensor band.
      @@ -944,17 +944,17 @@

      Atmospheric correction of a Sentinel-2 band

      B02 of our Sentinel 2 scene. We have to specify the following parameters:
        -
      • input = raster band to be processed, -
      • parameters = path to 6S file created in the previous step (we could also enter the values directly), -
      • output = name for the output corrected raster band, -
      • range = from 1 to the QUANTIFICATION_VALUE stored in the metadata file. It is 10000 for both Sentinel-2A and Sentinel-2B. -
      • rescale = the output range of values for the corrected bands. This is up to the user to choose, for example: 0-255, 0-1, 1-10000. +
      • input = raster band to be processed,
      • +
      • parameters = path to 6S file created in the previous step (we could also enter the values directly),
      • +
      • output = name for the output corrected raster band,
      • +
      • range = from 1 to the QUANTIFICATION_VALUE stored in the metadata file. It is 10000 for both Sentinel-2A and Sentinel-2B.
      • +
      • rescale = the output range of values for the corrected bands. This is up to the user to choose, for example: 0-255, 0-1, 1-10000.

      If the data is available, the following parameters can be specified as well:

        -
      • elevation = raster of digital elevation model, -
      • visibility = raster of visibility model. +
      • elevation = raster of digital elevation model,
      • +
      • visibility = raster of visibility model.

      Finally, this is how the command would look like to apply atmospheric @@ -1115,20 +1115,20 @@

      REFERENCES

      • Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J., 1997, Second simulation of the satellite signal in the solar spectrum, 6S: An -overview., IEEE Trans. Geosc. and Remote Sens. 35(3):675-686. +overview., IEEE Trans. Geosc. and Remote Sens. 35(3):675-686.
      • 6S Manual: PDF1, PDF2, - and PDF3 -
      • RapidEye sensors have been provided by RapidEye AG, Germany + and PDF3
      • +
      • RapidEye sensors have been provided by RapidEye AG, Germany
      • Barsi, J.A., Markham, B.L. and Pedelty, J.A., 2011, The operational land imager: spectral response and spectral uniformity., Proc. SPIE 8153, -81530G; doi:10.1117/12.895438 +81530G; doi:10.1117/12.895438

      SEE ALSO

      diff --git a/imagery/i.biomass/i.biomass.html b/imagery/i.biomass/i.biomass.html index 563fffa4f8f..152ec3131aa 100644 --- a/imagery/i.biomass/i.biomass.html +++ b/imagery/i.biomass/i.biomass.html @@ -4,12 +4,12 @@

      DESCRIPTION

      Input:
        -
      • fPAR, the modified Photosynthetic Active Radiation for crops. -
      • Light Use Efficiency [0.0-1.0], in Uzbekistan cotton is at 1.9 most of the time. -
      • Latitude [0.0-90.0], from r.latlong. -
      • DOY [1-366]. -
      • Transmissivity of the atmosphere single-way [0.0-1.0], mostly around 0.7+ in clear sky. -
      • Water availability [0.0-1.0], possibly using direct output from i.eb.evapfr. +
      • fPAR, the modified Photosynthetic Active Radiation for crops.
      • +
      • Light Use Efficiency [0.0-1.0], in Uzbekistan cotton is at 1.9 most of the time.
      • +
      • Latitude [0.0-90.0], from r.latlong.
      • +
      • DOY [1-366].
      • +
      • Transmissivity of the atmosphere single-way [0.0-1.0], mostly around 0.7+ in clear sky.
      • +
      • Water availability [0.0-1.0], possibly using direct output from i.eb.evapfr.

      NOTES

      diff --git a/imagery/i.cluster/i.cluster.html b/imagery/i.cluster/i.cluster.html index 8b775c54d80..e7cff674606 100644 --- a/imagery/i.cluster/i.cluster.html +++ b/imagery/i.cluster/i.cluster.html @@ -18,8 +18,8 @@

      DESCRIPTION

      -
      - +
      +
      @@ -207,7 +207,7 @@

      Parameters:


      Default: 17 - +
      reportfile=name
      The reportfile is an optional parameter which contains diff --git a/imagery/i.eb.eta/i.eb.eta.html b/imagery/i.eb.eta/i.eb.eta.html index 7915c7eba1a..0cfc9841801 100644 --- a/imagery/i.eb.eta/i.eb.eta.html +++ b/imagery/i.eb.eta/i.eb.eta.html @@ -9,10 +9,10 @@

      NOTES

      Full ETa processing will need those:
        -
      • i.vi, i.albedo, r.latlong, i.emissivity -
      • i.evapo.potrad (GRASS Addon) -
      • i.eb.netrad, i.eb.soilheatflux, i.eb.hsebal01 -
      • i.eb.evapfr, i.eb.eta +
      • i.vi, i.albedo, r.latlong, i.emissivity
      • +
      • i.evapo.potrad (GRASS Addon)
      • +
      • i.eb.netrad, i.eb.soilheatflux, i.eb.hsebal01
      • +
      • i.eb.evapfr, i.eb.eta
      (for time integration: i.evapo.time_integration) diff --git a/imagery/i.eb.hsebal01/i.eb.hsebal01.html b/imagery/i.eb.hsebal01/i.eb.hsebal01.html index 4501af13c3c..962c6273f67 100644 --- a/imagery/i.eb.hsebal01/i.eb.hsebal01.html +++ b/imagery/i.eb.hsebal01/i.eb.hsebal01.html @@ -8,10 +8,10 @@

      DESCRIPTION

      Full process will need those:
        -
      • i.vi, i.albedo, r.latlong, i.emissivity -
      • i.evapo.potrad (GRASS Addon) -
      • i.eb.netrad, i.eb.soilheatflux, i.eb.hsebal01 -
      • i.eb.evapfr, i.eb.eta +
      • i.vi, i.albedo, r.latlong, i.emissivity
      • +
      • i.evapo.potrad (GRASS Addon)
      • +
      • i.eb.netrad, i.eb.soilheatflux, i.eb.hsebal01
      • +
      • i.eb.evapfr, i.eb.eta
      (for time integration: i.evapo.time_integration) @@ -24,12 +24,12 @@

      DESCRIPTION

      NOTES

        -
      • z0m can be alculated by i.eb.z0m or i.eb.z0m0 (GRASS Addons). +
      • z0m can be alculated by i.eb.z0m or i.eb.z0m0 (GRASS Addons).
      • ea can be calculated with standard meteorological data.
        - eoTmin=0.6108*EXP(17.27*Tmin/(Tmin+237.3))
        - eoTmax=0.6108*EXP(17.27*Tmax/(Tmax+237.3))
        - ea=(RH/100)/((eoTmin+eoTmax)/2) -
      • t0dem = surface temperature + (altitude * 0.627 / 100) + eoTmin=0.6108*EXP(17.27*Tmin/(Tmin+237.3))
        + eoTmax=0.6108*EXP(17.27*Tmax/(Tmax+237.3))
        + ea=(RH/100)/((eoTmin+eoTmax)/2)
      • +
      • t0dem = surface temperature + (altitude * 0.627 / 100)

      REFERENCES

      diff --git a/imagery/i.emissivity/i.emissivity.html b/imagery/i.emissivity/i.emissivity.html index e6419e8f776..0b44b664442 100644 --- a/imagery/i.emissivity/i.emissivity.html +++ b/imagery/i.emissivity/i.emissivity.html @@ -29,7 +29,7 @@

      REFERENCES

    1. Rubio, E., V. Caselles, and C. Badenas, 1997. Emissivity measurements of several soils and vegetation types in the 8-14 µm wave band: Analysis of two field methods. Remote Sensing of - Environment 59(3): 490-521. + Environment 59(3): 490-521.
    2. SEE ALSO

      diff --git a/imagery/i.evapo.pm/i.evapo.pm.html b/imagery/i.evapo.pm/i.evapo.pm.html index b9f5f66d8e9..542fe02263f 100644 --- a/imagery/i.evapo.pm/i.evapo.pm.html +++ b/imagery/i.evapo.pm/i.evapo.pm.html @@ -18,9 +18,9 @@

      DESCRIPTION

      Land and water surfaces are idenfyied by Vh:

        -
      • where Vh gt 0 vegetation is present and evapotranspiration is calculated; -
      • where Vh = 0 bare ground is present and evapotranspiration is calculated; -
      • where Vh lt 0 water surface is present and evaporation is calculated. +
      • where Vh gt 0 vegetation is present and evapotranspiration is calculated;
      • +
      • where Vh = 0 bare ground is present and evapotranspiration is calculated;
      • +
      • where Vh lt 0 water surface is present and evaporation is calculated.

      For more details on the algorithms see [1,2,3]. @@ -73,9 +73,8 @@

      AUTHORS

      Original version of program: The HydroFOSS project, 2006, IST-SUPSI. (http://istgis.ist.supsi.ch:8001/geomatica/index.php?id=1) - -
      Massimiliano Cannata, Scuola Universitaria Professionale della Svizzera Italiana - Istituto Scienze della Terra -
      Maria A. Brovelli, Politecnico di Milano - Polo regionale di Como -
      +Massimiliano Cannata, Scuola Universitaria Professionale della Svizzera Italiana - Istituto Scienze della Terra +
      +Maria A. Brovelli, Politecnico di Milano - Polo regionale di Como

      Contact: Massimiliano Cannata diff --git a/imagery/i.evapo.pt/i.evapo.pt.html b/imagery/i.evapo.pt/i.evapo.pt.html index cd890e425ee..10887a5bb50 100644 --- a/imagery/i.evapo.pt/i.evapo.pt.html +++ b/imagery/i.evapo.pt/i.evapo.pt.html @@ -12,13 +12,13 @@

      NOTES

      Alpha values:

      • 1.32 for estimates from vegetated areas as a result of the increase in -surface roughness (Morton, 1983; Brutsaert and Stricker, 1979) +surface roughness (Morton, 1983; Brutsaert and Stricker, 1979)
      • 1.26 is applicable in humid climates (De Bruin and Keijman, 1979; Stewart and Rouse, 1976; Shuttleworth and Calder, 1979), and temperate -hardwood swamps (Munro, 1979) +hardwood swamps (Munro, 1979)
      • 1.74 has been recommended for estimating potential evapotranspiration in more arid regions (ASCE, 1990). This worked well in Greece with University -of Thessaloniki. +of Thessaloniki.
      Alpha values extracted from: diff --git a/imagery/i.evapo.time/i.evapo.time.html b/imagery/i.evapo.time/i.evapo.time.html index c0aa1bdac15..15b5bb17b34 100644 --- a/imagery/i.evapo.time/i.evapo.time.html +++ b/imagery/i.evapo.time/i.evapo.time.html @@ -5,17 +5,17 @@

      DESCRIPTION

      Inputs:
        -
      • ETa images -
      • ETa images DOY (Day of Year) -
      • ETo images -
      • ETo DOYmin as a single value +
      • ETa images
      • +
      • ETa images DOY (Day of Year)
      • +
      • ETo images
      • +
      • ETo DOYmin as a single value
      Method:
        -
      1. each ETa pixel is divided by the same day ETo and become ETrF -
      2. each ETrF pixel is multiplied by the ETo sum for the representative days -
      3. Sum all n temporal [ETrF*ETo_sum] pixels to make a summed(ET) in [DOYmin;DOYmax] +
      4. each ETa pixel is divided by the same day ETo and become ETrF
      5. +
      6. each ETrF pixel is multiplied by the ETo sum for the representative days
      7. +
      8. Sum all n temporal [ETrF*ETo_sum] pixels to make a summed(ET) in [DOYmin;DOYmax]
      representative days calculation: @@ -35,8 +35,8 @@

      NOTES

      n=0 for ETo_val in Eto[1] Eto[2] ... do - r.mapcalc "eto$n = $ETo_val" - `expr n = n + 1` + r.mapcalc "eto$n = $ETo_val" + `expr n = n + 1` done diff --git a/imagery/i.fft/i.fft.html b/imagery/i.fft/i.fft.html index 8eb63a9c8ae..26782835c5c 100644 --- a/imagery/i.fft/i.fft.html +++ b/imagery/i.fft/i.fft.html @@ -42,10 +42,10 @@

      REFERENCES

    3. M. Frigo and S. G. Johnson (1998): "FFTW: An Adaptive Software Architecture for the FFT". See www.FFTW.org: FFTW is a C subroutine library for computing the Discrete Fourier Transform (DFT) in one or more -dimensions, of both real and complex data, and of arbitrary input size. -
    4. John A. Richards, 1986. Remote Sensing Digital Image Analysis, Springer-Verlag. +dimensions, of both real and complex data, and of arbitrary input size.
    5. +
    6. John A. Richards, 1986. Remote Sensing Digital Image Analysis, Springer-Verlag.
    7. Personal communication, between program author and Ali R. Vali, -Space Research Center, University of Texas, Austin, 1990. +Space Research Center, University of Texas, Austin, 1990.
    8. SEE ALSO

      diff --git a/imagery/i.gensig/i.gensig.html b/imagery/i.gensig/i.gensig.html index 97db7777447..b878fc41f73 100644 --- a/imagery/i.gensig/i.gensig.html +++ b/imagery/i.gensig/i.gensig.html @@ -60,7 +60,7 @@

      Parameters

      image.

      -

      subgroup=name +
      subgroup=name
      subgroup containing image files

      @@ -108,13 +108,13 @@

      NOTES

        -
      • Line 1: version number (currently always 1) -
      • Line 2: text label -
      • Line 3: Space separated list of semantic labels -
      • Line 4: text label of class -
      • Line 5: number of points in class -
      • Line 6: mean values per band of the class -
      • Line 7-12: (semi)-matrix of band-band covariance +
      • Line 1: version number (currently always 1)
      • +
      • Line 2: text label
      • +
      • Line 3: Space separated list of semantic labels
      • +
      • Line 4: text label of class
      • +
      • Line 5: number of points in class
      • +
      • Line 6: mean values per band of the class
      • +
      • Line 7-12: (semi)-matrix of band-band covariance

      SEE ALSO

      diff --git a/imagery/i.gensigset/i.gensigset.html b/imagery/i.gensigset/i.gensigset.html index 3c5c170dceb..5db3efa5802 100644 --- a/imagery/i.gensigset/i.gensigset.html +++ b/imagery/i.gensigset/i.gensigset.html @@ -206,13 +206,13 @@

      WARNINGS

      REFERENCES

      diff --git a/imagery/i.modis.qc/i.modis.qc.html b/imagery/i.modis.qc/i.modis.qc.html index 64553966a27..3147a006bd1 100644 --- a/imagery/i.modis.qc/i.modis.qc.html +++ b/imagery/i.modis.qc/i.modis.qc.html @@ -514,10 +514,10 @@

      TODO

      REFERENCES

        -
      • MODIS Products +
      • MODIS Products
      • Vermote E.F., Kotchenova S.Y., Ray J.P. MODIS Surface Reflectance User's Guide. Version 1.2. June 2008. MODIS Land Surface Reflectance Science Computing Facility. - Homepage + Homepage

      SEE ALSO

      diff --git a/imagery/i.ortho.photo/i.ortho.camera/i.ortho.camera.html b/imagery/i.ortho.photo/i.ortho.camera/i.ortho.camera.html index 535ef8e03a7..3159e4812b2 100644 --- a/imagery/i.ortho.photo/i.ortho.camera/i.ortho.camera.html +++ b/imagery/i.ortho.photo/i.ortho.camera/i.ortho.camera.html @@ -24,12 +24,12 @@

      DESCRIPTION

       
      -	CAMERA NAME:               camera name______
      -	CAMERA IDENTIFICATION:     identification___
      -	CALIBRATED FOCAL LENGTH mm.:_________________
      -	POINT OF SYMMETRY (X)   mm.:_________________
      -	POINT OF SYMMETRY (Y)   mm.:_________________
      -	MAXIMUM NUMBER OF FIDUCIALS:_________________
      +    CAMERA NAME:               camera name______
      +    CAMERA IDENTIFICATION:     identification___
      +    CALIBRATED FOCAL LENGTH mm.:_________________
      +    POINT OF SYMMETRY (X)   mm.:_________________
      +    POINT OF SYMMETRY (Y)   mm.:_________________
      +    MAXIMUM NUMBER OF FIDUCIALS:_________________
       
          AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE
                      (OR <Ctrl-C> TO CANCEL)
      @@ -73,20 +73,20 @@ 

      DESCRIPTION

      Please provide the following information

      -	Fid#	FID ID		  X          Y
      -
      -	1__	_____		0.0___	0.0___
      -	2__	_____		0.0___	0.0___
      -	3__	_____		0.0___	0.0___
      -	4__	_____		0.0___	0.0___
      -	5__	_____		0.0___	0.0___
      -	6__	_____		0.0___	0.0___
      -	7__	_____		0.0___	0.0___
      -	8__	_____		0.0___	0.0___
      -	9__	_____		0.0___	0.0___
      -	10_	_____		0.0___	0.0___
      -
      -		     next:  end__
      +    Fid#    FID ID          X          Y
      +
      +    1__    _____        0.0___    0.0___
      +    2__    _____        0.0___    0.0___
      +    3__    _____        0.0___    0.0___
      +    4__    _____        0.0___    0.0___
      +    5__    _____        0.0___    0.0___
      +    6__    _____        0.0___    0.0___
      +    7__    _____        0.0___    0.0___
      +    8__    _____        0.0___    0.0___
      +    9__    _____        0.0___    0.0___
      +    10_    _____        0.0___    0.0___
      +
      +             next:  end__
       
            AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE
                           (OR <Ctrl-C> TO CANCEL)
      diff --git a/imagery/i.ortho.photo/i.ortho.init/i.ortho.init.html b/imagery/i.ortho.photo/i.ortho.init/i.ortho.init.html
      index 5da40c86344..a9e86ab2a0b 100644
      --- a/imagery/i.ortho.photo/i.ortho.init/i.ortho.init.html
      +++ b/imagery/i.ortho.photo/i.ortho.init/i.ortho.init.html
      @@ -19,9 +19,8 @@ 

      DESCRIPTION

      parameters. During the imagery program, i.photo.rectify, the initial camera exposure station file is used for computation of the ortho-rectification parameters. If no initial camera exposure station file exist, the default -values are computed from the control points file created in g.gui.image2target. - +values are computed from the control points file created in +g.gui.image2target.

      @@ -29,19 +28,19 @@

      DESCRIPTION

               Please provide the following information
       
      -	INITIAL XC: Meters                __________
      -	INITIAL YC: Meters                __________
      -	INITIAL ZC: Meters                __________
      -	INITIAL omega (pitch) degrees:    __________
      -	INITIAL phi  (roll) degrees:      __________
      -	INITIAL kappa  (yaw) degrees:     __________
      +    INITIAL XC: Meters                __________
      +    INITIAL YC: Meters                __________
      +    INITIAL ZC: Meters                __________
      +    INITIAL omega (pitch) degrees:    __________
      +    INITIAL phi  (roll) degrees:      __________
      +    INITIAL kappa  (yaw) degrees:     __________
       
      -	Standard Deviation XC: Meters     __________
      -	Standard Deviation YC: Meters     __________
      -	Standard Deviation ZC: Meters     __________
      -	Std. Dev. omega (pitch) degrees:  __________
      -	Std. Dev. phi  (roll) degrees:    __________
      -	Std. Dev. kappa  (yaw) degrees:   __________
      +    Standard Deviation XC: Meters     __________
      +    Standard Deviation YC: Meters     __________
      +    Standard Deviation ZC: Meters     __________
      +    Std. Dev. omega (pitch) degrees:  __________
      +    Std. Dev. phi  (roll) degrees:    __________
      +    Std. Dev. kappa  (yaw) degrees:   __________
       
               Use these values at run time? (1=yes, 0=no)
       
      @@ -55,9 +54,9 @@ 

      DESCRIPTION

      exposure.
        -
      • X: East aircraft position; -
      • Y: North aircraft position; -
      • Z: Flight altitude above sea level +
      • X: East aircraft position;
      • +
      • Y: North aircraft position;
      • +
      • Z: Flight altitude above sea level

      @@ -68,12 +67,12 @@

      DESCRIPTION

      • Omega (pitch): Raising or lowering of the aircraft's front (turning - around the wings' axis); + around the wings' axis);
      • Phi (roll): Raising or lowering of the wings (turning around the - aircraft's axis); + aircraft's axis);
      • Kappa (yaw): Rotation needed to align the aerial photo to true north: needs to be denoted as +90 degree for clockwise turn and -90 degree for - a counterclockwise turn. + a counterclockwise turn.

      diff --git a/imagery/i.ortho.photo/i.ortho.photo/i.ortho.photo.html b/imagery/i.ortho.photo/i.ortho.photo/i.ortho.photo.html index c7ce061b01d..4e64c5a2b5e 100644 --- a/imagery/i.ortho.photo/i.ortho.photo/i.ortho.photo.html +++ b/imagery/i.ortho.photo/i.ortho.photo/i.ortho.photo.html @@ -11,7 +11,7 @@

      DESCRIPTION

      • Initialization Options
          -
        1. Create/Modify imagery group to be orthorectified: +
        2. Create/Modify imagery group to be orthorectified: i.group
        3. Select/Modify target project (formerly known as location) and mapset for orthorectification: i.ortho.target
        4. @@ -23,7 +23,7 @@

          DESCRIPTION

        5. Transformation Parameters Computation
            -
          1. Compute image-to-photo transformation: +
          2. Compute image-to-photo transformation: g.gui.photo2image
          3. Initialize parameters of camera: i.ortho.init
          4. @@ -34,7 +34,7 @@

            DESCRIPTION

          5. Ortho-rectification
              -
            1. Ortho-rectify imagery group: +
            2. Ortho-rectify imagery group: i.ortho.rectify
          6. @@ -229,7 +229,7 @@

            EXAMPLE

          7. Y: North aircraft position;
          8. Z: Flight height above surface;
          9. Omega (pitch): Raising or lowering of the aircraft's front - (turning around the wings' axis);
          10. + (turning around the wings' axis);
          11. Phi (roll): Raising or lowering of the wings (turning around the aircraft's axis);
          12. Kappa (yaw): Rotation needed to align the aerial photo to diff --git a/imagery/i.ortho.photo/i.ortho.rectify/i.ortho.rectify.html b/imagery/i.ortho.photo/i.ortho.rectify/i.ortho.rectify.html index 96a649d8b8e..607e53f70bc 100644 --- a/imagery/i.ortho.photo/i.ortho.rectify/i.ortho.rectify.html +++ b/imagery/i.ortho.photo/i.ortho.rectify/i.ortho.rectify.html @@ -1,4 +1,4 @@ -

            DESCRIPTION

            +

            DESCRIPTION

            i.photo.rectify rectifies an image by using the image to photo coordinate transformation matrix created by g.gui.photo2image @@ -44,7 +44,7 @@

            DESCRIPTION

            i.ortho.photo, an interactive terminal is used to determine the options. -

            Interactive mode

            +

            Interactive mode

            You are first asked if all images within the imagery group should be rectified. If this option is not chosen, you are asked to specify for each image within the imagery group whether it should be rectified or not. @@ -89,19 +89,19 @@

            Interactive mode

            The last prompt will ask you about the amount of memory to be used by i.photo.rectify. -

            SEE ALSO

            +

            SEE ALSO

            -i.ortho.photo
            -i.ortho.camera
            -g.gui.photo2image
            -g.gui.image2target
            -i.ortho.init
            +i.ortho.photo, +i.ortho.camera, +g.gui.photo2image, +g.gui.image2target, +i.ortho.init, i.rectify
            -

            AUTHORS

            +

            AUTHORS

            Mike Baba, DBA Systems, Inc.
            Updated rectification and elevation map to FP 1/2002 Markus Neteler
            diff --git a/imagery/i.ortho.photo/i.ortho.target/i.ortho.target.html b/imagery/i.ortho.photo/i.ortho.target/i.ortho.target.html index 312cff5599d..07a4c5c6a2e 100644 --- a/imagery/i.ortho.photo/i.ortho.target/i.ortho.target.html +++ b/imagery/i.ortho.photo/i.ortho.target/i.ortho.target.html @@ -1,22 +1,21 @@ -

            DESCRIPTION

            +

            DESCRIPTION

            -i.ortho.target sets the image group target project (location) and mapset -

            +i.ortho.target sets the image group target project (location) and mapset. -

            SEE ALSO

            +

            SEE ALSO

            -i.ortho.photo
            -i.ortho.elev
            -i.ortho.camera
            -g.gui.photo2image
            -g.gui.image2target
            -i.ortho.init
            +i.ortho.photo, +i.ortho.elev, +i.ortho.camera, +g.gui.photo2image, +g.gui.image2target, +i.ortho.init, i.ortho.rectify
            -

            AUTHOR

            +

            AUTHOR

            Mike Baba, DBA Systems, Inc.
            GRASS development team, 2017 diff --git a/imagery/i.rectify/i.rectify.html b/imagery/i.rectify/i.rectify.html index 7ef374b948e..75ee5b794ee 100644 --- a/imagery/i.rectify/i.rectify.html +++ b/imagery/i.rectify/i.rectify.html @@ -66,11 +66,11 @@

            Coordinate transformation

            Linear affine transformation (1st order transformation)

            -
            x' = ax + by + c -
            y' = Ax + By + C +
            x' = ax + by + c +
            y' = Ax + By + C
            -The a,b,c,A,B,C are determined by least squares regression +The a, b, c, A, B, C are determined by least squares regression based on the control points entered. This transformation applies scaling, translation and rotation. It is NOT a general purpose rubber-sheeting like TPS, nor is it ortho-photo @@ -179,7 +179,9 @@

            SEE ALSO

            v.proj, i.group, i.target -
            + +
            + Ground Control Points Manager diff --git a/imagery/i.smap/i.smap.html b/imagery/i.smap/i.smap.html index 14a883efc28..2fe4f9ccee2 100644 --- a/imagery/i.smap/i.smap.html +++ b/imagery/i.smap/i.smap.html @@ -198,16 +198,16 @@

            REFERENCES

          13. C. Bouman and M. Shapiro, "Multispectral Image Segmentation using a Multiscale Image Model", Proc. of IEEE Int'l Conf. on Acoust., Speech and Sig. Proc., -pp. III-565 - III-568, San Francisco, California, March 23-26, 1992. +pp. III-565 - III-568, San Francisco, California, March 23-26, 1992.
          14. C. Bouman and M. Shapiro 1994, "A Multiscale Random Field Model for Bayesian Image Segmentation", IEEE Trans. on Image Processing., 3(2), 162-177" -(PDF) +(PDF)
          15. McCauley, J.D. and B.A. Engel 1995, "Comparison of Scene Segmentations: SMAP, ECHO and Maximum Likelihood", -IEEE Trans. on Geoscience and Remote Sensing, 33(6): 1313-1316. +IEEE Trans. on Geoscience and Remote Sensing, 33(6): 1313-1316.

      SEE ALSO

      diff --git a/imagery/i.vi/i.vi.html b/imagery/i.vi/i.vi.html index 3597dc5f500..38786a22abc 100644 --- a/imagery/i.vi/i.vi.html +++ b/imagery/i.vi/i.vi.html @@ -584,9 +584,9 @@

      NOTES

      Written by Terrill W. Ray, Div. of Geological and Planetary Sciences, California Institute of Technology, email: terrill@mars1.gps.caltech.edu

      Snail Mail: Terrill Ray
      - Division of Geological and Planetary Sciences
      - Caltech, Mail Code 170-25
      - Pasadena, CA 91125 + Division of Geological and Planetary Sciences
      + Caltech, Mail Code 170-25
      + Pasadena, CA 91125

      REFERENCES

      diff --git a/imagery/i.zc/i.zc.html b/imagery/i.zc/i.zc.html index b962c9b7b8d..f3dec69e4a1 100644 --- a/imagery/i.zc/i.zc.html +++ b/imagery/i.zc/i.zc.html @@ -13,16 +13,16 @@

      NOTES

      The procedure to find the "edges" in the image is as follows:
        -
      1. The Fourier transform of the image is taken, +
      2. The Fourier transform of the image is taken,
      3. The Fourier transform of the Laplacian of a two-dimensional -Gaussian function is used to filter the transformed image, -
      4. The result is run through an inverse Fourier transform, +Gaussian function is used to filter the transformed image,
      5. +
      6. The result is run through an inverse Fourier transform,
      7. The resulting image is traversed in search of places where the image -changes from positive to negative or from negative to positive, +changes from positive to negative or from negative to positive,
      8. Each cell in the map where the value crosses zero (with a change in value greater than the threshold value) is marked as an edge and an orientation is assigned to it. -The resulting raster map layer is output. +The resulting raster map layer is output.
      The width= parameter determines the x-y extent of the diff --git a/imagery/imageryintro.html b/imagery/imageryintro.html index 69a189be758..bb5cf97ac0e 100644 --- a/imagery/imageryintro.html +++ b/imagery/imageryintro.html @@ -114,7 +114,7 @@

      Semantic label information

      a different group with identical semantic labels.
      -
      +
      New enhanced classification workflow involving semantic labels. diff --git a/lib/htmldriver/htmldriver.html b/lib/htmldriver/htmldriver.html index 3ed24c7662d..81036978dc2 100644 --- a/lib/htmldriver/htmldriver.html +++ b/lib/htmldriver/htmldriver.html @@ -54,14 +54,14 @@

      Environment variables

      (default is CLIENT):
      CLIENT    Netscape/IE client-side - image map (NAME="map").
      + image map (NAME="map").
      APACHE    Apache/NCSA server-side image - map.
      + map.
      RAW -         Raw url and polygon - vertices (url  x1  y1  x2  y2  - .....), suitable for conversion to CERN server format, or - any other format with user supplied conversion program.
      +         Raw url and polygon + vertices (url  x1  y1  x2  y2  + .....), suitable for conversion to CERN server format, or + any other format with user supplied conversion program.
    9. GRASS_RENDER_FILE=filename
      diff --git a/lib/init/grass.html b/lib/init/grass.html index 5b2d918fb12..736be547716 100644 --- a/lib/init/grass.html +++ b/lib/init/grass.html @@ -183,10 +183,10 @@

      User Interface Environment Variable

      determines the user interface to use. The following is the hierarchy from highest precedence to lowest.
        -
      1. Command line argument -
      2. Environment variable GRASS_GUI -
      3. Value set in $HOME/.grass8/rc (GUI) -
      4. Default value - gui +
      5. Command line argument
      6. +
      7. Environment variable GRASS_GUI
      8. +
      9. Value set in $HOME/.grass8/rc (GUI)
      10. +
      11. Default value - gui

      Python Environment Variables

      diff --git a/lib/init/variables.html b/lib/init/variables.html index 5dfd113dd85..b7704c5537b 100644 --- a/lib/init/variables.html +++ b/lib/init/variables.html @@ -222,14 +222,14 @@

      List of selected (GRASS related) shell environment variables

      it may be set to either
      • standard - sets percentage output and message - formatting style to standard formatting,
      • + formatting style to standard formatting,
      • gui - sets percentage output and message formatting - style to GUI formatting,
      • + style to GUI formatting,
      • silent - disables percentage output and error - messages,
      • + messages,
      • plain - sets percentage output and message - formatting style to ASCII output without rewinding control - characters.
      • + formatting style to ASCII output without rewinding control + characters.
      GRASS_MOUSE_BUTTON
      @@ -316,12 +316,11 @@

      List of selected (GRASS related) shell environment variables

      may be set to either:
      • keep - the temporary vector map is not deleted when - closing the map. + closing the map.
      • move - the temporary vector map is moved to the current mapset when closing the map.
      • delete - the temporary vector map is deleted when - closing the map. -
      • + closing the map.
      Default value is keep. @@ -393,11 +392,11 @@

      List of selected (GRASS related) shell environment variables

      TMPDIR, TEMP, TMP
      [Various GRASS GIS commands and wxGUI]
      - The default wxGUI temporary directory is chosen from a - platform-dependent list, but the user can control the selection of - this directory by setting one of the TMPDIR, TEMP or TMP - environment variables Hence the wxGUI uses $TMPDIR if it is set, - then $TEMP, otherwise /tmp.
      + The default wxGUI temporary directory is chosen from a + platform-dependent list, but the user can control the selection of + this directory by setting one of the TMPDIR, TEMP or TMP + environment variables Hence the wxGUI uses $TMPDIR if it is set, + then $TEMP, otherwise /tmp.

      List of selected GRASS environment variables for rendering

      diff --git a/lib/vector/vectorascii.html b/lib/vector/vectorascii.html index 0fd6fbf5444..cae0ecef5a6 100644 --- a/lib/vector/vectorascii.html +++ b/lib/vector/vectorascii.html @@ -82,12 +82,12 @@ Acceptable formats:
      key: D=Degrees; M=Minutes; S=Seconds; h=Hemisphere (N,S,E,W)
        -
      • (+/-)DDD.DDDDD -
      • DDDh -
      • DDD:MMh -
      • DDD:MM.MMMMMh -
      • DDD:MM:SSh -
      • DDD:MM:SS.SSSSSh +
      • (+/-)DDD.DDDDD
      • +
      • DDDh
      • +
      • DDD:MMh
      • +
      • DDD:MM.MMMMMh
      • +
      • DDD:MM:SSh
      • +
      • DDD:MM:SS.SSSSSh

      EXAMPLES

      diff --git a/misc/m.measure/m.measure.html b/misc/m.measure/m.measure.html index 97c7b44ff63..388c3d81b23 100644 --- a/misc/m.measure/m.measure.html +++ b/misc/m.measure/m.measure.html @@ -19,7 +19,7 @@

      EXAMPLES

      -Visualization (with d.geodesic) of m.measure distance example
      +Visualization (with d.geodesic) of m.measure distance example
      Visualization (with d.geodesic) of m.measure distance example
      diff --git a/misc/m.nviz.script/m.nviz.script.html b/misc/m.nviz.script/m.nviz.script.html index d5c4997ed86..f7cddaf1d82 100644 --- a/misc/m.nviz.script/m.nviz.script.html +++ b/misc/m.nviz.script/m.nviz.script.html @@ -11,7 +11,7 @@

      DESCRIPTION

      The script generated by m.nviz.script can be run from the NVIZ command line (nviz script=script_name) or after NVIZ is started by -selecting Scripting->Play Script. +selecting Scripting->Play Script.

      OPTIONS

      @@ -23,14 +23,14 @@

      Flags:

      -c
      Flay at constant elevation
      With this flag the camera will be set to an elevation given by the - ht= parameter. The default is to fly at ht= - above the topography (i.e. camera height = elevation + ht) + ht= parameter. The default is to fly at ht= + above the topography (i.e. camera height = elevation + ht)
      -k
      Output KeyFrame file
      Generate a KeyFrame file that can be loaded from the NVIZ - Keyframe Animation panel. The KeyFrame file is - automatically assigned the script name with a - .kanimator extension. + Keyframe Animation panel. The KeyFrame file is + automatically assigned the script name with a + .kanimator extension.
      -o
      Render the animation in an off-screen context
      -e diff --git a/ps/ps.map/ps.map.html b/ps/ps.map/ps.map.html index 23fd71a8116..6b64fb2ca28 100644 --- a/ps/ps.map/ps.map.html +++ b/ps/ps.map/ps.map.html @@ -188,9 +188,9 @@

      border

      Controls the border which is drawn around the map area.
       USAGE:  border [y|n]
      -	color color
      -	width #
      -	end
      +    color color
      +    width #
      +    end
       
      The color may be either a standard GRASS color, a R:G:B triplet, or "none". The width is specified in points, unless followed by an "i" @@ -204,10 +204,10 @@

      border

      This example would create a grey border 0.1" wide.
       EXAMPLE:
      -	border
      -	color grey
      -	width 0.1i
      -	end
      +    border
      +    color grey
      +    width 0.1i
      +    end
       

      @@ -216,20 +216,20 @@

      colortable

      Prints the color table legend for the raster map layer anywhere on the page.
      -USAGE:	colortable [y|n]
      -	where x y
      -	raster raster map
      -	range minimum maximum
      -	width table width
      -	height table height (FP legend only)
      -	cols table columns
      -	font font name
      -	fontsize font size
      -	color text color
      -	nodata [Y|n]
      -	tickbar [y|N]
      -	discrete [y|n]
      -	end
      +USAGE:    colortable [y|n]
      +    where x y
      +    raster raster map
      +    range minimum maximum
      +    width table width
      +    height table height (FP legend only)
      +    cols table columns
      +    font font name
      +    fontsize font size
      +    color text color
      +    nodata [Y|n]
      +    tickbar [y|N]
      +    discrete [y|n]
      +    end
       
      For a categorical (CELL) map the color table will create a legend displaying @@ -298,7 +298,7 @@

      Floating point (FCELL and DCELL) Maps

      information, starting at the left margin, with 4 columns:
       EXAMPLE:
      -	colortable y
      +    colortable y
               cols 4
               width 4
               end
      @@ -310,12 +310,12 @@ 

      comments

      Prints comments anywhere on the page.
      -USAGE:	comments commentfile
      -	where x y
      -	font font name
      -	fontsize font size
      -	color text color
      -	end
      +USAGE:    comments commentfile
      +    where x y
      +    font font name
      +    fontsize font size
      +    color text color
      +    end
       
      The default location is immediately below the last item item printed, starting at the left margin. The default text color is black. @@ -330,13 +330,13 @@

      comments

      the page, using a 15/72 inch Helvetica Bold font.
       EXAMPLE:
      -	raster vegetation
      -	comments veg.comments
      -	where 1.5 7.25
      -	font Helvetica Bold
      -	fontsize 15
      -	color blue
      -	end
      +    raster vegetation
      +    comments veg.comments
      +    where 1.5 7.25
      +    font Helvetica Bold
      +    fontsize 15
      +    color blue
      +    end
       
      Presumably, the file veg.comments @@ -350,7 +350,7 @@

      copies

      Specifies the number of copies to be printed.
      -USAGE:	copies n
      +USAGE:    copies n
       
      Each page will be printed n times.

      This instruction is identical to the copies command line parameter. @@ -361,13 +361,13 @@

      eps

      Places EPS (Encapsulated PostScript) pictures on the output map.
      -USAGE:	eps east north
      -	eps x% y%
      -	epsfile EPS file
      -	scale #
      -	rotate #
      -	masked [y|n]
      -	end
      +USAGE:    eps east north
      +    eps x% y%
      +    epsfile EPS file
      +    scale #
      +    rotate #
      +    masked [y|n]
      +    end
       
      The EPS picture location is entered in the main instruction line by giving either the map @@ -388,12 +388,12 @@

      eps

      in original file and would not be masked by the current mask.
       EXAMPLE:
      -	eps 456000 7890000
      -	epsfile ./epsf/logo.eps
      -	scale 3
      -	rotate 20
      -	masked n
      -	end
      +    eps 456000 7890000
      +    epsfile ./epsf/logo.eps
      +    scale 3
      +    rotate 20
      +    masked n
      +    end
       
      Of course, multiple EPS pictures may be drawn with multiple eps @@ -405,13 +405,13 @@

      geogrid

      Overlays a geographic grid onto the output map.
      -USAGE:	geogrid spacing unit
      -	color color
      -	numbers # [color]
      -	font font name
      -	fontsize font size
      -	width #
      -	end
      +USAGE:    geogrid spacing unit
      +    color color
      +    numbers # [color]
      +    font font name
      +    fontsize font size
      +    width #
      +    end
       
      The spacing and spacing unit of the geographic grid is given on the main instruction line. The spacing unit is given as one of d for @@ -435,10 +435,10 @@

      geogrid

      lines would be numbered with yellow numbers.
       EXAMPLE:
      -	geogrid 30 m
      -	color blue
      -	numbers 2 yellow
      -	end
      +    geogrid 30 m
      +    color blue
      +    numbers 2 yellow
      +    end
       

      @@ -447,7 +447,7 @@

      greyrast

      Selects a raster map layer for output in shades of grey.
      -USAGE:	greyrast mapname
      +USAGE:    greyrast mapname
       
      For each ps.map @@ -460,14 +460,14 @@

      grid

      Overlays a coordinate grid onto the output map.
      -USAGE:	grid spacing
      -	color color
      -	numbers # [color]
      -	cross cross size
      -	font font name
      -	fontsize font size
      -	width #
      -	end
      +USAGE:    grid spacing
      +    color color
      +    numbers # [color]
      +    cross cross size
      +    font font name
      +    fontsize font size
      +    width #
      +    end
       
      The spacing of the grid is given (in the geographic coordinate system units) on the main instruction line. The subsection instructions @@ -487,10 +487,10 @@

      grid

      lines would be numbered with red numbers.
       EXAMPLE:
      -	grid 10000
      -	color green
      -	numbers 2 red
      -	end
      +    grid 10000
      +    color green
      +    numbers 2 red
      +    end
       

      @@ -499,7 +499,7 @@

      group

      Selects an RGB imagery group for output.
      -USAGE:	group groupname
      +USAGE:    group groupname
       
      This is similar to raster, except that it uses an imagery group instead of a raster map layer. The group must contain three raster map @@ -511,12 +511,12 @@

      header

      Prints the map header above the map.
      -USAGE:	header
      -	file header file
      -	font font name
      -	fontsize font size
      -	color text color
      -	end
      +USAGE:    header
      +    file header file
      +    font font name
      +    fontsize font size
      +    color text color
      +    end
       
      If the file sub-instruction is absent the header will consist of the map's title @@ -527,18 +527,17 @@

      header

      of the text in the text file specified, with some special formatting keys:
        -
      • %% - a literal % -
      • %n - ? newline ? -
      • %_ - horizontal bar -
      • %c - "<raster name> in mapset <mapset name>" -
      • %d - today's date -
      • %l - project name -
      • %L - project's text description -
      • %m - mapset name -
      • %u - user name -
      • %x - mask info -
      • %- - advance to this character column number (see example below) - +
      • %% - a literal %
      • +
      • %n - ? newline ?
      • +
      • %_ - horizontal bar
      • +
      • %c - "<raster name> in mapset <mapset name>"
      • +
      • %d - today's date
      • +
      • %l - project name
      • +
      • %L - project's text description
      • +
      • %m - mapset name
      • +
      • %u - user name
      • +
      • %x - mask info
      • +
      • %- - advance to this character column number (see example below)
      Example header file: @@ -560,12 +559,12 @@

      header

      the map, using a 20/72 inch Courier font.
       EXAMPLE:
      -	header
      -	file soils.hdr
      -	font Courier
      -	fontsize 20
      -	color red
      -	end
      +    header
      +    file soils.hdr
      +    font Courier
      +    fontsize 20
      +    color red
      +    end
       

      @@ -577,9 +576,9 @@

      labels

      v.label ).
      -USAGE:	labels  labelfile
      -	font font name
      -	end
      +USAGE:    labels  labelfile
      +    font font name
      +    end
       

      NOTE: ps.map can read new option 'ROTATE:' from labels file, which specifies counter clockwise rotation in degrees. @@ -588,8 +587,8 @@

      labels

      towns on the map.
       EXAMPLE:
      -	labels town.names
      -	end
      +    labels town.names
      +    end
       

      @@ -598,12 +597,12 @@

      line

      Draws lines on the output map.
      -USAGE:	line east north east north
      -	line x% y% x% y%
      -	color color
      -	width #
      -	masked [y|n]
      -	end
      +USAGE:    line east north east north
      +    line x% y% x% y%
      +    color color
      +    width #
      +    masked [y|n]
      +    end
       
      The beginning and ending points of the line are entered on the main instruction. These points can be defined either by map coordinates or @@ -623,11 +622,11 @@

      line

      there is a mask.
       EXAMPLE:
      -	line 10% 80% 30% 70%
      -	color yellow
      -	width 2
      -	masked n
      -	end
      +    line 10% 80% 30% 70%
      +    color yellow
      +    width 2
      +    masked n
      +    end
       
      Of course, multiple lines may be drawn with multiple line @@ -640,14 +639,14 @@

      mapinfo

      Prints the portion of the map legend containing the scale, grid and region information, on or below the map.
      -USAGE:	mapinfo
      -	where x y
      -	font font name
      -	fontsize font size
      -	color text color
      -	background box color|none
      -	border color|none
      -	end
      +USAGE:    mapinfo
      +    where x y
      +    font font name
      +    fontsize font size
      +    color text color
      +    background box color|none
      +    border color|none
      +    end
       
      The default location is immediately below the map, starting at the left edge of the map. @@ -662,12 +661,12 @@

      mapinfo

       EXAMPLE:
      -	mapinfo
      -	where 1.5 0
      -	font Courier
      -	fontsize 12
      -	color brown
      -	end
      +    mapinfo
      +    where 1.5 0
      +    font Courier
      +    fontsize 12
      +    color brown
      +    end
       

      @@ -676,7 +675,7 @@

      maploc

      Positions the map on the page.
      -USAGE:	maploc  x y [width height]
      +USAGE:    maploc  x y [width height]
       
      The upper left corner of the map will be positioned x inches from the left edge of the page and y inches from the top of the page. @@ -688,7 +687,7 @@

      maploc

      the left edge and 3.5 inches from the top edge of the map.
       EXAMPLE:
      -	maploc 2.0 3.5
      +    maploc 2.0 3.5
       

      @@ -697,7 +696,7 @@

      maskcolor

      Color to be used for mask.
      -USAGE:	maskcolor  color
      +USAGE:    maskcolor  color
       
      @@ -706,10 +705,10 @@

      outline

      Outlines the areas of a raster map layer with a specified color.
      -USAGE:	outline
      -	color  color
      -	width  width of line in points
      -	end
      +USAGE:    outline
      +    color  color
      +    width  width of line in points
      +    end
       
      Distinct areas of the raster map will be separated from each other visually by drawing a border (or outline) in the specified @@ -730,11 +729,11 @@

      outline

      in grey.
       EXAMPLE:
      -	raster soils
      -	outline
      -	color grey
      -	width 2
      -	end
      +    raster soils
      +    outline
      +    color grey
      +    width 2
      +    end
       

      @@ -743,14 +742,14 @@

      paper

      Specifies paper size and margins.
      -USAGE:	paper paper name
      -	height #
      -	width #
      -	left #
      -	right #
      -	bottom #
      -	top #
      -	end
      +USAGE:    paper paper name
      +    height #
      +    width #
      +    left #
      +    right #
      +    bottom #
      +    top #
      +    end
       
      paper may select predefined paper name (a4,a3,a2,a1,a0,us-legal,us-letter,us-tabloid). @@ -761,20 +760,20 @@

      paper

       EXAMPLE:
      -	paper a3
      -	end
      +    paper a3
      +    end
       

       EXAMPLE:
      -	paper
      -	width 10
      -	height 10
      -	left 2
      -	right 2
      -	bottom 2
      -	top 2
      -	end
      +    paper
      +    width 10
      +    height 10
      +    left 2
      +    right 2
      +    bottom 2
      +    top 2
      +    end
       

      @@ -783,16 +782,16 @@

      point

      Places additional points or icons on the output map.
      -USAGE:	point east north
      -	point x% y%
      -	color color
      -	fcolor color
      -	symbol symbol group/name
      -	size #
      -	width #
      -	rotate #
      -	masked [y|n]
      -	end
      +USAGE:    point east north
      +    point x% y%
      +    color color
      +    fcolor color
      +    symbol symbol group/name
      +    size #
      +    width #
      +    rotate #
      +    masked [y|n]
      +    end
       
      The point location is entered in the main instruction line by giving either the map coordinates or by using percentages of the geographic region. @@ -811,13 +810,13 @@

      point

      the size of a 15 points and would not be masked by the current mask.
       EXAMPLE:
      -	point 456000 7890000
      -	fcolor purple
      -	color black
      -	symbol basic/diamond
      -	size 15
      -	masked n
      -	end
      +    point 456000 7890000
      +    fcolor purple
      +    color black
      +    symbol basic/diamond
      +    size 15
      +    masked n
      +    end
       
      Of course, multiple points may be drawn with multiple point @@ -836,12 +835,12 @@

      psfile

      correct directory or specify the full path on the psfile instruction. (Note to /bin/csh users: ~ won't work with this instruction).
      -USAGE:	psfile filename
      +USAGE:    psfile filename
       
      This example copies the file "logo.ps" into the output file.
       EXAMPLE:
      -	psfile logo.ps
      +    psfile logo.ps
       

      @@ -850,7 +849,7 @@

      raster

      Selects a raster map layer for output.
      -USAGE:	raster mapname
      +USAGE:    raster mapname
       
      For each ps.map run, only one raster map layer (or set of layers or imagery group; see below) can be requested. If no @@ -867,7 +866,7 @@

      raster

       EXAMPLE:
      -	raster soils
      +    raster soils
       

      @@ -876,7 +875,7 @@

      read

      Provides ps.map with a previously prepared input stream.
      -USAGE:	read previously prepared UNIX file
      +USAGE:    read previously prepared UNIX file
       
      Mapping instructions can be placed into a file and read into ps.map. @@ -894,7 +893,7 @@

      read

      the vector map layer roads onto the output map.
       EXAMPLE:
      -	read pmap.roads
      +    read pmap.roads
       
      The user may have created this file because this vector map layer is particularly useful for many ps.map @@ -908,13 +907,13 @@

      rectangle

      Draws rectangle on the output map.
      -USAGE:	rectangle east north east north
      -	rectangle x% y% x% y%
      -	color color
      -	fcolor fill color
      -	width #
      -	masked [y|n]
      -	end
      +USAGE:    rectangle east north east north
      +    rectangle x% y% x% y%
      +    color color
      +    fcolor fill color
      +    width #
      +    masked [y|n]
      +    end
       
      The two corners of the rectangle are entered on the main instruction. These points can be defined either by map coordinates or @@ -936,12 +935,12 @@

      rectangle

      The border line would be 1/16" wide and would appear even if there is a mask.
       EXAMPLE:
      -	rectangle 10% 80% 30% 70%
      -	color yellow
      -	fcolor green
      -	width 0.0625i
      -	masked n
      -	end
      +    rectangle 10% 80% 30% 70%
      +    color yellow
      +    fcolor green
      +    width 0.0625i
      +    masked n
      +    end
       

      @@ -951,10 +950,10 @@

      region

      Places the outline of a smaller geographic region on the output.
      -USAGE:	region regionfile
      -	color color
      -	width #
      -	end
      +USAGE:    region regionfile
      +    color color
      +    width #
      +    end
       
      Geographic region settings are created and saved using the g.region module. @@ -971,10 +970,10 @@

      region

      g.region.
       EXAMPLE:
      -	region fire.zones
      -	color white
      -	width 2
      -	end
      +    region fire.zones
      +    color white
      +    width 2
      +    end
       

      @@ -983,7 +982,7 @@

      rgb

      Selects three raster map layers for output as an RGB color image.
      -USAGE:	rgb red green blue
      +USAGE:    rgb red green blue
       
      This is similar to raster, except that it uses three raster map layers instead of a single layer. The three layers @@ -1001,7 +1000,7 @@

      scale

      Selects a scale for the output map.
      -USAGE:	scale scale
      +USAGE:    scale scale
       
      The scale can be selected either as:
      @@ -1022,7 +1021,7 @@

      scale

      units.
       EXAMPLE:
      -	scale 1:25000
      +    scale 1:25000
       

      @@ -1031,16 +1030,16 @@

      scalebar

      Draws a scalebar on the map.
      -USAGE:	scalebar [f|s]
      -	where x y
      -	length overall distance in map units
      -	units [auto|meters|kilometers|feet|miles|nautmiles]
      -	height scale height in inches
      -	segment number of segments
      -	numbers #
      -	fontsize font size
      -	background [Y|n]
      -	end
      +USAGE:    scalebar [f|s]
      +    where x y
      +    length overall distance in map units
      +    units [auto|meters|kilometers|feet|miles|nautmiles]
      +    height scale height in inches
      +    segment number of segments
      +    numbers #
      +    fontsize font size
      +    background [Y|n]
      +    end
       
      Draw one of two types of scale bar. Fancy (f) draws alternating black and white scale boxes. @@ -1067,13 +1066,13 @@

      scalebar

      and is 0.25 inches high.
       EXAMPLE:
      -	scalebar s
      -	where 4 5
      -	length 1000
      -	height 0.25
      -	segment 5
      -	numbers 2
      -	end
      +    scalebar s
      +    where 4 5
      +    length 1000
      +    height 0.25
      +    segment 5
      +    numbers 2
      +    end
       
      @@ -1083,16 +1082,16 @@

      setcolor

      Overrides the color assigned to one or more categories of the raster map layer.
      -USAGE:	setcolor cat(s) color
      +USAGE:    setcolor cat(s) color
       
      This example would set the color for categories 2,5 and 8 of the raster map layer watersheds to white and category 10 to green. (NOTE: no spaces are inserted between the category values.)
       EXAMPLE:
      -	raster watersheds
      -	setcolor 2,5,8 white
      -	setcolor 10 green
      +    raster watersheds
      +    setcolor 2,5,8 white
      +    setcolor 10 green
       
      Of course, setcolor can be requested more than once to override the default color for additional @@ -1107,23 +1106,23 @@

      text

      Places text on the map.
      -USAGE:	text  east north text
      -	text  x% y% text
      -	font fontname
      -	color color|none
      -	width #
      -	hcolor color|none
      -	hwidth #
      -	background color|none
      -	border color|none
      -	fontsize font size
      -	size #
      -	ref reference point
      -	rotate degrees CCW
      -	xoffset #
      -	yoffset #
      -	opaque [y|n]
      -	end
      +USAGE:    text  east north text
      +    text  x% y% text
      +    font fontname
      +    color color|none
      +    width #
      +    hcolor color|none
      +    hwidth #
      +    background color|none
      +    border color|none
      +    fontsize font size
      +    size #
      +    ref reference point
      +    rotate degrees CCW
      +    xoffset #
      +    yoffset #
      +    opaque [y|n]
      +    end
       
      The user specifies where the text will be placed by providing map coordinates or percentages of the geographic region. @@ -1180,18 +1179,18 @@

      text

      vectors on the map would stop at the border of this text.
       EXAMPLE:
      -	text 650000 7365000 SPEARFISH LAND COVER
      -	font romand
      -	color red
      -	width 2
      -	hcolor black
      -	hwidth 1
      -	background white
      -	border red
      -	size 500
      -	ref lower left
      -	opaque y
      -	end
      +    text 650000 7365000 SPEARFISH LAND COVER
      +    font romand
      +    color red
      +    width 2
      +    hcolor black
      +    hwidth 1
      +    background white
      +    border red
      +    size 500
      +    ref lower left
      +    opaque y
      +    end
       

      @@ -1200,21 +1199,21 @@

      vareas

      Selects a vector map layer for output and plots areas.
      -USAGE:	vareas vectormap
      -	layer # (layer number used with cats/where option)
      -	cats list of categories (e.g. 1,3,5-7)
      -	where SQL where statement
      -	masked [y|n]
      -	color color
      -	fcolor color
      -	rgbcolumn column
      -	width #
      -	label label to use in legend
      -	lpos position in legend
      -	pat pattern file
      -	pwidth #
      -	scale #
      -	end
      +USAGE:    vareas vectormap
      +    layer # (layer number used with cats/where option)
      +    cats list of categories (e.g. 1,3,5-7)
      +    where SQL where statement
      +    masked [y|n]
      +    color color
      +    fcolor color
      +    rgbcolumn column
      +    width #
      +    label label to use in legend
      +    lpos position in legend
      +    pat pattern file
      +    pwidth #
      +    scale #
      +    end
       
      The user can specify:

      color - color of the vector lines or area boundaries; @@ -1266,12 +1265,12 @@

      vareas

       EXAMPLE:
      -	vareas forest
      -	color blue
      -	width 1
      -	masked y
      -	cats 2,5-7
      -	end
      +    vareas forest
      +    color blue
      +    width 1
      +    masked y
      +    cats 2,5-7
      +    end
       

      @@ -1280,26 +1279,26 @@

      vlines

      Selects a vector map layer for output and plots lines.
      -USAGE:	vlines vectormap
      -	type line and/or boundary
      -	layer # (layer number used with cats/where option)
      -	cats list of categories (e.g. 1,3,5-7)
      -	where SQL where statement like: vlastnik = 'Cimrman'
      -	masked [y|n]
      -	color color
      -	rgbcolumn column
      -	width #
      -	cwidth #
      -	hcolor color
      -	hwidth #
      -	offset #
      -	coffset #
      -	ref left|right
      -	style 00001111
      -	linecap style
      -	label label
      -	lpos #
      -	end
      +USAGE:    vlines vectormap
      +    type line and/or boundary
      +    layer # (layer number used with cats/where option)
      +    cats list of categories (e.g. 1,3,5-7)
      +    where SQL where statement like: vlastnik = 'Cimrman'
      +    masked [y|n]
      +    color color
      +    rgbcolumn column
      +    width #
      +    cwidth #
      +    hcolor color
      +    hwidth #
      +    offset #
      +    coffset #
      +    ref left|right
      +    style 00001111
      +    linecap style
      +    label label
      +    lpos #
      +    end
       
      The user can specify:

      type - the default is lines only; @@ -1348,15 +1347,15 @@

      vlines

       EXAMPLE:
      -	vlines streams
      -	color blue
      -	width 2
      -	hcolor white
      -	hwidth 1
      -	masked y
      -	cats 2
      -	label Streams - category 2
      -	end
      +    vlines streams
      +    color blue
      +    width 2
      +    hcolor white
      +    hwidth 1
      +    masked y
      +    cats 2
      +    label Streams - category 2
      +    end
       

      @@ -1365,26 +1364,26 @@

      vpoints

      Selects vector point data to be placed on the output map
      -USAGE:	vpoints vectormap
      -	type point and/or centroid
      -	layer # (layer number used with cats/where/sizecol options)
      -	cats list of categories (e.g. 1,3,5-7)
      -	where SQL where statement like: vlastnik = 'Cimrman'
      -	masked [y|n]
      -	color color
      -	fcolor color
      -	rgbcolumn column
      -	width #
      -	eps epsfile
      -	symbol symbol group/name
      -	size #
      -	sizecolumn attribute column used for symbol sizing
      -	scale scaling factor for sizecolumn values
      -	rotate #
      -	rotatecolumn column
      -	label legend label
      -	lpos position in legend
      -	end
      +USAGE:    vpoints vectormap
      +    type point and/or centroid
      +    layer # (layer number used with cats/where/sizecol options)
      +    cats list of categories (e.g. 1,3,5-7)
      +    where SQL where statement like: vlastnik = 'Cimrman'
      +    masked [y|n]
      +    color color
      +    fcolor color
      +    rgbcolumn column
      +    width #
      +    eps epsfile
      +    symbol symbol group/name
      +    size #
      +    sizecolumn attribute column used for symbol sizing
      +    scale scaling factor for sizecolumn values
      +    rotate #
      +    rotatecolumn column
      +    label legend label
      +    lpos position in legend
      +    end
       
      The user may specify the the color of the sites (see section on NAMED COLORS); @@ -1403,11 +1402,11 @@

      vpoints

       EXAMPLE:
      -	vpoints windmills
      -	color blue
      -	symbol mills/windmill
      -	size 10
      -	end
      +    vpoints windmills
      +    color blue
      +    symbol mills/windmill
      +    size 10
      +    end
       

      @@ -1417,15 +1416,15 @@

      vlegend

      vector information, on or below the map.
      -USAGE:	vlegend
      -	where x y
      -	font font name
      -	fontsize font size
      -	width width of color symbol
      -	cols number of columns to print
      -	span column separation
      -	border color|none
      -	end
      +USAGE:    vlegend
      +    where x y
      +    font font name
      +    fontsize font size
      +    width width of color symbol
      +    cols number of columns to print
      +    span column separation
      +    border color|none
      +    end
       
      The default location is immediately below the legend containing the scale, grid and region information, starting at the left edge of the map. @@ -1454,11 +1453,11 @@

      vlegend

       EXAMPLE:
      -	vlegend
      -	where 4.5 0
      -	font Courier
      -	fontsize 12
      -	end
      +    vlegend
      +    where 4.5 0
      +    font Courier
      +    fontsize 12
      +    end
       

      @@ -1468,7 +1467,7 @@

      end

      Terminates input and begin painting the map.
      -USAGE:	end
      +USAGE:    end
       

      @@ -1585,7 +1584,7 @@

      More complicated example

      - +

      Figure: Result of for the more complicated Wake county, NC example

      diff --git a/raster/r.buffer/r.buffer.html b/raster/r.buffer/r.buffer.html index e9f9fbd6ffc..e0033f0345c 100644 --- a/raster/r.buffer/r.buffer.html +++ b/raster/r.buffer/r.buffer.html @@ -97,7 +97,7 @@

      EXAMPLE

      -
      +
      Distances to road
      diff --git a/raster/r.carve/r.carve.html b/raster/r.carve/r.carve.html index f8d82200013..f10fdcb6312 100644 --- a/raster/r.carve/r.carve.html +++ b/raster/r.carve/r.carve.html @@ -65,13 +65,13 @@

      EXAMPLE

    10. Fig.: Land use/land cover clustering of LANDSAT scene (simplified)
      - - - - - -
      + r.carve example: original DEM
      Fig: Original 1m LiDAR based DEM with vector streams map on top
      + r.carve example: original DEM shaded
      @@ -79,13 +79,13 @@

      EXAMPLE

      + r.carve example: carved DEM
      Fig: Carved 1m LiDAR based DEM
      + r.carve example: carved DEM shaded
      @@ -93,13 +93,13 @@

      EXAMPLE

      + r.carve example: original DEM flow accumulated
      Fig: Flow accumulation in original 1m LiDAR based DEM
      + r.carve example: carved DEM flow accumulation
      diff --git a/raster/r.category/r.category.html b/raster/r.category/r.category.html index 4dba832a98c..b0d5dc7c9bb 100644 --- a/raster/r.category/r.category.html +++ b/raster/r.category/r.category.html @@ -68,8 +68,8 @@

      Default and dynamic category labels

      In the format line

        -
      • $1 refers to the value num*5.0+1000 (ie, using the first 2 coefficients) -
      • $2 refers to the value num*5.0+1005 (ie, using the last 2 coefficients) +
      • $1 refers to the value num*5.0+1000 (ie, using the first 2 coefficients)
      • +
      • $2 refers to the value num*5.0+1005 (ie, using the last 2 coefficients)
      $1.2 will print $1 with 2 decimal places.

      Also, the form $?xxx$yyy$ translates into yyy if the category is 1, xxx diff --git a/raster/r.contour/r.contour.html b/raster/r.contour/r.contour.html index 722f8494cb9..4023410ea94 100644 --- a/raster/r.contour/r.contour.html +++ b/raster/r.contour/r.contour.html @@ -50,7 +50,7 @@

      EXAMPLES

      -r.contours example
      +r.contours example
      Contour lines shown on shaded terrain map
      diff --git a/raster/r.external.out/r.external.out.html b/raster/r.external.out/r.external.out.html index c4b3bc65af1..86c490587d4 100644 --- a/raster/r.external.out/r.external.out.html +++ b/raster/r.external.out/r.external.out.html @@ -31,7 +31,7 @@

      Storing results from raster data analysis directly as GeoTIFF

      # prepare sample analysis g.region raster=elevation -p -# perform GRASS calculation (here: filter by height, write > 120m, NULL otherwise) +# perform GRASS calculation (here: filter by height, write > 120m, NULL otherwise) # this will store the output map directly as GeoTIFF, so we use .tif extension: r.mapcalc "elev_filt.tif = if(elevation > 120.0, elevation, null() )" diff --git a/raster/r.fill.dir/r.fill.dir.html b/raster/r.fill.dir/r.fill.dir.html index 17173ea3dd3..94968a972c1 100644 --- a/raster/r.fill.dir/r.fill.dir.html +++ b/raster/r.fill.dir/r.fill.dir.html @@ -82,24 +82,24 @@

      NOTES

    11. The r.fill.dir module can be used not only to fill depression, but also to detect water bodies or potential water bodies based on -the nature of the terrain and the digital elevation model used. +the nature of the terrain and the digital elevation model used.
    12. Not all depressions are errors in digital elevation models. In fact, many are wetlands and as Jenkins and McCauley (2006) note careless use of depression filling may lead to unintended consequences such -as loss of wetlands. +as loss of wetlands.
    13. Although many hydrological algorithms require depression filling, advanced algorithms such as those implemented in r.watershed and r.sim.water do not require -depressionless digital elevation model to work. +depressionless digital elevation model to work.
    14. The flow direction map can be visualized with -d.rast.arrow. +d.rast.arrow.
    15. @@ -154,18 +154,18 @@

      REFERENCES

      • Beasley, D.B. and L.F. Huggins. 1982. ANSWERS (areal nonpoint source watershed environmental -response simulation): User's manual. U.S. EPA-905/9-82-001, Chicago, IL, 54 p. +response simulation): User's manual. U.S. EPA-905/9-82-001, Chicago, IL, 54 p.
      • Jenkins, D. G., and McCauley, L. A. 2006. GIS, SINKS, FILL, and disappearing wetlands: unintended consequences in algorithm development and use. In Proceedings of the 2006 ACM symposium on applied computing - (pp. 277-282). + (pp. 277-282).
      • Jenson, S.K., and J.O. Domingue. 1988. Extracting topographic structure from digital elevation model data for geographic information system analysis. Photogram. -Engr. and Remote Sens. 54: 1593-1600. +Engr. and Remote Sens. 54: 1593-1600.
      • Young, R.A., C.A. Onstad, D.D. Bosch and W.P. Anderson. 1985. Agricultural nonpoint surface pollution models (AGNPS) I and II model documentation. St. Paul: Minn. Pollution -control Agency and Washington D.C., USDA-Agricultural Research Service. +control Agency and Washington D.C., USDA-Agricultural Research Service.

      SEE ALSO

      diff --git a/raster/r.fill.stats/r.fill.stats.html b/raster/r.fill.stats/r.fill.stats.html index fdc60119243..bd966fa3f05 100644 --- a/raster/r.fill.stats/r.fill.stats.html +++ b/raster/r.fill.stats/r.fill.stats.html @@ -433,7 +433,7 @@

      Lidar point cloud example

      -Point density and ground surface +Point density and ground surface

      Binning of Lidar and resulting ground surface with filled gaps. Note the remaining NULL cells (white) in the resulting ground surface. @@ -476,7 +476,7 @@

      Outlier removal and gap-filling of SRTM elevation data

      d.histogram elev_srtm_30m # remove SRTM outliers, i.e. SRTM below 50m (esp. lakes), leading to no data areas -r.mapcalc "elev_srtm_30m_filt = if(elev_srtm_30m < 50.0, null(), elev_srtm_30m)" +r.mapcalc "elev_srtm_30m_filt = if(elev_srtm_30m < 50.0, null(), elev_srtm_30m)" d.histogram elev_srtm_30m_filt d.rast elev_srtm_30m_filt diff --git a/raster/r.flow/r.flow.html b/raster/r.flow/r.flow.html index 79f0e7ab4b7..28ea66a6c23 100644 --- a/raster/r.flow/r.flow.html +++ b/raster/r.flow/r.flow.html @@ -128,11 +128,11 @@

      Algorithm background

    16. r.flow has an option to compute slope and aspect internally thus making the program capable to process much larger data sets than r.flowmd. It has also 2 additional options for handling of large data sets but it is not -known that they work properly. +known that they work properly.
    17. the programs handle the special cases when the flowline passes exactly -(or very close) through the grid vertices differently. +(or very close) through the grid vertices differently.
    18. r.flowmd has the simplified multiple flow addition so the results are -smoother. +smoother.
    19. In conclusion, r.flowmd produces nicer results but is slower and it does not @@ -189,26 +189,26 @@

      REFERENCES

      • Mitasova, H., L. Mitas, 1993, Interpolation by regularized spline with tension : I. Theory and implementation. Mathematical Geology 25, p. 641-655. -(online) +(online)
      • Mitasova and Hofierka 1993 : Interpolation by Regularized Spline with Tension: II. Application to Terrain Modeling and Surface Geometry Analysis. Mathematical Geology 25(6), 657-669 -(online). +(online).
      • Mitasova, H., Mitas, L., Brown, W.M., Gerdes, D.P., Kosinovsky, I., Baker, T., 1995: Modeling spatially and temporally distributed phenomena: New methods and tools for GRASS GIS. International Journal of Geographical -Information Systems 9(4), 433-446. +Information Systems 9(4), 433-446.
      • Mitasova, H., J. Hofierka, M. Zlocha, L.R. Iverson, 1996, Modeling topographic potential for erosion and deposition using GIS. Int. Journal of Geographical Information Science, 10(5), 629-641. (reply to a comment to this paper appears in 1997 in Int. Journal of Geographical Information -Science, Vol. 11, No. 6) +Science, Vol. 11, No. 6)
      • Mitasova, H.(1993): Surfaces and modeling. Grassclippings (winter and -spring) p.18-19. +spring) p.18-19.

      SEE ALSO

      diff --git a/raster/r.geomorphon/r.geomorphon.html b/raster/r.geomorphon/r.geomorphon.html index 54af307b007..ac23aa85edc 100644 --- a/raster/r.geomorphon/r.geomorphon.html +++ b/raster/r.geomorphon/r.geomorphon.html @@ -54,39 +54,39 @@

      What is geomorphon:

      OPTIONS

      -
      -
      -m
      -
      All distance parameters (search, skip, flat distances) are supplied as meters instead of cells (default). To avoid situation when supplied distances is smaller than one cell program first check if supplied distance is longer than one cell in both NS and WE directions. For LatLong projection only NS distance checked, because in latitude angular unit comprise always bigger or equal distance than longitude one. If distance is supplied in cells, For all projections is recalculated into meters according formula: number_of_cells*resolution_along_NS_direction. It is important if geomorphons are calculated for large areas in LatLong projection.
      -
      elevation
      -
      Digital elevation model. Data can be of any type and any projection. During calculation DEM is stored as floating point raster.
      -
      search
      -
      Determines length on the geodesic distances in all eight directions where line-of-sight is calculated. To speed up calculation is determines only these cells which centers falls into the distance.
      -
      skip
      -
      Determines length on the geodesic distances at the beginning of calculation all eight directions where line-of-sight is yet calculated. To speed up calculation this distance is always recalculated into number of cell which are skipped at the beginning of every line-of-sight and is equal in all direction. This parameter eliminates forms of very small extend, smaller than skip parameter.
      -
      flat
      -
      The difference (in degrees) between zenith and nadir line-of-sight which indicate flat direction. If higher threshold produce more flat maps. If resolution of the map is low (more than 1 km per cell) threshold should be very small (much smaller than 1 degree) because on such distance 1 degree of difference means several meters of high difference.
      -
      dist
      -
      >Flat distance. This is additional parameter defining the distance above which the threshold starts to decrease to avoid problems with pseudo-flat line-of-sights if real elevation difference appears on the distance where its value is higher (TO BE CORRECTED).
      -
      comparison
      -
      Comparison mode for zenith/nadir line-of-sight search. "anglev1" is +
      +
      -m
      +
      All distance parameters (search, skip, flat distances) are supplied as meters instead of cells (default). To avoid situation when supplied distances is smaller than one cell program first check if supplied distance is longer than one cell in both NS and WE directions. For LatLong projection only NS distance checked, because in latitude angular unit comprise always bigger or equal distance than longitude one. If distance is supplied in cells, For all projections is recalculated into meters according formula: number_of_cells*resolution_along_NS_direction. It is important if geomorphons are calculated for large areas in LatLong projection.
      +
      elevation
      +
      Digital elevation model. Data can be of any type and any projection. During calculation DEM is stored as floating point raster.
      +
      search
      +
      Determines length on the geodesic distances in all eight directions where line-of-sight is calculated. To speed up calculation is determines only these cells which centers falls into the distance.
      +
      skip
      +
      Determines length on the geodesic distances at the beginning of calculation all eight directions where line-of-sight is yet calculated. To speed up calculation this distance is always recalculated into number of cell which are skipped at the beginning of every line-of-sight and is equal in all direction. This parameter eliminates forms of very small extend, smaller than skip parameter.
      +
      flat
      +
      The difference (in degrees) between zenith and nadir line-of-sight which indicate flat direction. If higher threshold produce more flat maps. If resolution of the map is low (more than 1 km per cell) threshold should be very small (much smaller than 1 degree) because on such distance 1 degree of difference means several meters of high difference.
      +
      dist
      +
      Flat distance. This is additional parameter defining the distance above which the threshold starts to decrease to avoid problems with pseudo-flat line-of-sights if real elevation difference appears on the distance where its value is higher (TO BE CORRECTED).
      +
      comparison
      +
      Comparison mode for zenith/nadir line-of-sight search. "anglev1" is the original r.geomorphon comparison mode. "anglev2" is an improved mode, which better handles angle thresholds and zenith/nadir angles that are exactly equal. "anglev2_distance" in addition to that takes the zenith/nadir distances into account when the angles are exactly -equal.
      -
      forms
      -
      Returns geomorphic map with 10 most popular terrestrial forms. Legend for forms, its definition by the number of + and - and its idealized visualisation are presented at the image. +equal.
      +
      forms
      +
      Returns geomorphic map with 10 most popular terrestrial forms. Legend for forms, its definition by the number of + and - and its idealized visualisation are presented at the image.

      Forms represented by geomorphons:

      forms legend
      -
      -
      ternary
      -
      returns code of one of 498 unique ternary patterns for every cell. The code is a decimal representation of 8-tuple minimalised patterns written in ternary system. Full list of patterns is available in source code directory as patterns.txt. This map can be used to create alternative form classification using supervised approach.
      -
      positive and negative
      -
      returns codes binary patterns for zenith (positive) and nadir (negative) line of sights. The code is a decimal representation of 8-tuple minimalised patterns written in binary system. Full list of patterns is available in source code directory as patterns.txt.
      -
      coordinates
      -
      The central point of a single geomorphon to profile. The central +
      +
      ternary
      +
      returns code of one of 498 unique ternary patterns for every cell. The code is a decimal representation of 8-tuple minimalised patterns written in ternary system. Full list of patterns is available in source code directory as patterns.txt. This map can be used to create alternative form classification using supervised approach.
      +
      positive and negative
      +
      returns codes binary patterns for zenith (positive) and nadir (negative) line of sights. The code is a decimal representation of 8-tuple minimalised patterns written in binary system. Full list of patterns is available in source code directory as patterns.txt.
      +
      coordinates
      +
      The central point of a single geomorphon to profile. The central point must be within the computational region, which should be large enough to accommodate the search radius. Setting the region larger than that will not produce more accurate data, but in the current @@ -94,32 +94,32 @@

      Forms represented by geomorphons:

      remember to align the region to the raster cells. Profiling is mutually exclusive with any raster outputs, but other parameters and flags (such as elevation, search, comparison, -m and --e) work as usual.
      -
      profiledata
      -
      The output file name for the complete profile data, "-" means to +-e) work as usual.
      +
      profiledata
      +
      The output file name for the complete profile data, "-" means to write to the standard output. The data is in a machine-readable format and it includes assorted values describing the computation context and -parameters, as well as its intermediate and final results.
      -
      profileformat
      -
      Format of the profile data: "json", "yaml" or "xml".
      - +parameters, as well as its intermediate and final results. +
      profileformat
      +
      Format of the profile data: "json", "yaml" or "xml".
      +

      NOTE: parameters below are experimental. The usefulness of these parameters are currently under investigation.

      -
      -
      intensity
      -
      returns average difference between central cell of geomorphon and eight cells in visibility neighbourhood. This parameter shows local (as is visible) exposition/abasement of the form in the terrain.
      -
      range
      -
      returns difference between minimum and maximum values of visibility neighbourhood.
      -
      variance
      -
      returns variance (difference between particular values and mean value) of visibility neighbourhood.
      -
      extend
      -
      returns area of the polygon created by the 8 points where line-of-sight cuts the terrain (see image in description section).
      -
      azimuth
      -
      returns orientation of the polygon constituting geomorphon. This orientation is currently calculated as a orientation of least square fit line to the eight verticles of this polygon.
      -
      elongation
      -
      returns proportion between sides of the bounding box rectangle calculated for geomorphon rotated to fit least square line.
      -
      width
      -
      returns length of the shorter side of the bounding box rectangle calculated for geomorphon rotated to fit least square line.
      -
      +
      +
      intensity
      +
      returns average difference between central cell of geomorphon and eight cells in visibility neighbourhood. This parameter shows local (as is visible) exposition/abasement of the form in the terrain.
      +
      range
      +
      returns difference between minimum and maximum values of visibility neighbourhood.
      +
      variance
      +
      returns variance (difference between particular values and mean value) of visibility neighbourhood.
      +
      extend
      +
      returns area of the polygon created by the 8 points where line-of-sight cuts the terrain (see image in description section).
      +
      azimuth
      +
      returns orientation of the polygon constituting geomorphon. This orientation is currently calculated as a orientation of least square fit line to the eight verticles of this polygon.
      +
      elongation
      +
      returns proportion between sides of the bounding box rectangle calculated for geomorphon rotated to fit least square line.
      +
      width
      +
      returns length of the shorter side of the bounding box rectangle calculated for geomorphon rotated to fit least square line.
      +

      NOTES

      diff --git a/raster/r.grow.distance/r.grow.distance.html b/raster/r.grow.distance/r.grow.distance.html index ee5e276a550..0b6866be1e6 100644 --- a/raster/r.grow.distance/r.grow.distance.html +++ b/raster/r.grow.distance/r.grow.distance.html @@ -91,12 +91,12 @@

      Distance from the streams network

      -
      +
      Euclidean distance from the streams network in meters (map subset)
      -
      +
      Euclidean distance from the streams network in meters (detail, numbers shown with d.rast.num)
      @@ -111,7 +111,7 @@

      Distance from sea in meters in latitude-longitude CRS

      -
      +
      Geodesic distances to sea in meters
      diff --git a/raster/r.horizon/r.horizon.html b/raster/r.horizon/r.horizon.html index 5adbf66a63f..71f8599dd70 100644 --- a/raster/r.horizon/r.horizon.html +++ b/raster/r.horizon/r.horizon.html @@ -7,10 +7,10 @@

      DESCRIPTION

      • point: as a series of horizon heights in the specified directions from the given point(s). The results are -written to the stdout. +written to the stdout.
      • raster: in this case the output is one or more raster maps, with each point in a raster giving the horizon -height in a specific direction. One raster is created for each direction. +height in a specific direction. One raster is created for each direction.

      diff --git a/raster/r.in.lidar/r.in.lidar.html b/raster/r.in.lidar/r.in.lidar.html index 6cff187c089..bc68bf10410 100644 --- a/raster/r.in.lidar/r.in.lidar.html +++ b/raster/r.in.lidar/r.in.lidar.html @@ -517,11 +517,11 @@

      Multiple file input

      On Linux and OSX, this file can be automatically generated with the command:
      -ls /home/user/data/*.laz > /home/user/data/filelist.txt
      +ls /home/user/data/*.laz > /home/user/data/filelist.txt
       
      On Windows:
      -dir /b c:\users\user\data\*.laz > c:\users\user\data\filelist.txt
      +dir /b c:\users\user\data\*.laz > c:\users\user\data\filelist.txt
       
      The mean height above ground example above would then be: @@ -597,14 +597,14 @@

      REFERENCES

    20. V. Petras, A. Petrasova, J. Jeziorska, H. Mitasova (2016): Processing UAV and lidar point clouds in GRASS GIS. -XXIII ISPRS Congress 2016 [ISPRS Archives, ResearchGate] +XXIII ISPRS Congress 2016 [ISPRS Archives, ResearchGate]
    21. -ASPRS LAS format +ASPRS LAS format
    22. -LAS library +LAS library
    23. -LAS library C API documentation +LAS library C API documentation
    24. AUTHORS

      diff --git a/raster/r.in.mat/r.in.mat.html b/raster/r.in.mat/r.in.mat.html index b0bba2cb478..be0f521dca2 100644 --- a/raster/r.in.mat/r.in.mat.html +++ b/raster/r.in.mat/r.in.mat.html @@ -7,13 +7,13 @@

      DESCRIPTION


      Specifically, the following array variables will be read:
        -
      • map_data -
      • map_name -
      • map_title -
      • map_northern_edge -
      • map_southern_edge -
      • map_eastern_edge -
      • map_western_edge +
      • map_data
      • +
      • map_name
      • +
      • map_title
      • +
      • map_northern_edge
      • +
      • map_southern_edge
      • +
      • map_eastern_edge
      • +
      • map_western_edge
      Any other variables in the MAT-file will be simply skipped over.
      diff --git a/raster/r.in.pdal/r.in.pdal.html b/raster/r.in.pdal/r.in.pdal.html index 92cd25205e8..cefc1984bef 100644 --- a/raster/r.in.pdal/r.in.pdal.html +++ b/raster/r.in.pdal/r.in.pdal.html @@ -575,11 +575,11 @@

      Multiple file input

      On Linux and OSX, this file can be automatically generated with the command:
      -ls /home/user/data/*.laz > /home/user/data/filelist.txt
      +ls /home/user/data/*.laz > /home/user/data/filelist.txt
       
      On Windows:
      -dir /b c:\users\user\data\*.laz > c:\users\user\data\filelist.txt
      +dir /b c:\users\user\data\*.laz > c:\users\user\data\filelist.txt
       
      The mean height above ground example above would then be: @@ -612,7 +612,7 @@

      KNOWN ISSUES

    25. Only one method can be applied for a single run and multiple map output from a single run (e.g. method=string[,string,...] output=name[,name,...] - or n=string mean=string) is no supported. + or n=string mean=string) is no supported.
    26. If you encounter any problems (or solutions!) please contact the GRASS @@ -647,12 +647,12 @@

      REFERENCES

    27. V. Petras, A. Petrasova, J. Jeziorska, H. Mitasova (2016): Processing UAV and lidar point clouds in GRASS GIS. -XXIII ISPRS Congress 2016 [ISPRS Archives, ResearchGate] +XXIII ISPRS Congress 2016 [ISPRS Archives, ResearchGate]
    28. -ASPRS LAS format +ASPRS LAS format
    29. -PDAL - Point Data Abstraction Library +PDAL - Point Data Abstraction Library
    30. AUTHORS

      diff --git a/raster/r.in.xyz/r.in.xyz.html b/raster/r.in.xyz/r.in.xyz.html index 42e5e1ee7f8..bf20fffce88 100644 --- a/raster/r.in.xyz/r.in.xyz.html +++ b/raster/r.in.xyz/r.in.xyz.html @@ -41,9 +41,9 @@

      DESCRIPTION

        -
      • Variance and derivatives use the biased estimator (n). [subject to change] +
      • Variance and derivatives use the biased estimator (n). [subject to change]
      • Coefficient of variance is given in percentage and defined as -(stddev/mean)*100. +(stddev/mean)*100.

      @@ -289,14 +289,14 @@

      TODO

    31. Support for multiple map output from a single run.
      method=string[,string,...] output=name[,name,...]
      This can be easily handled by a wrapper script, with the added - benefit of it being very simple to parallelize that way. + benefit of it being very simple to parallelize that way.
    32. KNOWN ISSUES

      • "nan" can leak into coeff_var maps. -
        Cause unknown. Possible work-around: "r.null setnull=nan" +
        Cause unknown. Possible work-around: "r.null setnull=nan"
      diff --git a/raster/r.kappa/r.kappa.html b/raster/r.kappa/r.kappa.html index b9a57ec0915..ad7c77a2b65 100644 --- a/raster/r.kappa/r.kappa.html +++ b/raster/r.kappa/r.kappa.html @@ -116,7 +116,7 @@

      NOTES

      "On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset". -

      EXAMPLE

      +

      EXAMPLE

      Example for North Carolina sample dataset: diff --git a/raster/r.lake/r.lake.html b/raster/r.lake/r.lake.html index ee18eb6d8cc..40407c00eea 100644 --- a/raster/r.lake/r.lake.html +++ b/raster/r.lake/r.lake.html @@ -52,16 +52,16 @@

      r.mapcalc equivalent - for GRASS hackers

       ${seedmap} = if( ${dem}, \
      -if( if( isnull(${seedmap}),0,${seedmap}>0), ${wlevel}-${dem}, \
      +if( if( isnull(${seedmap}),0,${seedmap} > 0), ${wlevel}-${dem}, \
        if( \
      -  if(isnull(${seedmap}[-1,0]),0, ${seedmap}[-1,0]>0 && ${wlevel}>${dem}) ||\
      -  if(isnull(${seedmap}[-1,1]),0, ${seedmap}[-1,1]>0 && ${wlevel}>${dem}) ||\
      -  if(isnull(${seedmap}[0,1]), 0, ${seedmap}[0,1]>0  && ${wlevel}>${dem}) ||\
      -  if(isnull(${seedmap}[1,1]), 0, ${seedmap}[1,1]>0  && ${wlevel}>${dem}) ||\
      -  if(isnull(${seedmap}[1,0]), 0, ${seedmap}[1,0]>0  && ${wlevel}>${dem}) ||\
      -  if(isnull(${seedmap}[1,-1]),0, ${seedmap}[1,-1]>0 && ${wlevel}>${dem}) ||\
      -  if(isnull(${seedmap}[0,-1]),0, ${seedmap}[0,-1]>0 && ${wlevel}>${dem}) ||\
      -  if(isnull(${seedmap}[-1,-1]),0, ${seedmap}[-1,-1]>0 && ${wlevel}>${dem}),\
      +  if(isnull(${seedmap}[-1,0]),0, ${seedmap}[-1,0] > 0 && ${wlevel} > ${dem}) ||\
      +  if(isnull(${seedmap}[-1,1]),0, ${seedmap}[-1,1] > 0 && ${wlevel} > ${dem}) ||\
      +  if(isnull(${seedmap}[0,1]), 0, ${seedmap}[0,1] > 0  && ${wlevel} > ${dem}) ||\
      +  if(isnull(${seedmap}[1,1]), 0, ${seedmap}[1,1] > 0  && ${wlevel} > ${dem}) ||\
      +  if(isnull(${seedmap}[1,0]), 0, ${seedmap}[1,0] > 0  && ${wlevel} > ${dem}) ||\
      +  if(isnull(${seedmap}[1,-1]),0, ${seedmap}[1,-1] > 0 && ${wlevel} > ${dem}) ||\
      +  if(isnull(${seedmap}[0,-1]),0, ${seedmap}[0,-1] > 0 && ${wlevel} > ${dem}) ||\
      +  if(isnull(${seedmap}[-1,-1]),0, ${seedmap}[-1,-1] > 0 && ${wlevel} > ${dem}),\
        ${wlevel}-${dem}, null() )))
       
      @@ -100,7 +100,7 @@

      EXAMPLE

      -
      +
      Small flooding along a street (r.lake, using Lidar 1m DEM)
      diff --git a/raster/r.li/r.li.cwed/r.li.cwed.html b/raster/r.li/r.li.cwed/r.li.cwed.html index 0fe92bd560e..f59e18d547e 100644 --- a/raster/r.li/r.li.cwed/r.li.cwed.html +++ b/raster/r.li/r.li.cwed/r.li.cwed.html @@ -12,12 +12,12 @@

      DESCRIPTION

      landscape between patch types i and k
    33. dik: dissimilarity (edge contrast weight) between patch types i and k
    34. -
    35. Area: total landscape area
      -
      +
    36. Area: total landscape area
    37. + The input file contains a row for each couple of patch type that we want to consider in the calculation. Each row must be saved using this syntax:
      -patchType1,patchType2,dissimilarityBetweenPatchType1andPatchType2
      +patchType1,patchType2,dissimilarityBetweenPatchType1andPatchType2

      NOTES

      @@ -60,7 +60,7 @@

      EXAMPLES

      SEE ALSO

      -r.li - package overview
      +r.li - package overview, g.gui.rlisetup
      diff --git a/raster/r.li/r.li.daemon/r.li.daemon.html b/raster/r.li/r.li.daemon/r.li.daemon.html index d2640a03fba..2d3cc5c4901 100644 --- a/raster/r.li/r.li.daemon/r.li.daemon.html +++ b/raster/r.li/r.li.daemon/r.li.daemon.html @@ -24,35 +24,35 @@

      DESCRIPTION

      To write a new index only two steps are needed:

        -
      1. - Define a function and insert its declaration on file index.h in r.li.daemon - folder, which contains all index declarations. This function must be of this kind: -
        +    
      2. + Define a function and insert its declaration on file index.h in r.li.daemon + folder, which contains all index declarations. This function must be of this kind: +
                 int index(int fd, char ** par, area_des ad, double * result)
        -	
        - where:
          -
        • fd is the raster map descriptor -
        • par is a matrix for special parameter (like argv in main) -
        • ad is the area descriptor -
        • result is where to put the index calculation result -
        - This function has to return 1 on success and 0 otherwise. - This function type is defined using typedef named rli_func. -
      3. - Create a main for command line arguments parsing, and call the function -
        +    
        + where:
          +
        • fd is the raster map descriptor
        • +
        • par is a matrix for special parameter (like argv in main)
        • +
        • ad is the area descriptor
        • +
        • result is where to put the index calculation result
        • +
        + This function has to return 1 on success and 0 otherwise. + This function type is defined using typedef named rli_func.
      4. +
      5. + Create a main for command line arguments parsing, and call the function +
                 int calculateIndex(char *file, rli_func *f,
                                    char **parameters, char *raster, char *output);
        -	
        - from the r.li library, for starting raster analysis.
        - It follows the meaning of parameters: -
          -
        • file name of configuration file created using g.gui.rlisetup -
        • f pointer to index function defined above -
        • parameters pointer to index special parameters -
        • raster name of raster to use -
        • output output file name -
        +
      6. + from the r.li library, for starting raster analysis.
        + It follows the meaning of parameters: +
          +
        • file name of configuration file created using g.gui.rlisetup
        • +
        • f pointer to index function defined above
        • +
        • parameters pointer to index special parameters
        • +
        • raster name of raster to use
        • +
        • output output file name
        • +
      Compile it using a changed Makefile based on the file for r.li.patchdensity. diff --git a/raster/r.li/r.li.dominance/r.li.dominance.html b/raster/r.li/r.li.dominance/r.li.dominance.html index 13bef4620f4..753caa87ff5 100644 --- a/raster/r.li/r.li.dominance/r.li.dominance.html +++ b/raster/r.li/r.li.dominance/r.li.dominance.html @@ -37,7 +37,7 @@

      EXAMPLES

      Forest map (Spearfish sample dataset) example:
       g.region raster=landcover.30m -p
      -r.mapcalc "forests = if(landcover.30m >= 41 && landcover.30m <= 43,1,null())"
      +r.mapcalc "forests = if(landcover.30m >= 41 && landcover.30m <= 43,1,null())"
       r.li.dominance input=forests conf=movwindow7 out=forests_dominance_mov7
       r.univar forests_dominance_mov7
       
      @@ -60,7 +60,7 @@

      EXAMPLES

      SEE ALSO

      -r.li - package overview
      +r.li - package overview, g.gui.rlisetup
      diff --git a/raster/r.li/r.li.edgedensity/r.li.edgedensity.html b/raster/r.li/r.li.edgedensity/r.li.edgedensity.html index 229a3e28686..0bcdbd06ef8 100644 --- a/raster/r.li/r.li.edgedensity/r.li.edgedensity.html +++ b/raster/r.li/r.li.edgedensity/r.li.edgedensity.html @@ -58,7 +58,7 @@

      EXAMPLES

      Forest map (Spearfish sample dataset) example:
       g.region raster=landcover.30m -p
      -r.mapcalc "forests = if(landcover.30m >= 41 && landcover.30m <= 43,1,null())"
      +r.mapcalc "forests = if(landcover.30m >= 41 && landcover.30m <= 43,1,null())"
       r.li.edgedensity input=forests conf=movwindow7 out=forests_edgedens_mov7
       r.univar forests_edgedens_mov7
       
      @@ -81,7 +81,7 @@

      EXAMPLES

      SEE ALSO

      -r.li - package overview
      +r.li - package overview, g.gui.rlisetup
      diff --git a/raster/r.li/r.li.html b/raster/r.li/r.li.html index bfe7c3498d0..9786cba5bd1 100644 --- a/raster/r.li/r.li.html +++ b/raster/r.li/r.li.html @@ -39,11 +39,11 @@

      NOTES

    38. run g.gui.rlisetup: create a configuration file selecting the parts of raster map to be analyzed. This file allows re-running an analysis easily. It is stored on Windows in the directory C:\Users\userxy\AppData\Roaming\GRASS8\r.li\, on GNU/Linux in - $HOME/.grass8/r.li/. + $HOME/.grass8/r.li/.
    39. run one or more of the r.li.[index] modules (e.g., r.li.patchdensity) to calculate the selected index - using on the areas selected on configuration file. + using on the areas selected on configuration file.
    40. As far as the user just use r.ros together with r.spread, there is no need to - concern about these output units. + concern about these output units.

      REFERENCES

      diff --git a/raster/r.series.interp/r.series.interp.html b/raster/r.series.interp/r.series.interp.html index a05b792afbf..77df2a89d91 100644 --- a/raster/r.series.interp/r.series.interp.html +++ b/raster/r.series.interp/r.series.interp.html @@ -7,7 +7,7 @@

      DESCRIPTION

      The following interpolation methods are supported.
        -
      • linear: Linear interpolation. At least two input maps and data positions are required. +
      • linear: Linear interpolation. At least two input maps and data positions are required.

      EXAMPLES

      diff --git a/raster/r.series/r.series.html b/raster/r.series/r.series.html index 0d1c12b5bb9..1a743a5a49a 100644 --- a/raster/r.series/r.series.html +++ b/raster/r.series/r.series.html @@ -12,29 +12,29 @@

      DESCRIPTION

      Following methods are available:
        -
      • average: average value -
      • count: count of non-NULL cells -
      • median: median value -
      • mode: most frequently occurring value -
      • minimum: lowest value -
      • min_raster: raster map number with the minimum time-series value -
      • maximum: highest value -
      • max_raster: raster map number with the maximum time-series value -
      • stddev: standard deviation -
      • range: range of values (max - min) -
      • sum: sum of values -
      • variance: statistical variance -
      • diversity: number of different values -
      • slope: linear regression slope -
      • offset: linear regression offset -
      • detcoeff: linear regression coefficient of determination -
      • tvalue: linear regression t-value -
      • quart1: first quartile -
      • quart3: third quartile -
      • perc90: ninetieth percentile -
      • quantile: arbitrary quantile -
      • skewness: skewness -
      • kurtosis: kurtosis +
      • average: average value
      • +
      • count: count of non-NULL cells
      • +
      • median: median value
      • +
      • mode: most frequently occurring value
      • +
      • minimum: lowest value
      • +
      • min_raster: raster map number with the minimum time-series value
      • +
      • maximum: highest value
      • +
      • max_raster: raster map number with the maximum time-series value
      • +
      • stddev: standard deviation
      • +
      • range: range of values (max - min)
      • +
      • sum: sum of values
      • +
      • variance: statistical variance
      • +
      • diversity: number of different values
      • +
      • slope: linear regression slope
      • +
      • offset: linear regression offset
      • +
      • detcoeff: linear regression coefficient of determination
      • +
      • tvalue: linear regression t-value
      • +
      • quart1: first quartile
      • +
      • quart3: third quartile
      • +
      • perc90: ninetieth percentile
      • +
      • quantile: arbitrary quantile
      • +
      • skewness: skewness
      • +
      • kurtosis: kurtosis
      Note that most parameters accept multiple answers, allowing multiple @@ -196,7 +196,7 @@

      EXAMPLES

      Example to use the file option of r.series:

      -cat > input.txt << EOF
      +cat > input.txt << EOF
       map1
       map2
       map3
      @@ -211,7 +211,7 @@ 

      EXAMPLES

      weights we can leave it out:
      -cat > input.txt << EOF
      +cat > input.txt << EOF
       map1
       map2|0.75
       map3
      diff --git a/raster/r.sim/r.sim.water/r.sim.water.html b/raster/r.sim/r.sim.water/r.sim.water.html
      index 79cef1bfadc..af54dea4490 100644
      --- a/raster/r.sim/r.sim.water/r.sim.water.html
      +++ b/raster/r.sim/r.sim.water/r.sim.water.html
      @@ -208,37 +208,37 @@ 

      REFERENCES

      and short term terrain evolution in Open Source GIS. In: C.T. Miller, M.W. Farthing, V.G. Gray, G.F. Pinder eds., Proceedings of the XVth International Conference on Computational Methods in Water -Resources (CMWR XV), June 13-17 2004, Chapel Hill, NC, USA, Elsevier, pp. 1479-1490. +Resources (CMWR XV), June 13-17 2004, Chapel Hill, NC, USA, Elsevier, pp. 1479-1490.
    41. Mitasova H, Mitas, L., 2000, Modeling spatial processes in multiscale framework: exploring duality between particles and fields, -plenary talk at GIScience2000 conference, Savannah, GA. +plenary talk at GIScience2000 conference, Savannah, GA.
    42. Mitas, L., and Mitasova, H., 1998, Distributed soil erosion simulation -for effective erosion prevention. Water Resources Research, 34(3), 505-516. +for effective erosion prevention. Water Resources Research, 34(3), 505-516.
    43. Mitasova, H., Mitas, L., 2001, Multiscale soil erosion simulations for land use management, In: Landscape erosion and landscape evolution modeling, Harmon R. and Doe W. eds., -Kluwer Academic/Plenum Publishers, pp. 321-347. +Kluwer Academic/Plenum Publishers, pp. 321-347.
    44. Hofierka, J, Mitasova, H., Mitas, L., 2002. GRASS and modeling landscape processes using duality between particles and fields. Proceedings of the Open source GIS - GRASS users conference 2002 - Trento, Italy, 11-13 September 2002. -PDF +PDF
    45. Hofierka, J., Knutova, M., 2015, Simulating aspects of a flash flood using the Monte Carlo method and GRASS GIS: a case study of the Malá Svinka Basin (Slovakia), Open Geosciences. Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: 10.1515/geo-2015-0013, -April 2015 +April 2015
    46. Neteler, M. and Mitasova, H., 2008, Open Source GIS: A GRASS GIS Approach. Third Edition. -The International Series in Engineering and Computer Science: Volume 773. Springer New York Inc, p. 406. +The International Series in Engineering and Computer Science: Volume 773. Springer New York Inc, p. 406.
    47. SEE ALSO

      diff --git a/raster/r.slope.aspect/r.slope.aspect.html b/raster/r.slope.aspect/r.slope.aspect.html index a76bd33e477..eb737fb968d 100644 --- a/raster/r.slope.aspect/r.slope.aspect.html +++ b/raster/r.slope.aspect/r.slope.aspect.html @@ -30,7 +30,7 @@

      DESCRIPTION

      # convert angles from CCW from East to CW from North # modulus (%) can not be used with floating point aspect values r.mapcalc "azimuth_aspect = if(ccw_aspect == 0, 0, \ - if(ccw_aspect < 90, 90 - ccw_aspect, \ + if(ccw_aspect < 90, 90 - ccw_aspect, \ 450 - ccw_aspect)))"
      @@ -240,15 +240,15 @@

      Classification of major aspect directions in compass orientation

      # generate compass orientation and classify four major directions (N, E, S, W) r.mapcalc "aspect_4_directions = eval( \\ compass=(450 - myaspect ) % 360, \\ - if(compass >=0. && compass < 45., 1) \\ - + if(compass >=45. && compass < 135., 2) \\ - + if(compass >=135. && compass < 225., 3) \\ - + if(compass >=225. && compass < 315., 4) \\ - + if(compass >=315., 1) \\ + if(compass >=0. && compass < 45., 1) \\ + + if(compass >=45. && compass < 135., 2) \\ + + if(compass >=135. && compass < 225., 3) \\ + + if(compass >=225. && compass < 315., 4) \\ + + if(compass >=315., 1) \\ )" # assign text labels -r.category aspect_4_directions separator=comma rules=- << EOF +r.category aspect_4_directions separator=comma rules=- << EOF 1,north 2,east 3,south @@ -256,7 +256,7 @@

      Classification of major aspect directions in compass orientation

      EOF # assign color table -r.colors aspect_4_directions rules=- << EOF +r.colors aspect_4_directions rules=- << EOF 1 253,184,99 2 178,171,210 3 230,97,1 @@ -273,13 +273,13 @@

      REFERENCES

      • Horn, B. K. P. (1981). Hill Shading and the Reflectance Map, Proceedings -of the IEEE, 69(1):14-47. +of the IEEE, 69(1):14-47.
      • Mitasova, H. (1985). Cartographic aspects of computer surface modeling. PhD thesis. -Slovak Technical University , Bratislava +Slovak Technical University , Bratislava
      • Hofierka, J., Mitasova, H., Neteler, M., 2009. Geomorphometry in GRASS GIS. In: Hengl, T. and Reuter, H.I. (Eds), Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, vol. 33, Elsevier, 387-410 pp, -http://www.geomorphometry.org +http://www.geomorphometry.org

      SEE ALSO

      diff --git a/raster/r.spread/r.spread.html b/raster/r.spread/r.spread.html index 1980e61aae5..68c32171270 100644 --- a/raster/r.spread/r.spread.html +++ b/raster/r.spread/r.spread.html @@ -12,9 +12,9 @@

      DESCRIPTION

      1. the uneven conditions from location to location, which can be called -spatial heterogeneity, and +spatial heterogeneity, and
      2. the uneven conditions in different directions, which can be called -anisotropy. +anisotropy.

      The anisotropy of spread occurs when any of the determining factors diff --git a/raster/r.stats.quantile/r.stats.quantile.html b/raster/r.stats.quantile/r.stats.quantile.html index 4c387281b7b..85c296691cc 100644 --- a/raster/r.stats.quantile/r.stats.quantile.html +++ b/raster/r.stats.quantile/r.stats.quantile.html @@ -5,7 +5,7 @@

      DESCRIPTION

      in a "base layer". It provides quantile calculations as selected "zonal statistics". -

      NOTES

      +

      NOTES

      r.stats.quantile is intended to be a partial replacement for r.statistics, with support diff --git a/raster/r.stats.zonal/r.stats.zonal.html b/raster/r.stats.zonal/r.stats.zonal.html index 9e5d83bef01..b611e531c2b 100644 --- a/raster/r.stats.zonal/r.stats.zonal.html +++ b/raster/r.stats.zonal/r.stats.zonal.html @@ -9,7 +9,7 @@

      DESCRIPTION

      Notably, the output of this module is spatial: The resulting values are recorded as cell values in the output raster map. -

      NOTES

      +

      NOTES

      r.stats.zonal is intended to be a partial replacement for r.statistics, with support diff --git a/raster/r.sun/r.sun.html b/raster/r.sun/r.sun.html index ec43813d51c..677748dae6a 100644 --- a/raster/r.sun/r.sun.html +++ b/raster/r.sun/r.sun.html @@ -13,8 +13,8 @@

      DESCRIPTION

      For latitude-longitude coordinates it requires that the elevation map is in meters. The rules are:

        -
      • lat/lon coordinates: elevation in meters; -
      • Other coordinates: elevation in the same unit as the easting-northing coordinates. +
      • lat/lon coordinates: elevation in meters;
      • +
      • Other coordinates: elevation in the same unit as the easting-northing coordinates.
      The solar geometry of the model is based on the works of Krcho (1990), later @@ -294,8 +294,8 @@

      EXAMPLES

      We can compute the day of year from a specific date in Python:
      ->>> import datetime
      ->>> datetime.datetime(2014, 6, 21).timetuple().tm_yday
      +>>> import datetime
      +>>> datetime.datetime(2014, 6, 21).timetuple().tm_yday
       172
       
      @@ -317,53 +317,53 @@

      REFERENCES

    48. Hofierka, J., Suri, M. (2002): The solar radiation model for Open source GIS: implementation and applications. International GRASS users conference in Trento, Italy, September 2002. -(PDF) +(PDF)
    49. Hofierka, J. (1997). Direct solar radiation modelling within an open GIS environment. Proceedings of JEC-GI'97 conference in Vienna, Austria, IOS -Press Amsterdam, 575-584. +Press Amsterdam, 575-584.
    50. Jenco, M. (1992). Distribution of direct solar radiation on georelief and its modelling by means of complex digital model of terrain (in Slovak). Geograficky -casopis, 44, 342-355. +casopis, 44, 342-355.
    51. Kasten, F. (1996). The Linke turbidity factor based on improved values of -the integral Rayleigh optical thickness. Solar Energy, 56 (3), 239-244. +the integral Rayleigh optical thickness. Solar Energy, 56 (3), 239-244.
    52. Kasten, F., Young, A. T. (1989). Revised optical air mass tables and approximation -formula. Applied Optics, 28, 4735-4738. +formula. Applied Optics, 28, 4735-4738.
    53. Kittler, R., Mikler, J. (1986): Basis of the utilization of solar radiation -(in Slovak). VEDA, Bratislava, p. 150. +(in Slovak). VEDA, Bratislava, p. 150.
    54. Krcho, J. (1990). Morfometrická analza a digitálne modely georeliéfu (Morphometric analysis and digital models of georelief, in Slovak). -VEDA, Bratislava. +VEDA, Bratislava.
    55. Muneer, T. (1990). Solar radiation model for Europe. Building services engineering -research and technology, 11, 4, 153-163. +research and technology, 11, 4, 153-163.
    56. Neteler, M., Mitasova, H. (2002): Open Source GIS: A GRASS GIS Approach, Kluwer Academic Publishers. (Appendix explains formula; -r.sun script download) +r.sun script download)
    57. Page, J. ed. (1986). Prediction of solar radiation on inclined surfaces. Solar energy R&D in the European Community, series F - Solar radiation data, -Dordrecht (D. Reidel), 3, 71, 81-83. +Dordrecht (D. Reidel), 3, 71, 81-83.
    58. Page, J., Albuisson, M., Wald, L. (2001). The European solar radiation atlas: -a valuable digital tool. Solar Energy, 71, 81-83. +a valuable digital tool. Solar Energy, 71, 81-83.
    59. Rigollier, Ch., Bauer, O., Wald, L. (2000). On the clear sky model of the ESRA - European Solar radiation Atlas - with respect to the Heliosat method. -Solar energy, 68, 33-48. +Solar energy, 68, 33-48.
    60. Scharmer, K., Greif, J., eds., (2000). The European solar radiation atlas, Vol. 2: Database and exploitation software. Paris (Les Presses de l'École -des Mines). +des Mines).
    61. Joint Research Centre: GIS solar radiation database for Europe and -Solar radiation and GIS +Solar radiation and GIS
    62. AUTHORS

      diff --git a/raster/r.sunmask/r.sunmask.html b/raster/r.sunmask/r.sunmask.html index 27a2ee35f7a..7b43ac502ef 100644 --- a/raster/r.sunmask/r.sunmask.html +++ b/raster/r.sunmask/r.sunmask.html @@ -80,7 +80,7 @@

      NOTES

      correction for atmosphere refraction. The output without -g flag contains related indications. -

      EXAMPLE

      +

      EXAMPLE

      Example for North Carolina sample data set for the calculation of sun position angles and more: diff --git a/raster/r.terraflow/r.terraflow.html b/raster/r.terraflow/r.terraflow.html index 29fa310c5dc..80f7e5463dd 100644 --- a/raster/r.terraflow/r.terraflow.html +++ b/raster/r.terraflow/r.terraflow.html @@ -44,12 +44,12 @@

      DESCRIPTION

      • On plateaus (flat areas that spill out) r.terraflow routes flow so that globally the flow goes towards the spill cells of -the plateaus. +the plateaus.
      • On sinks (flat areas that do not spill out, including one-cell pits) r.terraflow assigns flow by flooding the terrain until all the sinks are filled and assigning flow directions on the filled -terrain. +terrain.

      In order to flood the terrain, r.terraflow identifies all @@ -163,7 +163,7 @@

      EXAMPLES

      -
      +
      Flow accumulation
        -
      • no-data (null), if the respective point in the elevation map is no-data (null) -
      • -1, if the point is not visible -
      • the difference in elevation between the point and the viewpoint, if the point is visible. +
      • no-data (null), if the respective point in the elevation map is no-data (null)
      • +
      • -1, if the point is not visible
      • +
      • the difference in elevation between the point and the viewpoint, if the point is visible.

      @@ -58,8 +58,6 @@

      NOTES

      r.mapcalc can be used to create a negative of the viewshed map. - -

      By default the elevations are not adjusted for the curvature of the earth. The user can turn this on with flag @@ -165,8 +163,8 @@

      The algorithm

      - - + + @@ -187,7 +185,7 @@

      EXAMPLES

      -r.viewshed example
      +r.viewshed example
      Viewshed shown on shaded terrain (observer position in the north-east quadrant with white dot; 5m above ground)
      diff --git a/raster/r.walk/r.walk.html b/raster/r.walk/r.walk.html index 2523b7fc0b6..ed964d94082 100644 --- a/raster/r.walk/r.walk.html +++ b/raster/r.walk/r.walk.html @@ -166,13 +166,13 @@

      REFERENCES

      • Aitken, R. 1977. Wilderness areas in Scotland. Unpublished Ph.D. thesis. - University of Aberdeen. + University of Aberdeen.
      • Steno Fontanari, University of Trento, Italy, Ingegneria per l'Ambiente e - il Territorio, 2000-2001. + il Territorio, 2000-2001.
      • Svilluppo di metodologie GIS per la determinazione dell'accessibilità territoriale come supporto alle decisioni nella gestione ambientale.
      • Langmuir, E. 1984. Mountaincraft and leadership. The Scottish - Sports Council/MLTB. Cordee, Leicester. + Sports Council/MLTB. Cordee, Leicester.

      SEE ALSO

      diff --git a/raster/r.water.outlet/r.water.outlet.html b/raster/r.water.outlet/r.water.outlet.html index 7504ec1e722..2ce1c848e89 100644 --- a/raster/r.water.outlet/r.water.outlet.html +++ b/raster/r.water.outlet/r.water.outlet.html @@ -52,7 +52,7 @@

      EXAMPLE

      -
      +
      Figure: Watershed draped over flow accumulation
      diff --git a/raster/r.watershed/front/r.watershed.html b/raster/r.watershed/front/r.watershed.html index d9a226412af..8e9babef09d 100644 --- a/raster/r.watershed/front/r.watershed.html +++ b/raster/r.watershed/front/r.watershed.html @@ -360,11 +360,11 @@

      Further processing of output layers

    63. Use a resample of the basins catchment raster map as a MASK.
      The equivalent vector map method is similar using v.select or - v.overlay. + v.overlay.
    64. Use the r.cost module with a - point in the river as a starting point. + point in the river as a starting point.
    65. Use the v.net.iso module - with a node in the river as a starting point. + with a node in the river as a starting point.
    66. All individual river networks in the stream segments output can be @@ -408,7 +408,7 @@

      Further processing of output layers

      The following command performs these replacements:
      -r.mapcalc "drainage_degrees = if(drainage > 0, 45. * drainage, null())"
      +r.mapcalc "drainage_degrees = if(drainage > 0, 45. * drainage, null())"
       
      Alternatively, the user can use the -a flag or later the @@ -471,7 +471,7 @@

      Convert r.watershed streams map output to a vector map

      r.mapcalc 'MASK = if(!isnull(elevation.dem))' r.mapcalc "rwater.course = \ - if( abs(rwater.accum) > $mean_of_abs, \ + if( abs(rwater.accum) > $mean_of_abs, \ abs(rwater.accum), \ null() )" r.colors -g rwater.course col=bcyr @@ -515,45 +515,44 @@

      REFERENCES

      Proceedings of International Geographic Information Systems (IGIS) Symposium '89, pp 275-281 (Baltimore, MD, 18-19 March 1989).
      URL: -http://chuck.ehlschlaeger.info/older/IGIS/paper.html +http://chuck.ehlschlaeger.info/older/IGIS/paper.html
    67. Holmgren P. (1994). Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes Vol 8(4), 327-334.
      -DOI: 10.1002/hyp.3360080405 +DOI: 10.1002/hyp.3360080405
    68. Kinner D., Mitasova H., Harmon R., Toma L., Stallard R. (2005). GIS-based Stream Network Analysis for The Chagres River Basin, Republic of Panama. The Rio Chagres: A Multidisciplinary Profile of a Tropical Watershed, R. Harmon (Ed.), Springer/Kluwer, p.83-95.
      URL: -http://fatra.cnr.ncsu.edu/~hmitaso/measwork/panama/panama.html +http://fatra.cnr.ncsu.edu/~hmitaso/measwork/panama/panama.html
    69. McCool et al. (1987). Revised Slope Steepness Factor for the Universal -Soil Loss Equation, Transactions of the ASAE Vol 30(5). +Soil Loss Equation, Transactions of the ASAE Vol 30(5).
    70. Metz M., Mitasova H., Harmon R. (2011). Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search, Hydrol. Earth Syst. Sci. Vol 15, 667-678.
      -DOI: 10.5194/hess-15-667-2011 +DOI: 10.5194/hess-15-667-2011
    71. Moore I.D., Grayson R.B., Ladson A.R. (1991). Digital terrain modelling: a review of hydrogical, geomorphological, and biological applications, Hydrological Processes, Vol 5(1), 3-30
      -DOI: 10.1002/hyp.3360050103 +DOI: 10.1002/hyp.3360050103
    72. Quinn P., K. Beven K., Chevallier P., Planchon O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using Digital Elevation Models, Hydrological Processes Vol 5(1), p.59-79.
      -DOI: 10.1002/hyp.3360050106 +DOI: 10.1002/hyp.3360050106
    73. Weltz M. A., Renard K.G., Simanton J. R. (1987). Revised Universal Soil Loss Equation for Western Rangelands, U.S.A./Mexico Symposium of Strategies for Classification and Management of Native Vegetation for -Food Production In Arid Zones (Tucson, AZ, 12-16 Oct. 1987). -
    74. +Food Production In Arid Zones (Tucson, AZ, 12-16 Oct. 1987).

      SEE ALSO

      diff --git a/raster/r.what.color/r.what.color.html b/raster/r.what.color/r.what.color.html index 607c0732613..34eeb560af1 100644 --- a/raster/r.what.color/r.what.color.html +++ b/raster/r.what.color/r.what.color.html @@ -53,8 +53,8 @@

      DESCRIPTION

      Common formats:

        -
      • Tcl/Tk: format="#%02x%02x%02x" -
      • WxPython: format='"#%02x%02x%02x"' or format='"(%d,%d,%d)"' +
      • Tcl/Tk: format="#%02x%02x%02x"
      • +
      • WxPython: format='"#%02x%02x%02x"' or format='"(%d,%d,%d)"'

      SEE ALSO

      diff --git a/raster/rasterintro.html b/raster/rasterintro.html index 519cb03ea39..e4193d74bad 100644 --- a/raster/rasterintro.html +++ b/raster/rasterintro.html @@ -18,12 +18,12 @@

      Raster maps in general

      As a general rule in GRASS GIS:
      1. Raster output maps have their bounds and resolution equal to those -of the current computational region. +of the current computational region.
      2. Raster input maps are automatically cropped/padded and rescaled -(using nearest-neighbour resampling) to match the current region. +(using nearest-neighbour resampling) to match the current region.
      3. Raster input maps are automatically masked if a raster map named MASK exists. The MASK is only applied when reading maps - from the disk. + from the disk.
      There are a few exceptions to this: @@ -267,7 +267,7 @@

      2D raster maps

      • 32bit signed integer (CELL),
      • single-precision floating-point (FCELL), and
      • -
      • double-precision floating-point (DCELL). +
      • double-precision floating-point (DCELL).
      In most GRASS GIS resources, 2D raster maps are usually called "raster" maps. diff --git a/raster3d/r3.gwflow/r3.gwflow.html b/raster3d/r3.gwflow/r3.gwflow.html index 82dca510162..8df4a38140c 100644 --- a/raster3d/r3.gwflow/r3.gwflow.html +++ b/raster3d/r3.gwflow/r3.gwflow.html @@ -78,9 +78,9 @@

      EXAMPLE 1

      g.region res=25 res3=25 t=100 b=0 n=1000 s=0 w=0 e=1000 -p3 #now create the input raster maps for a confined aquifer -r3.mapcalc expression="phead = if(row() == 1 && depth() == 4, 50, 40)" -r3.mapcalc expression="status = if(row() == 1 && depth() == 4, 2, 1)" -r3.mapcalc expression="well = if(row() == 20 && col() == 20 && depth() == 2, -0.25, 0)" +r3.mapcalc expression="phead = if(row() == 1 && depth() == 4, 50, 40)" +r3.mapcalc expression="status = if(row() == 1 && depth() == 4, 2, 1)" +r3.mapcalc expression="well = if(row() == 20 && col() == 20 && depth() == 2, -0.25, 0)" r3.mapcalc expression="hydcond = 0.00025" r3.mapcalc expression="syield = 0.0001" r.mapcalc expression="recharge = 0.0" @@ -105,14 +105,14 @@

      EXAMPLE 2

      g.region res=15 res3=15 t=500 b=0 n=1000 s=0 w=0 e=1000 #now create the input raster maps for a confined aquifer -r3.mapcalc expression="phead = if(col() == 1 && depth() == 33, 50, 40)" -r3.mapcalc expression="status = if(col() == 1 && depth() == 33, 2, 1)" -r3.mapcalc expression="well = if(row() == 20 && col() == 20 && depth() == 3, -0.25, 0)" -r3.mapcalc expression="well = if(row() == 50 && col() == 50 && depth() == 3, -0.25, well)" +r3.mapcalc expression="phead = if(col() == 1 && depth() == 33, 50, 40)" +r3.mapcalc expression="status = if(col() == 1 && depth() == 33, 2, 1)" +r3.mapcalc expression="well = if(row() == 20 && col() == 20 && depth() == 3, -0.25, 0)" +r3.mapcalc expression="well = if(row() == 50 && col() == 50 && depth() == 3, -0.25, well)" r3.mapcalc expression="hydcond = 0.0025" -r3.mapcalc expression="hydcond = if(depth() < 30 && depth() > 23 && col() < 60, 0.000025, hydcond)" -r3.mapcalc expression="hydcond = if(depth() < 20 && depth() > 13 && col() > 7, 0.000025, hydcond)" -r3.mapcalc expression="hydcond = if(depth() < 10 && depth() > 7 && col() < 60, 0.000025, hydcond)" +r3.mapcalc expression="hydcond = if(depth() < 30 && depth() > 23 && col() < 60, 0.000025, hydcond)" +r3.mapcalc expression="hydcond = if(depth() < 20 && depth() > 13 && col() > 7, 0.000025, hydcond)" +r3.mapcalc expression="hydcond = if(depth() < 10 && depth() > 7 && col() < 60, 0.000025, hydcond)" r3.mapcalc expression="syield = 0.0001" r3.gwflow solver=cg phead=phead statuyield=status hc_x=hydcond hc_y=hydcond \ diff --git a/raster3d/r3.in.ascii/r3.in.ascii.html b/raster3d/r3.in.ascii/r3.in.ascii.html index 0316fa76029..5154feb36d6 100644 --- a/raster3d/r3.in.ascii/r3.in.ascii.html +++ b/raster3d/r3.in.ascii/r3.in.ascii.html @@ -16,8 +16,8 @@

      NOTES

      that is visualized in the following picture, independently from the specified ordering in the ASCII input file:
      -
      -
      [SDF][SDF][SDF][SDF]
      The sweep-line.
      +
      +
      @@ -47,7 +47,7 @@

      Format

      The supported row/depth ordering is documented in the r3.out.ascii manual page. The order of the data in the input file does not specify the data order in the generated output 3D raster map which is in any case -north -> south, west -> east, bottom -> top order. +north -> south, west -> east, bottom -> top order. So dependent on the order information the data is automatically imported into the correct internal coordinate system.

      The version and order options are not mandatory. In case no version and @@ -61,7 +61,7 @@

      EXAMPLES

      4x3x2 sample. Note in case no specific ordering is specified in the input file the upper-left (NW) corner of the bottom level comes first. The according -order option is: nsbt for north -> south, bottom -> top ordering. This is +order option is: nsbt for north -> south, bottom -> top ordering. This is identical with r.in.ascii for single level data. So the y coordinate is 0 at the northern edge. diff --git a/raster3d/r3.in.bin/r3.in.bin.html b/raster3d/r3.in.bin/r3.in.bin.html index a1735a49d6f..e3c58afc5e0 100644 --- a/raster3d/r3.in.bin/r3.in.bin.html +++ b/raster3d/r3.in.bin/r3.in.bin.html @@ -12,8 +12,8 @@

      DESCRIPTION

      NOTES

      -The write order of the rows (north->south to south->north) and -the write order of the depths (bottom->top to top->bottom) can be switched. +The write order of the rows (north->south to south->north) and +the write order of the depths (bottom->top to top->bottom) can be switched.

      Have a look at r3.out.ascii to manual page that describes the internal layout of the 3D raster maps and the supported diff --git a/raster3d/r3.in.lidar/r3.in.lidar.html b/raster3d/r3.in.lidar/r3.in.lidar.html index 2edddfceb9e..902893b84e5 100644 --- a/raster3d/r3.in.lidar/r3.in.lidar.html +++ b/raster3d/r3.in.lidar/r3.in.lidar.html @@ -26,17 +26,17 @@

      NOTES

    75. This module is new and partially experimental. Please don't rely on its interface and be critical towards its outputs. - Please report issues on the mailing list or in the bug tracker. + Please report issues on the mailing list or in the bug tracker
    76. .
    77. No reprojection is performed, you need to reproject ahead or - use a GRASS project with the coordinate system that matches that of the data. + use a GRASS project with the coordinate system that matches that of the data.
    78. Some temporary maps are created but not cleaned up. Use of - --overwrite might be necessary even when not desired. + --overwrite might be necessary even when not desired.
    79. Expects points to have intensity and causing random (undefined) result for related outputs (sum, mean, proportional_sum) - when the intensity is not present but the outputs were requested. + when the intensity is not present but the outputs were requested.
    80. EXAMPLES

      @@ -174,14 +174,14 @@

      REFERENCES

      Processing UAV and lidar point clouds in GRASS GIS. XXIII ISPRS Congress 2016 [ISPRS Archives, -ResearchGate] +ResearchGate]
    81. -ASPRS LAS format +ASPRS LAS format
    82. -LAS library +LAS library
    83. -LAS library C API documentation +LAS library C API documentation
    84. SEE ALSO

      diff --git a/raster3d/r3.mkdspf/r3.mkdspf.html b/raster3d/r3.mkdspf/r3.mkdspf.html index e73217df618..b8a4f584f60 100644 --- a/raster3d/r3.mkdspf/r3.mkdspf.html +++ b/raster3d/r3.mkdspf/r3.mkdspf.html @@ -3,10 +3,10 @@

      DESCRIPTION

      Creates a display file from an existing grid3 file according to specified threshold levels. The display file is a display list of polygons that represent isosurfaces of the data volume. If -specific levels are given, additional optional parameters -are ignored. Min or max may be used alone or together -to specify a sub-range of the data. The step -parameter is given precedence over tnum. +specific levels are given, additional optional parameters +are ignored. Min or max may be used alone or together +to specify a sub-range of the data. The step +parameter is given precedence over tnum.

      Flags:

      @@ -53,7 +53,7 @@

      NOTES

      EXAMPLES

      -With grid3 data (phdata) in the range 3-7, +With grid3 data (phdata) in the range 3-7, we only want to see isosurface values for the range 4-6. Any of these commands will produce the same results:
      diff --git a/raster3d/r3.out.ascii/r3.out.ascii.html b/raster3d/r3.out.ascii/r3.out.ascii.html
      index 8f5f0ed0f11..5cb54e7fef9 100644
      --- a/raster3d/r3.out.ascii/r3.out.ascii.html
      +++ b/raster3d/r3.out.ascii/r3.out.ascii.html
      @@ -72,8 +72,8 @@ 

      NOTES

      The internal storage scheme of 3D raster maps is visualized in the following picture:

      -
      -
      The volume coordinate system and tile layout of the imported voxel map
      +
      +
      diff --git a/raster3d/r3.out.bin/r3.out.bin.html b/raster3d/r3.out.bin/r3.out.bin.html index e2c2ee3621c..16af9096bc2 100644 --- a/raster3d/r3.out.bin/r3.out.bin.html +++ b/raster3d/r3.out.bin/r3.out.bin.html @@ -7,8 +7,8 @@

      DESCRIPTION

      NOTES

      -The write order of the rows (north->south to south->north) and -the write order of the depths (bottom->top to top->bottom) can be switched. +The write order of the rows (north->south to south->north) and +the write order of the depths (bottom->top to top->bottom) can be switched.

      The region parameters are printed to stderr when setting the verbose flag. Export of little and big endian byte order is supported. diff --git a/raster3d/r3.showdspf/r3.showdspf.html b/raster3d/r3.showdspf/r3.showdspf.html index 97f1322a882..cd2b91ecf65 100644 --- a/raster3d/r3.showdspf/r3.showdspf.html +++ b/raster3d/r3.showdspf/r3.showdspf.html @@ -42,7 +42,7 @@

      DESCRIPTION

      E(x,y,z)int# end display along (x,y,z)axis # S int# specular highlight control R resets display along axis to show all data - F grid3name colortablename load new color file + F grid3name colortablename load new color file C toggles the clear flag c clears the display (no thresholds) diff --git a/raster3d/r3.showdspf/r3.showdspf_opengl_mods.html b/raster3d/r3.showdspf/r3.showdspf_opengl_mods.html index 09f15f9b2ed..74fb1338ba8 100644 --- a/raster3d/r3.showdspf/r3.showdspf_opengl_mods.html +++ b/raster3d/r3.showdspf/r3.showdspf_opengl_mods.html @@ -2,7 +2,7 @@ - modifications made to <em>r3.showdspf</em> + modifications made to r3.showdspf diff --git a/raster3d/r3.stats/r3.stats.html b/raster3d/r3.stats/r3.stats.html index dd9978f67d2..1e68ab3af65 100644 --- a/raster3d/r3.stats/r3.stats.html +++ b/raster3d/r3.stats/r3.stats.html @@ -17,7 +17,7 @@

      NOTES

      equal value groups effect the memory consumption and the calculation time. The user can expect a huge time consumption to calculate the equal value groups (flag -e) if large region settings occur for maps which -have many equal value groups (> 100000). +have many equal value groups (> 100000).

      EXAMPLES

      @@ -61,7 +61,7 @@

      Generic example

      r3.stats input=volmap nsteps=10 #the result should look like this - num | minimum <= value | value < maximum | volume | perc | cell count + num | minimum <= value | value < maximum | volume | perc | cell count 1 1.000000000 1.900000000 60000000.000 10.00000 60 2 1.900000000 2.800000000 60000000.000 10.00000 60 3 2.800000000 3.700000000 60000000.000 10.00000 60 diff --git a/raster3d/raster3dintro.html b/raster3d/raster3dintro.html index 1e45022227c..c56e1cfcc33 100644 --- a/raster3d/raster3dintro.html +++ b/raster3d/raster3dintro.html @@ -21,7 +21,7 @@

      3D raster maps in general

      r3.retile after import or creation.
      -
      +
      The 3D raster map coordinate system and the internal tile layout of the RASTER3D library diff --git a/scripts/d.correlate/d.correlate.html b/scripts/d.correlate/d.correlate.html index bf6add70fca..f669cc24687 100644 --- a/scripts/d.correlate/d.correlate.html +++ b/scripts/d.correlate/d.correlate.html @@ -24,7 +24,7 @@

      EXAMPLE

      -Scatterplot of two LANDSAT TM7 channels
      +Scatterplot of two LANDSAT TM7 channels
      Scatterplot of two LANDSAT TM7 channels
      diff --git a/scripts/d.rast.edit/d.rast.edit.html b/scripts/d.rast.edit/d.rast.edit.html index 75233316e38..cde4f96947a 100644 --- a/scripts/d.rast.edit/d.rast.edit.html +++ b/scripts/d.rast.edit/d.rast.edit.html @@ -77,8 +77,8 @@

      EXAMPLE

      g.region raster=elev_lid792_1m -p # pan to area of interest and edit raster cells (I used "102" as value to modify cells -# Use: File > Save to save -# then: File > Exit +# Use: File > Save to save +# then: File > Exit d.rast.edit input=elev_lid792_1m output=elev_lid792_1m_modified # comparison of raster statistics diff --git a/scripts/db.out.ogr/db.out.ogr.html b/scripts/db.out.ogr/db.out.ogr.html index 5a2727dd566..cf07de25e96 100644 --- a/scripts/db.out.ogr/db.out.ogr.html +++ b/scripts/db.out.ogr/db.out.ogr.html @@ -30,7 +30,7 @@

      Export of GRASS GIS attribute table into a PostgreSQL table

       db.out.ogr input=precip_30ynormals \
      -	   output="PG:host=localhost dbname=meteo user=neteler" \
      +           output="PG:host=localhost dbname=meteo user=neteler" \
                  format=PostgreSQL
       # verify
       echo "SELECT * FROM precip_30ynormals" | psql meteo
      diff --git a/scripts/i.pansharpen/i.pansharpen.html b/scripts/i.pansharpen/i.pansharpen.html
      index 0db14283be9..6fd17725e86 100644
      --- a/scripts/i.pansharpen/i.pansharpen.html
      +++ b/scripts/i.pansharpen/i.pansharpen.html
      @@ -19,7 +19,7 @@ 

      DESCRIPTION

      panchromatic band is then substituted for the intensity channel (I), combined with the original hue (H) and saturation (S) channels, and transformed back to RGB color space at the higher resolution of the panchromatic band. The -algorithm for this can be represented as: RGB -> IHS -> [pan]HS -> RGB. +algorithm for this can be represented as: RGB -> IHS -> [pan]HS -> RGB.

      With a Brovey pan sharpening, each of the 3 lower resolution bands and panchromatic band are combined using the following algorithm to calculate @@ -172,7 +172,7 @@

      Pan sharpening comparison example

      Results:

      -
      The coordinate system and tile layout of a voxel map in GRASS
      +
       R, G, B composite of Landsat at 30m @@ -216,29 +216,29 @@

      REFERENCES

      Roller, N.E.G. and Cox, S., (1980). Comparison of Landsat MSS and merged MSS/RBV data for analysis of natural vegetation. Proc. of the 14th International Symposium on Remote Sensing - of Environment, San Jose, Costa Rica, 23-30 April, pp. 1001-1007 + of Environment, San Jose, Costa Rica, 23-30 April, pp. 1001-1007
    85. Amarsaikhan, D., Douglas, T. (2004). Data fusion and multisource image - classification. International Journal of Remote Sensing, 25(17), 3529-3539. + classification. International Journal of Remote Sensing, 25(17), 3529-3539.
    86. Behnia, P. (2005). Comparison between four methods for data fusion of ETM+ - multispectral and pan images. Geo-spatial Information Science, 8(2), 98-103. + multispectral and pan images. Geo-spatial Information Science, 8(2), 98-103.
    87. Du, Q., Younan, N. H., King, R., Shah, V. P. (2007). On the Performance Evaluation of Pan-Sharpening Techniques. Geoscience and Remote Sensing - Letters, IEEE, 4(4), 518-522. + Letters, IEEE, 4(4), 518-522.
    88. Karathanassi, V., Kolokousis, P., Ioannidou, S. (2007). A comparison study on fusion methods using evaluation indicators. International Journal - of Remote Sensing, 28(10), 2309-2341. + of Remote Sensing, 28(10), 2309-2341.
    89. Neteler, M, D. Grasso, I. Michelazzi, L. Miori, S. Merler, and C. Furlanello (2005). An integrated toolbox for image registration, fusion and classification. International Journal of Geoinformatics, 1(1):51-61 - (PDF) + (PDF)
    90. Pohl, C, and J.L van Genderen (1998). Multisensor image fusion in remote - sensing: concepts, methods and application. Int. J. of Rem. Sens., 19, 823-854. + sensing: concepts, methods and application. Int. J. of Rem. Sens., 19, 823-854.
    91. SEE ALSO

      diff --git a/scripts/i.spectral/i.spectral.html b/scripts/i.spectral/i.spectral.html index 128a0679ec9..01d747e3836 100644 --- a/scripts/i.spectral/i.spectral.html +++ b/scripts/i.spectral/i.spectral.html @@ -18,7 +18,7 @@

      EXAMPLE

      -
      +
      Spectral plot of 3 different land cover types: (1) water, (2) green vegetation, and (3) highway
      diff --git a/scripts/i.tasscap/i.tasscap.html b/scripts/i.tasscap/i.tasscap.html index d197df7faf0..2bb244e32d8 100644 --- a/scripts/i.tasscap/i.tasscap.html +++ b/scripts/i.tasscap/i.tasscap.html @@ -15,10 +15,10 @@

      DESCRIPTION

      The following tasseled cap components are generated:
        -
      • tasscap.1: corresponds to brightness, -
      • tasscap.2: corresponds to greenness, -
      • tasscap.3: corresponds to wetness, -
      • tasscap.4: corresponds to atmospheric haze (only selected sensors: Landsat 5,7,8). +
      • tasscap.1: corresponds to brightness,
      • +
      • tasscap.2: corresponds to greenness,
      • +
      • tasscap.3: corresponds to wetness,
      • +
      • tasscap.4: corresponds to atmospheric haze (only selected sensors: Landsat 5,7,8).

      EXAMPLE

      @@ -39,7 +39,7 @@

      EXAMPLE

      - +
       'Brightness' Tasseled Cap component 1 diff --git a/scripts/r.fillnulls/r.fillnulls.html b/scripts/r.fillnulls/r.fillnulls.html index 269b07631b2..29c5e42480e 100644 --- a/scripts/r.fillnulls/r.fillnulls.html +++ b/scripts/r.fillnulls/r.fillnulls.html @@ -71,7 +71,7 @@

      EXAMPLE

      d.histogram elev_srtm_30m # remove SRTM outliers, i.e. SRTM below 50m (esp. lakes), leading to no data areas -r.mapcalc "elev_srtm_30m_filt = if(elev_srtm_30m < 50.0, null(), elev_srtm_30m)" +r.mapcalc "elev_srtm_30m_filt = if(elev_srtm_30m < 50.0, null(), elev_srtm_30m)" d.histogram elev_srtm_30m_filt d.rast elev_srtm_30m_filt @@ -103,22 +103,22 @@

      REFERENCES

    92. Mitas, L., Mitasova, H., 1999, Spatial Interpolation. In: P.Longley, M.F. Goodchild, D.J. Maguire, D.W.Rhind (Eds.), Geographical Information Systems: Principles, Techniques, Management and Applications, Wiley, -pp.481-492 +pp.481-492
    93. Mitasova H., Mitas L.,  Brown W.M.,  D.P. Gerdes, I. Kosinovsky, Baker, T.1995, Modeling spatially and temporally distributed phenomena: New methods and tools for GRASS GIS. International Journal of GIS, 9 (4), special issue on Integrating GIS and Environmental modeling, -433-446. +433-446.
    94. Mitasova H. and Mitas L. 1993: Interpolation by Regularized Spline with Tension: I. -Theory and Implementation, Mathematical Geology 25, 641-655. +Theory and Implementation, Mathematical Geology 25, 641-655.
    95. Mitasova H. and Hofierka L. 1993: Interpolation by Regularized Spline with Tension: II. Application to Terrain Modeling and Surface Geometry Analysis, -Mathematical Geology 25, 657-667. +Mathematical Geology 25, 657-667.
    96. SEE ALSO

      diff --git a/scripts/r.mapcalc.simple/r.mapcalc.simple.html b/scripts/r.mapcalc.simple/r.mapcalc.simple.html index 84d2aeeb0a9..81463659120 100644 --- a/scripts/r.mapcalc.simple/r.mapcalc.simple.html +++ b/scripts/r.mapcalc.simple/r.mapcalc.simple.html @@ -27,10 +27,10 @@

      NOTES

      • The input raster map names and the output map raster name are separate from the expression (formula) which uses generic - variable names (A, B, C, ...). + variable names (A, B, C, ...).
      • The output raster name is not included in the expression.
      • The expression is expected to be a single short one liner - without the function eval(). + without the function eval().
      Differences to r.mapcalc.simple module in GRASS GIS 5 and 6: @@ -38,23 +38,23 @@

      NOTES

      • The primary purpose is not being a GUI front end to r.mapcalc, but a wrapper which allows easy building of - interfaces to r.mapcalc (including GUIs). + interfaces to r.mapcalc (including GUIs).
      • Whitespace (most notably spaces) are allowed - (in the same way as for r.mapcalc). + (in the same way as for r.mapcalc).
      • The variable names are case-insensitive to allow the original uppercase as well as lowercase as in option names - (unless the -c flag is used). + (unless the -c flag is used).
      • Option names for each map are just one letter (not amap, etc.).
      • Output option name is output as for other modules - (not outfile). + (not outfile).
      • Raster map names can be optionally quoted (the -q flag).
      • There is no expert mode - (which was just running r.mapcalc). + (which was just running r.mapcalc).
      • The expression option is first, so it is possible to omit its name in the command line - (just like with r.mapcalc). + (just like with r.mapcalc).
      • Overwriting of outputs is done in the same way as with other - modules, so there is no flag to not overwrite outputs. + modules, so there is no flag to not overwrite outputs.

      EXAMPLES

      diff --git a/scripts/v.dissolve/v.dissolve.html b/scripts/v.dissolve/v.dissolve.html index 54044a1bcf4..171362b7875 100644 --- a/scripts/v.dissolve/v.dissolve.html +++ b/scripts/v.dissolve/v.dissolve.html @@ -276,8 +276,8 @@

      Aggregating multiple attributes

       v.dissolve input=boundary_municp column=DOTURBAN_N output=municipalities_4 \
      -	aggregate_columns=ACRES,NEW_PERC_G aggregate_methods=sum,avg \
      -	result_columns=acres,new_perc_g
      +    aggregate_columns=ACRES,NEW_PERC_G aggregate_methods=sum,avg \
      +    result_columns=acres,new_perc_g
       

      @@ -336,9 +336,9 @@

      Aggregating using SQL syntax

      used with group_concat:
      -    v.dissolve input=boundary_municp column=DOTURBAN_N output=municipalities_7 \
      -        aggregate_columns="group_concat(MB_NAME, ';')" \
      -        result_columns="names TEXT"
      +v.dissolve input=boundary_municp column=DOTURBAN_N output=municipalities_7 \
      +    aggregate_columns="group_concat(MB_NAME, ';')" \
      +    result_columns="names TEXT"
       

      diff --git a/temporal/t.rast.accumulate/t.rast.accumulate.html b/temporal/t.rast.accumulate/t.rast.accumulate.html index e36d6a79c57..09eef592a81 100644 --- a/temporal/t.rast.accumulate/t.rast.accumulate.html +++ b/temporal/t.rast.accumulate/t.rast.accumulate.html @@ -153,7 +153,7 @@

      EXAMPLE

      if(isnull(leafhopper_cycle_1_1990_2000_yearly_clean), \ null() ,1),2),3)" -cat > color.table << EOF +cat > color.table << EOF 3 yellow 2 blue 1 red @@ -240,7 +240,7 @@

      EXAMPLE

      output=leafhopper_monthly_indicator_c3_1990_2000 \ expression="if(leafhopper_indi_min_month_c3_1990_2000 == 1, 1, if(leafhopper_indi_max_month_c3_1990_2000 == 3, 3, 2))" -cat > color.table << EOF +cat > color.table << EOF 3 red 2 yellow 1 green diff --git a/temporal/t.rast.aggregate.ds/t.rast.aggregate.ds.html b/temporal/t.rast.aggregate.ds/t.rast.aggregate.ds.html index d7efc4a5bf0..b76274c76d3 100644 --- a/temporal/t.rast.aggregate.ds/t.rast.aggregate.ds.html +++ b/temporal/t.rast.aggregate.ds/t.rast.aggregate.ds.html @@ -42,7 +42,7 @@

      Precipitation aggregation

      for map in ${MAPS} ; do r.mapcalc expression="${map} = 1" - echo ${map} >> map_list.txt + echo ${map} >> map_list.txt done t.create type=strds temporaltype=absolute \ @@ -262,7 +262,7 @@

      MODIS satellite sensor daily data aggregation to 8 days

      # to a YYYY-MM-DD date for start and end, and create a file with # mapnames, start date and end date -g.list type=raster pattern=8day_20??_* > names_list +g.list type=raster pattern=8day_20??_* > names_list for NAME in `cat names_list` ; do @@ -277,10 +277,10 @@

      MODIS satellite sensor daily data aggregation to 8 days

      if [ $DOY -le "353" ] ; then doy_end=$(( $DOY + 8 )) elif [ $DOY -eq "361" ] ; then - if [ $[$YEAR % 4] -eq 0 ] && [ $[$YEAR % 100] -ne 0 ] || [ $[$YEAR % 400] -eq 0 ] ; then + if [ $[$YEAR % 4] -eq 0 ] && [ $[$YEAR % 100] -ne 0 ] || [ $[$YEAR % 400] -eq 0 ] ; then doy_end=$(( $DOY + 6 )) else - doy_end=$(( $DOY + 5 )) + doy_end=$(( $DOY + 5 )) fi fi @@ -288,7 +288,7 @@

      MODIS satellite sensor daily data aggregation to 8 days

      DATE_END=`date -d "${YEAR}-01-01 +$(( ${doy_end} -1 ))days" +%Y-%m-%d` # text file with mapnames, start date and end date - echo "$NAME|$DATE_START|$DATE_END" >> list_map_start_end_time.txt + echo "$NAME|$DATE_START|$DATE_END" >> list_map_start_end_time.txt done diff --git a/temporal/t.rast.algebra/t.rast.algebra.html b/temporal/t.rast.algebra/t.rast.algebra.html index b7fda851224..27d9489b7dc 100644 --- a/temporal/t.rast.algebra/t.rast.algebra.html +++ b/temporal/t.rast.algebra/t.rast.algebra.html @@ -230,11 +230,11 @@

      Logical operators

      == equal != not equal - > greater than - >= greater than or equal - < less than - <= less than or equal - && and + > greater than + >= greater than or equal + < less than + <= less than or equal + && and || or @@ -291,26 +291,26 @@

      Comparison operator

      aggregation operator: {"comparison operator", "topological relations", aggregation operator, "temporal operator"}
      -This aggregation operator (| or &) defines the behaviour when a map is +This aggregation operator (| or &) defines the behaviour when a map is related to more than one map, e.g. for the topological relation 'contains'. -Should all (&) conditions for the related maps be true or is it sufficient +Should all (&) conditions for the related maps be true or is it sufficient to have any (|) condition that is true. The resulting boolean value is -then compared to the first condition by the comparison operator (|| or &&). +then compared to the first condition by the comparison operator (|| or &&). By default, the aggregation operator is related to the comparison operator:
      -comparison operator -> aggregation operator: +comparison operator -> aggregation operator:
      -|| -> | and && -> &
      +|| -> | and && -> &
       
      Examples:
       Condition 1 {||, equal, r} Condition 2
      -Condition 1 {&&, equal|during, l} Condition 2
      -Condition 1 {&&, equal|contains, |, l} Condition 2
      -Condition 1 {&&, equal|during, l} Condition 2 && Condition 3
      -Condition 1 {&&, equal|during, l} Condition 2 {&&,contains, |, r} Condition 3
      +Condition 1 {&&, equal|during, l} Condition 2
      +Condition 1 {&&, equal|contains, |, l} Condition 2
      +Condition 1 {&&, equal|during, l} Condition 2 && Condition 3
      +Condition 1 {&&, equal|during, l} Condition 2 {&&,contains, |, r} Condition 3
       

      Hash operator

      @@ -328,7 +328,7 @@

      Hash operator

      maps from B will be returned.
      -C = if({equal}, A {#, contains} B > 2, A {:, contains} B)
      +C = if({equal}, A {#, contains} B > 2, A {:, contains} B)
       
      This expression selects all maps from A that temporally contain at least 2 @@ -434,13 +434,13 @@

      Combinations of temporal, raster and select operators

      a1 of A:
      - C = A {+, contains} B --> c1 = a1 + b1 + b2 + b3
      + C = A {+, contains} B --> c1 = a1 + b1 + b2 + b3
       

      Important: the aggregation behaviour is not symmetric

      - C = B {+, during} A --> c1 = b1 + a1
      + C = B {+, during} A --> c1 = b1 + a1
                                c2 = b2 + a1
                                c3 = b3 + a1
       
      @@ -520,7 +520,7 @@

      Selection of raster cells

      the cells of A are in the range [100.0, 1600] of time intervals that have more than 30 days (Jan, Mar, May, Jul, Aug, Oct, Dec):
      -C = if(A > 100 && A < 1600 && td(A) > 30, B)
      +C = if(A > 100 && A < 1600 && td(A) > 30, B)
       

      Selection of raster cells with temporal topology relation

      @@ -528,7 +528,7 @@

      Selection of raster cells with temporal topology relation

      Same expression with explicit definition of the temporal topology relation and temporal operators:
      -C = if({equal}, A > 100 && A < 1600 {&&,equal} td(A) > 30, B)
      +C = if({equal}, A > 100 && A < 1600 {&&,equal} td(A) > 30, B)
       

      Conditional computation

      @@ -539,7 +539,7 @@

      Conditional computation

      equal time stamps. The number of days or fraction of days per interval is computed using the td() function that has as argument the STRDS "Prec":
      -C = if(Temp > 10.0, Prec / 3600.0 / 24.0 / td(Prec))
      +C = if(Temp > 10.0, Prec / 3600.0 / 24.0 / td(Prec))
       

      Conditional computation with temporal topology relation

      @@ -547,7 +547,7 @@

      Conditional computation with temporal topology relation

      Same expression with explicit definition of the temporal topology relation and temporal operators:
      -C = if({equal}, Temp > 10.0, Prec / 3600.0 / 24.0 {/,equal,l} td(Prec))
      +C = if({equal}, Temp > 10.0, Prec / 3600.0 / 24.0 {/,equal,l} td(Prec))
       

      Computation with time intervals

      @@ -555,7 +555,7 @@

      Computation with time intervals

      intervals of STRDS B if more than one map of A is contained in an interval of B, use A otherwise. The resulting time intervals are either from B or A:
      -C = if(B {#,contain} A > 1, (B {+,contain,l} A - B) / (B {#,contain} A), A)
      +C = if(B {#,contain} A > 1, (B {+,contain,l} A - B) / (B {#,contain} A), A)
       

      Computation with time intervals with temporal topology relation

      @@ -563,14 +563,14 @@

      Computation with time intervals with temporal topology relation

      Same expression with explicit definition of the temporal topology relation and temporal operators:
      -C = if({equal}, B {#,contain} A > 1, (B {+,contain,l} A {-,equal,l} B) {equal,=/} (B {#,contain} A), A)
      +C = if({equal}, B {#,contain} A > 1, (B {+,contain,l} A {-,equal,l} B) {equal,=/} (B {#,contain} A), A)
       

      Compute DOY for spatio-temporal conditions

      Compute the DOY for all maps from STRDS A where conditions are met at three -consecutive time intervals (e.g. temperature > 0): +consecutive time intervals (e.g. temperature > 0):
      -B = if(A > 0.0 && A[-1] > 0.0 && A[-2] > 0.0, start_doy(A, -1), 0)"
      +B = if(A > 0.0 && A[-1] > 0.0 && A[-2] > 0.0, start_doy(A, -1), 0)"
       
      diff --git a/temporal/t.rast.extract/t.rast.extract.html b/temporal/t.rast.extract/t.rast.extract.html index f8e366250e4..1a3b6d84e5e 100644 --- a/temporal/t.rast.extract/t.rast.extract.html +++ b/temporal/t.rast.extract/t.rast.extract.html @@ -27,16 +27,13 @@

      NOTES

      -t.rast.extract input=tempmean_monthly where="start_time > '2010-01-05'" \
      -               output=selected_tempmean_monthly basename=new_tmean_month \
      -               expression="if(tempmean_monthly < 0, null(), tempmean_monthly)"
      -
      +t.rast.extract input=tempmean_monthly where="start_time > '2010-01-05'" output=selected_tempmean_monthly basename=new_tmean_month expression="if(tempmean_monthly < 0, null(), tempmean_monthly)" +

      EXAMPLE

      -t.rast.extract input=tempmean_monthly output=tempmean_monthly_later_2012 \
      -               where="start_time >= '2012-01-01'"
      +t.rast.extract input=tempmean_monthly output=tempmean_monthly_later_2012 where="start_time >= '2012-01-01'"
       
       t.rast.list tempmean_monthly_later_2012
       name|mapset|start_time|end_time
      diff --git a/temporal/t.rast.mapcalc/t.rast.mapcalc.html b/temporal/t.rast.mapcalc/t.rast.mapcalc.html
      index c26f2e9c95a..afbe1d04422 100644
      --- a/temporal/t.rast.mapcalc/t.rast.mapcalc.html
      +++ b/temporal/t.rast.mapcalc/t.rast.mapcalc.html
      @@ -136,7 +136,7 @@ 

      EXAMPLES

       t.rast.mapcalc input=tempmean_monthly output=january_under_0 basename=january_under_0 \
      -    expression="if(start_month() == 1 && tempmean_monthly > 0, null(), tempmean_monthly)"
      +    expression="if(start_month() == 1 && tempmean_monthly > 0, null(), tempmean_monthly)"
       
       # print minimum and maximum only for January in the new strds
       t.rast.list january_under_0 columns=name,start_time,min,max | grep 01-01
      diff --git a/temporal/t.rast.series/t.rast.series.html b/temporal/t.rast.series/t.rast.series.html
      index 494605cb294..316f3635908 100644
      --- a/temporal/t.rast.series/t.rast.series.html
      +++ b/temporal/t.rast.series/t.rast.series.html
      @@ -49,7 +49,7 @@ 

      Estimate the average temperature for a subset of the time series

       t.rast.series input=tempmean_daily output=tempmean_season method=average \
      -  where="start_time >= '2012-06' and start_time <= '2012-08'"
      +  where="start_time >= '2012-06' and start_time <= '2012-08'"
       

      Climatology: single month in a multi-annual time series

      diff --git a/temporal/t.rast.to.rast3/t.rast.to.rast3.html b/temporal/t.rast.to.rast3/t.rast.to.rast3.html index 778e4869c68..3ece18d6ef2 100644 --- a/temporal/t.rast.to.rast3/t.rast.to.rast3.html +++ b/temporal/t.rast.to.rast3/t.rast.to.rast3.html @@ -54,7 +54,7 @@

      EXAMPLE

       # create the subset for 2012 data
       t.rast.extract input=tempmean_monthly output=tempmean_monthly_later_2012 \
      -               where="start_time >= '2012-01-01'"
      +               where="start_time >= '2012-01-01'"
       
       # set the right 3D region
       g.region -p3 res3=500
      diff --git a/temporal/t.rast.what/t.rast.what.html b/temporal/t.rast.what/t.rast.what.html
      index a6c112ebbb0..3bd5a6ebd8e 100644
      --- a/temporal/t.rast.what/t.rast.what.html
      +++ b/temporal/t.rast.what/t.rast.what.html
      @@ -109,7 +109,7 @@ 

      Example 2

      # using the where statement to select a subset of the STRDS # and stdout as output t.rast.what strds=A points=points \ - where="start_time >= '1990-03-01'" layout=timerow -n + where="start_time >= '1990-03-01'" layout=timerow -n x|y|1990-03-01 00:00:00;1990-04-01 00:00:00|1990-04-01 00:00:00;1990-05-01 00:00:00 115.004358627375|36.3593955782903|3|4 diff --git a/temporal/t.sample/t.sample.html b/temporal/t.sample/t.sample.html index 58cac201de9..14003800c15 100644 --- a/temporal/t.sample/t.sample.html +++ b/temporal/t.sample/t.sample.html @@ -57,7 +57,7 @@

      EXAMPLE

      n1=`g.tempfile pid=1 -d` n2=`g.tempfile pid=2 -d` -cat > "${n1}" << EOF +cat > "${n1}" << EOF a1 a2 a3 @@ -66,7 +66,7 @@

      EXAMPLE

      a6 EOF -cat > "${n2}" << EOF +cat > "${n2}" << EOF pnts1|2001-01-01|2001-03-01 pnts2|2001-05-01|2001-07-01 EOF diff --git a/temporal/t.select/t.select.html b/temporal/t.select/t.select.html index 0d64ce40a6e..04b74ff2b72 100644 --- a/temporal/t.select/t.select.html +++ b/temporal/t.select/t.select.html @@ -218,11 +218,11 @@

      Logical operators

      == equal != not equal - > greater than - >= greater than or equal - < less than - <= less than or equal - && and + > greater than + >= greater than or equal + < less than + <= less than or equal + && and || or
      @@ -272,23 +272,23 @@

      Comparison operator

      The structure is similar to the select operator with the extension of an aggregation operator: {"comparison operator", "topological relations", aggregation operator, "temporal operator"}
      -This aggregation operator (| or &) define the behaviour if a map is related the more +This aggregation operator (| or &) define the behaviour if a map is related the more than one map, e.g for the topological relations 'contains'. -Should all (&) conditions for the related maps be true or is it sufficient to +Should all (&) conditions for the related maps be true or is it sufficient to have any (|) condition that is true. The resulting boolean value is then compared -to the first condition by the comparison operator (|| or &&). +to the first condition by the comparison operator (|| or &&). As default the aggregation operator is related to the comparison operator:
      -Comparison operator -> aggregation operator: +Comparison operator -> aggregation operator:
      -|| -> | and && -> &
      +|| -> | and && -> &
       
      Examples:
       Condition 1 {||, equal, r} Condition 2
      -Condition 1 {&&, equal|during, l} Condition 2
      -Condition 1 {&&, equal|contains, |, l} Condition 2
      -Condition 1 {&&, equal|during, l} Condition 2 && Condition 3
      -Condition 1 {&&, equal|during, l} Condition 2 {&&,contains, |, r} Condition 3
      +Condition 1 {&&, equal|during, l} Condition 2
      +Condition 1 {&&, equal|contains, |, l} Condition 2
      +Condition 1 {&&, equal|during, l} Condition 2 && Condition 3
      +Condition 1 {&&, equal|during, l} Condition 2 {&&,contains, |, r} Condition 3
       

      Hash operator

      @@ -303,7 +303,7 @@

      Hash operator

      A list of integers (scalars) corresponding to the maps of A that contain maps from B will be returned.

      -C = if({equal}, A {#, contains} B > 2, A {:, contains} B)
      +C = if({equal}, A {#, contains} B > 2, A {:, contains} B)
       
      This expression selects all maps from A that temporally contains at least 2 maps from B and stores them in space time dataset C. The leading equal statement @@ -340,14 +340,14 @@

      EXAMPLES

      with space time dataset B and C and are earlier that Jan. 1. 2005 and store them in space time dataset D.
      -D = if(start_date(A) < "2005-01-01", A : B : C)
      +D = if(start_date(A) < "2005-01-01", A : B : C)
       
      Select all maps from space time dataset A which contains more than three maps of space time dataset B, else select maps from C with time stamps that are not equal to A and store them in space time dataset D.
      -D = if(A {#, contains} B > 3, A {:, contains} B, C)
      +D = if(A {#, contains} B > 3, A {:, contains} B, C)
       
      Select all maps from space time dataset B which are during the temporal diff --git a/temporal/t.vect.algebra/t.vect.algebra.html b/temporal/t.vect.algebra/t.vect.algebra.html index 48931efa302..3e47fc043e4 100644 --- a/temporal/t.vect.algebra/t.vect.algebra.html +++ b/temporal/t.vect.algebra/t.vect.algebra.html @@ -221,11 +221,11 @@

      Logical operators

      == equal != not equal - > greater than - >= greater than or equal - < less than - <= less than or equal - && and + > greater than + >= greater than or equal + < less than + <= less than or equal + && and || or
      @@ -280,27 +280,27 @@

      Comparison operator


      -This aggregation operator (| or &) define the behaviour if a map is related the more +This aggregation operator (| or &) define the behaviour if a map is related the more than one map, e.g for the topological relations 'contains'. -Should all (&) conditions for the related maps be true or is it sufficient to +Should all (&) conditions for the related maps be true or is it sufficient to have any (|) condition that is true. The resulting boolean value is then compared -to the first condition by the comparison operator (|| or &&). +to the first condition by the comparison operator (|| or &&). As default the aggregation operator is related to the comparison operator:
      Comparison operator -> aggregation operator:
      -|| -> | and && -> &
      +|| -> | and && -> &
       
      Examples:
       Condition 1 {||, equal, r} Condition 2
      -Condition 1 {&&, equal|during, l} Condition 2
      -Condition 1 {&&, equal|contains, |, l} Condition 2
      -Condition 1 {&&, equal|during, l} Condition 2 && Condition 3
      -Condition 1 {&&, equal|during, l} Condition 2 {&&,contains, |, r} Condition 3
      +Condition 1 {&&, equal|during, l} Condition 2
      +Condition 1 {&&, equal|contains, |, l} Condition 2
      +Condition 1 {&&, equal|during, l} Condition 2 && Condition 3
      +Condition 1 {&&, equal|during, l} Condition 2 {&&,contains, |, r} Condition 3
       

      Hash operator

      @@ -320,7 +320,7 @@

      Hash operator

      -C = if({equal}, A {#, contains} B > 2, A {:, contains} B)
      +C = if({equal}, A {#, contains} B > 2, A {:, contains} B)
       
      This expression selects all maps from A that temporally contains at least 2 @@ -365,7 +365,7 @@

      Spatial vector operators

        Boolean Name   Operator Meaning         Precedence   Correspondent function
       ----------------------------------------------------------------------------------
      - AND            &        Intersection          1      (v.overlay operator=and)
      + AND            &        Intersection          1      (v.overlay operator=and)
        OR             |        Union                 1      (v.overlay operator=or)
        DISJOINT OR    +        Disjoint union        1      (v.patch)
        XOR            ^        Symmetric difference  1      (v.overlay operator=xor)
      @@ -402,15 +402,15 @@ 

      Combinations of temporal, vector and select operators

      a1 of A:
      -C = A {&, contains} B --> c1 = a1 & b1 & b2 & b3
      +C = A {&, contains} B --> c1 = a1 & b1 & b2 & b3
       
      Keep attention that the aggregation behaviour is not symmetric:
      -C = B {&, during} A --> c1 = b1 & a1
      -                        c2 = b2 & a1
      -                        c3 = b3 & a1
      +C = B {&, during} A --> c1 = b1 & a1
      +                        c2 = b2 & a1
      +                        c3 = b3 & a1
       

      Examples:

      @@ -429,7 +429,7 @@

      Examples:

      vector dataset D with intersected time stamps.
      -D = buff_p(A, 1) {&,overlaps|overlapped|equal|during|contains,i} buff_p(B, 1)
      +D = buff_p(A, 1) {&,overlaps|overlapped|equal|during|contains,i} buff_p(B, 1)
       
      Select all maps from space time dataset B which are during the temporal diff --git a/temporal/t.vect.db.select/t.vect.db.select.html b/temporal/t.vect.db.select/t.vect.db.select.html index 939c0d49c41..17b12b861e7 100644 --- a/temporal/t.vect.db.select/t.vect.db.select.html +++ b/temporal/t.vect.db.select/t.vect.db.select.html @@ -26,7 +26,7 @@

      EXAMPLE

      before 1900-01-01.
      -t.vect.db.select input=shoreline column=DATE,SOURCE t_where="start_time < 1900"
      +t.vect.db.select input=shoreline column=DATE,SOURCE t_where="start_time < 1900"
       start_time|end_time|DATE|SOURCE
       1849|1873|01/01/1858|NOAA/USGS
       1849|1873|01/01/1857|NOAA/USGS
      diff --git a/temporal/t.vect.extract/t.vect.extract.html b/temporal/t.vect.extract/t.vect.extract.html
      index 6de3552d67d..c6b7716cf02 100644
      --- a/temporal/t.vect.extract/t.vect.extract.html
      +++ b/temporal/t.vect.extract/t.vect.extract.html
      @@ -10,7 +10,7 @@ 

      EXAMPLE

      with all the data later than 2000:
      -t.vect.extract input=shoreline where="start_time > 2000" \
      +t.vect.extract input=shoreline where="start_time > 2000" \
                      output=shoreline_later_2000 basename=new_shoreline
       
       t.info shoreline_later_2000@shoreline type=stvds
      @@ -61,7 +61,7 @@ 

      EXAMPLE

      | Command history: | # 2014-11-29 08:43:50 | t.vect.extract input="shoreline" - | where="start_time > 2000" output="shoreline_later_2000" + | where="start_time > 2000" output="shoreline_later_2000" | basename="new_shoreline" | # 2014-11-29 08:44:14 | t.support type="stvds" diff --git a/temporal/temporalintro.html b/temporal/temporalintro.html index e63dbf32c87..f19294b112a 100644 --- a/temporal/temporalintro.html +++ b/temporal/temporalintro.html @@ -6,13 +6,13 @@
      • Space time raster datasets (strds) are designed to manage raster map time series. Modules that process strds have the - naming prefix t.rast. + naming prefix t.rast.
      • Space time 3D raster datasets (str3ds) are designed to manage 3D raster map time series. Modules that process str3ds have - the naming prefix t.rast3d. + the naming prefix t.rast3d.
      • Space time vector datasets (stvds) are designed to manage vector map time series. Modules that process stvds have the - naming prefix t.vect. + naming prefix t.vect.
      These new data types can be managed, analyzed and processed with @@ -35,9 +35,9 @@

      Temporal data management in general

      map. This is critical if:
      • The user has no write access to the maps from other mapsets - he/she wants to register
      • + he/she wants to register
      • If registered maps are removed from other mapsets, the temporal - database will not be updated and will contain ghost maps
      • + database will not be updated and will contain ghost maps
      SQLite3 or PostgreSQL are supported as temporal database backends. diff --git a/vector/v.clean/v.clean.html b/vector/v.clean/v.clean.html index 6da10283703..f004731bbc8 100644 --- a/vector/v.clean/v.clean.html +++ b/vector/v.clean/v.clean.html @@ -184,10 +184,10 @@

      Remove small angles between lines at nodes

      run with several tools.

      - +
      -tool=rmsa +tool=rmsa

      diff --git a/vector/v.decimate/v.decimate.html b/vector/v.decimate/v.decimate.html index ceaae540ff1..e1bad03acbf 100644 --- a/vector/v.decimate/v.decimate.html +++ b/vector/v.decimate/v.decimate.html @@ -8,16 +8,16 @@

      DESCRIPTION

      Two main decimation techniques are:
      • count-based decimation (skip, preserve, offset - and limit options) -
      • grid-based decimation (-g flag) + and limit options)
      • +
      • grid-based decimation (-g flag)

      The grid-based decimation will remove points based on:

        -
      • similar z coordinates (-z flag and zdiff option) -
      • same categories (-c flag) -
      • count of points (-f flag and cell_limit option) +
      • similar z coordinates (-z flag and zdiff option)
      • +
      • same categories (-c flag)
      • +
      • count of points (-f flag and cell_limit option)

      @@ -49,8 +49,8 @@

      DESCRIPTION

      Besides decimation, point count can be reduced by applying different selections or filters, these are:
        -
      • selection by category (cats option) -
      • selection by z values (zrange option) +
      • selection by category (cats option)
      • +
      • selection by z values (zrange option)

      NOTES

      diff --git a/vector/v.edit/v.edit.html b/vector/v.edit/v.edit.html index 081deadf29c..3768e65ad4d 100644 --- a/vector/v.edit/v.edit.html +++ b/vector/v.edit/v.edit.html @@ -46,8 +46,8 @@

      Feature selection

      box, size defined by threshold)
    97. bbox - using bounding box
    98. polygon - using polygon (at least 3 coordinate pairs have to be set)
    99. -
    100. where - using where statement (attribute data) -
    101. query - special query (e.g. minimal vector line length) +
    102. where - using where statement (attribute data)
    103. +
    104. query - special query (e.g. minimal vector line length)
    105. Additional parameters for vector feature specification are: @@ -165,7 +165,7 @@

      Tool description

      and zbulk parameter. Also input vector map must be 3D.
    106. select - Print comma separated list of selected line - id's. No editing is done. + id's. No editing is done.
    107. EXAMPLES

      @@ -181,7 +181,7 @@

      Create new vector map

      Create new vector map and read data from file 'roads.txt':
      -v.out.ascii in=roads format=standard > roads.txt;
      +v.out.ascii in=roads format=standard > roads.txt;
       v.edit tool=create map=vectmap input=roads.txt
       
      diff --git a/vector/v.hull/v.hull.html b/vector/v.hull/v.hull.html index e77a028e905..68a85a8ab15 100644 --- a/vector/v.hull/v.hull.html +++ b/vector/v.hull/v.hull.html @@ -54,9 +54,9 @@

      REFERENCES

      • M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, - (2000). Computational geometry, chapter 1.1, 2-8. + (2000). Computational geometry, chapter 1.1, 2-8.
      • J. O'Rourke, (1998). Computational Geometry in C (Second - Edition), chapter 4. + Edition), chapter 4.

      SEE ALSO

      diff --git a/vector/v.in.db/v.in.db.html b/vector/v.in.db/v.in.db.html index a51fd936f93..00a81365acc 100644 --- a/vector/v.in.db/v.in.db.html +++ b/vector/v.in.db/v.in.db.html @@ -114,7 +114,7 @@

      Creating a point map from DBF table for selected records only

       v.in.db driver=dbf  database=/home/user/tables/ table=pointsfile x=x y=y z=z \
      -        key=idcol out=dtmpoints where="x NOT NULL and z > 100"
      +        key=idcol out=dtmpoints where="x NOT NULL and z > 100"
       

      Creating a map from SQLite table

      diff --git a/vector/v.in.ogr/v.in.ogr.html b/vector/v.in.ogr/v.in.ogr.html index 3a461969663..2ab3ca938a6 100644 --- a/vector/v.in.ogr/v.in.ogr.html +++ b/vector/v.in.ogr/v.in.ogr.html @@ -306,22 +306,22 @@

      OpenStreetMap (OSM)

      is recommended because file sizes are smaller. The OSM driver will categorize features into 5 layers :
        -
      • points: "node" features that have significant tags attached. -
      • lines: "way" features that are recognized as non-area. +
      • points: "node" features that have significant tags attached.
      • +
      • lines: "way" features that are recognized as non-area.
      • multilinestrings: "relation" features that form a -multilinestring(type = 'multilinestring' or type = 'route'). +multilinestring(type = 'multilinestring' or type = 'route').
      • multipolygons: "relation" features that form a multipolygon (type = 'multipolygon' or type = 'boundary'), and "way" features that are -recognized as area. +recognized as area.
      • other_relations: "relation" features that do -not belong to any of the above layers. +not belong to any of the above layers.
      It is recommended to import one layer at a time, and to select features with the where option, e.g. to import roads, use
      -v.in.ogr where="highway <> ''"
      +v.in.ogr where="highway >< ''"
       
      i.e. the OSM tag highway must be set. diff --git a/vector/v.in.pdal/v.in.pdal.html b/vector/v.in.pdal/v.in.pdal.html index 51fc849a184..1042f8415bf 100644 --- a/vector/v.in.pdal/v.in.pdal.html +++ b/vector/v.in.pdal/v.in.pdal.html @@ -5,10 +5,10 @@

      DESCRIPTION

      v.in.pdal supports the following filters:
        -
      • 2D region filter -
      • Z coordinates filter -
      • return filter -
      • class filter +
      • 2D region filter
      • +
      • Z coordinates filter
      • +
      • return filter
      • +
      • class filter

      EXAMPLES

      @@ -28,7 +28,7 @@

      REFERENCES

      Processing UAV and lidar point clouds in GRASS GIS. XXIII ISPRS Congress 2016 [ISPRS Archives, - ResearchGate] + ResearchGate]

      SEE ALSO

      @@ -36,8 +36,8 @@

      SEE ALSO

      r.in.pdal, g.region, -v.vect.stats -v.in.ogr, +v.vect.stats, +v.in.ogr

      AUTHOR

      diff --git a/vector/v.info/v.info.html b/vector/v.info/v.info.html index 05e7903ac2d..19549d2744b 100644 --- a/vector/v.info/v.info.html +++ b/vector/v.info/v.info.html @@ -77,7 +77,7 @@

      Attribute columns for given layer

       v.info -c map=geology
       
      -Displaying column types/names for database connection of layer <1>:
      +Displaying column types/names for database connection of layer <1>:
       INTEGER|cat
       DOUBLE PRECISION|onemap_pro
       DOUBLE PRECISION|PERIMETER
      diff --git a/vector/v.kcv/v.kcv.html b/vector/v.kcv/v.kcv.html
      index 3e5b1b8a663..b82ae2d5bb7 100644
      --- a/vector/v.kcv/v.kcv.html
      +++ b/vector/v.kcv/v.kcv.html
      @@ -47,8 +47,8 @@ 

      EXAMPLES

      SEE ALSO

      -v.random, -g.region +v.random, +g.region

      AUTHORS

      diff --git a/vector/v.kernel/v.kernel.html b/vector/v.kernel/v.kernel.html index 3a5a0162129..b3a7ac51527 100644 --- a/vector/v.kernel/v.kernel.html +++ b/vector/v.kernel/v.kernel.html @@ -38,7 +38,7 @@

      EXAMPLES

      -Density of schools
      +Density of schools
      School density
      @@ -54,7 +54,7 @@

      REFERENCES

      method for networks, its computational method and a GIS-based tool. International Journal of Geographical Information Science, Vol 23(1), pp. 7-32.
      -DOI: 10.1080/13658810802475491 +DOI: 10.1080/13658810802475491

      SEE ALSO

      diff --git a/vector/v.label/v.label.html b/vector/v.label/v.label.html index 1f05cf845ff..3b42c98bd40 100644 --- a/vector/v.label/v.label.html +++ b/vector/v.label/v.label.html @@ -56,15 +56,15 @@

      Caution: The following information may be incomplete, out of date, and wrong may be specified as:
      -	lower left	(lower left corner of the text)
      -	lower right	(lower right corner of the text)
      -	lower center	(bottom center of the text)
      +    lower left    (lower left corner of the text)
      +    lower right    (lower right corner of the text)
      +    lower center    (bottom center of the text)
       
      -	upper left	(upper left corner of the text)
      -	upper right	(upper right corner of the text)
      -	upper center	(top center of the text)
      +    upper left    (upper left corner of the text)
      +    upper right    (upper right corner of the text)
      +    upper center    (top center of the text)
       
      -	center	(center of the text)
      +    center    (center of the text)
       
       
      @@ -97,7 +97,7 @@

      Caution: The following information may be incomplete, out of date, and wrong Alternatively fontsize can set the font size in normal font points. -
      TEXT COLOR: +
      TEXT COLOR:
      This selects the text color. If unspecified, the label's text is drawn in black, by default. The @@ -111,7 +111,7 @@

      Caution: The following information may be incomplete, out of date, and wrong magenta orange purple red violet white yellow
    108. As red, green, blue component values. (0-255)
      -for example: 128:100:200 +for example: 128:100:200
    109. -
    110. Specify "none" to suppress the lettering. +
    111. Specify "none" to suppress the lettering.
    112. @@ -203,7 +203,7 @@

      EXAMPLE

       cd $MAPSET/paint/labels/
      -cat file1 file2 file3 file4 > file_all
      +cat file1 file2 file3 file4 > file_all
       

      SEE ALSO

      diff --git a/vector/v.lrs/lrs.html b/vector/v.lrs/lrs.html index 027f72d44ce..edc517788cd 100644 --- a/vector/v.lrs/lrs.html +++ b/vector/v.lrs/lrs.html @@ -70,8 +70,8 @@

      Double referenced system

      must be entered to the system and it is done by optional MP attributes:
        -
      • end_mp - end MP -
      • end_off - end offset +
      • end_mp - end MP
      • +
      • end_off - end offset
      In this case original MP on km 4 will have these attributes:
      @@ -100,7 +100,7 @@ 

      Double referenced system

      LRS table structure

      - +
      @@ -116,12 +116,12 @@

      LRS table structure

      Available commands

        -
      • v.lrs.create to create a linear referencing system, -
      • v.lrs.label to create stationing on the LRS, +
      • v.lrs.create to create a linear referencing system,
      • +
      • v.lrs.label to create stationing on the LRS,
      • v.lrs.segment to create points/segments on LRS, - and + and
      • v.lrs.where to find line id and real km+offset -for given points in vector map using linear referencing system. +for given points in vector map using linear referencing system.

      Input lines for v.lrs.segment and v.lrs.label

      @@ -157,12 +157,12 @@

      NOTES

      Explanations of selected options:
      • llayer: vector layer in line map (usually 1; see vectorintro - for "layer" concept) + for "layer" concept)
      • player: vector layer in point map (usually 1; see vectorintro - for "layer" concept) -
      • rsdriver: Driver name for LRS table - DBMI SQL driver (dbf, pg, mysql, sqlite, etc) -
      • rsdatabase: Database name for LRS table - DBMI SQL database name (e.g., "lrsdb") -
      • rstable: Name of the LRS table - DBMI SQL table name (e.g., "streamslrs") + for "layer" concept)
      • +
      • rsdriver: Driver name for LRS table - DBMI SQL driver (dbf, pg, mysql, sqlite, etc)
      • +
      • rsdatabase: Database name for LRS table - DBMI SQL database name (e.g., "lrsdb")
      • +
      • rstable: Name of the LRS table - DBMI SQL table name (e.g., "streamslrs")

      SEE ALSO

      diff --git a/vector/v.net.alloc/v.net.alloc.html b/vector/v.net.alloc/v.net.alloc.html index 2a1f0efd1cb..81dcd45a9d4 100644 --- a/vector/v.net.alloc/v.net.alloc.html +++ b/vector/v.net.alloc/v.net.alloc.html @@ -190,8 +190,8 @@

      EXAMPLES

      v.db.update map=streets_hospitals column=FT_COST value=-1 where="ONE_WAY = 'TF'" # add costs to newly created lines -v.db.update map=streets_hospitals column=TF_COST value=0 where="cat > 49746" -v.db.update map=streets_hospitals column=FT_COST value=0 where="cat > 49746" +v.db.update map=streets_hospitals column=TF_COST value=0 where="cat > 49746" +v.db.update map=streets_hospitals column=FT_COST value=0 where="cat > 49746" # from centers v.net.alloc in=streets_hospitals out=streets_hospitals_alloc_from center_cats=1-10000 arc_column=FT_COST arc_backward_column=TF_COST diff --git a/vector/v.net.bridge/v.net.bridge.html b/vector/v.net.bridge/v.net.bridge.html index accd2484a33..7f871ae8a1a 100644 --- a/vector/v.net.bridge/v.net.bridge.html +++ b/vector/v.net.bridge/v.net.bridge.html @@ -26,12 +26,6 @@

      NOTES

      An articulation point in graph theory is an articulation node in GRASS terminology. -

      EXAMPLES

      - -
      -	TBD
      -
      -

      SEE ALSO

      diff --git a/vector/v.net.iso/v.net.iso.html b/vector/v.net.iso/v.net.iso.html index 28c92571cbb..edc3450e173 100644 --- a/vector/v.net.iso/v.net.iso.html +++ b/vector/v.net.iso/v.net.iso.html @@ -89,7 +89,7 @@

      Subdivision of a network using distance:

      #1 0 - < 1000 #2 1000 - < 2000 #3 2000 - < 5000 -#4 >= 5000 +#4 >= 5000 To display the result, run for example: @@ -162,7 +162,7 @@

      Subdivision of a network using traveling time:

      v.db.update map=myroads_net_iso_time layer=1 column=trav_time value="0 - 1" where="cat = 1" v.db.update map=myroads_net_iso_time layer=1 column=trav_time value="1 - 2" where="cat = 2" v.db.update map=myroads_net_iso_time layer=1 column=trav_time value="2 - 5" where="cat = 3" -v.db.update map=myroads_net_iso_time layer=1 column=trav_time value="> 5" where="cat = 4" +v.db.update map=myroads_net_iso_time layer=1 column=trav_time value="> 5" where="cat = 4" # colors # cats=1: blue v.db.update map=myroads_net_iso_time layer=1 column=GRASSRGB value="000:000:255" where="cat = 1" diff --git a/vector/v.net.path/v.net.path.html b/vector/v.net.path/v.net.path.html index 9af5842495a..60b26f3a591 100644 --- a/vector/v.net.path/v.net.path.html +++ b/vector/v.net.path/v.net.path.html @@ -24,8 +24,8 @@

      DESCRIPTION

      attached attribute table.

      Nodes can be

        -
      • piped into the program from file or from stdin, or -
      • defined in the graphical user interface ("enter values interactively"). +
      • piped into the program from file or from stdin, or
      • +
      • defined in the graphical user interface ("enter values interactively").
      The syntax is as follows: @@ -61,7 +61,7 @@

      DESCRIPTION

    113. 0 - OK, path found
    114. 1 - node is not reachable
    115. 2 - point of given category does not exist
    116. - +
    117. cost - travelling costs (on the network, not to/from network)
    118. fdist - the distance from first point to the network
    119. tdist - the distance from the network to second point
    120. diff --git a/vector/v.out.ascii/v.out.ascii.html b/vector/v.out.ascii/v.out.ascii.html index d8b6440b1c7..964df04b084 100644 --- a/vector/v.out.ascii/v.out.ascii.html +++ b/vector/v.out.ascii/v.out.ascii.html @@ -90,7 +90,7 @@

      Point mode

      Print also selected attributes:
      -v.out.ascii input=geodetic_pts format=point where="cat > 5 and cat <= 8" columns=GEOD_NAME
      +v.out.ascii input=geodetic_pts format=point where="cat > 5 and cat <= 8" columns=GEOD_NAME
       
       573638.06289275|271623.25042595|6|27 WC 6
       574416.81289275|274116.65542595|7|27 WC 7
      @@ -100,7 +100,7 @@ 

      Point mode

      To print all attributes type columns=*:
      -v.out.ascii input=geodetic_pts format=point where="cat > 5 and cat <= 8" columns=*
      +v.out.ascii input=geodetic_pts format=point where="cat > 5 and cat <= 8" columns=*
       573638.06289275|271623.25042595|6|6|0.00000000|0.00000000|6|6|27 WC 6|573638.09200000|271623.24100000|0.00|0|1.00000000|1.00000000
       574416.81289275|274116.65542595|7|7|0.00000000|0.00000000|7|7|27 WC 7|574416.84100000|274116.64900000|0.00|0|1.00000000|1.00000000
       575301.31189275|275303.81342595|8|8|0.00000000|0.00000000|8|8|27 WC 8|575301.30600000|275303.82600000|0.00|0|1.00000000|1.00000000
      diff --git a/vector/v.out.postgis/v.out.postgis.html b/vector/v.out.postgis/v.out.postgis.html
      index a95a7d3f21e..2307ce6a394 100644
      --- a/vector/v.out.postgis/v.out.postgis.html
      +++ b/vector/v.out.postgis/v.out.postgis.html
      @@ -258,7 +258,7 @@ 

      TODO

      REQUIREMENTS

        -
      • PostGIS 2.x or later for topological export (flag -l) +
      • PostGIS 2.x or later for topological export (flag -l)

      REFERENCES

      diff --git a/vector/v.out.vtk/v.out.vtk.html b/vector/v.out.vtk/v.out.vtk.html index 47bae357546..97d8c82c0e7 100644 --- a/vector/v.out.vtk/v.out.vtk.html +++ b/vector/v.out.vtk/v.out.vtk.html @@ -9,12 +9,12 @@

      NOTES

      The following vector types can be exported together in one VTK ascii file:
        -
      • point
      • -
      • line
      • -
      • centroid
      • -
      • boundary
      • -
      • area
      • -
      • face
      • +
      • point
      • +
      • line
      • +
      • centroid
      • +
      • boundary
      • +
      • area
      • +
      • face
      Category data (cat) for the selected vector type and layer will be written as scalar diff --git a/vector/v.overlay/v.overlay.html b/vector/v.overlay/v.overlay.html index 0077f2915f5..1066e8a1145 100644 --- a/vector/v.overlay/v.overlay.html +++ b/vector/v.overlay/v.overlay.html @@ -164,13 +164,13 @@

      Overlay operations: AND, OR, NOT, XOR

      -GRASS v.overlay: input polygons (1 and 2) +GRASS v.overlay: input polygons (1 and 2)
      Figure: v.overlay operations: original input polygons

      -GRASS v.overlay results: AND, OR, NOT, XOR operations +GRASS v.overlay results: AND, OR, NOT, XOR operations
      Figure: v.overlay results of AND, OR, NOT, XOR operations
      @@ -219,9 +219,9 @@

      Polygons overlaid with polygons

      -GRASS v.overlay: polygon to polygon union (input 1) -GRASS v.overlay: polygon to polygon union (input 2) -GRASS v.overlay: polygon to polygon union (result) +GRASS v.overlay: polygon to polygon union (input 1) +GRASS v.overlay: polygon to polygon union (input 2) +GRASS v.overlay: polygon to polygon union (result)
      Figure: v.overlay: Polygon union (right) of urban area (left) and Census 2000 (middle) areas (North Carolina dataset)
      @@ -247,7 +247,7 @@

      Lines overlaid with polygons

      GRASS v.overlay: Line to polygon clipping
      -
      AttributeTypeDescription
      rsid integer reference segment ID, unique in the table
      lcat integer category of the line in the LRS map
      +
      diff --git a/vector/v.proj/v.proj.html b/vector/v.proj/v.proj.html index 62d32bbd958..9910b7258b4 100644 --- a/vector/v.proj/v.proj.html +++ b/vector/v.proj/v.proj.html @@ -66,9 +66,9 @@

      REFERENCES

    121. Evenden, G.I. (1990) Cartographic projection procedures for the UNIX environment - a user's manual. USGS Open-File Report 90-284 (OF90-284.pdf) - See also there: Interim Report and 2nd Interim Report on Release 4, Evenden 1994). + See also there: Interim Report and 2nd Interim Report on Release 4, Evenden 1994).
    122. Richards, John A. (1993), Remote Sensing Digital Image Analysis, - Springer-Verlag, Berlin, 2nd edition. + Springer-Verlag, Berlin, 2nd edition.
    123. PROJ: Projection/datum support library. @@ -76,12 +76,12 @@

      REFERENCES

      Further reading

      SEE ALSO

      diff --git a/vector/v.random/v.random.html b/vector/v.random/v.random.html index f663a924cfe..5a9ce903d40 100644 --- a/vector/v.random/v.random.html +++ b/vector/v.random/v.random.html @@ -29,13 +29,13 @@

      Restriction to vector areas

      Attributes attached to restrict vector map are also transferred -if the layer parameter is defined > 0, +if the layer parameter is defined > 0, see example below.

      NOTES

      -Importantly, attributes will only be transferred if layer > 0 +Importantly, attributes will only be transferred if layer > 0 (e.g., layer=1).

      EXAMPLES

      @@ -110,7 +110,7 @@

      Generating random points in 3D

      -
      +
      Random points with different X, Y, and Z coordinates
      @@ -153,7 +153,7 @@

      Generating random adjacent areas

      -
      +
      Random adjacent areas from random points (here: used as centroids)
      @@ -227,7 +227,7 @@

      Stratified random sampling: Random sampling from vector map by attribute

      -
      +
      Random points only sampled in forested areas (stratified random sampling)
      @@ -250,7 +250,7 @@

      Stratified random sampling: Random sampling from vector map with spatial con -->

      -
      +
      Two random points sampled in each individual water body (stratified random sampling)
      diff --git a/vector/v.reclass/v.reclass.html b/vector/v.reclass/v.reclass.html index 4b206db4065..4fc3e1b81cd 100644 --- a/vector/v.reclass/v.reclass.html +++ b/vector/v.reclass/v.reclass.html @@ -10,9 +10,9 @@

      DESCRIPTION

      keyword value (separated by space) or comment beginning with '#' (hash). -Definition of new category begins with keyword cat followed +Definition of new category begins with keyword cat followed by the new category value. -Keyword where specifies SQL where condition. +Keyword where specifies SQL where condition.

      NOTES

      diff --git a/vector/v.rectify/v.rectify.html b/vector/v.rectify/v.rectify.html index 5f6ac718fd7..e2cd9d936bf 100644 --- a/vector/v.rectify/v.rectify.html +++ b/vector/v.rectify/v.rectify.html @@ -56,16 +56,16 @@

      Coordinate transformation and RMSE

      2D linear affine transformation (1st order transformation)

      -
      x' = a1 + b1 * x + c1 * y -
      y' = a2 + b2 * x + c2 * y +
      x' = a1 + b1 * x + c1 * y +
      y' = a2 + b2 * x + c2 * y

      3D linear affine transformation (1st order transformation)

      -
      x' = a1 + b1 * x + c1 * y + d1 * z -
      y' = a2 + b2 * x + c2 * y + d2 * z -
      z' = a3 + b3 * x + c3 * y + d3 * z +
      x' = a1 + b1 * x + c1 * y + d1 * z +
      y' = a2 + b2 * x + c2 * y + d2 * z +
      z' = a3 + b3 * x + c3 * y + d3 * z
      The a,b,c,d coefficients are determined by least squares regression @@ -111,7 +111,7 @@

      SEE ALSO

      m.transform, r.proj, v.proj, -v.transform, +v.transform

      diff --git a/vector/v.support/v.support.html b/vector/v.support/v.support.html index 706a04a12a7..1c81680e1ef 100644 --- a/vector/v.support/v.support.html +++ b/vector/v.support/v.support.html @@ -16,8 +16,8 @@

      EXAMPLE

      SEE ALSO

      - v.build, - v.info +v.build, +v.info

      AUTHOR

      diff --git a/vector/v.to.rast/v.to.rast.html b/vector/v.to.rast/v.to.rast.html index c5c4e7a54d2..4ebe8bf4922 100644 --- a/vector/v.to.rast/v.to.rast.html +++ b/vector/v.to.rast/v.to.rast.html @@ -27,15 +27,15 @@

      NOTES

      use options are:

      • -attr - read values from attribute table (default) +attr - read values from attribute table (default)
      • -cat - read values from category +cat - read values from category
      • -value - use value specified by value option +value - use value specified by value option
      • -z - use z coordinate (points or contours only) +z - use z coordinate (points or contours only)
      • -dir - line direction in degrees counterclockwise from east (lines only) +dir - line direction in degrees counterclockwise from east (lines only)

      The column parameter uses an existing column from the vector map database table as the category value in the output raster map. Existing table @@ -49,13 +49,13 @@

      NOTES

      Labeled areas and/or centroids will produce filled raster coverages with edges that straddle the original area boundary as long as the boundary is NOT labeled. -
      (Use v.category option=del type=boundary to remove.) +
      (Use v.category option=del type=boundary to remove.)
    124. Labeled lines and boundaries will produce lines of raster cells which touch the -original vector line. This tends to be more aggressive than area-only conversions. +original vector line. This tends to be more aggressive than area-only conversions.
    125. Points and orphaned centroids will be converted into single cells on the -resultant raster map. +resultant raster map.
    126. Line directions are given in degrees counterclockwise from east.

      Raster category labels are supported for all of use= except use=z. @@ -106,7 +106,7 @@

      Calculate slope along path

      -Slope along path
      +Slope along path
      Slope in degrees along bus route
      @@ -153,7 +153,7 @@

      Convert vector points to raster with raster cell binning

      -Number of schools per raster cell
      +Number of schools per raster cell
      Number of schools per raster cell
      diff --git a/vector/v.univar/v.univar.html b/vector/v.univar/v.univar.html index ee9c6f77582..3d886864421 100644 --- a/vector/v.univar/v.univar.html +++ b/vector/v.univar/v.univar.html @@ -27,8 +27,8 @@

      NOTES

    127. type=point: point distances are considered;
    128. type=line: line to line distances are considered;
    129. type=area: not supported, use type=centroid instead (and see - v.distance for calculating distances - between areas)
    130. + v.distance for calculating distances + between areas)

      EXAMPLES

      diff --git a/vector/v.vol.rst/v.vol.rst.html b/vector/v.vol.rst/v.vol.rst.html index 571a162162c..34699390602 100644 --- a/vector/v.vol.rst/v.vol.rst.html +++ b/vector/v.vol.rst/v.vol.rst.html @@ -68,7 +68,7 @@

      SQL support

       # preparation as in above example
      -v.vol.rst elevrand_3d wcol=soilrange elevation=soilrange zscale=100 where="soilrange > 3"
      +v.vol.rst elevrand_3d wcol=soilrange elevation=soilrange zscale=100 where="soilrange > 3"
       

      Cross validation procedure

      diff --git a/vector/v.voronoi/v.voronoi.html b/vector/v.voronoi/v.voronoi.html index e719c2c0038..c058a0587fd 100644 --- a/vector/v.voronoi/v.voronoi.html +++ b/vector/v.voronoi/v.voronoi.html @@ -10,7 +10,7 @@

      DESCRIPTION

      The -s flag can be used to extract the center line of areas or -skeletons of areas with thin >= 0. Smaller values for the +skeletons of areas with thin >= 0. Smaller values for the thin option will preserve more detail, while negative values will extract only the center line. diff --git a/vector/vectorintro.html b/vector/vectorintro.html index f19b9507f0d..90057d95e77 100644 --- a/vector/vectorintro.html +++ b/vector/vectorintro.html @@ -322,7 +322,7 @@

      Vector network analysis

    131. Network preparation and maintenance: v.net
    132. Shortest path: d.path and v.net.path
    133. -
    134. Shortest path between all pairs of nodes v.net.allpairs +
    135. Shortest path between all pairs of nodes v.net.allpairs
    136. Allocation of sources (create subnetworks, e.g. police station zones): v.net.alloc
    137. Iso-distances (from centers): v.net.iso
    138. Figure: v.overlay: Line to polygon clipping