diff --git a/deps/openssl/openssl/crypto/dsa/dsa_ossl.c b/deps/openssl/openssl/crypto/dsa/dsa_ossl.c index 4aa49f554af3b8..3b657d5d3d13f4 100644 --- a/deps/openssl/openssl/crypto/dsa/dsa_ossl.c +++ b/deps/openssl/openssl/crypto/dsa/dsa_ossl.c @@ -25,6 +25,8 @@ static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa); static int dsa_init(DSA *dsa); static int dsa_finish(DSA *dsa); +static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q, + BN_CTX *ctx); static DSA_METHOD openssl_dsa_meth = { "OpenSSL DSA method", @@ -261,7 +263,7 @@ static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, goto err; /* Compute part of 's = inv(k) (m + xr) mod q' */ - if ((kinv = BN_mod_inverse(NULL, k, dsa->q, ctx)) == NULL) + if ((kinv = dsa_mod_inverse_fermat(k, dsa->q, ctx)) == NULL) goto err; BN_clear_free(*kinvp); @@ -395,3 +397,31 @@ static int dsa_finish(DSA *dsa) BN_MONT_CTX_free(dsa->method_mont_p); return (1); } + +/* + * Compute the inverse of k modulo q. + * Since q is prime, Fermat's Little Theorem applies, which reduces this to + * mod-exp operation. Both the exponent and modulus are public information + * so a mod-exp that doesn't leak the base is sufficient. A newly allocated + * BIGNUM is returned which the caller must free. + */ +static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q, + BN_CTX *ctx) +{ + BIGNUM *res = NULL; + BIGNUM *r, *e; + + if ((r = BN_new()) == NULL) + return NULL; + + BN_CTX_start(ctx); + if ((e = BN_CTX_get(ctx)) != NULL + && BN_set_word(r, 2) + && BN_sub(e, q, r) + && BN_mod_exp_mont(r, k, e, q, ctx, NULL)) + res = r; + else + BN_free(r); + BN_CTX_end(ctx); + return res; +}