diff --git a/crates/abd-clam/src/cakes/search/rnn_clustered.rs b/crates/abd-clam/src/cakes/search/rnn_clustered.rs index ca568de9..7d2a4a88 100644 --- a/crates/abd-clam/src/cakes/search/rnn_clustered.rs +++ b/crates/abd-clam/src/cakes/search/rnn_clustered.rs @@ -93,7 +93,7 @@ where .partition(|&(c, d)| (c.radius() + d) < radius); confirmed.append(&mut terminal); - (terminal, non_terminal) = non_terminal.into_par_iter().partition(|&(c, _)| c.is_leaf()); + (terminal, non_terminal) = non_terminal.into_iter().partition(|&(c, _)| c.is_leaf()); straddlers.append(&mut terminal); candidates = non_terminal.into_iter().flat_map(|(c, _)| c.child_clusters()).collect(); diff --git a/crates/results/cakes/src/main.rs b/crates/results/cakes/src/main.rs index e45d47fc..f708c4c5 100644 --- a/crates/results/cakes/src/main.rs +++ b/crates/results/cakes/src/main.rs @@ -304,14 +304,14 @@ fn main() -> Result<(), String> { // Note: Starting search benchmarks here let (_, queries): (Vec<_>, Vec<_>) = queries.into_iter().unzip(); - let (data, codec_data) = { - let metric = StringDistance::Levenshtein.metric(); - let mut data = data; - data.set_metric(metric.clone()); - let mut codec_data = codec_data; - codec_data.set_metric(metric); - (data, codec_data) - }; + // let (data, codec_data) = { + // let metric = StringDistance::Levenshtein.metric(); + // let mut data = data; + // data.set_metric(metric.clone()); + // let mut codec_data = codec_data; + // codec_data.set_metric(metric); + // (data, codec_data) + // }; let algorithms = { let mut algorithms = Vec::new(); @@ -321,7 +321,7 @@ fn main() -> Result<(), String> { algorithms.push(Algorithm::RnnClustered(radius)); } - for k in [1, 10] { + for k in [1, 10, 100] { // algorithms.push(Algorithm::KnnLinear(k)); algorithms.push(Algorithm::KnnRepeatedRnn(k, 2)); algorithms.push(Algorithm::KnnBreadthFirst(k));