
Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 63
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9 DCL58-CPP. Do not modify the standard namespaces

Namespaces introduce new declarative regions for declarations, reducing the likelihood of
conflicting identifiers with other declarative regions. One feature of namespaces is that they can
be further extended, even within separate translation units. For instance, the following
declarations are well-formed.

namespace MyNamespace {
int i;
}

namespace MyNamespace {
int i;
}

void f() {
 MyNamespace::i = MyNamespace::i = 12;
}

The standard library introduces the namespace std for standards-provided declarations such as
std::string, std::vector, and std::for_each. However, it is undefined behavior to
introduce new declarations in namespace std except under special circumstances. The C++
Standard, [namespace.std], paragraphs 1 and 2 [ISO/IEC 14882-2014], states the following:

1 The behavior of a C++ program is undefined if it adds declarations or definitions to
namespace std or to a namespace within namespace std unless otherwise
specified. A program may add a template specialization for any standard library
template to namespace std only if the declaration depends on a user-defined type
and the specialization meets the standard library requirements for the original
template and is not explicitly prohibited.

2 The behavior of a C++ program is undefined if it declares

• an explicit specialization of any member function of a standard library class
template, or

• an explicit specialization of any member function template of a standard library class
or class template, or

• an explicit or partial specialization of any member class template of a standard
library class or class template.

In addition to restricting extensions to the namespace std, the C++ Standard, [namespace.posix],
paragraph 1, further states the following:

The behavior of a C++ program is undefined if it adds declarations or definitions to
namespace posix or to a namespace within namespace posix unless otherwise
specified. The namespace posix is reserved for use by ISO/IEC 9945 and other POSIX
standards.

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 64
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Do not add declarations or definitions to the standard namespaces std or posix, or to a
namespace contained therein, except for a template specialization that depends on a user-defined
type that meets the standard library requirements for the original template.

The Library Working Group, responsible for the wording of the Standard Library section of the
C++ Standard, has an unresolved issue on the definition of user-defined type. Although the
Library Working Group has no official stance on the definition [INCITS 2014], we define it to be
any class, struct, union, or enum that is not defined within namespace std or a
namespace contained within namespace std. Effectively, it is a user-provided type instead of a
standard library–provided type.

2.9.1 Noncompliant Code Example

In this noncompliant code example, the declaration of x is added to the namespace std, resulting
in undefined behavior.

namespace std {
int x;
}

2.9.2 Compliant Solution

This compliant solution assumes the intention of the programmer was to place the declaration of x
into a namespace to prevent collisions with other global identifiers. Instead of placing the
declaration into the namespace std, the declaration is placed into a namespace without a reserved
name.

namespace nonstd {
int x;
}

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 65
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.3 Noncompliant Code Example

In this noncompliant code example, a template specialization of std::plus is added to the
namespace std in an attempt to allow std::plus to concatenate a std::string and
MyString object. However, because the template specialization is of a standard library–
provided type (std::string), this code results in undefined behavior.

#include <functional>
#include <iostream>
#include <string>

class MyString {
 std::string data;

public:
 MyString(const std::string &data) : data(data) {}

 const std::string &get_data() const { return data; }
};

namespace std {
template <>
struct plus<string> : binary_function<string, MyString, string> {
 string operator()(const string &lhs, const MyString &rhs) const {
 return lhs + rhs.get_data();
 }
};
}

void f() {
 std::string s1("My String");
 MyString s2(" + Your String");
 std::plus<std::string> p;

 std::cout << p(s1, s2) << std::endl;
}

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 66
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.4 Compliant Solution

The interface for std::plus requires that both arguments to the function call operator and the
return type are of the same type. Because the attempted specialization in the noncompliant code
example results in undefined behavior, this compliant solution defines a new
std::binary_function derivative that can add a std::string to a MyString object
without requiring modification of the namespace std.

#include <functional>
#include <iostream>
#include <string>

class MyString {
 std::string data;

public:
 MyString(const std::string &data) : data(data) {}

 const std::string &get_data() const { return data; }
};

struct my_plus
 : std::binary_function<std::string, MyString, std::string> {
 std::string operator()(
 const std::string &lhs, const MyString &rhs) const {
 return lhs + rhs.get_data();
 }
};

void f() {
 std::string s1("My String");
 MyString s2(" + Your String");
 my_plus p;

 std::cout << p(s1, s2) << std::endl;
}

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 67
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.5 Compliant Solution

In this compliant solution, a specialization of std::plus is added to the std namespace, but
the specialization depends on a user-defined type and meets the Standard Template Library
requirements for the original template, so it complies with this rule. However, because
MyString can be constructed from std::string, this compliant solution involves invoking a
converting constructor whereas the previous compliant solution does not.

#include <functional>
#include <iostream>
#include <string>

class MyString {
 std::string data;

public:
 MyString(const std::string &data) : data(data) {}

 const std::string &get_data() const { return data; }
};

namespace std {
template <>
struct plus<MyString> {
 MyString operator()(const MyString &lhs, const MyString &rhs)
const {
 return lhs.get_data() + rhs.get_data();
 }
};
}

void f() {
 std::string s1("My String");
 MyString s2(" + Your String");
 std::plus<MyString> p;

 std::cout << p(s1, s2).get_data() << std::endl;
}

2.9.6 Risk Assessment

Altering the standard namespace can cause undefined behavior in the C++ standard library.

Rule Severity Likelihood Remediation Cost Priority Level

DCL58-CPP High Unlikely Medium P6 L2

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 68
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.7 Related Guidelines

SEI CERT C++ Coding Standard DCL51-CPP. Do not declare or define a reserved
identifier

2.9.8 Bibliography

[INCITS 2014] Issue 2139, “What Is a User-Defined Type?”

[ISO/IEC 14882-2014] Subclause 17.6.4.2.1, “Namespace std”
Subclause 17.6.4.2.2, “Namespace posix”

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 69
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.10 DCL59-CPP. Do not define an unnamed namespace in a header file

Unnamed namespaces are used to define a namespace that is unique to the translation unit, where
the names contained within have internal linkage by default. The C++ Standard,
[namespace.unnamed], paragraph 1 [ISO/IEC 14882-2014], states the following:

An unnamed-namespace-definition behaves as if it were replaced by:

 inline namespace unique { /* empty body */ }
 using namespace unique ;
 namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition,
all occurrences of unique in a translation unit are replaced by the same identifier, and
this identifier differs from all other identifiers in the entire program.

Production-quality C++ code frequently uses header files as a means to share code between
translation units. A header file is any file that is inserted into a translation unit through an
#include directive. Do not define an unnamed namespace in a header file. When an unnamed
namespace is defined in a header file, it can lead to surprising results. Due to default internal
linkage, each translation unit will define its own unique instance of members of the unnamed
namespace that are ODR-used within that translation unit. This can cause unexpected results,
bloat the resulting executable, or inadvertently trigger undefined behavior due to one-definition
rule (ODR) violations.

