Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 20 additions & 7 deletions niworkflows/interfaces/images.py
Original file line number Diff line number Diff line change
Expand Up @@ -365,7 +365,7 @@ def _run_interface(self, runtime):

CONFORMATION_TEMPLATE = """\t\t<h3 class="elem-title">Anatomical Conformation</h3>
\t\t<ul class="elem-desc">
\t\t\t<li>Input T1w images: {n_t1w}</li>
\t\t\t<li>Input {anat} images: {n_anat}</li>
\t\t\t<li>Output orientation: RAS</li>
\t\t\t<li>Output dimensions: {dims}</li>
\t\t\t<li>Output voxel size: {zooms}</li>
Expand All @@ -378,8 +378,15 @@ def _run_interface(self, runtime):


class _TemplateDimensionsInputSpec(BaseInterfaceInputSpec):
anat_type = traits.Enum("T1w", "T2w", usedefault=True, desc="Anatomical image type")
anat_list = InputMultiObject(
File(exists=True), xor=["t1w_list"], desc="input anatomical images"
)
t1w_list = InputMultiObject(
File(exists=True), mandatory=True, desc="input T1w images"
File(exists=True),
xor=["anat_list"],
deprecated="1.14.0",
new_name="anat_list",
)
max_scale = traits.Float(
3.0, usedefault=True, desc="Maximum scaling factor in images to accept"
Expand All @@ -388,6 +395,7 @@ class _TemplateDimensionsInputSpec(BaseInterfaceInputSpec):

class _TemplateDimensionsOutputSpec(TraitedSpec):
t1w_valid_list = OutputMultiObject(exists=True, desc="valid T1w images")
anat_valid_list = OutputMultiObject(exists=True, desc="valid anatomical images")
target_zooms = traits.Tuple(
traits.Float, traits.Float, traits.Float, desc="Target zoom information"
)
Expand All @@ -399,8 +407,8 @@ class _TemplateDimensionsOutputSpec(TraitedSpec):

class TemplateDimensions(SimpleInterface):
"""
Finds template target dimensions for a series of T1w images, filtering low-resolution images,
if necessary.
Finds template target dimensions for a series of anatomical images, filtering low-resolution
images, if necessary.

Along each axis, the minimum voxel size (zoom) and the maximum number of voxels (shape) are
found across images.
Expand All @@ -426,7 +434,8 @@ def _generate_segment(self, discards, dims, zooms):
)
zoom_fmt = "{:.02g}mm x {:.02g}mm x {:.02g}mm".format(*zooms)
return CONFORMATION_TEMPLATE.format(
n_t1w=len(self.inputs.t1w_list),
anat=self.inputs.anat_type,
n_anat=len(self.inputs.anat_list),
dims="x".join(map(str, dims)),
zooms=zoom_fmt,
n_discards=len(discards),
Expand All @@ -435,7 +444,10 @@ def _generate_segment(self, discards, dims, zooms):

def _run_interface(self, runtime):
# Load images, orient as RAS, collect shape and zoom data
in_names = np.array(self.inputs.t1w_list)
if not self.inputs.anat_list: # Deprecate: 1.14.0
self.inputs.anat_list = self.inputs.t1w_list

in_names = np.array(self.inputs.anat_list)
orig_imgs = np.vectorize(nb.load)(in_names)
reoriented = np.vectorize(nb.as_closest_canonical)(orig_imgs)
all_zooms = np.array([img.header.get_zooms()[:3] for img in reoriented])
Expand All @@ -452,7 +464,8 @@ def _run_interface(self, runtime):

# Ignore dropped images
valid_fnames = np.atleast_1d(in_names[valid]).tolist()
self._results["t1w_valid_list"] = valid_fnames
self._results["anat_valid_list"] = valid_fnames
self._results["t1w_valid_list"] = valid_fnames # Deprecate: 1.14.0

# Set target shape information
target_zooms = all_zooms[valid].min(axis=0)
Expand Down
36 changes: 36 additions & 0 deletions niworkflows/interfaces/tests/test_images.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
#
"""Test images module."""
import time
from pathlib import Path
import numpy as np
import nibabel as nb
from nipype.pipeline import engine as pe
Expand Down Expand Up @@ -179,3 +180,38 @@ def test_RobustAverage(tmpdir, shape):

assert out_file.shape == (10, 10, 10)
assert np.allclose(out_file.get_fdata(), 1.0)


def test_TemplateDimensions(tmp_path):
"""Exercise the various types of inputs."""
shapes = [
(10, 10, 10),
(11, 11, 11),
]
zooms = [
(1, 1, 1),
(0.9, 0.9, 0.9),
]

for i, (shape, zoom) in enumerate(zip(shapes, zooms)):
img = nb.Nifti1Image(np.ones(shape, dtype="float32"), np.eye(4))
img.header.set_zooms(zoom)
img.to_filename(tmp_path / f"test{i}.nii")

anat_list = [str(tmp_path / f"test{i}.nii") for i in range(2)]
td = im.TemplateDimensions(anat_list=anat_list)
res = td.run()

report = Path(res.outputs.out_report).read_text()
assert "Input T1w images: 2" in report
assert "Output dimensions: 11x11x11" in report
assert "Output voxel size: 0.9mm x 0.9mm x 0.9mm" in report
assert "Discarded images: 0" in report

assert res.outputs.t1w_valid_list == anat_list
assert res.outputs.anat_valid_list == anat_list
assert np.allclose(res.outputs.target_zooms, (0.9, 0.9, 0.9))
assert res.outputs.target_shape == (11, 11, 11)

with pytest.warns(UserWarning, match="t1w_list .* is deprecated"):
im.TemplateDimensions(t1w_list=anat_list)