From 910f482df6ba287a3d182650b83fdb8c44d12087 Mon Sep 17 00:00:00 2001 From: Maxim Vezenov Date: Mon, 31 Jul 2023 09:54:29 +0100 Subject: [PATCH 01/13] chore(nargo): Use Display impl for InputValue (#1990) * use Display impl for InputValue * chore: clean up visibilities --------- Co-authored-by: TomAFrench --- crates/nargo/src/ops/foreign_calls.rs | 8 +++--- crates/noirc_abi/src/input_parser/json.rs | 4 +-- crates/noirc_abi/src/input_parser/mod.rs | 35 +++++++++++++++++++++-- crates/noirc_abi/src/lib.rs | 2 +- 4 files changed, 39 insertions(+), 10 deletions(-) diff --git a/crates/nargo/src/ops/foreign_calls.rs b/crates/nargo/src/ops/foreign_calls.rs index ea7f9be21b4..4bbd4eb58bc 100644 --- a/crates/nargo/src/ops/foreign_calls.rs +++ b/crates/nargo/src/ops/foreign_calls.rs @@ -3,7 +3,7 @@ use acvm::{ pwg::ForeignCallWaitInfo, }; use iter_extended::vecmap; -use noirc_abi::{decode_string_value, decode_value, input_parser::json::JsonTypes, AbiType}; +use noirc_abi::{decode_string_value, input_parser::InputValueDisplay, AbiType}; use crate::errors::ForeignCallError; @@ -68,11 +68,11 @@ impl ForeignCall { // We must use a flat map here as each value in a struct will be in a separate input value let mut input_values_as_fields = input_values.iter().flat_map(|values| values.iter().map(|value| value.to_field())); - let decoded_value = decode_value(&mut input_values_as_fields, &abi_type)?; - let json_value = JsonTypes::try_from_input_value(&decoded_value, &abi_type)?; + let input_value_display = + InputValueDisplay::try_from_fields(&mut input_values_as_fields, abi_type)?; - println!("{json_value}"); + println!("{input_value_display}"); Ok(()) } } diff --git a/crates/noirc_abi/src/input_parser/json.rs b/crates/noirc_abi/src/input_parser/json.rs index 7a0cd76698d..6468b48c857 100644 --- a/crates/noirc_abi/src/input_parser/json.rs +++ b/crates/noirc_abi/src/input_parser/json.rs @@ -59,7 +59,7 @@ pub(crate) fn serialize_to_json( #[derive(Debug, Deserialize, Serialize, Clone)] #[serde(untagged)] -pub enum JsonTypes { +pub(super) enum JsonTypes { // This is most likely going to be a hex string // But it is possible to support UTF-8 String(String), @@ -78,7 +78,7 @@ pub enum JsonTypes { } impl JsonTypes { - pub fn try_from_input_value( + pub(super) fn try_from_input_value( value: &InputValue, abi_type: &AbiType, ) -> Result { diff --git a/crates/noirc_abi/src/input_parser/mod.rs b/crates/noirc_abi/src/input_parser/mod.rs index 6818f40786c..e4adbb3d8cf 100644 --- a/crates/noirc_abi/src/input_parser/mod.rs +++ b/crates/noirc_abi/src/input_parser/mod.rs @@ -1,4 +1,4 @@ -pub mod json; +mod json; mod toml; use std::collections::BTreeMap; @@ -6,8 +6,8 @@ use std::collections::BTreeMap; use acvm::FieldElement; use serde::Serialize; -use crate::errors::InputParserError; -use crate::{Abi, AbiType}; +use crate::errors::{AbiError, InputParserError}; +use crate::{decode_value, Abi, AbiType}; /// This is what all formats eventually transform into /// For example, a toml file will parse into TomlTypes /// and those TomlTypes will be mapped to Value @@ -67,6 +67,35 @@ impl InputValue { } } +/// In order to display an `InputValue` we need an `AbiType` to accurately +/// convert the value into a human-readable format. +pub struct InputValueDisplay { + input_value: InputValue, + abi_type: AbiType, +} + +impl InputValueDisplay { + pub fn try_from_fields( + field_iterator: &mut impl Iterator, + abi_type: AbiType, + ) -> Result { + let input_value = decode_value(field_iterator, &abi_type)?; + Ok(InputValueDisplay { input_value, abi_type }) + } +} + +impl std::fmt::Display for InputValueDisplay { + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + // From the docs: https://doc.rust-lang.org/std/fmt/struct.Error.html + // This type does not support transmission of an error other than that an error + // occurred. Any extra information must be arranged to be transmitted through + // some other means. + let json_value = json::JsonTypes::try_from_input_value(&self.input_value, &self.abi_type) + .map_err(|_| std::fmt::Error)?; + write!(f, "{}", serde_json::to_string(&json_value).map_err(|_| std::fmt::Error)?) + } +} + /// The different formats that are supported when parsing /// the initial witness values #[cfg_attr(test, derive(strum_macros::EnumIter))] diff --git a/crates/noirc_abi/src/lib.rs b/crates/noirc_abi/src/lib.rs index 86f9edc73bd..5f8c22a6652 100644 --- a/crates/noirc_abi/src/lib.rs +++ b/crates/noirc_abi/src/lib.rs @@ -368,7 +368,7 @@ impl Abi { } } -pub fn decode_value( +fn decode_value( field_iterator: &mut impl Iterator, value_type: &AbiType, ) -> Result { From 6acc242bae48aee7e1de013ceadb6587dc900296 Mon Sep 17 00:00:00 2001 From: jfecher Date: Mon, 31 Jul 2023 09:03:15 -0500 Subject: [PATCH 02/13] fix: Fix methods not mutating fields (#2087) * Fix methods not mutating fields * Update doc comment --- .../tests/test_data/references/src/main.nr | 19 ++++++ .../src/ssa_refactor/ssa_gen/mod.rs | 4 +- crates/noirc_frontend/src/ast/expression.rs | 11 +++- crates/noirc_frontend/src/ast/statement.rs | 2 +- .../noirc_frontend/src/hir/type_check/expr.rs | 61 ++++++++++++++++--- crates/noirc_frontend/src/parser/parser.rs | 2 +- 6 files changed, 85 insertions(+), 14 deletions(-) diff --git a/crates/nargo_cli/tests/test_data/references/src/main.nr b/crates/nargo_cli/tests/test_data/references/src/main.nr index d2c0b7f1244..b112875b9ff 100644 --- a/crates/nargo_cli/tests/test_data/references/src/main.nr +++ b/crates/nargo_cli/tests/test_data/references/src/main.nr @@ -30,6 +30,8 @@ fn main(mut x: Field) { }; *c.bar.array = [3, 4]; assert(*c.bar.array == [3, 4]); + + regression_1887(); } fn add1(x: &mut Field) { @@ -58,3 +60,20 @@ impl S { fn mutate_copy(mut a: Field) { a = 7; } + +// Previously the `foo.bar` in `foo.bar.mutate()` would insert an automatic dereference +// of `foo` which caused the method to wrongly be mutating a copy of bar rather than the original. +fn regression_1887() { + let foo = &mut Foo { bar: Bar { x: 0 } }; + foo.bar.mutate(); + assert(foo.bar.x == 32); +} + +struct Foo { bar: Bar } +struct Bar { x: Field } + +impl Bar { + fn mutate(&mut self) { + self.x = 32; + } +} diff --git a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs index 2b6db4e7586..710450eb1e6 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs @@ -185,7 +185,9 @@ impl<'a> FunctionContext<'a> { } }) } - noirc_frontend::UnaryOp::Dereference => self.dereference(&rhs, &unary.result_type), + noirc_frontend::UnaryOp::Dereference { .. } => { + self.dereference(&rhs, &unary.result_type) + } } } diff --git a/crates/noirc_frontend/src/ast/expression.rs b/crates/noirc_frontend/src/ast/expression.rs index e36f5b5d260..1f1d226310f 100644 --- a/crates/noirc_frontend/src/ast/expression.rs +++ b/crates/noirc_frontend/src/ast/expression.rs @@ -271,7 +271,14 @@ pub enum UnaryOp { Minus, Not, MutableReference, - Dereference, + + /// If implicitly_added is true, this operation was implicitly added by the compiler for a + /// field dereference. The compiler may undo some of these implicitly added dereferences if + /// the reference later turns out to be needed (e.g. passing a field by reference to a function + /// requiring an &mut parameter). + Dereference { + implicitly_added: bool, + }, } impl UnaryOp { @@ -496,7 +503,7 @@ impl Display for UnaryOp { UnaryOp::Minus => write!(f, "-"), UnaryOp::Not => write!(f, "!"), UnaryOp::MutableReference => write!(f, "&mut"), - UnaryOp::Dereference => write!(f, "*"), + UnaryOp::Dereference { .. } => write!(f, "*"), } } } diff --git a/crates/noirc_frontend/src/ast/statement.rs b/crates/noirc_frontend/src/ast/statement.rs index 7292d227c3e..e35394e0729 100644 --- a/crates/noirc_frontend/src/ast/statement.rs +++ b/crates/noirc_frontend/src/ast/statement.rs @@ -456,7 +456,7 @@ impl LValue { })), LValue::Dereference(lvalue) => { ExpressionKind::Prefix(Box::new(crate::PrefixExpression { - operator: crate::UnaryOp::Dereference, + operator: crate::UnaryOp::Dereference { implicitly_added: false }, rhs: lvalue.as_expression(span), })) } diff --git a/crates/noirc_frontend/src/hir/type_check/expr.rs b/crates/noirc_frontend/src/hir/type_check/expr.rs index 2c6578944be..8c396ea6814 100644 --- a/crates/noirc_frontend/src/hir/type_check/expr.rs +++ b/crates/noirc_frontend/src/hir/type_check/expr.rs @@ -280,6 +280,12 @@ impl<'interner> TypeChecker<'interner> { /// if the given object type is already a mutable reference. If not, add one. /// This is used to automatically transform a method call: `foo.bar()` into a function /// call: `bar(&mut foo)`. + /// + /// A notable corner case of this function is where it interacts with auto-deref of `.`. + /// If a field is being mutated e.g. `foo.bar.mutate_bar()` where `foo: &mut Foo`, the compiler + /// will insert a dereference before bar `(*foo).bar.mutate_bar()` which would cause us to + /// mutate a copy of bar rather than a reference to it. We must check for this corner case here + /// and remove the implicitly added dereference operator if we find one. fn try_add_mutable_reference_to_object( &mut self, method_call: &mut HirMethodCallExpression, @@ -306,19 +312,56 @@ impl<'interner> TypeChecker<'interner> { } let new_type = Type::MutableReference(Box::new(actual_type)); - argument_types[0].0 = new_type.clone(); - method_call.object = - self.interner.push_expr(HirExpression::Prefix(HirPrefixExpression { - operator: UnaryOp::MutableReference, - rhs: method_call.object, - })); - self.interner.push_expr_type(&method_call.object, new_type); + + // First try to remove a dereference operator that may have been implicitly + // inserted by a field access expression `foo.bar` on a mutable reference `foo`. + if self.try_remove_implicit_dereference(method_call.object).is_none() { + // If that didn't work, then wrap the whole expression in an `&mut` + method_call.object = + self.interner.push_expr(HirExpression::Prefix(HirPrefixExpression { + operator: UnaryOp::MutableReference, + rhs: method_call.object, + })); + self.interner.push_expr_type(&method_call.object, new_type); + } } } } } + /// Given a method object: `(*foo).bar` of a method call `(*foo).bar.baz()`, remove the + /// implicitly added dereference operator if one is found. + /// + /// Returns Some(()) if a dereference was removed and None otherwise. + fn try_remove_implicit_dereference(&mut self, object: ExprId) -> Option<()> { + match self.interner.expression(&object) { + HirExpression::MemberAccess(access) => { + self.try_remove_implicit_dereference(access.lhs)?; + + // Since we removed a dereference, instead of returning the field directly, + // we expect to be returning a reference to the field, so update the type accordingly. + let current_type = self.interner.id_type(object); + let reference_type = Type::MutableReference(Box::new(current_type)); + self.interner.push_expr_type(&object, reference_type); + Some(()) + } + HirExpression::Prefix(prefix) => match prefix.operator { + UnaryOp::Dereference { implicitly_added: true } => { + // Found a dereference we can remove. Now just replace it with its rhs to remove it. + let rhs = self.interner.expression(&prefix.rhs); + self.interner.replace_expr(&object, rhs); + + let rhs_type = self.interner.id_type(prefix.rhs); + self.interner.push_expr_type(&object, rhs_type); + Some(()) + } + _ => None, + }, + _ => None, + } + } + fn check_index_expression(&mut self, index_expr: expr::HirIndexExpression) -> Type { let index_type = self.check_expression(&index_expr.index); let span = self.interner.expr_span(&index_expr.index); @@ -525,7 +568,7 @@ impl<'interner> TypeChecker<'interner> { let dereference_lhs = |this: &mut Self, lhs_type, element| { let old_lhs = *access_lhs; *access_lhs = this.interner.push_expr(HirExpression::Prefix(HirPrefixExpression { - operator: crate::UnaryOp::Dereference, + operator: crate::UnaryOp::Dereference { implicitly_added: true }, rhs: old_lhs, })); this.interner.push_expr_type(&old_lhs, lhs_type); @@ -1006,7 +1049,7 @@ impl<'interner> TypeChecker<'interner> { crate::UnaryOp::MutableReference => { Type::MutableReference(Box::new(rhs_type.follow_bindings())) } - crate::UnaryOp::Dereference => { + crate::UnaryOp::Dereference { implicitly_added: _ } => { let element_type = self.interner.next_type_variable(); unify(Type::MutableReference(Box::new(element_type.clone()))); element_type diff --git a/crates/noirc_frontend/src/parser/parser.rs b/crates/noirc_frontend/src/parser/parser.rs index c8142ffa947..c6d84416975 100644 --- a/crates/noirc_frontend/src/parser/parser.rs +++ b/crates/noirc_frontend/src/parser/parser.rs @@ -1267,7 +1267,7 @@ where { just(Token::Star) .ignore_then(term_parser) - .map(|rhs| ExpressionKind::prefix(UnaryOp::Dereference, rhs)) + .map(|rhs| ExpressionKind::prefix(UnaryOp::Dereference { implicitly_added: false }, rhs)) } /// Atoms are parameterized on whether constructor expressions are allowed or not. From 8981c7d69716ea9b1ecbaece8d7534f41954dcd4 Mon Sep 17 00:00:00 2001 From: guipublic <47281315+guipublic@users.noreply.github.com> Date: Mon, 31 Jul 2023 19:31:03 +0200 Subject: [PATCH 03/13] chore: use witnesses from the generated acir in the ABI (#2095) * Use witnesses from the generated acir in the ABI * Code review --- crates/noirc_evaluator/src/ssa_refactor.rs | 12 ++++++--- .../src/ssa_refactor/abi_gen/mod.rs | 25 ++++++++++++------- .../acir_gen/acir_ir/acir_variable.rs | 23 ++++++++++++++++- .../acir_gen/acir_ir/generated_acir.rs | 3 +++ .../src/ssa_refactor/acir_gen/mod.rs | 16 +++++++----- 5 files changed, 60 insertions(+), 19 deletions(-) diff --git a/crates/noirc_evaluator/src/ssa_refactor.rs b/crates/noirc_evaluator/src/ssa_refactor.rs index fa3b7f05a86..6326b45554d 100644 --- a/crates/noirc_evaluator/src/ssa_refactor.rs +++ b/crates/noirc_evaluator/src/ssa_refactor.rs @@ -77,10 +77,16 @@ pub fn create_circuit( show_output: bool, ) -> Result<(Circuit, DebugInfo, Abi), RuntimeError> { let func_sig = program.main_function_signature.clone(); - let GeneratedAcir { current_witness_index, opcodes, return_witnesses, locations, .. } = - optimize_into_acir(program, show_output, enable_ssa_logging, enable_brillig_logging)?; + let GeneratedAcir { + current_witness_index, + opcodes, + return_witnesses, + locations, + input_witnesses, + .. + } = optimize_into_acir(program, show_output, enable_ssa_logging, enable_brillig_logging)?; - let abi = gen_abi(func_sig, return_witnesses.clone()); + let abi = gen_abi(func_sig, &input_witnesses, return_witnesses.clone()); let public_abi = abi.clone().public_abi(); let public_parameters = diff --git a/crates/noirc_evaluator/src/ssa_refactor/abi_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/abi_gen/mod.rs index db39b1c8110..778d8aba8d5 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/abi_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/abi_gen/mod.rs @@ -1,14 +1,18 @@ use std::collections::BTreeMap; use acvm::acir::native_types::Witness; -use iter_extended::{btree_map, vecmap}; +use iter_extended::btree_map; use noirc_abi::{Abi, AbiParameter, FunctionSignature}; /// Arranges a function signature and a generated circuit's return witnesses into a /// `noirc_abi::Abi`. -pub(crate) fn gen_abi(func_sig: FunctionSignature, return_witnesses: Vec) -> Abi { +pub(crate) fn gen_abi( + func_sig: FunctionSignature, + input_witnesses: &[Witness], + return_witnesses: Vec, +) -> Abi { let (parameters, return_type) = func_sig; - let param_witnesses = param_witnesses_from_abi_param(¶meters); + let param_witnesses = param_witnesses_from_abi_param(¶meters, input_witnesses); Abi { parameters, return_type, param_witnesses, return_witnesses } } @@ -16,14 +20,17 @@ pub(crate) fn gen_abi(func_sig: FunctionSignature, return_witnesses: Vec, + input_witnesses: &[Witness], ) -> BTreeMap> { - let mut offset = 1; + let mut idx = 0_usize; + btree_map(abi_params, |param| { let num_field_elements_needed = param.typ.field_count(); - let idx_start = offset; - let idx_end = idx_start + num_field_elements_needed; - let witnesses = vecmap(idx_start..idx_end, Witness); - offset += num_field_elements_needed; - (param.name.clone(), witnesses) + let mut wit = Vec::new(); + for _ in 0..num_field_elements_needed { + wit.push(input_witnesses[idx]); + idx += 1; + } + (param.name.clone(), wit) }) } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs index 8c7fe1e9b6a..d953322e567 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs @@ -110,6 +110,26 @@ pub(crate) struct AcirContext { } impl AcirContext { + pub(crate) fn current_witness_index(&self) -> Witness { + self.acir_ir.current_witness_index() + } + + pub(crate) fn extract_witness(&self, inputs: &[AcirValue]) -> Vec { + inputs + .iter() + .flat_map(|value| value.clone().flatten()) + .map(|value| { + self.vars + .get(&value.0) + .expect("ICE: undeclared AcirVar") + .to_expression() + .to_witness() + .expect("ICE - cannot extract a witness") + .0 + }) + .collect() + } + /// Adds a constant to the context and assigns a Variable to represent it pub(crate) fn add_constant(&mut self, constant: FieldElement) -> AcirVar { let constant_data = AcirVarData::Const(constant); @@ -808,7 +828,8 @@ impl AcirContext { } /// Terminates the context and takes the resulting `GeneratedAcir` - pub(crate) fn finish(self) -> GeneratedAcir { + pub(crate) fn finish(mut self, inputs: Vec) -> GeneratedAcir { + self.acir_ir.input_witnesses = vecmap(inputs, Witness); self.acir_ir } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs index d80537a074a..459458fc03e 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs @@ -40,6 +40,9 @@ pub(crate) struct GeneratedAcir { /// abi's return type. pub(crate) return_witnesses: Vec, + /// All witness indices which are inputs to the main function + pub(crate) input_witnesses: Vec, + /// Correspondance between an opcode index (in opcodes) and the source code location which generated it pub(crate) locations: HashMap, diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs index 3bf18a2d86a..ad10bed96f9 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs @@ -2,6 +2,7 @@ use std::collections::{HashMap, HashSet}; use std::fmt::Debug; +use std::ops::RangeInclusive; use crate::brillig::brillig_ir::BrilligContext; use crate::{ @@ -172,8 +173,7 @@ impl Context { ) -> Result { let dfg = &main_func.dfg; let entry_block = &dfg[main_func.entry_block()]; - - self.convert_ssa_block_params(entry_block.parameters(), dfg)?; + let input_witness = self.convert_ssa_block_params(entry_block.parameters(), dfg)?; for instruction_id in entry_block.instructions() { self.convert_ssa_instruction(*instruction_id, dfg, ssa, &brillig, allow_log_ops)?; @@ -181,7 +181,7 @@ impl Context { self.convert_ssa_return(entry_block.unwrap_terminator(), dfg); - Ok(self.acir_context.finish()) + Ok(self.acir_context.finish(input_witness.collect())) } fn convert_brillig_main( @@ -195,6 +195,7 @@ impl Context { let typ = dfg.type_of_value(*param_id); self.create_value_from_type(&typ, &mut |this, _| Ok(this.acir_context.add_variable())) })?; + let witness_inputs = self.acir_context.extract_witness(&inputs); let outputs: Vec = vecmap(main_func.returns(), |result_id| dfg.type_of_value(*result_id).into()); @@ -213,7 +214,7 @@ impl Context { self.acir_context.return_var(acir_var); } - Ok(self.acir_context.finish()) + Ok(self.acir_context.finish(witness_inputs)) } /// Adds and binds `AcirVar`s for each numeric block parameter or block parameter array element. @@ -221,7 +222,9 @@ impl Context { &mut self, params: &[ValueId], dfg: &DataFlowGraph, - ) -> Result<(), AcirGenError> { + ) -> Result, AcirGenError> { + // The first witness (if any) is the next one + let start_witness = self.acir_context.current_witness_index().0 + 1; for param_id in params { let typ = dfg.type_of_value(*param_id); let value = self.convert_ssa_block_param(&typ)?; @@ -238,7 +241,8 @@ impl Context { } self.ssa_values.insert(*param_id, value); } - Ok(()) + let end_witness = self.acir_context.current_witness_index().0; + Ok(start_witness..=end_witness) } fn convert_ssa_block_param(&mut self, param_type: &Type) -> Result { From 9b417da0eef28a29dbe0f339ee19b8dd9859dc4d Mon Sep 17 00:00:00 2001 From: Ethan-000 Date: Mon, 31 Jul 2023 19:22:40 +0100 Subject: [PATCH 04/13] chore(ssa refactor): Implement `acir_gen` errors (#2071) * implement acir gen errors * comment * remove unwrap * rename to internal error * comment * comment * . * . * . * review * . * chore: fix merge conflict * chore: make multiplication of 2 witnesses more explicit * Update crates/noirc_evaluator/src/errors.rs --------- Co-authored-by: Tom French <15848336+TomAFrench@users.noreply.github.com> Co-authored-by: TomAFrench Co-authored-by: jfecher --- crates/noirc_evaluator/src/errors.rs | 219 +++++++--------- .../src/ssa_refactor/acir_gen/acir_ir.rs | 1 - .../acir_gen/acir_ir/acir_variable.rs | 208 ++++++++++------ .../ssa_refactor/acir_gen/acir_ir/errors.rs | 62 ----- .../acir_gen/acir_ir/generated_acir.rs | 130 ++++++---- .../src/ssa_refactor/acir_gen/acir_ir/sort.rs | 27 +- .../src/ssa_refactor/acir_gen/mod.rs | 235 +++++++++++------- 7 files changed, 459 insertions(+), 423 deletions(-) delete mode 100644 crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/errors.rs diff --git a/crates/noirc_evaluator/src/errors.rs b/crates/noirc_evaluator/src/errors.rs index 2d8b02008c6..6d53668d7cb 100644 --- a/crates/noirc_evaluator/src/errors.rs +++ b/crates/noirc_evaluator/src/errors.rs @@ -1,151 +1,104 @@ +//! Noir Evaluator has two types of errors +//! +//! [RuntimeError]s that should be displayed to the user +//! +//! [InternalError]s that are used for checking internal logics of the SSA +//! +//! An Error of the former is a user Error +//! +//! An Error of the latter is an error in the implementation of the compiler +use acvm::FieldElement; use noirc_errors::{CustomDiagnostic as Diagnostic, FileDiagnostic, Location}; use thiserror::Error; -#[derive(Debug)] -pub struct RuntimeError { - pub location: Option, - pub kind: RuntimeErrorKind, -} - -impl RuntimeError { - // XXX: In some places, we strip the span because we do not want span to - // be introduced into the binary op or low level function code, for simplicity. - // - // It's possible to have it there, but it means we will need to proliferate the code with span - // - // This does make error reporting, less specific! - pub fn remove_span(self) -> RuntimeErrorKind { - self.kind - } - - pub fn new(kind: RuntimeErrorKind, location: Option) -> RuntimeError { - RuntimeError { location, kind } - } - - // Keep one of the two location which is Some, if possible - // This is used when we optimize instructions so that we do not lose track of location - pub fn merge_location(a: Option, b: Option) -> Option { - match (a, b) { - (Some(loc), _) | (_, Some(loc)) => Some(loc), - (None, None) => None, - } - } +#[derive(Debug, PartialEq, Eq, Clone, Error)] +pub enum RuntimeError { + // We avoid showing the actual lhs and rhs since most of the time they are just 0 + // and 1 respectively. This would confuse users if a constraint such as + // assert(foo < bar) fails with "failed constraint: 0 = 1." + #[error("Failed constraint")] + FailedConstraint { lhs: FieldElement, rhs: FieldElement, location: Option }, + #[error(transparent)] + InternalError(#[from] InternalError), + #[error("Index out of bounds, array has size {index:?}, but index was {array_size:?}")] + IndexOutOfBounds { index: usize, array_size: usize, location: Option }, + #[error("All Witnesses are by default u{num_bits:?} Applying this type does not apply any constraints.\n We also currently do not allow integers of size more than {num_bits:?}, this will be handled by BigIntegers.")] + InvalidRangeConstraint { num_bits: u32, location: Option }, + #[error("Expected array index to fit into a u64")] + TypeConversion { from: String, into: String, location: Option }, + #[error("{name:?} is not initialized")] + UnInitialized { name: String, location: Option }, + #[error("Integer sized {num_bits:?} is over the max supported size of {max_num_bits:?}")] + UnsupportedIntegerSize { num_bits: u32, max_num_bits: u32, location: Option }, } -impl From for RuntimeError { - fn from(kind: RuntimeErrorKind) -> RuntimeError { - RuntimeError { location: None, kind } - } +#[derive(Debug, PartialEq, Eq, Clone, Error)] +pub enum InternalError { + #[error("ICE: Both expressions should have degree<=1")] + DegreeNotReduced { location: Option }, + #[error("Try to get element from empty array")] + EmptyArray { location: Option }, + #[error("ICE: {message:?}")] + General { message: String, location: Option }, + #[error("ICE: {name:?} missing {arg:?} arg")] + MissingArg { name: String, arg: String, location: Option }, + #[error("ICE: {name:?} should be a constant")] + NotAConstant { name: String, location: Option }, + #[error("{name:?} is not implemented yet")] + NotImplemented { name: String, location: Option }, + #[error("ICE: Undeclared AcirVar")] + UndeclaredAcirVar { location: Option }, + #[error("ICE: Expected {expected:?}, found {found:?}")] + UnExpected { expected: String, found: String, location: Option }, } impl From for FileDiagnostic { - fn from(err: RuntimeError) -> Self { - let file_id = err.location.map(|loc| loc.file).unwrap(); - FileDiagnostic { file_id, diagnostic: err.into() } + fn from(error: RuntimeError) -> Self { + match error { + RuntimeError::InternalError(ref ice_error) => match ice_error { + InternalError::DegreeNotReduced { location } + | InternalError::EmptyArray { location } + | InternalError::General { location, .. } + | InternalError::MissingArg { location, .. } + | InternalError::NotAConstant { location, .. } + | InternalError::NotImplemented { location, .. } + | InternalError::UndeclaredAcirVar { location } + | InternalError::UnExpected { location, .. } => { + let file_id = location.map(|loc| loc.file).unwrap(); + FileDiagnostic { file_id, diagnostic: error.into() } + } + }, + RuntimeError::FailedConstraint { location, .. } + | RuntimeError::IndexOutOfBounds { location, .. } + | RuntimeError::InvalidRangeConstraint { location, .. } + | RuntimeError::TypeConversion { location, .. } + | RuntimeError::UnInitialized { location, .. } + | RuntimeError::UnsupportedIntegerSize { location, .. } => { + let file_id = location.map(|loc| loc.file).unwrap(); + FileDiagnostic { file_id, diagnostic: error.into() } + } + } } } -#[derive(Error, Debug)] -pub enum RuntimeErrorKind { - // Array errors - #[error("Out of bounds")] - ArrayOutOfBounds { index: u128, bound: u128 }, - - #[error("index out of bounds: the len is {index} but the index is {bound}")] - IndexOutOfBounds { index: u32, bound: u128 }, - - #[error("cannot call {func_name} function in non main function")] - FunctionNonMainContext { func_name: String }, - - // Environment errors - #[error("Cannot find Array")] - ArrayNotFound { found_type: String, name: String }, - - #[error("Not an object")] - NotAnObject, - - #[error("Invalid id")] - InvalidId, - - #[error("Attempt to divide by zero")] - DivisionByZero, - - #[error("Failed range constraint when constraining to {0} bits")] - FailedRangeConstraint(u32), - - #[error("Unsupported integer size of {num_bits} bits. The maximum supported size is {max_num_bits} bits.")] - UnsupportedIntegerSize { num_bits: u32, max_num_bits: u32 }, - - #[error("Failed constraint")] - FailedConstraint, - - #[error( - "All Witnesses are by default u{0}. Applying this type does not apply any constraints." - )] - DefaultWitnesses(u32), - - #[error("Constraint is always false")] - ConstraintIsAlwaysFalse, - - #[error("ICE: cannot convert signed {0} bit size into field")] - CannotConvertSignedIntoField(u32), - - #[error("we do not allow private ABI inputs to be returned as public outputs")] - PrivateAbiInput, - - #[error("unimplemented")] - Unimplemented(String), - - #[error("Unsupported operation error")] - UnsupportedOp { op: String, first_type: String, second_type: String }, -} - impl From for Diagnostic { fn from(error: RuntimeError) -> Diagnostic { - let span = - if let Some(loc) = error.location { loc.span } else { noirc_errors::Span::new(0..0) }; - match &error.kind { - RuntimeErrorKind::ArrayOutOfBounds { index, bound } => Diagnostic::simple_error( - "index out of bounds".to_string(), - format!("out of bounds error, index is {index} but length is {bound}"), - span, - ), - RuntimeErrorKind::ArrayNotFound { found_type, name } => Diagnostic::simple_error( - format!("cannot find an array with name {name}"), - format!("{found_type} has type"), - span, + match error { + RuntimeError::InternalError(_) => Diagnostic::simple_error( + "Internal Consistency Evaluators Errors: \n + This is likely a bug. Consider Opening an issue at https://github.com/noir-lang/noir/issues".to_owned(), + "".to_string(), + noirc_errors::Span::new(0..0) ), - RuntimeErrorKind::NotAnObject - | RuntimeErrorKind::InvalidId - | RuntimeErrorKind::DivisionByZero - | RuntimeErrorKind::FailedRangeConstraint(_) - | RuntimeErrorKind::UnsupportedIntegerSize { .. } - | RuntimeErrorKind::FailedConstraint - | RuntimeErrorKind::DefaultWitnesses(_) - | RuntimeErrorKind::CannotConvertSignedIntoField(_) - | RuntimeErrorKind::IndexOutOfBounds { .. } - | RuntimeErrorKind::PrivateAbiInput => { - Diagnostic::simple_error("".to_owned(), error.kind.to_string(), span) + RuntimeError::FailedConstraint { location, .. } + | RuntimeError::IndexOutOfBounds { location, .. } + | RuntimeError::InvalidRangeConstraint { location, .. } + | RuntimeError::TypeConversion { location, .. } + | RuntimeError::UnInitialized { location, .. } + | RuntimeError::UnsupportedIntegerSize { location, .. } => { + let span = if let Some(loc) = location { loc.span } else { noirc_errors::Span::new(0..0) }; + Diagnostic::simple_error("".to_owned(), error.to_string(), span) } - RuntimeErrorKind::UnsupportedOp { op, first_type, second_type } => { - Diagnostic::simple_error( - "unsupported operation".to_owned(), - format!("no support for {op} with types {first_type} and {second_type}"), - span, - ) - } - RuntimeErrorKind::ConstraintIsAlwaysFalse if error.location.is_some() => { - Diagnostic::simple_error("".to_owned(), error.kind.to_string(), span) - } - RuntimeErrorKind::ConstraintIsAlwaysFalse => { - Diagnostic::from_message(&error.kind.to_string()) - } - RuntimeErrorKind::Unimplemented(message) => Diagnostic::from_message(message), - RuntimeErrorKind::FunctionNonMainContext { func_name } => Diagnostic::simple_error( - "cannot call function outside of main".to_owned(), - format!("function {func_name} can only be called in main"), - span, - ), } } } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir.rs index 6e715002161..96800b22ad0 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir.rs @@ -1,4 +1,3 @@ pub(crate) mod acir_variable; -pub(crate) mod errors; pub(crate) mod generated_acir; pub(crate) mod sort; diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs index d953322e567..6d8178b6a2c 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs @@ -1,5 +1,6 @@ -use super::{errors::AcirGenError, generated_acir::GeneratedAcir}; +use super::generated_acir::GeneratedAcir; use crate::brillig::brillig_gen::brillig_directive; +use crate::errors::{InternalError, RuntimeError}; use crate::ssa_refactor::acir_gen::{AcirDynamicArray, AcirValue}; use crate::ssa_refactor::ir::types::Type as SsaType; use crate::ssa_refactor::ir::{instruction::Endian, types::NumericType}; @@ -9,7 +10,6 @@ use acvm::acir::{ brillig::Opcode as BrilligOpcode, circuit::brillig::{BrilligInputs, BrilligOutputs}, }; - use acvm::{ acir::{ circuit::opcodes::FunctionInput, @@ -18,7 +18,7 @@ use acvm::{ }, FieldElement, }; -use iter_extended::vecmap; +use iter_extended::{try_vecmap, vecmap}; use noirc_errors::Location; use std::collections::HashMap; use std::{borrow::Cow, hash::Hash}; @@ -182,7 +182,7 @@ impl AcirContext { &mut self, var: AcirVar, predicate: AcirVar, - ) -> Result { + ) -> Result { let var_data = &self.vars[&var]; if let AcirVarData::Const(constant) = var_data { // Note that this will return a 0 if the inverse is not available @@ -199,7 +199,7 @@ impl AcirContext { inverse_code, vec![AcirValue::Var(var, field_type.clone())], vec![field_type], - ); + )?; let inverted_var = Self::expect_one_var(results); let should_be_one = self.mul_var(inverted_var, var)?; @@ -209,7 +209,7 @@ impl AcirContext { } // Constrains `var` to be equal to the constant value `1` - pub(crate) fn assert_eq_one(&mut self, var: AcirVar) -> Result<(), AcirGenError> { + pub(crate) fn assert_eq_one(&mut self, var: AcirVar) -> Result<(), RuntimeError> { let one = self.add_constant(FieldElement::one()); self.assert_eq_var(var, one) } @@ -222,7 +222,7 @@ impl AcirContext { &mut self, var: AcirVar, predicate: AcirVar, - ) -> Result<(), AcirGenError> { + ) -> Result<(), RuntimeError> { let pred_mul_var = self.mul_var(var, predicate)?; self.assert_eq_var(pred_mul_var, predicate) } @@ -240,7 +240,7 @@ impl AcirContext { /// Returns an `AcirVar` that is `1` if `lhs` equals `rhs` and /// 0 otherwise. - pub(crate) fn eq_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { + pub(crate) fn eq_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { let lhs_data = &self.vars[&lhs]; let rhs_data = &self.vars[&rhs]; @@ -258,7 +258,7 @@ impl AcirContext { lhs: AcirVar, rhs: AcirVar, typ: AcirType, - ) -> Result { + ) -> Result { let inputs = vec![AcirValue::Var(lhs, typ.clone()), AcirValue::Var(rhs, typ)]; let outputs = self.black_box_function(BlackBoxFunc::XOR, inputs)?; Ok(outputs[0]) @@ -270,7 +270,7 @@ impl AcirContext { lhs: AcirVar, rhs: AcirVar, typ: AcirType, - ) -> Result { + ) -> Result { let inputs = vec![AcirValue::Var(lhs, typ.clone()), AcirValue::Var(rhs, typ)]; let outputs = self.black_box_function(BlackBoxFunc::AND, inputs)?; Ok(outputs[0]) @@ -282,7 +282,7 @@ impl AcirContext { lhs: AcirVar, rhs: AcirVar, typ: AcirType, - ) -> Result { + ) -> Result { let bit_size = typ.bit_size(); if bit_size == 1 { // Operands are booleans @@ -305,7 +305,7 @@ impl AcirContext { } /// Constrains the `lhs` and `rhs` to be equal. - pub(crate) fn assert_eq_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result<(), AcirGenError> { + pub(crate) fn assert_eq_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result<(), RuntimeError> { // TODO: could use sub_var and then assert_eq_zero let lhs_data = &self.vars[&lhs]; let rhs_data = &self.vars[&rhs]; @@ -316,7 +316,7 @@ impl AcirContext { Ok(()) } else { // Constraint is always false - this program is unprovable - Err(AcirGenError::BadConstantEquality { + Err(RuntimeError::FailedConstraint { lhs: *lhs_const, rhs: *rhs_const, location: self.get_location(), @@ -338,7 +338,7 @@ impl AcirContext { rhs: AcirVar, typ: AcirType, predicate: AcirVar, - ) -> Result { + ) -> Result { let numeric_type = match typ { AcirType::NumericType(numeric_type) => numeric_type, AcirType::Array(_, _) => { @@ -365,7 +365,7 @@ impl AcirContext { /// Adds a new Variable to context whose value will /// be constrained to be the multiplication of `lhs` and `rhs` - pub(crate) fn mul_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { + pub(crate) fn mul_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { let lhs_data = &self.vars[&lhs]; let rhs_data = &self.vars[&rhs]; let result = match (lhs_data, rhs_data) { @@ -412,14 +412,14 @@ impl AcirContext { /// Adds a new Variable to context whose value will /// be constrained to be the subtraction of `lhs` and `rhs` - pub(crate) fn sub_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { + pub(crate) fn sub_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { let neg_rhs = self.neg_var(rhs); self.add_var(lhs, neg_rhs) } /// Adds a new Variable to context whose value will /// be constrained to be the addition of `lhs` and `rhs` - pub(crate) fn add_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { + pub(crate) fn add_var(&mut self, lhs: AcirVar, rhs: AcirVar) -> Result { let lhs_data = &self.vars[&lhs]; let rhs_data = &self.vars[&rhs]; let result_data = if let (AcirVarData::Const(lhs_const), AcirVarData::Const(rhs_const)) = @@ -434,7 +434,7 @@ impl AcirContext { } /// Adds a new variable that is constrained to be the logical NOT of `x`. - pub(crate) fn not_var(&mut self, x: AcirVar, typ: AcirType) -> Result { + pub(crate) fn not_var(&mut self, x: AcirVar, typ: AcirType) -> Result { let bit_size = typ.bit_size(); // Subtracting from max flips the bits let max = self.add_constant(FieldElement::from((1_u128 << bit_size) - 1)); @@ -453,7 +453,7 @@ impl AcirContext { lhs: AcirVar, rhs: AcirVar, _typ: AcirType, - ) -> Result { + ) -> Result { let rhs_data = &self.vars[&rhs]; // Compute 2^{rhs} @@ -473,7 +473,7 @@ impl AcirContext { rhs: AcirVar, bit_size: u32, predicate: AcirVar, - ) -> Result<(AcirVar, AcirVar), AcirGenError> { + ) -> Result<(AcirVar, AcirVar), RuntimeError> { let lhs_data = &self.vars[&lhs]; let rhs_data = &self.vars[&rhs]; let predicate_data = &self.vars[&predicate]; @@ -505,7 +505,7 @@ impl AcirContext { lhs: AcirVar, rhs: AcirVar, bit_size: u32, - ) -> Result<(AcirVar, AcirVar), AcirGenError> { + ) -> Result<(AcirVar, AcirVar), RuntimeError> { let lhs_data = &self.vars[&lhs].clone(); let rhs_data = &self.vars[&rhs].clone(); @@ -529,7 +529,7 @@ impl AcirContext { rhs: AcirVar, bit_size: u32, predicate: AcirVar, - ) -> Result { + ) -> Result { let (_, remainder) = self.euclidean_division_var(lhs, rhs, bit_size, predicate)?; Ok(remainder) } @@ -550,7 +550,7 @@ impl AcirContext { rhs: AcirVar, typ: AcirType, predicate: AcirVar, - ) -> Result { + ) -> Result { let rhs_data = &self.vars[&rhs]; // Compute 2^{rhs} @@ -565,8 +565,11 @@ impl AcirContext { /// Converts the `AcirVar` to a `Witness` if it hasn't been already, and appends it to the /// `GeneratedAcir`'s return witnesses. - pub(crate) fn return_var(&mut self, acir_var: AcirVar) { - let acir_var_data = self.vars.get(&acir_var).expect("ICE: return of undeclared AcirVar"); + pub(crate) fn return_var(&mut self, acir_var: AcirVar) -> Result<(), InternalError> { + let acir_var_data = match self.vars.get(&acir_var) { + Some(acir_var_data) => acir_var_data, + None => return Err(InternalError::UndeclaredAcirVar { location: self.get_location() }), + }; // TODO: Add caching to prevent expressions from being needlessly duplicated let witness = match acir_var_data { AcirVarData::Const(constant) => { @@ -576,6 +579,7 @@ impl AcirContext { AcirVarData::Witness(witness) => *witness, }; self.acir_ir.push_return_witness(witness); + Ok(()) } /// Constrains the `AcirVar` variable to be of type `NumericType`. @@ -583,7 +587,7 @@ impl AcirContext { &mut self, variable: AcirVar, numeric_type: &NumericType, - ) -> Result { + ) -> Result { let data = &self.vars[&variable]; match numeric_type { NumericType::Signed { bit_size } | NumericType::Unsigned { bit_size } => { @@ -606,7 +610,7 @@ impl AcirContext { lhs: AcirVar, rhs: u32, max_bit_size: u32, - ) -> Result { + ) -> Result { let lhs_data = &self.vars[&lhs]; let lhs_expr = lhs_data.to_expression(); @@ -631,7 +635,7 @@ impl AcirContext { rhs: AcirVar, bit_size: u32, predicate: AcirVar, - ) -> Result { + ) -> Result { let lhs_data = &self.vars[&lhs]; let rhs_data = &self.vars[&rhs]; @@ -658,7 +662,7 @@ impl AcirContext { rhs: AcirVar, bit_size: u32, predicate: AcirVar, - ) -> Result { + ) -> Result { // Flip the result of calling more than equal method to // compute less than. let comparison = self.more_than_eq_var(lhs, rhs, bit_size, predicate)?; @@ -673,17 +677,31 @@ impl AcirContext { &mut self, name: BlackBoxFunc, mut inputs: Vec, - ) -> Result, AcirGenError> { + ) -> Result, RuntimeError> { // Separate out any arguments that should be constants let constants = match name { BlackBoxFunc::Pedersen => { // The last argument of pedersen is the domain separator, which must be a constant - let domain_var = - inputs.pop().expect("ICE: Pedersen call requires domain separator").into_var(); - - let domain_constant = self.vars[&domain_var] - .as_constant() - .expect("ICE: Domain separator must be a constant"); + let domain_var = match inputs.pop() { + Some(domain_var) => domain_var.into_var()?, + None => { + return Err(RuntimeError::InternalError(InternalError::MissingArg { + name: "pedersen call".to_string(), + arg: "domain separator".to_string(), + location: self.get_location(), + })) + } + }; + + let domain_constant = match self.vars[&domain_var].as_constant() { + Some(domain_constant) => domain_constant, + None => { + return Err(RuntimeError::InternalError(InternalError::NotAConstant { + name: "domain separator".to_string(), + location: self.get_location(), + })) + } + }; vec![domain_constant] } @@ -694,7 +712,7 @@ impl AcirContext { let inputs = self.prepare_inputs_for_black_box_func_call(inputs)?; // Call Black box with `FunctionInput` - let outputs = self.acir_ir.call_black_box(name, inputs, constants); + let outputs = self.acir_ir.call_black_box(name, inputs, constants)?; // Convert `Witness` values which are now constrained to be the output of the // black box function call into `AcirVar`s. @@ -710,7 +728,7 @@ impl AcirContext { fn prepare_inputs_for_black_box_func_call( &mut self, inputs: Vec, - ) -> Result, AcirGenError> { + ) -> Result, RuntimeError> { let mut witnesses = Vec::new(); for input in inputs { for (input, typ) in input.flatten() { @@ -741,15 +759,26 @@ impl AcirContext { radix_var: AcirVar, limb_count_var: AcirVar, result_element_type: AcirType, - ) -> Result, AcirGenError> { - let radix = - self.vars[&radix_var].as_constant().expect("ICE: radix should be a constant").to_u128() - as u32; + ) -> Result, RuntimeError> { + let radix = match self.vars[&radix_var].as_constant() { + Some(radix) => radix.to_u128() as u32, + None => { + return Err(RuntimeError::InternalError(InternalError::NotAConstant { + name: "radix".to_string(), + location: self.get_location(), + })); + } + }; - let limb_count = self.vars[&limb_count_var] - .as_constant() - .expect("ICE: limb_size should be a constant") - .to_u128() as u32; + let limb_count = match self.vars[&limb_count_var].as_constant() { + Some(limb_count) => limb_count.to_u128() as u32, + None => { + return Err(RuntimeError::InternalError(InternalError::NotAConstant { + name: "limb_size".to_string(), + location: self.get_location(), + })); + } + }; let input_expr = &self.vars[&input_var].to_expression(); @@ -785,13 +814,13 @@ impl AcirContext { input_var: AcirVar, limb_count_var: AcirVar, result_element_type: AcirType, - ) -> Result, AcirGenError> { + ) -> Result, RuntimeError> { let two_var = self.add_constant(FieldElement::from(2_u128)); self.radix_decompose(endian, input_var, two_var, limb_count_var, result_element_type) } /// Prints the given `AcirVar`s as witnesses. - pub(crate) fn print(&mut self, input: Vec) -> Result<(), AcirGenError> { + pub(crate) fn print(&mut self, input: Vec) -> Result<(), RuntimeError> { let input = Self::flatten_values(input); let witnesses = vecmap(input, |acir_var| { @@ -850,24 +879,24 @@ impl AcirContext { code: Vec, inputs: Vec, outputs: Vec, - ) -> Vec { - let b_inputs = vecmap(inputs, |i| match i { + ) -> Result, InternalError> { + let b_inputs = try_vecmap(inputs, |i| match i { AcirValue::Var(var, _) => { - BrilligInputs::Single(self.vars[&var].to_expression().into_owned()) + Ok(BrilligInputs::Single(self.vars[&var].to_expression().into_owned())) } AcirValue::Array(vars) => { let mut var_expressions: Vec = Vec::new(); for var in vars { - self.brillig_array_input(&mut var_expressions, var); + self.brillig_array_input(&mut var_expressions, var)?; } - BrilligInputs::Array(var_expressions) + Ok(BrilligInputs::Array(var_expressions)) } AcirValue::DynamicArray(_) => { let mut var_expressions = Vec::new(); - self.brillig_array_input(&mut var_expressions, i); - BrilligInputs::Array(var_expressions) + self.brillig_array_input(&mut var_expressions, i)?; + Ok(BrilligInputs::Array(var_expressions)) } - }); + })?; let mut b_outputs = Vec::new(); let outputs_var = vecmap(outputs, |output| match output { @@ -886,17 +915,21 @@ impl AcirContext { let predicate = self.vars[&predicate].to_expression().into_owned(); self.acir_ir.brillig(Some(predicate), code, b_inputs, b_outputs); - outputs_var + Ok(outputs_var) } - fn brillig_array_input(&mut self, var_expressions: &mut Vec, input: AcirValue) { + fn brillig_array_input( + &mut self, + var_expressions: &mut Vec, + input: AcirValue, + ) -> Result<(), InternalError> { match input { AcirValue::Var(var, _) => { var_expressions.push(self.vars[&var].to_expression().into_owned()); } AcirValue::Array(vars) => { for var in vars { - self.brillig_array_input(var_expressions, var); + self.brillig_array_input(var_expressions, var)?; } } AcirValue::DynamicArray(AcirDynamicArray { block_id, len }) => { @@ -906,18 +939,19 @@ impl AcirContext { self.add_constant(FieldElement::from(i as u128)), AcirType::NumericType(NumericType::NativeField), ); - let index_var = index.into_var(); + let index_var = index.into_var()?; - let value_read_var = self.read_from_memory(block_id, &index_var); + let value_read_var = self.read_from_memory(block_id, &index_var)?; let value_read = AcirValue::Var( value_read_var, AcirType::NumericType(NumericType::NativeField), ); - self.brillig_array_input(var_expressions, value_read); + self.brillig_array_input(var_expressions, value_read)?; } } } + Ok(()) } /// Recursively create acir values for returned arrays. This is necessary because a brillig returned array can have nested arrays as elements. @@ -959,7 +993,7 @@ impl AcirContext { inputs: Vec, bit_size: u32, predicate: AcirVar, - ) -> Result, AcirGenError> { + ) -> Result, RuntimeError> { let len = inputs.len(); // Convert the inputs into expressions let inputs_expr = vecmap(inputs, |input| self.vars[&input].to_expression().into_owned()); @@ -972,7 +1006,7 @@ impl AcirContext { }); // Enforce the outputs to be a permutation of the inputs - self.acir_ir.permutation(&inputs_expr, &output_expr); + self.acir_ir.permutation(&inputs_expr, &output_expr)?; // Enforce the outputs to be sorted for i in 0..(outputs_var.len() - 1) { @@ -982,9 +1016,12 @@ impl AcirContext { Ok(outputs_var) } /// Converts an AcirVar to a Witness - fn var_to_witness(&mut self, var: AcirVar) -> Witness { - let var_data = self.vars.get(&var).expect("ICE: undeclared AcirVar"); - self.acir_ir.get_or_create_witness(&var_data.to_expression()) + fn var_to_witness(&mut self, var: AcirVar) -> Result { + let var_data = match self.vars.get(&var) { + Some(var_data) => var_data, + None => return Err(InternalError::UndeclaredAcirVar { location: self.get_location() }), + }; + Ok(self.acir_ir.get_or_create_witness(&var_data.to_expression())) } /// Constrain lhs to be less than rhs @@ -994,40 +1031,50 @@ impl AcirContext { rhs: AcirVar, bit_size: u32, predicate: AcirVar, - ) -> Result<(), AcirGenError> { + ) -> Result<(), RuntimeError> { let lhs_less_than_rhs = self.more_than_eq_var(rhs, lhs, bit_size, predicate)?; self.maybe_eq_predicate(lhs_less_than_rhs, predicate) } /// Returns a Variable that is constrained to be the result of reading /// from the memory `block_id` at the given `index`. - pub(crate) fn read_from_memory(&mut self, block_id: BlockId, index: &AcirVar) -> AcirVar { + pub(crate) fn read_from_memory( + &mut self, + block_id: BlockId, + index: &AcirVar, + ) -> Result { // Fetch the witness corresponding to the index - let index_witness = self.var_to_witness(*index); + let index_witness = self.var_to_witness(*index)?; // Create a Variable to hold the result of the read and extract the corresponding Witness let value_read_var = self.add_variable(); - let value_read_witness = self.var_to_witness(value_read_var); + let value_read_witness = self.var_to_witness(value_read_var)?; // Add the memory read operation to the list of opcodes let op = MemOp::read_at_mem_index(index_witness.into(), value_read_witness); self.acir_ir.opcodes.push(Opcode::MemoryOp { block_id, op }); - value_read_var + Ok(value_read_var) } /// Constrains the Variable `value` to be the new value located at `index` in the memory `block_id`. - pub(crate) fn write_to_memory(&mut self, block_id: BlockId, index: &AcirVar, value: &AcirVar) { + pub(crate) fn write_to_memory( + &mut self, + block_id: BlockId, + index: &AcirVar, + value: &AcirVar, + ) -> Result<(), InternalError> { // Fetch the witness corresponding to the index // - let index_witness = self.var_to_witness(*index); + let index_witness = self.var_to_witness(*index)?; // Fetch the witness corresponding to the value to be written - let value_write_witness = self.var_to_witness(*value); + let value_write_witness = self.var_to_witness(*value)?; // Add the memory write operation to the list of opcodes let op = MemOp::write_to_mem_index(index_witness.into(), value_write_witness.into()); self.acir_ir.opcodes.push(Opcode::MemoryOp { block_id, op }); + Ok(()) } /// Initializes an array in memory with the given values `optional_values`. @@ -1037,22 +1084,23 @@ impl AcirContext { block_id: BlockId, len: usize, optional_values: Option<&[AcirValue]>, - ) { + ) -> Result<(), InternalError> { // If the optional values are supplied, then we fill the initialized // array with those values. If not, then we fill it with zeros. let initialized_values = match optional_values { None => { let zero = self.add_constant(FieldElement::zero()); - let zero_witness = self.var_to_witness(zero); + let zero_witness = self.var_to_witness(zero)?; vec![zero_witness; len] } - Some(optional_values) => vecmap(optional_values, |value| { - let value = value.clone().into_var(); + Some(optional_values) => try_vecmap(optional_values, |value| { + let value = value.clone().into_var()?; self.var_to_witness(value) - }), + })?, }; self.acir_ir.opcodes.push(Opcode::MemoryInit { block_id, init: initialized_values }); + Ok(()) } } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/errors.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/errors.rs deleted file mode 100644 index c90f98e15be..00000000000 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/errors.rs +++ /dev/null @@ -1,62 +0,0 @@ -use acvm::FieldElement; -use noirc_errors::Location; - -use crate::errors::{RuntimeError, RuntimeErrorKind}; - -#[derive(Debug, PartialEq, Eq, Clone)] -pub(crate) enum AcirGenError { - InvalidRangeConstraint { num_bits: u32, location: Option }, - IndexOutOfBounds { index: usize, array_size: usize, location: Option }, - UnsupportedIntegerSize { num_bits: u32, max_num_bits: u32, location: Option }, - BadConstantEquality { lhs: FieldElement, rhs: FieldElement, location: Option }, -} - -impl AcirGenError { - pub(crate) fn message(&self) -> String { - match self { - AcirGenError::InvalidRangeConstraint { num_bits, .. } => { - // Don't apply any constraints if the range is for the maximum number of bits or more. - format!( - "All Witnesses are by default u{num_bits} Applying this type does not apply any constraints.\n We also currently do not allow integers of size more than {num_bits}, this will be handled by BigIntegers.") - } - AcirGenError::IndexOutOfBounds { index, array_size, .. } => { - format!("Index out of bounds, array has size {array_size}, but index was {index}") - } - AcirGenError::UnsupportedIntegerSize { num_bits, max_num_bits, .. } => { - format!("Integer sized {num_bits} is over the max supported size of {max_num_bits}") - } - AcirGenError::BadConstantEquality { lhs, rhs, .. } => { - format!("{lhs} and {rhs} constrained to be equal though they never can be") - } - } - } -} - -impl From for RuntimeError { - fn from(error: AcirGenError) -> Self { - match error { - AcirGenError::InvalidRangeConstraint { num_bits, location } => { - let kind = RuntimeErrorKind::FailedRangeConstraint(num_bits); - RuntimeError::new(kind, location) - } - AcirGenError::IndexOutOfBounds { index, array_size, location } => { - let kind = RuntimeErrorKind::ArrayOutOfBounds { - index: index as u128, - bound: array_size as u128, - }; - RuntimeError::new(kind, location) - } - AcirGenError::UnsupportedIntegerSize { num_bits, max_num_bits, location } => { - let kind = RuntimeErrorKind::UnsupportedIntegerSize { num_bits, max_num_bits }; - RuntimeError::new(kind, location) - } - AcirGenError::BadConstantEquality { lhs: _, rhs: _, location } => { - // We avoid showing the actual lhs and rhs since most of the time they are just 0 - // and 1 respectively. This would confuse users if a constraint such as - // assert(foo < bar) fails with "failed constraint: 0 = 1." - let kind = RuntimeErrorKind::FailedConstraint; - RuntimeError::new(kind, location) - } - } - } -} diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs index 459458fc03e..24f001b74db 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs @@ -2,9 +2,11 @@ //! program as it is being converted from SSA form. use std::collections::HashMap; -use crate::brillig::brillig_gen::brillig_directive; +use crate::{ + brillig::brillig_gen::brillig_directive, + errors::{InternalError, RuntimeError}, +}; -use super::errors::AcirGenError; use acvm::acir::{ brillig::Opcode as BrilligOpcode, circuit::{ @@ -122,10 +124,10 @@ impl GeneratedAcir { func_name: BlackBoxFunc, mut inputs: Vec, constants: Vec, - ) -> Vec { - intrinsics_check_inputs(func_name, &inputs); + ) -> Result, InternalError> { + intrinsics_check_inputs(func_name, &inputs)?; - let output_count = black_box_expected_output_size(func_name); + let output_count = black_box_expected_output_size(func_name)?; let outputs = vecmap(0..output_count, |_| self.next_witness_index()); // clone is needed since outputs is moved when used in blackbox function. @@ -182,18 +184,30 @@ impl GeneratedAcir { outputs: (outputs[0], outputs[1]), }, BlackBoxFunc::Keccak256 => { - let var_message_size = inputs.pop().expect("ICE: Missing message_size arg"); + let var_message_size = match inputs.pop() { + Some(var_message_size) => var_message_size, + None => { + return Err(InternalError::MissingArg { + name: "".to_string(), + arg: "message_size".to_string(), + location: self.current_location, + }); + } + }; BlackBoxFuncCall::Keccak256VariableLength { inputs, var_message_size, outputs } } // TODO(#1570): Generate ACIR for recursive aggregation BlackBoxFunc::RecursiveAggregation => { - panic!("ICE: Cannot generate ACIR for recursive aggregation") + return Err(InternalError::NotImplemented { + name: "recursive aggregation".to_string(), + location: None, + }) } }; self.opcodes.push(AcirOpcode::BlackBoxFuncCall(black_box_func_call)); - outputs_clone + Ok(outputs_clone) } /// Takes an input expression and returns witnesses that are constrained to be limbs @@ -206,7 +220,7 @@ impl GeneratedAcir { radix: u32, limb_count: u32, bit_size: u32, - ) -> Result, AcirGenError> { + ) -> Result, RuntimeError> { let radix_big = BigUint::from(radix); assert_eq!( BigUint::from(2u128).pow(bit_size), @@ -320,13 +334,13 @@ impl GeneratedAcir { lhs: &Expression, rhs: &Expression, max_bit_size: u32, - ) -> Result<(Expression, Expression), AcirGenError> { + ) -> Result<(Expression, Expression), RuntimeError> { // 2^{max_bit size-1} let max_power_of_two = FieldElement::from(2_i128).pow(&FieldElement::from(max_bit_size as i128 - 1)); // Get the sign bit of rhs by computing rhs / max_power_of_two - let (rhs_leading, _) = self.euclidean_division( + let (rhs_leading_witness, _) = self.euclidean_division( rhs, &max_power_of_two.into(), max_bit_size, @@ -334,7 +348,7 @@ impl GeneratedAcir { )?; // Get the sign bit of lhs by computing lhs / max_power_of_two - let (lhs_leading, _) = self.euclidean_division( + let (lhs_leading_witness, _) = self.euclidean_division( lhs, &max_power_of_two.into(), max_bit_size, @@ -342,8 +356,8 @@ impl GeneratedAcir { )?; // Signed to unsigned: - let unsigned_lhs = self.two_complement(lhs, lhs_leading, max_bit_size); - let unsigned_rhs = self.two_complement(rhs, rhs_leading, max_bit_size); + let unsigned_lhs = self.two_complement(lhs, lhs_leading_witness, max_bit_size); + let unsigned_rhs = self.two_complement(rhs, rhs_leading_witness, max_bit_size); let unsigned_l_witness = self.get_or_create_witness(&unsigned_lhs); let unsigned_r_witness = self.get_or_create_witness(&unsigned_rhs); @@ -357,13 +371,16 @@ impl GeneratedAcir { // Unsigned to signed: derive q and r from q1,r1 and the signs of lhs and rhs // Quotient sign is lhs sign * rhs sign, whose resulting sign bit is the XOR of the sign bits - let q_sign = (&Expression::from(lhs_leading) + &Expression::from(rhs_leading)).add_mul( - -FieldElement::from(2_i128), - &(&Expression::from(lhs_leading) * &Expression::from(rhs_leading)).unwrap(), - ); + let sign_sum = + &Expression::from(lhs_leading_witness) + &Expression::from(rhs_leading_witness); + let sign_prod = (&Expression::from(lhs_leading_witness) + * &Expression::from(rhs_leading_witness)) + .expect("Product of two witnesses so result is degree 2"); + let q_sign = sign_sum.add_mul(-FieldElement::from(2_i128), &sign_prod); + let q_sign_witness = self.get_or_create_witness(&q_sign); let quotient = self.two_complement(&q1.into(), q_sign_witness, max_bit_size); - let remainder = self.two_complement(&r1.into(), lhs_leading, max_bit_size); + let remainder = self.two_complement(&r1.into(), lhs_leading_witness, max_bit_size); Ok((quotient, remainder)) } @@ -377,7 +394,7 @@ impl GeneratedAcir { rhs: &Expression, max_bit_size: u32, predicate: &Expression, - ) -> Result<(Witness, Witness), AcirGenError> { + ) -> Result<(Witness, Witness), RuntimeError> { // lhs = rhs * q + r // // If predicate is zero, `q_witness` and `r_witness` will be 0 @@ -435,7 +452,7 @@ impl GeneratedAcir { rhs: &Expression, offset: &Expression, bits: u32, - ) -> Result<(), AcirGenError> { + ) -> Result<(), RuntimeError> { const fn num_bits() -> usize { std::mem::size_of::() * 8 } @@ -635,11 +652,11 @@ impl GeneratedAcir { &mut self, witness: Witness, num_bits: u32, - ) -> Result<(), AcirGenError> { + ) -> Result<(), RuntimeError> { // We class this as an error because users should instead // do `as Field`. if num_bits >= FieldElement::max_num_bits() { - return Err(AcirGenError::InvalidRangeConstraint { + return Err(RuntimeError::InvalidRangeConstraint { num_bits: FieldElement::max_num_bits(), location: self.current_location, }); @@ -663,7 +680,7 @@ impl GeneratedAcir { predicate: Option, q_max_bits: u32, r_max_bits: u32, - ) -> Result<(Witness, Witness), AcirGenError> { + ) -> Result<(Witness, Witness), RuntimeError> { let q_witness = self.next_witness_index(); let r_witness = self.next_witness_index(); @@ -691,7 +708,7 @@ impl GeneratedAcir { b: &Expression, max_bits: u32, predicate: Expression, - ) -> Result { + ) -> Result { // Ensure that 2^{max_bits + 1} is less than the field size // // TODO: perhaps this should be a user error, instead of an assert @@ -760,7 +777,11 @@ impl GeneratedAcir { /// /// n.b. A sorting network is a predetermined set of switches, /// the control bits indicate the configuration of each switch: false for pass-through and true for cross-over - pub(crate) fn permutation(&mut self, in_expr: &[Expression], out_expr: &[Expression]) { + pub(crate) fn permutation( + &mut self, + in_expr: &[Expression], + out_expr: &[Expression], + ) -> Result<(), RuntimeError> { let mut bits_len = 0; for i in 0..in_expr.len() { bits_len += ((i + 1) as f32).log2().ceil() as u32; @@ -774,77 +795,80 @@ impl GeneratedAcir { bits: bits.clone(), sort_by: vec![0], })); - let (_, b) = self.permutation_layer(in_expr, &bits, false); + let (_, b) = self.permutation_layer(in_expr, &bits, false)?; // Constrain the network output to out_expr for (b, o) in b.iter().zip(out_expr) { self.push_opcode(AcirOpcode::Arithmetic(b - o)); } + Ok(()) } } /// This function will return the number of inputs that a blackbox function /// expects. Returning `None` if there is no expectation. -fn black_box_func_expected_input_size(name: BlackBoxFunc) -> Option { +fn black_box_func_expected_input_size(name: BlackBoxFunc) -> Result, InternalError> { match name { // Bitwise opcodes will take in 2 parameters - BlackBoxFunc::AND | BlackBoxFunc::XOR => Some(2), + BlackBoxFunc::AND | BlackBoxFunc::XOR => Ok(Some(2)), // All of the hash/cipher methods will take in a // variable number of inputs. BlackBoxFunc::Keccak256 | BlackBoxFunc::SHA256 | BlackBoxFunc::Blake2s | BlackBoxFunc::Pedersen - | BlackBoxFunc::HashToField128Security => None, + | BlackBoxFunc::HashToField128Security => Ok(None), // Can only apply a range constraint to one // witness at a time. - BlackBoxFunc::RANGE => Some(1), + BlackBoxFunc::RANGE => Ok(Some(1)), // Signature verification algorithms will take in a variable // number of inputs, since the message/hashed-message can vary in size. BlackBoxFunc::SchnorrVerify | BlackBoxFunc::EcdsaSecp256k1 - | BlackBoxFunc::EcdsaSecp256r1 => None, + | BlackBoxFunc::EcdsaSecp256r1 => Ok(None), // Inputs for fixed based scalar multiplication // is just a scalar - BlackBoxFunc::FixedBaseScalarMul => Some(1), + BlackBoxFunc::FixedBaseScalarMul => Ok(Some(1)), // TODO(#1570): Generate ACIR for recursive aggregation // RecursiveAggregation has variable inputs and we could return `None` here, - // but as it is not fully implemented we panic for now - BlackBoxFunc::RecursiveAggregation => { - panic!("ICE: Cannot generate ACIR for recursive aggregation") - } + // but as it is not fully implemented we return an ICE error for now + BlackBoxFunc::RecursiveAggregation => Err(InternalError::NotImplemented { + name: "recursive aggregation".to_string(), + location: None, + }), } } /// This function will return the number of outputs that a blackbox function /// expects. Returning `None` if there is no expectation. -fn black_box_expected_output_size(name: BlackBoxFunc) -> u32 { +fn black_box_expected_output_size(name: BlackBoxFunc) -> Result { match name { // Bitwise opcodes will return 1 parameter which is the output // or the operation. - BlackBoxFunc::AND | BlackBoxFunc::XOR => 1, + BlackBoxFunc::AND | BlackBoxFunc::XOR => Ok(1), // 32 byte hash algorithms - BlackBoxFunc::Keccak256 | BlackBoxFunc::SHA256 | BlackBoxFunc::Blake2s => 32, + BlackBoxFunc::Keccak256 | BlackBoxFunc::SHA256 | BlackBoxFunc::Blake2s => Ok(32), // Hash to field returns a field element - BlackBoxFunc::HashToField128Security => 1, + BlackBoxFunc::HashToField128Security => Ok(1), // Pedersen returns a point - BlackBoxFunc::Pedersen => 2, + BlackBoxFunc::Pedersen => Ok(2), // Can only apply a range constraint to one // witness at a time. - BlackBoxFunc::RANGE => 0, + BlackBoxFunc::RANGE => Ok(0), // Signature verification algorithms will return a boolean BlackBoxFunc::SchnorrVerify | BlackBoxFunc::EcdsaSecp256k1 - | BlackBoxFunc::EcdsaSecp256r1 => 1, + | BlackBoxFunc::EcdsaSecp256r1 => Ok(1), // Output of fixed based scalar mul over the embedded curve // will be 2 field elements representing the point. - BlackBoxFunc::FixedBaseScalarMul => 2, + BlackBoxFunc::FixedBaseScalarMul => Ok(2), // TODO(#1570): Generate ACIR for recursive aggregation - BlackBoxFunc::RecursiveAggregation => { - panic!("ICE: Cannot generate ACIR for recursive aggregation") - } + BlackBoxFunc::RecursiveAggregation => Err(InternalError::NotImplemented { + name: "recursive aggregation".to_string(), + location: None, + }), } } @@ -863,12 +887,16 @@ fn black_box_expected_output_size(name: BlackBoxFunc) -> u32 { /// #[foreign(sha256)] /// fn sha256(_input : [u8; N]) -> [u8; 32] {} /// `` -fn intrinsics_check_inputs(name: BlackBoxFunc, inputs: &[FunctionInput]) { - let expected_num_inputs = match black_box_func_expected_input_size(name) { +fn intrinsics_check_inputs( + name: BlackBoxFunc, + inputs: &[FunctionInput], +) -> Result<(), InternalError> { + let expected_num_inputs = match black_box_func_expected_input_size(name)? { Some(expected_num_inputs) => expected_num_inputs, - None => return, + None => return Ok(()), }; let got_num_inputs = inputs.len(); assert_eq!(expected_num_inputs,inputs.len(),"Tried to call black box function {name} with {got_num_inputs} inputs, but this function's definition requires {expected_num_inputs} inputs"); + Ok(()) } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/sort.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/sort.rs index 622bf24ba65..42a6a5f1a4a 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/sort.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/sort.rs @@ -1,3 +1,5 @@ +use crate::errors::InternalError; + use super::generated_acir::GeneratedAcir; use acvm::acir::native_types::{Expression, Witness}; @@ -13,10 +15,10 @@ impl GeneratedAcir { in_expr: &[Expression], bits: &[Witness], generate_witness: bool, - ) -> (Vec, Vec) { + ) -> Result<(Vec, Vec), InternalError> { let n = in_expr.len(); if n == 1 { - return (Vec::new(), in_expr.to_vec()); + return Ok((Vec::new(), in_expr.to_vec())); } let n1 = n / 2; @@ -46,14 +48,17 @@ impl GeneratedAcir { in_sub2.push(&in_expr[2 * i + 1] - &intermediate); } if n % 2 == 1 { - in_sub2.push(in_expr.last().unwrap().clone()); + in_sub2.push(match in_expr.last() { + Some(in_expr) => in_expr.clone(), + None => return Err(InternalError::EmptyArray { location: self.current_location }), + }); } let mut out_expr = Vec::new(); // compute results for the sub networks let bits1 = if generate_witness { bits } else { &bits[n1 + (n - 1) / 2..] }; - let (w1, b1) = self.permutation_layer(&in_sub1, bits1, generate_witness); + let (w1, b1) = self.permutation_layer(&in_sub1, bits1, generate_witness)?; let bits2 = if generate_witness { bits } else { &bits[n1 + (n - 1) / 2 + w1.len()..] }; - let (w2, b2) = self.permutation_layer(&in_sub2, bits2, generate_witness); + let (w2, b2) = self.permutation_layer(&in_sub2, bits2, generate_witness)?; // apply the output switches for i in 0..(n - 1) / 2 { let c = if generate_witness { self.next_witness_index() } else { bits[n1 + i] }; @@ -63,11 +68,17 @@ impl GeneratedAcir { out_expr.push(&b2[i] - &intermediate); } if n % 2 == 0 { - out_expr.push(b1.last().unwrap().clone()); + out_expr.push(match b1.last() { + Some(b1) => b1.clone(), + None => return Err(InternalError::EmptyArray { location: self.current_location }), + }); } - out_expr.push(b2.last().unwrap().clone()); + out_expr.push(match b2.last() { + Some(b2) => b2.clone(), + None => return Err(InternalError::EmptyArray { location: self.current_location }), + }); conf.extend(w1); conf.extend(w2); - (conf, out_expr) + Ok((conf, out_expr)) } } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs index ad10bed96f9..1fce4cd76ad 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs @@ -1,19 +1,11 @@ //! This file holds the pass to convert from Noir's SSA IR to ACIR. +mod acir_ir; use std::collections::{HashMap, HashSet}; use std::fmt::Debug; use std::ops::RangeInclusive; -use crate::brillig::brillig_ir::BrilligContext; -use crate::{ - brillig::{brillig_gen::brillig_fn::FunctionContext as BrilligFunctionContext, Brillig}, - errors::RuntimeError, -}; - -use self::acir_ir::{ - acir_variable::{AcirContext, AcirType, AcirVar}, - errors::AcirGenError, -}; +use self::acir_ir::acir_variable::{AcirContext, AcirType, AcirVar}; use super::{ ir::{ dfg::DataFlowGraph, @@ -27,17 +19,17 @@ use super::{ }, ssa_gen::Ssa, }; +use crate::brillig::brillig_ir::BrilligContext; +use crate::brillig::{brillig_gen::brillig_fn::FunctionContext as BrilligFunctionContext, Brillig}; +use crate::errors::{InternalError, RuntimeError}; +pub(crate) use acir_ir::generated_acir::GeneratedAcir; use acvm::{ acir::{brillig::Opcode, circuit::opcodes::BlockId, native_types::Expression}, FieldElement, }; use iter_extended::{try_vecmap, vecmap}; - -pub(crate) use acir_ir::generated_acir::GeneratedAcir; use noirc_abi::AbiDistinctness; -mod acir_ir; - /// Context struct for the acir generation pass. /// May be similar to the Evaluator struct in the current SSA IR. struct Context { @@ -87,12 +79,13 @@ pub(crate) enum AcirValue { } impl AcirValue { - fn into_var(self) -> AcirVar { + fn into_var(self) -> Result { match self { - AcirValue::Var(var, _) => var, - AcirValue::DynamicArray(_) | AcirValue::Array(_) => { - panic!("Called AcirValue::into_var on an array") - } + AcirValue::Var(var, _) => Ok(var), + AcirValue::DynamicArray(_) | AcirValue::Array(_) => Err(InternalError::General { + message: "Called AcirValue::into_var on an array".to_string(), + location: None, + }), } } @@ -156,7 +149,7 @@ impl Context { ssa: Ssa, brillig: Brillig, allow_log_ops: bool, - ) -> Result { + ) -> Result { let main_func = ssa.main(); match main_func.runtime() { RuntimeType::Acir => self.convert_acir_main(main_func, &ssa, brillig, allow_log_ops), @@ -170,7 +163,7 @@ impl Context { ssa: &Ssa, brillig: Brillig, allow_log_ops: bool, - ) -> Result { + ) -> Result { let dfg = &main_func.dfg; let entry_block = &dfg[main_func.entry_block()]; let input_witness = self.convert_ssa_block_params(entry_block.parameters(), dfg)?; @@ -179,7 +172,7 @@ impl Context { self.convert_ssa_instruction(*instruction_id, dfg, ssa, &brillig, allow_log_ops)?; } - self.convert_ssa_return(entry_block.unwrap_terminator(), dfg); + self.convert_ssa_return(entry_block.unwrap_terminator(), dfg)?; Ok(self.acir_context.finish(input_witness.collect())) } @@ -188,7 +181,7 @@ impl Context { mut self, main_func: &Function, brillig: Brillig, - ) -> Result { + ) -> Result { let dfg = &main_func.dfg; let inputs = try_vecmap(dfg[main_func.entry_block()].parameters(), |param_id| { @@ -200,10 +193,14 @@ impl Context { let outputs: Vec = vecmap(main_func.returns(), |result_id| dfg.type_of_value(*result_id).into()); - let code = self.gen_brillig_for(main_func, &brillig); + let code = self.gen_brillig_for(main_func, &brillig)?; - let output_values = - self.acir_context.brillig(self.current_side_effects_enabled_var, code, inputs, outputs); + let output_values = self.acir_context.brillig( + self.current_side_effects_enabled_var, + code, + inputs, + outputs, + )?; let output_vars: Vec<_> = output_values .iter() .flat_map(|value| value.clone().flatten()) @@ -211,7 +208,7 @@ impl Context { .collect(); for acir_var in output_vars { - self.acir_context.return_var(acir_var); + self.acir_context.return_var(acir_var)?; } Ok(self.acir_context.finish(witness_inputs)) @@ -222,7 +219,7 @@ impl Context { &mut self, params: &[ValueId], dfg: &DataFlowGraph, - ) -> Result, AcirGenError> { + ) -> Result, RuntimeError> { // The first witness (if any) is the next one let start_witness = self.acir_context.current_witness_index().0 + 1; for param_id in params { @@ -233,7 +230,7 @@ impl Context { AcirValue::Array(values) => { let block_id = BlockId(param_id.to_usize() as u32); let v = vecmap(values, |v| v.clone()); - self.initialize_array(block_id, values.len(), Some(&v)); + self.initialize_array(block_id, values.len(), Some(&v))?; } AcirValue::DynamicArray(_) => unreachable!( "The dynamic array type is created in Acir gen and therefore cannot be a block parameter" @@ -245,15 +242,15 @@ impl Context { Ok(start_witness..=end_witness) } - fn convert_ssa_block_param(&mut self, param_type: &Type) -> Result { + fn convert_ssa_block_param(&mut self, param_type: &Type) -> Result { self.create_value_from_type(param_type, &mut |this, typ| this.add_numeric_input_var(&typ)) } fn create_value_from_type( &mut self, param_type: &Type, - make_var: &mut impl FnMut(&mut Self, NumericType) -> Result, - ) -> Result { + make_var: &mut impl FnMut(&mut Self, NumericType) -> Result, + ) -> Result { match param_type { Type::Numeric(numeric_type) => { let typ = AcirType::new(*numeric_type); @@ -282,7 +279,7 @@ impl Context { fn add_numeric_input_var( &mut self, numeric_type: &NumericType, - ) -> Result { + ) -> Result { let acir_var = self.acir_context.add_variable(); if matches!(numeric_type, NumericType::Signed { .. } | NumericType::Unsigned { .. }) { self.acir_context.range_constrain_var(acir_var, numeric_type)?; @@ -298,7 +295,7 @@ impl Context { ssa: &Ssa, brillig: &Brillig, allow_log_ops: bool, - ) -> Result<(), AcirGenError> { + ) -> Result<(), RuntimeError> { let instruction = &dfg[instruction_id]; self.acir_context.set_location(dfg.get_location(&instruction_id)); match instruction { @@ -307,7 +304,7 @@ impl Context { self.define_result_var(dfg, instruction_id, result_acir_var); } Instruction::Constrain(value_id) => { - let constrain_condition = self.convert_numeric_value(*value_id, dfg); + let constrain_condition = self.convert_numeric_value(*value_id, dfg)?; self.acir_context.assert_eq_one(constrain_condition)?; } Instruction::Cast(value_id, typ) => { @@ -326,11 +323,11 @@ impl Context { RuntimeType::Brillig => { let inputs = vecmap(arguments, |arg| self.convert_value(*arg, dfg)); - let code = self.gen_brillig_for(func, brillig); + let code = self.gen_brillig_for(func, brillig)?; let outputs: Vec = vecmap(result_ids, |result_id| dfg.type_of_value(*result_id).into()); - let output_values = self.acir_context.brillig(self.current_side_effects_enabled_var, code, inputs, outputs); + let output_values = self.acir_context.brillig(self.current_side_effects_enabled_var, code, inputs, outputs)?; // Compiler sanity check assert_eq!(result_ids.len(), output_values.len(), "ICE: The number of Brillig output values should match the result ids in SSA"); @@ -378,7 +375,7 @@ impl Context { self.define_result_var(dfg, instruction_id, result_acir_var); } Instruction::EnableSideEffects { condition } => { - let acir_var = self.convert_numeric_value(*condition, dfg); + let acir_var = self.convert_numeric_value(*condition, dfg)?; self.current_side_effects_enabled_var = acir_var; } Instruction::ArrayGet { array, index } => { @@ -401,7 +398,11 @@ impl Context { Ok(()) } - fn gen_brillig_for(&self, func: &Function, brillig: &Brillig) -> Vec { + fn gen_brillig_for( + &self, + func: &Function, + brillig: &Brillig, + ) -> Result, InternalError> { // Create the entry point artifact let mut entry_point = BrilligContext::new_entry_point_artifact( BrilligFunctionContext::parameters(func), @@ -410,13 +411,20 @@ impl Context { ); // Link the entry point with all dependencies while let Some(unresolved_fn_label) = entry_point.first_unresolved_function_call() { - let artifact = &brillig - .find_by_function_label(unresolved_fn_label.clone()) - .unwrap_or_else(|| panic!("Cannot find linked fn {unresolved_fn_label}")); + let artifact = &brillig.find_by_function_label(unresolved_fn_label.clone()); + let artifact = match artifact { + Some(artifact) => artifact, + None => { + return Err(InternalError::General { + message: format!("Cannot find linked fn {unresolved_fn_label}"), + location: None, + }) + } + }; entry_point.link_with(artifact); } // Generate the final bytecode - entry_point.finish() + Ok(entry_point.finish()) } /// Handles an ArrayGet or ArraySet instruction. @@ -429,23 +437,37 @@ impl Context { index: ValueId, store_value: Option, dfg: &DataFlowGraph, - ) -> Result<(), AcirGenError> { + ) -> Result<(), RuntimeError> { let index_const = dfg.get_numeric_constant(index); match self.convert_value(array, dfg) { - AcirValue::Var(acir_var, _) => panic!("Expected an array value, found: {acir_var:?}"), + AcirValue::Var(acir_var, _) => { + return Err(RuntimeError::InternalError(InternalError::UnExpected { + expected: "an array value".to_string(), + found: format!("{acir_var:?}"), + location: self.acir_context.get_location(), + })) + } AcirValue::Array(array) => { if let Some(index_const) = index_const { let array_size = array.len(); - let index = - index_const.try_to_u64().expect("Expected array index to fit into a u64") - as usize; + let index = match index_const.try_to_u64() { + Some(index_const) => index_const as usize, + None => { + let location = self.acir_context.get_location(); + return Err(RuntimeError::TypeConversion { + from: "array index".to_string(), + into: "u64".to_string(), + location, + }); + } + }; if index >= array_size { // Ignore the error if side effects are disabled. if self.acir_context.is_constant_one(&self.current_side_effects_enabled_var) { let location = self.acir_context.get_location(); - return Err(AcirGenError::IndexOutOfBounds { + return Err(RuntimeError::IndexOutOfBounds { index, array_size, location, @@ -474,9 +496,9 @@ impl Context { } if let Some(store) = store_value { - self.array_set(instruction, array, index, store, dfg); + self.array_set(instruction, array, index, store, dfg)?; } else { - self.array_get(instruction, array, index, dfg); + self.array_get(instruction, array, index, dfg)?; } Ok(()) @@ -489,7 +511,7 @@ impl Context { array: ValueId, index: ValueId, dfg: &DataFlowGraph, - ) { + ) -> Result<(), RuntimeError> { let array = dfg.resolve(array); let block_id = BlockId(array.to_usize() as u32); if !self.initialized_arrays.contains(&block_id) { @@ -497,14 +519,19 @@ impl Context { Value::Array { array, .. } => { let values: Vec = array.iter().map(|i| self.convert_value(*i, dfg)).collect(); - self.initialize_array(block_id, array.len(), Some(&values)); + self.initialize_array(block_id, array.len(), Some(&values))?; + } + _ => { + return Err(RuntimeError::UnInitialized { + name: "array".to_string(), + location: self.acir_context.get_location(), + }) } - _ => panic!("reading uninitialized array"), } } - let index_var = self.convert_value(index, dfg).into_var(); - let read = self.acir_context.read_from_memory(block_id, &index_var); + let index_var = self.convert_value(index, dfg).into_var()?; + let read = self.acir_context.read_from_memory(block_id, &index_var)?; let typ = match dfg.type_of_value(array) { Type::Array(typ, _) => { if typ.len() != 1 { @@ -518,6 +545,7 @@ impl Context { }; let typ = AcirType::from(typ); self.define_result(dfg, instruction, AcirValue::Var(read, typ)); + Ok(()) } /// Copy the array and generates a write opcode on the new array @@ -530,7 +558,7 @@ impl Context { index: ValueId, store_value: ValueId, dfg: &DataFlowGraph, - ) { + ) -> Result<(), InternalError> { // Fetch the internal SSA ID for the array let array = dfg.resolve(array); let array_ssa_id = array.to_usize() as u32; @@ -554,9 +582,14 @@ impl Context { Value::Array { array, .. } => { let values: Vec = array.iter().map(|i| self.convert_value(*i, dfg)).collect(); - self.initialize_array(block_id, array.len(), Some(&values)); + self.initialize_array(block_id, array.len(), Some(&values))?; + } + _ => { + return Err(InternalError::General { + message: format!("Array {array} should be initialized"), + location: self.acir_context.get_location(), + }) } - _ => panic!("Array {} should be initialized", array), } } @@ -570,7 +603,7 @@ impl Context { let result_block_id = BlockId(result_array_id); // Initialize the new array with zero values - self.initialize_array(result_block_id, len, None); + self.initialize_array(result_block_id, len, None)?; // Copy the values from the old array into the newly created zeroed array for i in 0..len { @@ -578,26 +611,33 @@ impl Context { self.acir_context.add_constant(FieldElement::from(i as u128)), AcirType::NumericType(NumericType::NativeField), ); - let var = index.into_var(); - let read = self.acir_context.read_from_memory(block_id, &var); - self.acir_context.write_to_memory(result_block_id, &var, &read); + let var = index.into_var()?; + let read = self.acir_context.read_from_memory(block_id, &var)?; + self.acir_context.write_to_memory(result_block_id, &var, &read)?; } // Write the new value into the new array at the specified index - let index_var = self.convert_value(index, dfg).into_var(); - let value_var = self.convert_value(store_value, dfg).into_var(); - self.acir_context.write_to_memory(result_block_id, &index_var, &value_var); + let index_var = self.convert_value(index, dfg).into_var()?; + let value_var = self.convert_value(store_value, dfg).into_var()?; + self.acir_context.write_to_memory(result_block_id, &index_var, &value_var)?; let result_value = AcirValue::DynamicArray(AcirDynamicArray { block_id: result_block_id, len }); self.define_result(dfg, instruction, result_value); + Ok(()) } /// Initializes an array with the given values and caches the fact that we /// have initialized this array. - fn initialize_array(&mut self, array: BlockId, len: usize, values: Option<&[AcirValue]>) { - self.acir_context.initialize_array(array, len, values); + fn initialize_array( + &mut self, + array: BlockId, + len: usize, + values: Option<&[AcirValue]>, + ) -> Result<(), InternalError> { + self.acir_context.initialize_array(array, len, values)?; self.initialized_arrays.insert(array); + Ok(()) } /// Remember the result of an instruction returning a single value @@ -624,7 +664,11 @@ impl Context { } /// Converts an SSA terminator's return values into their ACIR representations - fn convert_ssa_return(&mut self, terminator: &TerminatorInstruction, dfg: &DataFlowGraph) { + fn convert_ssa_return( + &mut self, + terminator: &TerminatorInstruction, + dfg: &DataFlowGraph, + ) -> Result<(), InternalError> { let return_values = match terminator { TerminatorInstruction::Return { return_values } => return_values, _ => unreachable!("ICE: Program must have a singular return"), @@ -634,8 +678,9 @@ impl Context { // will expand the array if there is one. let return_acir_vars = self.flatten_value_list(return_values, dfg); for acir_var in return_acir_vars { - self.acir_context.return_var(acir_var); + self.acir_context.return_var(acir_var)?; } + Ok(()) } /// Gets the cached `AcirVar` that was converted from the corresponding `ValueId`. If it does @@ -679,11 +724,25 @@ impl Context { acir_value } - fn convert_numeric_value(&mut self, value_id: ValueId, dfg: &DataFlowGraph) -> AcirVar { + fn convert_numeric_value( + &mut self, + value_id: ValueId, + dfg: &DataFlowGraph, + ) -> Result { match self.convert_value(value_id, dfg) { - AcirValue::Var(acir_var, _) => acir_var, - AcirValue::Array(array) => panic!("Expected a numeric value, found: {array:?}"), - AcirValue::DynamicArray(_) => panic!("Expected a numeric value, found an array"), + AcirValue::Var(acir_var, _) => Ok(acir_var), + AcirValue::Array(array) => { + return Err(InternalError::UnExpected { + expected: "a numeric value".to_string(), + found: format!("{array:?}"), + location: self.acir_context.get_location(), + }) + } + AcirValue::DynamicArray(_) => Err(InternalError::UnExpected { + expected: "a numeric value".to_string(), + found: "an array".to_string(), + location: self.acir_context.get_location(), + }), } } @@ -692,9 +751,9 @@ impl Context { &mut self, binary: &Binary, dfg: &DataFlowGraph, - ) -> Result { - let lhs = self.convert_numeric_value(binary.lhs, dfg); - let rhs = self.convert_numeric_value(binary.rhs, dfg); + ) -> Result { + let lhs = self.convert_numeric_value(binary.lhs, dfg)?; + let rhs = self.convert_numeric_value(binary.rhs, dfg)?; let binary_type = self.type_of_binary_operation(binary, dfg); match &binary_type { @@ -705,7 +764,7 @@ impl Context { // truncation technique: result % 2^bit_size to be valid. let max_integer_bit_size = FieldElement::max_num_bits() / 2; if *bit_size > max_integer_bit_size { - return Err(AcirGenError::UnsupportedIntegerSize { + return Err(RuntimeError::UnsupportedIntegerSize { num_bits: *bit_size, max_num_bits: max_integer_bit_size, location: self.acir_context.get_location(), @@ -813,7 +872,7 @@ impl Context { value_id: &ValueId, typ: &Type, dfg: &DataFlowGraph, - ) -> Result { + ) -> Result { let (variable, incoming_type) = match self.convert_value(*value_id, dfg) { AcirValue::Var(variable, typ) => (variable, typ), AcirValue::DynamicArray(_) | AcirValue::Array(_) => { @@ -851,8 +910,8 @@ impl Context { bit_size: u32, max_bit_size: u32, dfg: &DataFlowGraph, - ) -> Result { - let mut var = self.convert_numeric_value(value_id, dfg); + ) -> Result { + let mut var = self.convert_numeric_value(value_id, dfg)?; let truncation_target = match &dfg[value_id] { Value::Instruction { instruction, .. } => &dfg[*instruction], _ => unreachable!("ICE: Truncates are only ever applied to the result of a binary op"), @@ -879,7 +938,7 @@ impl Context { dfg: &DataFlowGraph, allow_log_ops: bool, result_ids: &[ValueId], - ) -> Result, AcirGenError> { + ) -> Result, RuntimeError> { match intrinsic { Intrinsic::BlackBox(black_box) => { let inputs = vecmap(arguments, |arg| self.convert_value(*arg, dfg)); @@ -889,16 +948,16 @@ impl Context { Ok(Self::convert_vars_to_values(vars, dfg, result_ids)) } Intrinsic::ToRadix(endian) => { - let field = self.convert_value(arguments[0], dfg).into_var(); - let radix = self.convert_value(arguments[1], dfg).into_var(); - let limb_size = self.convert_value(arguments[2], dfg).into_var(); + let field = self.convert_value(arguments[0], dfg).into_var()?; + let radix = self.convert_value(arguments[1], dfg).into_var()?; + let limb_size = self.convert_value(arguments[2], dfg).into_var()?; let result_type = Self::array_element_type(dfg, result_ids[0]); self.acir_context.radix_decompose(endian, field, radix, limb_size, result_type) } Intrinsic::ToBits(endian) => { - let field = self.convert_value(arguments[0], dfg).into_var(); - let bit_size = self.convert_value(arguments[1], dfg).into_var(); + let field = self.convert_value(arguments[0], dfg).into_var()?; + let bit_size = self.convert_value(arguments[1], dfg).into_var()?; let result_type = Self::array_element_type(dfg, result_ids[0]); self.acir_context.bit_decompose(endian, field, bit_size, result_type) @@ -1020,7 +1079,7 @@ impl Context { } /// Creates a default, meaningless value meant only to be a valid value of the given type. - fn create_default_value(&mut self, param_type: &Type) -> Result { + fn create_default_value(&mut self, param_type: &Type) -> Result { self.create_value_from_type(param_type, &mut |this, _| { Ok(this.acir_context.add_constant(FieldElement::zero())) }) From 9e2cf6f25f775d927b67c12aba1698c5635242e3 Mon Sep 17 00:00:00 2001 From: kek kek kek Date: Tue, 1 Aug 2023 01:57:31 -0700 Subject: [PATCH 05/13] feat: Add `deprecated` attribute (#2041) * impl deprecated attribute * add note * add tests * simplify * use secondary_message --- crates/noirc_frontend/src/ast/function.rs | 2 +- .../src/hir/type_check/errors.rs | 8 +++ .../noirc_frontend/src/hir/type_check/expr.rs | 23 ++++++- crates/noirc_frontend/src/lexer/lexer.rs | 23 +++++-- crates/noirc_frontend/src/lexer/token.rs | 65 +++++++++++++------ 5 files changed, 96 insertions(+), 25 deletions(-) diff --git a/crates/noirc_frontend/src/ast/function.rs b/crates/noirc_frontend/src/ast/function.rs index de4e4f6f4d2..02af960f7a8 100644 --- a/crates/noirc_frontend/src/ast/function.rs +++ b/crates/noirc_frontend/src/ast/function.rs @@ -82,7 +82,7 @@ impl From for NoirFunction { Some(Attribute::Foreign(_)) => FunctionKind::LowLevel, Some(Attribute::Test) => FunctionKind::Normal, Some(Attribute::Oracle(_)) => FunctionKind::Oracle, - None => FunctionKind::Normal, + Some(Attribute::Deprecated(_)) | None => FunctionKind::Normal, }; NoirFunction { def: fd, kind } diff --git a/crates/noirc_frontend/src/hir/type_check/errors.rs b/crates/noirc_frontend/src/hir/type_check/errors.rs index 3c7e34b5699..4f032503f3d 100644 --- a/crates/noirc_frontend/src/hir/type_check/errors.rs +++ b/crates/noirc_frontend/src/hir/type_check/errors.rs @@ -94,6 +94,8 @@ pub enum TypeCheckError { }, #[error("Cannot infer type of expression, type annotations needed before this point")] TypeAnnotationsNeeded { span: Span }, + #[error("use of deprecated function {name}")] + CallDeprecated { name: String, note: Option, span: Span }, #[error("{0}")] ResolverError(ResolverError), } @@ -205,6 +207,12 @@ impl From for Diagnostic { Diagnostic::simple_error(message, String::new(), span) } + TypeCheckError::CallDeprecated { span, ref note, .. } => { + let primary_message = error.to_string(); + let secondary_message = note.clone().unwrap_or_default(); + + Diagnostic::simple_warning(primary_message, secondary_message, span) + } } } } diff --git a/crates/noirc_frontend/src/hir/type_check/expr.rs b/crates/noirc_frontend/src/hir/type_check/expr.rs index 8c396ea6814..b19833fb311 100644 --- a/crates/noirc_frontend/src/hir/type_check/expr.rs +++ b/crates/noirc_frontend/src/hir/type_check/expr.rs @@ -10,13 +10,32 @@ use crate::{ }, types::Type, }, - node_interner::{ExprId, FuncId}, + node_interner::{DefinitionKind, ExprId, FuncId}, + token::Attribute::Deprecated, CompTime, Shared, TypeBinding, TypeVariableKind, UnaryOp, }; use super::{errors::TypeCheckError, TypeChecker}; impl<'interner> TypeChecker<'interner> { + fn check_if_deprecated(&mut self, expr: &ExprId) { + if let HirExpression::Ident(expr::HirIdent { location, id }) = + self.interner.expression(expr) + { + if let Some(DefinitionKind::Function(func_id)) = + self.interner.try_definition(id).map(|def| &def.kind) + { + let meta = self.interner.function_meta(func_id); + if let Some(Deprecated(note)) = meta.attributes { + self.errors.push(TypeCheckError::CallDeprecated { + name: self.interner.definition_name(id).to_string(), + note, + span: location.span, + }); + } + } + } + } /// Infers a type for a given expression, and return this type. /// As a side-effect, this function will also remember this type in the NodeInterner /// for the given expr_id key. @@ -112,6 +131,8 @@ impl<'interner> TypeChecker<'interner> { } HirExpression::Index(index_expr) => self.check_index_expression(index_expr), HirExpression::Call(call_expr) => { + self.check_if_deprecated(&call_expr.func); + let function = self.check_expression(&call_expr.func); let args = vecmap(&call_expr.arguments, |arg| { let typ = self.check_expression(arg); diff --git a/crates/noirc_frontend/src/lexer/lexer.rs b/crates/noirc_frontend/src/lexer/lexer.rs index 30866be52ce..e376d85ddf0 100644 --- a/crates/noirc_frontend/src/lexer/lexer.rs +++ b/crates/noirc_frontend/src/lexer/lexer.rs @@ -244,10 +244,7 @@ impl<'a> Lexer<'a> { } self.next_char(); - let (word, start, end) = self.eat_while(None, |ch| { - (ch.is_ascii_alphabetic() || ch.is_numeric() || ch == '_' || ch == '(' || ch == ')') - && (ch != ']') - }); + let (word, start, end) = self.eat_while(None, |ch| ch != ']'); if !self.peek_char_is(']') { return Err(LexerErrorKind::UnexpectedCharacter { @@ -427,6 +424,24 @@ fn invalid_attribute() { assert!(token.is_err()); } +#[test] +fn deprecated_attribute() { + let input = r#"#[deprecated]"#; + let mut lexer = Lexer::new(input); + + let token = lexer.next().unwrap().unwrap(); + assert_eq!(token.token(), &Token::Attribute(Attribute::Deprecated(None))); +} + +#[test] +fn deprecated_attribute_with_note() { + let input = r#"#[deprecated("hello")]"#; + let mut lexer = Lexer::new(input); + + let token = lexer.next().unwrap().unwrap(); + assert_eq!(token.token(), &Token::Attribute(Attribute::Deprecated("hello".to_string().into()))); +} + #[test] fn test_custom_gate_syntax() { let input = "#[foreign(sha256)]#[foreign(blake2s)]#[builtin(sum)]"; diff --git a/crates/noirc_frontend/src/lexer/token.rs b/crates/noirc_frontend/src/lexer/token.rs index a58a9cbe249..b39d1640c57 100644 --- a/crates/noirc_frontend/src/lexer/token.rs +++ b/crates/noirc_frontend/src/lexer/token.rs @@ -322,6 +322,7 @@ pub enum Attribute { Foreign(String), Builtin(String), Oracle(String), + Deprecated(Option), Test, } @@ -332,6 +333,8 @@ impl fmt::Display for Attribute { Attribute::Builtin(ref k) => write!(f, "#[builtin({k})]"), Attribute::Oracle(ref k) => write!(f, "#[oracle({k})]"), Attribute::Test => write!(f, "#[test]"), + Attribute::Deprecated(None) => write!(f, "#[deprecated]"), + Attribute::Deprecated(Some(ref note)) => write!(f, r#"#[deprecated("{note}")]"#), } } } @@ -345,29 +348,52 @@ impl Attribute { .filter(|string_segment| !string_segment.is_empty()) .collect(); - if word_segments.len() != 2 { - if word_segments.len() == 1 && word_segments[0] == "test" { - return Ok(Token::Attribute(Attribute::Test)); - } else { - return Err(LexerErrorKind::MalformedFuncAttribute { - span, - found: word.to_owned(), - }); - } - } - - let attribute_type = word_segments[0]; - let attribute_name = word_segments[1]; + let validate = |slice: &str| { + let is_valid = slice + .chars() + .all(|ch| { + ch.is_ascii_alphabetic() + || ch.is_numeric() + || ch == '_' + || ch == '(' + || ch == ')' + }) + .then_some(()); + + is_valid.ok_or(LexerErrorKind::MalformedFuncAttribute { span, found: word.to_owned() }) + }; - let tok = match attribute_type { - "foreign" => Token::Attribute(Attribute::Foreign(attribute_name.to_string())), - "builtin" => Token::Attribute(Attribute::Builtin(attribute_name.to_string())), - "oracle" => Token::Attribute(Attribute::Oracle(attribute_name.to_string())), + let attribute = match &word_segments[..] { + ["foreign", name] => { + validate(name)?; + Attribute::Foreign(name.to_string()) + } + ["builtin", name] => { + validate(name)?; + Attribute::Builtin(name.to_string()) + } + ["oracle", name] => { + validate(name)?; + Attribute::Oracle(name.to_string()) + } + ["deprecated"] => Attribute::Deprecated(None), + ["deprecated", name] => { + if !name.starts_with('"') && !name.ends_with('"') { + return Err(LexerErrorKind::MalformedFuncAttribute { + span, + found: word.to_owned(), + }); + } + + Attribute::Deprecated(name.trim_matches('"').to_string().into()) + } + ["test"] => Attribute::Test, _ => { return Err(LexerErrorKind::MalformedFuncAttribute { span, found: word.to_owned() }) } }; - Ok(tok) + + Ok(Token::Attribute(attribute)) } pub fn builtin(self) -> Option { @@ -399,7 +425,8 @@ impl AsRef for Attribute { Attribute::Foreign(string) => string, Attribute::Builtin(string) => string, Attribute::Oracle(string) => string, - Attribute::Test => "", + Attribute::Deprecated(Some(string)) => string, + Attribute::Test | Attribute::Deprecated(None) => "", } } } From 550e627104b3e2ee181de2eb8c6dc95cc775ebfd Mon Sep 17 00:00:00 2001 From: Tom French <15848336+TomAFrench@users.noreply.github.com> Date: Tue, 1 Aug 2023 12:57:58 +0100 Subject: [PATCH 06/13] chore: refresh ACIR test artifacts (#2091) --- .../tests/test_data/1_mul/target/main.json | 2 +- .../tests/test_data/1_mul/target/witness.tr | Bin 112 -> 114 bytes .../tests/test_data/2_div/target/main.json | 2 +- .../tests/test_data/2_div/target/witness.tr | Bin 123 -> 164 bytes .../tests/test_data/5_over/target/main.json | 2 +- .../tests/test_data/5_over/target/witness.tr | Bin 110 -> 112 bytes .../tests/test_data/6_array/target/main.json | 2 +- .../tests/test_data/6_array/target/witness.tr | Bin 2108 -> 2124 bytes .../test_data/8_integration/target/main.json | 2 +- .../test_data/8_integration/target/witness.tr | Bin 7995 -> 8074 bytes .../test_data/9_conditional/target/main.json | 2 +- .../test_data/9_conditional/target/witness.tr | Bin 31584 -> 32163 bytes .../brillig_fns_as_values/target/main.json | 2 +- .../test_data/brillig_slices/target/main.json | 2 +- .../signed_division/target/main.json | 2 +- .../signed_division/target/witness.tr | Bin 398 -> 383 bytes .../test_data/simple_bitwise/target/main.json | 2 +- .../simple_bitwise/target/witness.tr | Bin 191 -> 191 bytes 18 files changed, 10 insertions(+), 10 deletions(-) diff --git a/crates/nargo_cli/tests/test_data/1_mul/target/main.json b/crates/nargo_cli/tests/test_data/1_mul/target/main.json index 632c0e6b6a0..f53b31bda01 100644 --- a/crates/nargo_cli/tests/test_data/1_mul/target/main.json +++ b/crates/nargo_cli/tests/test_data/1_mul/target/main.json @@ -1 +1 @@ -{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"x","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"y","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"z","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"}],"param_witnesses":{"x":[1],"y":[2],"z":[3]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/9WYTW6DMBSEJwESGhrapNsuOIKNIZhdr1JUcv8jFFQ7UCu7zEPBEjKW4P3MvI8FHwA+8bc2w7V1ezE7b4Nz5M7+2Y17/8vt6rGlfR5w4yoE68G42t/EQ4xkpgO78JsgcWBE4s4QNCGMa9Slqvqm7LXR36psO1urqu4uVltd2/qntMb0trJN27WNanVlen2tW3N1gXeQMTTi1Fm6OnVM7Dkh+sLUTwrgxM0mmQMxgPdDjBQLADwmKjABnEIOYG8CG+AXrAPgPbHnlOgLUz8pgFM3m2QOxAA+DDEyLADwmKjABHAGOYC9CWyAX7EOgA/EnjOiL0z9pADO3GySORAD+DjEyLEAwGOiAhPAOeQA9iawAX7DOgA+EnvOib48uX63niNizzmxrneifhHuQA8+i8ya5/WeZvex27d3ZmIn0BOCPKGOoh9UKZNOAnHP4A2/VN9nvkf/Pk7PrGk0q9H/YAzXLy9W07upFAAA","proving_key":null,"verification_key":null} \ No newline at end of file +{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"x","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"y","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"z","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"}],"param_witnesses":{"x":[1],"y":[2],"z":[3]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/9WYTW6DMBSEJ+EvhAZVVdVuuuAIGEMwu16lqOT+RyiodiBWdpmHgiVkLMH7mXkfCz4BfOF/7cZrb/dicd5758Ce3bM7+/633cvHlnJ5wI1bwlsPxlXuJhxjRAsd2IVfBQk9IyJ7hqAJflxdnut6aKtBafVTVl1vmrJu+rNRRjWm+a2M1oOpTdv1XVt2qtaDujSdvtjAr5AxNODUWdk6VUjsOSL6wtRPCuDIziaZAzGA4zFGghUAnhIVmAFOIAewM4EN8Bu2AXBM7Dkh+sLUTwrgxM4mmQMxgA9jjBQrADwlKjADnEIOYGcCG+B3bAPgA7HnlOgLUz8pgFM7m2QOxAA+jjEyrADwlKjADHAGOYCdCWyAP7ANgI/EnjOiL0+u37XngNhzRqzrhahfgDvQg88is+ZlvafFfWj3/Z2ZiAV6gpfH1zGH4AdVyqSTQNwcvOGX6jvne3TzcXpmTYNFje4Ho7/+AAxbTEGpFAAA","proving_key":null,"verification_key":null} \ No newline at end of file diff --git a/crates/nargo_cli/tests/test_data/1_mul/target/witness.tr b/crates/nargo_cli/tests/test_data/1_mul/target/witness.tr index a539f87a55498eeaff3e546ac9126cea0091fa70..e01c75d888ce2976c0dd635f2e1bbb759ee25b29 100644 GIT binary patch literal 114 zcmV-&0FD12iwFP!00002|E-eA34kyV0KIQTf>_5c>LWi}5&Q2U2}uW;g^+y>13RXO zQ~LL&UGnCtIM!VQEVZA8zu~;3}vtNR*0Ky0}dH?_b literal 112 zcmV-$0FVD4iwFP!00002|E<$W3cw%?h2hTg=t&aVF5LAhrT4#sir&CKAZGQE2Zk? zM}9~%`e*!o&+bpdQYJV{rZ_9ifYuym@d9WqfgM-Cxz<2ygR^K0w06Lbd*ECLoRyEj zjwhgX2JY(uw64I8x1J@GWAqZ7g0EGV^iwFP!00002|E;}YRTwED#z70|23c%?KzR*PeC2Vikt9R zvp+k1#Rf{^xdOP}vnHa?k7PFgIp;pliUncm%jOdKV?p1nioD Q|1vn2oVhhsZkPiA0A^1vzW@LL diff --git a/crates/nargo_cli/tests/test_data/6_array/target/main.json b/crates/nargo_cli/tests/test_data/6_array/target/main.json index d49d0955347..3a434bc8f7a 100644 --- a/crates/nargo_cli/tests/test_data/6_array/target/main.json +++ b/crates/nargo_cli/tests/test_data/6_array/target/main.json @@ -1 +1 @@ -{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"x","type":{"kind":"array","length":5,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"y","type":{"kind":"array","length":5,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"z","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"t","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"}],"param_witnesses":{"t":[12],"x":[1,2,3,4,5],"y":[6,7,8,9,10],"z":[11]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/+1da5Re0xl+5pvJzGRyqUukUaFbhVKRzjeXZBKkEUEqCEqpa0VmXEupW0kRcSkioqg7oe7Xut8qKKWUUkoppZRSSimNUsreyzlzztksfuzn3eu8y/nWsuZ81srz7vd93uc5795n5vumNwCL7H/u5X7Ukp8m977mvW/03jd57wck7wd8DNv/M//vm5L/n/6/Zg+jxXvf6r0f6L1vy8VsyMVsTrBak3/Tlvs3gzyMwcn7tAZJWTAp+dke9qq3JfHBxW2H9wrEracXQyzG0Fwd2Auvp4Uf4hExNHkPQRJ83M72sV1dveM6euud9R3aO8bP6Olu7+qeMban3lPv7ume2dHT2dnb09UzbvyM8ePax9e7Onvrfd3jO/sS4C9BhtBGzjo7knXWhxBzHkrkhVk/KQE3J71J1oGYgBezGIsjgoBdIINMwItDTsApCWwBLwEdAl6MmPPiRF6Y9auh2LQ1cg+1lauG/YKF92LhLmkxhiGCESyJzHlrSVDjxWxUQmYo1mINOgxlSWLOw4i8EurXLwCpiWBY0uNkPYkZwVIWYzgiGIELZJAZwXDITQQpCeyJ4MvQIeCliDkPJ/LCrJ+UgFuS3iTrQEzAIyzG0oggYBfIIBPw0pATcEoCW8BfgQ4BjyDmvDSRF2b9pEf6YeWqofhIv4zFGIkIRrAMiiO9C2q8mOyRXorM4DMCJSP9MsScRxJ5XULBSD8y6XGynsSMYFmLsRwiGIELZJAZwXKQmwhSEtgTwVehQ8DLEnNejsgLs35SAm5NepOsAzEBG4uxPCII2KAo4OUhJ+CUBLaAvwYdAjbEnJcn8sKsn/RIP7JcNRQf6VewGKMQwQhWQHGkd0GNF5M90kuRGXxirWSkX4GY8ygir8MUjPSjkh4n60nMCFa0GCshghG4QAaZEawEuYkgJYE9EXwdOgS8IjHnlYi8MOsnJeCBSW+SdSAm4JUtxiqIIGAXyCAT8CqQE3BKAlvA34AOAa9MzHkVIi/M+kmP9KPKVUPxkX5VizEaEYxgVRRHehfUeDHZI70UmcHPsJWM9KsScx5N5HW4gpF+dNLjZD2JGcFqFmMMIhiBC2SQGcEYyE0EKQnsieCb0CHg1Yg5jyHywqyflIDbkt4k60BMwA64jggCdoEMMgHXIfvHMGPAF3AHdAi4nZhzncgLs37SI/3octVQfKTvtBhdiGAEnSiO9C6o8WKyR3opMkOxRigZ6TuJOXcReR1BHOkb8SnND/7NiZh/e3693bnrpuRn7VN6olkgJ3hx/DqK/rmtFEndArhjwROSVN5j+RwVzKnMNZXaFri6dgnXlYDbb4bjLEYPIkwDLpBBNg30QG5bkJLA3haMh467+Dhizj1EXpj1kxJwQ9KbZB2ICXiCxVgdEQTsAhlkAl4dcgJOSWALeA3oEPAEYs6rE3lh1k9SwM2g60BMwGtajImIIGAXyCAT8ETICvjT9h+hzfwt6BDwmsScJxJ5Ydavhs8+mCuTcRFqKH4w53DWQgQjmITiwZwLaryYJEGIkxn8J7ZKDuYmEXNei8gFoX6feNaevtgn/cwDSWINxQxlssVYGxEMZTKKhuKCGi8m+6RfiszgPzdVYiiTiTmvTeSCWT+pLcbaSY+T9SRmBFMsxjqIYAQukEFmBOtAbouRksDeYqwLHQKeQsx5HSIvzPpJCTjtTbIOxAS8nsWYiggCdoEMMgFPhZyAUxLYAv42dAh4PWLOU4m8MOsnKeAW0HUgJuD1LcY0RBCwC2SQCXgaZAXcAr6AN4AOAa9PzHkakRdm/WqQPeRjGhehhuKHfBtajI0QwQg2RHFP7oIaLyb7kE+KzOBPkFGyJ9+QmPNGRC4I9Yt2yMc8iyDWUMxQpluMjRHBUKajaCguqPFisg/5pMgMFZdRYijTiTlvTOSCWT+pLcbGSY+T9SRmBJtYjE0RwQhcIIPMCDaF3BYjJYG9xfgOdAh4E2LOmxJ5YdZPSsCNSW+SdSAm4M0sxuaIIGAXyCAT8OaQE3BKAlvA34UOAW9GzHlzIi/M+kkKuBV0HYgJeAuLsSUiCNgFMsgEvCVkBdwKvoC/Bx0C3oKY85ZEXpj1+7w9eZmMi1BD8UO+rSzG1ohgBFuhuCd3QY0Xk33IJ0Vm8CfrKtmTb0XMeWsiF4T6RTvkY55FEGsoZijbWIxtEcFQtkHRUFxQ48VkH/JJkRn8KbNKDGUbYs7bErlg1k9qi7Ft0uNkPYkZwXYWY3tEMAIXyCAzgu0ht8VISWBvMb4PHQLejpjz9kRemPWTEnBT0ptkHYgJeAeLMQMRBOwCGWQCngE5ATeh6EqTSM28I3QIeAdizjOIvDDrJynggaDrQEzAMy1GLyII2AUyyATcC1kBDwRfwH3QIeCZxJx7ibww61eD7CEf07gINRQ/5NvJYuyMCEawE4p7chfUeDHZh3xSZAZ/cYSSPflOxJx3JnJBqF+0Qz7mWQSxhmKGsovF2BURDGUXFA3FBTVeTPYhnxSZoeJaWYmh7ELMeVciF8z6SW0xdk16nKwnMSPYzWLsjghG4AIZZEawO+S2GCkJ7C3GD6BDwLsRc96dyAuzflICHpD0JlkHYgLew2LsiQgCdoEMMgHvCTkBpySwBfxD6BDwHsSc9yTywqyfpIDbQNeBmID3shh7I4KAXSCDTMB7Q1bAbeAL+EfQIeC9iDnvTeSFWb/P25OXybgINRQ/5NvHYuyLCEawD4p7chfUeDHZh3xSZAZ/oaaSPfk+xJz3JXJBqF+0Qz7mWQSxhmKGsp/F2B8RDGU/FA3FBTVeTPYhnxSZwV8uqcRQ9iPmvD+RC6n6sc1kf2L9DiBgte84fmb7jjM6Y33j0AE8rMI3Dv04d11941Ag5gFJQdm4B4LX/FJ5H8jnSPQbh5g1lTpb0fYLVAdZjFmIMAG5QAbZBDQL+n6B6ifQMbkcRMx5FpEXZv38rRC7h4h5i4n3YItxCCKI92AUty8uqPFisrcvs8ATxMHgCeIQ6Gli5loh1MSHWozZiNDEh6J4B5oN+SY+hNjEhxKbeDb0NDFzreD2WH8TH2Yx5iBCEx/mNfEcyDfxbGITH0Zs4jnQ08TMtUKoiQ+3GEcgQhMf7jXxEZBv4jnEJj6c2MRHgN/EX/RfGDjSYhyFCI18pNfIR0HfLwz8FDKEsje1RxJzPorIC7N+/l2oRu4hotnUiTUUM4KjLcYxiGAER6O4QXZBjReTfUeTIjNUXGOUPN87mpjzMUQumPUTHms7iHmLmcCxFmMuIpiAC2SQmcBciJtAgYBQQRwLniDmQk8TM9cKoSY+zmLMQ4QmPs5r4nmQb+K5xCY+jtjE86CniZlrhVATH28x5iNCEx/vNfF8yDfxPGITH09s4vmQaQz23mQ+MecTCFi9fX193b0ff+RujF8XOoGHVfh1oZ/lrqtfFwrEPCEpKBv3RPCaXyrvE/kcif66ELOmUierDq9ZuK4E3P47+EkW42REuIO7QAbZHfxkyJ2spiSwT1Z/DhlC2QchJxFzPpnIC7N+0ierbUQsYg3FjOAUi3EqIhjBKSierLqgxovJPlmVIjNUXO1KTlZPIeZ8KpELZv2kDaWBWMNm8IQP78XCPc1inI4IhnIaiobighovJttQpMgMxepQYiinEXM+ncgroX7R/raTaaTEGooZyhkW40xEMJQzUDQUF9R4MdmGIkVmqLi6lBjKGcSczyRy0aVoQqkRa9gCnvDhvVi4Z1mMsxHBUM5C0VBcUOPFZBuKFJmhWGOVGMpZxJzPJvI6VtGEwjRSYg3FDOUci7EAEQzlHBQNxQU1Xky2oUiRGSquHiWGcg4x5wVELnoEJhT2gb7DbQFdT2JGcK7FOA8RjMAFMsiM4DzIPVVJSWA/VfkFdAj4XGLO5xF5YdZPeiJYQMQi1lDMCM63GBcgghGcj+JE4IIaLyZ7IlggRGaouCYomQjOJ+Z8AZGLCQITQfqqzizCcC+0GBchgqFciKKhuKDGi8kWxIVEMi8i1kTTnptpBMQaigniYotxCSII4mIUBXEJ5O+wUmSGimsNJXfYi4k5X0LkYg1Fd9hGYg1bUf477KUW4zJEMJRLUTQUF9R4MdmGIkVmKNZEJYZyKTHny4i8TlQ0oTCNlFhDMUO53GJcgQiGcjmKhuKCGi8m21CkyAwV1yQlhnI5MecriFxMEphQ2AfSjotW0PUkZgRXWoyrEMEIXCCDzAiugtxTgZQE9lOBX0KHgK8k5nwVkRdm/aQnAqZxEWsoZgRXW4xrEMEIrkZxInBBjReTPRFIkRkqrslKJoKriTlfQ+RissBEkL6qM4sw3GstxnWIYCjXomgoLqjxYrIFcS2RzOuINdG052YaAbGGYoK43mLcgAiCuB5FQdwA+TusFJmh4pqi5A57PTHnG4hcTFF0h20i1nAgyn+HvdFi3IQIhnIjiobighovJttQpMgMxVpXiaHcSMz5JiKv6yqaUJhGSqyhmKHcbDFuQQRDuRlFQ3FBjReTbShSZIaKa6oSQ7mZmPMtRC6k6sc2k1uI9buVgOU+em5mR29vrI+eu5WHVfjouV/lrquPngvEvDUpKBv3NvCaXyrv2/gciX70HLOm/iTFXivD8PuSF7xXIG7/9LPQYtyOCNPPQhSnHxfUeDHZ0w/h7tM/CSwkNt7tQo3h371D18nM+Q6U+ybg8O4A//H5+uRJjZ23mxAWCuQ9rdwTPvMTvNJXPc916Lo2UFK/O4n1I/ZMnVm/WLsFYi0Lu4Vf566r3UIg5p1JQdm4d6HcuwWX9118jkR3C+yapq8vyqcY3g19Jspcc369v8ldVyYaiHl3UlA27j0ot4m6vO/hc/SZJhpah3uE1lnmD1pjmui90GeizDXn1/vb3HVlooGY9yYFZePeh3KbqMv7Pj5HoiZ6H3SYKPMXdpkmej/0mShzzfn1/i53XZloIOb9SUHZuA+g3Cbq8n6Az5GoiT4AHSbK/DU+pok+CH0mylxzfr2/z11XJhqI+WBSUDbuQyi3ibq8H+JzJGqiD0GHiQ5AOU30YegzUeaa8+v9Q+66MtFAzIeTgrJxH0G5TdTl/QifI1ETfQQ6TJT5YIn55ROPQp+JMtecX+8fc9eViQZiPpoUlI37GMptoi7vx/gciZroY9BhoswHS0wTfRz6TJS55vx6/5S7rkw0EPPxpKBs3CdQbhN1eT/B50jURJ+ADhNlPlhimuiT0GeizDXn1/vn3HVlooGYTyYFZeM+hXKbqMv7KT5Hoib6FHSYKPPBEtNEn4Y+E2WuOb/ev+SuKxMNxHw6KSgb9xmU20Rd3s/wORI10Wegw0SZD5aYJvos9Jkoc8359f41d12ZaCDms0lB2bjPodwm6vJ+js+RqIk+Bx0mynywxPz+kuehz0SZa86v92+568pEAzGfTwrKxn0B5TZRl/cLfI5ETfQF6DBR5oMlpom+CH0mylxzfr1/z11XJhqI+WJSUDbuSyi3ibq8X+JzJGqiL0GHiZb1m/Rehj4TZa45v95/5K4rEw3EfDkpKBv3FZTbRF3er/A5EjXRV6DDRJkPlpgm+ir0mShzzfn1/jN3XZloIOarSUHZuK+h3Cbq8n6Nz5Goib4GHSbKfLDENNHXoc9EmWvOr/dfuevKRAMxX08KysZ9A+U2UZf3G3yORE30DegwUeaDJeZX4LwJfSbKXHN+vf/OXVcmGoj5ZlJQNu5bKLeJurzf4nMkaqJvQYeJMh8sMU30begzUeaa8+v9T+66MtFAzLeTgrJxF6HcJuryXsTnSNREF0GHiTIfLDFN9B3oM1HmmvPr/W/uujLRQMx3koKycd9FuU3U5f0unyNRE30XOky0rN9o+x70mShzzfn1/i93XZloIOZ7SUHZuO+j3Cbq8n6fz5Goib4PHSbKfLDENNEPoM9EmWvOr/f/uevKRAMxP0gKysb9EOU2UZf3h3yORE30Q+gwUeaDpTZmHzXoM1HmmvPrbci9qUw0FLPh44KycWsN5TZRB1hroHMkaqK1Bh0mynywxDTRRoUm2ihkok2ViXJJahIw0QElN1GX9wBlJjpAiYkyHywxTbRZoYk2C5loS2WiXJJaBEy0teQm6vJuVWairUpMlPlgiWmiAxWa6EAhE22rTJRLUpuAiQ4quYm6vAcpM9FBSkyU+WCJaaKDFZroYCETHVKZKJekIQImOrTkJuryHqrMRIcSBTU4t8Za0sxOTM4AnXDc53i6P7l0T8edkQ2y/w3GJ18fAQdgKZyHqwEA","proving_key":null,"verification_key":null} \ No newline at end of file +{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"x","type":{"kind":"array","length":5,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"y","type":{"kind":"array","length":5,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"z","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"t","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"}],"param_witnesses":{"t":[12],"x":[1,2,3,4,5],"y":[6,7,8,9,10],"z":[11]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/+1dC7Be0xX+3Nzc3FwREUFExBERQcT/35ub3BtBRLwiIoiIeIQk90a8I6Le4v1+v18VlFJKKaWUUkoppZRSSimllGqn0+l0Op3uPfa5Z58j0zGzv7XnrHHOjLn7N5Nv7bW+9X1n73P+85/5KwF/M//Zw/5pcH8T73ND4XOvwufGwufe7nPvL2F7/vr/vtH9//T/NRUw+hQ+Nxc+9y18bvFiruTFbHJYze7ftHj/ZuUCRj/3Oa2BKwsmub+1sKPe4uKDi1tD4QjEraeDVQxGf68O7InX08KvUiCiv/sMQRKKuG21cWPHdo1v7aq31Q+stXbO62ivjW2fN66j3lFv72hf0NrR1tbVMbZjfOe8zvG1zvrYtq56d3tnW7cD/jtkCO3FmWerm2d9FWLO/Ym8MOsnJeAm15tkHYgJeFWDMQARBGwDJcgEPAByAk5JYAv4H9Ah4FWJOQ8g8sKsXwPyTdtA7qGWctWwR7AoHCzc1QzGQEQwgtWQOW+DC5oUYvZSQmYo1j+hw1BWI+Y8kMgroX49ApBaEQx0PU7Wk5gRrG4wBiGCEdhACTIjGAS5FUFKAntF8C/oEPDqxJwHEXlh1k9KwH1cb5J1ICbgNQzGmoggYBsoQSbgNSEn4JQEtoD/DR0CXoOY85pEXpj1k17SDyxXDcWX9GsZjMGIYARrIb+kt0GTQkz2kl6KzFCs/0CHoaxFzHkwkVdC/cSX9INdj5P1JGYEaxuMIYhgBDZQgswIhkBuRZCSwF4R/Bc6BLw2MechRF6Y9ZMScLPrTbIOxAS8jsEYiggCtoESZAIeCjkBpySwBWwBSXMUFfA6xJyHEnlh1k96ST+4XDUUX9KvazCGIYIRrIv8kt4GTQox2Ut6KTJDsRqUGMq6xJyHEXkl1E98ST/M9ThZT2JGsB6yEzUzQE+gVPh+oAY3TlwMKRLYK4JGJQJej5hzQuSlUWBFwO6d9Nt+ZB2ICXh9gzEcEQS8PvICHg45AftfuQSxmZuUCHh9Ys7Dibw0CQg4PdhL+mHlqqH4kn4DgzECEYxgA+SX9DZoUojJXtJLkRmK1azEUDYg5jyCyCuhfuJL+hGux8l6EjOCDQ3GSEQwAhsoQWYEIyG3IkhJYK8IWpQIeENiziOJvLQIrAgknsMYCboOxAS8kcEYhQgCtoESZAIeBdmHYUaCL+B+SgS8ETHnUURe+gkIOD3YS/oR5aqh+JJ+Y4OxCSIYwcbIL+lt0KQQk72klyIz+EkzJYayMTHnTYi89icu6XthBc0P/smJmH/Nn++m3rjR/W1YQU80CeSEQpxiHUUft5UiaVMB3NHgCUkq79F8jnLmVOaaSm0LbF03Ea4rAbfHDDczGGMQYTVgAyXIVgNjILctSElgbwsGKDmLb0bMeQyRlwEC2wJ276zkepOsAzEBb24xEEHANlCCTMA1yAk4JYEt4IFKBLw5MecakZeBSgTcBLoOxARsl7WtiCBgGyhBJuBWyAp4RfuP4Mc7lQi4Tsy5lcjLIAEBp0cDmWumcRFqKH5hrs1gjEUEI2hD/sKcDZoUYpIEIU5m8NN1SgyljZjzWCIXhPp95V57erCv9DMvSBJrKGYo7QZjHCIYSjvyhmKDJoWY7Cv9UmQGP26qxFDaiTmPI3IxWMEWY5zrcbKexIxgvMHoQAQjsIESZEbQAbktRkoCe4sxRImAxxNz7iDyMkSBgNPeJOtATMCdBmMCIgjYBkqQCXgC5AScksAW8FAlAu4k5jyByMtQJQLuA7oOxAS8hcGYiAgCtoESZAKeCFkB9wFfwMOUCHgLYs4TibwMExBwejSQuWYaF6GG4hf5tjQYWyGCEWyJ/J7cBk0KMdkX+aTIDH7cVImhbEnMeSsiF4T6RbvIx7wWQayhmKFs7bDEDWVr5A3F4ieFmOyLfFJkBj/tp8RQtibmPInIxXAFWww/XyKumBFsYzAmI4IR2EAJMiOYDLktRkoCe4sxQomAtyHmPJnIywgFAu7lepOsAzEBb2swpiCCgG2gBJmAp0BOwCkJbAGPVCLgbYk5TyHyMlKJgJtB14GYgLczGNsjgoBtoASZgLeHrICbwRfwKCUC3o6Y8/ZEXkYJCDg9GshcM42LUEPxi3w7GIwdEcEIdkB+T26DJoWY7It8UmQGP26qxFB2IOa8I5ELQv2iXeSbRMQi1lDMUHYyGFMRwVB2Qt5QbNCkEJN9kU+KzFBxjVZiKDsRc55K5GK0gi3GVNfjZD2JGcHOBmMaIhiBDZQgM4JpkNtipCSwtxhjlAh4Z2LO04i8jFEg4EbXm2QdiAl4F4MxHREEbAMlyAQ8HXICbkTelSaRmrmmRMC7EHOeTuSlpkTAfUHXgZiAdzUYMxBBwDZQgkzAMyAr4L7gC7hViYB3JeY8g8hLq4CA06OBzDXTuAg1FL/It5vB2B0RjGA35PfkNmhSiMm+yCdFZvCjq0oMZTdizrsTuSDUL9pFPua1CGINxQxlD4MxExEMZQ/kDcUGTQox2Rf5pMgMfnRViaHsQcx5JpGLcQq2GDNdj5P1JGYEexqMWYhgBDZQgswIZkFui5GSwN5idCgR8J7EnGcReelQIODerjfJOhAT8F4GYzYiCNgGSpAJeDbkBJySwBbwBCUC3ouY82wiLxOUCLgFdB2ICXhvgzEHEQRsAyXIBDwHsgJuAV/AE5UIeG9iznOIvEwUEHB6NJC5ZhoXoYbiF/n2MRj7IoIR7IP8ntwGTQox2Rf5pMgMfnRViaHsQ8x5XyIXhPpFu8jHvBZBrKGYoexnMPZHBEPZD3lDsUGTQkz2RT4pMoMfXVViKPsRc96fyIVU/dhmsj+xfnMJWLX5nQtq8+e1xXrj0FweVu6NQwd44+qNQ4GYc11B2bgHgtf8UnkfyOdI9I1DzJpKXVvR9gWqeQZjPiKsgGygBNkKaD7EtlQ9Z/B5xIaZT6yJ5BeJ2A1NzFusiRcYjC5EaOIFyC/ju75GE9fCjhwBoYJYAJ4guqCniZlzhVATdxuMhYjQxN3IO/FCyDdxF7GJu4lNvBB6mpg5Vwg18UEGYxEiNPFBhSZeBPkmXkhs4oOITbwIepqYOVcINfHBBuMQRGjigwtNfAjkm3gRsYkPJjbxIeA38Tf9xvmhBuMwRGjkQwuNfBjkN3eHEpvvMGJNYt5AroUddaLo6sQaignicINxBCII4nDkN4pHQN7ZpcgM/qVDJfd7DifmfASRi8mChkI+Q7YS8xYzgSMNxmJEMAEbKEFmAoshbgI5AkIFcSR4glgMPU3MnCuEmvgog7EEEZr4qEITL4F8Ey8mNvFRxCZeAj1NzJwrhJr4aIOxFBGa+OhCEy+FfBMvITbx0cQmXgqZxmDvTZYScz6GgNXV3d3d3vXlT7DG+PrIMTys3NdHvuWNq6+PBGIe4wrKxj0WvOaXyvtYPkeiXx9h1lTqCqPFaxKuKwG35wx+nME4HhHO4DZQguwMfjzkrzAeR2yY44k1GaToCmMLEYtYQzFBnGAwTkQEQZyA/BXGE7+GIGphhxiZwT+CreQK4wnEnE8kcjFFkaGsRKxhE3jCR+Fg4Z5kME5GBEM5CXlDsUGTQky2oUiRGfxqCCWGchIx55OJvBLqF+2ZN6aREmsoZiinGIxliGAopyBvKDZoUojJNhQpMoNfDaHEUE4h5ryMyMWOilYoDcQa9gFP+CgcLNxTDcZpiGAopyJvKDZoUojJNhQpMoNfDaHEUE4l5nwakdepilYoy4hYxBqKGcrpBuMMRDCU05E3FBs0KcRkG8oyITKDX1WhxFBOJ+Z8BpGLaQIrFPbdBYvbB3Q9iRnBmQbjLEQwAhsoQWYEZ0H+7sKZxEY+i1iTYYqW2kwBE2soJoizDcY5iCCIs5E/M54D+TOjFJnBv76v5Mx4NjHnc4hcTFdkKN+0vfu5BuM8RDCUc5E3FBs0KcRkC+JcIpnnEWuiae/JNAJiDcUEcb7BuAARBHE+8oK4APJnWCkyg1/SpOQMez4x5wuIXMxQdIbtRaxhM8p/hr3QYFyECIZyIfKGYoMmhZhsQ5EiM/glTUoM5UJizhcRed1d0QqFaaTEGooZysUG4xJEMJSLkTcUGzQpxGQbihSZwS9pUmIoFxNzvoTIxUyBFQr76rjlohl0PYkZwaUG4zJEMAIbKEFmBJdBfu9+KbGRLyPWZJSipTZTwMQaignicoNxBSII4nLkz4xXQP7MKEVm8NvPlJwZLyfmfAWRi1nV3r20e/crDcZViGAoVyJvKDZoUojJFsSVRDKvItZE096TaQTEGooJ4mqDcQ0iCOJq5AVxDeTPsFJkBr8YSskZ9mpiztcQuZit6AzbSKxhX5T/DHutwbgOEQzlWuQNxQZNCjHZhiJFZvDrEpUYyrXEnK8j8jpH0QqFaaTEGooZyvUG4wZEMJTrkTcUGzQpxGQbihSZwa9LVGIo1xNzvoHIhVT92GZyA7F+NxKw7E9yLWjt6or1k1w38rByP8n1bW9c/SRXIOaNrqBs3JvAa36pvG/icyT6k1zMmhZXUuy5Mgy/2x0oHIG4Pauf5QbjZkRY/SxHfvVjgyaFmOzVD+Hs07MSWE5svJuFGqN49g6dJzPnW1Duk4DFu2UFuMHv8SWv1Nh52xXCcoG855Z7hc/8Raf0qPtch87rACX1u5VYP2LP1Jn1i7VbINYyt1v4jjeudguBmLe6grJxb0O5dws279v4HInuFtg1TY9vyq/a3Q59Jsqcsz/f73rjykQDMW93BWXj3oFym6jN+w4+R//XREPrcIfQPMv8w1tME70T+kyUOWd/vt/zxpWJBmLe6QrKxr0L5TZRm/ddfI5ETfQu6DBR5hd2mSZ6N/SZKHPO/ny/740rEw3EvNsVlI17D8ptojbve/gciZroPdBhosyv8TFN9F7oM1HmnP35/sAbVyYaiHmvKygb9z6U20Rt3vfxORI10fugw0R7o5wmej/0mShzzv58f+iNKxMNxLzfFZSN+wDKbaI27wf4HIma6APQYaLMG0vMlxE8CH0mypyzP98feePKRAMxH3QFZeM+hHKbqM37IT5Hoib6EHSYKPPGEtNEH4Y+E2XO2Z/vj71xZaKBmA+7grJxH0G5TdTm/QifI1ETfQQ6TJR5Y4lpoo9Cn4ky5+zP9yfeuDLRQMxHXUHZuI+h3CZq836Mz5GoiT4GHSbKvLHENNHHoc9EmXP25/tTb1yZaCDm466gbNwnUG4TtXk/wedI1ESfgA4TZd5YYprok9Bnosw5+/P9mTeuTDQQ80lXUDbuUyi3idq8n+JzJGqiT0GHiTJvLDHf4/E09Jkoc87+fH/ujSsTDcR82hWUjfsMym2iNu9n+ByJmugz0GGizBtLTBN9FvpMlDlnf76/8MaViQZiPusKysZ9DuU2UZv3c3yORE30Oegw0bK+Ue556DNR5pz9+f7SG1cmGoj5vCsoG/cFlNtEbd4v8DkSNdEXoMNEmTeWmCb6IvSZKHPO/nx/5Y0rEw3EfNEVlI37Esptojbvl/gciZroS9BhoswbS0wTfRn6TJQ5Z3++v/bGlYkGYr7sCsrGfQXlNlGb9yt8jkRN9BXoMFHmjSXmK3BehT4TZc7Zn+9vvHFlooGYr7qCsnFfQ7lN1Ob9Gp8jURN9DTpMlHljiWmir0OfiTLn7M/3t964MtFAzNddQdm4b6DcJmrzfoPPkaiJvgEdJsq8scQ00Tehz0SZc/bn+ztvXJloIOabrqBs3LdQbhO1eb/F50jURN+CDhMt6xtt34Y+E2XO2Z/v771xZaKBmG+7grJx30G5TdTm/Q6fI1ETfQc6TJR5Y4lpou9Cn4ky5+zP9w/euDLRQMx3XUHZuO+h3CZq836Pz5Goib4HHSbKvLHUQsR6H/pMlDlnf75/9MaViQZivu8Kysb9AOU2UZv3B3yORE30A+gwUeaNJaaJfgh9Jsqcsz/fP3njykQDMT90BWXjfoRym6jN+yM+R6Im+hF0mCjzxhLTRD+GPhNlztmf75+9cWWigZgfu4KycT9BuU3U5v0JnyNRE/0EOkyUeWOJaaKfQp+JMufsz/cv3rgy0UDMT11B2bifodwmavP+jM+RqIl+Bh0myryxxDTRz6HPRJlz9uf7V29cmWgg5ueuoGzcL1BuE7V5f8HnSNREvyDOs583Ryse28xWTNYArXDs73jaRy7t3XFrZCub//rhq8f/AE6xEpevpgEA","proving_key":null,"verification_key":null} \ No newline at end of file diff --git a/crates/nargo_cli/tests/test_data/6_array/target/witness.tr b/crates/nargo_cli/tests/test_data/6_array/target/witness.tr index a304ad49edb42a5640da659ebf9f7f653061700e..8a348c2fcda8bda1d541450e1583c3fdd48ec451 100644 GIT binary patch literal 2124 zcmV-S2($MeiwFP!00002|E-*N%x*;y#(5DD5fKp)5fKp)5OM3wEFvNzA|fIpA|kM5 z*4}&Xz4zXG@4ffld+)u*7-Nhv&bc3N^4`C{=LB-U##V7|VxC!dTJmiHn!J6i!#$3z)}C z13m5yWL*Zx+6TzGERN;(1?svSkhLF>b$K9be<14$z&suR)OAH5>p&puNncFjAwbqufviJ;tg8X@co?xG>dL@)5l|NcbqR#!op|R8P}i{t7D>?T+;xDujsvm$ zocX#yUB?4hv+#&@=Ia4i`)pP>l6TsattxMeq-P|bSh$eX`P(BzX^a9qRZKHKMkR4jzJ~(o8rd3oDN{I zC&@+o&4Ar4Pkv~a6A-2$lVEC5SK;-Hjo31E$;eaz<12CzDjavbGW zxc)tzgJ2a+v3b5VFpuW~S+@bQ&O_`0$hV%f+!k2x&qs{=NMXjL7XagRA&^yp@oGR_ z9ay6WP?rLAO`xvZ0d?ITsOt_uU3UcPx)V^>oq@XU0%YA4$hsRaUUvuTx(A3AMBF`r zy6y#HW$VG*8>s6(AXW{|-503qen8g!fos|WfVv(C>=!-=sO!N%T@L}q{-L-%xjqaS zuZP3pMfwO}ydDW-`Sd7YydDjUmxRXvbv+i?_kA2t*W*!ZT4H_zaC|)xIKG|)jMtN4 z@sjowV7#7+t6%kLz<50!7B9`u0P1=supj*_psr`5;?;RP2ROc-3mjk11IFw5uy_rA z0We-Kgt20O5injaM#XFR_!6M5mjYQY1LpDNK-Md8u@A2V#_Lr;)~kW6*8pSxTHyZv zbsH?-v*Q|gw!+2Q`xI-BT4D{_bC*$h3>TPcNwHG($;Dbn%~D!yTGQ)+@p=Q!V|(KU zD+DK%TTEW+9BG6~_O_tquGEH%X^rPhp_X8s4a&8%N-*nELR$WdZvuLJGmJ&yEt`4F zvDw?wCcV@-n>K25rf#X~Lgtx6YWBiDWoxik-&jdUkx}LyI=Oa=~&b{niY*4AoFEXAi@tY>Lemt38hd#+)W<*6S8di)U1WBc%? zM`dx1xsB!f5we`lQaP}jp-JRnL)+4vToKkdC`~_X8s-u5j)y)1^!QPr$BzL$ejMoW z6F86h$xV-qx~n;any8oN|ll6`KyScN6_VI)7xu$5Cs_Hho+u5?ahS)A4NkewCRF91D$5qRGI(k5$} zY>}N=2`R?rQ{fhDw)tE}wSB2g*xJ<6-6o6qv|Q5cGgvb18D9o^{0h+HSAibC2K4xK zoX7Evo%R5cme=|%dkHErJF*tPHDR6Wnp%iKYqax)%G4;q%9GA$e`d1ndX&>QfgZnw z>vhPtH(7mBYQqjvw!mAaG*-45$+l6mDe7g~LCcaFskBMK%1^LE*JS0^Xf)FA06l&e z=P`e8^K8}I$m~)lv2~Gh9$sx|nlEi)&HkVxSy^pCtQ_TBN3vZ|RqGyia;4Vq13mr# z*t7cKrpLS-2r1Y)*kjVc&9!P7w4*X}3bqj1-Yw50HWO`0v1z%aQfx~XmnZ!Q=<&xu zk3Ru={3+1m&u|{+&o@~VvRA7y)u~Oe9@vf@jS|^e(Qy#_L8sUz-O8`c#F2;XfK)Xu zvvD;31<>O!apy<*)n*>2j%W=V9lb~E(S#aXHw%(&CaRiM3Bi&XO1FAsKiRP)w2^EV zusr_PK##uxo{@hGJR|=O=<)YBkNppu9;db4s<$bpR#VxwXqBYbZ0~iO3^zu$R)@4i zVfMtfsa0aJzmWXax#N#OkADJs{4>zwUw|I}it{-Cwo@O#PWV=2vTteGj$0SQDsN9w z?dad8?{SjtfLe;KvYlC~FIIJJjdaV#y_dfOJ^lm8`X`X}FCgpRK-PbNtp5U8{{ym? ze^d#@+7-y!4anLZ$l3$Q+7rmy3&`3V$l3?U+84;$Z-x7gZ+{@`03ho?2y5$Z^FavK zMfZ^pUg5qaJ7j}p{ehH}m;RTpE|ey=mB@|6+u>8JCo3^pPhPm#%T8ODZ4tIstu-~b z?)}oC0A1_5x`%CpwZ5afzF&LzwsnQLz7u=I3isX6QGnRzt-Gh==-(a|Y=gDF zC%V4l>9!wxS>MYHE8M++1c*Iv-G9uq!rfVvZLrpN71#F+kKMMeOzXRW#{t)l;}JDy z>keK$0Wj{@_vTInj<1t|>(I$7+_x*ItZ?6xpSr@m`#o)i`)>R674DnnGgi3oeb2<@ zv7WWUeOG(-3ir+FIV;@vnCGr=z1s6uxbGg%2iC$1aIAVEqOQ&z5C0#dF`3mgSO5Tp C#6fQW literal 2108 zcmV-C2*dXuiwFP!00002|E-*5kgZ1%hI8Uh2qA^PLpvJv{tcw9z z`v6%N2eS4BvMzyR`Tc-)T@uLJAIQ2CkaYl%b!i~$Kp^Wf!1;9$(5}k@SqB4Imjkj6 z0kSR+WE~1*T>&`14g=bCMIh^NAnQs%))7F~m4U1yfvl?l=hsm{yRHgkZ2_{b24p!P z%L7>f$cn)Em4J3-Ad7$+8EBUPSp~>C8pygjkaY}@bqyfvSQIOHcTFH`D{$Ul3uxDI zK;K^*XxH&TyRHLac_-ev6M(Gi0yUn9V37pP&Rq}4Iti%pWDv{GnNI<-t`F3B0|09l z9k@Z`xrs`EjG;x zamBhNaDLqi#o{8j2C{Ag)OcF}i*gJxyM8-hJ#l+P3~8O5yuSm06{5@8bH5|Pt~myk z;P12v*2oGvP9t*VVaX`Bs547tEK)ap@wChPgyPgbWJq5^mDva&4%JqN_9!MW!G?Rp-N^?cx3`vRa{F9e<|ya>p8F;L@6fOfqUIF2vF z^+Wn{pub)L^B3tWf&O|GjOEj-f&O|8%wG~-3$*KXz;l?_16gkXYJ4MVtxe2t0?ySp z1Lx{nfc|5M`96FG=&#QL zS)T*4J`eQ$7l3`o7uQ(6XU8@0Y=w&*`B1DqYKb*y&s|34FR$jqNLItPq@3ZZUbObEFX}*{M&DDxg<68`-cYWcRf0*E64LTt z{3=l6*I+CPUtb@`99x~-q?bBp(?)I1)NQD`kZI2Sw8hA zK#f1eX>31R*QhM6F}Jb2gGDx`vs4c3W@r+5*wnURPOb=R9F(RX7KV9*yzQZ%12z5v zsPUITjlTkF{54La{$^ccqwZ=Bp(g63`8YazBFn9A$ed1cV_Wu}l&DlWaZD*q8l<#* z__sifzr)o4^!s&I7%n+4Qf+{S6Y{PW9pZe6G;-*(S!QL+K`h$3Mdg%a;p$04Y*PLJ z)c8l7#`vf8ag1@WB~SHHwPc@LFP346eHh8lGHm74k$s%Qvn!nw*(lEHddSX_>z{!d z{{rl{|GLgv23urjQbLNc`Bbt>CgKg+K*EO{egVt#Mh04?@!P1k?Xg@RA zsvhO^AE3tn;`Tb^f9tG1DYapZlr8W!QW`5;M6wlX7NTCJHCi^PkxH8sEd2y)x+W{P zMx&AbAE@zEoW^|GdT-U+$m~)lv2~Gh9$sx~nl5c(2M0k%vb5TQSUSqNj$~C(RojW~ z@n%!=32E8v{sop1zQNMcFQw~MWQV!7M9DQ6f5cC z@=0d_HJ%OBcn(nGxj>EQ;WWTtg*t>5pBapNAJ=0XhMyxn*_-giK-@5La@OMrCUC- zPu7-%Hj-5V%g1lOz-in8r!nui!1c&G0X6Q7)7W=e*Ent4t$GVNwVcXUqE(V!vz<3L z8E%YhTOHC8h1nBZQLDsazmWV!-?1xD<8DBWy8|`u0o1rBPUGBbU8A!O-;zxBEiKD& z+r_ZV+f!6){oC|CPO=K9rRXYK&r*G{tZQqeTNduU>wLg$`0FZUy z0(YP3ARz1DHI~)aDJd`eM_*kiO)M01Bk@+eiS21fjJBsGT1QfsOZT z=@5Wjt9N1#1=y80-VGdwZQd@wdY|ubfL*-tUQ<3|fqNI}NW?g9ypvIn0{Cn79>tag z?!K=B&ik;you{P*?(Q8eaQo4+z};~>dV#yMb<6^HpXpfKIM%HT+`XaW7Pxyb$1iYq mL{3=X`o|L&xVso90oU4-ajbd@BCpPE4_^pPxROw?SpWcAlon6` diff --git a/crates/nargo_cli/tests/test_data/8_integration/target/main.json b/crates/nargo_cli/tests/test_data/8_integration/target/main.json index 900b8e934f7..2bb782d8cdf 100644 --- a/crates/nargo_cli/tests/test_data/8_integration/target/main.json +++ b/crates/nargo_cli/tests/test_data/8_integration/target/main.json @@ -1 +1 @@ -{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"a","type":{"kind":"array","length":100,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"b","type":{"kind":"array","length":100,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"c","type":{"kind":"array","length":4,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"d","type":{"kind":"array","length":4,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"m","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"}],"param_witnesses":{"a":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100],"b":[101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200],"c":[201,202,203,204],"d":[205,206,207,208],"m":[209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/+1dB5QVRbOevXfBgGQQDCQTYuJeuMBFwABmwZzIeQHFBCYMJAUTmAFzIJoVc06YEBUTIKACKiISzb9ieFVsz+5ssZ7nOfNVn6mDc06/fnX5me7q+uqr6u6h3L1CEHxSMdj4FFBLub5hRE4JOS3kQiFXEHJFIW8h5C2FvJWQtxZyJSFvI+TKQq4i5KpCribk6kKuIeSaQq4l5NpC3lbIdYRcV8jbCXl7Ie8g5B2FXE/I9YXcQMgNhdxIyDsJeWch7yLkXYW8m5AbC3l3ITcR8h5C3lPIewl5byHvI+SmQs4IOSvkZkJuLuSckFsIuaWQWwk5L+TWQt5XyG2E3FbI7YS8n5D3F/IBQj5QyO2F3EHIBwn5YCEfIuRDhXyYkA8X8hFCPlLIHYXcSchHCfloIR8j5GOFfJyQjxfyCUI+UcgnCflkIZ8i5M5C7iLkrkLuJuTuQu4h5J5C7iXk3kLuI+S+Qu7nZOb9wMlBUDZeFLo/51jA/M+czzzP3M58zhzOvM1czfzMnMw8zNzLfMscy7zKXMr8yZzJPMncyHzIHMi8x1wX8lujoJi7mK+Yo5iXmIuYf5hzmGeYW5hPmEOYN5grmB+YE5gH2PfZ39nH2a/Zl9l/2WfZT9k32R/ZB9nv2NfYvw4Iiv2IfYf9hX2E/YJ9gfHPmGecM7YZz4xhxi1jlfHJmGQcMvYYb4wxxhVjifHDmGGcMDYYD4wBtjvbmu3bKyi2Yx9nr34Re/QX9isS8gAhDxTyICGfKuTThDxYyKcL+Qwhnynks4R8tpCHCHmokM8R8rlCPk/I5wv5AiEPE/KFQr5IyBcL+RIhDxfyCCGPFPIoIY8W8qVCvkzIY4Q8VsiXC/kKIV8p5KuEfLWQxwl5vJCvEfK1Qr5OyNcL+QYh3yjkm4Q8QcgThTxJyDcL+RYh3yrk24R8u5DvEPKdQr5LyHcL+R4hTxbyFCFPFfI0IU8X8gwh3yvk+4R8v5AfEPKDQn5IyA8L+REhPyrkmUJ+TMiPC/kJIT8p5KeE/LSQnxHys0J+TsjPC/kFIb8o5JeE/LKQXxHyq0J+TcizhPy6kN8Q8ptCfkvIbzu5gvstjO8cRzh2cLzgGMFxgWMB8z9zPvM8czvzOXM48zZzNfMzczLzMHMv8y1zLPMqcynzJ3Mm8yRzI/PhyKCY90YHxfzGnMY8xtzFfMUcxbzEXMT8w5zDPMPcwnzCHMK8wVzB/MCcwDzAvs/+zj7Ofs2+zP7LPst+yr7J/nh3UOx37GvsX+xT7EfsO+wv7CPsF+wLjH/GPOOcsc14ZgwzbhmrjE/GJOOQscd4Y4wxrhhLjB/GDOOEscF4eCUotjvbepaz6RvOdm85G4X2mi3s946Q5wj53aDUviwXBsXPbPd357j/Tfi/f0/8/feFPFfIH0Ten468/z33d+e6/034v/8wKM4PQ/kjIX8s5E+EPE/I84W8QMifCnmhkBcJebGQPxPy50L+QshLhLxUyMuE/KWQvxLy10JeLuRvhLxCyN8KeaWQvxPyKiGvFvIaIa8V8johr3cy4yM8S+KHcfCRs/cnzq7znf0+dXZa5OzxmVv3L9z6LnXr+KVbr6/dunzj9P/W6fmd02e1m/daN7/1bm4FrvFzgOsz8Z4s73/6B6UP6L2ZQDwx35sN/5/v6R0/RNYBPfFsCITvg7LE8UNQCgYtI8j3Ns+0zOX6t2rWP9s82zvTrHWffItMrkWflvlsPtsi36Jfs3zz5v3zuXyr1n1at8q0zuaa988WtWjdvMi9+MdAx6BpzDybuXlmvwfq/APQLsj1SwVlQYvGEFBvNef9id7xc+DBeX8KStky5QZtKMZMKxogrkP8FOAc4ucAD2I0ePl0rQiPBzUg/0Lv+DXwAORfgrJR6NdALwqFRkBHof8FNqLQL0CdfwXaBbl+MgqlwBgCkk0WuIZqRPAbveP3wAMR/BaUjWg8aEMxJjqiaRkzrnM9UGiDUH4D6vw70BbI9dPKCPgebUAA9yc1IthA7/gj8EAEPFDDoJQI/gj0MoLQCOiM4M/AhgNvAOr8B9AuyPXTzgiQxAVcQzUi+Ive8XfggQj+CspmBDxoQzEmOiPQMmZc53rISEbwF1Dnv4G2eMhARsBfzAwM4P6kRgS8AAUFHoiAR2gYlBJBQYFeRhAaAZ0RpApsOHBQgNO5AKdzFrl+2hkBkrgKCpJPBGmaY6EPIkgXlM0ICgv0MwItY8Z1rkeMZARpoM6FQEJ5xEBGwN/GDgrg/qRGBBVoASr6IIIKIiOoqJgRhEZAZwRbGMkIKgAduCLQgbcwlBEgiatiQfKJYEua41Y+iGBLkRFs5SEj0DJmXOeaaSQj2BKo81ZAW8w0kBHwv4I5NYD7kxoRbE0LUMkHEWwtMoJKihlBaAR0RrCNkYxga6ADVwI68DaGMgIkcVUqSD4RVKY5VvFBBJVFRlDFQ0agZcy4zvW4kYygMlDnKkBbPG4gI+B/73paAPcnNSKoSgtQzQcRVBUZQTXFjCA0AjojqG4kI6gKdOBqQAeubigjQBJXtYLkE0ENmmNNH0RQQ2QENT1kBFrGjOtcTxrJCGoAda4JtMWTBjICrmwxOID7kxoR1KIFqO2DCGqJjKC2YkYQGgGdEWxrJCOoBXTg2kAH3tZQRoAkrtoFySeCOjTHuj6IoI7ICOp6yAi0jBnXuZ42khHUAepcF2iLpw1kBFzD6vQA7k9qRLAdLcD2PohgO5ERbK+YEYRGQGcEOxjJCLYDOvD2QAfewVBGgCSu7QuSTwQ70hzr+SCCHUVGUM9DRqBlzLjO9ayRjGBHoM71gLZ41kBG0DsorhYG9ic1IqhPC9DABxHUFxlBA8WMIDQCOiNoaCQjqA904AZAB0aun3ZGgCSuBgXJJ4JGNMedfBBBI5ER7OQhI9AyZlznet5IRtAIqPNOQFtorR+aTHYCrt/OgHflM316Ny/Kt04H5Th8gA/IOwMJMDrfXSJCobBdEPGDigo6BWIcuY5VAkUy1TLSLgUK//ITCH4tvXctgNuoDKEkeU21tkJcdHduoLuugPeWZEC70QI09pEB7Sa2Qo0Vt0KhEdBbod2NbIV2AzpKY2Dmglw/uRVCY6hxQfKdtwnNcQ8fzttEbF/28LB9aVyAc4gmQIfYQwHEaPByyfcP8HhQA/KetAB7+QDyniIK7aUYhUIjoKPQ3kai0J5Ap9sLGIX2VnDg8EHvoYFkk92rIPlEsA/NsakPIthHRLSmHiKaljHjOteLRg7k9gHq3BRoixeNHMg1Ba5fBvCuVs379e9TlOnn60Auo3Qgl/3vQA5rpKzCgVyzhB/Isd7NjB3IIddUeT/f+50g+dlPc1I65yP7aS62QTn97KeMAeJmAs2BwMvZOZQyAeIWpHRLHyBuIUDc0hiIWwBB3NLTmUAm3pPNKekc912tgOvnK51Fzjk63/x/6SzWSHmFdLZ1wtNZ1ru1sXQWuabaB4Ozge96L0h+VrEvLWYbH1nFvuJgsI2Hg0EtY8YF8ctGDgb3BTpuG+DB4MsK3+6HD5pQgFuLLHAN1QilLc2xnQ9CaSsIpZ0HQtEyZlznetUIobQF6twOSCivGrlpaAdcv/0A78r17V2U7Z/L+tqa7ae0Ndv/v60Z1kj7K2zNDkj41mwjOI1tzdBr+k/zjPvuAw2eIx2oRFbt/yMrrJHaK5BVh4STFevdwTNZxV2Hg4AZXzi3g5ztO7j+YIFetA6HGCSyQ5SI7ND/iAxrpEMViOywhBMZ632YApGFrzzYrelhrj9cmSCOMEgQRygRxJH/EQTWSEcqEETHhBME691RkSAOd2va0fWdCsoHjIZuHwQ6jnfUf46HNdJRCo53dMIdj/U+WtHxOrk1Pdr1xyhH5mOAUU7eOsHW3t3DfAhc70A8Md9bclN0LCl9XIGHmyIeqG5QelN0nOZNUTkGiHtrcizQ0Y+zAGK3ih8FyQfx8aT0CT5AzANVi4D4BE0Ql2OAuCA+HgjiEwp0gCGv65DOFvddJwJ0LnKPps4nAHU+Cahz6KAnOr85yfUnFxSvgRKRbfSkj4PkE9kppHRnH0TGA20ZlBJZZ10i28QAcYnsFCDAOxshss5AnbsoOPXJDkNdXN9VoBi9Hp8A39VNYT26unXo5vrumiTnKGRekHyS60FK9/RBcj3ElqOnhy3HvABHcj2ADt/T0JZjfpB8EPcipXv7AHEvseXo7WHLMR8I4l5AEPc2Eql7AnXuY2TL0Ruoc1+FaNzH+U1f1/fzsOVYECSfyPqT0kU+iKy/2HIUedhyLAhwRNYfCPAiI0RWBNR5gIJT93MYGuD6gcpbjk+B7xqksB4D3ToMcv2pHrYcC4Pkk9xppPRgHyR3mthyDPaw5VgY4EjuNKDDDza05VgUJB/Ep5PSZ/gA8eliy3GGhy3HIiCITweC+AwjkXowUOczjWw5zgDqfJZCND7T+c1Zrj/bw5ZjcZB8IhtCSg/1QWRDxJZjqIctx+IAR2RDgAAfaoTIhgJ1PkfBqc92GDrH9ecqbzk+A77rPIX1ONetw3muP9/DluPzIPkkdwEpPcwHyV0gthzDPGw5Pg9wJHcB0OGHGdpyfBEkH8QXktIX+QDxhWLLcZGHLccXQBBfCATxRUYi9TCgzhcb2XJcBNT5EoVofLHzm0tcP9zDlmNJkHwiG0FKj/RBZCPElmOkhy3HkgBHZCOAAB9phMhGAnUepeDUwx2GRrl+tPKWYynwXZcqrMdotw6Xuv4yD1uOZUHySW4MKT3WB8mNEVuOsR62HMsCHMmNATr8WENbji+D5IP4clL6Ch8gvlxsOa7wsOX4Egjiy4EgvsJIpB4L1PlKI1uOK4A6X6UQja90fnOV66/2sOX4Kkg+kY0jpcf7ILJxYssx3sOW46sAR2TjgAAfb4TIxgN1vkbBqa92GLrG9dcqbzm+Br7rOoX1uNatw3Wuv97DlmN5kHySu4GUvtEHyd0gthw3ethyLA9wJHcD0OFvNLTl+CZIPohvIqUn+ADxTWLLMcHDluMbIIhvAoJ4gpFIfSNQ54lGthwTgDpPUojGE53fTHL9zR62HCuC5BPZLaT0rT6I7Bax5bjVw5ZjRYAjsluAAL/VCJHdCtT5NgWnvtlh6DbX36685fgW+K47FNbjdrcOd7j+Tg9bjpVB8knuLlL6bh8kd5fYctztYcuxMsCR3F1Ah7/b0JbjuyD5IL6HlJ7sA8T3iC3HZA9bju+AIL4HCOLJRiL13UCdpxjZckwG6jxVIRpPcX4z1fXTPGw5VgXJJ7LppPQMH0Q2XWw5ZnjYcqwKcEQ2HQjwGUaIbAZQ53sVnHqaw9C9rr9PecuxGviu+xXW4z63Dve7/gEPW441QfJJ7kFS+iEfJPeg2HI85GHLsSbAkdyDQId/yNCWY22QfBA/TEo/4gPED4stxyMethxrgSB+GAjiR4xE6oeAOj9qZMvxCFDnmQrR+FHnNzNd/5iHLce6IPlE9jgp/YQPIntcbDme8LDlWBfgiOxxIMCfMEJkTwB1flLBqR9zGHrS9U8pbznWA9/1tMJ6POXW4WnXPyPWowC8Hs/idOitOc/ncP7WKpzbs26Nn3P988pr/QJOh1yBm98Lkblz/6J2UCQefRGgRzbXO5Npls8H4on53pKg+BLN8WUfQfElN0gov6wdFIUB4gbFl4AB4mUgMCSI0YGgO84Zswi9y8vwkQ7xCs3xVR8O8YpwiFf/hUMk1Zhx5zWrUCdLBK1fCQm8AtT5VaAtEOsXOpZ2VATqnQvEE/O9JSTwGs1xlg8SeE2QwCwPUfFVYFR8DUkCQGBYAHEuk8nT/2keKIH4dZrjGz5A/LoA8RvGQPw6EMRvAIGhDWKgw6EP7dyTy7xJc3zLB4h5oO0jIOZBKwa6IJ4FAF7/jUG7b/ZNIIjfAgJDDcS54i7BIC5h4rdpjrN9gJgH+iIC4tmaTFyOAeIy8dtAEM82cvKMdNx3lDbYaJ1nA3Weo3C6/I7zmzmuf9fDaWHio3E+k3mP5vi+DyLjgWoHpUTGg1YSYyY2Gucz2feAAH/fQjTONNv4fy1E47k0xw98gHiuiMYfqO6LNjVA3Gg8FwjiD4xEY6TjfmgkGn8A1PkjhWj8ofObj1z/sfBc9Hq8C1yPT4xg4GOgzvPAGOD2ibP9PNfP39wzsmK6zyygOX7qI5jxQFsEpcGMB91OjJnIjKx/8bsWAAH+qYmMjJ+8iYxsIc1xkQ8QLxQZ2SLVjIyfPDQjWwgE8SIjGRnScRcbicaLgDp/ppCRLXZ+85nrP1fOyD4HrscXCtnJfLcOX7h+iYfsZAnOf1sF4on53hJiX0pzXOaD2JcWlL2CXKZO7GUNEJfYlwIBvkwJGBLAcef5JW6eLcK5hd9PfOn6r5SJaRbQbl8rBSe03Zbj7NYynNvXzl7LXf9NxJ+/ivzG/YpyyFXaNRPvyQJ9KLtCKdEC6FtC1N/SHFf6IOpvBVGv9EDUWsaM/a2Ika8evwXqvBJoC+T6/X+EElfvU4F6I9awvEAB8LkSQvmO5rjKB6F8Jwhl1b8glKQaM/Z3O0YI5TugzquAtnjL0GfUbxTo2Bo4x9xqmuMaHyTAA9UPSklgTUEpg/8TiDPxnjIGiPfxXlG/1UCHWGPgcNp9OpZJMIhLItlamuM6HyBeKw6n1ymmxuUZIC6rrwWCeJ2Rw2mk4643cji9Dqjz9wqH0+ud33zv+h88HMYmPRrzbfGPNMeffBAZD1QzKCUyHrSyGDOp0Zhui7M/AgH+k4FonNn4baeNaPwzzfEXHyD+WUTjXxSjcaYcA8SNxj8DQfyLkWiMdNxfjUTjX4A6/08hGv/q/OZ/rv9NeC56PX4ArsfvRjDwG1DnDWAMcPvd2X6D6//Y7DOy4v3XnzTHv3wEMx5o66A0mPGg24oxk5mR9d34rj+BAP/LRka2ESMWMrK/HajUQfy3yMj4/zQMFEGcw2ZkfwNBzLqD1lc1I0M6bkEKF5k0dY7aJu67UkCdQwctcH6Tcn06FQSa65EGrkcheD24/eGykkK3HhXEehSA16NiCsuN/IQlNyo6HbZQ1mFLnA7NpA5bOh22SpXe7G4R+Y37rZX1qwTk11CHrd3cK7l+m5T+d0wVgFjbRinmAPQtSUYq0xyr+EhGKqfKfnZQRTsZUTRm7H/Nb+Szg8pAnasAbTFb8Tsm9LYa+LmFWuGrqrQI1XyQQFVBAtU8kMAq4I6kKtAhquEcorl2VER+MwQkArWoWJ3mWMOHQ1QXDlHDs0Nk4j1ljBm7Lo2RqFgdqHMNYFScYygqVksuCbgnl6lJc6zlgwR4oGglPR5Uu5JeNQCIw0p6NYEOUStlAMTuY7AEg7gkktWmOW7rA8Q8UPSweVvNSFaOAeKyem0giLdVAoZM6+LOE+m4dQA6+zhs3haoc12gzqGD1nF+U9f126X0r34TH43zmcz2NMcdfBAZDxStpMeDalfSg0XjfCa7PRDgO1iIxq6yj4VovCPNsZ4PEO8oonE9zWhcjgHiRuMdgSCuZyQaIx23vpFoXA+ocwOFaFzf+U0D1zdMBYHmemwHXI9GRjDQEKjzTmAMcGvkbL+T63fe3DMyV0lvF5rjrj6CGQ8UraTHg2pX0oNkZK6S3i5AgO9qIiPjJ28iI9uN5tjYB4h3ExlZ45T2SX8empHtBgRxYyMZGdJxdzcSjRsDdW6ikJHt7vymiev3SAWB5nrsAVyPPRWyk53dOuzp+r08ZCd74fy3ZSCemO8tIfa9aY77+CD2vVNlr3D3USf2sgaIS+x7AwG+DxAYoeHCb0TCSnVNlR2+GnA9Mkqkj/56M4uzW0llwYyzW9b1zSJ+0jTyG/fNU/pfdgKxmW2ulMAA9C0hQP5POrbwQYA5QYAtPBCgljFj/9cwjHzDkgPq3AJoi/cMVag7H/gdFWINywsUAJ8rIZSWNMdWPgilpSCUVv+CUJJqzLjzmmuEUFoCdW4FJJS5hirUAT8GVKtQl6c5tvZBAjxQtEJd65R+hboaABCHFeryQIdondKLiigQhwXSEgzikki2L82xjQ8Q80DRQ982iqlxeQaIy+r7AkHcRgkY6LQO6bhtldI6tM5tgDq3A+ocOmhb5zftXL9fSv+QM+nRmG9h9+c5+iAyHihaoY4H1a5Qh4rGXKFufyDADzAQjTOuQJqFaHwgzbG9DxAfKKJxe8VonCnHAHGj8YFAELc3Eo2RjtvBSDRuD9T5IIVo3MH5zUGuPzgVBJrrsR9wPQ4xgoGDgTofCsYAt0Oc7Q91/WGbfUZWvP86nOZ4hI9gxgNFK9TxoNoV6jAZWXGFusOBAD/CRka2ESMWMrIjaY4dfYD4SJGRdUwpXx3msBnZkUAQdzSSkSEdt5ORaNwRqPNRChlZJ+c3R7n+6FQQaK7H0cD1OEYhOznMrcMxrj82QmZhiY2wetpxYq3Q39Ycn8LyZlSH411/Qqr0xvS4yG/cn6is30kK+oW2OcnpcHJEvxMjv3F/Skr/26FjgTqeYiAB6Exz7OIjAeicKnvV3yWl/+2QljHjOtKHRq76OwN17gK0xYeG6t8AP3FoFogn5ntLSKArzbGbDxLoKkigmwcSaAXcBXQFOkQ3IDC0oyLyOx0gEahFxe40xx4+HKK7cIgenh0iE+8pY8y4DvGxkajYHahzD6AtPjYUFbsllwTck8v0pDn28kECPFC0KhwPql0VrhsAxGFVuJ5Ah+iVMgBi9wFWgkFcEsl60xz7+AAxDxQ94O2jGcnKMUBcVu8NBHEfJWDItC7uPJGO2xegs48D3j5AnfsBdQ4dtK/zm36u75/Sv25NfDTO0zrRHAf4IDIeKFoVjgfVrgoHi8b5TLYICPABFqKxq1JjIRoPpDkO8gHigSIaD9KMxuUYIG40HggE8SAj0RjpuKcaicaDgDqfphCNT3V+c5rrB6eCQHM9+gPX43QjGBgM1PkMMAa4ne5sf4brz9zcMzJXFe4smuPZPoIZDxStCseDaleFg2RkrircWUCAn20iI+MnbyIjG0JzHOoDxENERjY0pX3Sn4dmZEOAIB5qJCNDOu45RqLxUKDO5ypkZOc4vznX9eelgkBzPc4Drsf5CtnJmW4dznf9BR6ykwtw/tsiEE/M95YQ+zCa44U+iH1YquwV7oXqxF7WAHGJfRgQ4BcCgREaLvxGJKwOd5Gyw3cDrsfFCgR4sVuHsEreJRH8XZQq/Y374Sn9LyaBNs8ON5AxjqA5jvRBLCMEsYz0QCxaxozrSPOMfBsyAqjzSKAt5hmqtnZZAU5vxBqWl3UDfK6EUEbRHEf7IJRRglBG/wtCSaox485rgRFCGQXUeTSQUBYYqrYG/MhOrdrapTTHy3yQAA8UrbZ2WUq/2loPAIjDamuXAh3ispReVESBOCz2lWAQl0SyMTTHsT5AzANFD1PHKqbG5RkgLquPAYJ4rBIw0Gkd0nEvV0rr0DqPBep8hcJZwuXOb65w/ZUp/cPDpEdjvt28iuZ4tQ8i44Gi1dZ4UO1qa6hozNXWrgIC/GoD0Tjjin1ZiMbjaI7jfYB4nIjG4xWjcaYcA8SNxuOAIB5vJBojHfcaI9F4PFDnaxWi8TXOb651/XWpINBcjyuB63G9EQxcB9T5BjAGuF3vbH+D62/c7DOy4v3XTTTHCT6CGQ8UrbbGg2pXW8NkZMXV1m4CAnyCjYxsI0YsZGQTaY6TfIB4osjIJqWUrw5z2IxsIhDEk4xkZEjHvdlINJ4E1PkWhYzsZuc3t7j+1lQQaK7HrcD1uE0hO7nRrcNtrr89QmZh6YqwYtkd5fxZWO3rzlTpTeQdqdLfuL8r9c8V3O6O/L27UqW/cX9PSv9bl9txXJK9x0DAmkxznOIjYE1Olb2anqIdsBSNGddxFxq5mp4M1HkK0BYLDdVBQV7JB+KJ+d4SEphKc5zmgwSmChKY5oEERgOz1qlAh5gGBIZ2VESCGEgEalFxOs1xhg+HmC4cYoZnh8jEe8oYM65DLDYSFacDdZ4BtMViQ1FxWnJJwD25zL00x/t8kAAPFK0OxoNqVwebBgBxWB3sXqBD3AcEhhqI3QdDCQZxSSS7n+b4gA8Q80DRA8kHNCNZOQaIy+r3A0H8gBIwZFoXd55Ix30QoLOPA8kHgDo/BNQ5dNAHnd885PqHU/rXg4mPxvlM5hGa46M+iIwHilYH40G1q4PBonE+k30ECPBHLURjV63EQjSeSXN8zAeIZ4po/JhmNC7HAHGj8UwgiB8zEo2Rjvu4kWj8GFDnJxSi8ePOb55w/ZOpINBcj4eB6/GUEQw8CdT5aTAGuD3lbP+065/Z3DMyVx3sWZrjcz6CGQ8UrQ7Gg2pXB4NkZK462LNAgD9nIiPjJ28iI3ue5viCDxA/LzKyF1LaJ/15aEb2PBDELxjJyJCO+6KRaPwCUOeXFDKyF53fvOT6l1NBoLkeLwPX4xWF7OQZtw6vuP7VlP5HUlyYCPWuVw0EiddojrN8BInXUmWvg2epBwk9Y8Z1ls+NXAe/BtR5Fs4Zssj1C4Effq8TVmx7XZl8pwHX9g2FYPSGW4ewct2bEf99PfIb92/5IGYgft4yQMxv0xxn+yDmtwUxz/ZBzErGjOtIS4wQ89tAnWcDbbHEUKW264HJAWINy9sBAXyuhFDeoTnO8UEo7whCmfMvCCWpxow7r2VGCOUdoM5zgISyzFClNuAHj2qV2t6lOb7ngwR4oGiltvdS+pXaZgBAHFZqexfoEO+l9KIiCsRhobAEg7gkkr1Pc5zrA8Q8UPRge65ialyeAeKy+vtAEM9VAgY6rUM67gdKaR1a57lAnT9UOEv4wPnNh67/KKV/zZz0aMw3zR/THD/xQWQ8ULRSGw+qXakNFY25UtvHQIB/YiAaZ1yhMAvReB7Ncb4PEM8T0Xi+YjTOlGOAuNF4HhDE841EY6TjLjASjecDdf5UIRovcH7zqesXpoJAcz0+Aq7HIiMYWAjUeTEYA9wWOdsvdv1nm31GVrz/+pxjjI9gxgNFK7XxoNqV2jAZWXGlts+BAP/CRka2ESMWMrIlNMelPkC8RGRkS1PKV4c5bEa2BAjipUYyMqTjLjMSjZcCdf5SISNb5vzmS9d/lQoCzfX4CrgeXytkJ5+5dfja9csjZBaWEQmrsn1Tzp+FlddWpEpvIr+J/Mb9t6l/rv62MvL3vo38xv13Kf1vXZbjuCT7nYGAtYrmuNpHwFqVKns1vVo7YCkaMzYJGLmaXgXUeTXQFl95/NYlE+/JvgH8PGKOAUJZQ3Nc64NQ1ghCWeuBULSMGde5lhshlDVAndcCCWW5IUJBfuOz2gChrKM5rvdBKOsEoaz3QChaxozrXCuMEMo6oM7rgbZYYahq3trkkoB7cpnvaY4/+CABHihaNY8H1a6atxYA4rBq3vdAh/ghZQDE7uOtBIO4JJL9SHP8yQeIeaDo4fBPmpGsHAPEZfUfgSD+SQkYMq2LO0+k4/4M0NnH4fBPQJ1/AeocOujPzm9+cf2vKf2r2sRH43wm8z+a428+iIwHilbN40G1q+bBonE+k/0fEOC/WYjGroqPhWj8O81xgw8Q/y6i8QbNaFyOAeJG49+BIN5gJBojHfcPI9F4A1DnPxWi8R/Ob/50/V+pINBcj1+B6/G3EQz8BdSZSQ2JAW5/h9yZLu4L0pt5Ruaq5qVoHdJpD8GMB4pWzeNBtavmQTIyVzUvlcYBPJ3GAUMXxHkTGVkhrWcFHyDmgaIZWYW09kl/HpqRFQJBXCGtAwx0ZEI6bkVgZNLUuQJQ5y3A0Zifis5vtnD9lukg0FyPLYHrsZVCdlLg1mEr12+d1v9grRqO2LNbp5MfJCrRHLfxESQqpcteB2+jHiQyasaM6ywrjVwHVwLqvA3OGbIrFarmhd87hdXzKiuTLyILD99VRSEYVXH+GVYRrBrx38rp0t+4r+aBmJH4qWaAmKvTHGv4IObqgphreCBmLWPGdaRVRoi5OlDnGkBbrDJUNe9O4MenNYAEHIgn5ntLCKUmzbGWD0KpKQil1r8glKQaM+681hghlJpAnWsBCWWNoap5wA8e1arm1SbbbOuDBHigaNW8bdP6VfPWIw62i7HSrzbQIbY1cLAdFm1LMIhLIlkdWs+6PkBcRxxs11VMjcszQFxWrwMEcV0jB9tIx93OyMF2XaDO2yucJWzn/GZ71+/g4Zo56dGYb5p3pHWo54PIeKBo1TweVLtqHioac9W8HYEAr2cgGmdc0TYL0bg+rWcDHyCuL6JxA92Dqk0MEDca1weCuIGRaIx03IZGonEDoM6NFKJxQ+c3jVy/k/JNxw7A9djZCAZ2Auq8i8LV+s7O9ru4ftfNPiMr3n/tRuvQ2Ecw44GiVfN4UO2qeZiMrLhq3m5AgDe2kZFtxIiFjGx3Ws8mPkC8u8jImuhmZJsYIG5GtjsQxE2MZGRIx93DSDRuAtR5T4WMbA/nN3u6fi/ljGwv4HrsrZCd7OrWYW/X7xMhs7CMSFghr2k5fxZWwctEbiKbpkt/4z6b/udKfM0ify+bLv2N++YevnXZB3iD1jyd/ICVozm28BGwcuJquoV2wFI0ZlzHXWfkajoH1LkF0BbrDBW5qoHLWrO1DBBKS5pjKx+E0lIQSisPhKJlzNglN4wQSkugzq2AhPK9IUJBfuPTwgCh5GmOrX0QSl4QSmsPhKJlzLjO9aMRQskDdW4NtMWPhqrmtUouCbgnl9mX5tjGBwnwQNGqeTyodtW8VgAQh1Xz9gU6RBsLh8Pu460Eg7gkkrWlObbzAeK24nC4nWYkK8cAcVm9LRDE7YwcDiMddz8jh8PtgDrvr3A4vJ/zm/1df4CHq9rER+N8JnMgzbG9DyLjgaJV83hQ7ap5sGicz2QPBAK8vYVo7Kr4WIjGHWiOB/kAcQcRjQ9S3VduaoC40bgDEMQHGYnGSMc92Eg0Pgio8yEK0fhg5zeHuP7QdBBorscBwPU4zAgGDgXqfLjC9fRhzvaHu/6IzT0jc1XzjqQ5dvQRzHigaNU8HlS7ah4kI3NV844EAryjiYyMn7yJjKwTzfEoHyDuJDKyo9RP+vPQjKwTEMRHGcnIkI57tJFofBRQ52MUMrKjnd8c4/pjlTOyY4HrcZxCdnKEW4fjXH+8hw/WuEgU6l3HGwgSJ9AcT/QRJE4Q18EnqgcJPWPG/s+wGLkOPgGo84nA6+CfFarmhd87hdXzTlIm31bAtT1ZIRid7NYjrCJ4SsR/T0qX/sZ9Zw/EjMRPZwPE3IXm2NUHMXcRxNzVAzFrGTP2f9nBCDF3AercFWiLXw1VzXugAKd3VyABB+KJ+d4SQulGc+zug1C6CULp/i8IJanGjP3f5jJCKN2AOncHEspvhqrmtU5uVhE+uR40x54+SIAHilbN65nWr5rXGvWpQVFRvx5Ah+hp4GA7LNqWYBCXRLJeNMfePkDcSxxs91ZMjcszQFxW7wUEcW8jB9tIx+1j5GC7N1DnvgpnCX2c3/R1fT8P18xJj8Z809yf5ljkg8h4oGjVPB5Uu2oeKhpz1bz+QIAXGYjGGVe0zUI0HkBzHOgDxANENB6oe1C1iQHiRuMBQBAPNBKNkY47yEg0HgjU+VSFaDzI+c2prj8tHQSa69EPuB6DjWDgNKDOpytcrQ92tj/d9Wds9hlZ8f7rTJrjWT6CGQ8UrZrHg2pXzcNkZMVV884EAvwsGxnZRoxYyMjOpjkO8QHis0VGNkQ3I9vEAHEzsrOBIB5iJCNDOu5QI9F4CFDncxQysqHOb85x/bnKGdm5wPU4TyE7OcOtw3muPz9CZmEZkbBC3gXl/FlYBW9Y5CbygnTpb9xfmP7nSnwXRf7ehenS37i/2MO3LucDb9AuNhCwLqE5DvcRsC4RV9PDtQOWojHjOu4GI1fTlwB1Hg60xQZDRa64HCjqXd0NEMoImuNIH4QyQhDKSA+EomXMuM71pxFCGQHUeSSQUP40RCjIb3yGGyCUUTTH0T4IZZQglNEeCEXLmHGd628jhDIKqPNooC3+NlQ1b2RyScA9ucylNMfLfJAADxStmseDalfNGwm6rueqeZcCHeIyC4fD7uOtBIO4JJKNoTmO9QHiMeJweKxmJCvHAHFZfQwQxGONHA4jHfdyI4fDY4E6X6FwOHy585srXH+lh6vaxEfjfCZzFc3xah9ExgNFq+bxoNpV82DROJ/JXgUE+NUWorGr4mMhGo+jOY73AeJxIhqPV91XbmqAuNF4HBDE441EY6TjXmMkGo8H6nytQjS+xvnNta6/Lh0EmutxJXA9rjeCgeuAOt+gcD19vbP9Da6/cXPPyFzVvJtojhN8BDMeKFo1jwfVrpoHychc1bybgACfYCIj4ydvIiObSHOc5APEE0VGNkn9pD8PzcgmAkE8yUhGhnTcm41E40lAnW9RyMhudn5zi+tvVc7IbgWux20K2cmNbh1uc/3tHj5Y4yJRqHfdbiBI3EFzvNNHkLhDXAffqR4k9IwZ11kKKti4Dr4DqPOdwOtg5PqFwA+/dwqr592lTL4jgWt7t0IwututQ1hF8J6I/96VLv2N+8keiBmJn8kGiHkKzXGqD2KeIoh5qgdi1jJmXEdKGyHmKUCdpwJtgVy//49Q4ur9TAFO76lAAg7EE/O9JYQyjeY43QehTBOEMv1fEEpSjRl3XhWMEMo0oM7TgYSCWL/QsbQPtkcnN6sIn9wMmuO9PkiAB4pWzbs3rV81bzTqU4Oion4zgA5xr4GD7bBoW4JBXBLJ7qM53u8DxPeJg+37FVPj8gwQl9XvA4L4fiMH20jHfcDIwfb9QJ0fVDhLeMD5zYOuf8jDNXPSozHfND9Mc3zEB5HxQNGqeTyodtU8VDTmqnkPAwH+iIFonHFF2yxE40dpjjN9gPhREY1n6h5UbWKAuNH4USCIZxqJxkjHfcxINJ4J1PlxhWj8mPObx13/RDoINNfjIeB6PGkEA08AdX5K4Wr9SWf7p1z/9GafkRXvv56hOT7rI5jxQNGqeTyodtU8TEZWXDXvGSDAn7WRkW3EiIWM7Dma4/M+QPycyMie183INjFA3IzsOSCInzeSkSEd9wUj0fh5oM4vKmRkLzi/edH1LylnZC8B1+NlhezkabcOL7v+lQiZhWVEwgp5r5bzZ2EVvNciN5Gvpkt/435W+p8r8b0e+Xuz0qW/cf+Gh29dXgHeoL1hIGC9SXN8y0fAelNcTb+lHbAUjRnXcbcwcjX9JlDnt4C22MLjty6ZeE+Wy4Gi3jXdAKG8TXOc7YNQ3haEMtsDoWgZM65zbWWEUN4G6jwbSChbGSIU5Dc+bxkglHdojnN8EMo7glDmeCAULWPGda5KRgjlHaDOc4C2qKRIKOjD4dnJJQH35DLv0hzf80ECPFC0ah4Pql01bzboup6r5r0LdIj3LBwOu4+3Egzikkj2Ps1xrg8Qvy8Oh+dqRrJyDBCX1d8HgniukcNhpON+YORweC5Q5w8VDoc/cH7zoes/8nBVm/honM9kPqY5fuKDyHigaNU8HlS7ah4sGucz2Y+BAP/EQjR2VXwsRON5NMf5PkA8T0Tj+ar7yk0NEDcazwOCeL6RaIx03AVGovF8oM6fKkTjBc5vPnX9wnQQaK7HR8D1WGQEAwuBOi9WuJ5e5Gy/2PWfbe4Zmaua9znHGB/BjAeKVs3jQbWr5kEyMlc173MgwL8wkZHxkzeRkS2hOS71AeIlIiNbqn7Sn4dmZEuAIF5qJCNDOu4yI9F4KVDnLxUysmXOb750/VfKGdlXwPX4WiE7+cytw9euX+7hgzUuEoV613IDQeIbmuMKH0HiG3EdvEI9SOgZM66zVDZyHfwNUOcVwOvgygpV88LvncLqed8qk+9s4NquVAhGK906hFUEv4v477eR37hf5YGYkfhZZYCYV9Mc1/gg5tWCmNd4IGYtY8Z1pKpGiHk1UOc1QFtUNfSdzhoDJLCW5rjOBwmsFSSwzgMJrAFu4dcCHWKdmXOoTHZOckEcPrn1NMfvfYCYB4pWavs+rV+pbQ7qeruoqN96IIi/NwDisFBYgkFcwsQ/0Bx/9AHiH8Rh6o+KTFyeAeIy8Q9AEP9o5DAV6bg/GTlM/RGo888K+9efnN/87PpfPFxtJj0a8+3mrzTH//kgMh4oWqmNB9Wu1IaKxlyp7VcgwP9nI6XcWCjMQjT+jeb4uw8Q/yai8e+6+6JNDBA3Gv8GBPHvRqIx0nE3GInGvwN1/kMhGm9wfvOH6/9MB4HmevwCXI+/jGDgT6DOfytc5/7lbP93yKGFm3tGVrz/KuB1KPQQzHigaKU2HlS7UhsmIyuu1Mbzj/uuEOCpQiOHfDkbGVma1rPQB4h5oGhGxoM2DBRBnMNmZGkgiAsLdYCBjkxIx61QaCMaFwJ1rliIjcb8VHB+U9H1WxQGgeZ6bAFcjy3B67FxTdw6bOn6rSJkFpauCKuybV3On4WV1yoVlt6kbV1Y+hv32xT+c/W3ypG/t01h6W/cVynU/75iKxyXZKsUJj9gVaU5VvMRsKoWlr1araYdsBSNGddxqxv5vqIqUOdqQFtUN1RYiUtQot61zkAGXJ3sXMMHoVQXhFLDA6FoGTOuc9U0QijVgYRSA0goNQ0RCpAEstUMZCg1aY61fBBKTUEotTwQipYx4zpXbSOEUhOocy0godQ29AVojeSSgHtymdp8RuuDBHigaKU2HlS7UlsNAIjDSm21gQ6xrYXDYffxVoJBXBLJ6tAc6/oAcR1xOFxXM5KVY4C4rF4HCOK6Rg6HkY67nZHD4bpAnbdXOBzezvnN9q7fwcNVbeKjcT6T2ZHmWM8HkfFA0UptPKh2pTZYNM5nsjsCAV7PQjR2lWMsROP6NMcGPkBcX0TjBqr7yk0NEDca1weCuIGRaIx03IZGonEDoM6NFKJxQ+c3jVy/k/JV7Q7A9djZCAZ2Auq8i8L19M7O9ru4ftfNPSNzldp2ozk29hHMeKBopTYeVLtSGyQjc5XadgMCvLGJjIyfvImMbHeaYxMfIN5dZGRN1E/689CMbHcgiJsYyciQjruHkWjcBKjzngoZ2R7Ob/Z0/V7KGdlewPXYWyE72dWtw96u38fDB2utgDeI+xgIEk1pjhkfQaKpuA7OqAcJPWPGdZY6Rq6DmwJ1zgCvg+soVGoLv3cKK7Zllcm3BnBtmykEo2ZuPcLKdc0j/pstLP2N+5wHYkbiJ2eAmFvQHFv6IOYWgphbeiBmLWPGvukzQswtgDq3BNpiO0Pf6bQ0QAKtaI55HyTQSpBA3gMJtARu4VsBHSJv5hwqk62VXBCHT641zXFfHyDmgaKV2vYt1K/UVgv2sVlRv9ZAEO9rAMRhobAEg7iEidvQHNv6AHEbcZjaVpGJyzNAXCZuAwRxWyOHqUjHbWfkMLUtUOf9FPav7Zzf7Of6/T1cbSY9GvPt5gE0xwN9EBkPFK3UxoNqV2pDRWOu1HYAEOAH2kgpNxYKsxCN29McO/gAcXsRjTvo7os2MUDcaNweCOIORqIx0nEPMhKNOwB1PlghGh/k/OZg1x+ifLq+P3A9DjWCgUOAOh+mcJ17qLP9Ya4/fLPPyIr3X0fQHI/0Ecx4oGilNh5Uu1IbJiMrrtR2BBDgR1o55MvZyMg60hw7+QBxR5GRddI+qc5hM7KOQBB3MpKRIR33KCPRuBNQ56MVMrKjnN8c7fpjlDOyY4DrcaxCdnK4W4djXX9chMzC0hVhVbbjy/mzsPLaCZGbtOMLS3/j/sTCf67+dlLk751YWPob9yd7+L7iOOA18MkGAtYpNMfOPgLWKeJqtbN2wFI0Zux/A2Tk+4pTgDp3BtpiB0OFlVoDP77MGyCULjTHrj4IpYsglK4eCEXLmLH/FbcRQukC1LkrkFDqGSIUIAlkOxsglG40x+4+CKWbIJTuHghFy5ix/9W2EULpBtS5O9AWDQx9Ado1uSTgnlymB82xpw8S4IGildp4UO1KbV1hH8/1zfYAOkRPC4fD7uOtBIO4JJL1ojn29gHiXuJwuLdmJCvHAHFZvRcQxL2NHA4jHbePkcPh3kCd+yocDvdxftPX9f08XNUmPhrnM5n+NMciH0TGA0UrtfGg2pXaYNE4n8n2BwK8yEI0dpVjLETjATTHgT5APEBE44Gq+8pNDRA3Gg8AgnigkWiMdNxBRqLxQKDOpypE40HOb051/WnKV7X9gOsx2AgGTgPqfLrC9fRgZ/vTXX/G5p6RuUptZ9Icz/IRzHigaKU2HlS7UhskI3OV2s4EAvwsExkZP3kTGdnZNMchPkB8tsjIhqif9OehGdnZQBAPMZKRIR13qJFoPASo8zkKGdlQ5zfnuP5c5YzsXOB6nKeQnZzh1uE815/v4YO1kcBPEs43ECQuoDkO8xEkLhDXwcPUg4SeMWMX3jZyHXwBUOdhwOvgRgqV2sLvncKKbRcqk29X4NpepBCMLnLrEFauuzjivxcWlv7G/SUeiBmJn0sMEPNwmuMIH8Q8XBDzCA/ErGXM2P8FACPEPByo8wigLXY29J3OCAMkMJLmOMoHCYwUJDDKAwmMAG7hRwIdYpSZc6hMtntyQRw+udE0x0t9gJgHilZqu7RQv1Jbd9jHZkX9RgNBfKkBEIeFwhIM4hImvozmOMYHiC8Th6ljFJm4PAPEZeLLgCAeY+QwFem4Y40cpo4B6ny5wv51rPOby11/hYerzaRHY77dvJLmeJUPIuOBopXaeFDtSm2oaMyV2q4EAvwqGynlxkJhFqLx1TTHcT5AfLWIxuN090WbGCBuNL4aCOJxRqIx0nHHG4nG44A6X6MQjcc7v7nG9dcqn65fAVyP64xg4FqgztcrXOde52x/vetv2OwzsuL91400x5t8BDMeKFqpjQfVrtSGyciKK7XdCAT4TVYO+XI2MrIJNMeJPkA8QWRkE7VPqnPYjGwCEMQTjWRkSMedZCQaTwTqfLNCRjbJ+c3Nrr9FOSO7BbgetypkJze4dbjV9bdFyCwsXRFWZbu9nD8LK6/dEblJu72w9Dfu7yz85+pvd0X+3p2Fpb9xf7eH7ytuA14D320gYN1Dc5zsI2DdI65WJ2sHLEVjxnXcXY18X3EPUOfJQFvsaqiwEvAaPTvZAKFMoTlO9UEoUwShTPVAKFrGjOtcjY0QyhSgzlOBtmhs6IMtpN6BeGK+t4QEptEcp/sggWmCBKZ7IIGpwG3wNKBDTFcCBjoiTgfqPAPwrn6Zfs3zrfpwFc5NARvgHXgGMIpH53tvZOtaKGwXRPygooJOgRhHrmOVQJEMtIx0byH+vfcBwa+l932FcBuVySqSvKbrI3NMOTDzclCCsNFx+F+pb0ltq6D4EoHrBm0TFH/SwSCvSq0aterUagTFn37UCorrDfElQx1qdYPif93OFQF3oLYjtXpB8UebDYLiANaI2k7Udqa2C7Vdqe1GrTG13ak1obYHtT2p7UVtb2r7UGvK60mNnaIZrwe1HLUW1FpSa0UtT601tX2ptaHWllo7avtR29/Z5UBq7al1oHYQtYOpHULtUGqHUTuc2hHUjqTWkVonakdRO5raMdSOpXYcteOpnUDtRGonUTuZ2inUOlPrQq0rtW7UulPrQa0ntV7UelPrQ60vtX7U+lPjg8oB1AZSG0TtVGqnURtM7XRqZ1A7k9pZ1M6mNoTaUGrnUDuX2nnUzqd2AbVh1C6kdhG1i6ldQm04tRHURlIbRW00tUupXUZtDLWx1C6ndgW1K6ldRe1qauOojad2DbVrqV1H7XpqN1C7kdpN1CZQm0htErWbqd1C7VZqt1G7ndod1O6kdhe1u6ndQ20ytSnUplKbRm06tRnU7qV2H7X7qT1A7UFqD1F7mNoj1B6lNpPaY9Qep/YEtSepPUXtaWrPUHuW2nPUnqf2ArUXqb1E7WVqr1B7ldpr1GZRe53aG9TepPYWtbepzab2DrU51N6l9h6196nNpfYBtQ+pfUTtY2qfUJtHbT61BdQ+pbaQ2iJqi6l9Ru3zoPg+Ywm1pdSWUfuS2lfUvqa2nNo31FZQ+5baSmrfUVtFbTW1NdTWUltHLfTh6PN/eZ36tmUtBAA=","proving_key":null,"verification_key":null} \ No newline at end of file +{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"a","type":{"kind":"array","length":100,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"b","type":{"kind":"array","length":100,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"c","type":{"kind":"array","length":4,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"d","type":{"kind":"array","length":4,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"m","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"}],"param_witnesses":{"a":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100],"b":[101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200],"c":[201,202,203,204],"d":[205,206,207,208],"m":[209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/+1dB5QVxdKevXcJkoMICgiIgSj3wgIXM+ZEBiMqcTGAgaRgAjNgDkSzYs4JUREVEygmMAeSZAFzDn8V27M7W6zn95z5qs/U4c059frVRaaruqq+qu4ey4JyQbC4fLD5ySNKubFxhE8JPi34fMGXE3x5wVcQfEXBbyP4SoKvLPgqgq8q+GqCry74GoKvKfhagq8t+G0FX0fw2wm+ruDrCX57we8g+PqCbyD4hoLfUfCNBN9Y8E0Ev5Pgmwp+Z8HvIvhdBb+b4JsJvrngWwi+peBbCb614HcXfBvBZwSfFXxbwbcTfIHg2wu+g+A7Cj4n+E6C30Pwewp+L8HvLfh9BL+v4PcTfGfB7y/4AwR/oOAPEvzBgj9E8IcK/jDBHy74IwR/pOC7CL6r4LsJvrvgewi+p+B7Cb634PsI/ijBHy34YwR/rOCPE/zxgu8r+BMEf6LgTxJ8P8H3F/wAwQ8U/CDHM+4Hjg+C0vki3/055wLGf8Z8xnnGdsZzxnDGbcZqxmfGZMZhxl7GW8ZYxlXGUsZPxkzGScZGxkPGQMY9xroQ35oERdjFeMUYxbjEWMT4w5jDOMPYwnjCGMK4wVjB+MCYwDjAsc/xzjHOcc2xzPHLMctxyrHJ8cgxyHHHscbxtV9QFEccOxwvHCMcFxwL7P/s8+zn7Nvsz+zD7Lfsq+yf7JPsh+x77G/sY+xX7EvsP+wz7CfsG+wP7ANsd7Y127dfUGTHAc5egyL2GCzsVyj4IYI/WfCnCP5UwZ8m+KGCHyb40wV/huDPFPxZgh8u+BGCHyn4UYIfLfizBX+O4McIfqzgzxX8eYI/X/AXCP5CwY8T/HjBXyT4iwV/ieAvFfxlgr9c8FcIfoLgJwp+kuCvFPxVgr9a8NcI/lrBXyf46wV/g+BvFPxNgp8s+CmCnyr4aYKfLvgZgr9Z8LcI/lbB3yb42wV/h+DvFPxdgr9b8DMFf4/g7xX8fYK/X/APCP5BwT8k+IcF/4jgHxX8Y4J/XPBPCP5JwT8l+KcF/4zgZwn+WcHPFvxzgn9e8C8Ifo7gXxT8XMG/JPiXBf+K4OcJ/lXBvyb41wX/huDfdHw591uY3zmPcO7gfME5gvMC5wLGf8Z8xnnGdsZzxnDGbcZqxmfGZMZhxl7GW8ZYxlXGUsZPxkzGScZGxsNxQRHuXRQU4RtjGuMYYxfjFWMU4xJjEeMPYw7jDGML4wljCOMGYwXjA2MC4wDHPsc7xzjHNccyxy/HLMcpxybH4+1BUdxxrHF8cUxxHHHscLxwjHBccCyw/7PPs5+zb7M/sw+z37Kvsn+yT7Ifsu+xv7GPsV+xL7H/sM+wn7BvsD+8FBTZnW09z9n0NWe7N5yNQnvNF/ZbIPi3BP92UGJf5vODome++7tvuX8m/OcXir//juDfFfx7kfenI+9f6P7uu+6fCf/594Oi+jDkPxD8IsEvFvyHgv9I8B8L/hPBfyr4zwT/ueC/EPyXgv9K8EsEv1TwywS/XPArBP+14FcKfpXgVwt+jeDXCn6d4NcL/hvBbxD8RsFvEvy3jmf/CM+S+GE/+MDZe7Gz60fOfp84O33m7PGFW/ev3Poudeu43K3X125dVjn91zg91zl9vnFyb3Tyfetky3PEz35uzMR7srz/GRyUPKD3ZgLxxHxvNvw/39E7vo+sA1rwbOgI3wWlgeP7oMQZtIwg39su06GgYHDHtoOz7bL9M207Dci1zxS0H9Ahl81l2+faD2qba9ducK4g17HTgE4dM52yBe0GZwvbd2pX6F58W76OQdMYOds6ObPfAXX+HmgX5PqlgtJOi/YhoN5qwfsDvePHwEPw/hCUoGXKTdpYzJlWNEDcgPghwAXEjwHeidHOy6drhXh/UHPkn+gdPwceHPmnoHQW+jnQy0KhEdBZ6A4jWegnoM4/A+1yh2IWSoF9CAg2WeAaqgHBL/SOXwMPQPBLUDqj8aSNxZzojKZlzLjBdZcRQPkFqPOvQFvclZ/8ioDv0YYE8HhSA4Lf6B2/Bx6AgCdqHJQAwe+BXkUQGgFdEcw0EsC/AXX+HWiXmYYqAiRwAddQDQj+oHf8GXgAgj+C0hUBT9pYzImuCLSMGTe47jUCKH8Adf4TaIt7DVQE/MXMyQE8ntSA4C96x9+BByDgiRoHJUDwd6BXEYRGQFcE9xsJ4L+AOv8NtMv9hioCJHAB11ANCP4JihZUHQj+CUpXBPx/Gos50RWBljHjBteDRgDlH6DObG+ULR40UBHwt7GnBPB4UgOCPFqAlA8gyMsrXRGk8vQqgtAI6IrgYSMBnJeH0zkFDOCHDVUESOACrqEaEKRJxnwfQJDOK10R5HuoCLSMGTe4HjUCKGmgzvlAWzxqoCLgfwvm1AAeT2pAUI4WoLwPICgnKoLyihVBaAR0RfC4kQAuBwzg8sAAftxQRYAErvIGKoIKJGNFH0BQQVQEFT1UBFrGjBtcTxoBlApAnSsCbfGkgYqA/33X0wJ4PKkBwTa0AJV8AME2oiKopFgRhEZAVwRPGwngbYABXAkYwE8bqgiQwFXJQEVQmWSs4gMIKouKoIqHikDLmHGDa5YRQKkM1LkK0BazDFQE3NliaACPJzUgqEoLUM0HEFQVFUE1xYogNAK6IphtJICrAgO4GjCAZxuqCJDAVc1ARVCdZKzhAwiqi4qghoeKQMuYcYPreSOAUh2ocw2gLZ43UBFwD6thATye1ICgJi1ALR9AUFNUBLUUK4LQCOiKYI6RAK4JDOBawACeY6giQAJXLQMVQW2ScVsfQFBbVATbeqgItIwZN7jmGgGU2kCdtwXaYq6BiqB/UNQtDBxPakBQhxZgOx9AUEdUBNspVgShEdAVwctGArgOMIC3Awbwy4YqAiRwbWegIqhLMtbzAQR1RUVQz0NFoGXMuME1zwig1AXqXA9oC631Q4NJPeD6bQ94Vy4zoH+7wlyndFBGwAf4hLw9EACj8u4QYfKF7YJIHJRX0CkQ88h1rBYogqmWkXbIU+gFAXR+Lb3r58FtVApQkrymWlshbrr7bqC7roD3FldADWgBGvqogBqIrVBDxa1QaAT0Vug1I5VLA2CgNARWLq8pboXQPgTUWy14dyQZG/kI3h3F9qWRh+1LwzxcQOwIDIhGeXgnRjsvt3x/D+8Pao7cmBagiQ9HbiyyUBPFLBQaAZ2F3jCShRoDg64JMAu9YehADgg22SYGMtpOJGNTH0Cwk8hoTT1kNC1jxg2u+UYAZSegzk2Btphv5ECuKXD9dga8q2O7QYMHFGYG+TqQ21npQG6X/x3IYY20i8KB3K4JP5BjvXc1diCHXFPl/Xz/BUHyq5/dSOlmPqqf3cQ2qJl+9VPKAHErgd2AjtdMYT+/NTtxc1K6hQ8nbi6cuIUxJ24OdOIWSns79BaomZLOcd/VErh+vspZpMxReVv9r5zFGqmVQjnbOuHlLOvd2lg5i1xT7YPB+cB3LQySX1XsTovZxkdVsbs4GGzj4WBQy5hxnfgtIweDuwMDtw3wYPAtQzcNwK1FFriGaoDCJU/WB6BkBKBkPQCKljHjBtdCI4CSAeqcBQLKQiM3DVng+rUFvKtgYP/C7OCCrK+tWVulrVm7/23NsEZqp7A1K0j41oz1LjC2NUOv6b/JGffd7Q2eI7VXAqsO/wMrrJE6KIBVx4SDFevd0TNYxV2HHLDiC2XLOdt3dGMn4b1oHfYwCGR7KAHZnv8DMqyR9lQAsr0SDmSs914KQBa+spNb073cuLcyQOxjECD2UQKIff8HEFgj7asAEPslHCA2O6ciQOzt1nQ/N3bOK9thNHR7L9AJvP3/F3hYI+2vEHgHJDzwWO8DFAOvs1vTA9x4oHJmPhCY5eStE2zt3T3M+8D1DsQT873FN0UHkdIH53m4KeKJ6gUlN0UHa94UlWGAuLcmBwED/WALTuxW8YMg+U58CCl9qA8n5olqRJz4UE0nLsMAcZ34EKATH5qn4xjyug4ZbHHfdRhA50L3aOp8KFDnw4E6hwF6mIubw914RJ77jxVH1gRaCVEkLQqSD2RHktJdfAAZT1QxKAGyLrpAtoUB4gLZkUAH72IEyLoAde6qENRHOB/q6sZuwovR67EY+K7uCuvRza1Ddzf20AQ5ByEfBskHuZ6kdC8fINdTbDl6edhyfBjgQK4nMOB7GdpyfBQk34l7k9J9fDhxb7Hl6ONhy/ER0Il7A524j5FM3Quo81FGthx9gDofrZCNj3Jxc7Qbj/Gw5fg4SD6QHUtKH+cDyI4VW47jPGw5Pg5wQHYs0MGPMwJkxwF1Pl4hqI9xPnS8G/sqbzk+Ab7rBIX16OvW4QQ3nuhhy/FpkHyQO4mU7ucD5E4SW45+HrYcnwY4kDsJGPD9DG05PguS78T9SekBPpy4v9hyDPCw5fgM6MT9gU48wEim7gfUeaCRLccAoM6DFLLxQBc3g9w42MOW4/Mg+UDGCzTEB5AVii3HEA9bjs8DHJAVAh18iBEgGwLU+WSFoB7sfOhkN56ivOX4AviuUxXW4xS3Dqe68TQPW44vg+SD3FBSepgPkBsqthzDPGw5vgxwIDcUGPDDDG05vgqS78Snk9Jn+HDi08WW4wwPW46vgE58OtCJzzCSqYcBdT7TyJbjDKDOZylk4zNd3JzlxuEethxLguQD2QhSeqQPIBshthwjPWw5lgQ4IBsBdPCRRoBsJFDnUQpBPdz50Cg3jlbeciwFvutshfUY7dbhbDee42HLsSxIPsiNIaXH+gC5MWLLMdbDlmNZgAO5McCAH2toy7E8SL4Tn0tKn+fDic8VW47zPGw5lgOd+FygE59nJFOPBep8vpEtx3lAnS9QyMbnu7i5wI0XethyrAiSD2TjSOnxPoBsnNhyjPew5VgR4IBsHNDBxxsBsvFAnS9SCOoLnQ9d5MaLlbccXwPfdYnCelzs1uESN17qYcuxMkg+yF1GSl/uA+QuE1uOyz1sOVYGOJC7DBjwlxvacqwKku/EV5DSE3w48RViyzHBw5ZjFdCJrwA68QQjmfpyoM4TjWw5JgB1nqSQjSe6uJnkxis9bDlWB8kHsqtI6at9ANlVYstxtYctx+oAB2RXAR38aiNAdjVQ52sUgvpK50PXuPFa5S3HGuC7rlNYj2vdOlznxus9bDnWBskHuRtI6Rt9gNwNYstxo4ctx9oAB3I3AAP+RkNbjnVB8p34JlJ6sg8nvklsOSZ72HKsAzrxTUAnnmwkU98I1HmKkS3HZKDOUxWy8RQXN1PdOM3DlmN9kHwgm05Kz/ABZNPFlmOGhy3H+gAHZNOBDj7DCJDNAOp8s0JQT3M+dLMbb1HecnwDfNetCutxi1uHW914m4ctx4Yg+SB3Oyl9hw+Qu11sOe7wsOXYEOBA7nZgwN9haMuxMUi+E99JSt/lw4nvFFuOuzxsOTYCnfhOoBPfZSRT3wHU+W4jW467gDrPVMjGd7u4menGezxsOTYFyQeye0np+3wA2b1iy3Gfhy3HpgAHZPcCHfw+I0B2H1Dn+xWC+h7nQ/e78QHlLce3wHc9qLAeD7h1eNCND4n1yAOvx8M4HfpryvkILt6K/wuTD7s1fsSNjyqv9WM4HTb/J32ZHovIzuPj2kmRcPRxgB7Zgv6ZTNtcLhBPzPcWJ8UnSMYnfSTFJ9wkIf+kdlIUBoibFJ8AJogngY4hnRidCHrggjGL0LusCh8ZEE+RjE/7CIinREA8/R8CIqnGjCvXu/k6VSJo/YpB4Cmgzk8DbYFYvzCwtLMiUO+CQDwx31sMAs+QjLN8gMAzAgRmeciKTwOz4jPAgJgFdAwLTlyQyeTof9oFSk78LMk424cTPyuceLYxJ34W6MSzgY6h7cTAgEMf2rmnIPMcyfi8DyfmiXaIODFPWj7QdeJZAMcbvDlpD8w+B3Ti54GOoebEBUVDgp24GIlfIBnn+HBinuiriBPP0UTiMgwQF4lfADrxHCMnz8jAfVFpg43WeQ5Q57kKp8svuriZ68aXPJwWJj4b5zKZl0nGV3wAGU9UJygBMp60spgzsdk4l8m+DHTwVyxk40zbzf9rIRvPIxlf9eHE80Q2flV1X7SlAeJm43lAJ37VSDZGBu5rRrLxq0CdX1fIxq+5uHndjW+IyEWvx0vA9XjTiA+8AdR5PtgHmN50tp/vxgVbe0VWBPeZt0jGt30kM56oQlCSzHjS7cWciazIBhe96y2gg79toiLjJ2eiIltIMr7jw4kXiorsHdWKjJ8ctCJbCHTid4xUZMjAfddINn4HqPN7ChXZuy5u3nPj+8oV2fvA9fhAoTpZ4NbhAzcu8lCdLMLFb8dAPDHfWwzsi0nGD30A++K80leQH6oDe2kDxAX2xUAH/1DJMaQDx5XzI5yc7UPZwu8nPnLjx8rANAtot0+UkhPabp/i7NYhlO0TZ69P3fhZJJ4/jvzG4+dlgKu0aybekwXGUPZzpUILoG8xUH9BMn7pA6i/EED9pQeg1jJm7KrGyFePXwB1/hJoC+T6/X+AElfvE4F6I9awrEQBiLliQPmKZFziA1C+EoCy5D8ASlKNGVeuRUYA5SugzkuAtlhk6DPq2Xk6tgbKWLCUZFzmAwR4oh2DEhBYlleC4P/mxJl4TykDxPt4r3DQUmBALDNwOO0+Hcsk2ImLM9lyknGFDydeLg6nVyiWxmUZIC6qLwc68Qojh9PIwP3ayOH0CqDOKxUOp792cbPSjas8HMYmPRvzbfFqknGNDyDjiWoHJUDGk1YVcyY1G9NtcXY10MHXGMjGmc3fdtrIxmtJxnU+nHityMbrFLNxpgwDxM3Ga4FOvM5INkYG7noj2XgdUOdvFLLxehc337hxg4hc9HqsAq7HRiM+sAGo8yawDzBtdLbf5MZvt/qKrGj/9R3J+L2PZMYTVQpKkhlPup2YM5kV2cDN7/oO6ODf26jINvuIhYrsB5LxRx9O/IOoyH7Urci2MEDciuwHoBP/aKQiQwbuT0ay8Y9AnX9WqMh+cnHzsxt/Ua7IfgGux68K1cm3bh1+deNvYj3ywOvxex4WG/kJW2787sY/lHX4E6dDW6nDn278K6/kZvePyG88/q2s3z9AfA11+NvJ/k+Yt1L63zH9BvQ1Fg61JoF4Yr63uBjJ4zVNeShG8lKlPzvgSRuLOdEVtZYxY39wauSzgzygzilcMGQ/VPyOCb2tBn5uodb4Kk2LkO8DBNICBPI9gMAS4I4kDQyIfFxAtNPOishvhoBAoJYVy5GM5X0ERDkREOU9B0Qm3lPKmHED4mMjWbEcUOfywKz4saGsmJ9cEHBPQaYCyVjRBwjwRNFOejypdie9fIATh530KgADomLKgBO7j8ES7MTFmWwbkrGSDyfmiaKHzZU0M1kZBoiL6tsAnbiSkmPIsi6unMjArQzQ2cdhcyWgzlWAOocBWtnFTRU3Vk3pX/0mPhvnMplqJGN1H0DGE0U76fGk2p30YNk4l8lWAzp4dQvZ2HX2sZCNa5CMNX04cQ2RjWtqZuMyDBA3G9cAOnFNI9kYGbi1jGTjmkCdaytk41oubmq7cdtUEGiuR1XgetQx4gPbAnXeDuwDTHWc7bdzY92tvSJznfTqkYzb+0hmPFG0kx5Pqt1JD1KRuU569YAOvr2JioyfnImKbAeSsb4PJ95BVGT1U9on/TloRbYD0InrG6nIkIHbwEg2rg/UuaFCRdbAxU1DN+6YCgLN9dgRuB6NFKqTum4dGrmxsYfqpDEufjsE4on53mJgb0Iy7uQD2JukSl/h7qQO7KUNEBfYmwAdfCegY4SGC78RCTvVNVUO+HzgeuysBProrzd3wdmtuLPgzs5uu7hx10icNI38xuNuKf0vO4G+md1NqYAB6FsMgM1IxuY+ALCZAMDmHgBQy5ixWz0a+YalGVDn5kBbfGqoQ91pwO+oEGtYVqIAxFwxoLQgGVv6AJQWAlBa/gdASaox48r1uRFAaQHUuSUQUD431KEO+DGgWoe6ViRjax8gwBNFO9S1Tul3qCsPcOKwQ10rYEC0TullRZQThw3SEuzExZlsd5KxjQ8n5omih75tFEvjsgwQF9V3BzpxGyXHQJd1yMDNKJV1aJ3bAHXOAnUOAzTj4ibrxrYp/UPOpGdjvoXlf/GnwAeQ8UTRDnU8qXaHOlQ25g517YAOXmAgG2dcgzQL2bg9ydjBhxO3F9m4g2I2zpRhgLjZuD3QiTsYycbIwO1oJBt3AOqcU8jGHV3c5NzYKRUEmuvRFrgeexjxgU5AnfcE+wDTHs72e7pxr62+Iivaf+1NMu7jI5nxRNEOdTypdoc6TEVW1KFub6CD72OjItvsIxYqsn1ZRh9OvK+oyPZLKV8dFmArsn2BTryfkYoMGbidjWTj/YA6769QkXV2cbO/Gw9IBYHmehwAXI8DFaqTvdw6HOjGgyJgFrbYCLunHSzWCv1tzSEpLG5GdTjEjYemSm5MD478xuNhyvodrqBfaJvDnQ5HRPQ7LPIbj0em9L8dOgio45EGCoAuJGNXHwVAl1Tpq/6uKf1vh7SMGfu/9Gjkqr8LUOeuQFt8aaj/DfATh7aBeGK+txgEupGM3X2AQDcBAt09gEBL4C6gGzAgugMdQzsrIr/TAQKBWlbsQTL29BEQPURA9PQcEJl4Tyljxv7PlRrJij2AOvcE2mKJoazYPbkg4J6CTC+SsbcPEOCJol3heFLtrnDdAU4cdoXrBQyI3ikDTuw+wEqwExdnsj4k41E+nJgnih7wHqWZycowQFxU7wN04qOUHEOWdXHlRAbu0QCdfRzwHgXU+RigzmGAHu3i5hg3HpvSv25NfDbOZTLHkYzH+wAynijaFY4n1e4KB8vGuUz2OKCDH28hG7suNRaycV+S8QQfTtxXZOMTNLNxGQaIm437Ap34BCPZGBm4JxrJxicAdT5JIRuf6OLmJDf2SwWB5nocC1yP/kZ8oB9Q5wFgH2Dq72w/wI0Dt/aKzHWFG0QyDvaRzHiiaFc4nlS7KxykInNd4QYBHXywiYqMn5yJioz/Vd8hPpy4UFRkQ1LaJ/05aEVWCHTiIUYqMmTgnmwkGw8B6nyKQkV2soubU9x4aioINNfjVOB6nKZQnQx063CaG4d6qE6G4uK3fSCemO8tBvZhJOPpPoB9WKr0Fe7p6sBe2gBxgX0Y0MFPBzpGaLjwG5GwO9wZygHfHbgeZyoA4JluHcIueWdF/O+MVMlvPA5P6X8xCbR5driBinEEyTjSB7CMEMAy0gOwaBkzbiAtM/JtyAigziOBtlhmqNvaOXk4vRFrWFbVDYi5YkAZRTKO9gEoowSgjP4PgJJUY8aVa4URQBkF1Hk0EFBWGOq2BvzITq3b2tkk4zk+QIAninZbOyel322tJ8CJw25rZwMD4pyUXlZEOXHY7CvBTlycycaQjGN9ODFPFD1MHatYGpdlgLioPgboxGOVHANd1iED91ylsg6t81igzucpnCWc6+LmPDeen9I/PEx6NubbzQtIxgt9ABlPFO22xpNqd1tDZWPutnYB0MEvNJCNM67Zl4VsPI5kHO/DiceJbDxeMRtnyjBA3Gw8DujE441kY2TgXmQkG48H6nyxQja+yMXNxW68JBUEmutxPnA9LjXiA5cAdb4M7ANMlzrbX+bGy7f6iqxo/3UFyTjBRzLjiaLd1nhS7W5rmIqsqNvaFUAHn2CjItvsIxYqsokk4yQfTjxRVGSTUspXhwXYimwi0IknGanIkIF7pZFsPAmo81UKFdmVLm6ucuPVqSDQXI+rgetxjUJ1crlbh2vceG0EzMLWFWHHsuvK+LOw29f1qZKbyOtSJb/xeEPq3zu43Rj5ezekSn7j8aaU/rcu1+KwJHuTgYQ1mWSc4iNhTU6Vvpqeop2wFI0ZN3BXGrmangzUeQrQFisN9UFBXskH4on53mIQmEoyTvMBAlMFCEzzAAKjgVXrVGBATAM6hnZWRDoxEAjUsuJ0knGGj4CYLgJihueAyMR7ShkzbkCsNpIVpwN1ngG0xWpDWXFackHAPQWZm0nGW3yAAE8U7Q7Gk2p3B5sGcOKwO9jNwIC4BegYak7sPhhKsBMXZ7JbScbbfDgxTxQ9kLxNM5OVYYC4qH4r0IlvU3IMWdbFlRMZuLcDdPZxIHkbUOc7gDqHAXq7i5s73HhnSv96MPHZOJfJ3EUy3u0DyHiiaHcwnlS7OxgsG+cy2buADn63hWzsupVYyMYzScZ7fDjxTJGN79HMxmUYIG42ngl04nuMZGNk4N5rJBvfA9T5PoVsfK+Lm/vceH8qCDTX407gejxgxAfuB+r8INgHmB5wtn/QjQ9t7RWZ6w72MMn4iI9kxhNFu4PxpNrdwSAVmesO9jDQwR8xUZHxkzNRkT1KMj7mw4kfFRXZYyntk/4ctCJ7FOjEjxmpyJCB+7iRbPwYUOcnFCqyx13cPOHGJ1NBoLkeTwLX4ymF6uQhtw5PufHplP5HUtyYCPWupw0kiWdIxlk+ksQzqdLXwbPUk4SeMeMGy1oj18HPAHWehQuGLHL9QscPv9cJO7Y9qwy+04BrO1shGc126xB2rnsuEr/PRn7j8XkfwAz0n+cNAPMLJOMcH8D8ggDmOT6AWcmYcQNpvRFgfgGo8xygLdYb6tR2KbA4QKxhWTsgQMwVA8qLJONcH4DyogCUuf8BUJJqzLhybTACKC8CdZ4LBJQNhjq1AT94VOvU9hLJ+LIPEOCJop3aXk7pd2qbAXDisFPbS8CAeDmllxVRThw2CkuwExdnsldIxnk+nJgnih5sz1MsjcsyQFxUfwXoxPOUHANd1iED91Wlsg6t8zygzq8pnCW86uLmNTe+ntK/Zk56Nuab5jdIxjd9ABlPFO3UxpNqd2pDZWPu1PYG0MHfNJCNM65RmIVsPJ9kXODDieeLbLxAMRtnyjBA3Gw8H+jEC4xkY2TgvmUkGy8A6vy2QjZ+y8XN225cmAoCzfV4Hbge7xjxgYVAnd8F+wDTO87277rxva2+Iivaf71PMn7gI5nxRNFObTypdqc2TEVW1KntfaCDf2CjItvsIxYqskUk42IfTrxIVGSLU8pXhwXYimwR0IkXG6nIkIH7oZFsvBio80cKFdmHLm4+cuPHqSDQXI+PgevxiUJ18p5bh0/c+GkEzMI2ImFXts/K+LOw89rnqZKbyM8iv/H4Rerfu799Gfl7X0R+4/GrlP63Lp/isCT7lYGEtYRkXOojYS1Jlb6aXqqdsBSNGTdwNxm5ml4C1Hkp0BabPH7rkon3ZGcDP4+YawBQlpGMy30AyjIBKMs9AIqWMeMG13dGAGUZUOflQED5zhCgIL/xWWoAUFaQjF/7AJQVAlC+9gAoWsaMG1w/GAGUFUCdvwba4gdDXfOWJxcE3FOQWUkyrvIBAjxRtGseT6rdNW85wInDrnkrgQGxKmXAid3HWwl24uJMtppkXOPDiXmi6OHwGs1MVoYB4qL6aqATr1FyDFnWxe7eDtR5LUBnH4fDa4A6rwPqHAboWhc369y4PqV/VZv4bJzLZL4hGTf4ADKeKNo1jyfV7poHy8a5TPYboINvsJCNXRcfC9l4I8m4yYcTbxTZeJNmNi7DAHGz8UagE28yko2RgfutkWy8CajzdwrZ+FsXN9+58ftUEGiux3rkeYoRH/geqPOPYB9g+sHZ/kc3/rS1V2Sua97PJOMvPpIZTxTtmseTanfNg1Rkrmvez0AH/8VERcZPzkRF9ivJ+JsPJ/5VVGS/pbRP+nPQiuxXoBP/ZqQiQwbu70ay8W9Anf9QqMh+d3Hzhxv/TAWB5nr8CVyPvxSqk5/cOvzlxr9T+h+s5ePiN/u3gSTxDy9g2kOS+CdV+jqYJ20s5kRXOlrGjBssPxm5Dv4HqDMLh7LFTwpd88LvncLueXnp0r6JBt/lwLVNpfHJKOXiM+wimE6XxG9euuQ3HvPT+sCM9J/8dPKBuRzJWN4HMJdLlwbm8h6AWcuYsbegRoC5HFDn8kBb/GKoa971wI9PywMBOBBPzPcWA0oFkrGiD0CpIACl4n8AlKQaM/aW0wigVADqXBEIKL8Z6poH/OBRrWveNmSbSj5AgCeKds2rlNbvmvc14mC7yFcGbQMMiEppvayIcuKwaVuCnbg4k1Wm9aziw4l5oujBdhXF0rgsA8RF9cpAJ66itGdCl3XIwK2qVNahda4C1LmawllCVRc31dxYPa1/zZz0bMw3zTVoHWr6ADKeKNo1jyfV7pqHysbcNa8G0MFrGsjGGde0zUI2rsW+5cOJa4lsXFv3oGoLA8TNxrWATlzbSDZGBu62RrJxbaDOdRSy8bYubuq4cTvlm47qwPWoa8QHtgPqXA/sA0x1ne3ruXH7rb4iK9p/7UDrUN9HMuOJol3zeFLtrnmYiqyoa94OQAevb6Mi2+wjFiqyBrSeDX04cQNRkTXUrci2MEDciqwB0IkbGqnIkIG7o5Fs3BCocyOFimxHFzeN3NhYuSJrDFyPJgrVyfZuHZq4cacImIVtRMIOeU3L+LOwC97OkZvIpumS33jcJf3vnfh2jfy9XdIlv/G4m4dvXXYC3qDtlk5+wmpGMjb3kbCaiavp5toJS9GYsb9gNnI13Qyoc3OgLf4w1OSqPK5qzVY0ACgtSMaWPgClhQCUlh4ARcuYsf8VACOA0gKoc0sgoPxlCFCQ3/g0NwAorUjG1j4ApZUAlNYeAEXLmHGD6x8jgNIKqHNroC3+MdQ1r2VyQcA9BZndScY2PkCAJ4p2zeNJtbvmtQQ4cdg1b3dgQLSxcDjsPt5KsBMXZ7IMyZj14cQZcTic1cxkZRggLqpngE6cNXI4jAzctkYOh7NAndspHA63dXHTzo0FHq5qE5+Nc5lMe5Kxgw8g44miXfN4Uu2uebBsnMtk2wMdvIOFbOy6+FjIxh1JxpwPJ+4osnFOdV+5pQHiZuOOQCfOGcnGyMDtZCQb54A676GQjTu5uNnDjXumg0BzPQqA67GXER/YE6jz3grX03s52+/txn229orMdc3bl2X0kcx4omjXPJ5Uu2sepCJzXfP2BTr4fiYqMn5yJiqyziTj/j6cuLOoyPZXP+nPQSuyzkAn3t9IRYYM3AOMZOP9gTofqFCRHeDi5kA3HqRckR0EXI+DFaqTfdw6HOzGQzx8sMZNolDvOsRAkjiUZDzMR5I4VFwHH6aeJPSMGTdY8srZuA4+FKjzYcDrYOT6hY4ffu8Uds87XBl8WwLX9giFZHSEW4+wi+CRkfg9PF3yG49dPAAz0n+6GADmriRjNx/A3FUAczcPwKxlzLiBlDYCzF2BOncD2gK5fv8foMTV+7Y8nN7dgAAciCfme4sBpTvJ2MMHoHQXgNLjPwBKUo0ZV65yRgClO1DnHkBAQaxfGFjaB9utk1tVhE9BT5Kxlw8Q4ImiXfN6pfW75rVGfWpQWDioJzAgehk42A6btiXYiYszWW+SsY8PJ+4tDrb7KJbGZRkgLqr3BjpxHyMH28jAPcrIwXYfoM5HK5wlHOXi5mg3HuPhmjnp2Zhvmo8lGY/zAWQ8UbRrHk+q3TUPlY25a96xQAc/zkA2zrimbRay8fEkY18fTny8yMZ9dQ+qtjBA3Gx8PNCJ+xrJxsjAPcFINu4L1PlEhWx8goubE914UjoINNfjGOB69DPiAycBde6vcLXez9m+vxsHbPUVWdH+ayDJOMhHMuOJol3zeFLtrnmYiqyoa95AoIMPslGRbfYRCxXZYJKx0IcTDxYVWaFuRbaFAeJWZIOBTlxopCJDBu4QI9m4EKjzyQoV2RAXNye78RTliuwU4HqcqlCdDHDrcKobT4uAWdhGJOyQN7SMPwu74A2L3EQOTZf8xuPp6X/vxHdG5O+dni75jcczPXzrchrwBu1MAwnrLJJxuI+EdZa4mh6unbAUjRk3cCsYuZo+C6jzcKAtKnj81iUT78lyO1DUu3oYAJQRJONIH4AyQgDKSA+AomXM2P+9KiOAMgKo80ggoGxjCFCQ3/gMNwAoo0jG0T4AZZQAlNEeAEXLmHGDq7IRQBkF1Hk00BaVFQEFfTg8Mrkg4J6CzNkk4zk+QIAninbN40m1u+aNBF3Xc9e8s4EBcY6Fw2H38VaCnbg4k40hGcf6cOIx4nB4rGYmK8MAcVF9DNCJxxo5HEYG7rlGDofHAnU+T+Fw+FwXN+e58XwPV7WJz8a5TOYCkvFCH0DGE0W75vGk2l3zYNk4l8leAHTwCy1kY9fFx0I2HkcyjvfhxONENh6vuq/c0gBxs/E4oBOPN5KNkYF7kZFsPB6o88UK2fgiFzcXu/GSdBBorsf5wPW41IgPXALU+TKF6+lLne0vc+PlW3tF5rrmXUEyTvCRzHiiaNc8nlS7ax6kInNd864AOvgEExUZPzkTFdlEknGSDyeeKCqySeon/TloRTYR6MSTjFRkyMC90kg2ngTU+SqFiuxKFzdXufFq5YrsauB6XKNQnVzu1uEaN17r4YM1bhKFete1BpLEdSTj9T6SxHXiOvh69SShZ8y4wVLVyHXwdUCdrwdeB1dV6JoXfu8Uds+7QRl8RwLX9kaFZHSjW4ewi+BNkfi9IV3yG4+TPQAz0n8mGwDmKSTjVB/APEUA81QPwKxlzLiBVN0IME8B6jwVaIvqhrrmPZSH03sqEIAD8cR8bzGgTCMZp/sAlGkCUKb/B0BJqjHjylXTCKBMA+o8HQgoNQ11zRud3KoifApmkIw3+wABnijaNe/mtH7XvNGoTw0KCwfNAAbEzQYOtsOmbQl24uJMdgvJeKsPJ75FHGzfqlgal2WAuKh+C9CJbzVysI0M3NuMHGzfCtT5doWzhNtc3Nzuxjs8XDMnPRvzTfOdJONdPoCMJ4p2zeNJtbvmobIxd827E+jgdxnIxhnXtM1CNr6bZJzpw4nvFtl4pu5B1RYGiJuN7wY68Uwj2RgZuPcYycYzgTrfq5CN73Fxc68b70sHgeZ63AFcj/uN+MB9QJ0fULhav9/Z/gE3PrjVV2RF+6+HSMaHfSQznijaNY8n1e6ah6nIirrmPQR08IdtVGSbfcRCRfYIyfioDyd+RFRkj+pWZFsYIG5F9gjQiR81UpEhA/cxI9n4UaDOjytUZI+5uHncjU8oV2RPANfjSYXq5EG3Dk+68akImIVtRMIOeU+X8WdhF7xnIjeRT6dLfuNxVvrfO/E9G/l7s9Ilv/E428O3Lk8Bb9BmG0hYz5GMz/tIWM+Jq+nntROWojHjBm5tI1fTzwF1fh5oi9qGmlxxO1DUu6YbAJQXSMY5PgDlBQEoczwAipYx4wZXHSOA8gJQ5zlAQKljCFCQ3/g8bwBQXiQZ5/oAlBcFoMz1AChaxowbXHWNAMqLQJ3nAm1R11DXvDnJBQH3FGReIhlf9gECPFG0ax5Pqt01bw7oup675r0EDIiXLRwOu4+3EuzExZnsFZJxng8nfkUcDs/TzGRlGCAuqr8CdOJ5Rg6HkYH7qpHD4XlAnV9TOBx+1cXNa2583cNVbeKzcS6TeYNkfNMHkPFE0a55PKl21zxYNs5lsm8AHfxNC9nYdfGxkI3nk4wLfDjxfJGNF6juK7c0QNxsPB/oxAuMZGNk4L5lJBsvAOr8tkI2fsvFzdtuXJgOAs31eB24Hu8Y8YGFQJ3fVbiefsfZ/l03vre1V2Sua977JOMHPpIZTxTtmseTanfNg1Rkrmve+0AH/8BERcZPzkRFtohkXOzDiReJimyx+kl/DlqRLQI68WIjFRkycD80ko0XA3X+SKEi+9DFzUdu/Fi5IvsYuB6fKFQn77l1+MSNn3r4YI2bRKHe9amBJPEZyfi5jyTxmbgO/lw9SegZM26wbG/kOvgzoM6fA6+Dt1fomhd+7xR2z/tCGXznANf2S4Vk9KVbh7CL4FeR+P0i8huPSzwAM9J/lhgA5qUk4zIfwLxUAPMyD8CsZcy4gVTfCDAvBeq8DGiL+oa+01lmAASWk4wrfIDAcgECKzyAwDLgFn45MCBWmDmHymTnJteJw6fga5JxpQ8n5omindpWpvU7tc1FXW8XFg76GujEKw04cdgoLMFOXIzEq0jG1T6ceJU4TF2tiMRlGSAuEq8COvFqI4epyMBdY+QwdTVQ57UK+9c1Lm7WunGdh6vNpGdjvt1cTzJ+4wPIeKJopzaeVLtTGyobc6e29UAH/8ZGSbm5UZiFbLyBZNzow4k3iGy8UXdftIUB4mbjDUAn3mgkGyMDd5ORbLwRqPO3Ctl4k4ubb934XToINNdjHXA9vjfiA98Bdf5B4Tr3e2f7H9z441ZfkRXtv34iGX/2kcx4ominNp5Uu1MbpiIr6tT2E9DBf7ZyyFdgoyL7hWT81YcT/yIqsl+1T6oLsBXZL0An/tVIRYYM3N+MZONfgTr/rlCR/ebi5nc3/qFckf0BXI8/FaqTH906/OnGvyJgFrauCLuy/V3Gn4Wd1/6J3KT9HfmNxyD/37u/5eWX/D3+58LfeEzl639f8RfwGpjlBb1LLWGlScb8fA8JK51f+mo1P1//alXLmHEDt6GR7yvSQJ3zccGQbWiosRK3oES9a0U6+YBSjuxc3geglBOAUt4DoGgZM25wNTICKOWAgFIeCCiNDAEKEASy+QYqlAokY0UfgFJBAEpFD4CiZcy4wdXECKBUAOpcEQgoTQx9AVo+uSDgnoLMNiRjJR8gwBNFO7XxpNqd2soDnDjs1LYNMCAq5RtwYvfxVoKduDiTVSYZq/hwYp4oejhcRTOTlWGAuKheGejEVZQcA30wiAzcqgCdfRwOVwHqXA2ocxigVV3cVHNj9Xz9q9rEZ+NcJlODZKzpA8h4ominNp5Uu1MbLBvnMtkaQAevaSEbu84xFrJxLZKxtg8nriWycW3VfeWWBoibjWsBnbi2kWyMDNxtjWTj2kCd6yhk421d3NRx43b5QaC5HtWB61HXiA9sB9S5HtgHmOo629dz4/Zbe0XmOrXtQDLW95HMeKJopzaeVLtTG6Qic53adgA6eH0TFRk/ORMVWQOSsaEPJ24gKrKG6if9OWhF1gD5LYKRigwZuDsaycYNgTo3UqjIdnRx08iNjZUrssbIGy6F6mR7tw5N3LiThw/WWgJvEHcykCSakow7+0gSTcV18M7qSULPmHGDpamR6+CmQJ13Bl4HN1Xo1BZ+7xR2bNtFGXzLA9d2V4VktKtbj7Bz3W6R+N0lv+Q3Hpt5AGak/zQzAMzNScYWPoC5uQDmFh6AWcuYcQNpFyPA3ByocwugLXYx9J1OCwMg0JJkbOUDBFoKEGjlAQRaALfwLYEB0crMOVQmWzG5Thw+Ba1Jxt19ODFPFO3Utnu+fqe2irCPzQoHtQY68e4GnDhsFJZgJy5G4jYkY8aHE7cRh6kZRSQuywBxkbgN0IkzRg5TkYGbNXKYmgHq3FZh/5p1cdPWje08XG0mPRvz7WYBydjeB5DxRNFObTypdqc2VDbmTm0FQAdvb6Ok3NwozEI27kAydvThxB1ENu6ouy/awgBxs3EHoBN3NJKNkYGbM5KNOwJ17qSQjXMubjq5cQ/l0/V2wPXY04gP7AHUeS+F69w9ne33cuPeW31FVrT/2odk3NdHMuOJop3aeFLtTm2YiqyoU9s+QAff18ohX4GNimw/krGzDyfeT1RknbVPqguwFdl+QCfubKQiQwbu/kaycWegzgcoVGT7u7g5wI0HKldkBwLX4yCF6mRvtw4HufHgCJiFrSvCrmyHlPFnYee1QyM3aYfkl/zG42H5/9797fDI3zssv+Q3Ho/w8H3FwcBr4CMMJKwjScYuPhLWkeJqtYt2wlI0ZtzA3c3I9xVHAnXuArTFboYaK7UGfnzZygCgdCUZu/kAlK4CULp5ABQtY8YNruZGAKUrUOduQEBpbghQgCCQ7WIAULqTjD18AEp3ASg9PACKljHjBldLI4DSHahzD6AtWhr6ArRbckHAPQWZniRjLx8gwBNFO7XxpNqd2rrBPp4bmO0JDIheFg6H3cdbCXbi4kzWm2Ts48OJe4vD4T6amawMA8RF9d5AJ+5j5HAYGbhHGTkc7gPU+WiFw+GjXNwc7cZjPFzVJj4b5zKZY0nG43wAGU8U7dTGk2p3aoNl41wmeyzQwY+zkI1d5xgL2fh4krGvDyc+XmTjvqr7yi0NEDcbHw904r5GsjEycE8wko37AnU+USEbn+Di5kQ3nqR8VXsMcD36GfGBk4A691e4nu7nbN/fjQO29orMdWobSDIO8pHMeKJopzaeVLtTG6Qic53aBgIdfJCJioyfnImKbDDJWOjDiQeLiqxQ/aQ/B63IBgOduNBIRYYM3CFGsnEhUOeTFSqyIS5uTnbjKcoV2SnA9ThVoToZ4NbhVDee5uGDtZHATxJOM5AkhpKMw3wkiaHiOniYepLQM2bsf7PbyHXwUKDOw4DXwa0VOrWF3zuFHdtOVwbfbsC1PUMhGZ3h1iHsXHdmJH5Pzy/5jcezPAAz0n/OMgDMw0nGET6AebgA5hEegFnLmHEDqY0RYB4O1HkE0BZtDH2nM8IACIwkGUf5AIGRAgRGeQCBEcAt/EhgQIwycw6VyfZIrhOHT8FokvFsH07ME0U7tZ2dr9+prQfsY7PCQaOBTny2AScOG4Ul2ImLkfgcknGMDyc+RxymjlFE4rIMEBeJzwE68Rgjh6nIwB1r5DB1DFDncxX2r2Nd3JzrxvM8XG0mPRvz7eb5JOMFPoCMJ4p2auNJtTu1obIxd2o7H+jgF9goKTc3CrOQjS8kGcf5cOILRTYep7sv2sIAcbPxhUAnHmckGyMDd7yRbDwOqPNFCtl4vIubi9x4sfLp+nnA9bjEiA9cDNT5UoXr3Euc7S9142VbfUVWtP+6nGS8wkcy44mindp4Uu1ObZiKrKhT2+VAB7/CyiFfgY2KbALJONGHE08QFdlE7ZPqAmxFNgHoxBONVGTIwJ1kJBtPBOp8pUJFNsnFzZVuvEq5IrsKuB5XK1Qnl7l1uNqN10TALGxdEXZlu7aMPws7r10XuUm7Nr/kNx6vz//37m83RP7e9fklv/F4o4fvK64BXgPfaCBh3UQyTvaRsG4SV6uTtROWojFj/2dIjHxfcRNQ58lAW2QNNVYCXqNnJxsAlCkk41QfgDJFAMpUD4CiZczYHfmNAMoUoM5TgbZoZ+iDLaTegXhivrcYBKaRjNN9gMA0AQLTPYDAVOA2eBowIKYrOQY6I04H6jwD8K5BmUHtch0HdEoHZThsgA/gGcAsHpX35sjWNV/YLojEQXkFnQIxj1zHaoEiGGgZ6eZ8/HtvATq/lt635MNtVKqqSPKafhuRMeWcmZeDCoTNgcP/lnpFom2CoksE7htUJSj6pIOdvDpRDaKaRLWCok8/tg2K+g3xJUNdonpB0b/dzh0B6xM1IGoYFH202SgoSmBNiHYiakq0M9EuRLsS7UbUjKg5UQuilkStiFoT7U7UhteTiIOiLa8HUQFRe6IORB2JckSdiPYg2pNoL6K9ifYh2tfZpTPR/kQHEB1IdBDRwUSHEB1KdBjR4URHEB1J1IWoK1E3ou5EPYh6EvUi6k3Uh+gooqOJjiE6lug4ouOJ+hKdQHQi0UlE/Yj6Ew0gGkg0iGgwER9UDiE6megUolOJTiMaSjSM6HSiM4jOJDqLaDjRCKKRRKOIRhOdTXQO0RiisUTnEp1HdD7RBUQXEo0jGk90EdHFRJcQXUp0GdHlRFcQTSCaSDSJ6Eqiq4iuJrqG6Fqi64iuJ7qB6Eaim4gmE00hmko0jWg60Qyim4luIbqV6Dai24nuILqT6C6iu4lmEt1DdC/RfUT3Ez1A9CDRQ0QPEz1C9CjRY0SPEz1B9CTRU0RPEz1DNIvoWaLZRM8RPU/0AtEcoheJ5hK9RPQy0StE84heJXqN6HWiN4jeJJpPtIDoLaK3iRYSvUP0LtF7RO8TfUC0iGgx0YdEHxF9TPQJ0adEnxF9TvQF0ZdB0X3GEqKlRMuIlhOtIPqaaCXRKqLVRGuI1hKtI1pP9A3RBqKNRJuIwhiOPv8Hv7jKq2UtBAA=","proving_key":null,"verification_key":null} \ No newline at end of file diff --git a/crates/nargo_cli/tests/test_data/8_integration/target/witness.tr b/crates/nargo_cli/tests/test_data/8_integration/target/witness.tr index 09bef840365ff0bff22e0db48aa1759c58ccef90..e73ec20bbf196392baee6c9891fdae8e1ee49e35 100644 GIT binary patch literal 8074 zcmW-m2RK_@7{{sBXl+%hwxX?7dxsLcC@o^es+rQFwxG3ls8zElH9}(7ioI&r2&q+j z#Yl;f;?wUw_ug~QdG0vpp67l4@9#YvvE)Smwi{O!IevHdrY8HE=L2}Pk{@c(Cw~>E z=^gr`FgoIt>zKLWmrM4q`QIM)uPFU@YTfV)8ik?>Cjm+(dlP0A$CisVqYH%Hi}{Tc z!uaS4}ae!I$H5kY5(2jP18)iv)GeZ(B!~1wMKrNP3$u$if0`cC|6>>JW_i9G`kUrhiLj2mUr zL%GiLzXrUK19jqs&DrccfVocx%H2Nl7f!+bs*Ozo+s&#B%-`s)rqbj}0Lpw2lf z1ohQN^8Lt4b5&M1Qwk*20gPJ})%wLL-{>~HY2`KqbM+1ki_dmWP8+=clblW~pE9{I&udOF-^NDdd}Ll9bVH)Q_vOu?XG!sgx$hqI5;wY2v7DmU@_@ znY$?_v$CjWZ6qt0*V!B`X>6l?vaP6TWnR5Kj!K`=*m^B&+?E)HHLy$Ie%X?DVB}h( z2?!+mY+oj70ND-=)9)7RlrN^C!zbH4+O8u!UA7v2WV)+C9x$6-=do1?q_S3h)pe$% zo~_!GKo?ZX!H*vw>V^Ld{D^FYnfjS4X~ErP!jtL)W7@TY`U5dgmf1dop!lIb_q)M` zILQT9-2-hQ=FclqKn4Ht2%Q<%q`#6DL(YwCS%?nn+S~|`(kLrC%7w|6qv!~*)+8Vn8Ql?YFyt22YWn~OeAUdL7?)&b z?s~$xO~_5Y@6n#CxnCJqKfk9oqchD3Wei||YB+OAIODmH>Rwi@Mg)46I1jzA?08iN zIaJ~e!CifLRlL@O%oH^zt~JfTF^l@4?JpVWhs?pW$#*U?0PF9b7Az)8R5Z(mjYssl zXAS3Tf`yE}J)~B3Arkuf^70+NF?A*HWzzZ?dZ%|Y39K(S`k4a()LUxisnaE+JmOumjN1DN z{5ascQw6I4(W>5_KXpo6woZqESpAMO{Al|bo_8sbuyK7D+H&xFA2YEUqbR#P*3y}c zQ`7B0n2Xz8$;-DB($6I$jDDsv8xOVp#v53M+Z5r=DFyn<8zp-eZ9pm(U9$og>_f6> z4-lT_3l`CZG&|?%6R;RP1D-Ra^Dk4)0m>dUT9mx)M7ErXJBoOUN7%1feV@TMSc86C zG7d2`cm(ZV^-l5aNfj{F8J?#R7NarJ{MZzMhET^oC1tP=XRDECllqCi3Imn*%As_327nPX~?@h%xRY@VX{74Ug7V|F3&Ai%kTRj;0O)9QpD*^+D@ z$B70avv230kkQt2Xn%s6B5s|dN$B#Je|neMxOSR^4~ZuoKO-{MT?vC5z)8;0p-HS2 zD%8SoorCIm{0od~)L$ce#%D3d%2)oI^aZ(3z57u%P#C&P8BTTGBok6(0cka9<#GpT z&!@y<>Ati|-SAUPURrxa&37E1&N&Kj`V0@a>x9sas;PhE43thJ^;0D6_7`MU&AOf+ z_b}`fv!;oG6p5cA`)Zx+_e6c7s(K>max~|3+O@NdbQAMd4#6kuLXqqnUq9kylP%Fszzt{Po`*=B{qX>sLud9kbHzGy-+O z-xfDMwB#mQe^ww6ZiVrco&O!ZLkwT2`E1il{#(+fmAUpphf~lb%=fV^Vxdp4xQ((J zO}Vp1i&!uUxYesuXY!G7`UL2i7i2|+^QZdAyAj-Wul-t&12dtfOUbnCP@#A+KO1ekC zyw5Kv`yr6^xm?E_*QlUJy7G-eo^GQ&9`a%6usTI20vjh>$~HjbQN(IgU(UbJd#|6n zw%zH~IkW75&c(NDPmJzyA{1%iVu@JAXlU((-d^}=SZ?3S0y%;L!ZC&?sDK>a0}0PW zQ#3ZJlwKq5PZNXQqzslJ1ALfi9Mh;>d}k9V9^hi{MX?Qa`j5gvfw z`fJEZw2Yu9OXM1gx_4}=8!9W#!p(@0Rt7uLHX+{3#;dPqaU#S;!Fs`WR=w`Ix4rPj z*1cTh^Bq`vIeh%)O}ut6*{T<{!A8o~Ni$IR4FF_6*$AX5{MLQ0xXO;}-cfMih^?#) z;*f910dTAylMt1sZi)5Y8agX+TwJ>3N-8{l|6y5$6f&}-0i>LI%r0X4MrpB+LseET z=814GF8!X;GaUN8_usp#$Kt@z0l*-q@bCA(_4|u;UQXl2XnEQES>r)D_i?kHsy_Wy6S2zv(G^R?If$H#i1GM_Eo-|G93QJe?(Ia0nEnj zP;@v7S$|ZPGB{X$Pf^b&@~y*m^kler@Uy*S-4p0r8{~S+rS{QYtZz$d)kPr3mHM16 zTG-h2$o17FOZ3J*d0H-nts%7K@>w=pjV>$2A$3^-JH=sMH((?gtr_KG2;$+ojIBn$ zyKJVV;=BJK_DmXNw?H+`cSQ^d2~dV#eFU9+#GBb0C7|i4b>K};*2~=<_d{mOK-dTA zo-M0TaTD)te)BZ#F0lbmA+#v7?Uu<#r4U{wACu{a$jpd9Z&V~AX1+)B0k@-Boi5>$ zoKmMa{%L?DL6c}uE+=ygYKI*0yW2ZBqe~>nWARjdK!c&a!Qh+4oSjU-Y@Y|n;pGSz z@BT&q4XL$SdaanSB0C%^%^zr+?dT;judj@ZSgYAL52+94?uY2W(m8Q1!;P7o552vQ zDwV;RRq5hfAl2ERBjtR1dinu<0@%p^|m6uVT z&3tR`_4SJay#$Y(pXW)T`E#jpm>3y|W0p)%-m^7Cl5Z}B_3$TjNWi^tNngdRYBch~ zlN?&0BTtYx^^CqW_%VCJ(*36$vwF553MMW52c&^pBMhbhC_4e1|R zz#~&AJR>K<uBa8TE@8$?Ru7HcUni{&8QvY>0+i?xm*7P$mF)Wb6@PKN(3OIG-t^7kqP< z5uj}?`Sv5?((X$zl=ZW{e|f4{9_O-qHk&TyKx+)2cf$|L^4Z{dFhI3?tc3WrP7p+8 z2jtZMi?((1Bf9>Dr3~quz5EY;^|y73{SY!DowcnpLc)vIZS}5JhVj@;K-)G-Je1e5 z#hYu-R&d$fq!;g6pV&;t;-TO1%i6ooU*HqoT4J@a7|Guc5h*aqa9!4n3b14Gs3*`~ zj0yV1hkX|bm!w|~N@y#8=4^nJ&H{EXu1Q_la+KI}0_6ya0&WZr+5UnW9-+$6WMZ?@>c! z)eEh-&-25L1L!~6ueYF{cf<0Q4_|lV{ZNTkTpszxhKbdG?+OO{T^QZa(R1u8MP76QY6!s1LK{JK|BSit6wu-RHW<5m|(7zM-l_}@)FOgqDr^HK3RLEG{Ju@uL^=Ov7xV}akf16Ky zl*imUrN)WiU|`A11dMo!ew``h-WD1}+~yrl>z`V!Iqq>}V_bCHY1>Q%nKI~8c~B6o@LQ@>Fk zqyuw8a}$Bde7s;qhS^CB3!cp=6vz4l8IA!OLRa0b8y$;8xTd6;z8?9ww<@(5+BgC1 zC~&mFH}Y`!W?F{t#jVV$b+cumnE>{dD}nwU;{pzsi5jMQ3s`op7eW3b z?|O?Hzio;B;VDfw9*Rozq4lbzRLfw$9B9?gpO1E`o0vTmfuSwK5dLfLsh1b$0@zpQ zqtcA+L{V2{UCB81A#lY-`lgztc9V{e2uL4ZeRn`s*kvMJkatf)UOWq3*_1K{EgF&w zE21@?R1q})F?3L9?0shF#<5RgJxd$ou>kKqq(8ZZ%&wmfUp3+P9bSLhb$+rkT{2DN zHy`}?+f*fm_3aMhz_FOpI0OY!E3wrDpH#^v*L3iAJFk$eZSC4!A_N81oF_6h;Z%&yglvYFbvg8;fl0b%rqvYfoCR>LS$^2aP4xWr?r5`c0V|?x` zvu-KC^vixB?QPCJJpshJ-cM39PHV!#mDUV0oigO(#EwLp~u~K zqQLpHzv<1|U`vuNe4?a45pG;qLY101`1xsAnjw|!67S9F4Dx(hLe|Zjk;7?MM z*vp^4NPgaZ9hbaykO)6pd}}j;Wql*^Rt;Ia-_#m^Ee!thA*uHcGnlWHL6oN@#$9_; ziFClp0*;F|X7wS`cCNJV}wD}P{iFQ$U79w*MKyGE!`~AzW zfF#rPRmOduk-pas`xJ)zk+rq6c4!Ww<4qcRNk5S?N;u62$@R!+zf5{?5hvgV?);Ic zeofgBs_$GBhVF}Q8UyC3!tywMOI>goPC>~NE>qu>!Fhbk?goE@BKpgX>?dk4nI%xB zo_(pCX*s^GgOhy1vtR1XV-#r$>&g7E%13qf{-V7J&*SgA;=K5|HFmaonB{pu&La?} z)xhj)h3Lk6qplS~F653j=BLlb9?4flSf;a_JpQI1R_!z_3$W2D?W5nZr+Nz9{WI#f zA8W(g%;6xCh3EIEC71o|L_@R_O_Jo-H}>8_kBqA>TFmgV*HZ(g;xhB-W7-=6aX%U~ z10E%}WoAKl_n*FCP|O~K=|153C7ej)$ELNq`E_^b&CibZf|rmrKg9 zU*Ce(S=l1z;?P?E8{S|XcI6F+KHv6cnYLC{(5*o$gPhJIV^7`R<(!C@(U{lu(L7v1 zROKd?it%Hjj{mFD-vLD|Xgu)KYG#`lr&csKs3BR5J;Ztw7< zL0R!!@FrwL2l@cMHo_OkEw`4HvPisx@Px6>*Svci#I))q?4j{6VdO{nK3z*K>jmuj zhP#>T|MI}iBpkEIL3bF7b6Erhs~tW4k)8r=yU~?=jLvAyY)YQ#%O$O24kDShGNCiWJZf*D zyJ!f*#^1KH5U5o5_p$M>-SYtoQ+CGDg*Qd?huaU?M6h23Acb4fG6cE{K2G3ht_gt* zch2*hpwu#+hB~KYF9n#_k+zT0eT~s4&bA~!m3T<(7*j;-)fEP(ImiI3=zh(io z_n%6m8&hZdW@@#9RdW?{GBbWLUu#}l=%KH?9pMac87c$u`e|AkMCMJSUK^}(V(pOG znZt<)rh{VNF!b$P{*MQXK&q$LO9*>zw;>1TH1-G^LO_(CnS`pkF|I9+ZyT2(HLo+7 z;r|nAVybSfCQUHzO195tZ++4+sE;>miYpgQ7vfp(*G(x|^+-tnP7{*apTP5-#4WFpR9x!v)$Ln^MoPu6+e0n1nrJGJS`mNOT>JdAcbWjd|nT-9>JCv)+8Mm$wSR|wJ4{v(Vx=kPU^q; z2HyTRgMieizJg!79dX|bP;&I66Lf--=)3jT38K)0=xf&*cKW;w%tmo&8m2$=kK{&+ zk?Jae)b@zqe@A&eYVTquU*~F^w%&H}cHTRS3Z|;_KJC6k3$FP&7R4mIa;B7nYY%sRIb%e7_~E-*9% z_Q(AkDwMn*?}<4_(;Z)^ltUFiN*?}Gh58hSMa{FYpXa)q2x*25Sk{6G;a)K*v#CmP z1HGg}_H|Y2AA)25hlc;9fuT;TtmpR2J85lS5#-bFy(M5K8aQCB2W9f&2j@DW7KTHS z^j`O0i{Unn2W~^)@iww(4e?8piGU8d4Jc6>WC2q)NJz>Y_->%RLqm(fznhd3>mj4a zqwU(#CFi(-G%MFl$yTD=ThSnQZ8pQ&o^agSnM(Z70?<1(VXpW{foJ%FRieP1-}UgZ zKmX&*9nrGIML4?89enLGD=034Iv@{9gj4itUAgjLg$)?$)jCBRk)(C{OX?S`7~6Dt zdPj{0Pl{lEQk`L6>~m|OWp}1tyw^1{(AU#cHzf&rclnpYd>oPMnVsy{nVkP+FYG&$ z5h5Y%yL5FT&p%?I`9}<>|A`@TW)L&$b$JmD(7olHa+mBWh&y4N@F8W9rV-EiA`y_$ z@l(>&ogB2ms(p|w8RO7n!-?pMZf3S*9-e=Ur8Xi^wXvqlrY&vBpI) zpNwzlXlxrny$yc)W_Pa%|r55Vu{OKOYz9bHCM(a}7W!KY#ia|vi zBCX|isZu$5lNqWT{h{;s1wItDK7S(ryQt2C8T-5)YzGt6F~Y-BJ8*@|RIQNwYPe~h z?xx2=N}7v|BQLT5=0_gbSWK6+0+MG!roSpYpc2k*5Chf!Vvo2UlQaES8IG-rIHAtS zJH~wa->21yE8-`08)t+q?t}H#tbb~jxjugcZ;tAhRny{WYRs6?P#S^#{;R~hUWbX{ zi~YWOW$pYs&KWEznfGZ#Ft|c4y7L`Z+E&2r{CEc*=_G)Z}=4baqgYF^@T%Aow*!a1ooL7IEwu)O*7S2Xp zm6(uR-+4KgC_A>5YVThLMmM!(K7kg`c(e3Jk(T*hF92KPb0&NeUU-7lGT%Gu# z*5+!=v*=sy`9w{?A*tM(`{QX@v~^_uk(617Y0Ra>nJ znwQ#yT8UA7>Gyr-cYeR;Ip>e(zVCBA&wX9@eFWp^DE?klS5R3AH3Xa4*8?@j+W<;CAg==wz{R?{Qo>TvFgZne~Wq&Mvvb|dTQuE3+uO3#7VzP_cd6r%#dmRHd1F>_MQ$P&- zvVu&cDN(M^Jx5N0C?S%flg0EN6p(rY8`KMu_-nx&uP+E?`YZR5wI979bg1toJ7Q>B zyM)#0*THS__UBH|m|vn8?V6=L{O&F=cewvN&5EqjIl;z$yD712f>H>QHHhD4ZMCGI z>pP(6l1O3GdS5RP?)+Nb^8WEdVG|!g*gLNfilNWK!5M2>`f_zziTppp2PQxkwqJwp z0FZKit6%X+7%V~994)B*n{|eUdrB9~(7ciTbh!|mpP84a5SM`9dR9t=;=1YPbGYi2 zUa<)a=%jY{E_Wvf7x-?N!*1BkRqIOmtO9y?(rTw&8@X$cX17;c0z|{p41agq5Y{Nn zO-d4)_xFhg>&_rFGFR}hB;0`~9cpZ~qzg*x2Ust=2ax?MBT6lfql>ufm01U0y zq2WrKJVdD5TPqkhaRN1LUFY7Dw83o0#SUJpkKkd5l**mmUYc}X_bSAa7?>g95JfL& zYp{ZN=2L0V7T=L#^!VlE5P73ih;E)s)5)YQlp7yOBeLD>1;w(b({TLQ zVo}B{5a*}>RVG=IBd{;&I#KO{Hb35u3ezZJEERno`xdw}9W+^nyU)6w#53d9(25v8 z`I7Q->(8r_M7etsIrxYv3T<4;q!l7pk;X}+G=z6TbL&>f?j`|@#Z^uHjPqmhE!@`8 zO9TOw!-tF|=I<_%zI&KO$ic%-rzTO(zytUjA;xmu+<9GQU)MT_{uN}<_0JzQdfPln zH?uxJp@5>H|Kh{$e=u9c1mD;bnt?<~E>@C+Ltx)3^v*#Jf~Bd=kc&{^2E7E8k5Bd~ zyDaKQgin8KIi>&G2d?^;82|zd(d}h|p8POOEG(bh6^RW~E_SLB6x(t3o*67flD%Ry zWn8~{;K{_Hrh8Hv8u3FZ;&u|$J5|0r z<^l*x7@YMdsYF<~cMkArn)DQN!kXY0R4MJzaVoOy`bTby43@ni^eP@^1&r%$Pf#^! zELLt-fc@Kse2YQ2Y!wefzSV_$UuZZOYXR`Ydl{Dq zyw`iB+J>Z(+0jDPBs`vcFijLaz^0qJD7Z4 z?ajpraDHsjz0cnjp5X028W161Z$X{5LT7=PDRJZIjjnx~beZC8%q2}1v}^i%#^+KZo4nK_Hq*L4IVIdNmzPT_<8eu>9gzN+6qqH;7EBbmKCZBnE$Tt0=v33 z!5nZuaXw|t?yOGOuoADkrsMvi@?I`txG{?9d*&WXGe$K>FTCKBp!L=Gj}xir*o^XemLs$Fa2&=u`AYK8`s_6-QdK-EEyt z3c6EPCl?w!3^AIp**r`Roo9L}cPt2KeyXCXXT8tM-~8uQ*aql6Sd-7i4jXZ$r-iLL%;V$j zCC~5QF5$R=Za~cYJQ$^Xi3$8xX_bbj&4vzD{GL#~;q`pOrs* z`1rA$xnqj^?yuo1BkKRFh5Jgl1f2>xC91z_SBPtg{aGRU*^>TB%m;5BIBu|j{r@$t z<1PiX$2K2TKI`2nwW$P!`4}T|Gbka#uDm6(m1wFN)&eoq>QGZ|Emg-sTg=ppm(B4_ zk)pNx)r&Vf2CF!ezd#&0FzF{U_KP{SSZlTpo=K%t9a$13=1Gk~T=|Tpu4}!of0Pl) zh886TGK6?UhK6ZUNaGaDl5kZzJH;7~6Xwn@5dNQL2A43~)&FPjdU$BNz=zc|8Aq9m zhcrX~vIN=|{OB(P4Q3xln$vo8y3l)2kM9Y_pKNjEmGImXbQLa0KRn|RiuhWpgY^YIbJmyfo5A9wB!%bAKnlq)6~}wXw4n$EV(>! z9yrvo6yMIrNI`CrgEOIlU5OUGk}}|#NT3LK%wqVVrb>?~DoB$@*12m|6aI6dcE)lKyv<@1)*1xV3uv#|9EWa9I$lOzv8q|8Q~tmlCj5Mt|CjnbA76K;n>hO1;Sy3RJk^5 z`MVryW^$B*urco4`K;e4>O zH_MvcvURA5rp5%0y^1~#gwMi{uZWusVZprGQw<*NaxBC7FWYoG<8ic5a_ z=e6Bm^T{g1N9RmQ7TTB=m)T&6W&kLgIW-I~gi?^=+=Dx~5?5pVw20aE zSl&1o3?I4worwJp)P~G7UD+gE0MX1qh}p>HC9n{d<0hdAKY>>$qL@Wm#Zk!chO67~ zv}_i^NQZ&JpPEc_9?{42G7SmmqJ2Y6CLhjE+#FtUea4T4w}NgugfL}wKT$gk7?udU zq8iwa`v=Sc80z`*r~+7(et^r&v<9=cmJ60_le06F2N`M;~mcGkqZYpvoRc zc*fN2pXT+T38}~8?WcGlK!2e65kXL?Ev7^zea=&lCeLv-bZGkR2jj$k9msqAEQyB- zpQ4@oh5x!>f%(y}BpRQ=XiH1lcPg@gOs&{b2jq1PcdSh|qeV!6mq^R{Fe2fOf9P)n z`TU{bN<3;c>OtPe!twLQ+d+&dMa+-H{dq1l*VxKY?h*f}#GjXZ>1T2=&ZBFX1yTo> zYD|;7i>^+I_Bm)^+gh8HCfhPG@P}f>SD*h5H)hWGX87qhW*heNZ7{(oqT_r;T^|`>FEOd^@hoe@YYZ!yZXB} zeNCTK1bt0SFCqpe0>3`=q_ z=az22JICOyuBjRtOaGJ!r+z#hOfcV>8kR+0t|NFdKc3e=}~v~1L?jX?`C_l!oa6Jv4t@a zt@o~BA__DQLjLlnyLYB{eo@M7`?zb9 zB*J}1*%Y9CAo`BGU9^s$*x>}&lq9EwO3=$*d+w3BA)avwnQ#u9?}JS%9k^MMi-tyD zrA5k4p7gOcy>X(+wEzv;mE#xSf`R62V19HSKUR}}<(Q!lItsUIEP1VYR`)lvKAL)h z9SJKK*>N2H`FWj1MQ@iH+^F6JCCy-pYuPqGkqPmL0=N%D5R%`UWUFeQFdlhxwIk3G5 z#||F>FN4ant$EI&T^5H&zyF+bp;XW$5e22*U)Q?LjGC4B$igupjq?1|9mNyOq>~OS!?Udg}pf89134=uq-^ETF zWK|*j`CRl;@4cqRg<2)ez8{EpIIGnF=oDW|l0D_8t8y$9+S5NOx(QX&@?GM3myst~ zz=fTb1EOsxWzs%Z?zU(hSMV~DcER%QXMZZr1sKwE_i?FBaW%31Sg!fTInb_=>wpIB z+sL`=+f`3+852qC*??V=D3>>=%>w?B#i?Ru$2M z#yrzMuPb-Hw0@<{`0v4bt_8&dy^gdiH4>WDP^(-Cp{W}&w=4;pbm>`#XSV=4p&$Dd zS?1SIL7_PVQI?N21`iZ#{;VGR(aEUf@w7#PBEEi7$+#K>H-W6<#@)v{ zG2m0sD|GdknAZ_kO$Ey~bBF4>I(Y1{DwEiMF<@J@wRx|Ti_?L_J3?uelSsNCTEH;N zYkA;IW^ldntYGB1zYqXvjF|DcpogHL;G^K?&pf3Ul3p2_L#U!=uHf_o7a-a&3F>op z=)IzHWAcgb=`-ysOV|2#ax@XM&Pn2ydGFgxf*p>`Ga_3vO(!KapneX_ap1~@O036<>#&Kv~{z1`l~MrdM>!C zSn;ipM9a&_ps~ny#+73e2SLugJ8k?E?mBm>>%ssU_+|b+KNg6?^6^{OzHASKpTl0j z?@LV}x+ONW+-U6UMaG1Cf+=p%=t##aaE1^@m!5g}H72$Y)cebQh<=`Q3X-G7pco!y z3Ygm(ugcG+vq8L6)y%_N&8Z-Z(x1IqNS4NK^`_NYD1|9V{2r+fQ)10lYvDmw)hULL z{WfPTN2l3HHi;{Iob{U?@)EmBYKl3tKi{epo*QKO(rrJ4nBMffS{-K4ba$R53j<29 z97Eyl^^rh6`Td6!Lv9{6`k^5av#*&HQCGk>3GUQMvymCzmV{{VW%fvRiZt`fQMYBar^bTT3IWD6}|JQz(4H=Gk)p}3F!4-f+ z!e497_m5D@5MuluO$tV>%5OJ7Mvu%Djg}^W=zbQL{?}w2gJsOoWhYImJvKj*$;=k4 z9-X$#b|>g130#!V6{_mqeIiQXQJ$$&rECC%C?GpqlH&1tOS%C~xs%1p5y~?g@ptVK z+z_g&jZ@eWrj=ECXs^m<3X>gy7vWu=vjo-F;9g2|X1J$8YgPQ+gf>7U0W+&z8KRo9 zXXFi3M1zQZfyFSk=I~PK>Z{Bu<=&`dklL&I6+T6tcVi?D;9Kzh`R5Ady}6 zTl_g>HxhtFX2!`a?_b0d*3VBU;T8(U^cPx#7JAF4EO6yXb`ZnC8J*X<&@kJw-oJsq zqCH3egq%DtuRL#fi1wH~B`43T$6Xd_3UV7nNvCv`fZorDLxrrlpol3Kpe&5|r*z3=YDeP#_R;ugiPnP&5(M$6J{ZPb`#7XyS#4|Px$p(a16M$ zQDN}7CX{!`)->M{IpYd0-^lRo*+Z)HBj=-buK#F4U%~y1P$eCPNrZ<1uP@L5EtE0|pDLuI7Bwyta+L znasCX`%dzbX2loar6-y=Iv7>J+FHkVk@SSq+Ya0?)tHn zaP%K`q=j(9>|w|s{=zWHG%RsbYS)H(i$pi$^WK{A;EdWH%~PkWW!;UXF1$?Mu>T}4 zc^)boEw){7CrH_szXqwn=&taG8`WMdQCDXg9w2hY2qz@maI}_w0}k}F53JjjC+Enn zctF%w#6Xnuuzj?^g#|{gH7irPrzm3b;O#$Qi&O_^YD;WIb5jmqIjnzaK7=-YXuU)% zP-c8HaCzH*5VChg6|mU(W9VB7p@i4?1M*D7NtEBc>$lQ%Bfq2(SwB2s!uu{}25Y0g`6U^4XH^}kyk_WL4 zrI=9mB&vxN(Gt5dZ&~Z>Aevg?t0H(dt z1;V0L5NZGKZ<=A~v}W>y#vIRoADoL~E?H^J z4N6@BqJa56ar+l920-F-J}iN>`@z}S$H*=Uh$j(@vY3eQEfn$hT{ZarJ+hT*K$;4I zD}Cy#Y_c{}o=(AcgO!PFEAqtB?a(ff9q61pnK|zIF7PV zmLc2kVRW6@qlwIst)Pe%gzGAoXc+sXyVVKTvaMXguZA$bZm%V_Ol;AWsJDszA9R_? z2j9`plrpoe^=27kK;=}=;!iULVs(V2a$l#9V*rp)^kfbT$YdeGy&jQr$k`F{N4OAX zQE9VtX-FnM=cHM4cv#egRHj|yHCQ|2fQQw}?%0!p3k4MxdfMs~bNzo+ih9yt;DF=`@03}0 z$CuQ>0t$$@%__(S@qDgr^t$Zb_!3PpN@Ua8x|F z=(Zd9{yK}t(a2^E9pq9*^Zqwq!$!pX+c=AMH`IdyZsvysd< z`->fFu{ghd!dEqf^@EVN#(3J_mS;b|EmF*Uzi+TB6zs5Xlk6;w;L83f*%mC8RLr?o z4{c`s(Z6Xk<;fU6`@Mx_mS(5^=(4Mx4%Mr6efHW+(@|TYFWKB)`b*9Z%fN;JY+6sP z{-mPwHXEqMKiZ$#F2Qh&8P=2%WbPyqF}qy7+($Nc(Pd=r$F_r^y diff --git a/crates/nargo_cli/tests/test_data/9_conditional/target/main.json b/crates/nargo_cli/tests/test_data/9_conditional/target/main.json index 870dd6ef11c..3e84a4c6846 100644 --- a/crates/nargo_cli/tests/test_data/9_conditional/target/main.json +++ b/crates/nargo_cli/tests/test_data/9_conditional/target/main.json @@ -1 +1 @@ -{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"a","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"c","type":{"kind":"array","length":4,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"x","type":{"kind":"array","length":5,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"result","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"public"}],"param_witnesses":{"a":[1],"c":[2,3,4,5],"result":[11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42],"x":[6,7,8,9,10]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/+y9ebxN5fv/v89xzPM8FDYyD+3bFJIis8wi83gOJRUpRAiplAgZI0IUIREyz0NIUeZZISLzzG/dn+8+65yzep8/fo/9uu7HdT3uvR+P7+Mcvb+fte/XNTyv+6z7utbaUcrn8xfx/d8nwvl/kcGf/nj/jvT8O4nn31GefycN/jtp8L9F/b/Lu/+3UfH+N/3fkjn/L0W8fyf3/DuF598pPf9OFfx30njf7wteN/ZaKYP//2L/b1J7rpHG8++0nn+n8/w7veffGTz/zuj5dybPvzN7/p3F8++snn9n8/w7u+ffOTz/zun5dy7Pvx/z/Ptxz79ze/6dx/PvvJ5/+z3/zuf5d37Pvwt4/v2E598FPf8u5Pl3Yc+/i3j+XdTz72K+uBiJjV/90XGQJujvdEG/Zgj6L1PQT1mC/sgWtHuOoH1zBe34eNBeeYJ28Qf15w/qfCKop1Bw3UWC6yvmS/hJEvz5XPBnILSPioh3rTKB8mXLRj9VOlqVUR0DpSt2qlAuULZcp/IVVAVVrkK5LqUrlCkTXaFshacqdqr4VKCiKlsmWsWUq1gmJnixSOC1iuM0BpIEfez9RIBtiVxz/PWWiPd7fE56YyIZgSaf53u8dkz3P/4b9MspnFSC4Lolfbjgp9JdEu8jY8kV6aNJrlLxfg8nV4jXjAwaFH3dJ328k0vrfhLvI5K1lgyu1XvdUO16LTtWd+wnCXidSFAHgH5B2s8UlIH6E0A5PhnDUA7xmoGgQdHXLe3jDWV90dJ4HyWAE3ebxn44/9mYBHitMj55EEWuOf56y8b7PQzREK9ZJmhQ9HXL+XhDVOsuh/dRAjhFeq7NaYdX3oeFpv6UD/qpXPDnU77/nSQU/kzio4FNhXi/h2ET4jWTBA2Kvm5FH2/YaN0V8T4iWetTwbWi/4y+IeTP6KeA16oE9MsNgX9GA/UngPLT8X4PQznEa1YKGhR93co+3lDWuivjfUT6ZzTaprEfzjvVZ3w0yYvWjPyLpwpQc2wMPhOMxyrBn8/6En4430qJAl7rOZ+8Qopcc/z1Vo33e7iQhnjN54IGRV+3mo93IdXXqYb3kRuozwbXXC3483mfudsKUT6axKse7/dw4oV4zaigQdHXreHjnXhadw28j0jW+nxwrejbCreE3FZ4HnitmkC/3BJ4WwGoPwGUa8X7PQzlEK9ZM2hQ9HVr+3hDWeuujfcR6W0FtE1jP+g/sZF/UtbxyQMfcs3x11s33u9h8IV4zTpBg6KvW8/HG3xadz28j/5v+iJ+AESC1x0BvFZSHw3wAXpV7C8vONeo7yNMqtixoxeCXxL7b/2lfs93Ut50DIT2SeDMUBPuDu8/U0oH16leAGquD/QF0n5eoKBBCNRNBoEGzjUa+gxAoIEvIQT0l/o934mGQH0fLiEa+HAJ0dAnJ4iRa/URBXEj5xqNfQaCuJEniBsbCOKGwCBuBAzixj45QYxcq48oiJs412jqMxDETTxB3NRAEDcGBnETYBA39dEEBvpvk6ZAzc0A14qOiYmJ7vL/GhpN3PBohrtWghseL8b7PXzDI8RrNgsaFH3d5j7eNzy07uZ4H7mBWi+45ubBny18CT/ou6tIe7/ko0kYzppbWqi5lYWaWwM1U9/cBN6QVFSbJoBedzfdxrlGW5+B3XQbX8LdtP5Sv+c70btpKmeGmhD3hNzcbAPU3Bboi3sENzfRING7ZCTsNZCjfPhNGdAvZJBq51yjvc8ApNr5EkJKf6k/+B0UzWjNffgGrwdguFDobkWg+6EhqAZC+yATTsX3daj2eySkMbAD0H7AmFHM7ecW9XZAX7QH+qKDD1/UYz9ohgF1kxXNjs41OvkMFM2OvoRFU3+p3/OdaIi29+ESoqMPlxCdfHKCGLlWH1EQd3au0cVnIIg7e4K4i4Eg7gQM4s7AIO7iowkM9J9YXYCaowHXMn3YE427VoLDnph4v4cPe0K8ZnTQoOjrdvXxPuzRurviffSfw56uwZ/dgv8drUMHPsWf6Uly8P4zXet+iUB3VA6a4oL+M/NloC2BvlZU9kMfICH59IqPrsAgNXe3JGbQrNF+oGBscgG6WxLoTiGEsa8CbQn0tUphIWN7+GQw9jXLYgZtv9eB9gMeNSmq4xvOOfeGkJzrGY4ZNjHTCxwz6D2N7rlp7cPvaVIz38vp/iCKPWwaIXXlTaAtgb5WSPt5T2TQN7SR/WpUN/EBet3Tnd7ONd7yGTjd6e1LeLqjv9Tv+U7OzYfIk470vIHinmj1Bmp+C+iL9ARAQYNESvMh0C9kkHrbuUYfnwFIve1LCCn9pX7Pd6IhhUwMZDNaRiG7nr5A+yGb0Zjbz4X820Bf9AH6AuhXMsjrvyqRd1D1HcDXfHjIA/1CBvl+zjXe8RmAfD9fQsjrL/UHv4OiReBVH/5P0szM/xRPLJBD1Z3FEFQDoX2QCafi+zpU+2UVUtT7A+0HjBnF3H5uUe8H9MU7QF8A/UrenAvUTVY0BzjXeNdnoGgO8CUsmvpL/Z7vREP0HR8uIQb4cAnxro8mMNC703eBmgcCrmW6OXcg7loJmnMHxfs93Jwb4jUHBg2Kvu5gHy74qXQPxvvoP825g4M/3wv+d4q/cF724Xf6OZn/haMbIrsT6M4lZIc+BGhLoK9VLiGNY4OB1xrqoyswSM3DLIsZtP3eB9oPeAdJZbEw54YLybkPLIkZin3N6z58fc/NXLduiOxJoDuPEMZ+CLQl0Ncqj4WM/cgng7EjwjHDJmY+BscMmq+6j6yrD8/XfMzrim6afpNAd34hdeUToC2Bvlb5CXrpYj/oG9rIfk6qm/gAve7pzkjnGp/6DJzujPQlPN3RX+r3fCfn5lzkSUdBIUe8I4GaPwX6omC4ORd2XaBfyCA1yrnGaJ8BSI3yJYSU/lK/5zvRkEImBrI5t7CQXc9nQPshm3OZ28+F/CigL0YDfQH0q/XNuUC/kEF+jHONsT4DkB/jSwh5/aV+z3eiIY9MDGSzZlEhkB8HtB+yWZO5/VzIjwH6YizQF0C/kkF+sHONIcDr6aP0YT485IF+IYP85841xvsMQP5zX0LI6y/1B7+Dog9siA9/37E48/utiQVyqLpLCJnAQIKwOLColxRS1CcA7QeMGcXcfm5R/xzoi/FAXwD9Stq8Ph5ov4mAa5luXp+Iu1aC5vVJ8X4PN6+HeM2JQYOirzvZhwt+Kt2T8T76T/P65ODPKb6EH3Sx+8JHs1kIhPZRJYQ0cCDjdaqPDjhIzdMsiRmKP8je9+H/MFHMdeuG4Q8IdJcW8gfFl0BbAn2tSlvI2Ok+GYydYUnMUDD2Qx+eNeWY69YNwyMIdJcXwtivgLYE+lqVt5CxM30yGDsrHDNsYmY2OGbQfNV9loN9eL5WZF5X9FDBJwS6KwmpK18DbQn0tarEPG40G74giJtnmOvW93CmEeiuIiRf5gBtCfS1qiKkptYDXmuuj3dN1Yz4kiBXqjJnxHTnGjMIdFcTwohvgLYE+lpVs5AR3/r4M+IrglypwZwR+m/oWQS6awphxDygLYG+VjUtZMR8H29G6IaZyQS5Uoc5I/Q9k68JdNcVwojvgLYE+lrVtZARC3xYRlDFzELgOiW8TRBtv0VA+0l4EBvaft8D7WdjvxWSWYt9NMxCa44AXusHoGZTDcHANSdoCF4S7/dwQ3CI1/whaFD0dZf6cMFPpXsp3kfu2CB6OkhfEwk+DeSk4OuNJ7CnzwfNJXd08EfnGst8BkYHf/QlHB3UX+oPfkcEwXcu9uH/sqzP/C9qHcj1CHQ3YK47NunQuhsKGZkExqVqAByZbCTkr5rlQF8AY0Yxt587Mvkj0BfLgL4A+pXsOQia2ci7T5qF3/nwjAX6hWwzs8K5xk8+A5uZFb6Emxn9pf7gd1AU9QU+fHF7UUBR/45Ad3MhRR0JwheBRb2FkKK+Emg/YMwo5vZzi/oKoC9+AvoC6Fe3qFOwaxHBdYF2JCvCq5xrrPYZKMKrfAmLsP5Sf/A7TDk01MRoLaQY/QTUvAa4rtZCYLoKaL/VQPsBfUEK0+8Jrgu0IxlM1zrXWOczANO1voQw1V/qD36HKYeGmhhthcB0NVDzeuC62gqB6Vqg/dYB7Qf0BekTutYB7bcBcC3TT+jagLtWggP5jfF+Dx/Ih3jNDUGDoq+7yYcLfirdm/A+cgN1aXDNm4I/Nwf/O1qHDvy5PnyRby/gtuUcAt0dhNx22wK0JdDXqoOQDkEkn7b66AoMUvM2S2IGzRrth299eNZ0FsDYbwh0dxHC2O1AWwJ9rbpYyNgdPhmM/dmSmEGzRv8hN9+HZ01XAYydR6C7mxDG7gTaEuhr1c1Cxu7yyWDs7nDMsImZX4TEzB7gOoEtXciWF9KTwaQE113no8kXwBrdk8FfnWv85jNwMvirL+HJoP5Sv+c70Sdk63y4BNsLXFcDISdkvwLt9xvQfkBfWN+QDfQLGaT2Odf43WcAUvt8CSGlv9Tv+U40pJCJgWzQ7S7kL6w/fCx3K4q5/VzI7wP64negL4B+JYO8/ksD+Re+/gt1tw8PeaBfyCC/37nGAZ8ByO/3JYS8/lJ/8Dso2gR2+vC3v3owv+2XWCCHqvs1Ib15SBD2ABb114UU9YNA+wFjRjG3n1vU9wN9cQDoC6BfxTWKA+1IVoQPOdc47DNQhA/5EhZh/aV+z3eioXwAmBRHgOuS0jB9CGi/w0D7AX1B2jB9GGi/o4BrmW6YPoq7VoKG6WPxfg83TId4zaNBg6Kve9yHC34q3cfxPvpPw/Tx4M8Twf9O8RfnFh/+L683mf/FqZtUtxHo7i3kL6aTQFsCfa16C2kaQPLplI+uwCA1n7YkZigYu92HZ00f5rp1k+rPBLr7CmHsGaAtgb5WfS1k7J8+GYz9y7KYQdvvLNB+wFMT9ZqFOXdOSM6dD8cMm5j5GxwzFE2am3z4PU1/5ns53di8h0D3ACF15QLQlkBfK6T9KE/IKBqmgYcCZCdkF51r/OMzcEJ20ZfwhEx/qd/znegTMuQJxSXguqQ0TF8E2u8foP2AvrC+YRroFzJIXXau8a/PAKQu+xJCSn+p3/OdaEghEwPZMD1IyM7nCtB+yIZp5vZzIX8Z6It/gb4A+tX6hmmgX8ggf9W5xjWfAchf9SWEvP5Sv+c70ZBHJgaygfY9IZC/DrQfsoGWuf1cyF8F+uIa0BdAv5JBXt8+RB6V6aOev3x4yAP9Qgb5G841bvoMQP6GLyHk9Zf6g99B0Qt2xoe/9ziU+T3XxAI5VN3DhEzFIEE4FFjU3xdS1G8B7QeMGcXcfm5RvwH0xU2gL4B+JW1gvwm0323AtUw3sN/GXStBA/udeL+HG9hDvObtoEHR173rwwU/le67eB/9p4H9bvDnveB/p9gcnvThN0kfMd8cnnKucZpA9wghm5v7QFsCfa1GCGnaQfLpgY+uwCA1P7QsZtD2ewS0H/CPbzXMwpzT4JeQcxERdsQMxb7mrA9f30cy162bhs8T6P5UCGMjgfkC9LX61ELGJhHC2KhwzLCJmaTgmKFomj3uw/P1M+Z1RQ8WXCDQPUZIXUkGjEugrxXSfrEn1FIa2IGHAmQnyskd0SkiDJwoJ49IeKKsv9Tv+U70CSPyhCIlMMGkNLAnj8DZLwXQfkBfWN/ADvQLGaRSOWtMbQJSqTyQSm0AUsjEQDawfy5k55MGaD9kAztz+7mQTwWEfGqgL9IIgLyUBvbUAiCf1lljOhOQT+uBfDoDkEcmBrKBfYIQyKcH2g/ZwM7cfi7k0wIhnw7oi/QCIC+lgT2dAMhncNaY0QTkM3ggn9EA5JGJgWxoniQE8pmA9kM2NDO3nwv5DEDIZwT6IhMRmNCgzwi0X2bAtUw3NGcG+in+erPE+0e4oTnEa2onZYnAXzcrMPipdGeNgPvoPw3NWYO2zRb8Hygax+/78AeVU5gf0Oom0ocEur8QsrnJDiyoQF+rL4Q0cSD5lENI409OS2KGgrGPfHjWfMlct75gRARe93QhjM0FzBegr9V0Cxn7mBDGPm5JzFAwNpKANTOZ69ZNw1EEumcJYWxuYL4Afa1mWcjYPEIYmzccM2xixg+OGYqm2bs+PF/nMK8rerAgGUFdmSukruQDxiXQ12ou87jRbMhOEDfzmOvW93ByEuieLyRf8gPzBehrNV9ITV0KvFYBIfuwJ4DrbA+MmQ4CGJuLgDULmevW93AeJ9C9SAhjCwLzBehrtchCxhYSwtjCwHV2BsZMFwGMzU3Amh+Y69b3cPIS6F4ihLFFgPkC9LVaYiFjiwphbDHgOrsCY6Ybc9ZkjIjrb0L6Yxlz3fqeZz4C3cuFMLY4MF+AvlbLLWRsCSGMLQlc54vAmGnO/T6+c416PjxrSkXYlytPMj+rovJ1IEJGXVGWMEJCrpRmnis6TxYS5EoZIblSFugfG99Cj8yVcgJyZRFBrpQXkitPEQ3SBkL7iHkQNTJXKgjIle8JcqWikFypFJ4rYpMrTwv5274ycJ31gTHTUEjMRACv9QzOF6VNDYoD15xgULxKvH+EB8VDvKZ2UpUI/HWfBTYjU+l+NgLuI/fxQlHg9eoChHzahr4e8Gah0jfhgDeklC6SlQn848PmpvvIouectVaNMPDIouciEj6ySH+pP/gd6CSJDTr0rnkl87vzscmB1r2Kue7YJEbrXs1cdyxs0LrXCHnHMjAf1SrgI8nWCrEfML7VGqD91gnpPKgG3DgAY0Yxt5/7SLfngJvtqkBfAP1K9txOXeuRJ5T6hK0MwR9UQL+QbYKfd9ZY3cQm+HnPJrg68SZYEWwOtjLfFCUWyKHq3iakqCNBuBVY1LcLKeo1gPYDxoxibj+3qD8PLOrVgb6oIaSoI9tZdTtmSYKiXl1AUa/prLGWiaJe01PUaxEX9eIExW0X86KeWCCHqnu3kKKOBOEuYFH/RUhRrw20HzBmFHP7uUW9JrCo1wL6oraQoo7s+dI9SxUJinotAUW9jrPGuiaKeh1PUa9LXNSfIihue5kX9cQCOVTd+4QUdSQI9wKL+u9Cino9oP2AMaOY288t6nWARb0u0Bf1iAoRurDXBdrvBcC1TL9R5QWgn+Kvt368f4Qb5UK8pnZSfYLdYgNg8FPpbhAB95EbqM8Gbdog+LNh8H+g2BzmJ9gkHWS+OdRPnXuCQPchIZubRsCCCvS1orJfJNh+SD41jqArMEjNTSyJGQrGFiRgzVHmuvVT5woT6D4mhLFNgfkC9LU6ZiFjmwlh7IuWxAwFY4sQsOYkc936qXPFCHSfEsLY5sB8AfpanbKQsS2EMPalcMywiZmWQmKmFVGHRCC0D7JbgPSEmmKoEl1LgYcMZCfUrZ01tokwcELd2nNC3SbeCXViSRYI7YN0AHTg6k8hm6G2QPshh7eY2889sWwNLGxtgL4A+tX6gaE2AiDfzlljexOQb+eBfHsDkEcmBnKA5KwQyHcA2g85QMLcfi7k2wEh3x7oiw5CIC9hgKS9AMh3dNbYyQTkO3og38kA5JGJgRwoOC8E8p2B9kMOFDC3nwv5jkDIdwL6orMAyOvbe8jb6vq28EsEkO8kAPJdnDVGm4B8Fw/koyPoBgpiAwR95nSB+VlbYoEcqu6LQgYKkCC8ACzq/wgp6jFA+wFjRjG3n1vUuwCLejTQFzFEhQhd2KOB9usKuJbpgYKuQD/FX2+3eP8IDxSEeE3tpG4Eu8WXgcFPpfvlCLiP/jNQ8HLw5yvB/4Fic9iIYJN0hfnmUDdxNyHQfVXI5qY7sKACfa2uCmmqQfLpVSFNNT0siRkKxjYlYM0N5rp1E/eLBLpvCmHsa8B8Afpa3bSQsa8LYewblsUM2n49iW56BUL7qIsW5lwvITn3Zjhm2MRMb3DMoPc0uue1AcGe5g7zvZxu/G9FoPuukLryFjAugb5WSPtRtiFJGCgAHjKQnVC/7ayxT4SBE+q3PSfUfSLo25CQpzzIgYIHQiDVF2g/5EABc/u5J5ZvAzcyfYC+APrV+oGCPgIg389Z4zsmIN/PA/l3DEAemRjIgYJHQiDfH2g/5EABc/u5kO8HhPw7QF/0FwJ5CQMF7wiA/ABnje+agPwAD+TfNQB5ZGIgBwoicsqA/ECg/ZADBczt50J+ABDy7wJ9MVAA5KUMFLwrAPKDnDUONgH5QR7IDzYAeWRiIBvMkwiB/HtA+yEbzJnbz4X8ICDkBwN98R4RmNCgHwy03xDAtUw3mA8B+in+eofG+0e4wTzEa2onDSXYPQwDBj+V7mERcB/9p8F8WPDn+8H/Aa1DNwd0Jzg4TgouUmjduqm3B4HuZEI2N8OBBRXoa0VlP3RTDZJPH0TQFRik5g8tiRkKxr5GwJqUzHXrpt43CHSnEsLYj4D5AvS1SmUhY0cIYezHlsQMBWN7ErAmLXPduon7TQLd6YQw9hNgvgB9rdJZyNiRQhj7aThm2MTMKHDMoPmqe15fJuBrRuZ1RQ96vEWgO5OQujIaGJdAXyuk/SjbkCQMFAAPlchOqD9z1jgmwsAJ9WeeE+oxBk6okad6yIGCrEIgNRZoP+RAAXP7uSfUnwE3MmOAvgD61fqBgjECID/OWePnJiA/zgP5zw1AHpkYyIGC7EIgPx5oP+RAAXP7uZAfB4T850BfjBcCeQkDBZ8LgPwEZ40TTUB+ggfyEw1AHpkYyIGCnEIgPwloP+RAAXP7uZCfAIT8RKAvJgmAvJSBgokCID/ZWeMUE5Cf7IH8FAOQRyYGcqDgMSGQ/wJoP+RAAXP7uZCfDIT8FKAvviACExr0U4D2mwq4lumBgqlAP8Vf77R4/wgPFIR4Te2kaQS7hy+BwU+l+8sIuI/+M1DwZfDn9OD/gNahmwOGExwc52Z+YK6buD8k0J1HyOZmBrCgAn2t8ghpqkHy6asIugKD1DzTkpihYOxHBKzJx1y3buL+mEB3fiGMnQXMF6CvVX4LGTtbCGO/tiRmKBj7CQFrCjLXrZu4PyXQXUgIY+cA8wXoa1XIQsbOFcLYb8IxwyZmvgXHDJqvuud1GAFfizKvK3rQYzSB7mJC6so8YFwCfa2KMY8bzYYZBHFTkrlufQ9nJoHuUkLyZT4wX4C+VqWE1NRngTX1OyH7sAXAdR4EHrAfYv72IM3YWQSsUcwZq+/hfE2gu7QQxi4E5gvQ16q0hYxdJISx3wPXeRTI2GMCGDuHgDXlmDNW38P5hkB3eSGMXQzMF6CvVXkLGfuDEMYuAa7zJJCxp5gzdkpEXH8T0h8VmTNW3/OcR6C7khDGLgXmC9DXqpKFjP1RCGOXAde5C8jY3ULec7YcaL9VQPutzmFfzq0QknM/WRYzaPutBNpvK9B+2yzMuVVCcm61ZTGDtt8ay/YJnHNuLfPeDv24jLIEf4c9w/zvz3LOBcsT6K4i5O/PdcC4BPpaSbHfeqD9LgAZe9FCxm4Qsq/ZCFznXmDM7BOyr9kEtJ+NL6dA5txmAfuaSgT1fUuEjFzZGp5tZZMr24TUp+3Ada4E1qc1QvY0EcBr7cD5ooyph5UA15zgYSU/x/tH+GElIV5TO+nnCPx1dwKBSaV7ZwTcR+4j7qLA69UFCPnEJ3095AGYPsBBHo7oIrmdwD8+bG66j83b5ax1d4SBx+btikj42Dz9pf7gd6CTJDbo0LvmqszvBsYmB1p3Nea6Y5MYrft55rpjYYPWXd3Q3ctAaB8FzEcVP8ZDtV8NIfYDxreqDrRfTSF3z38BbhyAMaOY2899rOgu4GZ7N9AXQL+SPTta13pkV4ruqlhN8AcV0C9km+A9zhp/NbEJ3uPZBP9KvAleSbA5qM98U5RYIIequ4GQoo4EYX1gUW8opKj/BrQfMGYUc/u5RX0PsKj/CvTFb0KKOrLtTbdtrSMo6r8KKOp7nTXuM1HU93qK+j7ior6GoLg1ZV7UEwvkUHU3E1LUkSBsCizqLwop6r8D7QeMGcXcfm5R3wss6vuAvvhdSFFHzknqOb9lBEV9n4Ci/oezxv0mivofnqK+n7ioLyUobi2ZF/XEAjlU3a2EFHUkCFsCi3prIUX9ANB+wJhRzO3nFvU/gEV9P9AXB4gKEbqw7wfa7yDgWqbf6nUQ6Kf46z0U7x/hRrkQr6mddIhgt3gYGPxUug9HwH3kBurOoE0PB38eCf4PFJvD+QSbpPbMN4f6yacLCHR3ELK5OQosqEBfKyr7RYLth+TTsQi6AoPUfNySmKFg7EIC1nRmrls/+fR7At1dhDD2BDBfgL5WXSxk7EkhjD1lScxQMHYxAWu6Mtetn3y6hEB3NyGMPQ3MF6CvVTcLGXtGCGP/DMcMm5j5S0jMnCU6TAmE9kEeLJCeUFMMVaJrKfCQgeyE+pyzxvMRBk6oz3lOqM/HO6FOLMkCoX2QDoAOXHUXshn6G2g/5PAWc/u5J5bngIXtPNAXQL9aPzB0XgDkLzhrvGgC8hc8kL9oAPLIxEAOkPQQAvl/gPZDDpAwt58L+QtAyF8E+uIfIZCXMEByUQDkLzlrvGwC8pc8kL9sAPLIxEAOFLwuBPL/Au2HHChgbj8X8peAkL8M9MW/QiAvYaDgsgDIX3HWeNUE5K94IH/VAOSRiYFsMO8pBPLXgPZDNpgzt58L+StAyF8F+uIaEZjQoL8KtN91wLVMN5hfB/op/npvxPtHuME8xGtqJ90g2D3cBAY/le6bEXAf/afB/Gbw563g/4DWoQ+Lj0bgG1TeZN6Yo5t6jxPo7i1kc3MbWFCBvla9hTRZIPl0R0iTxV1LYoaCsScIWNOHuW7d1HuKQHdfIYy9B8wXoK9VXwsZe18IYx9YEjMUjD1NwJr+zHXrpt4/CXQPEMLYh8B8AfpaDbCQsY+EMFYbMRwzPGImIhIbM2i+6p7XwwR8HcS8rujG/7MEugcLqSuRwLgE+loh7Rfps3ugAHioRHZCncRxTlSkgRPqJJEJT6j1l/o934k+oUae6iEHCoYKgVRSIKSQAwXM7eeeUCeJxPkiCugLoF+tHygA+oUM8smcNSY3AflkHsgnNwB5ZGIgBwreFwL5FED7IQcKmNvPhXwyIOSTA32RQgjkJQwUJBcA+ZTOGlOZgHxKD+RTGYA8MjGQAwUfCIF8aqD9kAMFzO3nQj4lEPKpgL5ILQTyEgYKUgmAfBpnjWlNQD6NB/JpDUAemRjIgYKPhEA+HdB+yIEC5vZzIZ8GCPm0QF+kIwITGvRpgfZLD7iW6YGC9EA/xV9vhsi438MDBSFeUzspQyT+uhmBwU+lO2Mk3Ef/GSjIGLRtpuB3UQxu3CY4OP6Y+YG5buK+S6D7EyGbm8zAggr0tfpESFMNkk9ZIukKDFJzVktihoKx9whYM4q5bt3E/YBA92ghjM0GzBegr9VoCxmbXQhjc1gSMxSMfUjAmrHMdT8K3lFE6x4nhLE5gfkC9LUaZyFjcwlh7GPhmGETM4+DY4ai6fgmQV2ZwLyu6EGPSIK6MlFIXckNjEugrxXSfpE+uwcKgIdKZCfUeZw15o00cEKdJzLhCbX+Ur/nO9En1MhTPeRAwRQhkPID7YccKGBuP/eEOg9wI5MX6AugX60fKMgrAPL5nDXmNwH5fB7I5zcAeWRiIAcKpgqBfAGg/ZADBczt50I+HxDy+YG+KCAE8hIGCvILgPwTzhoLmoD8Ex7IFzQAeWRiIAcKvhQC+UJA+yEHCpjbz4X8E0DIFwT6opAQyEsYKCgoAPKFnTUWMQH5wh7IFzEAeWRiIAcKZgiBfFGg/ZADBczt50K+MBDyRYC+KEoEJjToiwDtVwxwLdMDBcWAfoq/3uKRcb+HBwpCvKZ2UvFI/HVLAIOfSneJSLiP/jNQUCJo25LB76IY3MgciT84nsn8wFw3cWcl0D1LyOamFLCgAn2tZglpqkHy6clIugKD1BywJGYoGJuNgDVzmOvWTdw5CHTPFcJYBcwXoK/VXAsZW1oIY8tYEjMUjM1JwJp5zHXrJu7HCHTPF8LYssB8AfpazbeQseWEMLZ8OGbYxMxT4JihaDrOSMDXhczrih70yE2ge5GQulIBGJdAX6tFzONGs6EUQdz8wFy3vocTINC9REi+VATmC9DXaomQmrozAnetSkL2YU8D19keGDMdBDBWEbBmGXPd+h5OGQLdy4UwtjIwX4C+VsstZOwzQhhbBbjOzsCY6SKAsWUJWLOSuW59D6c8ge5VQhj7LDBfgL5Wqyxk7HNCGFsVuM6uwJjpxpw1usGxBAFr1jLXre95ViDQvU4IY6sB8wXoa7XOQsY+L4Sx1YHrbAmMmVZCcq4G0H7VgPZ73sKcqykk52pZFjNo+9UG2q8+0H4NLMy5OkJyrq5lMYO2Xz2g/ZoC7dfMwpx7QUjO1bcsZtD2a2DZ3pxzzjUE5xz63od+esH6CPy9j43M7/lscC64kUD3JiGMaASMS6CvlRT7NQbarz/QfgMsZGwTAYzdRMCarcwZu9m54BYC3duEMKIpMC6BvlZS7NcMaD8bXwCEZOyLAhi7lYA1zSNl5EoLoH9sfH4AMldeAucKVcy0BK6zKjBmqguJmQjgtVrhfFHW1AOhgGtO8ECo1pFxv4cfCBXiNbWTtEHR120TiQt+Kt1tIuE+ch8jGgVery5AyKfq6eshmwz0ITnyAFoXyZYE/vFhc9N9NGlbZ63tIg08mrRtZMJHk+ov9Qe/A50ksUGH3jX/zPzORGxyoHXvZK47NonRuncx1x0LG7Tu3YbupARC+yhgPqqdwEcP/yLEfsD4VruB9tsj5E5ee+DGARgzirn93Ec3twVuttsBfQH0K9nz+XWtR3b+6c61ugR/UAH9QrYJ7uCssaOJTXAHzya4I/EmuDbB5mA/801RYoEcqu4DQoo6EoT7gUX9oJCi3gloP2DMKOb2c4t6B2BR7wj0BdCvpEUd2VqsW2PrExR1oF/IinpnZ41dTBT1zp6i3oW4qNcjKG5HmRf1xAI5VN3HhBR1JAiPAov6cSFFPRpoP2DMKOb2c4t6Z2BR7wL0BdCvpEUdObuge+8bERR1oF/IinqMs8auJop6jKeodyUu6g0Iittp5kU9sUAOVfcZIUUdCcLTwKL+p5Ci3g1oP2DMKOb2c4t6DLCodwX6AuhX0jcndgXa72XAtUy/OfFloJ/ir/eVyLjfw41yIV5TO+kVgt1id2DwU+nuHgn3kRuobYI27R78+Wrwuyg2hxUJNknnmW8O9dOlnybQ/beQzU0PYEEF+lpR2S8SbD8kn16LpCswSM2vWxIzFIytTMCaf5jr1k+XrkKg+5IQxr4BzBegr9UlCxnbUwhje1kSMxSMfZaANVeY637O0VyVQPdVIYx9E5gvQF+rqxYytrcQxr4Vjhk2MfM2OGYo6ko1Ar7eYF5X9BO1qxPovimkrvQBxiXQ1wppv0gfXUcCxRAtOsaBh0pkHQl9nTX2izTQkdA3MmFHgv5Sv+c70SfUyFM95IDdHSGQegdoP+SwHnP7uSfUfYEbmX5AXwD9av2AGNAvZJDv76xxgAnI9/dAfoAByCMTAzkwdE8I5N8F2g85MMTcfi7k+wMhPwDoC6BfrR8YAvqFDPIDnTUOMgH5gR7IDzIAeWRiIAdIHgiB/GCg/ZADJMzt50J+IBDyg4C+APrV+gESoF/IIP+es8YhJiD/ngfyQwxAHpkYyIGCR0IgPxRoP+RAAXP7uZB/Dwj5IUBfDCUCExr0Q4D2Gwa4lumBgmFAP8Vf7/uRcb+HBwpCvKZ20vsEu4fhwOCn0j08Eu6j/wwUDA/+/CD4XRSDGz0i8QfHEbl4H5jrJu7XCXRH5pKxufkQWFCBvlZU9osE2w/Jp48i6QoMUvMIS2KGgrFvELAmKXPduom7F4HuZEIY+zEwX4C+VsksZOwnQhg70pKYoWDsmwSsSclct27ifotAdyohjP0UmC9AX6tUFjJ2lBDGjg7HDJuY+QwcMxRNx90J+JqWeV3Rgx59CHSnE1JXxgDjEuhrhbRfpM/ugQLgoRLZCfVYZ43jIg2cUI+NTHhCrb/U7/lO9Ak18lQPOVCQUQikPgfaDzlQwNx+7gn1WOBGZhzQF0C/Wj9QAPQLGeTHO2ucYALy4z2Qn2AA8sjEQA4UZBYC+YlA+yEHCpjbz4X8eCDkJwB9AfSr9QMFQL+QQX6Ss8bJJiA/yQP5yQYgj0wM5EBBViGQnwK0H3KggLn9XMhPAkJ+MtAXQL9aP1AA9AsZ5L9w1jjVBOS/8EB+qgHIIxMDOVCQXQjkpwHthxwoYG4/F/JfACE/FeiLaURgQoN+KtB+XwKuZXqg4Eugn+Kvd3pk3O/hgYIQr6mdNJ1g9zADGPxUumdEwn30n4GCGcGfXwW/i2Jw48NI/MFxTuYH5rqJewSB7lxCNjczgQUV6GuVS0hTDZJPsyLpCgxS82xLYoaCsR8TsCY3c926iXskge48Qhj7NTBfgL5WeSxk7BwhjJ1rScxQMPZTAtbkY65bN3GPJtCdXwhjvwHmC9DXKr+FjP1WCGPnhWOGTczMB8cMRdPxcAK+FmReV/SgxxgC3YWE1JXvgHEJ9LUqFB4ogF0XeKhEdkK9wFnjwkgDJ9QLIhOeUOsv9Xu+E31CjTzVQw4UFBUCqUVA+yEHCpjbzz2hXgDcyCwE+gLoV+sHCoB+IYP8984aF5uA/PceyC82AHlkYiAHCooLgfwPQPshBwqY28+F/PdAyC8G+gLoV+sHCoB+IYP8EmeNS01AfokH8ksNQB6ZGMiBgpJCIP8j0H7IgQLm9nMhvwQI+aVAXwD9av1AAdAvZJBf5qxxuQnIL/NAfrkByCMTAzlQ8KQQyK8A2g85UMDcfi7klwEhvxzoixVEYEKDfjnQfj8BrmV6oOAnoJ/ir3dlZNzv4YGCEK+pnbSSYPewChj8VLpXRcJ99J+BglXBn6uD30UxuDEzEn9wrJgfmOsm7tkEuksL2dysARZUoK9VaSFNNUg+rY2kKzBIzessiRkKxn5NwJpyzHXrJu65BLrLC2HsemC+AH2tylvI2A1CGLvRkpihYOw3BKypyFy3buKeR6C7khDGbgLmC9DXqpKFjN0shLFbwjHDJma2gmOGoul4BgFfn2FeV/Sgx3cEuqsIqSvbgHEJ9LWqwjxuNBvWEMRNVea69T2cdQS6qwnJl+3AfAH6WlUTUlPbAGvqDiH7sJ+B6zwPPGD/Oyd/xq4nYE0N5ozV93A2EuiuKYSxO4H5AvS1qmkhY3cJYexu4Dr/ATL2kgDGbiJgTR3mjNX3cLYQ6K4rhLG/APMF6GtV10LG7hHC2F+B67wCZOxV5ozVDY6rCFhTnzlj9T3PbQS6Gwhh7G/AfAH6WjWwkLF7hTB2H3CdN4CMvZlTRs79DrTfTqD9duW0L+f+EJJz+y2LGbT9DgDttx9ovwMW5txBITl3yLKYQdvvMNB+R4H2O2Zhzh0RknNHLYsZtP2OAe13Gmi/Mxbm3HEhOXfCsphB2++kZX8Pc865U+CcQ99v1E8MaUxwv7Ex8/usTRzNTQl0NxFyn/U0MC6BvlZS7HcGaL+UQPulsvA+9Z8CGNuMgDUvMmfsi47m5gS6mwthxF/AuAT6Wkmx31mg/Wx86RaSsecEMLYFAWvOR8rIlb+B/rHxmR3IXLkAzhWqmLkIXOfPwPsEu4XcJ4gAXusfnC/KmXoIG3DNCR7Cdiky7vfwQ9hCvKZ20qVI/HUvA4FJpftyJNxH7qN7o8Dr1QUI+SRLfT1kY49uTEE2fegieZHAPz5sbrqPA/7XWeuVSAOPA/43MuHjgPWX+oPfgU6S2KBD75pbMr8zEZscaN2tmOuOTWK07tbMdcfCBq27jaE7KYHQPgqYjyp+jIdqv7ZC7AeMb9UGaL92Qu7kXQVuHIAxo5jbz31c+r/AzfYVoC+AfiV7J4au9chuW90teojgDyqgX8g2wdecNV43sQm+5tkEXyfeBB8g2BxEM98UJRbIoeqOEVLUkSCMBhb1rkKK+g2g/YAxo5jbzy3q14BF/TrQF0C/khZ1ZDu/bkc/SlDUgX4hK+o3nTXeMlHUb3qK+i3ion6YoLh1Z17UEwvkUHW/KqSoI0HYHVjUewgp6reB9gPGjGJuP7eo3wQW9VtAXwD9SlrUkfNCet7lBEFRB/qFrKjfcdZ410RRv+Mp6neJi/oxguLWk3lRTyyQQ9XdS0hRR4KwJ7CovymkqN8D2g8YM4q5/dyifgdY1O8CfQH0K+nbSu8C7XcfcC3Tbyu9D/RT/PU+iIz7PdwoF+I1tZMeEOwWHwKDn0r3w0i4j9xAvRy06cPgz0fB76LYHG4n2CT1Yb451E90/5lAd18hmxt9QZQtgb5WVPaLBNsPyaeIJHQFBqk50pKYoWDsTgLW9GeuWz/RfTeB7gFCGJsEmC9AX6sBFjI2Sghjk1oSMxSM/YWANYOY69ZPdP+VQPdgIYxNBswXoK/VYAsZm1wIY1OEY4ZNzKQExwxFXfmNgK9DmdcV/RT7fQS6hwmpK6mAcQn0tULaL9JH15FAMUSLjnHgoRJZR0JqJw7TJDHQkZA6ScKOBP2lfs93ok+okad6yAG7D4RAKi0QUshhPeb2c0+oUyfB+SIN0BdAv1o/IAb0Cxnk0zlrTG8C8uk8kE9vAPLIxEAODH0kBPIZgPZDDgwxt58L+XRAyKcH+iKDEMhLGBhKLwDyGZ01ZjIB+YweyGcyAHlkYiAHSD4WAvnMQPshB0iY28+FfEYg5DMBfZFZCOQlDJBkEgD5LM4as5qAfBYP5LMagDwyMZADBSOFQD4b0H7IgQLm9nMhnwUI+axAX2QjAhMa9FmB9ssOuJbpgYLsQD/FX2+OJHG/hwcKQrymdlKOJPjr5gQGP5XunEngPvrPQEHOoG1zBb+LYnDDlwR/cDyK+YG5buKOJNA9Wsjm5jFgQQX6Wo0W0lSD5NPjQhqxclsSMxSMTULAmrHMdesm7qQEuscJYWweYL4Afa3GWcjYvEIY67ckZigYm4yANROY69ZN3CkIdE8Uwth8wHwB+lpNtJCx+YUwtkA4ZtjEzBPMBwp0z2vsQx2QNpzCvK7oQY9UBHXlCyF1pSAwLoG+Vkj7UZ5QSxgoAB4qkZ1QF3LWWNjECXUhzwl1YQMn1MhTPeRAwZdCIFWE6UABc/u5J9SFgBuZwkBfAP1q/UBBYQGQL+qssZgJyBf1QL6YAcgjEwM5UDBDCOSLMx0oYG4/F/JFgZAvBvRFcSGQlzBQUEwA5Es4ayxpAvIlPJAvaQDyyMRADhTMFAL5UkwHCpjbz4V8CSDkSwJ9UUoI5CUMFJQUAPknnTUGTED+SQ/kAwYgj0wM5EDBbCGQV0wHCpjbz4X8k0DIB4C+UERgQoM+ALRfaYEDBaWJBgrKJIn7PTxQEOI1tZPKEAwUlGU+UKB1lzUwUFA2aNtyRAMFujngMYKD4znMD8x1E3duAt1zhWxuygMLKtDXaq6Qphokn54S0ohVwZKYoWBsHgLWzGOuWzdx+wl0zxfC2IrAfAH6Ws23kLGVhDD2aUtihoKx+QhYs5C5bt3EXYBA9yIhjK0MzBegr9UiCxn7jBDGVgnHDJuYeZb5QIHuec1JwNcfmNcVPehRkED3EiF15TlgXAJ9rZD2ozyhljBQADxUIjuhruqssZqJE+qqnhPqagZOqJGnesiBgmVCIPU804EC5vZzT6irAjcy1YC+APrV+oGCagIgX91ZYw0TkK/ugXwNA5BHJgZyoGCFEMjXZDpQwNx+LuSrAyFfA+iLmkIgL2GgoIYAyNdy1ljbBORreSBf2wDkkYmBHChYKQTydZgOFDC3nwv5WkDI1wb6oo4QyEsYKKgtAPJ1nTXWMwH5uh7I1zMAeWRiIAcKVguB/AtMBwqY28+FfF0g5OsBffECEZjQoK8HtF99gQMF9YkGChokifs9PFAQ4jW1kxoQDBQ0ZD5QoHU3NDBQ0DBo20ZEAwW6OaA8wcHxWuYH5rqJuwKB7nVCNjeNgQUV6Gu1TkhTDZJPTYQ0YjW1JGYoGFuRgDUbmevWTdxPE+jeJISxzYD5AvS12mQhY18UwtjmlsQMBWMrE7BmK3Pduom7CoHubUIY2wKYL0Bfq20WMvYlIYxtGY4ZNjHTivlAge55LUvA15+Z15X/G/Qg0L1TSF1pDYxLoK/VTuZxo9nQmCBufmGuW9/DaUqge4+QfGkDzBegr9UeITX1ciTuWm2F7MPaAdfZBxgzfQUwthkBa/Yy163v4TQn0L1PCGPbA/MF6Gu1z0LGdhDC2I7AdfYHxswAAYxtQcCa/cx163s4LQl0HxDC2E7AfAH6Wh2wkLGdhTC2C3Cdg4AxM5g5a+olietvQvrjMHPd+p5nawLdR4QwNhqYL0BfqyMWMjZGCGO7Atc5FBgzw4TkXDeg/VoB7dfawpx7WUjOvWJZzKDt1x1ov2ig/WIszLlXheRcD8tiBm2/14gm2wOhfZBT3mJy7nUhOfeGZTGDtl9PokHjQGgf5NCtmJzrJSTn3rQkZtD3jvTTH05G4u8dHWeu+5Sj+TSB7hNCGNsbmC9AX6sTFjL2LSGMfduymEHbr49l9xw551xf5n3iui6fIahPp5nX5T8dzX8R6D4jhBH9gHEJ9LWSYr93gPabALTfRAsZ218AY88SsOYsc8aeczSfJ9B9TggjBgDjEuhrJcV+7wLtZ+OLDZGMHSiAsX8TsGZQEhm5Mjj8XCQ2ufKekPssQ4DrbAmMmTZCYiYCeK2hOF+U/18PaPT58MwFrjnBgy6HJYn7PfygyxCvqZ00LAn+uu8DH6ZApfv9JHAfuY9HjwKvVxcg5NOC9fWQzZO6+Q/ZWKeL5BAC//iwuek+cn24s9YPkhh45PrwJAkfua6/1B/8DnSSxAYdetd8gfmdidjkQOu+yFx3bBKjdf/DXHcsbNC6Lxm6kxII7aOA+aguAl+pcFmI/YDxrS4B7fevkDt5HyI3NkBfMLef+0qK4cDN9gdAXwD9SvbeIV3rkRMNuiO/B8EfVEC/kG2CP3LWOMLEJvgjzyZ4BPEmuDvB5uAW801RYoEcqu7bQoo6EoS3gEX9jpCi/jHQfsCYUczt5xb1j4BFfQTQFx8LKerIkSk98vMGQVEfIaCof+KscaSJov6Jp6iPJC7qrxEUtwfMi3pigRyq7odCijoShA+ARf2RkKL+KdB+wJhRzO3nFvVPgEV9JNAXnwop6siZTD1T+CZBUR8poKiPctY42kRRH+Up6qOJi3pPguKW5DHeRT2xQA5Vd9RjMoo6EoTxfR2q/ZI+JqOofwa0HzBmFHP7uUV9FLCojwb64jOiQoQu7KOB9hsDuJbpN0KPIWqUG5sk7vdwo1yI19ROGkuwWxzHvFFO6x5H0IgVu873gzYdF/z5efC7KDaHbQg2SSmZbw71WzPaEehOJWRzMx5YUIG+VlT2iwTbD8mnCUImHyZaEjMUjG1PwJq0zHXrt2Z0JNCdTghjJwHzBehrlc5Cxk4WwtgplsQMBWM7EbAmI3Pd+q0ZXQh0ZxLC2C+A+QL0tcpkIWOnCmHstHDMsImZL8ExQ1FXogn4mpV5XdFvCulKoDubkLoyHRiXQF8rpP0oOxIohmjRMQ48VCLrSJjhrPErEx0JMzwdCV/F60hILMkCoX2QDoAO2OUUAqmZQPshh/WY2889oZ4B3Mh8BfQF0K/WD4h9JQDys5w1zjYB+VkeyM82AHlkYiAHhh4TAvmvmQ4MMbefC/lZQMjPBvriayGQlzAwNFsA5Oc4a5xrAvJzPJCfawDyyMRADpDkFgL5b5gOkDC3nwv5OUDIzwX64hshkJcwQDJXAOS/ddY4zwTkv/VAfp4ByCMTAzlQkFcI5OczHShgbj8X8t8CIT8P6Iv5RGBCg34e0H7fCRwo+I5ooGBBkrjfwwMFIV5TO2kBwe5hIfOBAq17YRK4j/4zULAw+HMR0UCBbg4YT3BwnI/5gblu4p5IoDu/kM3N98CCCvS1yi+kqQbJp8VCGrF+sCRmKBg7iYA1BZnr1k3cUwh0FxLC2CXAfAH6WhWykLFLhTD2R0tihoKxXxCwpihz3bqJexqB7mJCGLsMmC9AX6tiFjJ2uRDGrgjHDJuY+Yn5QIHueR1HwNeSzOuKHvSYTqC7lJC6shIYl0Bfq1LhgQKSA5ZAiB+f5xPidd0T6lXOGlebOKFe5TmhXm3ghBp5qoccKFBCILWG6UABc/u5J9SrgBuZ1UBfAP1q/UDBagGQX+uscZ0JyK/1QH6dAcgjEwM5UFBGCOTXMx0oYG4/F/JrgZBfB/TFeiGQlzBQsE4A5Dc4a9xoAvIbPJDfaADyyMRADhSUEwL5TUwHCpjbz4X8BiDkNwJ9sUkI5CUMFGwUAPnNzhq3mID8Zg/ktxiAPDIxkAMFTwmB/FamAwXM7edCfjMQ8luAvthKBCY06LcA7bdN4EDBNqKBgu1J4n4PDxSEeE3tpO0Eu4cdwOCn0r0jCdxH/xko2BH8+XPwuygGN74nODiuyPzAXDdx/0Cgu5KQzc1OYEEF+lpVEtJUg+TTLiGNWLstiRkKxi4hYM0zzHXrJu4fCXRXEcLYX4D5AvS1qmIhY/cIYeyvlsQMBWOXEbCmKnPduol7BYHuakIY+xswX4C+VtUsZOxeIYzdF44ZNjHzO/OBAt3zupCArzWY1xU96LGSQHdNIXXlD2BcAn2taoYHCkgOWAIhfnyeT4jXdU+o9ztrPGDihHq/54T6gIETauSpHnKgoI4QSB1kOlDA3H7uCfV+4EbmANAXQL9aP1BwQADkDzlrPGwC8oc8kD9sAPLIxEAOFNQTAvkjTAcKmNvPhfwhIOQPA31xRAjkJQwUHBYA+aPOGo+ZgPxRD+SPGYA8MjGQAwX1hUD+ONOBAub2cyF/FAj5Y0BfHBcCeQkDBccEQP6Es8aTJiB/wgP5kwYgj0wM5EBBQyGQP8V0oIC5/VzInwBC/iTQF6eIwIQG/Umg/U4LHCg4TTRQcCZJ3O/hgYIQr6mddIZg9/AnMPipdP+ZBO6j/wwU/Bn8+VfwuygGN3YSHBw3Zn5grpu4dxPobiJkc3MWWFCBvlZNhDTVIPl0Tkgj1nlLYoaCsb8QsOZF5rp1E/evBLqbC2Hs38B8AfpaNbeQsReEMPaiJTFDwdjfCFjTkrlu3cS9j0B3KyGM/QeYL0Bfq1YWMvaSEMZeDscMm5j5l/lAge553UHA17bM64oe9PiDQHc7IXXlCjAugb5W7ZjHjWbDWYK46chct76Hc55Adych+XIVmC9AX6tOQmrq+8Caek3IPuw6cJ0pgTGTSgBj/yZgTTRz3foezkUC3TFCGHsDmC9AX6sYCxl7UwhjbwHXmRYYM+kEMPYfAta8zFy3vodzmUD3K0IYexuYL0Bfq1csZOwdIYy9C1xnRmDMZGLOmpNJ4vqbkP7owVy3vud5hUD3a0IYew+YL0Bfq9csZOx9IYx9AFxnVmDMZBOScw+B9rsInFgDPsdCTM49EpJzujvepphB2y8CaL9bQPvdtjDnIqNk5FwSy2IGbb8ooP0eAO330MKcSyok55JZFjNo+yUH2i8JcG8eZeHfcymE5FxKS2IGfe9IP/2hN8G9o57Mdb/laH6bQHcvIX+/pwLmC9DXqpeFjE0thLFpLIkZCsb2IWDNW8x193U09yPQ/bYQxqYF5gvQ1+ptCxmbTghj01sWM2j7ZQDaT8K5DuecywjOOYq6/A5BferHvC73dzQPIND9jhBGZALGJdDXSor9MgPtVxRov2IWMjaLAMa+S8Cad5kzdqCjeRCB7oFCGJEVGJdAXysp9ssGtJ+NL49FMja7AMYOJmBNjigZuZIT6B8bnz2HzJVcQu6zPAZc5wXgGf0lIX0dEcBrPY7zxVM6Tkw8TBi45gQPE84dFfd7+GHCIV5TO0kbFH3dPFG44KfSnScK7iP3FRRR4PXqAoR8Iru+HrJBXTdYI5uXdZF8jMA/Pmxuuq+1yOus1R9l4LUWeaMSvtZCf6k/+B3oJIkNOvSu+T3mdyZikwOtewhz3bFJjNY9lLnuWNigdQ8zdCclENpHAfNRDQG+tuZ9IfYDxrcaBrTfcCF38vIBNw7AmFHM7ee+9icvcLPtB/oC6Feyd7v931s/gJr11FMSgj+o/ER3GgFrdDfB+Z01FjCxCc7v2QQXIN4ERxBsDkYy3xQlFsih6v5USFFHgnAksKiPElLUnwDaDxgzirn93KKeH1jUCwB98YSQoo4cS9VjlckIinoBAUW9oLPGQiaKekFPUS9EXNSjCIrbWOZFPbFADlX3OCFFHQnCscCi/rmQol4YaD9gzCjm9nOLekFgUS8E9EVhIUUdOfeu57ZTEhT1QgKKehFnjUVNFPUinqJelLioJycobpOYF/XEAjlU3ZOFFHUkCCcBi/oUIUW9GNB+wJhRzO3nFvUiwKJeFOiLYkSFCF3YiwLtVxxwreiYmJjoLgFlqlGuOFGjXIlwoxzWSSUIdoslmTfKad0lCRqxYteZJ2jTksGfpYLfRbE5vErQ0/Ml882hfjPRdQLd04Vsbp4EFlSgrxWV/SLB9kPyKSBk8kFZEjMUjL1BwJqZzHXrNxPdItA9SwhjSwPzBehrNctCxpYRwtiylsQMBWNvE7BmDnPd+s1Edwl0zxXC2HLAfAH6Ws21kLHlhTD2qXDMsImZCsyfkKDryj0Cvs5jXlf025geEOieL6SuVATGJdDXCmk/yo4EiiFadIwXJToIAqzR7Uio5KzxaRMdCZU8HQlPx+tISCzJAqF9kA6ADtgtFAKpykD7IYf1mNvPPaGuBNzIPA30BdCv1g+IPS0A8s84a6xiAvLPeCBfxQDkkYmBHBj6Xgjkn2U6MMTcfi7knwFCvgrQF88KgbyEgaEqAiD/nLPGqiYg/5wH8lUNQB6ZGMgBkh+EQL4a0wES5vZzIf8cEPJVgb6oJgTyEgZIqgqA/PPOGqubgPzzHshXNwB5ZGIgBwqWCoF8DaYDBczt50L+eSDkqwN9UYMITGjQVwfar6bAgYKaRAMFtcIDBVgn1SLYPdRmPlCgddc2MFBQO/izDtFAgW4OeJJg6nIZ8wNz3cStCHQvF7K5qQssqEBfq+VCmmqQfKonpBHrBUtihoKxpQlYs5K5bt3EXZZA9yohjK0PzBegr9UqCxnbQAhjG1oSMxSMLUfAmrXMdesm7qcIdK8TwthGwHwB+lqts5CxjYUwtkk4ZtjETFPmAwVFo+Ie6oC04UbmdUUPelQk0L1JSF1pBoxLoK8V0n6UJ9QSBgqAh0pkJ9QvOmtsbuKE+kXPCXVzAyfUyFM95EDBViGQasF0oIC5/dwT6heBG5nmQF8A/Wr9QEFzAZB/yVljSxOQf8kD+ZYGII9MDORAwXYhkG/FdKCAuf1cyL8EhHxLoC9aCYG8hIGClgIg39pZYxsTkG/tgXwbA5BHJgZyoOBnIZBvy3SggLn9XMi3BkK+DdAXbYVAXsJAQRsBkG/nrLG9Cci380C+vQHIIxMDOVCwSwjkOzAdKGBuPxfy7YCQbw/0RQciMKFB3x5ov44CBwo6Eg0UdAoPFGCd1Ilg99CZ+UCB1t3ZwEBB5+DPLkQDBbo5oC7BwfEvzA/MdRP3CwS69wjZ3EQDCyrQ12qPkKYaJJ9ihDRidbUkZigYW5+ANXuZ69ZN3A0JdO8TwthuwHwB+lrts5CxLwth7CuWxAwFYxsRsGY/c926ibsJge4DQhjbHZgvQF+rAxYy9lUhjO0Rjhk2MfMa84GC6lFxD3VA2vAw87qiBz2aEeg+IqSuvA6MS6CvFdJ+lCfUEgYKgIdKZCfUbzhr7GnihPoNzwl1TwMn1MhTPeRAwXEhkOrFdKCAuf3cE+o3gBuZnkBfAP1q/UBBTwGQf9NZY28TkH/TA/neBiCPTAzkQMFJIZB/i+lAAXP7uZB/Ewj53kBfvCUE8hIGCnoLgPzbzhr7mID82x7I9zEAeWRiIAcKTguBfF+mAwXM7edC/m0g5PsAfdFXCOQlDBT0EQD5fs4a3zEB+X4eyL9jAPLIxEAOFPwpBPL9mQ4UMLefC/l+QMi/A/RFfyIwoUH/DtB+AwQOFAwgGih4NzxQgHXSuwS7h4HMBwq07oEGBgoGBn8OIhoo0M0B0QQHx2eZH5jrJu6uBLrPCdncDAYWVKCv1TkhTTVIPr0npBFriCUxQ8HYbgSsucBct27ifoVA90UhjB0KzBegr9VFCxk7TAhj37ckZigY252ANZeZ69ZN3D0IdP8rhLHDgfkC9LX610LGfiCEsR+GY4ZNzHzEfKCgfVTcQx2QNrzGvK7oQY/XCXRfF1JXRgDjEuhrdZ153Gg2DCaIm1vMdet7OEMIdN8Wki8fA/MF6Gt1W0hNzQOsqZ8I2YeNBK7zS2DMTBfA2KEErLnHXLe+h/M+ge77Qhj7KTBfgL5W9y1k7CghjB0NXOdMYMzMEsDY4QSsecRct76H8yGBbt/jMhj7GTBfgL5WVPbjzNgxQhg7FrjOOcCYmcucNe9ExfU3If2R5HHeuvU9zxEEuqOEMHYcMF+AvlZRFjL2cyGMHQ9c5zwgY+cL+dtxAtGzOwKhfZDPsRCTcxOF5Nwky2IGbb/JRI9SCIT2QT5WQEzOTRGSc19YFjNo+00lmmwPhPZBTnmLyblpQnLuS8tiBm2/6USDxoHQPsihWzE5N0NIzn1lScyg7x3ppz+kIrh3lJz5PbPUjuY0BLpTCLlnNhOYL0BfqxQW3jObJYSxsy2JGQrGpiVgTWrmutM5mtMT6E4jhLFfA/MF6GuVxkLGzhHC2LmWxAwFYzMQsCY9c90ZHc2ZCHRnEMLYb4D5AvS1ymAhY78Vwth5lsUM2n7zLTs755xz3zGfd9R1OTNBfcrMvC5ncTRnJdCdRQgjFgDjEuhrJcV+C4H2Wwtk7DoLGbtIAGOzEbAmO3PGZnc05yDQnUMII74HxiXQ10qK/RYD7WfjC7qRjP1BAGNzErBmSZSMXFkafr4nm1z5Uch9lmXAdb4HjJlhQmImAnit5ThfVDD1wHbgmhM8sH1FVNzvUR7f+XzhB7b//7qmdtKKKPx1fwICk0r3T1FwH7mv+YkCr1cXIORbL/T1kENAeogFOSCii+QyAv/4sLnpvjpopbPWVVEGXh20Mirhq4P0l/qD34FOktigQ++aH2N+ZyI2OdC6H2euOzaJ0bpzM9cdCxu07jyG7qQEQvsoYD6q+DEeqv3yCrEfML5VHqD9/ELu5K0GbhyAMaOY2899tdpK4GZ7FdAXQL+SvT9T13rkZK6eLP2C4A8qoF/INsFrnDWuNbEJXuPZBK8l3gRPJtgcFGa+KUoskEPVXURIUUeCsDCwqBcVUtTXAe0HjBnF3H5uUV8DLOprgb5YJ6SoI0f/9ej6lwRFfa2Aor7eWeMGE0V9vaeobyAu6lMJiltJ5kU9sUAOVXcpIUUdCcKSwKL+pJCivhFoP2DMKOb2c4v6emBR3wD0xUYhRR35bBH9bIyvCIr6BgFFfZOzxs0mivomT1HfTFzUpxMUtzLMi3pigRyq7rJCijoShGWARb2ckKK+BWg/YMwo5vZzi/omYFHfDPTFFqJChC7sm4H22wq4VnRMTEx0l4Ay1Si3lahRblu4UQ7rpG0Eu8XtzBvltO7tBI1Ysev8KWjT7cGfO4LfRbE5/Jhgk1SR+eZQv/1tJIHuSkI2Nz8DCyrQ14rKfpFg+yH5tFPI5MMuS2KGgrGfErDmGea69dvfRhPoriKEsbuB+QL0tapiIWN/EcLYPZbEDAVjPyNgTVXmuvXb38YS6K4mhLG/AvMF6GtVzULG/iaEsXvDMcMmZvaBY4airowj4GsN5nVFv/FuPIHumkLqyu/AuAT6WiHtR9mRQDFEi45x4KESWUfCH84a95voSPjD05GwP15HQmJJFgjtg3QAdMCujhBIHQDaDzmsx9x+7gn1H8CNzH6gL4B+tX5AbL8AyB901njIBOQPeiB/yADkkYmBHBiqJwTyh5kODDG3nwv5g0DIHwL64rAQyEsYGDokAPJHnDUeNQH5Ix7IHzUAeWRiIAdI6guB/DGmAyTM7edC/ggQ8keBvjgmBPISBkiOCoD8cWeNJ0xA/rgH8icMQB6ZGMiBgoZCIH+S6UABc/u5kD8OhPwJoC9OEoEJDfoTQPudEjhQcIpooOB0eKAA66TTBLuHM8wHCrTuMwYGCs4Ef/5JNFCgmwN+Jjg4bsz8wFw3ce8i0N1EyObmL2BBBfpaNRHSVIPk01khjVjnLIkZCsbuJmDNi8x16ybuPQS6mwth7HlgvgB9rZpbyNi/hTD2giUxQ8HYXwlY05K5bt3EvZdAdyshjL0IzBegr1UrCxn7jxDGXgrHDJuYucx8oED3vG4n4Gtb5nVFD3r8TqC7nZC68i8wLoG+Vkj7UZ5QSxgoAB4qkZ1QX3HWeNXECfUVzwn1VQMn1MhTPeRAQUchkLrGdKCAuf3cE+orwI3MVaAvgH61fqDgqgDIX3fWeMME5K97IH/DAOSRiYEcKOgsBPI3mQ4UMLefC/nrQMjfAPriphDISxgouCEA8recNd42AflbHsjfNgB5ZGIgBwqihUD+DtOBAub2cyF/Cwj520Bf3BECeQkDBbcFQP6us8Z7JiB/1wP5ewYgj0wM5EBBVyGQv890oIC5/VzI3wVC/h7QF/eJwIQG/T2g/R4IHCh4QDRQ8DA8UIB10kOC3cMj5gMFWvcjAwMFj2Jtm/T//XeKwY2/CA6OX2Z+YK6buM8R6H5FyOYmIinOlkBfq1eENNUg+RSZlK7AIDUnsSRmKBh7noA1PZjr1k3cFwh0vyaEsVHAfAH6Wr1mIWOTCmFsMktihoKxFwlY05O5bt3EfYlAdy8hjE0OzBegr1UvCxmbQghjU4Zjhk3MpALHDEXT8RkCvr7FvK7oQY9/CXS/LaSupAbGJdDXCmk/yhNqCQMFwEMlshPqNE4cpk1q4IQ6TdKEJ9T6S/2e70SfUCNP9ZADBf2EQCodEFLIgQLm9nNPqNMkxfkiLdAXQL9aP1AA9AsZ5NM7a8xgAvLpPZDPYADyyMRADhT0FwL5jED7IQcKmNvPhXx6IOQzAH2RUQjkJQwUZBAA+UzOGjObgHwmD+QzG4A8MjGQAwXvCoF8FqD9kAMFzO3nQj4TEPKZgb7IIgTyEgYKMguAfFZnjdlMQD6rB/LZDEAemRjIgYJBQiCfHWg/5EABc/u5kM8KhHw2oC+yE4EJDfpsQPvlAFzL9EBBDqCf4q83Z9K438MDBSFeUzspZ1L8dXMBg59Kd66kcB/9Z6AgV9C2jxENFPzfwEJS/MHxe8wPzHUTdxIC3UOEbG4eBxZUoK/VECFNNUg+5RbSiJXHkpihYGwUAWveZ65bN3EnI9A9XAhj8wLzBehrNdxCxvqFMDafJTFDwdjkBKz5iLlu3cSdkkD3CCGMzQ/MF6Cv1QgLGVtACGOfCMcMm5gpyHyg4F5UvIc6AG04knld0YMeqQnqyqdC6kohYFwCfa0+ZR43mg2PE8TNZ8x163s4eQh0jxGSL4WB+QL0tRojpKb+BBzSKyJkH1YUuM6KwJipJICxeQlY8zlz3foeTj4C3eOFMLYYMF+AvlbjLWRscSGMLQFc5zPAmKkigLH5CVgziblufQ/nCQLdk4UwtiQwX4C+VpMtZGwpIYx9ErjOqsCYqcacNdmSxvU3If0xlblufc+zEIHuaUIYGwDmC9DXapqFjFVCGFsauM4awJipKSTnygDt9zjQfrktzLmyQnKunGUxg7ZfeaJHKQRC+yAfKyAm554SknMVLIsZtP0qEk22B0L7IKe8xeRcJSE597RlMYO2X2WiQeNAaB/k0K2YnHtGSM5VsSRm0PeO9NMfZhL0o81grnuWo3k2ge6vhDD2WWC+AH2tvrKQsc8JYWxVS2KGgrFfE7BmNnPdcxzNcwl0fy2EsdWA+QL0tfraQsY+L4Sx1S2JGQrGfkPAmm+Y6/7W0TyPQPe3QhhbA5gvQF+rby1kbE0hjK1lScxQMHY+AWu+Y677O0fzAgLdC4QwtjYwX4C+VgssZGwdIYyta1nMoO1Xz7L+JM459wLzmXJdlxcS1KfvmdflRY7m7wl0LxbCiPrAuAT6WkmxXwOg/VoC7dfKQsY2FMDYxQSsWcqcsT84mpcQ6P5RCCMaAeMS6GslxX6Ngfbj/EL72A9nxjYRwNilBKxpmlRGrjQLP0OZTa68KOQ+S3PgOh8DxkweITETAbxWC5wvKpp6KQZwzQleivFS+KUYWCe9RPBSjJbMX4qhdbckeClGZHCtUeD16gKEfLOQvh5y0FIPCiKH8HSRbE7gHx82N93Xs7Vy1to6qYHXs7VKmvD1bK3jvZ4NnSSxQYfeNa9gfmciNjnQun9irjs2idG6VzLXHQsbtO5Vhu6kBEL7KGA+qp+Ar19cLcR+wPhWq4D2WyPkTl4b4MYBGDOKuf3c11e2Am62WwN9AfQr2TuKda1HPv1AT+9XIPiDCugXsk1wW2eN7Uxsgtt6NsHtiDfB5Qk2B5uZb4oSC+RQdW8RUtSRINwMLOpbhRT19kD7AWNGMbefW9TbAot6O6Av2gsp6sjHq+jHgzxNUNTbCSjqHZw1djRR1Dt4inpH4qJekaC4/cy8qCcWyKHq3imkqCNB+DOwqO8SUtQ7Ae0HjBnF3H5uUe8ALOodgb7oJKSoI5/fpJ8/VIWgqHcUUNQ7O2vsYqKod/YU9S7ERb0yQXH7lXlRTyyQQ9X9m5CijgThr8CivldIUY8G2g8YM4q5/dyi3hlY1LsAfRFNVIjQhb0L0H4xgGtFx8TERHcJKFONcjFEjXJdw41yWCd1JdgtdmPeKKd1dyNoxIpdZ8ugTbsFf74c/C6KzWFhgk3SfuabQ/2GzaIEug8I2dy8AiyoQF8rKvtFgu2H5FN3IZMPr1oSMxSMLUbAmsPMdes3bJYg0H1ECGN7APMF6Gt1xELGviaEsa9bEjMUjC1JwJrjzHXrN2w+SaD7hBDGvgHMF6Cv1QkLGdtTCGN7hWOGTcy8CY4ZiroSIODraeZ1Rb9VtDSB7jNC6kpvYFwCfa2Q9qPsSKAYokXHOPBQiawj4S1njW+b6Eh4y9OR8Ha8joTEkiwQ2gfpAOiA3VkhkOoDtB9yWI+5/dwT6reAG5m3gb4A+tX6AbG3BUC+r7PGfiYg39cD+X4GII9MDOTA0HkhkH+H6cAQc/u5kO8LhHw/oC/eEQJ5CQND/QRAvr+zxgEmIN/fA/kBBiCPTAzkAMkFIZB/l+kACXP7uZDvD4T8AKAv3hUCeQkDJAMEQH6gs8ZBJiA/0AP5QQYgj0wM5EDBP0IgP5jpQAFz+7mQHwiE/CCgLwYTgQkN+kFA+70ncKDgPaKBgiHhgQKsk4YQ7B6GMh8o0LqHGhgoGBr8OYxooEA3B7xCcHB8mfmBuW7ifpVA979CNjfvAwsq0NfqXyFNNUg+DRfSiPWBJTFDwdgeBKy5xly3buJ+nUD3dSGM/RCYL0Bfq+sWMvYjIYwdYUnMUDD2DQLW3GKuWzdx9yLQfVsIYz8G5gvQ1+q2hYz9RAhjR4Zjhk3MfMp8oKBL0riHOiBteI95XdGDHr0JdN8XUldGAeMS6GuFtB/lCbWEgQLgoRLZCfVoZ42fmTihHu05of7MwAk18lQPOVDwSAikxjAdKGBuP/eEejRwI/MZ0BdAv1o/UPCZAMiPddY4zgTkx3ogP84A5JGJgRwoiMgtA/KfMx0oYG4/F/JjgZAfB/TF50IgL2GgYJwAyI931jjBBOTHeyA/wQDkkYmBHChIIgTyE5kOFDC3nwv58UDITwD6YqIQyEsYKJggAPKTnDVONgH5SR7ITzYAeWRiIAcKkgqB/BSmAwXM7edCfhIQ8pOBvphCBCY06CcD7feFwIGCL4gGCqaGBwqwTppKsHuYxnygQOueZmCgYFrw55dEAwW6OeB9goPj5OAihdatm7g/INCdQsjmZjqwoAJ9rajsh26qQfJphpBGrK8siRkKxn5IwJrUzHXrJu4RBLrTCGHsTGC+AH2t0ljI2FlCGDvbkpihYOzHBKxJz1y3buIeSaA7gxDGfg3MF6CvVQYLGTtHCGPnhmOGTcx8w3ygYFDSuIc6IG2YmXld0YMeowh0ZxFSV74FxiXQ1wppP8oTagkDBcBDJbIT6nnOGuebOKGe5zmhnm/ghBp5qoccKMguBFLfMR0oYG4/94R6HnAjMx/oC6BfrR8omC8A8gucNS40AfkFHsgvNAB5ZGIgBwpyCoH8IqYDBczt50J+ARDyC4G+WCQE8hIGChYKgPz3zhoXm4D89x7ILzYAeWRiIAcKHhMC+R+YDhQwt58L+e+BkF8M9MUPQiAvYaBgsQDIL3HWuNQE5Jd4IL/UAOSRiYEcKMgtBPI/Mh0oYG4/F/JLgJBfCvTFj0RgQoN+KdB+ywQOFCwjGihYHh4owDppOcHuYQXzgQKte4WBgYIVwZ8/EQ0U6OaA6QQHx3mZH5jrJu6vCHT7hWxuVgILKtDXyi+kqQbJp1VCGrFWWxIzFIydScCaAsx16ybu2QS6nxDC2DXAfAH6Wj1hIWPXCmHsOktihoKxXxOwpjBz3bqJey6B7iJCGLsemC9AX6siFjJ2gxDGbgzHDJuY2cR8oGBy0riHOiBtWJx5XdGDHt8S6C4hpK5sBsYl0NeqBPO40WxYSRA3TzLXre/hrCbQHRCSL1uA+QL0tQoIqaktgTV1q5B92DbgOvcDD9gPMH97kGbsGgLWlGHOWH0PZx2B7rJCGLsdmC9AX6uyFjJ2hxDG/gxc52EgY48IYOx6AtY8xZyx+h7ORgLdFYQwdidyRg7I2AoWMnaXEMbuBq7zOJCxJ5gzdmnSuP4mpD+eZs5Yfc9zM4HuykIY+wswX4C+VpUtZOweIYz9FbjO00DGnhHyMsvfiJ7dEQjtg3yOhZic2ysk5/ZZFjNo+/1O9CiFQGgf5GMFxOTcH0Jybr9lMYO23wGiyfZAaB/klLeYnDsoJOcOWRYzaPsdJho0DoT2QQ7dism5I0Jy7qglMYO+d6Sf/vAswb2jZ5nfM3vO0VyVQPdzQu6ZHQPmC9DX6jkL75kdF8LYE5bEDAVjqxGw5nnmup93NFcn0F1dCGNPAvMF6GtV3ULGnhLC2NOWxAwFY2sQsKYWc901Hc21CHTXFsLYM8B8Afpa1baQsX8KYexflsQMBWNrE7CmHnPddRzNdQl0vyCEsWeB+QL0tXrBQsaeE8LY85bEDAVj6xGwpiFz3S84musT6G4khLF/A/MF6GvVyELGXhDC2IuWxQzafv9Y1gPKOecuMX9uh67LDQjqU1Pmdbmho7kRge5mQhhxGRiXQF8rKfb7F2i/W0DG3raQsVcEMLYxAWtaMGdsE0dzUwLdLwlhxFVgXAJ9raTY7xrQfqmB9ktj4d+O1wUwthkBa24klZErNy155riEXLkl5D7LbeA6VwD3sKuE7GEjgNe6g/NFR1MvHgKuOcGLh+4mjfs9/OKhEK+pnXQ3Kf6694DApNJ9LyncR+7rKqPA69UFCPn2Nn095DC7HsZGDjrrInmbwD8+bG66r8C876z1QVIDr8C8nzThKzD1l/qD34FOktigQ++aWzO/MxGbHGjdbZjrjk1itO62zHXHwgatu52hOymB0D4KmI8qfoyHar/2QuwHjG/VDmi/DkLu5D0EbhyAMaOY2899RfB94Gb7AdAXQL+SvQde13rkE2b0E1L2E/xBBfQL2Sb4kd6wJzOwCX7k2QTrL/UHv4NiM/g7weagK/NNUWKBHKrubkKKOhKEXYFF/WUhRT0iGc5+wJhRzO3nFvVHyDtoQF8A/Upa1JGPsNKPYDpEUNSBfiEr6pHOGpOYKOqRyRIW9STERf0AQXHrwbyoJxbIoep+TUhRR4KwB7Covy6kqEcB7QeMGcXcfm5Rj0yG80USoC+ihBR15DPy9DPejhIU9SQCinpSZ43JTBT1pJ6inoy4qB8mKG5vMi/qiQVyqLp7CynqSBC+CSzqbwkp6smB9gPGjGJuP7eoJwUW9WRAXyQnKkTowp4MaL8UgGtFx8TERHdxuOIz0yiXAuin+OtNmSzu93CjXIjX1E5KmQx/3VTA4KfSnSoZ3EduoN4LblxSBW2bOvhdFJvDLQSbpH7MN4f6LcbbCHS/I2RzkwZYUIG+VlT2iwTbD8mntMnoCgxSczpLYoaCsdsJWPMuc936LcY/E+geKISx6YH5AvS1GmghYzMIYWxGS2KGgrE7CVjzHnPd+i3Guwl0DxHC2EzAfAH6Wg2xkLGZhTA2Szhm2MRMVnDMUNSVXwj4+j7zuqLf3Pwrge7hQupKNmBcAn2tkPaj7EigGKJFx3gyooMgwBrdjoTszhpzmOhIyO7pSMgRryMhsSQLhPZBOgA6YPeREEjlBNoPOazH3H7uCXV24EYmB9AXQL9aPyCWQwDkczlrfMwE5HN5IP+YAcgjEwM5MPSxEMg/znRgiLn9XMjnAkL+MaAvHhcCeQkDQ48JgHxuZ415TEA+twfyeQxAHpkYyAGSkUIgn5fpAAlz+7mQzw2EfB6gL/IKgbyEAZI8AiDvd9aYzwTk/R7I5zMAeWRiIAcKRgmBfH6mAwXM7edC3g+EfD6gL/ITgQkN+nxA+xUQOFBQgGig4InwQAHWSU8QDBQUZD5QoHUXNDBQUDBo20JEAwW6OSBNMvzB8WfMD8x1E3c6At1jhGxuCgMLKtDXaoyQphokn4oIacQqaknMUDA2PQFrPmeuWzdxZyTQPV4IY4sB8wXoazXeQsYWF8LYEpbEDAVjMxGwZhJz3bqJOwuB7slCGFsSmC9AX6vJFjK2lBDGPhmOGTYxE2A+UJAsWdxDHZA2nMq8ruhBj2wEuqcJqSsKGJdAXyuk/ShPqCUMFAAPlchOqEs7ayxj4oS6tOeEuoyBE2rkqR5yoGCGEEiVZTpQwNx+7gl1aeBGpgzQF0C/Wj9QUEYA5Ms5ayxvAvLlPJAvbwDyyMRADhTMFAL5p5gOFDC3nwv5ckDIlwf64ikhkJcwUFBeAOQrOGusaALyFTyQr2gA8sjEQA4UzBYC+UpMBwqY28+FfAUg5CsCfVFJCOQlDBRUFAD5p501VjYB+ac9kK9sAPLIxEAOFMwRAvlnmA4UMLefC/mngZCvDPTFM0RgQoO+MtB+VQQOFFQhGih4NjxQgHXSswQDBc8xHyj4v+A0MFDwXNC2VYkGCnRzQGGCg+NvmB+Y6ybuogS6vxWyuakGLKhAX6tvhTTVIPn0vJBGrOqWxAwFY4sRsOY75rp1E3cJAt0LhDC2BjBfgL5WCyxkbE0hjK1lScxQMLYkAWu+Z65bN3E/SaB7sRDG1gbmC9DXarGFjK0jhLF1wzHDJmbqMR8oyJcs7qEOSBsuZV5X9KCHItD9o5C68gIwLoG+Vkj7UZ5QSxgoAB4qkZ1Q13fW2MDECXV9zwl1AwMn1MhTPeRAwQohkGrIdKCAuf3cE+r6wI1MA6AvgH61fqCggQDIN3LW2NgE5Bt5IN/YAOSRiYEcKFgpBPJNmA4UMLefC/lGQMg3BvqiiRDISxgoaCwA8k2dNTYzAfmmHsg3MwB5ZGIgBwpWC4H8i0wHCpjbz4V8UyDkmwF98aIQyEsYKGgmAPLNnTW2MAH55h7ItzAAeWRiIAcK1gqB/EtMBwqY28+FfHMg5FsAffESEZjQoG8BtF9LgQMFLYkGClqFBwqwTmpFMFDQmvlAgdbd2sBAQeugbdsQDRTo5oBqBAfH65kfmOsm7uoEujcI2dy0BRZUoK/VBiFNNUg+tRPSiNXekpihYGwNAtZsZq5bN3HXItC9RQhjOwDzBehrtcVCxnYUwthOlsQMBWNrE7BmO3Pduom7LoHuHUIY2xmYL0Bfqx0WMraLEMZGh2OGTczEMB8o+L+eVwK+7mJeV/SgxwsEuncLqStdgXEJ9LXazTxuNBvaEsTNr8x163s47Ql0/yYkX7oB8wXoa/WbkJp6LynuWi8L2Ye9AlxnP2DMvCOAsR0IWPM7c936Hk4nAt1/CGFsd2C+AH2t/rCQsa8KYWwP4DrfBcbMQAGM7UzAmoPMdet7ONEEug8JYexrwHwB+lodspCxrwth7BvAdb4HjJkhzFnTIllcfxPSH0eZ69b3PLsS6D4mhLE9gfkC9LU6ZiFjewlh7JvAdb4PjJnhQnKuN9GzOwKhfZDPsRCTc28Jybm3LYsZtP36ED1KIRDaB/lYATE511dIzvWzLGbQ9nuHaLI9ENoHOeUtJuf6C8m5AZbFDNp+7xINGgdC+yCHbsXk3EAhOTfIkpiBzx06sXIsKf7e0Unmuo87mk8Q6D4lhLGDgfkC9LU6ZSFj3xPC2CGWxAwFY08SsOZP5rpPOZpPE+j+SwhjhwLzBehr9ZeFjB0mhLHvWxIzFIw9Q8Ca88x1/+lo/otA999CGDscmC9AX6u/LWTsB0IY+6ElMUPB2LMErPmHue5zjubzBLovCWHsR8B8AfpaXbKQsSOEMPZjS2KGgrF/E7DmCnPdFxzNFwl0XxXC2E+A+QL0tbpqIWNHCmHsp5bEDAVj/yFgzQ3mui85mi8T6L4phLGjgPkC9LW6aSFjRwth7GeWxQzafmMs67PnnHNjmT8bSdflfwnq0x3mdfmKo/kqge67QhgxDhiXQF8rKfb7HGi/SUD7TbaQseMFMPYaAWseMGfsdUfzDQLdD4UwYgIwLoG+VlLsNxFov++A9ltgIWMnCWDsTQLWTE4mI1emhN8FwiZXvhByn2UqcJ2tgTHTTkjMRACvNQ3ni06mXu4GXHOCl7t9GX65G9ZJXxK83G0685e7ad3TCV7uFhlcaxR4vboAId+Qqa+HfGCIfuAF8mESukhOJfCPD5ub7muGZzhr/SqZgdcMz0iW8DXD+kv9we9AJ0ls0KF3zRF5eN+ZiE0OtO5I5rpjkxitOwlz3bGwQeuOykMDLvRrxIH5qOLHeKj2SyrEfsD4VlFA+yUzZL9Q1zkTuHEAxoxibj/3NewzgJvtr4C+APrV3VhHgnNX13rkU7z0U6j6EfxBBfQL2SZ4lrPG2SY2wbM8m+DZxJvgPgSbg7TMN0WJBXKoutMJKepIEKYFFvX0Qor610D7AWNGMbefW9RnAYv6bKAvvhZS1JGPCdSPuRtAUNRnCyjqc5w1zjVR1Od4ivpc4qL+DkFxy8y8qCcWyKHqziKkqCNBmBlY1LMKKerfAO0HjBnF3H5uUZ8DLOpzgb74RkhRRz6HVD9HcxBBUZ8roKh/66xxnomi/q2nqM8jLurvEhS3nMyLemKBHKruXEKKOhKEOYFF/TEhRX0+0H7AmFHM7ecW9W+BRX0e0BfziQoRurDPA9rvO8C1omNiYqK7OMd6PjONct8RNcotCDfKYZ20gGC3uJB5o5zWvZCgESt2ndODNl0Y/Lko+F0Um8NuBJukvMw3h/pN8a8Q6PYL2dx8DyyoQF8rKvtFgu2H5NNiIZMPP1gSMxSM7U7AmgLMdes3xfcg0P2EEMYuAeYL0NfqCQsZu1QIY3+0JGYoGPsaAWsKM9et3xT/BoHuIkIYuwyYL0BfqyIWMna5EMauCMcMm5j5CRwzFHWlJwFfizOvK70czW8S6C4hpK6sBMYl0NcKaT/KjgSKIVp0jAMPlcg6ElY5a1xtoiNhlacjYXW8joTEkiwQ2gfpAOiA3ZNCILUGaD/ksB5z+7kn1KuAG5nVQF8A/Wr9gNhqAZBf66xxnQnIr/VAfp0ByCMTAzkwpIRAfj3TgSHm9nMhvxYI+XVAX6wXAnkJA0PrBEB+g7PGjSYgv8ED+Y0GII9MDOQASRkhkN/EdICEuf1cyG8AQn4j0BebhEBewgDJRgGQ3+yscYsJyG/2QH6LAcgjEwM5UFBOCOS3Mh0oYG4/F/KbgZDfAvTFViIwoUG/BWi/bQIHCrYRDRRsDw8UYJ20nWD3sIP5QIHWvcPAQMGO4M+fiQYKdHPA9wQHx08xPzDXTdw/EOiuIGRzsxNYUIG+VhWENNUg+bRLSCPWbktihoKxSwhY8zRz3bqJ+0cC3ZWFMPYXYL4Afa0qW8jYPUIY+6slMUPB2GUErHmWuW7dxL2CQPdzQhj7GzBfgL5Wz1nI2L1CGLsvHDNsYuZ35gMF85LFPdQBacPnmdcVPeixkkB3dSF15Q9gXAJ9rZD2ozyhljBQADxUIjuh3u+s8YCJE+r9nhPqAwZOqJGnesiBglpCIHWQ6UABc/u5J9T7gRuZA0BfAP1q/UDBAQGQP+Ss8bAJyB/yQP6wAcgjEwM5UFBHCOSPMB0oYG4/F/KHgJA/DPTFESGQlzBQcFgA5I86azxmAvJHPZA/ZgDyyMRADhTUEwL540wHCpjbz4X8USDkjwF9cVwI5CUMFBwTAPkTzhpPmoD8CQ/kTxqAPDIxkAMF9YVA/hTTgQLm9nMhfwII+ZNAX5wiAhMa9CeB9jstcKDgNNFAwZnwQAHWSWcIdg9/Mh8o0Lr/NDBQ8Gfw519EAwW6OWAnwcFxQ+YH5rqJezeB7kZCNjdngQUV6GvVSEhTDZJP54Q0Yp23JGYoGPsLAWuaMtetm7h/JdDdTAhj/wbmC9DXqpmFjL0ghLEXLYkZCsb+RsCaFsx16ybufQS6XxLC2H+A+QL0tXrJQsZeEsLYy+GYYRMz/zIfKNiSLO6hDkgbtmZeV/Sgxx8EutsIqStXgHEJ9LVC2o/yhFrCQAHwUInshPqqs8ZrJk6or3pOqK8ZOKFGnuohBwraC4HUdaYDBczt555QXwVuZK4BfQH0q/UDBdcEQP6Gs8abJiB/wwP5mwYgj0wM5EBBRyGQv8V0oIC5/VzI3wBC/ibQF7eEQF7CQMFNAZC/7azxjgnI3/ZA/o4ByCMTAzlQ0FkI5O8yHShgbj8X8reBkL8D9MVdIZCXMFBwRwDk7zlrvG8C8vc8kL9vAPLIxEAOFEQLgfwDpgMFzO3nQv4eEPL3gb54QAQmNOjvA+33UOBAwUOigYJH4YECrJMeEewefMlxwU+lW68R7KP/DBTo7/i/jUPwuygGN84SHBx3ZX5grpu4zxPo7iZkcxOZHGdLoK9VNyFNNUg+JUlOV2CQmqMsiRkKxv5NwJruzHXrJu6LBLpfFcLYpMB8AfpavWohY5MJYWxyS2KGgrH/ELDmdea6dRP3ZQLdbwhhbApgvgB9rd6wkLEphTA2VThm2MRManDMUDQd/0nA1zeZ1xU96HGFQHdvIXUlDTAugb5WvZnHjWZDZHJ83PRhrlvfw4ki0N1XSL6kBeYL0Neqr5CaOh142JdOyD4sPXCdeYEx4xfA2KQErOnPXLe+h5OcQPcAIYzNAMwXoK/VAAsZm1EIYzMB11kAGDNPCGBsCgLWDGKuW9/DSUWge7AQxmYG5gvQ12qwhYzNIoSxWYHrLAyMmSLMWXM/2EOFZs1Q5rr1Pc80BLqHCWFsNmC+AH2thlnI2OxCGJsDuM7iwJgpISTncgLtFwm0XxILcy6XkJx7zLKYQdvvcaD90gLtl87CnMstJOfyWBYzaPvlBdovM9B+WSzMOb+QnMtnWcyg7ZcfaL+cQPvlsjDnCgjJuScsiRn0vSP99IfBBH1ZHzDX/Z6jeQiB7g+FMLYgMF+AvlYfWsjYQkIYW9iSmKFg7FAC1nzMXPcwR/P7BLo/EcLYIsB8AfpafWIhY4sKYWwxS2KGgrHDCVgzirnuDxzNHxLoHi2EscWB+QL0tRptIWNLCGFsSUtihoKxHxGwZixz3SMczR8T6B4nhLGlgPkC9LUaZyFjnxTC2IAlMUPB2E8IWDOBue6RjuZPCXRPFMJYBcwXoK/VRAsZW1oIY8tYEjMUjB1FwJopzHWPdjR/RqD7CyGMLQvMF6Cv1RcWMracEMaWtyRmKBg7hoA1XzLXPdbRPI5A93QhjH0KmC9AX6vpFjK2ghDGVrQsZtD2q2TZLBPnnHua+fPndF3+nKA+zWRel8c7micQ6J4lhBGVgXEJ9LWSYr9ngPZ7Fmi/5yxkbBUBjJ1IwJo5zBk7ydE8mUD3XCGMeBYYl0BfKyn2ew5ov6ZA+zWzkLFVBTB2CgFrqiWXkSvPh9+3xCZXqgu5z1IDuM4IYMxECYmZCOC1auJ80dnUCzSBa07wAs1a8d57GH6BZojX1E6qlRx/3drMX6CpddcmeIFmZHCtUeD1Tg++Khx5PeRDmfRDhZAP7NFFsgaBf3zY3HRf5V7HWWvd5AZe5V4n9o2swX/rL/UHvwOdJNM976ePvW6oCT2P+Z2J2ORA657PXHdsEqN1f8dcdyxs0LoXGLqTEgjto4D5qOLHeKj2WyjEfsD4VguA9lsk5E5ePeDGARgzirn9Sgftp+oAN9t1gb4A+tXdWEeCc1fXeuSTEvWT/vIQ/EFVl+hOI2CN7ib4BWeN9U1sgl/wbILrE2+CHyfYHCxjvilKLJBD1b1cSFFHgnAZsKivEFLUGwDtB4wZxdx+blF/AVjU6wN90UBIUUc+ilU/SjQfQVGvL6CoN3TW2MhEUW/oKeqNiIt6XoLitpp5UU8skEPVvUZIUUeCcDWwqK8VUtQbA+0HjBnF3H5uUW8ILOqNgL5oLKSoI5/1rJ9V/ARBUW8koKg3cdbY1ERRb+Ip6k2Ji3p+guK2kXlRTyyQQ9W9SUhRR4JwI7CobxZS1JsB7QeMGcXcfm5RbwIs6k2BvmhGVIjQhb0p0H4vAq4VHRMTE90loEw1yr1I1CjXPNwoh3VSc4LdYgvmjXJadwuCRqzYddYO2rRF8OdLwe+i2BymJdgkbWe+OUznaE5PoHuHkM1NS2BBBfpaUdkvEmw/JJ9aCZl8aG1JzFAwNgMBa3Yx153R0ZyJQPduIYxtA8wXoK/VbgsZ21YIY9tZEjMUjM1MwJpfmevO4mjOSqD7NyGMbQ/MF6Cv1W8WMraDEMZ2DMcMm5jpxPwJCbquZCPg6+/M60p2R3MOAt1/CKkrnYFxCfS1QtqPsiOBYogWHePAQyWyjoQuzhqjTXQkdPF0JETH60hILMkCoX2QDoAO2B0UAqkYoP2Qw3rM7eeeUHcBbmSigb4A+tX6AbFoAZDv6qyxmwnId/VAvpsByCMTAzkwdFgI5F9mOjDE3H4u5LsCId8N6IuXhUBewsBQNwGQf8VZY3cTkH/FA/nuBiCPTAzkAMlRIZB/lekACXP7uZB/BQj57kBfvCoE8hIGSLoLgHwPZ42vmYB8Dw/kXzMAeWRiIAcKjguB/OtMBwqY28+FfA8g5F8D+uJ1IjChQf8a0H5vCBwoeINooKBneKAA66SeBLuHXswHCrTuXgYGCnoFf75JNFCgmwNaEhwcn2R+YK6buFsT6D4lZHPTG1hQgb5Wp4Q01SD59JaQRqy3LYkZCsa2IWDNn8x16ybudgS6/xLC2D7AfAH6Wv1lIWP7CmFsP0tihoKx7QlYc565bt3E3ZFA999CGPsOMF+AvlZ/W8jY/kIYOyAcM2xi5l3mAwVNk8c91AFpw3+Y1xU96NGZQPclIXVlIDAugb5WSPtRnlBLGCgAHiqRnVAPctY42MQJ9SDPCfVgAyfUyFM95EDBFSGQeo/pQAFz+7kn1IOAG5nBQF8A/Wr9QMFgAZAf4qxxqAnID/FAfqgByCMTAzlQcE0I5IcxHShgbj8X8kOAkB8K9MUwIZCXMFAwVADk33fWONwE5N/3QH64AcgjEwM5UHBDCOQ/YDpQwNx+LuTfB0J+ONAXHwiBvISBguECIP+hs8aPTED+Qw/kPzIAeWRiIAcKbgmB/AimAwXM7edC/kMg5D8C+mIEEZjQoP8IaL+PBQ4UfEw0UPBJeKAA66RPCHYPI5kPFGjdIw0MFIwM/vyUaKBANwf0Jjg4vsP8wFw3cb9NoPuukM3NKGBBBfpa3RXSVIPk02ghjVifWRIzFIztQ8CaB8x16ybufgS6Hwph7BhgvgB9rR5ayNixQhg7zpKYoWDsOwSsicjLW7du4h5AoDsyrwzGfg7MF6CvFZX9ODN2vBDGTgjHDJuYmch8oOC15HEPdUDaMCnzuqIHPQYS6E4mpK5MAsYl0NcKaT/KE2oJAwXAQyWyE+rJzhqnmDihnuw5oZ5i4IQaeaqHHChIKQRSXzAdKGBuP/eEejJwIzMF6AugX60fKJgiAPJTnTVOMwH5qR7ITzMAeWRiIAcKUguB/JdMBwqY28+F/FQg5KcBffGlEMhLGCiYJgDy0501zjAB+ekeyM8wAHlkYiAHCtIKgfxXTAcKmNvPhfx0IORnAH3xlRDISxgomCEA8jOdNc4yAfmZHsjPMgB5ZGIgBwrSC4H8bKYDBczt50J+JhDys4C+mE0EJjToZwHt97XAgYKviQYK5oQHCrBOmkOwe5jLfKBA655rYKBgbvDnN0QDBbo5YBTBwXFG5gfmuon7MwLdmYRsbr4FFlSgr1UmIU01SD7NE9KINd+SmKFg7BgC1mRlrls3cY8j0J1NCGO/A+YL0Ncqm4WMXSCEsQstiRkKxn5OwJqczHXrJu4JBLpzCWHsImC+AH2tclnI2O+FMHZxOGbYxMwPzAcKPkoe91AHpA1zM68retBjEoHuPELqyhJkrySQEXmYx41mw7cEcZOPuW59D2c+ge78QvJlKTBfgL5W+YXU1NrAmvqjkH3YMuA6twMP2HcwH57XjP2OgDUFmTNW38NZSKC7kBDGLgfmC9DXqpCFjF0hhLE/Ade5C8jY3QIYu4iANUWZM1bfw1lMoLuYEMauBOYL0NeqmIWMXSWEsauB6/wVyNjfmDN2VvK4/iakP0oyZ6y+57mEQHcpIYxdA8wXoK9VKQsZu1YIY9cB1/k7kLF/CHm45XqiZ3cEQvsgn2MhJuc2CMm5jZbFDNp+m4gepRAI7YN8rICYnNssJOe2WBYzaPttJZpsD4T2QU55i8m5bUJybrtlMYO23w6iQeNAaB/k0K2YnPtZSM7ttCRm0PeO9NMfChLcO1LM75kVcjQXJtBdWsg9s13AfAH6WpW28J7ZbiGM/cWSmKFgbBEC1pRjrruoo7kYge7yQhi7B5gvQF+r8hYy9lchjP3NkpihYGxxAtZUZK67hKO5JIHuSkIYuxeYL0Bfq0oWMnafEMb+bknMUDC2FAFrnmGu+0lHc4BAdxUhjP0DmC9AX6sqFjJ2vxDGHrAkZigYqwhYU5W57tKO5jIEuqsJYexBYL4Afa2qWcjYQ0IYe9iSmKFgbFkC1tRgrruco7k8ge6aQhh7BJgvQF+rmhYy9qgQxh6zJGYoGPsUAWvqMNddwdFckUB3XSGMPQ7MF6CvVV0LGXtCCGNPWhIzFIytRMCa+sx1P+1orkygu4EQxp4C5gvQ16qBhYw9LYSxZyyLGbT9/rRsXpRzzv3F/Bmfui4/Q1CfGjOvy1Uczc8S6G4ihBFngXEJ9LWSYr9zQPudBzL2bwsZe14AY58jYM2LzBlb1dFcjUB3cyGM+BsYl0BfKyn2uwC03wMgYx9ayNiLAhj7PAFr/kkuI1cuAf1j4zvtkLlyWch9ln+B65wH5OsCIXyNAF7rCs4XXUy9pBi45gQvKb6aPO738EuKQ7ymdtLV5PjrXgMCk0r3teRwHwUig2uNAq9XFyDkm9719ZAPvtMPbkM+FE0XyX8J/OPD5qaK/eW6s9YbyQmTX19YB9f14JfE/lt/qT/4HegkiQ069K65JfM7E7HJgdbdirnu2CRG627NXHcsbNC62xi6kxII7aOA+ajix3io9msrxH7A+FZtgPZrJ+RO3k3gxgEYM4q5/UoH7aeuAzfbN4C+APrV3VhHgnNX13rk02j101S3EPxBBfQL2Sb4lrPG2yY2wbc8m+DbxJvgTQSbg2jmm6LEAjlU3TFCijoShNHAot5VSFG/A7QfMGYUc/u5Rf0WsKjfBvrijpCijnzctX5c83aCon5bQFG/66zxnomiftdT1O8RF/WtBMWtO/Oinlggh6r7VSFFHQnC7sCi3kNIUb8PtB8wZhRz+7lF/S6wqN8D+uK+kKKOfJ6+fh78ToKifk9AUX/grPGhiaL+wFPUHxIX9R0Exa0n86KeWCCHqruXkKKOBGFPYFF/U0hRfwS0HzBmFHP7uUX9AbCoPwT64hFRIUIX9ofIXqEUoV8rOiYmJrpLQJlqlIu/5kCIn/jrjUgR93u4US7Ua6b4fwZFXzcyBTD4iXRHpoD7yA3Ua8GNS2TQtkmC30WxOVxKsEnqw3xz+KOjeRmB7r5CNjdROLgqoK8Vlf0iwfZD8ilpCroCg9SczJKYoWDscgLW9Geue4Wj+ScC3QOEMDY5MF+AvlYDLGRsCiGMTWlJzFAwdiUBawYx173K0byaQPdgIYxNBcwXoK/VYAsZm1oIY9OEY4ZNzKQFxwxFXVlDwNehzOvKWkfzOgLdw4TUlXTAuAT6WiHtR9mRQDFEi47xh0QHQYA1uh0J6Z04zJDCQEdC+hQJOxL0l/o934k+oUae6iEH7D4QAqmMQEghh/WY2889oU4P3MhkAPoC6FfrB8SAfiGDfCZnjZlNQD6TB/KZDUAemRjIgaGPhEA+C9B+yIEh5vZzIZ8JCPnMQF9kEQJ5CQNDmQVAPquzxmwmIJ/VA/lsBiCPTAzkAMnHQiCfHWg/5AAJc/u5kM8KhHw2oC+yC4G8hAGSbAIgn8NZY04TkM/hgXxOA5BHJgZyoGCkEMjnAtoPOVDA3H4u5HMAIZ8T6ItcRGBCgz4n0H6PCRwoeIxooODx8EAB1kmPEwwU5GY+UKB15zYwUJA7aNs8RAMFujkgKgX+4HgU8wNz3cSdjED3aCGbm7zAggr0tRotpKkGySe/kEasfJbEDAVjkxOwZixz3bqJOyWB7nFCGJsfmC9AX6txFjK2gBDGPmFJzFAwNhUBayYw162buNMQ6J4ohLEFgfkC9LWaaCFjCwlhbOFwzLCJmSLMBwp0z2skAV+nMK8retAjHYHuL4TUlaLAuAT6WiHtR3lCLWGgAHioRHZCXcxZY3ETJ9TFPCfUxQ2cUCNP9ZADBV8KgVQJpgMFzO3nnlAXA25kigN9AfSr9QMFxQVAvqSzxlImIF/SA/lSBiCPTAzkQMEMIZB/kulAAXP7uZAvCYR8KaAvnhQCeQkDBaUEQD7grFGZgHzAA3llAPLIxEAOFMwUAvnSTAcKmNvPhXwACHkF9EVpIZCXMFCgBEC+jLPGsiYgX8YD+bIGII9MDORAwWwhkC/HdKCAuf1cyJcBQr4s0BfliMCEBn1ZoP3KCxwoKE80UPBUeKAA66SnCAYKKjAfKNC6KxgYKKgQtG1FooEC3RyQl+DgeA7zA3PdxJ2PQPdcIZubSsCCCvS1miukqQbJp6eFNGJVtiRmKBibn4A185jr1k3cTxDoni+Esc8A8wXoazXfQsZWEcLYZy2JGQrGFiRgzULmunUTd2EC3YuEMPY5YL4Afa0WWcjYqkIYWy0cM2xi5nnmAwU5U8Q91AFpwx+Y1xU96FGUQPcSIXWlOjAugb5WSPtRnlBLGCgAHiqRnVDXcNZY08QJdQ3PCXVNAyfUyFM95EDBMiGQqsV0oIC5/dwT6hrAjUxNoC+AfrV+oKCmAMjXdtZYxwTka3sgX8cA5JGJgRwoWCEE8nWZDhQwt58L+dpAyNcB+qKuEMhLGCioIwDy9Zw1vmAC8vU8kH/BAOSRiYEcKFgpBPL1mQ4UMLefC/l6QMi/APRFfSGQlzBQ8IIAyDdw1tjQBOQbeCDf0ADkkYmBHChYLQTyjZgOFDC3nwv5BkDINwT6ohERmNCgbwi0X2OBAwWNiQYKmoQHCrBOakIwUNCU+UCB1t3UwEBB06BtmxENFOjmgEoEB8drmR+Y6ybuygS61wnZ3LwILKhAX6t1QppqkHxqLqQRq4UlMUPB2GcIWLORuW7dxP0sge5NQhj7EjBfgL5WmyxkbEshjG1lScyQDCATsGYrc926ibsage5tQhjbGpgvQF+rbRYyto0QxrYNxwybmGnHfKCgbIq4hzogbfgz87qiBz2qE+jeKaSutAfGJdDXaifzuNFseJEgbn5hrlvfw2lBoHuPkHzpAMwXoK/VHiE19Vpy3LU6CtmHdQKusw8wZvoKYOxLBKzZy1y3vofTikD3PiGM7QzMF6Cv1T4LGdtFCGOjgevsD4yZAQIY25qANfuZ69b3cNoS6D4ghLExwHwB+lodsJCxXYUwthtwnYOAMTOYOWsapojrb0L64zBz3fqeZ3sC3UeEMPZlYL4Afa2OWMjYV4QwtjtwnUOBMTNMSM69SvTsjkBoH+RzLMTkXA8hOfeaZTGDtt/rRI9SCIT2QT5WQEzOvSEk53paFjNo+/UimmwPhPZBTnmLybk3heRcb8tiBm2/t4gGjQOhfZBDt2Jy7m0hOdfHkphB3zvST3/YlRx/7+g4c927Hc2/EOg+IYSxfYH5AvS1OmEhY/sJYew7lsQMBWP3ELDmNHPdvzqafyPQfUYIY/sD8wXoa3XGQsYOEMLYdy2JGQrG7iVgzVnmuvc5mn8n0H1OCGMHAvMF6Gt1zkLGDhLC2MGWxAwFY/8gYM0F5rr3O5oPEOi+KISx7wHzBehrddFCxg4RwtihlsQMBWMPErDmMnPdhxzNhwl0/yuEscOA+QL0tfrXQsa+L4Sxwy2JGQrGHiFgzTXmuo86mo8R6L4uhLEfAPMF6Gt13ULGfiiEsR9ZEjMUjD1OwJpbzHWfcDSfJNB9WwhjRwDzBehrddtCxn4shLGfWBIzFIw9RcCae8x1n3Y0nyHQfV8IY0cC8wXoa3XfQsZ+KoSxoyyJGQrG/knAmkfMdf/laD5LoFu/pQypmypfRgPzBehrRWU/zoz9TAhjx1gWM2j7jbVsJp9zzo1j/hxlXZfPEdSnJH7edfm8o/lvAt1RfhmM+BwYl0BfKyn2Gw+03wQgYydayNgJAhh7gYA1yf28GXvR0fwPge4UfhmMmAiMS6CvlRT7TQLabx6QsfMtZOxkAYy9RMCaKSlk5MoX4feGssmVqULus0wDrrMlMGbaCImZCOC1vsT5ItrUi+CBa07wIvjp4RfBY500neBF8DOYvwhe656RAu6jQGRwrVHg9eoC1DAF9nrIh4vqh2MiHzypi+Q0Av/4sLmpYn/5ylnrzBSEya8vrIPrq+CXxP5bf6k/+B3oJIkNOvSuObWf952J2ORA607DXHdsEqN1p2WuOxY2aN3p/DTgSgLWD8xHFT/GQ7VfeiH2A8a3Sge0XwZD9gt1nbOAGwdgzCjm9isdtJ/6CrjZngn0BdCv7sY6Epy7utYjn/itn1jdk+APKqBfyDbBs501fm1iEzzbswn+mngT/DrB5iC7n/emKLFADlV3Dr+Moo4EYXxfh2q/nH4ZRX0O0H7AmFHM7ecW9dnAov410BdzhBR15CsF9CPxexMU9a8FFPW5zhq/MVHU53qK+jfERb0XQXHL7edd1BML5FB15/HLKOpIEMb3daj2y+uXUdS/BdoPGDOKuf3coj4XWNS/AfriWyFFHfnOEv3OjT4ERf0bAUV9nrPG+SaK+jxPUZ9PXNTfIihuBfy8i3pigRyq7if8Moo6EoTxfR2q/Qr6ZRT174D2A8aMYm4/t6jPAxb1+UBffEdUiNCFfT7QfgsA14qOiYmJ7hJQphrlFhA1yi0MN8phnbSQYLe4iHmjnNa9iKARK3adM4I2XRT8+X3wuyg2hx0INklF/bw3hx0dzZ0IdBfzy9jcLAYWVKCvFZX9IsH2Q/LpByGTD0ssiRkKxnYmYE1J5rq7OJqjCXSX8stg7FJgvgB9rajsx5mxPwph7DJLYoaCsTEErFHMdXd1NHcj0F3aL4Oxy4H5AvS1orIfZ8auEMLYn8IxwyZmVoJjhqKuvEzA13J+3nXlFUdzdwLd5f0y6soqYFwCfa2Q9qPsSKAYokXHOPBQiawjYbWzxjUmOhJWezoS1sTrSEgsyQKhfZAOgA7YVfTLgNRaoP2Qw3rM7eeeUK8GbmTWAH0B9Kv1A2JrBEB+nbPG9SYgv84D+fUGII9MDOTA0NN+GZDfwHRgiLn9XMivA0J+PdAXG4RAXsLA0HoBkN/orHGTCchv9EB+kwHIIxMDOUDyjF8G5DczHSBhbj8X8huBkN8E9MVmIZCXMECySQDktzhr3GoC8ls8kN9qAPLIxCjgxyXss34ZkN/GdKCAuf1cyG8BQn4r0BfbiMCEBv1WoP22Cxwo2E40ULAjPFCAddIOgt3Dz8wHCrTunw0MFPwc/LmTaKBANwcsJjg4rurnfWCum7iXEOiu5pexudkFLKhAXysq+6GbapB82i2kEesXS2KGgrFLCVhTg7lu3cS9jEB3Tb8Mxu4B5gvQ14rKfpwZ+6sQxv5mScxQMHY5AWvqMNetm7h/ItBd1y+DsXuB+QL0taKyH2fG7hPC2N/DMcMmZv5gPlAwP0XcQx2QNqzv511X9KDHKgLdDfwy6sp+YFwCfa2Q9qM8oZYwUAA8VCI7oT7grPGgiRPqA54T6oMGTqiRp3rIgYLGfhmQOsR0oIC5/dwT6gPAjcxBoC+AfrV+oOCgAMgfdtZ4xATkD3sgf8QA5JGJgRwoaOqXAfmjTAcKmNvPhfxhIOSPAH1xVAjkJQwUHBEA+WPOGo+bgPwxD+SPG4A8MjGQAwUv+mVA/gTTgQLm9nMhfwwI+eNAX5wQAnkJAwXHBUD+pLPGUyYgf9ID+VMGII9MjAJ+XMK28MuA/GmmAwXM7edC/iQQ8qeAvjhNBCY06E8B7XdG4EDBGaKBgj/DAwVYJ/1JsHv4i/lAgdb9l4GBgr+CP88SDRTo5oBdBAfHLf28D8x1E/cvBLpb+WVsbs4BCyrQ14rKfuimGiSfzgtpxPrbkpihYOweAta0Za5bN3H/RqC7nV8GYy8A8wXoa0VlP86MvSiEsf9YEjMUjN1LwJqOzHXrJu7fCXR38stg7CVgvgB9rajsx5mxl4Uw9t9wzLCJmSvMBwq2poh7qAPShtF+3nVFD3rsJ9Ad45dRV64C4xLoa4W0H+UJtYSBAuChEtkJ9TVnjddNnFBf85xQXzdwQo081UMOFLzslwGpG0wHCpjbzz2hvgbcyFwH+gLoV+sHCq4LgPxNZ423TED+pgfytwxAHpkYyIGC7n4ZkL/NdKCAuf1cyN8EQv4W0Be3hUBewkDBLQGQv+Os8a4JyN/xQP6uAcgjEwM5UNDDLwPy95gOFDC3nwv5O0DI3wX64p4QyEsYKLgrAPL3nTU+MAH5+x7IPzAAeWRiFPDjEvZ1vwzIP2Q6UMDcfi7k7wMh/wDoi4dEYEKD/gHQfo8EDhQ8Ihoo8KWM+zU8UBDiNbWTtEHR141IiQt+Kt0RKeE++s9AQUTQtpHB76IY3DhHcHDc08/7wFw3cf9NoLuXX8bmJklKnC2BvlZU9kM31SD5FJWSrsAgNSe1JGYoGHuBgDVvMdetm7j/IdD9tl8GY5MB8wXoa0VlP86MTS6EsSksiRkKxl4iYE0/5rp1E/e/BLrf8ctgbEpgvgB9rajsx5mxqYQwNnU4ZtjETBpwzFA0Hf9FwNd3/bzrih70uEqge6BfRl1JC4xLoK8V2n4U922TpMTHzXvMdet7OEkJdA/xy8iXdMB8AfpaUdkPXVNnAA/70gvZh2UArrOoH3etYn7+jE1GwJr3mevW93BSEOge7pfB2IzAfAH6WlHZjzNjMwlhbGbgOkv6cdcq5efP2JQErPmIuW59Dyc1ge4RfhmMzQLMF6CvFZX9ODM2qxDGZgOuU/lx1yrt582aByni+puQ/hjJXLe+55mWQPenfhmMzQ7MF6CvFZX9ODM2hxDG5gSus5wfd63yfhk5lwtovzRA+wGfYyEm5x4TknOPWxYzaPvlBtovO9B+wMcKiMm5PEJyLq9lMYO2nx9ov9xA+wGnvMXkXD4hOZffsphB268A0H4FgPYDDt2KybknhORcQUtiBn3vSD/9oS9BX9ZnzHX3czS/Q6B7jF8GYwsB8wXoa0VlP86MLSyEsUUsiRkKxvYnYM3nzHUPcDS/S6B7vF8GY4sC8wXoa0VlP86MLSaEscUtiRkKxg4kYM0k5roHOZoHE+ie7JfB2BLAfAH6WlHZjzNjSwphbClLYoaCse8RsGYqc91DHM1DCXRP88tg7JPAfAH6WlHZjzNjA0IYqyyJGQrGDiNgzQzmut93NA8n0P2VXwZjSwPzBehrRWU/zowtI4SxZS2JGQrGfkDAmtnMdX/oaP6IQPfXfhmMLQfMF6CvFZX9ODO2vBDGPmVJzFAwdgQBa75hrvtjR/MnBLq/9ctgbAVgvgB9rajsx5mxFYUwtpIlMUPB2JEErPmOue5PHc2jCHQv8Mtg7NPAfAH6WlHZjzNjKwth7DOWxAwFY0cTsOZ75ro/czSPIdC92C+DsVWA+QL0taKyH2fGPiuEsc9ZEjMUjB1LwJqlzHWPczR/TqD7R78MxlYF5gvQ14rKfpwZW00IY5+3LGbQ9qtu2XNPOOdcDebPqtd1eTxBfVrh512XJziaJxLo/skvgxE1gXEJ9LWSYr9aQPvVAdqvrt8+xtYWwNhJBKxZ7efN2MmO5ikEutf4ZTCiDjAugb5WUuxXF2i/tkD7tfPbx9h6Ahj7BQFrXkgpI1fqh9/NzCZXGgi5z9IQuM7Ufty10gmJmQjgtRrhfBGj4yTC998PmrnANQfir7dxyrjfozy+05/YPEhGoMnn+R6vHdP9j//GujBqJzVOib9uE+ALHal0N0kJ91EgMrjWKPB6dQF6kAJ7PeQDnPUDiJEP99VFsiGBf3zY3FSxvzR11tosJWHy6wvr4Goa/JLYf+sv9Qe/A50ksUGH3jWv9/O+MxGbHGjdG5jrjk1itO6NzHXHwgate5OfBlxJwPqB+ajix3io9tssxH7A+FabgPbbYsh+oa7zReDGARgzirn9Sgftp5oCN9vNgL4A+tXdWEeCc1fXeuRbFfRbAfIS/EHVjOhOI2CN7ia4ubPGFiY2wc09m+AWxJvg3ASbg11+3puixAI5VN27/TKKOhKE8X0dqv1+8cso6i8B7QeMGcXcfm5Rbw4s6i2AvnhJSFFHvrZFv3YkP0FRbyGgqLd01tjKRFFv6SnqrYiLup+guO318y7qiQVyqLr3+WUUdSQI4/s6VPv97pdR1FsD7QeMGcXcfm5Rbwks6q2AvmgtpKgj3wul32tUkKCotxJQ1Ns4a2xroqi38RT1tsRFvQBBcTvo513UEwvkUHUf8sso6kgQxvd1qPY77JdR1NsB7QeMGcXcfm5RbwMs6m2BvmhHVIjQhb0t0H7tAdeKjomJie4SUKYa5doTNcp1CDfKYZ3UgWC32JF5o5zW3ZGgESt2nU2CNu0Y/Nkp+F0Um8N0BJuk437em8P0juYMBLpP+GVsbjoDCyrQ14rKfpFg+yH51EXI5EO0JTFDwdiMBKw5zVx3JkdzZgLdZ/wyGBsDzBegrxWV/TgztqsQxnazJGYoGJuFgDVnmevO6mjORqD7nF8GY18G5gvQ14rKfpwZ+4oQxnYPxwybmHmV+RMSdF3JTsDXC37edSWHozknge6Lfhl1pQcwLoG+Vkj7UXYkUAzRomMceKhE1pHwmrPG1010JLzm6Uh4PV5HQmJJFgjtg3QAdMDusl8GpN4A2m8jTrNibj/3hPo14EbmdaAvgH61fkDsdQGQ7+mssZcJyPf0QL6XAcgjEwM5MHTFLwPybzIdGGJuPxfyPYGQ7wX0xZtCIC9hYKiXAMj3dtb4lgnI9/ZA/i0DkEcmBnKA5JpfBuTfZjpAwtx+LuR7AyH/FtAXbwuBvIQBkrcEQL6Ps8a+JiDfxwP5vgYgj0wM5EDBDb8MyPdjOlDA3H4u5PsAId8X6It+RGBCg74v0H7vCBwoeIdooKB/eKAA66T+BLuHAcwHCrTuAQYGCgYEf75LNFCgmwM6Exwc3/LzPjDXTdzRBLpv+2VsbgYCCyrQ14rKfuimGiSfBglpxBpsScxQMDaGgDX3mOvWTdzdCHTf98tg7HvAfAH6WlHZjzNjhwhh7FBLYoaCsS8TsOYRc926ibs7gW5fPhmMHQbMF6CvFZX9ODP2fSGMHR6OGTYx8wHzgYK2KeMe6oC0YZJ8vOuKHvToQaA7Skhd+RAYl0BfK6T9KE+oJQwUAA+VyE6oP3LWOMLECfVHnhPqEQZOqJGnesiBguRCIPUx04EC5vZzT6g/Am5kRgB9AfSr9QMFIwRA/hNnjSNNQP4TD+RHGoA8MjGQAwUphUD+U6YDBczt50L+EyDkRwJ98akQyEsYKBgpAPKjnDWONgH5UR7IjzYAeWRiIAcKUguB/GdMBwqY28+F/Cgg5EcDffGZEMhLGCgYLQDyY5w1jjUB+TEeyI81AHlkYiAHCtIKgfw4pgMFzO3nQn4MEPJjgb4YRwQmNOjHAu33ucCBgs+JBgrGhwcKsE4aT7B7mMB8oEDrnmBgoGBC8OdEooEC3RwwkODgOD3zA3PdxD2YQHcGIZubScCCCvS1orIfuqkGyafJQhqxplgSMxSMfY+ANZmZ69ZN3EMJdGcRwtgvgPkC9LXKYiFjpwph7DRLYoaCscMIWJOduW7dxD2cQHcOIYz9EpgvQF+rHBYydroQxs4IxwybmPmK+UBB35RxD3VA2vAx5nVFD3p8SKD7cSF1ZSayIR7ICKT9KE+oJQwUAA+VyE6oZzlrnG3ihHqW54R6toETauSpHnKgIK8QSH3NdKCAuf3cE+pZwI3MbKAvgH61fqBgtgDIz3HWONcE5Od4ID/XAOSRiYEcKMgnBPLfMB0oYG4/F/JzgJCfC/TFN0IgL2GgYK4AyH/rrHGeCch/64H8PAOQRyYGcqCggBDIz2c6UMDcfi7kvwVCfh7QF/OFQF7CQME8AZD/zlnjAhOQ/84D+QUGII9MDORAQUEhkF/IdKCAuf1cyH8HhPwCoC8WEoEJDfoFQPstEjhQsIhooOD78EAB1knfE+weFjMfKNC6FxsYKFgc/PkD0UCBbg6YRHBwXJj5gblu4p5CoLuIkM3NEmBBBfpaUdkP3VSD5NNSIY1YP1oSMxSM/YKANcWZ69ZN3NMIdJcQwthlwHwB+lqVsJCxy4UwdoUlMUPB2C8JWPMkc926iXsGge6AEMb+BMwXoK9VwELGrhTC2FXhmGETM6uZDxSMTRn3UAekDcswryt60GMmge6yQurKGmBcAn2tyjKPG82GJQRx8xRz3foezo8EuisIyZe1wHwB+lpVEFJTmwBr6joh+7D1wHUe9+OudcLPn7HLCFjzNHPG6ns4Kwh0VxbC2A3AfAH6WlW2kLEbhTB2E3Cdp/24a53x82fsTwSseZY5Y/U9nFUEup8TwtjNwHwB+lo9ZyFjtwhh7FbgOs/6cdc65+fNmgUp4/qbkP54njlj9T3PNQS6qwth7DZgvgB9rapbyNjtQhi7A7jOC37ctS76ZeTcz0TP7giE9kE+x0JMzu0UknO7LIsZtP12Ez1KIRDaB/lYATE594uQnNtjWcyg7fcr0WR7ILQPcspbTM79JiTn9loWM2j77SMaNA6E9kEO3YrJud+F5NwflsQM+t6RfvpDIYJ7R7WY3zMr7GguQqC7tpB7ZvuB+QL0tapt4T2zA0IYe9CSmKFgbFEC1tRjrruYo7k4ge4XhDD2EDBfgL5WL1jI2MNCGHvEkpihYGwJAtY0ZK67pKO5FIHuRkIYexSYL0Bfq0YWMvaYEMYetyRmKBj7JAFrmjLXHXA0KwLdzYQw9gQwX4C+Vs0sZOxJIYw9ZUnMUDC2NAFrWjDXXcbRXJZA90tCGHsamC9AX6uXLGTsGSGM/dOSmKFgbDkC1rRmrru8o/kpAt1thDD2L2C+AH2t2ljI2LNCGHvOkpihYGwFAta0Z667oqO5EoHuDkIYex6YL0Bfqw4WMvZvIYy9YEnMUDD2aQLWdGauu7Kj+RkC3V2EMPYiMF+AvlZdLGTsP0IYe8mSmKFgbBUC1nRlrvtZHS8EursJYexlYL4Afa26WcjYf4Uw9oolMUPB2KoErOnOXHc1R/PzBLpfFcLYq8B8AfpavWohY68JYex1S2KGgrHVCVjzOnPdNRzNNQl0vyGEsTeA+QL0tXrDQsbeFMLYW5bFDNp+ty17thTnnLsDzjmKulyLoD69ybwu13Y01yHQ3VsII+4C4xLoayXFfveA9nvkBzLCwn3NfQGMrUvAmj7MGVvP0fwCge6+QhjxABiXQF8rKfZ7CLRfZqD9sljI2EcCGFufgDW+VDJyJQK3TtbvMpeQK5GpsLlCFTNJgOtc78dda5NfRsxEAK8VBfOFCug4ifD994NmbhSQjfHXmzRV3O9RHt/pT2weJCPQ5PN8j9eO6f7Hf2NdGLWTtEHR102WClhkiXQnSwX3USAyuNYo8Hp1AVqQEns95EPy9UPekQ9Q10UyCYF/fNjcVLG/JHfWmiIVYfLrC+vgSh78kth/6y/1B78DnSSxQYfeNfdnfmciNjnQugcw1x2bxGjd7zLXHQsbtO6Bhu6kBEL7KGA+qvgxHqr9BgmxHzC+1UCg/QYLuZOXEviXJjBmFHP7lQ7aTyUHbrZTAH0B9Ku7sY4E566u9cg31+g3r+xJia9RKYjuNALW6G6CUzlrTG1iE5zKswlOTbwJ3k2wKfqA+aYosUAOVfeHQoo6EoQfAIv6R0KKehqg/YAxo5jbzy3qqYBFPTXQF2mEFHXkq7H0q532EhT11AKKelpnjelMFPW0nqKejrio/0pQ3EYyL+qJBXKouj8VUtSRIBwJLOqjhBT19ED7AWNGMbefW9TTAot6OqAv0gsp6sh37+l3x/1BUNTTCSjqGZw1ZjRR1DN4inpG4qK+j6C4jWVe1BML5FB1jxNS1JEgHAss6p8LKeqZgPYDxoxibj+3qGcAFvWMQF9kIipE6MKeEWi/zIBrRcfExER3CShTjXKZiRrlsoQb5bBOykLQKJeVeaOc1p2VoBErdp3JgjbNGvyZLfhdFJvDtQSbpEnMN4frHM3rCXRPFrK5yQ4sqEBfKyr7RYLth+RTDiGTDzktiRkKxm4gYM1U5ro3Opo3EeieJoSxuYD5AvS1mmYhYx8TwtjHLYkZCsZuJmDNDOa6tziatxLo/koIY3MD8wXoa/WVhYzNI4SxecMxwyZm/OCYoagr2wj4Opt5XdnuaN5BoPtrIXUlHzAugb5WSPtRdiRQDNGiYzwj0UEQYI1uR0J+Z40FTHQk5Pd0JBSI15GQWJIFQvsgHQAdsPtGCKSeANoPOazH3H7uCXV+4EamANAXQL9aPyBWQADkCzprLGQC8gU9kC9kAPLIxEAODM0TAvnCTAeGmNvPhXxBIOQLIZ8XFx4Ygl23kADIF3HWWNQE5It4IF/UAOSRiYEcIPlOCOSLMR0gYW4/F/JFgJAvCvRFMSGQlzBAUlQA5Is7ayxhAvLFPZAvYQDyyMRADhQsFAL5kkwHCpjbz4V8cSDkSwB9UZIITGjQlwDar5TAgYJSRAMFT4YHCrBOepJgoCDAfKBA6w4YGCgIBH8qooEC3RyQneChkd8zPzDXTdw5CXQvFrK5KQ0sqEBfKyr7oZtqkHwqI6QRq6wlMUPB2FwErFnKXLdu4n6cQPePQhhbDpgvQF+rHy1kbHkhjH3KkpihYGxuAtasYK5bN3HnJdD9kxDGVgDmC9DX6icLGVtRCGMrhWOGTcw8zXygIGOquIc6IG24mnld0YMe+Qh0rxFSVyoD4xLoa4W0H+UJtYSBAuChEtkJ9TPOGquYOKF+xnNCXcXACTXyVA85ULBeCKSeZTpQwNx+7gn1M8CNTBWgL4B+tX6goIoAyD/nrLGqCcg/54F8VQOQRyYGcqBgoxDIV2M6UMDcfi7knwNCvirQF9WEQF7CQEFVAZB/3lljdROQf94D+eoGII9MDORAwWYhkK/BdKCAuf1cyD8PhHx1oC9qCIG8hIGC6gIgX9NZYy0TkK/pgXwtA5BHJgZyoGCrEMjXZjpQwNx+LuRrAiFfC+iL2kRgQoO+FtB+dQQOFNQhGiioGx4owDqpLsFAQT3mAwVadz0DAwX1gj9fIBoo0M0BpQkOjrczPzDXTdxlCXTvELK5qQ8sqEBfKyr7oZtqkHxqIKQRq6ElMUPB2HIErNnFXLdu4n6KQPduIYxtBMwXoK/VbgsZ21gIY5tYEjMUjK1AwJpfmevWTdyVCHT/JoSxTYH5AvS1+s1CxjYTwtgXwzHDJmaaMx8oKBF8cASar78zryt60KMyge4/hNSVFsC4BPpaIe1HeUItYaAAeKhEdkL9krPGliZOqF/ynFC3NHBCjTzVQw4UHBQCqVZMBwqY2889oX4JuJFpCfQF0K/WDxS0FAD51s4a25iAfGsP5NsYgDwyMZADBYeFQL4t04EC5vZzId8aCPk2QF+0FQJ5CQMFbQRAvp2zxvYmIN/OA/n2BiCPTAzkQMFRIZDvwHSggLn9XMi3A0K+PdAXHYRAXsJAQXsBkO/orLGTCch39EC+kwHIIxMDOVBwXAjkOzMdKGBuPxfyHYGQ7wT0RWciMKFB3wlovy4CBwq6EA0URIcHCrBOiiYYKIhhPlCgdccYGCiICf7sSjRQoJsD6hMcHJ9kfmCum7gbEug+JWRz0w1YUIG+VlT2QzfVIPn0spBGrFcsiRkKxjYiYM2fzHXrJu4mBLr/EsLY7sB8Afpa/WUhY18VwtgelsQMBWObErDmPHPduon7RQLdfwth7GvAfAH6Wv1tIWNfF8LYN8IxwyZmejIfKKiVKu6hDkgb/sO8ruhBjxYEui8JqSu9gHEJ9LW6xDxuNBu6EcTNFea69T2cVwh0XxWSL28C8wXoa3VVSE1NBqypvYXsw94CrnMSMGYmC2BsdwLW3GCuW9/D6UGg+6YQxr4NzBegr9VNCxnbRwhj+wLXORUYM9MEMPY1AtbcYa5b38N5g0D3XSGM7QfMF6Cv1V0LGfuOEMb2B65zBjBmvmLOmk6p4vqbkP54wFy3vufZi0D3QyGMHQDMF6Cv1UMLGfuuEMYOBK5zNjBmvhaSc4OInt0RCO2DfI6FmJwbLCTn3rMsZtD2G0L0KIVAaB/kYwXE5NxQITk3zLKYQdvvfaLJ9kBoH+SUt5icGy4k5z6wLGbQ9vuQaNA4ENoHOXQrJuc+EpJzIyyJGfS9I/30h/0p8feOIvLz1n3A0XyQQHdkfhmM/RiYL0BfKyr7cWbsJ0IYO9KSmKFg7CEC1iRlrvuwo/kIge5kQhj7KTBfgL5WySxk7CghjB1tScxQMPYoAWtSMtd9zNF8nEB3KiGM/QyYL0Bfq1QWMnaMEMaOtSRmKBh7goA1aZnrPuloPkWgO50Qxo4D5gvQ1yqdhYz9XAhjx1sSMxSMPU3AmozMdZ9xNP9JoDuTEMZOAOYL0Ncqk4WMnSiEsZMsiRkKxv5FwJqszHWfdTSfI9CdTQhjJwPzBehrlc1Cxk4RwtgvLIkZCsaeJ2BNTua6/3Y0XyDQnUsIY6cC8wXoa5XLQsZOE8LYLy2JGQrGXiRgTW7muv9xNF8i0J1HCGOnA/MF6GuVx0LGzhDC2K8siRkKxl4mYE0+5rr/dTRfIdCdXwhjZwLzBehrld9Cxs4SwtjZlsQMBWOvErCmIHPd1xzN1wl0FxLC2K+B+QL0tSpkIWPnCGHsXEtihoKxNwhYU5S57puO5lsEuosJYew3wHwB+loVs5Cx3wph7DxLYoaCsbcJWFOSue47jua7BLpLCWHsfGC+AH2tSlnI2O+EMHaBZTGDtt9Cy57fxznnFjF/55Kuy/cI6pNiXpfvO5ofEOguLYQR3wPjEuhrJcV+i4H2WwFk7E8WMvYHAYx9SMCacswZ+8jR7CN49nZ5IYxYAoxLoK+VFPstBdpvF5Cxuy1k7I8CGBtBwJplqWTkynKgf04Cc+WUhbmyQsh9lp+A6+wPjJmBQmImAnitlTBfKKXjJML33w+auSuBbIy/3lWp4n6P8vjOFy8PkhFo8nm+x2vHdP/jv7EujNpJq1Lhr7saCEwq3atTwX0UiAyuNQq8Xl2AOqXCXg/5IhL9Ig3kSyp0kfyJwD8+bG6q2F/WOGtdm4ow+fWFdXCtCX5J7L/1l/qD34FOktigQ++aKzK/MxGbHGjdlZjrjk1itO6nmeuOhQ1ad2VDd1ICoX0UMB9V/BgP1X7PCLEfML5VZaD9qgi5k7cOuHEAxoxibr/SQfupNcDN9lqgL4B+dTfWkeDc1bUe+XYw/XarYQR/UAH9QrYJXu+scYOJTfB6zyZ4A/EmeAjB5qAG801RYoEcqu6aQoo6EoQ1gEW9lpCivhFoP2DMKOb2c4v6emBR3wD0xUYhRR35+kH9+rwPCIr6BgFFfZOzxs0mivomT1HfTFzU3ycobvWYF/XEAjlU3S8IKepIENYDFvX6Qor6FqD9gDGjmNvPLeqbgEV9M9AXW4QUdeT7TfX7OUcQFPXNAor6VmeN20wU9a2eor6NuKh/SFDcGjMv6okFcqi6mwgp6kgQNgYW9aZCivp2oP2AMaOY288t6luBRX0b0BfbiQoRurBvA9pvB+Ba0TExMdFdAsYa5XYQNcr9HG6UwzrpZ4Ld4k7mjXJa906CRqzYda4O2nRn8Oeu4HdRbA7fJNgktWC+OeztaH6LQPdLQjY3u4EFFehrRWW/SLD9kHz6Rcjkwx5LYoaCsW8TsKY1c919HM19CXS3EcLYX4H5AvS1amMhY38Twti9lsQMBWP7EbCmPXPd7zia+xPo7iCEsfuA+QL0tepgIWN/F8LYP8IxwyZm9oNjhqKuDCDga2fmdeVdR/NAAt1dhNSVA8C4BPpaIe0X6aPrSKAYokXHOPBQiawj4aCzxkMmOhIOejoSDsXrSEgsyQKhfZAOgA7YdRUCqcNA+yGH9Zjbzz2hPgjcyBwC+gLoV+sHxA4JgPwRZ41HTUD+iAfyRw1AHpkYyIGhl4VA/hjTgSHm9nMhfwQI+aNAXxwTAnkJA0NHBUD+uLPGEyYgf9wD+RMGII9MDOQASXchkD/JdICEuf1cyB8HQv4E0BcnhUBewgDJCQGQP+Ws8bQJyJ/yQP60AcgjEwM5UNBDCOTPMB0oYG4/F/KngJA/DfTFGSIwoUF/Gmi/PwUOFPxJNFDwV3igAOukvwh2D2eZDxRo3WcNDBScDf48RzRQoJsDdhMcHL8OLlJo3bqJew+B7jeEbG7OAwsq0NeKyn6RYPsh+fS3kEasC5bEDAVjfyVgzZvMdesm7r0EunsLYexFYL4Afa16W8jYf4Qw9pIlMUPB2H0ErOnDXLdu4v6DQHdfIYy9DMwXoK9VXwsZ+68Qxl4JxwybmLnKfKBA97zuJOBrf+Z1RQ96HCDQPUBIXbkGjEugrxXSfpE+uwcKgIdKZCfU15013jBxQn3dc0J9w8AJNfJUDzlQMEgIpG4yHShgbj/3hPo6cCNzA+gLoF+tHyi4IQDyt5w13jYB+VseyN82AHlkYiAHCt4TAvk7TAcKmNvPhfwtIORvA31xRwjkJQwU3BYA+bvOGu+ZgPxdD+TvGYA8MjGQAwVDhUD+PtOBAub2cyF/Fwj5e0Bf3BcCeQkDBfcEQP6Bs8aHJiD/wAP5hwYgj0wM5EDB+0Ig/4jpQAFz+7mQfwCE/EOgLx4RgQkN+ofInurUoV/L9EBB/DUHQvzEX29E6rjfwwMFoV4z9f8zKPq6kamBwU+kOzI13Ef/GSiIDNo2SfC7KAY3zhMcHH8ALlJo3bqJ+wKB7g+FbG6icHBVQF8rKvtFgu2H5FPS1HQFBqk5mSUxQ8HYiwSs+Zi5bt3EfYlA9ydCGJscmC9AX6tPLGRsCiGMTWlJzFAw9jIBa0Yx162buK8Q6B4thLGpgPkC9LUabSFjUwthbJpwzLCJmbTgmKFoOj5LwNexzOuKHvS4RqB7nJC6kg4Yl0BfK6T9In12DxQ8JDoIAqzRPaFO78RhhtQGTqjTp054Qq2/1O/5TvQJNfJUDzlQMEEIpDICIYUcKGBuP/eEOj1wI5MB6AugX60fKAD6hQzymZw1ZjYB+UweyGc2AHlkYiAHCiYJgXwWoP2QAwXM7edCPhMQ8pmBvsgiBPISBgoyC4B8VmeN2UxAPqsH8tkMQB6ZGMiBgilCIJ8daD/kQAFz+7mQzwqEfDagL7ILgbyEgYJsAiCfw1ljThOQz+GBfE4DkEcmBnKgYKoQyOcC2g85UMDcfi7kcwAhnxPoi1xEYEKDPifQfo8JHCh4jGig4PHwQAHWSY8TDBTkZj5QoHXnNjBQkDto2zxEAwW6OSAqNf7g+EtwkULr1k3cyQh0TxeyuckLLKhAXysq+0WC7Yfkk19II1Y+S2KGgrHJCVgzk7lu3cSdkkD3LCGMzQ/MF6Cv1SwLGVtACGOfsCRmKBibioA1c5jr1k3caQh0zxXC2ILAfAH6Ws21kLGFhDC2cDhm2MRMEeYDBbrnNZKAr/OY1xU96JGOQPd8IXWlKDAugb5W85nHjWZDXoK4Wchct76Hk49A9yIh+VIMmC9AX6tFQmrqauDTw4oL2YeVAK6zBTBmXhLA2PwErPmBuW59D+cJAt1LhDC2JDBfgL5WSyxkbCkhjH0SuM7WwJhpI4CxBQlYs4y5bn0PpzCB7uVCGBsA5gvQ12q5hYxVQhhbGrjO9sCY6cCcNTlTx/U3If2xkrlufc+zKIHuVUIYWwaYL0Bfq1UWMrasEMaWA66zMzBmugjJufJA+1UC2u9pC3PuKSE5V8GymEHbryLRoxQCoX2QjxUQk3OVhOTc05bFDNp+lYkm2wOhfZBT3mJy7hkhOVfFsphB2+9ZokHjQGgf5NCtmJx7TkjOVbUkZtD3jvTTHz4meNDrWua6P3E0jyTQvU4IY6sB8wXoa7XOQsY+L4Sx1S2JGQrGfkrAmo3MdY9yNI8m0L1JCGNrAPMF6Gu1yULG1hTC2FqWxAwFYz8jYM1W5rrHOJrHEujeJoSxtYH5AvS12mYhY+sIYWxdS2KGgrHjCFjzM3PdnzuaxxPo3imEsfWA+QL0tdppIWNfEMLY+pbEDAVjJxCw5hfmuic6micR6N4jhLENgPkC9LXaYyFjGwphbCNLYoaCsZMJWLOXue4pjuYvCHTvE8LYxsB8Afpa7bOQsU2EMLapJTFDwdipBKzZz1z3NEfzlwS6DwhhbDNgvgB9rQ5YyNgXhTC2uSUxQ8HY6QSsOcxc9wxH81cEuo8IYWwLYL4Afa2OWMjYl4QwtqUlMUPB2JkErDnOXPcsR/NsAt0nhDC2FTBfgL5WJyxkbGshjG1jScxQMPZrAtacZq57jqN5LoHuM0IY2xaYL0BfqzMWMradEMa2tyRmKBj7DQFrzjLX/a2jeR6B7nNCGNsBmC9AX6tzFjK2oxDGdrIkZigYO5+ANReY6/7O0byAQPdFIYztDMwXoK/VRQsZ20UIY6MtiRkKxi4kYM1l5roXOZq/J9D9rxDGxgDzBehr9a+FjO0qhLHdLIsZtP1etuwZqZxz7hXm77XTdXkxQX26xrwu/+BoXkKg+7oQRnQHxiXQ10qK/V4F2q8P0H59LWRsDwGMXUrAmlvMGfujo3kZge7bQhjxGjAugb5WUuz3OtB+HwPt94mFjH1DAGOXE7CmZ2oZudIL6J8vgbky3cJceVPIfZbewHVWBMZMZSExEwG81lswX6jSOk4ifP/9oJn7FpCN8df7duq436M8vvPFy4NkBJp8nu/x2jHd//hvrAujdtLbqfHX7ZMaF/xUuvukhvsoEBlcaxR4vboA5UyNvR7yZU/6ZUXIFwHpItmbwD8+bG6q2F/6Omvtl5ow+fWFdXD1DX5J7L/1l/qD34FOktigQ++a7zG/MxGbHGjd95nrjk1itO4HzHXHwgat+6GhOymB0D4KmI8qfoyHar9HQuwHjG/1EGg/XwEZdyfeAW4cgDGjmNuvdNB+qi9ws90P6AugX92NdSQ4d3WtR76BUb9B8GmCP6iAfiHbBPd31jjAxCa4v2cTPIB4E1yRYHOQvADvTVFigRyq7hSGoBoI7YNMOBXf16HaL6WQov4u0H7AmFHM7ecW9f7Aoj4A6It3hRR15Cte9StKqxAU9QECivpAZ42DTBT1gZ6iPoi4qFcmKG5pmRf1xAI5VN3phBR1JAjTAot6eiFFfTDQfsCYUczt5xb1gcCiPgjoi8FCijryHdL6HchVCYr6IAFF/T1njUNMFPX3PEV9CHFRf5aguGVmXtQTC+RQdWcRUtSRIMwMLOpZhRT1oUD7AWNGMbefW9TfAxb1IUBfDCUqROjCPgRov2GAa0XHxMREdwkoU41yw4ga5d4PN8phnfQ+wW5xOPNGOa17OEEjVuw6+wRtOjz484Pgd1FsDosRbJJyMt8cFnc0lyDQnUvI5uZDYEEF+lpR2S8SbD8knz4SMvkwwpKYoWBsSQLW5Gauu5Sj+UkC3XmEMPZjYL4Afa3yWMjYT4QwdqQlMUPB2AABa/Ix160czaUJdOcXwthPgfkC9LXKbyFjRwlh7OhwzLCJmc/AMUNRV8oQ8LUg87pS1tFcjkB3ISF1ZQwwLoG+Vkj7UXYkUAzRomMceKhE1pEw1lnjOBMdCWM9HQnj4nUkJJZkgdA+SAdAB+yKCoHU50D7IYf1mNvPPaEeC9zIjAP6AuhX6wfExgmA/HhnjRNMQH68B/ITDEAemRjIgaHiQiA/kenAEHP7uZAfD4T8BKAvJgqBvISBoQkCID/JWeNkE5Cf5IH8ZAOQRyYGcoCkpBDIT2E6QMLcfi7kJwEhPxnoiylCIC9hgGSyAMh/4axxqgnIf+GB/FQDkEcmBnKg4EkhkJ/GdKCAuf1cyH8BhPxUoC+mEYEJDfqpQPt9KXCg4EuigYLp4YECrJOmE+weZjAfKNC6ZxgYKJgR/PkV0UCBbg74kODgWDE/MNdN3CMIdJcWsrmZCSyoQF8rKvuhm2qQfJolpBFrtiUxQ8HYjwlYU465bt3EPZJAd3khjP0amC9AX6vyFjJ2jhDGzrUkZigY+ykBayoy162buEcT6K4khLHfAPMF6GtVyULGfiuEsfPCMcMmZuYzHygYkjruoQ5IGz7DvK7oQY8xBLqrCKkr3yHbaICMQNqP8oRawkAB8FCJ7IR6gbPGhSZOqBd4TqgXGjihRp7qIQcKqgqB1CKmAwXM7eeeUC8AbmQWAn0B9Kv1AwULBUD+e2eNi01A/nsP5BcbgDwyMZADBc8LgfwPTAcKmNvPhfz3QMgvBvriByGQlzBQsFgA5Jc4a1xqAvJLPJBfagDyyMRADhTUEAL5H5kOFDC3nwv5JUDILwX64kchkJcwULBUAOSXOWtcbgLyyzyQX24A8sjEQA4U1BIC+RVMBwqY28+F/DIg5JcDfbGCCExo0C8H2u8ngQMFPxENFKwMDxRgnbSSYPewivlAgda9ysBAwargz9VEAwW6OWAmwcFxHeYH5rqJezaB7rpCNjdrgAUV6GtFZT90Uw2ST2uFNGKtsyRmKBj7NQFr6jPXrZu45xLobiCEseuB+QL0tWpgIWM3CGHsRktihoKx3xCwpjFz3bqJex6B7iZCGLsJmC9AX6smFjJ2sxDGbgnHDJuY2cp8oGBq6riHOiBt+CLzuqIHPb4j0N1cSF3ZBoxLoK8V0n6UJ9QSBgqAh0pkJ9TbnTXuMHFCvd1zQr3DwAk18lQPOVDQUgikfmY6UMDcfu4J9XbgRmYH0BdAv1o/ULBDAOR3OmvcZQLyOz2Q32UA8sjEQA4UtBYC+d1MBwqY28+F/E4g5HcBfbFbCOQlDBTsEgD5X5w17jEB+V88kN9jAPLIxEAOFLQVAvlfmQ4UMLefC/lfgJDfA/TFr0IgL2GgYI8AyP/mrHGvCcj/5oH8XgOQRyYGcqCgvRDI72M6UMDcfi7kfwNCfi/QF/uIwIQG/V6g/X4XOFDwO9FAwR/hgQKsk/4g2D3sZz5QoHXvNzBQsD/48wDRQIFuDlhDcHDckfmBuW7iXkegu5OQzc1BYEEF+lpR2Q/dVIPk0yEhjViHLYkZCsauJ2BNNHPduol7I4HuGCGMPQLMF6CvVYyFjD0qhLHHLIkZCsZuImDNy8x16ybuLQS6XxHC2OPAfAH6Wr1iIWNPCGHsyXDMsImZU8wHCpanjnuoA9KGPZjXFT3osY1A92tC6sppYFwCfa1eYx43mg0HCeKmJ3Pd+h7OYQLdvYTkyxlgvgB9rXoJqal9gDX1TyH7sL+A68wJjJlcAhh7hIA1bzHXre/hHCPQ/bYQxp4F5gvQ1+ptCxl7TghjzwPXmRsYM3kEMPY4AWv6Mdet7+GcJND9jhDG/g3MF6Cv1TsWMvaCEMZeBK4zHzBm8jNnzd7Ucf1NSH+8y1y3vud5mkD3QCGM/QeYL0Bfq4EWMvaSEMZeBq6zIDBmCgnJuX+Jnt0RCO2DfI6FmJy7IiTnrloWM2j7XSN6lEIgtA/ysQJicu66kJy7YVnMoO13k2iyPRDaBznlLSbnbgnJuduWxQzafneIBo0DoX2QQ7dicu6ukJy7Z0nMoO8d6ac/VCO4d/Qec93PO5qrE+geIoSx94H5AvS1GmIhYx8IYexDS2KGgrE1CFjzPnPdNR3NtQh0DxfC2EfAfAH6Wg23kLG+NDIYG5HGjpihYGxtAtZ8xFx3HUdzXQLdI4QwNhKYL0BfqxEWMjaJEMZGWRIzFIytR8Cakcx1v+Bork+g+1MhjE0KzBegr9WnFjI2mRDGJrckZigY24CANZ8x193Q0dyIQPcYIYxNAcwXoK/VGAsZm1IIY1NZEjMUjG1MwJrPmetu4mhuSqB7vBDGpgbmC9DXaryFjE0jhLFpLYkZCsY2I2DNJOa6X3Q0NyfQPVkIY9MB8wXoazXZQsamF8LYDJbEDAVjWxCwZipz3S85mlsS6J4mhLEZgfkC9LWaZiFjMwlhbGZLYoaCsa0IWDODue7WjuY2BLq/EsLYLMB8AfpafWUhY7MKYWw2S2KGgrFtCVgzm7nudo7m9gS6vxbC2OzAfAH6Wn1tIWNzCGFsTktihoKxHQhY8w1z3R0dzZ0IdH8rhLG5gPkC9LX61kLGPiaEsY9bEjMUjO1MwJrvmOvu4miOJtC9QAhjcwPzBehrtcBCxuYRwti8lsQMBWNjCFjzPXPdXR3N3Qh0LxbCWD8wX4C+VostZGw+IYzNb0nMUDD2ZQLWLGWu+xVHc3cC3T8KYWwBYL4Afa1+tJCxTwhhbEHLYgZtv0JA+0l4DjXnnCsMzjmKuvwqQX1awbwu93A0v0ag+ychjCgCjEugr5UU+xUF2q8i0H6VLGRsMQGMfZ2ANauZM/YNR3NPAt1rhDCiODAugb5WUuxXAmi/+kD7NbCQsSUFMLYXAWtKpZGRK08C/dMRmCudLMyVgJD7LAq4znv5cdd6mF9GzEQAr1Ua5gtVRsdJhO+/HzRzSwPZGH+9ZdLE/R7l8Z0vXh4kI9Dk83yP147p/sd/Y10YtZO0QdHXLZsGF/xUusumgfsoEBlcaxR4vboA7U2NvR7yhXr6hXDIl63pIqkI/OPD5qaK/aWcs9byaQiTX19YB1e54JfE/lt/qT/4HegkiQ069K55PfM7E7HJgda9gbnu2CRG697IXHcsbNC6Nxm6kxII7aOA+ajix3io9tssxH7A+FabgPbbIuRO3lPAvzSBMaOY26900H6qHHCzXR7oC6Bf3Y11JDh3da1HvuVWv6X1Rmp8jSpPdKcRsEZ3E1zBWWNFE5vgCp5NcEXiTfA1gk3RLuabosQCOVTdu4UUdSQIdwGL+i9CinoloP2AMaOY288t6hWARb0i0BeVhBR15Gu09WugbxMU9YoCivrTzhormyjqT3uKemXion6ToLjtZV7UEwvkUHXvE1LUkSDcCyzqvwsp6s8A7QeMGcXcfm5RfxpY1CsDffGMkKJ+B1jU9Xvm7xEU9coCinoVZ43PmijqVTxF/Vnion6HoLgdZF7UEwvkUHUfElLUkSA8CCzqh4UU9eeA9gPGjGJuP7eoVwEW9WeBvniOqBChC/uzQPtVBVwrOiYmJrpLQJlqlKtK1ChXLdwoh3VSNYJGueeZN8pp3c8TNGLFrrNs0KbPB39WD34XxebwDMEm6TjzzeGfjua/CHSfELK5qQEsqEBfKyr7RYLth+RTTSGTD7UsiRkKxp4lYM1p5rrPOZrPE+g+I4SxtYH5AvS1OmMhY+sIYWxdS2KGgrF/E7DmLHPdFxzNFwl0nxPC2HrAfAH6Wp2zkLEvCGFs/XDMsImZBsyfkKDryj8EfL3AvK5ccjRfJtB9UUhdaQiMS6CvFdJ+lB0JFEO06Bh/luggCLBGtyOhkbPGxiY6Ehp5OhIax+tISCzJAqF9kA6ADthdFgKpJkD7IYf1mNvPPaFuBNzINAb6AuhX6wfEGguAfFNnjc1MQL6pB/LNDEAemRjIgaErQiD/ItOBIeb2cyHfFAj5ZkBfvCgE8hIGhpoJgHxzZ40tTEC+uQfyLQxAHpkYyAGSa0Ig/xLTARLm9nMh3xwI+RZAX7wkBPISBkhaCIB8S2eNrUxAvqUH8q0MQB6ZGMiBghtCIN+a6UABc/u5kG8JhHwroC9aE4EJDfpWQPu1EThQ0IZooKBteKAA66S2BAMF7ZgPFGjd7QwMFLQL/mxPNFCgmwNqEDw08hbzA3PdxF2LQPdtIZubDsCCCvS1orIfuqkGyaeOQhqxOlkSMxSMrU3AmnvMdesm7roEuu8LYWxnYL4Afa3uW8jYLkIYG21JzFAwth4Bax4x162buOsT6PY9IYOxMcB8AfpaUdmPM2O7CmFst3DMsImZl5kPFDybJu6hDkgbJnmCd13Rgx4NCXRHCakrrwDjEuhrhbQf5Qm1hIEC4KES2Ql1d2eNr5o4oe7uOaF+1cAJNfJUDzlQkFwIpHowHShgbj/3hLo7cCPzKtAXQL9aP1DwqgDIv+as8XUTkH/NA/nXDUAemRjIgYKUQiD/BtOBAub2cyH/GhDyrwN98YYQyEsYKHhdAOR7OmvsZQLyPT2Q72UA8sjEQA4UpBYC+TeZDhQwt58L+Z5AyPcC+uJNIZCXMFDQSwDkeztrfMsE5Ht7IP+WAcgjEwM5UJBWCOTfZjpQwNx+LuR7AyH/FtAXbxOBCQ36t4D26yNwoKAP0UBB3/BAAdZJfQkGCvoxHyjQuvsZGCjoF/z5DtFAgW4O6EBwcJye+YG5buLuRKA7g5DNTX9gQQX6WmUQ0lSD5NMAIY1Y71oSMxSM7UzAmszMdesm7mgC3VmEMHYgMF+AvlZZLGTsICGMHWxJzFAwNoaANdmZ69ZN3N0IdOcQwtj3gPkC9LXKYSFjhwhh7NBwzLCJmWHMBwpapYl7qAPSho8xryt60OMVAt2PC6kr7wPjEuhr9Xh4oIDkgCUQ4sfn+YR4XfeEerizxg9MnFAP95xQf2DghBp5qoccKMgrBFIfMh0oYG4/94R6OHAj8wHQF0C/Wj9Q8IEAyH/krHGECch/5IH8CAOQRyYGcqAgnxDIf8x0oIC5/VzIfwSE/AigLz4WAnkJAwUjBED+E2eNI01A/hMP5EcagDwyMZADBQWEQP5TpgMFzO3nQv4TIORHAn3xqRDISxgoGCkA8qOcNY42AflRHsiPNgB5ZGIgBwoKCoH8Z0wHCpjbz4X8KCDkRwN98RkRmNCgHw203xiBAwVjiAYKxoYHCrBOGkswUDCO+UCB1j3OwEDBuODPz4kGCnRzQH+Cg+PCzA/MdRP3uwS6iwjZ3IwHFlSgr1URIU01SD5NENKINdGSmKFg7EAC1hRnrls3cQ8m0F1CCGMnAfMF6GtVwkLGThbC2CmWxAwFY98jYM2TzHXrJu6hBLoDQhj7BTBfgL5WAQsZO1UIY6eFY4ZNzHzJfKDgrTRxD3VA2rAM87qiBz3eJ9BdVkhdmQ6MS6CvVVnmcaPZMJ4gbp5irlvfw5lIoLuCkHyZAcwXoK9VBSE1tSywpn4lZB82E7jO48AD9hMF+DN2EgFrnmbOWH0PZwqB7spCGDsLmC9AX6vKFjJ2thDGfg1c52kgY88IYOwXBKx5ljlj9T2caQS6nxPC2DnAfAH6Wj1nIWPnCmHsN8B1ngUy9hxzxo5OE9ffhPTH88wZq+95TifQXV0IY78F5gvQ16q6hYydJ4Sx84HrvABk7MUCMnLuO6JndwRC+yCfYyEm5xYIybmFlsUM2n6LiB6lEAjtg3ysgJic+15Izi22LGbQ9vuBaLI9ENoHOeUtJueWCMm5pZbFDNp+PxINGgdC+yCHbsXk3DIhObfckpiBv8gotc93PzX+3lEt5vfMHjiaHxLori3kntkKYL4Afa1qW3jP7CchjF1pScxQMPYRAWvqMdft02cSBOcSLwhh7CpgvgB9rV6wkLGrhTB2jSUxQ8HYSALWNGSuO4mjOYpAdyMhjF0LzBegr1UjCxm7Tghj11sSMxSMTUrAmqbMdSdzNCcn0N1MCGM3APMF6GvVzELGbhTC2E2WxAwFY1MQsKYFc90pHc2pCHS/JISxm4H5AvS1eslCxm4RwtitlsQMBWNTE7CmNXPdaRzNaQl0txHC2G3AfAH6WrWxkLHbhTB2hyUxQ8HYdASsac9cd3pHcwYC3R2EMPZnYL4Afa06WMjYnUIYu8uSmKFgbEYC1nRmrjuTozkzge4uQhi7G5gvQF+rLhYy9hchjN1jScxQMDYLAWu6Mted1dGcjUB3NyGM/RWYL0Bfq24WMvY3IYzda0nMUDA2OwFrujPXncPRnJNA96tCGLsPmC9AX6tXLWTs70IY+4clMUPB2FwErHmdue7HHM2PE+h+Qwhj9wPzBehr9YaFjD0ghLEHLYkZCsbmJmDNm8x153E05yXQ3VsIYw8B8wXoa9XbQsYeFsLYI5bEDAVj/QSs6cNcdz5Hc34C3X2FMPYoMF+AvlZ9LWTsMSGMPW5JzFAwtgABa/oz1/2Eo7kgge4BQhh7ApgvQF+rARYy9qQQxp6yJGYoGFuIgDWDmOsu7GguQqB7sBDGngbmC9DXarCFjD0jhLF/WhYzaPv9Zdmz/jnn3FlwzlHU5aIE9Wko87pczNFcnED3MCGMOAeMS6CvlRT7nQfa7xGQsT4L9zV/C2BsCQLWfMCcsSUdzaUIdH8ohBEXgHEJ9LWSYr+LQPtlBtovi4WM/UcAY58kYM2lNDJy5TLQP4WBuVLEwlz5V8h9livAda4H7mE3CblPEAG81lWYL1RZHScRvv9+0My9CmRj/PVeSxP3e5THd754eZCMQJPP8z1eO6b7H/+NdWHUTrqWBn/d60BgUum+ngbuo0BkcK1R4PXqAjQ6DfZ6yJeW6pduIl9oqYvkFQL/+LC5qWJ/ueGs9WYawuTXF9bBdSP4JbH/1l/qD34HOkligw69a/6Y+Z2J2ORA6/6Eue7YJEbrHslcdyxs0Lo/NXQnJRDaRwHzUcWP8VDtN0qI/YDxrT4F2m+0kDt5t4AbB2DMKOb2Kx20n7oB3GzfBPoC6Fd3Yx0Jzl1d65FvEtdvwl5M8AcV0C9km+DbzhrvmNgE3/Zsgu8Qb4IXEWwOJjDfFCUWyKHqniikqCNBOAFY1CcJKep3gfYDxoxibj+3qN8GFvU7QF/cFVLUfwBqXuJcaylBUb8joKjfc9Z430RRv+cp6veJi/oPBMVtKvOinlggh6p7mpCijgThVGBR/1JIUX8AtB8wZhRz+7lF/R6wqN8H+uKBkKL+I1DzMudaywmK+n0BRf2hs8ZHJor6Q09Rf0Rc1H8kKG4zmRf1xAI5VN2zhBR1JAhnAov6bCFF3ZcWZz9gzCjm9nOL+kNgUX+EbA5MS2M/dGF/BLRfRNrQrxUdExMT3SWgTDXKRQD9FH+9kWnjfg83yoV4Te0kbVD0dZOkBYKcSHeStHAfuYF6PbhxSRK0bVTwuyg2hzMINknfMN8cfuVonkmg+1shm5ukwM0N0NeKyn6RYPsh+ZQsLV2BQWpObknMUDB2FgFrvmOue7aj+WsC3QuEMDYFMF+AvlYLLGRsSiGMTWVJzFAwdg4Ba75nrnuuo/kbAt2LhTA2NTBfgL5Wiy1kbBohjE0bjhk2MZMOHDMUdeVbAr4uZV5X5jma5xPo/lFIXUkPjEugrxXSfpQdCRRDtOgYBx4qkXUkZHDiMGNaAx0JGdIm7EjQX+r3fCf6hBp5qoccsFshBFKZgJBCDusxt597Qp0BuJHJCPQF0K/WD4gB/UIG+czOGrOYgHxmD+SzGIA8MjGQA0MrhUA+K9B+yIEh5vZzIZ8ZCPksQF9kFQJ5CQNDWQRAPpuzxuwmIJ/NA/nsBiCPTAzkAMlqIZDPAbQfcoCEuf1cyGcDQj470Bc5hEBewgBJdgGQz+msMZcJyOf0QD6XAcgjEwM5ULBWCOQfYzpQwNx+LuRzAiGfC+iLx4jAhAZ9LqD9Hhc4UPA40UBB7vBAAdZJuQkGCvIwHyjQuvMYGCjIE7RtXqKBAt0ckDQt/uB4PfMDc93EnZxA9wYhmxs/sKACfa02CGmqQfIpn5BGrPyWxAwFY1MQsGYzc926iTsVge4tQhhbAJgvQF+rLRYy9gkhjC1oScxQMDY1AWu2M9etm7jTEujeIYSxhYD5AvS12mEhYwsLYWyRcMywiZmizAcKdM9rEgK+7mJeV/SgR3oC3buF1JViwLgE+loh7Ud5Qi1hoAB4qER2Ql3cWWMJEyfUxT0n1CUMnFAjT/WQAwW/CoFUSaYDBczt555QFwduZEoAfQH0q/UDBSUEQL6Us8YnTUC+lAfyTxqAPDIxkAMFe4VAPsB0oIC5/VzIlwJC/kmgLwJCIC9hoOBJAZBXzhpLm4C88kC+tAHIIxMDOVDwuxDIl2E6UMDcfi7kFRDypYG+KCME8hIGCkoLgHxZZ43lTEC+rAfy5QxAHpkYyIGC/UIgX57pQAFz+7mQLwuEfDmgL8oTgQkN+nJA+z0lcKDgKaKBggrhgQKskyoQDBRUZD5QoHVXNDBQUDFo20pEAwW6OcBPcHB8kPmBuW7izk+g+5CQzc3TwIIK9LU6JKSpBsmnykIasZ6xJGYoGFuAgDVHmevWTdwFCXQfE8LYKsB8AfpaHbOQsc8KYexzlsQMBWMLEbDmJHPduom7CIHuU0IYWxWYL0Bfq1MWMraaEMY+H44ZNjFTnflAQa60cQ91QNrwT+Z1RQ96FCPQ/ZeQulIDGJdAXyuk/ShPqCUMFAAPlchOqGs6a6xl4oS6pueEupaBE2rkqR5yoOC8EEjVZjpQwNx+7gl1TeBGphbQF0C/Wj9QUEsA5Os4a6xrAvJ1PJCvawDyyMRADhRcEAL5ekwHCpjbz4V8HSDk6wJ9UU8I5CUMFNQVAPkXnDXWNwH5FzyQr28A8sjEQA4U/CME8g2YDhQwt58L+ReAkK8P9EUDIZCXMFBQXwDkGzprbGQC8g09kG9kAPLIxEAOFFwWAvnGTAcKmNvPhXxDIOQbAX3RmAhMaNA3AtqvicCBgiZEAwVNwwMFWCc1JRgoaMZ8oEDrbmZgoKBZ0LYvEg0U6OaApwkOjq8wPzDXTdzPEOi+KmRz0xxYUIG+VleFNNUg+dRCSCPWS5bEDAVjqxCw5gZz3f/XxE2g+6YQxrYE5gvQ1+qmhYxtJYSxrS2JGQrGViVgzR3munUT9/MEuu8KYWwbYL4Afa3uWsjYtkIY2y4cM2xipj3zgYJyaeMe6oC04QPmdUUPetQg0P1QSF3pAIxLoK/VQ+Zxo9nQnCBuIgry1q3v4bxEoDuyoIx86QjMF6CvFZX90DX1ehrctToJ2Yd1Bq7zGyBjvxXA2JYErEnKnLH6Hk5rAt3JhDC2CzBfgL5WySxkbLQQxsYA1/kdkLELBDC2DQFrUjJnrL6H045AdyohjO0KzBegr1UqCxnbTQhjXwau83sgYxczZ2yjtHH9TUh/pGXOWH3PswOB7nRCGPsKMF+AvlbpLGRsdyGMfRW4zqVAxv4o5H52D6JndwRC+yCfYyEm514TknOvWxYzaPu9QfQohUBoH+RjBcTkXE8hOdfLsphB2+9Nosn2QGgf5JS3mJzrLSTn3rIsZtD2e5to0DgQ2gc5dCsm5/oIybm+lsQM+t6RfvrDijT4e0cZmd8z+8nRvJJAdyYh98z6AfMF6GuVycJ7Zu8IYWx/S2KGgrGrCFiTlbnu1Y7mNQS6swlh7ABgvgB9rbJZyNh3hTB2oCUxQ8HYtQSsyclc9zpH83oC3bmEMHYQMF+Avla5LGTsYCGMfc+SmKFg7AYC1uRmrnujo3kTge48Qhg7BJgvQF+rPBYydqgQxg6zJGYoGLuZgDX5mOve4mjeSqA7vxDGvg/MF6CvVX4LGTtcCGM/sCRmKBi7jYA1BZnr3u5o3kGgu5AQxn4IzBegr1UhCxn7kRDGjrAkZigY+zMBa4oy173T0byLQHcxIYz9GJgvQF+rYhYy9hMhjB1pScxQMHY3AWtKMtf9i6N5D4HuUkIY+ykwX4C+VqUsZOwoIYwdbUnMUDD2VwLWKOa6f3M07yXQXVoIYz8D5gvQ16q0hYwdI4SxYy2JGQrG7iNgTTnmun93NP9BoLu8EMaOA+YL0NeqvIWM/VwIY8dbEjMUjN1PwJqKzHUfcDQfJNBdSQhjJwDzBehrVclCxk4UwthJlsQMBWMPEbDmGea6DzuajxDoriKEsZOB+QL0tapiIWOnCGHsF5bEDAVjjxKwpipz3ccczccJdFcTwtipwHwB+lpVs5Cx04Qw9ktLYoaCsScIWFODue6TjuZTBLprCmHsdGC+AH2talrI2BlCGPuVJTFDwdjTBKypw1z3GUfznwS66wph7ExgvgB9repayNhZQhg725KYoWDsXwSsqc9c91lH8zkC3Q2EMPZrYL4Afa0aWMjYOUIYO9eymEHb7xvL3qfCOee+BeccRV0+T1CfGjOvy387mi8Q6G4ihBHzgHEJ9LWSYr/5QPttBzJ2h4WM/U4AYy8SsOZF5oz9x9F8iUB3cyGMWACMS6CvlRT7LQTa7yiQsccsZOwiAYy9TMCa79PKyJXFQP9cAebKVQtz5Qch91mWANf5MTBmPhUSMxHAay2F+UKV03ES4fvvB83cpUA2xl/vj2njfo/y+M4XLw+SEWjyeb7Ha8d0/+O/sS6M2kk/psVfd1laXPBT6V6WFu6jQGRwrVHg9eoC1Cgt9nrIF0PrFxsjXxqsi+QSAv/4sLmpYn9Z7qx1RVrC5NcX1sG1PPglsf/WX+oPfgc6SWKDDr1rbsn8zkRscqB1t2KuOzaJ0bpbM9cdCxu07jaG7qQEQvsoYD6q+DEeqv3aCrEfML5VG6D92gm5k/cTcOMAjBnF3H6lg/ZTy4Gb7RVAXwD96m6sI8G5q2v9G0DNPZ1r9SL4gwroF7JN8EpnjatMbIJXejbBq4g3wW8QbA6imW+KEgvkUHXHCCnqSBBGA4t6VyFFfTXQfsCYUczt5xb1lcCivgroi9VCivqbQM29nWu9RVDUVwko6mucNa41UdTXeIr6WuKi/iZBcevOvKgnFsih6n5VSFFHgrA7sKj3EFLU1wHtB4wZxdx+blFfAyzqa4G+WCekqL8N1NzHuVZfgqK+VkBRX++scYOJor7eU9Q3EBf1twmKW0/mRT2xQA5Vdy8hRR0Jwp7Aov6mkKK+EWg/YMwo5vZzi/p6YFHfAPTFRqJChC7sG4D22wS4VnRMTEx0l4Ay1Si3iahRbnO4UQ7rpM0Eu8UtzBvltO4tBI1YsetcFrTpluDPrcHvotgcdiTYJPVhvjns5GjuTKC7r5DNzTbkX4zAzQ2V/SLB9kPyabuQyYcdlsQMBWO7ELCmP3Pd0Y7mGALdA4Qw9mdgvgB9rQZYyNidQhi7y5KYoWBsVwLWDGKuu5uj+WUC3YOFMHY3MF+AvlaDLWTsL0IYuyccM2xi5ldwzFDUlVcI+DqUeV3p7mh+lUD3MCF15TdgXAJ9rZD2o+xIoBiiRcc48FCJrCNhr7PGfSY6EvZ6OhL2xetISCzJAqF9kA6ADth9IARSvwPthxzWY24/94R6L3Ajsw/oC6BfrR8Q2ycA8n84a9xvAvJ/eCC/3wDkkYmBHBj6SAjkDzAdGGJuPxfyfwAhvx/oiwNCIC9hYGi/AMgfdNZ4yATkD3ogf8gA5JGJgRwg+VgI5A8zHSBhbj8X8geBkD8E9MVhIZCXMEBySADkjzhrPGoC8kc8kD9qAPLIxEAOFIwUAvljTAcKmNvPhfwRIOSPAn1xjAhMaNAfBdrvuMCBguNEAwUnwgMFWCedINg9nGQ+UKB1nzQwUHAy+PMU0UCBbg7YRnBwPIr5gblu4t5BoHu0kM3NaWBBBfpajRbSVIPk0xkhjVh/WhIzFIz9mYA1Y5nr1k3cuwh0jxPC2L+A+QL0tRpnIWPPCmHsOUtihoKxuwlYM4G5bt3EvYdA90QhjD0PzBegr9VECxn7txDGXgjHDJuYuch8oGBD2riHOiBtOIV5XdGDHr8R6P5CSF35BxiXQF8rpP0oT6glDBQAD5XITqgvOWu8bOKE+pLnhPqygRNq5KkecqDgSyGQ+pfpQAFz+7kn1JeAG5nLQF8A/Wr9QMFlAZC/4qzxqgnIX/FA/qoByCMTAzlQMEMI5K8xHShgbj8X8leAkL8K9MU1IZCXMFBwVQDkrztrvGEC8tc9kL9hAPLIxEAOFMwUAvmbTAcKmNvPhfx1IORvAH1xUwjkJQwU3BAA+VvOGm+bgPwtD+RvG4A8MjGQAwWzhUD+DtOBAub2cyF/Cwj520Bf3CECExr0t4H2uytwoOAu0UDBvfBAAdZJ9wh2D/eZDxRo3fcNDBTcD/58QDRQoJsDThMcHM9hfmCum7j/JNA9V8jm5iGwoAJ9reYKaapB8umRkEYsXZ1siBkKxv5FwJp5zHXrJu5zBLrnC2FsBDBfgL5W8y1kbGQ6GYxNYknMUDD2PAFrFjLXrZu4LxDoXiSEsVHAfAH6Wi2ykLFJhTA2WThm2MRMcnDMUDQdnyTg6w/M64oe9PiHQPcSIXUlBTAugb5WSPtRnlBLGCgAHiqRnVCndOIwVToDJ9Qp0yU8odZf6vd8J/qEGnmqhxwoWCYEUqmBkEIOFDC3n3tCnTIdzhepgL4A+tX6gQKgX8ggn8ZZY1oTkE/jgXxaA5BHJgZyoGCFEMinA9oPOVDA3H4u5NMAIZ8W6It0QiAvYaAgrQDIp3fWmMEE5NN7IJ/BAOSRiYEcKFgpBPIZgfZDDhQwt58L+fRAyGcA+iKjEMhLGCjIIADymZw1ZjYB+UweyGc2AHlkYiAHClYLgXwWoP2QAwXM7edCPhMQ8pmBvshCBCY06DMD7ZcVcC3TAwVZgX6Kv95s6eJ+Dw8UhHhN7aRs6fDXzQ4Mfird2dPBffSfgYLsQdvmCH4XxeDGQ4KD47XMD8x1E7cvHV73OiGbm5zAggr0tVonpKkGyadcQhqxHrMkZigYG0HAmo3Mdesm7iQEujcJYezjwHwB+lptspCxuYUwNo8lMUPB2CgC1mxlrls3cScj0L1NCGPzAvMF6Gu1zULG+oUwNl84ZtjETH7mAwW308Y91AFpw5+Z1xU96JGCoK7sFFJXCgDjEuhrtZN53Gg25CSIm1+Y69b3cB4j0L1HSL48AcwXoK/VHiE1dRlwSK+gkH1YIeA6+wBjpq8Axj5OwJq9zHXrezh5CHTvE8LYwsB8Afr6/2vvPYClKrro38sVAQXJcAUDKCgICNMkUTESFFQERATEQLhXJKmYlQyioiBJskTJQXJOIlFREJCcQTKIioiK8rr//7nDdT559erNWqf2rp6pOjX41Vdneu2192/3nO6eazZ7yNiiShh7G3Cc7wJzpq0CxhYgsGarcN3uGc5NBN3blDC2GLBegF6bbR4ytrgSxpYAjrMDMGc6CmdNrqyX9jch/dgpXLd75lmIoHuXEsbeDqwXoNdml4eMLamEsaWA4+wCzJmuSmouBIxfA2D8nvaw5oySmivtWc6g41eG9FMKodheyJ8VUFNzZZXUXDnPcgYdv/Kkk+2h2F7IU95qau4OJTVXwbOcQcfvTtJB41BsL+ShWzU1d5eSmrvbk5xBPztyv/7wNmE/2l7hut+xmt8l6N6nhLEVgfUC9Nrs85Cx9yhh7L2e5AyDsW0JrDkoXHc7q7k9QfchJYy9D1gvQK/NIQ8Ze78Sxj7gSc4wGNuBwJojwnV3tJo7EXQfVcLYB4H1AvTaHPWQsZWUMLayJznDYGxnAmtOCNfdxWruStB9UgljqwDrBei1OekhY6sqYexDnuQMg7HvEVjzk3Dd3azm9wm6zyhh7MPAegF6bc54yNhqShhb3ZOcYTD2AwJrfhWu+0OruTtB91kljH0EWC9Ar81ZDxn7qBLGPuZJzjAY+xGBNb8L1/2x1dyDoPu8EsbWANYL0Gtz3kPGPq6EsTU9yRkGY3sSWPOXcN2fWM29CLovKGFsLWC9AL02FzxkbG0ljH3Ck5xhMLY3gTUXhevuYzX3JehOuFUHY+sA6wXotWHFTzJjn1TC2Lqe5AyDsf0IrLlCuO5Preb+BN3plTD2KWC9AL026T1kbD0ljK3vSc4wGDuAwJqMwnUPtJoHEXRnUsLYBsB6AXptMnnI2KeVMLahJznDYOxgAmsyC9c9xGoeStCdRQljnwHWC9Brk8VDxj6rhLHPeZIzDMZ+RmBNNuG6h1nNwwm6syth7PPAegF6bbJ7yNhGShjb2JOcYTB2BIE1uYTrHmk1jyLozq2EsU2A9QL02uT2kLFNlTA22ZOcYTB2NIE1ScJ1f241jyHovlYJY1OA9QL02lzrIWNfUMLYZp7kDIOxYwmsuU647nFW83iC7uuVMPZFYL0AvTbXe8jY5koY28KTnGEwdgKBNQWE655oNU8i6C6ohLEtgfUC9NoU9JCxrZQwtrVnOYOO30ue/c0qyTX3MrjmGH15MqE/FRLel6dYzVMJugsrYcQrwLwEem20xK8NMH4DgIwd6CFjX1XA2C8IrCkinLHTrObpBN1FlTDiNWBeAr02WuL3OjB+k4CMnewhY99QwNgZBNa8mVVHrbwF9GcpsFaWeVgrbyt5zvIOcJz1gTnTUEnOpAPe612YF6a8y5N0Cf/7QjP3XSAb0463bdZL/04f5V1CmjrIQNCUEPU50XHM+h//m+jG6ExyAYX/0aasuORn6W6XFe5RKDE81vTg8boGlCsr9n4h4P3cH49H/mF21yTfIfiTgK1Nk/qP9nasHbISi9/d2CVX+/CHpP63+9CC4c9AF0lq0qFnzcWFP5lILQ607hLCdacWMVr37cJ1p8IGrbtkQE9SQrG9DLAeTdocjzV+pZTED5jfpiQwfiElT/I6AicOwJwxwuNXOhw/0x442e4A9ALoa2RinQiuXdfrywA1l7X3Kkf4QgX0hTYJ7mTH2DmISXCnqElwZ/IkuAxhcnCH8EnR5RI5Vt0VlDR1JAjvADb1O5U09S7A+AFzxgiPX6SpdwI29c7ILX9Kmnp5ZP3ae1UgNPXOCpp6VzvG94Jo6l2jmvp75KZentDc7hHe1C+XyLHqvldJU0eC8B5gU79PSVPvBowfMGeM8PhFmnpXYFN/D+hFNyVN/U6g5rvsve4mNPX3FDT19+0YPwiiqb8f1dQ/IDf1OwnNrZLwpn65RI5Vd2UlTR0JwkrApl5FSVP/EBg/YM4Y4fGLNPX3gU39A6AXH5IaEbqxfwCMX3fAvZJTUlKSm4ZMUBvlupM2yn0U3yiHNekjwmzxY+Eb5ZzujwkbsVLH2S4c04/D7z3Cn8WYHBYmTJKqCZ8c3mI130rQXV3J5KYnsKECvTas+CWC44fk0ydKTj708iRnGIwtQmDNY8J1F7WabyPorqGEsb2B9QL02tTwkLF9lDC2ryc5w2BsMQJragnXXdxqLkHQXVsJY/sB6wXotantIWM/VcLY/vGcEZMzA8A5w+grtxP4+qTwvlLSai5F0F1XSV8ZCMxLoNcGGT/mjgTGIVp0jgMXlWg7EgbZMQ4OYkfCoKgdCYPT7Ei4XJGFYnshDYAesKuvBFJDgPFDHtYTHr/ICvUg4ERmMNALoK/eHxAbrADyQ+0YPwsC8kOjIP9ZAJBHFgbywNDTSiA/TOiBIeHxi0B+KBDynwG9GKYE8hoODH2mAPLD7RhHBAH54VGQHxEA5JGFgTxA8owSyI8UeoBEePwikB8OhPwIoBcjlUBewwGSEQogP8qOcXQQkB8VBfnRAUAeWRjIAwXPKYH850IPFAiPXwTyo4CQHw304nMSmNCgHw2M3xiFBwrGkA4UjI0fKMCaNJYwexgn/ECB0z0ugAMF48Lv40kHCtzmgJ6EheNGwhfM3SbuXgTdjZVMbiYAGyrQa9NYyaYaJJ8mKtmINcmTnGEwtjeBNcnCdbtN3H0JulOUMHYysF6AXpsUDxk7RQljp3qSMwzG9iOw5kXhut0m7v4E3c2VMPYLYL0AvTbNPWTsNCWMnR7PGTE5M0P4gYIPsl76UQdkDFsJ7yvuoMdAgu7WSvrKTGBeAr02yPgxV6g1HCgALirRVqhn2THODmKFelbUCvXsAFaokat6yAMFryiB1ByhBwqExy+yQj0LOJGZDfQC6Kv3BwpmK4D8XDvGeUFAfm4U5OcFAHlkYSAPFLyqBPLzhR4oEB6/COTnAiE/D+jFfCWQ13CgYJ4CyC+wY1wYBOQXREF+YQCQRxYG8kDB60ogv0jogQLh8YtAfgEQ8guBXixSAnkNBwoWKoD8YjvGJUFAfnEU5JcEAHlkYSAPFLypBPJLhR4oEB6/COQXAyG/BOjFUhKY0KBfAozfMoUHCpaRDhR8GT9QgDXpS8LsYbnwAwVO9/IADhQsD79/RTpQ4DYHTCAsHL8tfMHcbeKeRND9jpLJzQpgQwV6bd5RsqkGyaeVSjZirfIkZxiMnUxgTTvhut0m7qkE3e2VMHY1sF6AXpv2HjJ2jRLGrvUkZxiM/YLAmk7CdbtN3NMJujsrYezXwHoBem06e8jYb5Qwdl08Z8TkzLfCDxSMznrpRx2QMXxPeF9xBz1mEnR3U9JXvgPmJdBrg4wfc4Vaw4EC4KISbYV6vR3jhiBWqNdHrVBvCGCFGrmqhzxQ8KESSH0v9ECB8PhFVqjXAycyG4BeAH31/kDBBgWQ32jHuCkIyG+MgvymACCPLAzkgYKPlEB+s9ADBcLjF4H8RiDkNwG92KwE8hoOFGxSAPkf7Bi3BAH5H6IgvyUAyCMLA3mgoIcSyG8VeqBAePwikP8BCPktQC+2KoG8hgMFWxRAfpsd4/YgIL8tCvLbA4A8sjCQBwo+UQL5HUIPFAiPXwTy24CQ3w70YgcJTGjQbwfGb6fCAwU7SQcKdsUPFGBN2kWYPewWfqDA6d4dwIGC3eH3PaQDBW5zwArCwnFv4QvmbhP3KoLuPkomN3uBDRXotemjZFMNkk/7lGzE2u9JzjAYu5rAmk+F63abuNcSdPdXwtgDwHoBem36e8jYg0oYe8iTnGEw9msCawYJ1+02ca8j6B6shLE/AusF6LUZ7CFjDyth7JF4zojJmaPCDxQsyXrpRx2QMfxMeF9xBz2+I+gepqSvHAPmJdBrM0x43jg27CXkzUjhut0znP0E3aOU1MtxYL0AvTajlPTUdsCeekLJPOwkcJzVgDlTXQFjDxBYM0a4bvcM5xBB91gljD0FrBeg12ash4w9rYSxPwHH+RgwZ2ooYOyPBNZMEK7bPcM5QtA9UQljzwDrBei1meghY39WwthfgOOsBcyZ2sJZsz3rpf1NSD+mCNftnnkeI+ieqoSxvwLrBei1meohY88qYexvwHE+CcyZukpq7hzptztCsb2Qv2OhpuZ+V1Jz5z3LGXT8/iD9lEIothfyZwXU1NyfSmruL89yBh2/C6ST7aHYXshT3mpq7m8lNfePZzmDjt9F0kHjUGwv5KFbNTWXkE1HzaXL5kfOoJ8duV9/qEh4djRduO57rOZ7CbpnKGFsIrBegF6bGR4y9goljE3vSc4wGHsfgTWzheu+32p+gKB7jhLGXgmsF6DXZo6HjM2ghLEZPckZBmMfJLBmvnDdlazmygTdC5QwNhOwXoBemwUeMvYqJYy92pOcYTC2CoE1i4Xrrmo1P0TQvUQJYzMD6wXotVniIWOzKGHsNZ7kDIOxDxNY86Vw3dWs5uoE3cuVMDYrsF6AXpvlHjI2mxLGZvckZxiMfYTAmpXCdT9qNT9G0L1KCWNzAOsF6LVZ5SFjcyphbC5PcobB2BoE1qwVrvtxq7kmQffXShibG1gvQK/N1x4yNo8Sxub1JGcYjK1FYM23wnXXtpqfIOj+Tgljk4D1AvTafOchY69Vwth8nuQMg7F1CKz5XrjuJ63mugTdG5UwNj+wXoBem40eMvY6JYy93pOcYTD2KQJrfhCuu57VXJ+ge4sSxt4ArBeg12aLh4y9UQljC3iSMwzGNiCwZrtw3U9bzQ0JuncoYWxBYL0AvTY7PGTsTUoYe7MnOcNg7DME1uwWrvtZq/k5gu49ShhbCFgvQK/NHg8ZW1gJY2/xJGcYjH2ewJr9wnU3spobE3QfUMLYW4H1AvTaHPCQsUWUMLaoJznDYGwTAmt+FK67qdWcTNB9WAljbwPWC9Brc9hDxhZTwtjinuQMg7EpBNYcE677Bau5GUH3cSWMLQGsF6DX5riHjL1dCWNLepIzDMa+SGDNKeG6m1vNLQi6TythbClgvQC9Nqc9ZGxICWONJznDYGxLAmt+Fq67ldXcmqD7FyWMLQ2sF6DX5hcPGVtGCWPLepIzDMa+RGDNb8J1v2w1v0LQfU4JY8sB6wXotTnnIWPLK2HsHZ7lDDp+FYDx0/B3ASXX3J3gmmP05TaE/vSH8L78qtX8GkH3n0oYcRcwL4FeGy3xuxsYvxeB8WvuIWMrKmDs6wTW/C2csW9YzW8SdP+jhBH3APMS6LXREr97gfFrB4xfew8Ze58Cxr5FYM392XTUygNAf3oDa6WPh7XyoJLnLJWA4ywOzJmSSnImHfBelWFemDtcnqRL+N8XmrmVgWxMO94q2S79O32Udwlp6iADQVNC1OdExzHrf/xvohujM8kFFP4HRbLhkp+lu2o2uEehxPBY04PH6xrQ9qzY+50D3u93e6/zwPu5JlmJ4E8CtjZN6j8esmN9OBux+N2NXXI9FP6Q1P92H1ow/BnoIklNOvSsOV0R2U8mUosDrTtRuO7UIkbrvkK47lTYoHWnL8IB1xVg/cB6NGlzPOa/LqskfsD8NumB8csQUPxiHWc14DdNYM4Y4fErHY6feQg42X4Y6AXQ18jEOhFcu67X/wGcuP5p7/VXVnyPepj0pBEwxsgkuLod4yNBTIKrR02CHyFPgv8gTIquET4pulwix/xn4JQ0dSQIrwE29WxKmvqjwPgBc8YIj1+kqVcHNvVHgF48qqSpXwA29b/tvf4hNPVHFDT1x+wYawTR1B+Lauo1yE39AqG55RLe1C+XyDH/TSwlTR0JwlzApp5HSVN/HBg/YM4Y4fGLNPXHgE29BtCLx5U09YvApp7g+g1h6bOGgqZe046xVhBNvWZUU69FbuoXCc0tn/CmfrlEjvkPBClp6kgQ5gM29euUNPXawPgBc8YIj1+kqdcENvVaQC9qkxoRurHXAsbvCcC9klNSUpKb2mW9hGA2yj1B2ihXJ75RDmtSHcJs8UnhG+Wc7icJG7FSx1k1HNMnw+91w5/FmBweJ0wOCwifHJ6wmk8SdBdUMrl5CthQgV4bVvwSwfFD8qmekpMP9T3JGQZjTxFYU0i47tNW808E3YWVMLYBsF6AXpvCHjL2aSWMbehJzjAYe4bAmiLCdf9sNf9C0F1UCWOfAdYL0GtT1EPGPquEsc/Fc0ZMzjwv/BcSXF/5lcDX4sL7ylmr+TeC7hJK+koj5Cl/ICOQ8WPuSGAcokXneC3SQhBgjJEdCY3tGJsEsSOhcdSOhCZpdiRcrshCsb2QBkAP2JVSAqmmwPghD+sJj19khboxcCLTBOgF0FfvD4g1UQD5ZDvGlCAgnxwF+ZQAII8sDOSBIaME8i8IPTAkPH4RyCcDIZ8C9OIFJZDXcGAoRQHkm9kxvhgE5JtFQf7FACCPLAzkAZIySiDfXOgBEuHxi0C+GRDyLwK9aK4E8hoOkLyoAPIt7BhbBgH5FlGQbxkA5JGFgTxQUE4J5FsJPVAgPH4RyLcAQr4l0ItWJDChQd8SGL/WCg8UtCYdKHgpfqAAa9JLhNnDy8IPFDjdLwdwoODl8PsrpAMFbnPAU4RTl3cIXzB3m7jrE3RXUDK5aQNsqECvTQUlm2qQfHpVyUas1zzJGQZjGxBYc7dw3W4Td0OC7opKGPs6sF6AXpuKHjL2DSWMfdOTnGEw9hkCa+4Trttt4n6OoPt+JYx9C1gvQK/N/R4y9m0ljH0nnjNicuZd4QcKamW79KMOyBhWEt5X3EGPRgTdlZX0lbbAvAR6bZDxY65QazhQAFxUoq1Qt7NjbB/ECnW7qBXq9gGsUCNX9ZAHCh5SAqkOQg8UCI9fZIW6HXAi0x7oBdBX7w8UtFcA+Y52jJ2CgHzHKMh3CgDyyMJAHiiopgTynYUeKBAevwjkOwIh3wnoRWclkNdwoKCTAsh3sWPsGgTku0RBvmsAkEcWBvJAwSNKIP+e0AMFwuMXgXwXIOS7Ar14TwnkNRwo6KoA8t3sGN8PAvLdoiD/fgCQRxYG8kDBY0og/4HQAwXC4xeBfDcg5N8HevEBCUxo0L8PjN+HCg8UfEg6UNA9fqAAa1J3wuzhI+EHCpzujwI4UPBR+P1j0oECtzmgDWHh+HHhC+ZuE/drBN01lUxuegAbKtBrU1PJphokn3oq2Yj1iSc5w2Ds6wTWPCFct9vE/SZBdx0ljO0FrBeg16aOh4ztrYSxfTzJGQZj3yKw5inhut0m7ncIuuspYWxfYL0AvTb1PGRsPyWM/TSeM2Jypr/wAwUts136UQdkDJ8W3lfcQY+2BN0NlfSVAcC8BHptkPFjrlBrOFAAXFSirVAPtGMcFMQK9cCoFepBAaxQI1f1kAcKnlMCqcFCDxQIj19khXogcCIzCOgF0FfvDxQMUgD5IXaMQ4OA/JAoyA8NAPLIwkAeKGikBPKfCT1QIDx+EcgPAUJ+KNCLz5RAXsOBgqEKID/MjnF4EJAfFgX54QFAHlkYyAMFTZRAfoTQAwXC4xeB/DAg5IcDvRihBPIaDhQMVwD5kXaMo4KA/MgoyI8KAPLIwkAeKEhWAvnRQg8UCI9fBPIjgZAfBfRiNAlMaNCPAsbvc4UHCj4nHSgYEz9QgDVpDGH2MFb4gQKne2wABwrGht/HkQ4UuM0BPQgLxy8IXzB3m7g/IehupmRyMx7YUIFem2ZKNtUg+TRByUasiZ7kDIOxvQisaSFct9vE3Yegu6USxk4C1gvQa9PSQ8ZOVsLYKZ7kDIOxfQmseUm4breJ+1OC7peVMHYqsF6AXpuXPWTsF0oYOy2eM2JyZrrwAwXvZ7v0ow7IGL4qvK+4gx4DCLpfU9JXZgDzEui1eU143jg2jCfkzZvCdbtnOBMJut9SUi8zgfUC9Nq8paSnVgX21FlK5mGzgeMsAMyZggoYO4nAmneF63bPcKYQdLdVwtg5wHoBem3aesjYuUoYOw84zkLAnCmsgLFTCazpIFy3e4YzjaC7oxLGzgfWC9Br09FDxi5QwtiFwHEWAeZMUeGsGZXt0v4mpB9dhOt2zzxnEHR3VcLYRcB6AXptunrI2MVKGLsEOM7iwJwpoaTmlpJ+uyMU2wv5OxZqam6Zkpr70rOcQcdvOemnFEKxvZA/K6Cm5r5SUnMrPMsZdPxWkk62h2J7IU95q6m5VUpqbrVnOYOO3xrSQeNQbC/koVs1NbdWSc197UnOoJ8duV9/SCQ8O3pfuO4rrOb0BN0fKGHsN8B6AXptPvCQseuUMPZbT3KGwdgrCaz5SLjuDFZzRoLuj5Uw9jtgvQC9Nh97yNj1Shi7wZOcYTA2E4E1nwjXfZXVfDVBdy8ljP0eWC9Ar00vDxm7UQljN3mSMwzGZiawpq9w3Vms5msIuvspYexmYL0AvTb9PGTsD0oYu8WTnGEwNiuBNQOE685mNWcn6B6ohLFbgfUC9NoM9JCx25QwdrsnOcNgbA4Ca4YI153Tas5F0D1UCWN3AOsF6LUZ6iFjdyph7C5PcobB2NwE1gwXrjuP1ZyXoHuEEsbuBtYL0GszwkPG7lHC2L2e5AyDsUkE1owWrvtaqzkfQffnShi7D1gvQK/N5x4ydr8Sxh7wJGcYjM1PYM044bqvs5qvJ+ger4SxB4H1AvTajPeQsYeUMPZHT3KGwdgbCKyZJFz3jVZzAYLuyUoYexhYL0CvzWQPGXtECWOPepIzDMYWJLDmC+G6b7KabybonqaEsceA9QL02kzzkLHHlTD2hCc5w2BsIQJrZgrXXdhqvoWge5YSxp4E1gvQazPLQ8aeUsLY057kDIOxtxJYM1e47iJWc1GC7nlKGPsTsF6AXpt5HjL2jBLG/uxJzjAYexuBNQuF6y5mNRcn6F6khLG/AOsF6LVZ5CFjf1XC2LOe5AyDsSUIrFkqXPftVnNJgu5lShj7G7BegF6bZR4y9pwSxv7uSc4wGFuKwJqvhOsOWc2GoHuFEsaeB9YL0GuzwkPG/qGEsX96kjMMxpYmsGa1cN1lrOayBN1rlDD2L2C9AL02azxk7AUljP3bk5xhMLYcgTXfCNdd3mq+g6B7nRLG/gOsF6DXZp2HjL2ohLEJ2f3IGQZjKxBYs1647jut5rsIujcoYWw6YL0AvTYbPGRsYnYdjL3Cs5xBxy89MH4a/vaq5Jq7ElxzjL58N6E/bRLelytazfcQdG9WwogMwLwEem20xC8jMH73AeN3v4eMzaSAsfcSWLNVOGPvcx4TdG9TwoirgHkJ9Npoid/VwPg9AYxfHQ8Zm1kBYx8gsCZLdh21cg3QnxeAtdLMw1rJquQ5SzbgONMBcya9kpxJB7xXdpgXpoLLk3QJ//tCMzc7kI1px5sj+6V/p4/yLiFNHWQgaEqI+pzoOGb9j/9NdGN0JrmAwn/sPjtwUY2kO2d2uEehxPBY04PH6xrQqGzY+y0F3m+ZvdeXwPu5JpmN4E8CtjZN6j9y2bHmzk4sfndjl1y5wh+S+t/uQwuGPwNdJKlJh5417xT+ZCK1ONC6dwnXnVrEaN27hetOhQ1a956AnqSEYnsZYD2atDke8y/TK4kfML/NHmD89il5kpcH+E0TmDNGePxKh+NncgEn27mBXgB9jUysE8G163r9cuTpE3uvFdnwPQroC20SnNeOMSmISXDeqElwEnkSvJwwKToifFJ0uUSO+SdklTR1JAiPAJv6MSVN/Vpg/IA5Y4THL9LU8wKbehLQi2uVNPWVwKa+yt5rNaGpJylo6vnsGPMH0dTzRTX1/OSmvpLQ3E4Jb+qXS+SYf09TSVNHgvAUsKn/pKSpXweMHzBnjPD4RZp6PmBTzw/04jolTX0NsKmvtff6mtDU8yto6tfbMd4QRFO/Pqqp30Bu6msIze1X4U39cokc848LKmnqSBD+Cmzqvylp6jcC4wfMGSM8fpGmfj2wqd8A9OJGUiNCN/YbgPErALhXckpKSnLTkAlqo1wB0ka5gvGNcliTChI2yt0kfKOc030TYSNW6jhzhmN6U/j95vBnMSaHMwmTpD+ETw5nWc2zCbr/VDK5KQRsqECvDSt+ieD4IflUWMnJh1s8yRkGY+cQWPO3cN1zreZ5BN3/KGHsrcB6AXpt/vGQsUWUMLaoJznDYOx8AmvSFZWte4HVvJCgO7GoDsbehjyNidNsWPGTzNhiShhbPJ4zYnKmBDhnGH1lEYGvVwrvK4ut5iUE3RmU9JXbgXkJ9Nog48fckcA4RIvOceCiEm1HQkk7xlJB7EgoGbUjoVSaHQmXK7JQbC+kAdADdlcpgVQIGD/kYT3h8YusUJcETmRKAb0A+ur9AbFSCiBv7BhLBwF5EwX50gFAHlkYyANDmZVAvozQA0PC4xeBvAFCvjTQizJKIK/hwFBpBZAva8dYLgjIl42CfLkAII8sDOQBkmuUQL680AMkwuMXgXxZIOTLAb0orwTyGg6QlFMA+TvsGCsEAfk7oiBfIQDIIwsDeaAgmxLI3yn0QIHw+EUgfwcQ8hWAXtxJAhMa9BWA8btL4YGCu0gHCu6OHyjAmnQ34UBBReEHCpzuigEcKKgYfr+HdKDAbQ4olB2/cJxD+IK528R9C0F3TiWTm3uBDRXotcmpZFMNkk/3KdmIdb8nOcNg7K0E1uQRrttt4i5K0J1XCWMfANYL0GuT10PGPqiEsZU8yRkGY28jsCafcN1uE3dxgu78ShhbGVgvQK9Nfg8ZW0UJY6vGc0ZMzjwk/ECB2/N6E4GvNwjvK+6gx+0E3Tcq6SsPA/MS6LW5MX6ggLLAEorxlRD1ivG+kRXqanaM1YNYoa4WtUJdPYAVauSqHvJAwU1KIPWI0AMFwuMXWaGuBpzIVAd6AfTV+wMF1RVA/lE7xseCgPyjUZB/LADIIwsDeaCgkBLI1xB6oEB4/CKQfxQI+ceAXtRQAnkNBwoeUwD5x+0YawYB+cejIF8zAMgjCwN5oOAWJZCvJfRAgfD4RSD/OBDyNYFe1FICeQ0HCmoqgHxtO8YngoB87SjIPxEA5JGFgTxQUEQJ5OsIPVAgPH4RyNcGQv4JoBd1SGBCg/4JYPyeVHig4EnSgYK6afaBxw8UxHhPZ1JdwoGCp4QfKHC6nwrgQMFT4fd6pAMFbnPAvYSF49uEL5j/n03cBN3FlExu6gMbKtBrU0zJphoknxoo2Yj1tCc5w2DsAwTW3C5ct9vEXYmgu6QSxjYE1gvQa1PSQ8Y+o4Sxz3qSMwzGViawxgjX7TZxVyXoLq2Esc8B6wXotSntIWOfV8LYRvGcEZMzjYUfKHB7XisS+FpOeF9xBz0eJugur6SvNAHmJdBrUz5+oICywBKK8ZUQ9YrxvpEV6qZ2jMlBrFA3jVqhTg5ghRq5qoc8UHCnEkilCD1QIDx+kRXqpsCJTDLQC6Cv3h8oSFYA+RfsGJsFAfkXoiDfLADIIwsDeaDgbiWQf1HogQLh8YtA/gUg5JsBvXhRCeQ1HChopgDyze0YWwQB+eZRkG8RAOSRhYE8UHCPEsi3FHqgQHj8IpBvDoR8C6AXLZVAXsOBghYKIN/KjrF1EJBvFQX51gFAHlkYyAMF9ymB/EtCDxQIj18E8q2AkG8N9OIlEpjQoG8NjN/LCg8UvEw6UPBKmn3g8QMFMd7TmfQK4UBBG+EHCpzuNgEcKGgTfn+VdKDAbQ6oT1g4fkD4grnbxP00QfeDSiY3rwEbKtBr86CSTTVIPr2uZCPWG57kDIOxDQmsqSJct9vE/SxBd1UljH0TWC9Ar01VDxn7lhLGvu1JzjAY+xyBNdWE63abuBsRdFdXwth3gPUC9NpU95Cx7yphbNt4zojJmXbCDxS4Pa9PEfj6mPC+4g56NCHorqGkr7QH5iXQa1NDeN44NrxGyJtawnW7ZzhvEHTXVlIvHYD1AvTa1FbSU3MCe2pHJfOwTsBx/gFcYP+ziHzGvklgzZPCGeue4bxN0F1XCWM7A+sF6LWp6yFjuyhhbFfgOP8GMvYfBYx9h8Ca+sIZ657htCXobqCEse8B6wXotWngIWO7KWHs+8BxpgPmTKJw1rTOfml/E9KPZ4Trds882xN0P6uEsR8A6wXotXnWQ8Z+qISx3YHjvBKYMxmU1NxHwPjtAn4P2F3Ev5r7WEnN9fAsZ9Dx6wmM3xFg/I56WHOfKKm5Xp7lDDp+vYHxOwWM32kPa66Pkprr61nOoOPXDxi/X4HxO+thzX2qpOb6e5Iz6GdH7tcfvsmGf3bUSPgzs3VW87cE3Y2VfH8fAKwXoNemsYfPzAYqYewgT3KGwdjvCKxJFq57vdW8gaA7RQljBwPrBei1SfGQsUOUMHaoJznDYOz3BNa8KFz3Rqt5E0F3cyWM/QxYL0CvTXMPGTtMCWOHe5IzDMZuJrCmlXDdP1jNWwi6Wyth7AhgvQC9Nq09ZOxIJYwd5UnOMBi7lcCaV4Tr3mY1byfobqOEsaOB9QL02rTxkLGfK2HsGE9yhsHYHQTWvC5c906reRdB9xtKGDsWWC9Ar80bHjJ2nBLGjvckZxiM3U1gzdvCde+xmvcSdL+jhLETgPUC9Nq84yFjJyph7CRPcobB2H0E1rQTrnu/1XyAoLu9EsZOBtYL0GvT3kPGTlHC2Kme5AyDsQcJrOkkXPchq/lHgu7OShj7BbBegF6bzh4ydpoSxk73JGcYjD1MYM17wnUfsZqPEnR3U8LYGcB6AXptunnI2JlKGDvLk5xhMPYYgTUfCtd93Go+QdDdXQljZwPrBei16e4hY+coYexcT3KGwdiTBNb0EK77lNV8mqC7pxLGzgPWC9Br09NDxs5XwtgFnuQMg7E/EVjTW7juM1bzzwTdfZQwdiGwXoBemz4eMnaREsYu9iRnGIz9hcCaT4Xr/tVqPkvQ3V8JY5cA6wXotenvIWOXKmHsMk9yhsHY3wisGSRc9zmr+XeC7sFKGPslsF6AXpvBHjJ2uRLGfuVJzjAYe57Ams+E6/7Dav6ToHuYEsauANYL0GszzEPGrlTC2FWe5AyDsX8RWDNSuO4LVvPfBN2jlDB2NbBegF6bUR4ydo0Sxq71JGcYjP2HwJoxwnVftJoTsuN1j1XC2K+B9QL02oz1kLHfKGHsOk9yhsHYdATWTBCuO9FqvoKge6ISxn4LrBeg12aih4z9Tglj13uSMwzGpiewZopw3VdazRkIuqcqYewGYL0AvTZTPWTs90oYu9GznEHHbxMwfhr+vrXkmtsMrjlGX85I6E/ThfflTFbzVQTdM5Qw4gdgXgK9NlritwUYv3zA+OX3kLFbFTD2agJrZgtnbGarOQtB9xwljNgGzEug10ZL/LYD43c7MH4lPWTsDgWMvYbAmp3ZddTKLqA/DwBr5UEPa2W3kucse4Dj3An8u+l7iujImXTAe+2FeWHudHmSLuF/X2jm7gWyMe1492W/9O/0Ud4lpKmDDARNCVGfEx3HrP/xv4lujM6kfdkJP8QMBCZL9/7scI9CieGxpgeP1zWg1tmx9/sIeL+P7b16AO/nmuQegj8J2No0qf84YMd6MDux+N2NXXIdCH9I6n+7Dy0Y/gx0kaQmHXrWPF/4k4nU4kDrXiBcd2oRo3UvFK47FTZo3YsCepISiu1lgPVo0uZ4zL/SoSR+wPw2i4DxW6LkSd4h4MQBmDNGePxKh+NnDgAn2weBXgB9jUysE8G163p9T6DmT+y9ehG+UAF9oU2Cf7RjPBzEJPjHqEnwYfIkuCdhcrBS+KTocokc83FaJU0dCcKVwKa+WklTPwKMHzBnjPD4RZr6j8CmfhjoxRElTb03UHMfe6++hKZ+WEFTP2rHeCyIpn40qqkfIzf13oTm9o3wpn65RI75bKGSpo4E4TfApv6tkqZ+HBg/YM4Y4fGLNPWjwKZ+DOjFcSVNvR9Q86f2Xv0JTf2YgqZ+wo7xZBBN/URUUz9Jbur9CM3te+FN/XKJHPNBKyVNHQnC74FNfZOSpn4KGD9gzhjh8Ys09RPApn4S6MUpUiNCN/aTwPidBtwrOSUlJblpyAS1Ue40aaPcT2n2z8Q3ysV4T2fST4TZ4hnhG+Wc7jOEjVip49wfjumZ8PvP4c9iTA47ECZJW4VPDjtazZ0Iurcpmdz8AmyoQK8NK36J4Pgh+fRrdl6DQWo+60nOMBjbmcCancJ1d7GauxJ071LC2N+A9QL02uzykLHnlDD2d09yhsHY9wis2Stcdzer+X2C7n1KGHseWC9Ar80+Dxn7hxLG/hnPGTE58xc4Zxh95QMCXw8K7ysfWs3dCboPKekrF4B5CfTaIOPH3JHAOESLznHgotK/chEwxsiOhL/tGP/JHsCOhL+jdiT8k2ZHwuWKLBTbC2kA9IDdESWQugiMH/KwnvD4RVao/wZOZP4BegH01fsDYv8ogHxCDqs7RwCQT8jxb8i7Dy0Y9ZloyCMLA3lg6JgSyCfmwMUPeWBIePwikE/IgfMiHdALoK/eHxgC+kKD/BV2jOmDgPwVUZBPHwDkkYWBPEByQgnkrwTGD3mARHj8IpC/Agj59EAvrlQCeQ0HSNIrgHwGO8aMQUA+QxTkMwYAeWRhIA8UnFIC+UzA+CEPFAiPXwTyGYCQzwj0IhMJTGjQZwTG7yrAvYI+UHAV0Ke04706x6V/xw8UxHhPZ9LVOQh/VgOY/CzdmXPAPfqfAwWZw7HNEv4sxsGNXwgLxz8JXzB3m7jPEnSfUTK5uQbYUIFemzNKNtUg+ZQ1B6/BIDVn8yRnGIz9jcCaX4Xrdpu4fyfoPquEsdmB9QL02pz1kLE5lDA2pyc5w2DseQJrfheu223i/pOg+7wSxuYC1gvQa3PeQ8bmVsLYPPGcEZMzecE5w9h0fIbA17+E9xV30OMCQfcFJX0lCZiXQK8NMn7MFWoNBwoykhaCAGOMrFBfa8eYL4gV6mujVqjzBbBCjVzVQx4ouKgEUvmB8UMeKBAev8gK9bXAiUw+oBdAX70/UJBPAeSvs2O8PgjIXxcF+esDgDyyMJAHCtLdpgPyNwg9UCA8fhHIXweE/PVAL25QAnkNBwquVwD5G+0YCwQB+RujIF8gAMgjCwN5oOAKJZAvKPRAgfD4RSB/IxDyBYBeFFQCeQ0HCgoogPxNdow3BwH5m6Igf3MAkEcWBvJAwZVKIF9I6IEC4fGLQP4mIORvBnpRiAQmNOhvBsavsMIDBYVJBwpuiR8owJp0C+FAwa3CDxQ43bcGcKDg1nBsi5AOFLjNAdfkwC8cZwQ3KbRut4k7G0F3JiWTm6LAhgr02rDih95Ug+TTbUo2YhXzJGcYjM1OYE1m4brdJu6cBN1ZlDC2OLBegF6bLB4ytoQSxt7uSc4wGJuLwJpswnW7Tdx5CLqzK2FsSWC9AL022T1kbCkljA3Fc0ZMzhjhBwoy5rj0ow7IGOYS3lfcQY8kgu7cSvpKaWBeAr02yPgxV6g1HCgALirRVqjL2DGWDWKFukzUCnXZAFaokat6yAMFSUogVU7ogQLh8YusUJcBTmTKAr0A+ur9gYKyCiBf3o7xjiAgXz4K8ncEAHlkYSAPFORTAvkKQg8UCI9fBPLlgZC/A+hFBSWQ13Cg4A4FkL/TjvGuICB/ZxTk7woA8sjCQB4ouE4J5O8WeqBAePwikL8TCPm7gF7crQTyGg4U3KUA8hXtGO8JAvIVoyB/TwCQRxYG8kDBDUogf6/QAwXC4xeBfEUg5O8BenEvCUxo0N8DjN99Cg8U3Ec6UHB//EAB2CTCgYIHhB8ocLofCOBAwQPh2D5IOlDgNgcUJSwcFxC+YO42cRcj6C6oZHJTCdhQgV6bgko21SD5VFnJRqwqnuQMg7HFCawpJFy328R9O0F3YSWMrYo8BQ2sl8IeMvYhJYx92JOcYTC2JIE1RYTrdpu4QwTdRZUwthqwXoBem6IeMra6EsY+Es8ZMTnzqPADBTfnuPSjDsgYFhfeV9xBj9IE3SWU9JXHgHkJ9NqUEJ43jg2VCHlTSrhu9wynCkF3SEm91ADWC9BrE1LSU/dnx93rcSXzsJrAcW4FLrBvE/7XgxxjqxJYU0Y4Y90znIcJussqYWwtYL0AvTZlPWRsbSWMfQI4zp1Axu5SwNhqBNbcIZyx7hnOIwTdFZQwtg6wXoBemwoeMvZJJYytCxznXiBj9wln7D05Lu1vQvpxt3DGumeejxF0V1TC2KeQJzaAjK3oIWPrKWFsfeA4DwIZe0jJH7NsQPrtjlBsL+TvWKipuaeV1FxDz3IGHb9nSD+lEIrthfxZATU196ySmnvOs5xBx+950sn2UGwv5ClvNTXXSEnNNfYsZ9Dxa0I6aByK7YU8dKum5poqqblkT3IG/ezI/frDgOz4Z0f3CX9mNtBqHkTQfb+SZ2YpwHoBem3u9/CZ2QtKGNvMk5xhMHYwgTWVhOseYjUPJeiurISxLwLrBei1qewhY5srYWwLT3KGwdjPCKx5SLjuYVbzcILuh5UwtiWwXoBem4c9ZGwrJYxt7UnOMBg7gsCaR4TrHmk1jyLoflQJY18C1gvQa/Ooh4x9WQljX/EkZxiMHU1gzePCdX9uNY8h6K6phLFtgPUC9NrU9JCxryph7Gue5AyDsWMJrHlCuO5xVvN4gu46Shj7OrBegF6bOh4y9g0ljH3Tk5xhMHYCgTVPCdc90WqeRNBdTwlj3wLWC9BrU89Dxr6thLHveJIzDMZOJrDmaeG6p1jNUwm6Gyph7LvAegF6bRp6yNi2ShjbzpOcYTD2CwJrnhOue5rVPJ2g+3kljG0PrBeg1+Z5DxnbQQljO3qSMwzGziCwpolw3TOt5lkE3U2VMLYTsF6AXpumHjK2sxLGdvEkZxiMnU1gzQvCdc+xmucSdDdTwtiuwHoBem2aecjY95QwtpsnOcNg7DwCa1oI1z3fal5A0N1SCWPfB9YL0GvT0kPGfqCEsR96kjMMxi4ksOYl4boXWc2LCbpfVsLY7sB6AXptXvaQsR8pYezHnuQMg7FLCKx5VbjupVbzMoLu15QwtgewXoBem9c8ZGxPJYz9xJOcYTD2SwJr3hSue7nV/BVB91tKGNsLWC9Ar81bHjK2txLG9vEkZxiMXUFgzbvCda+0mlcRdLdVwti+wHoBem3aesjYfkoY+6knOcNg7GoCazoI173Gal5L0N1RCWP7A+sF6LXp6CFjByhh7EBPcobB2K8JrOkiXPc3VvM6gu6uShg7CFgvQK9NVw8ZO1gJY4d4kjMMxn5LYM37wnV/ZzWvJ+j+QAljhwLrBei1+cBDxn6mhLHDPMkZBmM3EFjzkXDd31vNGwm6P1bC2OHAegF6bT72kLEjlDB2pCc5w2DsJgJrPhGue7PV/ANBdy8ljB0FrBeg16aXh4wdrYSxn3uWM+j4jQHG7yDwb04e8vDvlI4F1xyjL28h9Ke+wvvyVqt5G0F3PyWMGAfMS6DXRkv8xgPj9zuQsec9ZOwEBYzdTmDNAOGM3WE17yToHqiEEROBeQn02miJ3yRg/DID45fFw++OkxUwdheBNVNy6KiVqUB/CgBrpaCHtfKFkucs04DjnA+cwy5SModNB7zXdJgXppHLk3QJ//tCM3c6kI1pxzsjx6V/p4/yLiFNHWQgaEqI+pzoOGb9j/9NdGN0JrmAwn8kNAcu+Vm6Z+aAexRKDI81PXi8rgHdkwN7vwbIH1e392oIvJ9rktMI/iRga9Ok/mOWHevsHMTidzd2yTUr/CGp/+0+tGD4M9BFkpp06FnzEOFPJlKLA617qHDdqUWM1v2ZcN2psEHrHhbQk5RQbC8DrEeTNsdj3oGlJH7A/DbDgPEboeRJ3hzgxAGYM0Z4/EqH42dmASfbs4FeAH2NTKwTwbXrev0zQM3P2ns9R/hCBfSFNgmea8c4L4hJ8NyoSfA88iT4GcLkYJzwSdHlEjnmpXElTR0JwnHApj5BSVOfD4wfMGeM8PhFmvpcYFOfh3yUr6SpPw/U3MjeqzGhqc9T0NQX2DEuDKKpL4hq6gvJTf15QnObIrypXy6RY15fVtLUkSCcAmzqXyhp6ouA8QPmjBEev0hTXwBs6guBXixS0tSbADU3tfdKJjT1hQqa+mI7xiVBNPXFUU19CbmpNyE0t5nCm/rlEjlW3bOUNHUkCGcCm/psJU19KTB+wJwxwuMXaeqLgU19CdCLpaRGhG7sS4DxWwa4V3JKSkpy05AJaqPcMtJGuS/jG+WwJn1JmC0uF75RzuleTtiIlTrOmeGYLg+/fxX+LMbksAZhkjRf+OTwcau5JkH3AiWTmxXIR9/AyQ0rfong+CH5tFLJyYdVnuQMg7G1CKxZLFx3bav5CYLuJUoYuxpYL0CvzRIPGbtGCWPXepIzDMbWIbDmS+G6n7Sa6xJ0L1fC2K+B9QL02iz3kLHfKGHsunjOiMmZb8E5w+grTxH4ulJ4X6lnNdcn6F6lpK98B8xLoNcGGT/mjgTGIVp0jgMXlWg7EtbbMW4IYkfC+qgdCRvS7Ei4XJGFYnshDYAesFurBFLfA+OHPKwnPH6RFer1wInMBqAXQF+9PyC2QQHkN9oxbgoC8hujIL8pAMgjCwN5YOgbJZDfLPTAkPD4RSC/EQj5TUAvNiuBvIYDQ5sUQP4HO8YtQUD+hyjIbwkA8sjCQB4g+VYJ5LcKPUAiPH4RyP8AhPwWoBdblUBewwGSLQogv82OcXsQkN8WBfntAUAeWRjIAwXrlUB+h9ADBcLjF4H8NiDktwO92EECExr024Hx26nwQMFO0oGCXfEDBViTdhFmD7uFHyhwuncHcKBgd/h9D+lAgdscsIKwcPy98AVzt4l7FUH3RiWTm73I9Q/g5Gajkk01SD7tU7IRa78nOcNg7GoCa34Qrttt4l5L0L1FCWMPAOsF6LXZ4iFjDyph7CFPcobB2K8JrNkuXLfbxL2OoHuHEsb+CKwXoNdmh4eMPayEsUfiOSMmZ44KP1Dg9rwuJ/B1t/C+4g56fEfQvUdJXzkGzEug1wYZP+YKtYYDBcBFJdoK9XE7xhNBrFAfj1qhPhHACjVyVQ95oGC/EkidFHqgQHj8IivUx4ETmRNAL4C+en+g4IQCyJ+yYzwdBORPRUH+dACQRxYG8kDBQSWQ/0nogQLh8YtA/hQQ8qeBXvykBPIaDhScVgD5M3aMPwcB+TNRkP85AMgjCwN5oOBHJZD/ReiBAuHxi0D+DBDyPwO9+EUJ5DUcKPhZAeR/tWM8GwTkf42C/NkAII8sDOSBgiNKIP+b0AMFwuMXgfyvQMifBXrxGwlMaNCfBcbvnMIDBedIBwp+jx8owJr0O2H2cF74gQKn+3wABwrOh9//IB0ocJsD9hIWjo8JXzB3m7j3E3QfVzK5+RPYUIFem+NKNtUg+fSXko1YFzzJGQZjDxBYc0q4breJ+xBB92kljP0bWC9Ar81pDxn7jxLGXvQkZxiM/ZHAmp+F63abuI8QdP+ihLEJOYEPTIH18ouHjE2XUwdjE+M5IyZnrgDnDGPT8W4CX38T3lfcQY9jBN3nlPSV9MC8BHptkPFjrlBrOFAAXFSirVBfafMwQ84AVqivzPnvFWr3oQWjPhO9Qo1c1UMeKPhDCaQyAiGFPFAgPH6RFeorc+K8yAD0Auir9wcKgL7QIJ/JjvGqICCfKQryVwUAeWRhIA8U/KUE8lcD44c8UCA8fhHIZwJC/iqgF1crgbyGAwVXKYB8ZjvGLEFAPnMU5LMEAHlkYSAPFPytBPLXAOOHPFAgPH4RyGcGQj4L0ItrlEBew4GCLAogn9WOMVsQkM8aBflsAUAeWRjIAwUXlUA+OzB+yAMFwuMXgXxWIOSzAb3ITgITGvTZgPHLAbhX0AcKcgB9SjvenDkv/Tt+oCDGezqTcubE3zcXMPlZunPlhHv0PwcKcoVjmzv8WYyDG38SFo7TFZO9YO42cV8g6E4spmNykwfYUIFeG1b80JtqkHzKq2QjVpInOcNg7N8E1lwpXLfbxH2RoDuDEsZeC6wXoNcmg4eMzaeEsfk9yRkGYxNy4llzlXDdbhN3IkH31UoYex2wXoBem6s9ZOz1Shh7QzxnxOTMjcIPFJzNcelHHZAxvEZ4X3EHPdIT+kpWJX2lAHJVGciIrMLzxrEhDyFvcgjX7Z7hJBF051RSLwWB9QL02uRU0lNnAg/p3aRkHnYzcJzzgQvsC4Qf9nOMvZbAmjzCGeue4eQn6M6rhLGFgPUC9Nrk9ZCxhZUw9hbgOBcDGbtEAWOvI7Amn3DGumc4NxB051fC2FuB9QL02uT3kLFFlDC2KHCcXwIZu1w4Y7PlvLS/CenHDcIZ6555FiDovlEJY28D1gvQa3Ojh4wtpoSxxYHjXAlk7ColhxlKAOM3FBi/z5T8iBay5m5XUnMlPcsZdPxKkX5KIRTbC/mzAmpqLqSk5oxnOYOOX2nSyfZQbC/kKW81NVdGSc2V9Sxn0PErRzpoHIrthTx0q6bmyiupuTs8yRn0syP36w8phP1oNwl/ZvaC1dyMoPtmJc/MKgDrBei1udnDZ2Z3KmHsXZ7kDIOxLxJYc4tw3c2t5hYE3bcqYezdwHoBem1u9ZCxFZUw9h5PcobB2JYE1twmXHcrq7k1QXcxJYy9F1gvQK9NMQ8Ze58Sxt7vSc4wGPsSgTW3C9f9stX8CkF3SSWMfQBYL0CvTUkPGfugEsZW8iRnGIxtQ2CNEa77Vav5NYLu0koYWxlYL0CvTWkPGVtFCWOrepIzDMa+TmBNOeG637Ca3yToLq+EsQ8B6wXotSnvIWMfVsLYap7kDIOxbxFYc6dw3W9bze8QdN+lhLHVgfUC9Nrc5SFjH1HC2Ec9yRkGY98lsOYe4brbWs3tCLrvVcLYx4D1AvTa3OshY2soYezjnuQMg7HtCax5QLjuDlZzR4LuB5UwtiawXoBemwc9ZGwtJYyt7UnOMBjbicCaKsJ1d7aauxB0V1XC2CeA9QL02lT1kLF1lDD2SU9yhsHYrgTWVBOu+z2ruRtBd3UljK0LrBeg16a6h4x9Sglj63mSMwzGvk9gzWPCdX9gNX9I0F1DCWPrA+sF6LWp4SFjGyhh7NOe5AyDsd0JrKklXPdHVvPHBN21lTC2IbBegF6b2h4y9hkljH3Wk5xhMLYHgTVPCtfd02r+hKC7rhLGPgesF6DXpq6HjH1eCWMbeZIzDMb2IrCmvnDdva3mPgTdDZQwtjGwXoBemwYeMraJEsY29SRnGIztS2DNM8J197OaPyXoflYJY5OB9QL02jzrIWNTlDD2BU9yhsHY/gTWNBKue4DVPJCgu7ESxjYD1gvQa9PYQ8a+qISxzT3JGQZjBxFYkyxc92CreQhBd4oSxrYA1gvQa5PiIWNbKmFsK09yhsHYoQTWvChc92dW8zCC7uZKGNsaWC9Ar01zDxn7khLGvuxJzjAYO5zAmlbCdY+wmkcSdLdWwthXgPUC9Nq09pCxbZQw9lVPcobB2FEE1rwiXPdoq/lzgu42Shj7GrBegF6bNh4y9nUljH3Dk5xhMHYMgTWvC9c91moeR9D9hhLGvgmsF6DX5g0PGfuWEsa+7VnOoOP3DjB+K4F/13eVh38L+l1wzTH68nhCf3pbeF+eYDVPJOh+Rwkj2gLzEui10RK/dsD4bQcydoeHjG2vgLGTCKxpJ5yxk63mKQTd7ZUwogMwL4FeGy3x6wiM3ykgY097yNhOChg7lcCazjl11EoXoD/pgKxJ9PA5S1clz1neA45zCJCvw5TwNR3wXt1gXpjGLk/SJfzvC83cbkA2ph3v+zkv/Tt9lHcJaeogA0FTQtTnRMcx63/8b6IbozPJBRT+A3Y5ccnP0v1BTrhHocTwWNODx+saULac2PuVQP5BYXuvksD7uSb5HsGfBGxtmtR/fGjH2j0nsfjdjV1yfRj+kNT/dh9aMPwZ6CJJTTr0rLmT8CcTqcUB/7YgXHdqEaN1dxGuOxU2aN1dA3qSEortZYD1aNLmeMzfQJTED5jfpiswft2UPMn7CDhxAOaMER6/0uH4mQ+Bk+3uQC+AvkYm1ong2nW9vhRQc8jeyxC+UAF9oU2CP7Zj7BHEJPjjqElwD/IkuBRhctBD+KTocokcq+6eSpo6EoQ9gE39EyVNvScwfsCcMcLjF2nqHwObeg+kF0qaemmg5jL2XmUJTb2Hgqb+iR1jryCa+idRTb0XuamXJjS3vsKb+uUSOVbd/ZQ0dSQI+wKb+qdKmnpvYPyAOWOExy/S1D8BNvVeQC96K2nq5YCay9t73UFo6r0UNPU+dox9g2jqfaKael9yUy9HaG6DhDf1yyVyrLoHK2nqSBAOAjb1IUqaej9g/IA5Y4THL9LU+wCbel/kBIvUiNCNvS8wfp8C7pWckpKS3DRkgtoo9ylpo1z/+EY5rEn9CbPFAcI3yjndAwgbsVLH+UE4pgPC7wPDn8WYHBYkTJKGC58c3mQ130zQPULJ5GYQsKECvTas+CWC44fk02AlJx+GeJIzDMYWIrBmtHDdha3mWwi6P1fC2KHAegF6bT73kLGfKWHsME9yhsHYWwmsGSdcdxGruShB93gljB0OrBeg12a8h4wdoYSxI+M5IyZnRoFzhtFXbiPwdZLwvlLMai5O0D1ZSV8ZDcxLoNcGGT/mjgTGIVp0jgMXlWg7Ej63YxwTxI6Ez6N2JIxJsyPhckUWiu2FNAB6wO4LJZAaC4wf8rCe8PhFVqg/B05kxgC9APrq/QGxMQogP86OcXwQkB8XBfnxAUAeWRjIA0PTlUB+gtADQ8LjF4H8OCDkxwO9mKAE8hoODI1XAPmJdoyTgoD8xCjITwoA8sjCQB4gmakE8pOFHiARHr8I5CcCIT8J6MVkJZDXcIBkkgLIT7FjnBoE5KdEQX5qAJBHFgbyQMFsJZD/QuiBAuHxi0B+ChDyU4FefEECExr0U4Hxm6bwQME00oGC6fEDBViTphNmDzOEHyhwumcEcKBgRvh9JulAgdscMIiwcDxX+IK528Q9hKB7npLJzSxgQwV6beYp2VSD5NNsJRux5niSMwzGDiWwZqFw3W4T9zCC7kVKGDsXWC9Ar80iDxk7Twlj53uSMwzGDiewZqlw3W4T90iC7mVKGLsAWC9Ar80yDxm7UAljF8VzRkzOLBZ+oKBvzks/6oCM4VfC+4o76DGaoHuFkr6yBJiXQK8NMn7MFWoNBwqAi0q0FeqldozLglihXhq1Qr0sgBVq5Koe8kDBaiWQ+lLogQLh8YusUC8FTmSWAb0A+ur9gYJlCiC/3I7xqyAgvzwK8l8FAHlkYSAPFKxVAvkVQg8UCI9fBPLLgZD/CujFCiWQ13Cg4CsFkF9px7gqCMivjIL8qgAgjywM5IGCb5RAfrXQAwXC4xeB/Eog5FcBvVitBPIaDhSsUgD5NXaMa4OA/JooyK8NAPLIwkAeKPhWCeS/FnqgQHj8IpBfA4T8WqAXX5PAhAb9WmD8vlF4oOAb0oGCdfEDBViT1hFmD98KP1DgdH8bwIGCb8Pv35EOFLjNAbMIC8frhS+Yu03ccwi6NyiZ3KwHNlSg12aDkk01SD5tULIR63tPcobB2LkE1mwSrttt4p5P0L1ZCWM3AusF6LXZ7CFjNylh7GZPcobB2AUE1mwVrttt4l5E0L1NCWN/ANYL0GuzzUPGblHC2K3xnBGTM9uEHyiYmvPSjzogY7hTeF9xBz2WEHTvUtJXtgPzEui1QcaPuUKt4UABcFGJtkK9w45xZxAr1DuiVqh3BrBCjVzVQx4o2KsEUruEHigQHr/ICvUO4ERmJ9ALoK/eHyjYqQDyu+0Y9wQB+d1RkN8TAOSRhYE8ULBfCeT3Cj1QIDx+EcjvBkJ+D9CLvUogr+FAwR4FkN9nx7g/CMjvi4L8/gAgjywM5IGCg0ogf0DogQLh8YtAfh8Q8vuBXhxQAnkNBwr2K4D8QTvGQ0FA/mAU5A8FAHlkYSAPFPyoBPI/Cj1QIDx+EcgfBEL+ENCLH0lgQoP+EDB+hxUeKDhMOlBwJH6gAGvSEcLs4ajwAwVO99EADhQcDb8fIx0ocJsD1hMWjo8IXzB3m7i/J+g+qmRycxzYUIFem6NKNtUg+XRCyUask57kDIOxGwmsOSFct9vEvZmg+6QSxp4C1gvQa3PSQ8aeVsLYnzzJGQZjfyCw5ifhut0m7q0E3WeUMPYMsF6AXpszHjL2ZyWM/SWeM2Jy5lfhBwrW5rz0ow7IGP4qvK+4gx7bCbrPKukrZ4F5CfTanBWeN44Nxwl587tw3e4ZzkmC7vNK6uU3YL0AvTbnlfTUD4A99ZySedjvwHEOB+bMCAWMPUVgzV/CdbtnOD8RdF9QwtjzwHoBem0ueMjYP5Qw9k/gOEcDc+ZzBYw9Q2DNReG63TOcXwi6E4rrYOxfwHoBem1Y8ZPM2AtKGPs3cJzjgDkzXjhrDuW8tL8J6ccVxWXrds88zxJ0p1fC2H+A9QL02qT3kLEXlTA2IRdunJOAjJ2s5LtjOmD8OgPj18XD746JuXTU3BWe5Qw6fumB8esBjF9PD2vuSiU1l8GznEHHLyMwfn2B8evnYc1lUlJzV3mWM+j4XQ2M3yBg/AZ7WHOZldRcFk9yBv3syP36QwXCs6OMwp+Z3Wk130XQnUnJM7NrgPUC9Npk8vCZWVYljM3mSc4wGHs3gTWZheuuaDXfQ9CdRQljswPrBei1yeIhY3MoYWxOT3KGwdh7CazJJlz3fa5GCLqzK2FsLmC9AL022T1kbG4ljM3jSc4wGPsAgTW5hOt+0GquRNCdWwlj8wLrBei1ye0hY5OUMPZaT3KGwdjKBNYkCdddxWquStB9rRLG5gPWC9Brc62HjM2vhLHXeZIzDMY+RGDNdcJ1P2w1VyPovl4JY68H1gvQa3O9h4y9QQljb/QkZxiMrU5gTQHhuh+xmh8l6C6ohLEFgPUC9NoU9JCxBZUw9iZPcobB2McIrCkkXHcNq/lxgu7CShh7M7BegF6bwh4ytpASxhb2JGcYjK1JYE0R4bprWc21CbqLKmHsLcB6AXptinrI2FuVMLaIJznDYOwTBNYUF667jtX8JEF3CSWMLQqsF6DXpoSHjL1NCWOLeZIzDMbWJbCmlHDdT1nN9Qi6Q0oYWxxYL0CvTchDxpZQwtjbPckZBmPrE1hTRrjuBlbz0wTdZZUwtiSwXoBem7IeMraUEsaGPMkZBmMbElhzh3Ddz1jNzxJ0V1DCWAOsF6DXpoKHjC2thLFlPMkZBmOfI7DmbuG6n7eaGxF0V1TC2LLAegF6bSp6yNhyShhb3pOcYTC2MYE19wnX3cRqbkrQfb8Sxt4BrBeg1+Z+DxlbQQlj7/QkZxiMTSawppJw3SlW8wsE3ZWVMPYuYL0AvTaVPWTs3UoYW9GTnGEwthmBNQ8J1/2i1dycoPthJYy9B1gvQK/Nwx4y9l4ljL3Pk5xhMLYFgTWPCNfd0mpuRdD9qBLG3g+sF6DX5lEPGfuAEsY+6EnOMBjbmsCax4Xrfslqfpmgu6YSxlYC1gvQa1PTQ8ZWVsLYKp7kDIOxrxBY84Rw3W2s5lcJuusoYWxVYL0AvTZ1PGTsQ0oY+7AnOcNg7GsE1jwlXPfrVvMbBN31lDC2GrBegF6beh4ytroSxj7iSc4wGPsmgTVPC9f9ltX8NkF3QyWMfRRYL0CvTUMPGfuYEsbW8CRnGIx9h8Ca54TrftdqbkvQ/bwSxj4OrBeg1+Z5DxlbUwlja3mWM+j41QbGbxLwb6dPLuZfzT0BrjlGX25H6E9NhPfl9lZzB4LupkoYUQeYl0CvjZb4PQmM31IgY5d5yNi6ChjbkcCaF4QztpPV3Jmgu5kSRjwFzEug10ZL/OoB47cJyNjNHjK2vgLGdiGwpkEuHbXyNNCfI8BaOephrTRU8pzlGeA4OwFzpquSnEkHvNezMC9ME5cn6RL+94Vm7rNANqYd73O5Lv07fZR3CWnqIANBU0LU50THMet//G+iG6MzyQUU/uNKuXDJz9L9fC64R6HE8FjTg8frGtChnNj7pQMCPtHe6wrg/VyTfIbgTwK2Nk3qPxrZsTbORSx+d2OXXI3CH5L63+5DC4Y/A10kqUmHnjW3EP5kIrU40LpbCtedWsRo3a2E606FDVp364CepIRiexlgPZq0OR5r/F5SEj9gfpvWwPi9rORJXhPgxAGYM0Z4/EqH42caASfbjZErf8BvgKkT60Rw7bpenx6o+Up7rwyEL1SNSU8aAWOMTIKb2jEmBzEJbho1CU4mT4LTEyYHbwqfFF0ukWPV/ZaSpo4E4ZvApv62kqaeAowfMGeM8PhFmnpTYFNPBnqRoqSpZwRqzmTvdRWhqScraOov2DE2C6KpvxDV1JuRm3pGQnNrJ7ypXy6RY9XdXklTR4KwHbCpd1DS1F8Exg+YM0Z4/CJN/QVgU28G9OJFJU39aqDmzPZeWQhNvZmCpt7cjrFFEE29eVRTb0Fu6lcTmlsX4U39cokcq+6uSpo6EoRdgE39PSVNvSUwfsCcMcLjF2nqzYFNvQXQi5akRoRu7C2A8WsFuFdySkpKctOQCWqjXCvSRrnW8Y1yWJNaE2aLLwnfKOd0v0TYiJU6zufDMX0p/P5y+LMYk8PfCHuZPhQ+OTxnNf9O0N1dyeTmFWBDBXptWPFLBMcPyac2Sk4+vOpJzjAYe57Amh7Cdf9hNf9J0N1TCWNfA9YL0GvT00PGvq6EsW94kjMMxv5FYE1v4bovWM1/E3T3UcLYN4H1AvTa9PGQsW8pYezb8ZwRkzPvCP+FBNdX/iHw9VPhfeWi1ZxAWDzrr6SvvAvMS6DXBhk/5o4ExiFadI4DF5VoOxLa2jG2C2JHQtuoHQnt0uxIuFyRhWJ7GeiqHnCFepASSLUHxg95WE94/CIr1G2BE5l2yC2A8QNisPu2UwD5DnaMHYOAfIcoyHcMAPLIwkAeGBqiBPKdhB4YEh6/COQ7ACHfEehFJyWQ13BgqKMCyHe2Y+wSBOQ7R0G+SwCQRxYG8gDJZ0og31XoARLh8YtAvjMQ8l2Q+37jB0hg9+2iAPLv2TF2CwLy70VBvlsAkEcWBvJAwXAlkH9f6IEC4fGLQP49IOS7Ab14nwQmNOi7AeP3gcIDBR+QDhR8GD9QgDXpQ8LsobvwAwVOd/cADhR0D79/RDpQ4DYHvEJYOB4pfMHcbeJ+laB7lJLJzcfAhgr02oxSsqkGyaceSjZi9fQkZxiMfY3AmjHCdbtN3G8QdI9VwthPgPUC9NqM9ZCxvZQwtrcnOcNg7JsE1kwQrttt4n6boHuiEsb2AdYL0Gsz0UPG9lXC2H7xnBGTM58KP1DQItelH3VAxnCK8L7iDnq8S9A9VUlf6Q/MS6DXBhk/5gq1hgMFwEUl2gr1ADvGgUGsUA+IWqEeGMAKNXJVD3mgYLoSSA0SeqBAePwiK9QDgBOZgUAvgL56f6BgoALID7ZjHBIE5AdHQX5IAJBHFgbyQMFMJZAfKvRAgfD4RSA/GAj5IUAvhiqBvIYDBUMUQP4zO8ZhQUD+syjIDwsA8sjCQB4omK0E8sOFHigQHr8I5D8DQn4Y0IvhSiCv4UDBMAWQH2HHODIIyI+IgvzIACCPLAzkgYK5SiA/SuiBAuHxi0B+BBDyI4FejCKBCQ36kcD4jVZ4oGA06UDB5/EDBViTPifMHsYIP1DgdI8J4EDBmPD7WNKBArc54GPCwvF84QvmbhN3T4LuBUomN+OADRXotVmgZFMNkk/jlWzEmuBJzjAY+wmBNYuF63abuHsTdC9RwtiJwHoBem2WeMjYSUoYO9mTnGEwtg+BNV8K1+02cfcj6F6uhLFTgPUC9Nos95CxU5Uw9ot4zojJmWnCDxR0y3XpRx2QMVwpvK+4gx79CbpXKekr04F5CfTaIOPHXKHWcKAAuKhEW6GeYcc4M4gV6hlRK9QzA1ihRq7qIQ8UrFUCqVlCDxQIj19khXoGcCIzE+gF0FfvDxTMVAD52XaMc4KA/OwoyM8JAPLIwkAeKPhGCeTnCj1QIDx+EcjPBkJ+DtCLuUogr+FAwRwFkJ9nxzg/CMjPi4L8/AAgjywM5IGCb5VAfoHQAwXC4xeB/Dwg5OcDvVigBPIaDhTMVwD5hXaMi4KA/MIoyC8KAPLIwkAeKFivBPKLhR4oEB6/COQXAiG/CLnPQsmBgkXA+C1ReKBgCelAwdL4gQKsSUsJs4dlwg8UON3LAjhQsCz8/iXpQIHbHDCOsHD8vfAFc7eJewJB90Ylk5vlwIYK9NpsVLKpBsmnr5RsxFrhSc4wGDuRwJofhOt2m7gnE3RvUcLYlcB6AXpttnjI2FVKGLvak5xhMHYKgTXbhet2m7i/IOjeoYSxa4D1AvTa7PCQsWuVMPbreM6IyZlvhB8oGJnr0o86IGO4W3hfcQc9phN071HSV9YB8xLotdkjPG8cG5YT8ma/cN3uGc4Kgu4DSurlW2C9AL02B5T01OeBPfU7JfOw9cBxfgjMme4KGLuSwJofhet2z3BWE3QfVsLYDcB6AXptDnvI2O+VMHYjcJw9gDnTUwFj1xBYc0y4bvcM52uC7uNKGLsJWC9Ar81xDxm7WQljfwCOszcwZ/oIZ82iXJf2NyH9OCVct3vmuY6g+7QSxm4B1gvQa3PaQ8ZuVcLYbcBxfgrMmf5Kam476bc7QrG9kL9joabmdiipuZ2e5Qw6frtIP6UQiu2F/FkBNTW3W0nN7fEsZ9Dx20s62R6K7YU85a2m5vYpqbn9nuUMOn4HSAeNQ7G9kIdu1dTcQSU1d8iTnEE/O3K//nAN4dnRz8J1Z7WasxF0/6KEsT8C6wXotfnFQ8YeVsLYI57kDIOx2Qms+U247hxWc06C7nNKGHsUWC9Ar805Dxl7TAljj3uSMwzG5iKw5g/hunNbzXkIuv9UwtgTwHoBem3+9JCxJ5Uw9pQnOcNgbF4Ca/4WrjvJar6WoPsfJYw9DawXoNfmHw8Z+5MSxp7xJGcYjM1HYE26ErJ157earyPoTiyhg7E/A+sF6LVhxU8yY39RwthfPckZBmOvJ7DmSuG6b7CabyTozqCEsWeB9QL02mTwkLG/KWHsOU9yhsHYAgTWXCVcd0Gr+SaC7quVMPZ3YL0AvTZXe8jY80oY+4cnOcNg7M0E1lwjXHchq7kwQXdWJYz9E1gvQK9NVg8Z+5cSxl7wJGcYjL2FwJocwnXfajUXIejOqYSxfwPrBei1yekhY/9RwtiLnuQMg7FFCazJI1z3bVZzMYLuvEoYm5AbF0ug1yavh4xNl1sHYxM9yRkGY4sTWJNPuO4SVvPtBN35lTD2CmC9AL02+T1kbHoljL3Sk5xhMLYkgTU3CNddymoOEXTfqISxGYD1AvTa3OghYzMqYWwmT3KGwVhDYM1NwnWXtprLEHTfrISxVwHrBei1udlDxl6thLGZPckZBmPLElhzi3Dd5azm8gTdtyphbBZgvQC9Nrd6yNhrlDA2qyc5w2DsHQTW3CZcdwWr+U6C7mJKGJsNWC9Ar00xDxmbXQljc3iSMwzG3kVgze3Cdd9tNVck6C6phLE5gfUC9NqU9JCxuZQwNrcnOcNg7D0E1hjhuu+1mu8j6C6thLF5gPUC9NqU9pCxeZUwNsmTnGEw9n4Ca8oJ1/2A1fwgQXd5JYy9FlgvQK9NeQ8Zm08JY/N7kjMMxlYisOZO4borW81VCLrvUsLY64D1AvTa3OUhY69XwtgbPMkZBmOrElhzj3DdD1nNDxN036uEsTcC6wXotbnXQ8YWUMLYgp7kDIOx1QiseUC47upW8yME3Q8qYexNwHoBem0e9JCxNythbCFPcobB2EcJrKkiXPdjVnMNgu6qShhbGFgvQK9NVQ8Ze4sSxt7qSc4wGPs4gTXVhOuuaTXXIuiuroSxRYD1AvTaVPeQsUWVMPY2T3KGwdjaBNY8Jlz3E1ZzHYLuGkoYWwxYL0CvTQ0PGVtcCWNLeJYz6PjdDozfp8C/h9bfw7+hVxJcc4y+/CShP9US3pfrWs1PEXTXVsKIUsC8BHpttMQvBIzfBCBjJ3rIWKOAsfUIrHlSOGPrW80NCLrrKmFEaWBeAr02WuJXBhi/xUDGLvGQsWUVMPZpxrmV3DpqpTzQn++BtbLRw1q5Q8lzlgrAcbYA5kxrJTmTDnivO2FemKYuT9Il/O8Lzdw7gWxMO967cl/6d/oo7xLS1EEGgqaEqM+JjmPW//jfRDdGZ5ILKPyHP3Ljkp+l++7ccI9CieGxpgeP1zWgRbmw99sOvN8Oe6+dwPu5JlmB4E8CtjZN6j8q2rHek5tY/O7GLrkqhj8k9b/dhxYMfwa6SFKTDj1rri/8yURqcaB1NxCuO7WI0bqfFq47FTZo3Q0DepISiu1lgPVo0uZ4rPF7Rkn8gPltGgLj96ySJ3n3Ar9pAnPGCI9f6XD8TEXgZPseoBdAXyMT60Rw7bpevws4cd1t77UnF75H3UN60ggYY2QSfJ8bYxCT4PuiJsH3kyfBuwiTomThk6LLJXKsulOUNHUkCJOBTf0FJU39AWD8gDljhMcv0tTvAzb1+5HHK5U09b3Apr7P3ms/oanfr6CpP2jHWCmIpv5gVFOvRG7qewnNrYXwpn65RI5Vd0slTR0JwhbApt5KSVOvDIwfMGeM8PhFmvqDwKZeCehFZSVN/QCwqR+09zpEaOqVFDT1KnaMVYNo6lWimnpVclM/QGhurwhv6pdL5Fh1t1HS1JEgfAXY1F9V0tQfAsYPmDNGePwiTb0KsKlXBXrxEKkRoRt7VWD8HgbcKzklJSW5acgEtVHuYdJGuWrxjXJYk6oRNspVF75RzumuTtiIlTrOu8MxrR5+fyT8WYzJ4beESdKbwieH31nN6wm631IyuXkU2FCBXhtW/BLB8UPy6TElJx9qeJIzDMZuILDmXeG6v7eaNxJ0t1XC2MeB9QL02rT1kLE1lTC2lic5w2DsJgJrOgjXvdlq/oGgu6MSxtYG1gvQa9PRQ8Y+oYSxdeI5IyZnnhT+Cwmur2wh8LWL8L6y1WreRtDdVUlfqQvMS6DXBhk/5o4ExiFadI5XJS0EAcYY2ZHwlB1jvSB2JDwVtSOhXpodCZcrslBsL6QB0AN27yuBVH1g/JCH9YTHL7JC/RRwIlMP6AXQV+8PiNVTAPkGdoxPBwH5BlGQfzoAyCMLA3lg6EMlkG8o9MCQ8PhFIN8ACPmngV40VAJ5DQeGnlYA+WfsGJ8NAvLPREH+2QAgjywM5AGSj5RA/jmhB0iExy8C+WeAkH8W6MVzSiCv4QDJswog/7wdY6MgIP98FOQbBQB5ZGEgDxT0UAL5xkIPFAiPXwTyzwMh3wjoRWMSmNCgbwSMXxOFBwqakA4UNI0fKMCa1JRwoCBZ+IECpzs5gAMFyeH3FNKBArc54FHCj0Z+Iv1Pr1vNNQi6eymZ3LwAbKhAr00vJZtqkHxqpmQj1oue5AyDsY8TWNNX+p9et5prEXT3U8LY5sB6AXpt+nnI2BZKGNvSk5xhMLY2gTUDpP/pdau5DkH3QCWMbQWsF6DXZqCHjG2thLEvxXNGTM68LPxAQdXcl37UARnDIcL7ijvoUZege6iSvvIKMC+BXhtk/Jgr1BoOFAAXlWgr1G3sGF8NYoW6TdQK9asBrFAjV/WQBwqGK4HUa0IPFAiPX2SFug1wIvMq0Augr94fKHhVAeRft2N8IwjIvx4F+TcCgDyyMJAHCkYqgfybQg8UCI9fBPKvAyH/BvInteIHCmD3fUMB5N+yY3w7CMi/FQX5twOAPLIwkAcKRiuB/DtCDxQIj18E8m8BIf820It3lEBew4GCtxVA/l07xrZBQP7dKMi3DQDyyMJAHigYowTy7YQeKBAevwjk3wVCvi3Qi3YkMKFB3xYYv/YKDxS0Jx0o6BA/UIA1qQPhQEFH4QcKnO6OARwo6Bh+70Q6UOA2B7xAWDgeJ3zB3G3ifpGge7ySyU1nYEMFem3GK9lUg+RTFyUbsbp6kjMMxjYnsGaScN1uE3dLgu7JShj7HrBegF6byR4ytpsSxr7vSc4wGNuKwJovhOt2m7hfIuiepoSxHwDrBei1meYhYz9Uwtju8ZwRkzMfCT9Q0Cj3pR91QMZwpvC+4g56vELQPUtJX/kYmJdArw0yfokJ/37YjM4h4KINbQW4hx1jzyBWgHtErQD3DGAFGLCCFFnN6wGEfs/cepK4p4Ik/sSOsVcQSfxJVBL3CiCJewKT+BNgEvdSlMS9FCRxbzvGPkEkce+oJO4TQBL3AiZxb2AS91GUxH0UJHFfO8Z+QSRx36gk7hdAEvcBJnFfYBL3U7Khpx9Q86cKN/R8StrQ0z++oQdrUn/Chp4Bwjf0ON0DAtjQMyD8PpC0occ9nOtMeHAzV/gDK7eJoitB9zwlD6wGAR9YAb0285Q81EbyabCShZAhnuQMg7HvEVizULhut4nifYLuRUoYOxRYL0CvzSIPGfuZEsYO8yRnGIz9gMCapcJ1u00U3Qm6lylh7HBgvQC9Nss8ZOwIJYwdGc8ZMTkzSviGnra5Lx2qQsbwK+F9xW20+pige4WSvjIamJdAr80K4Xnj2DCIkDerhet2z3CGEHSvUVIvnwPrBei1WaOkp94N7KljlMzDxgLH+SYwZ95SwNihBNZ8I1y3e4YzjKB7nRLGjgPWC9Brs85Dxo5XwtgJwHG+C8yZtgoYO5zAmvXCdbtnOCMJujcoYexEYL0AvTYbPGTsJCWMnQwcZwdgznQUzpp+uS/tb0L6sUm4bvfMczRB92YljJ0CrBeg12azh4ydqoSxXwDH2QWYM109zJlpSnJmOnCcDYA587SHOTNDSc7MBI4zGZgzKR7mzCwlOTMbOM4WwJxp6WHOzFGSM3OB43wFmDNtPMyZecL3oLg/4fBjLvz3xa3CvycftpqPEHRvU/I9eT4wL4Fem20eMmKBAkYcJdTKTuGMOGY1Hyfo3qWEEQuBeQn02uzykBGLFDDiBKFW9gpnxEmr+RRB9z4ljFgMzEug12afh4xYooARpwm1clA4I36yms8QdB9SwoilwLwEem0OeciIZQoY8TOhVo4IZ8QvVvOvBN1HlTDiS2BeAr02Rz1kxHIFjDhLqJUTwhnxm9V8jqD7pBJGfAXMS6DX5qSHjFihgBG/E2rlJ+GMOG81/0HQfUYJI1YC8xLotTnjISNWKWDEn4Ra+VU4I/6ymi8QdJ9VwojVwLwEem3OesiINQoY8TehVn4Xzoh/rOaLBN3nlTBiLTAvgV6b8x4y4msFjEggnLn5Szgj0lnNiQTdF5Qw4htgXgK9Nhc8ZMQ6BYy4glArF4UzIr3VfCVBd8LtOhjxLTAvgV4bVvwkM+I7BYzIQKiVK26XzYiMVnMmgu70ShixHpiXQK9Neg8ZsUEBI64i1EpG4Yy42mrOTNCdSQkjvgfmJdBrk8lDRmxUwIgshFrJLJwR11jNWQm6syhhxCZgXgK9Nlk8ZMRmBYzIRqiVbMIZkd1qzkHQnV0JI34A5iXQa5PdQ0ZsUcCInIRaySWcEbms5twE3bmVMGIrMC+BXpvcHjJimwJG5CHUSpJwRuS1mpMIuq9VwojtwLwEem2u9ZAROxQw4lpCrVwnnBH5rOb8BN3XK2HETmBeAr0213vIiF0KGHEdoVYKCGfE9VbzDQTdBZUwYjcwL4Fem4IeMmKPAkbcSKiVQsIZUcBqLkjQXVgJI/YC8xLotSnsISP2KWDETYRaKSKcETdbzYUIuosqYcR+YF4CvTZFPWTEAQWMKEyoleLCGXGL1XwrQXcJJYw4CMxLoNemhIeMOKSAEUUItVJKOCOKWs23EXSHlDDiR2BeAr02IQ8ZcVgBI4oRaqWMcEYUt5pLEHSXVcKII8C8BHptynrIiKMKGHE7oVbuEM6IklZzKYLuCkoYcQyYl0CvTQUPGXFcASNChFq5WzgjjNVcmqC7ohJGnADmJdBrU9FDRpxUwIgyhFq5TzgjylrN5Qi671fCiFPAvAR6be73kBGnFTCiPKFWfsrtn9dnwF6nvtB8+Bk4zvrA35dpqOQ3qNIB7/ULzAuT7PIkXcL/vuB/dwJY22nH+2vuS/9OH+VdQpo6yEDQlBD1OdFxzPof/5tosDuTfs2Nv+9ZIDBZus/mhnsUSgyP9QrweF0D6gcE8jR7r+nA+7mm9jMhngnYWjKp//jNjvVcbmKxuhu7ZPgt/CGp/+0+tGD4M9BJnZok6FlaJeHf5FKTGa27snDdqUWH1l0loG+wodheBpiXJq3XscavqpInAL8DGwAwZ4zw+JUOx8/8BpzknAN6AfQ1MqFBs2uGHeNMwsQTGEfa5OO8HeMfQUw+zkdNPv4gTj4uZ2ishfGIkmZ0DgiDP4EweEQJTM8D4/cHMH5/KoDpLDvG2QSY/qEApn/ZMV4IAqZ/RcH0AhGmlzM01sJ4TAlM/wDC4G8gDB5TAtO/gPG7AIzf3wpgOseOcS4BphcUwPQfO8aLQcD0nyiYXiTC9HKGxloYjyuB6QXks/g8uHE9rgSm/wDjdxG5+JuHE79EcP5dBMYvXZ7Y75WckpKS3DRkgloITQf0Ke14E/Nc+nd8ITTGezqTXEDR970iDxC+JN1X5IF7FEnUs+HGe0U4tunDn8VY+/qc0ORrCV8DGmM1jyXorq1kDeNK4IQE6LWprWQXI5JPGfLwGgxSc0ZPcobB2HEE1jwpXPd4q3kCQXddJYzNBKwXoNemroeMvUoJY6/2JGcYjJ1IYE194bonWc2TCbobKGFsZmC9AL02DTxkbBYljL0mnjNiciYrOGcYfWUKga/PCO8rU63mLwi6n1XSV7IB8xLotUHGj7USfLl95aHYXuaigpXg7DZvcuQJYCU4e55/rwS7Dy0Y9ZnoFVHkilROYIFVVrIimh3YOHMA4wf0Qt3GZ2AcaVDJZceYOwio5IqCSu4AoJIDWBR5gEWhZQNwLmD8cgPjl0cBVFgbgHMrgEpeO8akIKCSNwoqSQFAJTewKK4FFoWWjbB5gfFLAsbvWgVQYW2ETVIAlXx2jPmDgEq+KKjkDwAqScCiuM7DDaH5gPHLD4zfdaTCSgTnX35g/K5XuCH0etKG0BviG0KxJt1A2BB6o/ANoU73jQFsCL0xHNsCpA2hbnHnyjz4B/+NhC94uE14GQm6GytZ8CgIbKhAr01jJYuiSD7dpGQh/WZPcobB2EwE1iQL1+024V1N0J2ihLGFgPUC9NqkeMjYwkoYe4snOcNgbGYCa14UrtttwruGoLu5EsbeCqwXoNemuYeMLaKEsUXjOSMmZ24TviHU7YG6gsDXVsL7ituom42gu7WSvlIMmJdAr01rwobQ1Bc6h4CLNrQVzOJ2jCWCWMEsHrWCWSKAFUzAClJkNa84EPol8uhJ4hIKkvh2O8aSQSTx7VFJXDKAJC4BTOLbgUlcUlESl1SQxKXsGENBJHGpqCQOBZDEJYFJXAqYxCFFSRxSkMTGjrF0EElsopK4dABJHAImsQEmcWklG3pKAzWXUbihpwxpQ0/Z+IYerEllCRt6ygnf0ON0lwtgQ0+5cGzLkzb0uIdzBQkPbl4R/sDKbaK4maC7jZIHVncAH1gBvTZtlDzURvKpgpKFkDs9yRkGYwsRWPO6cN1uE8UtBN1vKGHsXcB6AXpt3vCQsXcrYWxFT3KGwdhbCax5W7hut4miKEH3O0oYew+wXoBem3c8ZOy9Shh7XzxnxOTM/cI39OTPc+lQFTKG7YT3FbfRqhhBd3slfeUBYF4CvTbtFW3oYS20AMYYWYF70I6xUhArcA9GrcBVCmAFDrCCFFmBexAI/UqKlpErKUjiynaMVYJI4spRSVwlgCSuBEziysAkrqIoiasoSOKqdowPBZHEVaOS+KEAkrgKMImrApP4IUVJ/JCCJH7YjrFaEEn8cFQSVwsgiR8CJvHDwCSupmRDTzWg5uoKN/RUJ23oeSS+oQdr0iOEDT2PCt/Q43Q/GsCGnkfDsX2MtKHHPZy7g/DgppPwB1ZuE8WdBN2dlTywqgF8YAX02nRW8lAbyafHlSyE1PQkZxiMvYvAmvek/xk1q7kiQXc3JYytBawXoNemm4eMra2EsU94kjMMxt5DYM2HwnW7TRT3EXR3V8LYOsB6AXptunvI2CeVMLZuPGfE5MxTwjf0lM5z6VAVMoY9hPcVt9HqAYLunkr6Sj1gXgK9Nj2F541jQw1C3vQWrts9w6lJ0N1HSb3UB9YL0GvTR0lPPQv8a5gNlMzDngaOsxYwZ2orYGwtAms+Fa7bPcN5gqC7vxLGNgTWC9Br099Dxj6jhLHPAsf5JDBn6ipgbB0CawYJ1+2e4dQl6B6shLHPAesF6LUZ7CFjn1fC2EbAcdYH5kwD4ayplufS/iakH58J1+2eedYj6B6mhLGNgfUC9NoM85CxTZQwtilwnM8Ac+ZZD3MmWfiazTSrdXpuwl8Gy+Of1y8I93qG1TqT4HUzD71+UbjXs6zW2QSvm3vodQvhXs+xWucSvG7podethHs9z2qdT/C6tYdevyTc6wVW60KC1y976PUrwr1eZLUuJnjdxkOvXxXu9RKrdSnB69c89Pp14V4vs1q/JHj9hodevync6+VW61cEr9/y0Ou3hXu9wmpdSfD6HQ+9fle416us1tUEr9t66HU74V6vsVrXErxu76HXHYR7/bXV+g3B644eet1JuNfrrNZvCV539tDrLsK9/s5qXU/wuquHXr8n3OsNVuv3BK+7eej1+8K93mi1biJ4/YGHXn8o3OvNVusPBK+7e+j1R8K93mK1biV4/bGHXvcQ7vU2q3U7weueHnr9iXCvd1itOwle9/LQ697Cvd5lte4meN3HQ6/7Cvd6j9W6l+B1Pw+9/lS41/us1v0Er/t76PUA4V4fsFoPErwe6KHXg4R7fchq/ZHg9WAPvR4i3OvDVusRgtdDPfT6M+FeH7VajxG8Huah18OFe33caj1B8HqEh16PFO71Sav1FMHrUR56PVq416et1p8IXn/uoddjlJzZHwscZyXgmf0qSs7spwPeaxzMC5MS1B+AGwes7bTjHZ/n0r/jfwAuxns6k8bnwd93AvBHxlm6J+SBexT5s6jov8bpGhDwL18a9yMgwB/EMK6pjSXEMwFbS5E/3TrRjnVSngD+dOvEPP/+063uQwuGPwOd1KlJgp6ljRT+i1ypyQz/JiJcd2rRoXWPDuiXyEKxvQwwL01ar2P+VqPkl9wmAxsAMGeM8PhF/qz1ROAkZxLQC6CvkQkNml3ul6maESaek0hPFABjjEw+ptgxTg1i8jElavIxlTj5uJyhsRbGBCXNaBIQBl8AYTBBCUynAOM3FRi/LxTA1P30W3MCTKcqgOk0O8bpQcB0WhRMpxNhejlDY55lKIHpVCAMZgBhMEkJTKcB4zcdGL8ZCmDqfluxJQGm0xXAdKYd46wgYDozCqaziDC9nKGxFsYUJTCdDoTBbCAMpiiB6Uxg/GYB4zebBJREcP7NAsZvDuBeySkpKclNQyaohdA5pIXQufGFUKxJcwldf57whVCnex5h4S51nBPCMZ0Xfp8f/izG2ld9QpP/QvgakPtroU8TdE9TsoaxAPmoB7iGMU3JLiUknxYq2dm2yJOcYTC2IYE1M4Xrdn8t9FmC7llKGLsYWC9Ar80sDxm7RAljl3qSMwzGPkdgzVzhut1fC21E0D1PCWOXAesF6LWZ5yFjv1TC2OXxnBGTM18JP8Hl+kpjAl8XCu8r7i+kNiXoXqSkr6wA5iXQa4OMX2LCvx82o3MIuGhDW7ldace4KoiV25VRK7er0qzcXi6JQ7G9ECtIkdW8lUDor8qjJ4lXKUji1XaMa4JI4tVRSbwmgCReBUzi1cAkXqMoidcoSOK1doxfB5HEa6OS+OsAkngNMInXApP4a0VJ/LWCJP7GjnFdEEn8TVQSrwsgib8GJvE3wCRep2RDzzqg5m8Vbuj5lrSh57v4hh6sSd8RNvSsF76hx+leH8CGnvXh9w2kDT3u4dwCwoObpcIfWLlNFIsIupcpeWD1PfCBFdBrs0zJQ20knzYqWQjZ5EnOMBi7mMCar4TrdpsolhJ0r1DC2M3AegF6bVZ4yNgflDB2iyc5w2DsMgJrVgvX7TZRLCfoXqOEsVuB9QL02qzxkLHblDB2ezxnxOTMDuEbembluXSoChnDb4T3FbfRagVB9zolfWUnMC+BXpt1ijb0sBZaAGOMrMDtsmPcHcQK3K6oFbjdAazAAVaQIitwu4DQ361oGXm3giTeY8e4N4gk3hOVxHsDSOLdwCTeA0zivYqSeK+CJN5nx7g/iCTeF5XE+wNI4r3AJN4HTOL9ipJ4v4IkPmDHeDCIJD4QlcQHA0ji/cAkPgBM4oNKNvQcBGo+pHBDzyHShp4f4xt6sCb9SNjQc1j4hh6n+3AAG3oOh9+PkDb0uIdz3xMe3KwX/sDKbaLYRNC9QckDq6PAB1ZAr80GJQ+1kXw6pmQh5LgnOcNg7GYCazYJ1+02UWwh6N6shLEngPUC9Nps9pCxJ5Uw9pQnOcNg7FYCa7YK1+02UWwn6N6mhLGngfUC9Nps85CxPylh7Jl4zojJmZ+Fb+hZl+fSoSpkDHcK7ytuo9VOgu5dSvrKL8C8BHptdina0MNaaAGMMbIC96sd49kgVuB+jVqBOxvAChxgBSmyAvcrEPpnFS0jn1WQxL/ZMZ4LIol/i0ricwEk8VlgEv8GTOJzipL4nIIk/t2O8XwQSfx7VBKfDyCJzwGT+HdgEp9XlMTnFSTxH3aMfwaRxH9EJfGfASTxeWAS/wFM4j+VbOj5E6j5L4Ubev4ibei5EN/QgzXpAmFDz9/CN/Q43X8HsKHn7/D7P6QNPe7h3AnCg5u9wh9YuQW+UwTd+5Q8sLoIfGAF9NrsU/JQG8qnvDoWQtLl9SNnGIw9TWDNQeG63QLfGYLuQ0oYmwisF6DX5pCHjL1CCWPTx3NGTM5cCc4ZxoLZYQJfjwjvK24TwC8E3UeV9JUMwLwEem2OCs8bx4aLhLw5IVy3+37h5u5o3SeV1EtGYL0AvTYnlfTUCcCemknJPOwq4Dh9+tOnjrGJBNb8JFy3+36RnqD7jBLGXg2sF6DX5oyHjM2shLFZgOOU/KdP0az5M8+ldSGkH78K1+2+j2cgMPasEsZeA6wXoNfmrIeMzaqEsdmA45T6p2O15Ex24c8TR1utnxP6So68/nmdUwkfcgHHORLIh9HC5yKulnMQ5iK5gbUS1EY95JjTjjdP3kv/jm/Ui/GezqQ8efH3zZsXl/ws3Xnzwj36VyPyLaYTorato8b6u3Dou6aeiwD980q+gCYBJwtAr03a+MWyu92+ygbVNJNITfPaeNPEmnQtoWnmEw54pztfwE0z1jjkU/ItMx3wXvlhmkuXCQp8+Unguy4OPqxJ1xHAd71w8Dnd15PBhwYKMqY3KHz8cAMJKDfGgYI16UYCUAoIB4rTXUDZ4wd0TFNfieBxImdSBQGaw18hSwcFvoIk8N0UBx/WpJsI4LtZOPic7psDnkmFYntBgVIIB5TkoIBSiASUwnGgYE0qTADKLcKB4nTfouyrGTKmtwrfPeIWhTISFkf+Er4o5E40XEXQfUHJolARYF4CvTYXlOwwQzKiqAJGXE2olYvCGeF25Gch6E4oqYMRtwHzEui1YcVPMiOKKWDENYRauaKkbEa4HeXZCLrTK2FEcWBeAr026YXnjfteUISQNxkDyptQbK/SSDaWAOZg2vjF+AAoJagHQCVID4Bujz8Awpp0O+EBUEnhD4Cc7pLKNiWVBBeUS+Arw/dzxZLJXhnD76nXVeH3q8PvBcP//1J2LCF7GXuVtlcZe5W1Vzl7lbfXHfaqYK877XWXve62V0V73WOve+11n9Nirwfs9aC9Ktmrsr2q2KuqvR6y18P2qmav6vZ6xF6P2usxe9UI52ss43/c3qOmvWrZq7a9nrBXHXs9aa+69nrKXvXsVd9eDez1tL0a2usZez1rr+fs9by9Gtmrsb2a2KupvZLtlWKvF+zVzF4v2qu5vVrYq6W9Wtmrdd6Ef73Qk5/MwDp5HFjHLyncD4Icc9rxvhxvYliTXiY0sVeENzGn+xVlTawNcFacOrY2Ye9fCb+/SgZsFqCHNYE59ppCwL5GAuzrccBiTXqdANg3hAPW6X6DANjUcb4ajukb4fc3yeC6BhibWkDv3lIIrrdI4Ho7Di6sSW8TwPWOcHA53e8QwfVmOKbvhN/fJYMrKzA2tYHetVUIrrYkcLWLgwtrUjsCuNoLB5fT3Z4IrnfDMW0ffu9ABlc2YGyeAHrXUSG4OpLA1SkOLqxJnQjg6iwcXE53ZyK4OoRj2jn83oUMruzA2NQBetdVIbi6ksD1XhxcWJPeI4Crm3BwOd3diODqEo5pt/D7+2Rw5QDG5kmgdx8oBNcHJHB9GAcX1qQPCeDqLhxcTnd3IrjeD8e0e/j9IzK4cgJjUxfo3ccKwfUxCVw94uDCmtSDAK6ewsHldPckguujcEx7ht8/IYMrFzA2TwG966UQXL1I4OodBxfWpN4EcPURDi6nuw8RXJ+EY9on/N6XDK7cwNjUA3rXTyG4+pHA9WkcXFiTPiWAq79wcDnd/Yng6huOaf/w+wAyuPIAY1Mf6N1AheAaSALXoDi4sCYNIoBrsHBwOd2DieAaEI7p4PD7EDK48gJj0wDo3VCF4BpKAtdncXBhTfqMAK5hwsHldA8jgmtIOKbDwu/DyeBKAsbmaaB3IxSCawQJXCPj4MKaNJIArlHCweV0jyKCa3g4pqPC76PJ4LoWGJuGQO8+Vwiuz0ngGhMHF9akMQRwjRUOLqd7LBFco8MxHRt+H0cGVz5gbJ4BejdeIbjGk8A1IQ4urEkTCOCaKBxcTvdEIrjGhWM6Mfw+iQyu/MDYPAv0brJCcE0mgWtKHFxYk6YQwDVVOLic7qlEcE0Kx3Rq+P0LMriuA8bmOaB30xSCaxoJXNPj4MKaNJ0ArhnCweV0zyCC64twTGeE32eSwXU9MDbPA72bpRBcs0jgmh0HF9ak2QRwzREOLqd7DhFcM8MxnRN+n0sG1w3A2DQCejdPIbjmkcA1Pw4urEnzCeBaIBxcTvcCIrjmhmO6IPy+kAyuG4GxaQz0bpFCcC0igWtxHFxYkxYTwLVEOLic7iVEcC0Mx3RJ+H0pGVwFgLFpAvRumUJwLSOB68s4uLAmfUkA13Lh4HK6lxPBtTQc0+Xh96/I4CoIjE1ToHcrFIJrBQlcK+Pgwpq0kgCuVcLB5XSvIoLrq3BMV4XfV5PBdRMwNslA79YoBNcaErjWxsGFNWktAVxfCweX0/01EVyrwzH9Ovz+DRlcNwNjkwL0bp1CcK0jgevbOLiwJn1LANd3wsHldH9HBNc34Zh+F35fTwZXIWBsXgB6t0EhuDaQwPV9HFxYk74ngGujcHA53RuJ4FofjunG8PsmMrgKA2PTDOjdZoXg2kwC1w9xcGFN+oEAri3CweV0byGCa1M4plvC71vJ4LoFGJsXgd5tUwiubSRwbY+DC2vSdgK4dggHl9O9gwiureGY7gi/7ySD61ZgbJoDvdulEFy7SODaHQcX1qTdBHDtEQ4up3sPEVw7wzHdE37fSwZXEWBsWgC926cQXPtI4NofBxfWpP0EcB0QDi6n+wARXHvDMT0Qfj9IBldRYGxaAr07pBBch0jg+jEOLqxJPxLAdVg4uJzuw0RwHQzH9HD4/QgZXLcBY9MK6N1RheA6SgLXsTi4sCYdI4DruHBwOd3HieA6Eo7p8fD7CTK4igFj0xro3UmF4DpJAtepOLiwJp0igOu0cHA53aeJ4DoRjunp8PtPUeBC6/kJGO+gAJEugQOIM3FAYE06QwDEz8IB4e73MwEQCWleiYJj+otCoPxCmnH8GgcK1qRfCUA5KxwoTvdZMlAkxzQxPD70GIvaMd6Gz6cyt+TFeyR5BvWb1XsuTRz/Z7CxJsDPebHCXUK5QRcMj9X997nwf6d9XSE36NCOfVVJDlTQz1jOATX/DsyptPGLdVyp+fh7mnwMCnyxjj1zQHkUiu31L0DHqvk8MI/Q8WM0jd8IeXONjrwxSP78Acyba8h5g+jf5wl5k014vTjdfxB0Z1dSL+dJ9RLrvXIoiR8wvw0wZwwyfqlf7qJfoPs3Tr2f5C9Qf9rc/kvbF6g/o75A/fX/4QtUrDr+AkLggvAvABeIXwDShf1D51keJWBF5tHfwDzKo2BC4/QmgvImOeX/vMr/LNOPxtHNCb3s8lteTk6HYnwlRL1ivK9J/cc/dowX8xKXHVLh+U/eS4+M3X9fDODpHsvMmP+ovOyne6XD4zT/ADVfBHqBjJ/2DRIJSZf+KXo9U/IMmmW4MwetO11SMBsYkP7EvN6YJNxrO77EJPkbay7ndSi2V6OEJOAGkyR9cEeOOe1402uBewLhwxkmpScU6ZVJ2CJl6L4yCe4RtXkgY5ohiVMUkhtmRuEN03mSkTA5yqfkcRfS60xAr/MBH5sG1XwzkZrvVfHmizXpKkLzvVp483W6ryY3X+kxTUiTyMBxlkZuGsoMhGjGkjomWcgmlCWJBz9gzkA3ml0D1JzZw5zJ6mHOZBOcM+g+UszGrThhTfs6HZP8ssi8yQ7Mm+s8ZE0OHayB5kxOhTkTiu1VGpkzuQDz4PB+ipSgvgznIn0Zzh3/Mow1KTfhy3Ae4V+Gne48yr4MI2Oqfa9B3jgEsCblJUAgSTgE3P2SCBBIF06MKxMuJWEme2UMv6deV4Xfrw6/Fwz//6+1Y8pnr/z2us5e19vrBnvdaK8C9ipor5vsdbO9CtmrsL1usdet9ipir6L2us1exexV3F4l7HW7vUraq5S9QvYy9iptrzL2KmuvcvYqb687wvFg5MK1hGWWG5QcT82cAJvBNUHW1Y1K4lcB+A0CmDMGGL9yQTVlYCz/1ZTvjDdlrEl3EpryXcKbstN9l7KZOTKmiQmXdqYjx+geRyCXltwyy0XgI9XUxxOIzbThW6UkRL1ivG/kqMLdVnvFpACOKtyd9O+jCu5DC5KSODVB0DO0m4SvDbgkzkLQfbPwmRWy4MIvcxNw004hJTPTe4BQBeaMQcTvv0CKPtpzN7B5VgR6AfSVujaFjN+9Aa1NxTrO+5I4zArF9jI3e7g2db+STc3IOnkgIM2h2F5Qnx9UwoZKnrNBUp1UFr7539XHNYS5fxHh33ncfrdsBN1FlczZqwDzEui10RK/qp7FTzJjH1LA2OwE1hQXzli3zy8nQXcJJYx4GJiXQK+NlvhV8yB+qYsd6cGx+z98BcbP3a8q+DkL8hmGm2dXwS2aRRY6EqJeqPtWt2N9JIgFlOpRCyiP/L8soKCSDn3fUsIbXWpxoHWHhP9ycWoRo+9rhPudChu07tJKTswD69GEgAtmZZTED5jfpjQwfmWVTAwfBU4cgDljAPH7z4kHesGxOnAi9wjQC6Cv1IcXyPg9pmRRoUYSh/mh2F6mtBJmPQ7MmVIl5c61NNRcTeEPDN33iUqE+eXdwufVblH5QYLuikoYUQv5wAbIWC3xq+1Z/CQz9gkl85o6nvVldPye9GxeKLnm6iqY11Qj9Pf7hM9r3AL1wwTd9ythxFPAvAR6bbTEr54H8WMthDq+IueF7n5Pgr+LIuf9bt5VR9FCaH071gZBLITWj1oIbUBcCE1NOvR9KwlvdKnFgdZdWfhCaGoRo+9bRbjfqbBB666qZCEPWI+mMvDL40NK4gfMb1MVGL+HlUwMnwZOHIA5Yx5WshBaHziRawD0Augr9eEFMn4NhT+8cHObxwm97nHhPd4tUNcg6K6phLHPAPMS6LXREr9nPYufZMY+p2RR5nnkznDSHDMU44sZv0bAnKkEnFdX8bDmGiupuSae5Qw6fk09Y5bkmktW8F2iHmFO/YTw7xJugfopgu46ShiRglzoATJCS/xe8CB+rIVQx1fkdzF3vxfAz3+Q37VdD0hRtBDazI71xSAWQptFLYS+SFwITU069H2fEt7oUosDrbue8IXQ1CKG55Fwv1Nhg9bdQMlCHrAeTT3gl8enlcQPmN+mATB+DZVMDJsjF9+AXjRUshDaDDiRexHoBdBX6sMLZPxaKHlg2DKJw/xQbC/TQAmzWgFz5qmScudaGmqutfAHhu77RCPC/LKJ8Hm1W7B8nqC7qRJGvATMS6DXRkv8XvYsfpIZ+4oCxjYlsOYF4Yx1C9RNCLqbKWFEG2BeAr02WuL3qmfxk8zY15R8d3zds+8+6Pi94cF3b9ZCqKs35LzQ3e8N8HdR5LzfMeF1RQuhb9qxvhXEQuibUQuhbxEXQlOTDn3fFsInl6nFgdbdUvhCaGoRo+/bSrjfqbCBx1PJQh6wHk1L4MTmJSXxA+a3aQ2M38tKJoZvAycOwJwxLytZCH0TOJF7C+gF0Ffql1lk/N4R/sDQzW1aEXrdm8J7vFugbknQ/ZYSxr4LzEug10ZL/Np6Fj/JjG2n5IFhe+A4W5LmmKEYX8z4dUBuUALOq1t5WHMdFcxrXiX093eFz2vcAnUbgu62ShjRCZiXQK+Nlvh19ix+khnbRcm8pqtnfRkdv/c8mBeyFkJdvSGZ5e73HniehOxJjgldFS2EdrNjfT+IhdBuUQuh7xMXQlOTDn3fDsInl6nFgdbdUfhCaGoRo+/bSbjfqbBB6+6sZCEPWI+mI3Bi00VJ/ID5bToD49dVycTwA+TEAehFVyULod2AE7n3gV4AfaV+mUXG70PhDwzd3KYtodd9JLzHuwXqdwm6P1bC2O7AvAR6bbTE7yPP4ieZsR8rYGwHAms+Ec5Yt0DdnqC7lxJG9ADmJdBroyV+PT2Ln2TGfqJkUaYXcJwdSd/jQzG+mPHrDcyZDsBnF508rLk+Smqur2c5g45fP0+YhZ5fulr7iDC/7Ctct3um1J2gu5+SevkUWC9Arw0yflck/MfiMSGXgLEMpR1v/zSL9ambHxL/IycyEDQlRH1OdByzJhAX5lkm9U/C33cAsHGzdA/A7fqIvBLSvCTHNCgIpEvgQGBgHAJYkwYSIDBIOATc/QYRIKC9uAbHiwtr0mBCcQ1RUFxDyB0W/YgFGdOhSdhYutegcB4NDb9/lpSQwIwHEuDDlDxyGu7BV0B3D8Yjk56ERwcDhOt2S8Q9CLoHKnlkMgJYL0CvzUAlj/WRjB2phLGjPMkZBmN7E1gzRLhut0Tci6B7qBLGjgbWC9BrM9RDxn6uhLFjPMkZBmP7EVgzXLhutyWgL0H3CCWMHQusF6DXZoSHjB2nhLHj4znz/yt+ySn/59UU+bxtAs6L8u4eaL6651/DCXwdrePoYhMkHyYC6260wq0VQP3/WviZFF/4wZo0ibDwM1n4wo/TPVnZwg8yplOEnxlyIJ5AaERjhE/0w5MOaCOaCvQaGL9yjLxxeT2VkDfjdExgyiAZ8QUwb8aVhNVGSlATmC9IE5hp8QkM1qRphAnMdOETGKd7urK9ociYJib8NwRiHCv9l9Fm2BjMTArgl9FmJP37l9FmpvlltNQXaIYa+eWVGUCDZyZxzJT8yGCW548MZpE67ux4x8WaNJvQcecI77hO9xxljwyQMZ2r4JHBCMJXvwnC10TdfqpRBN0TlayJzgPmJdBrM1FhA55HasDz4w0Ya9J8QgNeILwBO90LlDVgZEwXCm/A7hvbXEIjmqLj2Wtp5GRrEdDrKcInMG7iNpqQN18I1+02aY4h6J6mZOK2GJjjQK/NNIUTt8WkiduS+MQNa9ISwsRtqfCJm9O9VNnEDRnTZcInbm5iuYjQiGYqWTRHTtK/BHo9U8HEbSwhb2YL1+12fo8n6J6jZOK2HJjjQK/NHIUTt+WkidtX8Ykb1qSvCBO3FcInbk73CmUTN2RMVwqfuLmJ5ZeERjRfx8StLHKSvgro9XzhExiX16sIebNQR96UQzJiNTBvFiqcwKwmTWDWxCcwWJPWECYwa4VPYJzutcp2ySJjqv1HHr+OQwBr0tcECHwjHALuft+QIYB+xLJOwaYmLed41pFmKN/G4YQ16VsCnL4TDien+ztlj1iQMV2fxCkKtGZkk9sg/LGS82QD4fHAYiV/wBzp9fdArxcD/zhUUM33e1Lz3RhvvliTNhKa7ybhzdfp3qTs8QA6pqkvyQ1zcxKveIHeQM+C/iD0LKiWnNkSUM7EOs6tHhxfcvdAc9D5u5UwSV2q5LQBsla2AXNwqcInRNtIk9Tt8Ukq1qTthEnqDuGTVKd7h7JJKjKmiQn/TlQ08AFrV6k/NFIuIeoFum9op43nrqQAfjVmZ9K/fzXGfWjBqM9Ez4DSxX6vyC/Q7AQm3q4kXGKkJjG60Nw3ox/Ia3qh2F4mgVQUu+0Y9wRRFLujimJPmqIIytCYzyV4+Ox1LzCJgfFjfJ2MAHA3MH57gPEDevE/M4LoxxCh2F7I3SwGGEPab9Lts2PcHwRI90WBdP//h9lFKLYXzcxYi+sr2Yd9IkDZB9S8HwgUZPzis7NLrxjvG4HKATvGg0FA5UAUVA4GABXkLOWQh7OUA8D4HQTG71CSfKikHt4Az3r+dSgiFNvLHFQw6/nRjvFwEID6MQpQh/mAopkZ84k6JUecj8g81WOExy8C+B+BOXMY6MUREpjQK+HI55hHgfFLbWror9w7wzBG3e9o+CttAmicbjWysUmmNaNjdqzHg2hGx6Ka0XHis8ydUR32flBCrxa+NcEl3lGC7jVKmucJYCEDvTaI+P0XCNDN8xgQ/seBXpwgNU90nRwLqMmHYnsZwMJnRPNJQM783203Te8IatvNSdK2m1PxbTdYk04RnmGeFr7txuk+Td52g/rWEN4vl4yM6U/A4gwKKD+RgHImDhSsSWcIQPlZOFCc7p+V7eNDxvTqNGNMDCezK6YrE/5v4WS0VyZ7XWUv9/8tGP7/Z7ZXFntdk/B/kz2bvbLbK4e9ctorl71y2yuPvfLay4X4Wnvls1d+e11nr+vtdYO9brRXgfC9b7LXzfYqZK/C9rrFXrfaq4i9itrrNnsVSxPb/wcVqryyWAcpAA==","proving_key":null,"verification_key":null} \ No newline at end of file +{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"a","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"c","type":{"kind":"array","length":4,"type":{"kind":"integer","sign":"unsigned","width":32}},"visibility":"private"},{"name":"x","type":{"kind":"array","length":5,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"result","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"public"}],"param_witnesses":{"a":[1],"c":[2,3,4,5],"result":[11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42],"x":[6,7,8,9,10]},"return_type":null,"return_witnesses":[]},"bytecode":"H4sIAAAAAAAA/+y9d5RVRdftfbppMiKSRAkeFZHMKZKYEMmSxITk3C0qIJIki4gJEBBJIiIiSXIWERBJIioiIBIEERERSSJiBL5d73c6bZ/+4449V42ao84e445ufO67T81ac/1W9a5a+yyLhELhkqH/u+K8/xcf/RlO8+94378z+f6d4Pt35ui/M0f/W8L/f/uU/9uENP+b/m9ZvP+XLc2/s/r+nc337+y+f+eI/jtzms8PRe+bfK/s0f9/yf83OX33yOX791W+f+f2/ftq37/z+P59je/feX3/zuf7d37fvwv4/l3Q9+9rff8u5Pv3db5/X+/7d2Hfv4v4/l3U9+9ivn/f4Pt32PfvG33/vsn375t9/y7u+/ctvn+X8P37Vt+/S/r+Xcr379KhVI8k+1df2ge5ovHOHY1rnmj88kbjlD8aj4LReS8Und/ro/NYJDpfxaLzEo7qvymqs3hUT4nouEtGx1c6lP7KFP1ZI/ozEuxScWnuVSlStXLlxNsqJqpKqkOk4u0dq1WJVK7SsWo1VU1VqValc8VqlSolVqtc7bbbO95+W+R2VblSokqqcnulpOjN4oH3KoPTGMkUjbH/igPPJXLMacdbNs3vaTnp90QWAU0h3+f45zH3//hv0A+XCFJZgfuWC+HML6W7HD5GxpIrPiSTXOXT/B5LroD3jI9OKPq+FUJ2J5fWXQEfI5GxlouO1X/foPOasyBWd/KVCTxOJKgjwLgg588UlIH600E5LRljUA54z0h0QtH3rRiyG8r6phXxMUoHJ9vnNPmy+c/GTMB7VQrxQRQ55rTjrZzm9xhEA96zUnRC0fetErIbolp3FXyM0sEp3ndvm1Z4VUNYaOqrajROVaI/bwv97ySRiGemkAxsqqX5PQabgPfMFJ1Q9H1vD9kNG637dnyMRMZ6W3Ss6D+jryL5M/o24L3uAMblKsI/o4H600H5zjS/x6Ac8J53RCcUfd+7QnZDWeu+Cx8j0T+j0XOafNm8Ur07JJO8aM3Iv3iqAzUne/DuqB+rR3/eE0p/2fwoJQF4rxohvkKKHHPa8d6b5vdYIQ14zxrRCUXft2bI7kKq71MTH6MUo94THXPN6M9aIXOPFRJCMolXO83vscQLeM+E6ISi71snZHfiad118DESGWut6FjRjxWuJnmsUAt4r7rAuFxN+FgBqD8dlOul+T0G5YD3rBudUPR964fshrLWXR8fI9HHCug5Tb7Qf2Ij/6S8L8QHPuSY0463QZrfY+ALeM/7ohOKvm/DkN3g07ob4mP0f90XaQ0QDx53HPBemUMywAfoVcm/NPLu0TgkmFTJbUeNoh+S/G/9oWHfZ0o+dIwEu9IFM2jCXWP3nykVo+NUjYCaGwNjgZw/P1DQIATqFoNAE+8e94cMQKBJKD0E9IeGfZ+JhkDjEC4hmoRwCXF/iMfEyLGGhEzc1LvHAyEDJm7qM/EDBkx8P9DETYEmfiDEY2LkWENCJn7Qu8dDIQMmftBn4ocMmPgBoIkfBJr4oZCMMdB/mzwE1Pww4F6JSUlJiZ3//wONJh54PIy7V7oHHo+k+T32wCPgPR+OTij6vs1Cdj/w0Lqb4WOUYtSG0TE3i/58NJT+Qj9dRc5385BMwtisuYWDmls6qLkVULP0w03gA0kltWgC6E1ZTbf27tEmZGA13TqUfjWtPzTs+0z0aloqmEETIh/Jw83WQM1tgLHIJ/BwEw0SvUpGwl4DOSGEX5QB4yIGqbbePdqFDECqbSg9pPSHhqOfIXEYrVkIf8CrABguErpbCuguaAiqkWBXuoQLCui2wPm7luRgYDtgLNLmStBxFSLxHzBPFNAzqhDRjiXQg2JFs713jw4hA0WzfSh90dQfGvZ9JtrEaQMQFKLtQzgIdAjxmBg51pCQiTt69+gUMmDijj4TdzJg4g5AE3cEmrhTSMYY6D+xOgE1dwbcy/RmT2fcvdJt9iSm+T222RPwnp2jE4q+b1LI7s0erTsJH6P/bPYkRX8+Fv3vaB3a+BJ/phe1/M90rbu5gO5iJH9mdgHOJTDWSmr+0BtISD49HpIrMEjNTzjiGTRrdBwkGHsjge4WArpvImHsk8C5BMZa3eQgY7uGOBjbzTHPoOevO3D+gFtNqqCDOfcUSc71iHnGGs88DfYMek2jz9y0CuHXNLdYvpbT54Mk1rAlSOpKT+BcAmOtSghuK6IfaCPPq0k9xAfoTdnd6eXdo3fIwO5Or1D63R39oWHfZ9p8+BC501GK5PBhL6Dm3sBYlBIAChokLIcPgXERg1Qf7x59QwYg1SeUHlL6Q8O+z0RDKm0AgiZsnxAuYcuQrHr6AmOBPIxW1sHDaEDPqLIEkNd/VSKfoOongN1CeMgDc0QM8s949+gXMgD5Z0LpIa8/NBz9DIkjAk+G8H+SVrD8T/GMjBz4Sz5JoNo3hCvqzwDnT5EU9X7AWFQAFvWKJP4D5okCekZVFCjqyReaYUAPihXN/t49BoQMFM3+ofRFU39o2PeZaBOnDUBQiPYP4SAwICRjDPTqdABQ80DAvUwfzh2Iu1e6w7mD0vweO5wb8J4DoxOKvu/gEM78UroH42P0n8O5g6M/h0T/u8RfOF1C+JX+bZb/haMPRD4hoLsayQr9WeBcAmOtqpEcSEDyaWhIrsAgNT/nmGfQ8zcMOH/AJ0gq4mDOPU+Sc8Md8YzEuqZ7CF/f77Rctz4Q2UNA910kjH0BOJfAWKu7HGTsiyEOxr4U84w1nnkZ7Bk0X/U5sqQQnq/3WF5X9KHpngK6a5DUlVeAcwmMtaohuCODfqCNPM8p9RAfoDdld2eEd4+RIQO7OyNC6Xd39IeGfZ9p8+Fc5E5HLZLDuSOAmkcCY1GL4NwWy+FcYFzEIDXKu8erIQOQGhVKDyn9oWHfZ6IhlTYAQRN2VAiXsHVIVj2vAmOBPJxb18HDuUDPqLoEkGc5nAvMETHIj/buMSZkAPKjQ+khrz807PtMdJKlDUBQyI8O4SB1HwnkxwBjgTys2cDBw5pAz6gGBJDXjw6RRxGGevd4LoSHPDBHxCA/1rvHayEDkB8bSg95/aHh6GdInAN7NoR/7tjY8uetQzMwclDdTUigOiaEK+pjgfN3P0lRfw0Yi8bAot6UxH/APFFAz6imhvYEI8Eu9RrQy+MA9zJ9eH0c7l7pDq+/nub32OH1gPccF51Q9H3Hh3Dml9I9Hh+j/xxeHx/9OSGU/kIXu4khmWIXCXapJiQHOJB+nRSSAw5S82RHPCPxB9mwEP4Pk0cs160PDA8X0N2M5A+KN4BzCYy1auYgY6eEOBj7piOekWDsCyE8a1pYrlsfGH5JQHdLEsZOBc4lMNaqpYOMfSvEwdhpMc9Y45m3wZ5B81WfsxwcwvO1jeV1RTcVvCKguy1JXZkOnEtgrFVby32j2TBRwDcdLNetn+FMFtDdkSRf3gHOJTDWqiNJTW0IvNeMkN01VTPiDYFcSbScEfoZxJsCupNIGPEucC6BsVZJDjJiZsh+RkwVyJXHLWeE/ht6moDuJ0gYMQs4l8BYqyccZMTskN2M0AdmxgvkSjfLGaGfmUwX0N2dhBFzgHMJjLXq7iAj5oawjJDyzHvAcTJ8myB6/uYB54/hRWzo+ZsPnD8Xz1shmbUgJMMstOY44L0WAjWbOhAMHHO6A8GL0vweOxAc8J4LoxOKvu/iEM78UroX42OU0jaI7s7Q90SCTwM5M/h+rwnMZygEzaWU1sEl3j2Whgy0Di4JpW8d1B8ajn5GnMBnLgjh/7J82vK/qLWRGwro7mm57uSkQ+vuRfJGqSVAzUuB9+pN0vIHzGvVE9gy2Ydk/oB5ooCeUcj5S17QxIPnTjMb+fRJs3BOCM/YpSEZLwLGmLKYWebdY3nIwGJmWSj9YkZ/aDj6GRJFfW4IX9wGEhT1OQK6B5FAFVCIUxYIy4DzN5jkUeVyYCwGAov6EBL/AfNEAT2jhggUdQl2zRO4L9DTYkV4hXePlSEDRXhFKH0R1h8ajn6GqYAG/jIaEhgsD+GK0Qrg/A0nKUYrgbEAekYNJ4HpfIH7AmMiBtNV3j3eDxmA6apQepjqDw1HP8NUQAN/mwsJTFeGcDBdBZy/l0lg+j4wFkDPqJcNHUKIBLvU+8BYrAbcy/Qbulbj7pVuQ/6DNL/HNuQD3nN1dELR910TwplfSvcafIxSjLo4OuY10Z8fRv87Woc2/owQvsiPJHhs+Y6A7lEkxXktcC6BsVajDBXnoPOH5NO6kFyBQWpe74hn0KzRcZgZwrNmDAFj3xXQPZaEsR8B5xIYazXWQcZuCHEw9mNHPINmjf5DbnYIz5rXCRg7S0D3eBLGbgTOJTDWaryDjN0U4mDs5phnrPHMFhLPbAWOE3ikC3n8Q3RnMLPAfYEbDGI7g59499gWMrAz+Eko/c6g/tCw7zPRO2SAHYqUHbJPQrhknUSyeNkGjAWw+UNNEoCKvwhFgl00B7KBMRaD1KfePbaHDEDq01B6SOkPDfs+Ew2ptAEICqlPQ7jkf4MEUttDMiufwO/Yd/CALtAzagoB5PVfGsi/8PVfqJtDeMgDc0QM8p959/g8ZADyn4XSQ15/aDj6GRLHBDaG8I+/3rL8sV9GRg78snoSqG4P4Yr6Z8D5e5ukqH8OjMVbwKI+ncR/wDxRQM+o6SSPgyQOigM9LVaEv/DusSNkoAh/EUpfhPWHhn2fiU6KtAEICuUvQjiozCKB8g5gLJAHpmcZ2peIBLvUDmAsvgTcy/SB6S9x90p3YHpnmt9jB6YD3vPL6ISi7/tVCGd+Kd1f4WP0nwPTX0V/7or+d4m/ONeG8H95zbH8L059SHW9gO65JMV5N3AugbFWc0kODSD5tCckV2CQmr92xDMSjP0ohGfNfMt1b/Du8bGA7gUkjN0LnEtgrNUCBxn7TYiDsfsc8wx6/vYD5w+4a6KmOZhzB0hy7mDMM9Z45luwZyQOaa4J4dc0iy1fy+mDzVsFdC8hqSuHgHMJjLVaQrJDJnFgGrjBILZDdti7x3chAztkh0Ppd8j0h4Z9n4neIQPsUKTskB0O4ZJ1OQlUvgPGAnlgerkAVPyLjkiwi+bANDDGYpA64t3j+5ABSB0JpYeU/tCw7zPRkEobgKCQOhLCJf9KEkh9D4wF8sD0KgcPTAM9o1YRQJ7lwDQwR8Qgf9S7xw8hA5A/GkoPef2hYd9nopMsbQCCQv5oCAepD0gg/wMwFsgDtGscPEAL9IxaQwB5/fgQuVWmt3r2hfCQB+aIGOSPeff4MWQA8sdC6SGvPzQc/QyJs2B7Q/hnj+ssf+aakZEDv/iOBKo/hHBF/Rhw/j4iKeo/AmOxDljUN5D4D5gnCugZtcHQvmAk2KV+BHr5OOBepg+wH8fdK90B9p/S/B47wB7wnsejE4q+74kQzvxSuk/gY/SfA+wnoj9/jv53icXh7hB+kbTF8sWhPjT8tYDurSSLm5PAuQTGWm01VJyDzh+ST7+E5AoMUvMpxzyDnr/TwPkD/vGt1juYc2dIcu6sI56RWNfsD+Hr+6eW69aHhg8K6N5OwthzwLkExlptd5Cxv4Y4GHs+5hlrPPMb2DMSh2a/CuH5+oXldUU3FhwS0L2DpK5cAM4lMNZqh8AONcsBduAGjdiO8u/ePS6GDOwo/x5Kv6OsPzTs+0z0Dg9ghyJlh/H3EC5ZvyKBykVgLJAH2L8SgIp/0REJdtEcYAfGWAxSf3j3+DNkAFJ/hNJDSn9o2PeZaEilDUBQSP0RwiX/bhJI/QmMBfIA+x4HD7ADPaP2EECe5QA7MEfEIP+Xd4+/QwYg/1coPeT1h4Z9n4lOsrQBCAr5v0I4SH1DAvm/gbFAHmDf5+ABdqBn1D4CyLMcYAfmiBjk//Hu8W/IAOT/CaWHvP7QsO8z0UmWNgBBIf9PCAepgySQ/xcYC+SB5m8dPNAM9Iz61tA+USTYpf4FevkS4F6mDzRfwt0r3YHmy2l+jx1oDnjPS9EJRd/3SghnfindV/Ax+s+B5ivJY4/+DxIHx0+G8BuV31m+QasPkZ4S0H2EZHETF4ebS2Cs1RFDxTno/CH5FB8nV2CQmjM54hkJxp4O4Vnzg+W69aHhswK6j5EwNgGYL8BYq2MOMjYzCWOzOOIZCcaeC+FZ85PluvWh4fMCuk+QMDYrMF+AsVYnHGRsNhLGZo95xhrP5AB7RuLQ7IkQnq+/WF5XdGPBBQHdp0jqSk6gL4GxVqcs983/Pa+Mw/vmrOW69TOcTAK6z5HkSy5gvgBjrc6R1NTFwHtdRbIOyw0c50igZ0YRMDZBgDW/Wa5bP8PJIqD7AgljrwbmCzDW6oKDjM1DwthrgOMcA/TMWALGZhVgzR+W69bPcLIL6P6ThLF5gfkCjLX600HG5iNhbH7gOF8Hema85azRBxyvhPCs+cdy3fqZZ04Bxv5LwtgCwHwBxlr96yBjC5Iw9lrgOAcCPTPI9r+ZvXs0DOFZUyjOvVy5zvK9KqlYXx/HUVcKO8IIhlwpYnmu6Dx5TyBXipLkSjFgfFz8FnpkrtxAkCvzBHIlTJIrNwLj4+KLqJG5chNBrswXyJWbSXKleKyvyJpcuYXkb/sSwHE+DfRMLxLPxAHvdSsuFhVNNYoDx5yuUbxkmn/EGsUD3lMHqWQc/r6l4nDml9JdKg4eo5TXCyWAx6sL0L/g+wEfFir9EA74QErpIllCID4hbG6mvLKotDfWMnEGXllUOi79K4v0h4ajn4FOkmTToVfNVyx/Op+cHGjdoWvt1p2cxGjdcZbrToYNWnf8tTLgAq30U14jVhpYrMsA75XJ0PxFgl0KyDOVlhGBO91J5g/IBxUPnL/MJPMHzBMF9IxCzl/ywjoePHe61iN3KPUOW1GBP6jKCD1pBIwxZRFc1htjOROL4LK+RXA54UVwYYHFwVWWL4oyMnLg9iISqAIWMikLrLLARdHVdi8qU8ZZDgjVq4BFPQ+J/4B5ooCeUXlIijryOKs+jnmtQFEvR1DUy3tjrGCiqJf3FfUKwkW9gEBxK2B5Uc/IyIHPK5NAtRywqJcHFvVrSYp6BSBUCwCLeiES/wHzRAE9owqRFHXkmS99ZulmgaJegaCo6w11ZaKoR3xFXQkX9RsFiltRy4t6RkYOfBiZBKoVgEU9AizqN5AUdQWEalFgUQ+T+A+YJwroGSU1f+jCroA5VxFwL9PfqFIRuGBIO95KsYNy2CBVElgtVgaaX0p35Th4jFKMWio6p5WjP6tE/weJxWEugUXSLZYvDvVb53IL6C5BsripClzcAGOtShgqzkHnD8mn2+LkCgxSczVHPCPB2KsFWFPKct36rXPXCOguTcLY24H5Aoy1Ku0gY+8gYeydjnhGgrF5BVhTznLd+q1z+QV0lydh7F3AfAHGWpV3kLF3kzC2eswz1njmHhLP1BDa4Y8Eu5A756I71BJNlehaCtzwEduhvtcbY804AzvU9/p2qGum2aHOKMkiwS7EjkfKjuW9QEgpksVQTSRMgTuWFR1suAJ6RlUkgTxDw1BNAsjX8sZY2wTka/kgX9sA5GsCIV8LCPkqJJCvDUwyZANJVQcbSICeUVVJIM/QQFKbAPJ1vDHWNQH5Oj7I1zUA+dpAyNcBQv52EsjXFXrcEHgbxcGGAqBn1B0EkNeP95CP1fVj4eoCkK9LAPl63hjrm4B8PR/k68fJNRQkGwS953S35XttGRk58H4ECVTrAot6PeQeAklRr4+EKrCo1yDxHzBPFNAzqoahfbtIsEvVB+bcfYB7mW4ouA+4YEg73gZp/hFrKAh4Tx2kBgKrxYZA80vpbhgHj9F/GgoaRn82iv4PEovDqgKLpDqWLw71Ie5qArrrkixuGgMXN8BYq7qGinPQ+UPyqQnJoZr7HfGMBGNvF2DNfZbr1oe47xTQ3YCEsU2B+QKMtWrgIGMfIGHsg455Bj1/Dwk9tIkEu1R1B3PuYZKceyTmGWs80wzsGfSaRu/gVBZY0zS2fC33fwf/BXQ3IakrjwJ9CYy1akKwQ83SUADc8BHboW7ujbFFnIEd6ua+HeoWBo4hAXY8UnYsmyP/eCCBVAtk8QTuWD7oYEMB0DPqQRLIMzQUtCCAfEtvjK1MQL6lD/KtDEC+BRDyLYGQf4QE8q2ASYZsKGjmYEMB0DOqGQnkGRoKWhFAvrU3xjYmIN/aB/k2BiDfCgj51kDItyCBfBtgkiEbClo62FAA9IxqSQB5loaCNgSQb+uNsZ0JyLf1Qb6dAci3AUK+LRDybUgg305o3ynouNo6eMAc6BnV1tC+XSTYpdoBc6494F6mD5i3BxaQtOPtkOYfsQPmAe+pg9RBYPXQEWh+Kd0d4+Ax+s8B847Rn52i/wNahz4c0Fhg47iD5Rvm+lDv/QK6O5IsbjoDFzfAWKuOhopz4DgD+ZRIchAryRHPSDC2qQBrEi3XrQ/1PiigO4mEsY8B8wUYa5XkIGO7kDD2cUc8I8HYhwRY87jluvUh7kcEdD9BwtgngPkCjLV6wkHGPknC2K4xz1jjmW5gz6D5qs+8NhTgazfL64pu9HhUQHd3krrSHehLYKxVd4IdapaGAuAGn9gO9VPeGHvEGdihfsq3Q93DwA41YIcrZYf6KWBRepoEUj2QxRO4Q93TwYYCoGdUTxLIMzQU9CCA/NPeGHuagPzTPsj3NAD5HkDIPw2EfB8SyPcEJhmyoaCvgw0FQM+oviSQZ2go6EkA+V7eGHubgHwvH+R7G4B8TyDkewEh358E8r2BSYZsKBjgYEMB0DNqAAHkWRoKehNAvo83xr4mIN/HB/m+BiDfGwj5PkDIDyaBfF9kkgEhP8TBhgKgZ9QQQ/t2kWCX6gvMuWcA9zLdUPAMsICkHW+/NP+INRQEvKcOUj+B1UN/oPmldPePg8foPw0F/aM/B0T/B7QOfTigs8DG8XOWb5jrQ9xJArqHkSxuBgIXN8BYq2GGinPgJxVAPg0iOYg12BHPSDD2MQHWvGC5bn2I+3EB3S+SMHYIMF+AsVYvOsjYZ0kYO9QRz0gw9gkB1rxiuW59iLurgO4RJIx9DpgvwFirEQ4ydhgJY5+PecYazwwHewbNV33mtaMAX1+1vK7oRo/uArpHk9SVF4C+BMZajbbcN5oNAwV885rluvUznMECuseR5MuLwHwBxlqNI6mppYA19SWSddjLwHHeAvRMCQLGDhFgzQTLdetnOEMFdE8kYewrwHwBxlpNdJCxI0gYOxI4zlJAz5QmYOxzAqx5w3Ld+hnO8wK6p5AwdhQwX4CxVlMcZOyrJIwdDRxnOaBnylvOmr5xqeebkPF4y3Ld+pnnCwK6p5EwdgwwX4CxVtMcZOxYEsa+BhxnAaBnCpLk3DhknIHzF+dgzr1OknPjHfMMev4mAOfvKuD85XYw5yaS5NwkxzyDnr/Jjq0TbM65Nyw/26Ffl1FM4O+wdyz/+/MG74ZhAd0zSBgxBehLYKwVy/y9CZy/u4HzV91Bxk4lWde8BRxnUaBnipHk3DTg/Ln45RTInHubYF1TXKC+T4/jyJV3Yr2t1uTKDJL69C5wnFcK4u4VT+KZOOC9ZuJiUcnUy0qAY073spJZaf4Re1lJwHvqIM2Kw993NhCYUrpnx8FjlPKKuwTweHUBQr59S98PuQGmN3CQmyO6SL4rEJ8QNjdTXps3xxvr3DgDr82bE5f+tXn6Q8PRz0AnSbLp0KvmWZY/DUxODrTu2ZbrTk5itO45lutOhg1a91y7n6SkvMpyDrBYzwXe6z2S1zoCeaZmA1+LOY9k/oB8UHOB8zefZP6AeaKAnlHI+UteWMeD507XeuSpFH2qYpLAH1Rz42S8CBhjyiL4PW+M80wsgt/zLYLnCS+CJwgsDpZbvijKyMhBda8ggSpgIZOywHoPuChaSbI9Nw8I1eXAor6KxH/APFFAz6hVJEUdeexNH9uaIlDU5xEU9fneGBeYKOrzfUV9gXBRnyxQ3D60vKhnZOSguteSQHUesKjPBxb1dSRFfQEQqh8Ci/p6Ev8B80QBPaPWkxR1ZJ+k7vN7TaCoLyAo6gu9MS4yUdQX+or6IuGiPkaguG2yvKhnZOSgujeTQHUBsKgvBBb1LSRFfREQqpuARX0rif+AeaKAnlFS84cu7IuAObcYcC/T3+q1GLhgSDveJWn+ETsoF/CeOkhLBFaLS4Hml9K9NA4eoxSjzo7O6dLoz2XR/0FicfiiwCLpM8sXh/rNpy8L6P6cZHGzHLi4AcZafW6oOAedPySfVsTJFRik5pWOeEaCsa8IsOZLy3XrN5+OFNC9k4Sxq4D5Aoy12ukgY98nYexqRzwjwdhRAqzZbblu/ebT0QK695Aw9gNgvgBjrfY4yNg1JIz9MOYZazyzlsQz64Q2AyLBLuRDdtEdaommSnQtBW74iO1Qr/fG+FGcgR3q9b4d6o/S7FBnlGSRYBdixyNlx3I9EFLfkCyGPgImGbLhap+DDVdAz6h9JJBnaBj6iADyG7wxfmwC8ht8kP/YAOQ/AkJ+AxDyB0kg/zEwyZANJN862EAC9Iz6lgTyDA0kHxNAfqM3xk0mIL/RB/lNBiD/MRDyG4GQ/44E8puASYZsKDjiYEMB0DPqCAnkGRoKNhFAfrM3xi0mIL/ZB/ktBiC/CQj5zUDI/0AC+S1Cz5SDjuuYgwfMgZ5Rxwzt40SCXWoLMOe2Au5l+oD5VmABSTveT9L8I3bAPOA9dZA+EVg9bAOaX0r3tjh4jP5zwHxb9Oen0f8BrUNvFi8XOKDyk+UHc/Sh3pUCuk+QLG62Axc3wFirEySHLJB8+ozkkMXnjnhGgrGrBFjzi+W69aHe1QK6T5Ew9gtgvgBjrU45yNgdJIz90hHPSDD2AwHWnLVctz7U+6GA7nMkjN0JzBdgrNU5Bxn7FQljd8U8Y41ndoM9g+arPvO6VICvv1leV/TB/3UCui+Q1JU9QF8CY60ukOxQMzQUADf4xHaov/bGuDfOwA71174d6r0GdqgBO1wpO9RfA4vSHySQ2gtMMmRDwZ8ONhQAPaP+JIE8Q0PBXgLIf+ONcZ8JyH/jg/w+A5DfC4T8N0DI/0MC+X3AJEM2FPzrYEMB0DPqXxLIMzQU7COA/H5vjAdMQH6/D/IHDEB+HxDy+4GQv0IC+QPAJEM2FIQKcUAe2VAA9IxCzp8k5BkaCg4QQP6gN8ZvTUD+oA/y3xqA/AEg5A8CIZ+pEAfkvwUmGbKhIIEE8siGAqBnlNT8oUH/LTDnDgHuZbqh4BCwgKQd7+E0/4g1FAS8pw7SYYHVw3dA80vp/i4OHqP/NBR8F/15JPo/oHXowwHbBTaOs4Ihi9atD3F/LqA7G8ni5nvg4gYYa5XNUHEO/OoDIJ+OkhzE+sERz0gw9gsB1uS0XLc+xP2lgO5cJIw9BswXYKxVLgcZ+yMJY4874hkJxu4UYM3VluvWh7h3CejOQ8LYn4D5Aoy1yuMgY0+QMPbnmGes8cxJsGfQfNVnXrcJ8DWf5XVFN3rsEdCdn6Su/AL0JTDWKj/JDjVDQwFwg09sh/qUN8bTcQZ2qE/5dqhPG9ihBuxwpexQnwIWpWtJIHUamGTIhoJCJDvUyIYCoGdUIRLIMzQUnCaA/BlvjGdNQP6MD/JnDUD+NBDyZ4CQL0wC+bPAJEM2FBQhgTyyoQDoGVWEBPIMDQVnCSB/zhvjryYgf84H+V8NQP4sEPLngJC/gQTyvwKTDNlQEHawoQDoGRUmgTxDQ8GvBJA/743xNxOQP++D/G8GIP8rEPLngZC/mQTyvwGTDNlQUNzBhgKgZ1RxQ/t2kWCX+g2YcxcA9zLdUHABWEDSjvf3NP+INRQEvKcO0u8Cq4eLQPNL6b4YB4/RfxoKLkZ//hH9H9A69OGA7wU2jm+1fMNcH+L+QUB3SZLFzZ/AxQ0w1qokyaEaJJ/+IjmI9bcjnpFg7DEB1pSxXLc+xH1cQHdZEsb+A8wXYKxVWQcZ+y8JYy854hkJxv4kwJoKluvWh7h/FtAdIWHsZWC+AGOtIg4y9goJY/Ukxjxjh2fi4rGeQfNVn3n9ToCvlSyvK7rR4xcB3ZVJ6ko80JfAWKvKlvtGs+FPAd/cZrlu/QznbwHd1UjyJRMwX4CxVtVIaupsYE1NANdUKc9kBo7zM+Bm8+eWf3uQZuw/Aqy503LG6mc4lwR030XC2CzAfAHGWt3lIGOzkjA2G3CcXwIZu5OAsZcFWHOP5Yy9Ej2hiNZdg4Sx2YH5Aoy1quEgY3OQMDYncJy7gYzdYzljf4tLPd+EjEctyxmrn3nGCzC2NgljcwHzBRhrVdtBxl5FwtjcwHFuAjJ2M8lX4FwNnL/ZwPmbc617OZeHJOeuccwz6PnLC5y/5cD5W+FgzuUjybn8jnkGPX8FgPP3IXD+1jqYcwVJcu5axzyDnr9Cjq3Nbc6568A5h372od9e8KbAM596lj/zmerd8C0B3fVJnvlcD/QlMNaKZf4KA+fvLJCx5xxkbBECxk4TYE1Dyxn7tnfD6QK6G5EwoijQl8BYK5b5KwacPxe/AAjJ2BsIGPuOAGvC8Ry5ciMwPi6+PwCZKzeBc0XKMzcDxzkLuIadS7KGjQPeqzguFpVNvRAKOOZ0L4S6JT7199gLoQLeUwdJTyj6viXiceaX0l0iHh6jlNeIJoDHqwsQ8g2H+n7IQwZ6kxy5Aa2L5M0C8QlhczPl1aS3emMtGW/g1aS3xqd/Nan+0HD0M9BJkmw69Kr5fsufTCQnB1p3U8t1JycxWvcDlutOhg1a94N2P0lJeV3wrcBiXRJ4r4dIXp0L5JlKy4ig8/cwyfwB+aAeBM7fIyTzB8wTBfSMQs5f8sI6Hjx3utYjT/7pk2v5Bf6gKhkv40XAGFMWwaW8MZY2sQgu5VsElxZeBOcVWBy0sXxRlJGRg+puSwJVwEImZYFVCrgoakeyPVcaCNU2wKLensR/wDxRQM+o9iRFHXm0WB+NvVagqANzRKyol/HGWNZEUS/jK+plhYt6AYHilmh5Uc/IyEF1J5FAtTSwqJcBFvXHSIp6WSBUE4FFvQuJ/4B5ooCeUV1Iijqyd0Gfvb9eoKgDc0SsqJfzxljeRFEv5yvq5YWLeiGB4tbN8qKekZGD6u5OAtWywKJeDljUnyIp6uWBUO0GLOo9SPwHzBMF9IySmj90YS8PzLkKgHuZ/ubECsAFQ9rxRuJTf48dlAt4Tx2kiMBqUQHNL6VbxcNjlGLUEtE5VdGfFaOfJbE4zCSwSOpj+eJQv106s4DuviSLm0rAxQ0w1qqvoeIcdP6QfKocL1dgkJqrOOIZCcZmEWBNf8t167dLZxPQPYCEsVWB+QKMtRrgIGNvI2FsNUc8I8HY7AKsGWy5bv126ZwCuoeQMPZ2YL4AY62GOMjYO0gYe2fMM9Z45i6wZyTqSi4Bvj5neV3Rb9TOLaB7GElduRvoS2Cs1TCSEwkSTbRojwM3+MROJFT3xnhPvIETCdXj059I0B8a9n0meocQsMOVskNdHViUXiCB1D3AJEM22L3oYIMd0DPqRRLIMzSI3UMA+RreGO81AfkaPsjfawDy9wAhXwMI+VdIIH8vMMmQDUMjHGwYAnpGjSCBPEPD0L0EkK/pjbGWCcjX9EG+lgHI3wuEfE0g5F8lgXwtYJIhG0hGO9hAAvSMGk0CeYYGkloEkK/tjbGOCcjX9kG+jgHI1wJCvjYQ8q+RQL4OMMmQDQXjHGwoAHpGjTO0bxcJdqk6wJyrC7iX6YaCusACkna89eJTf481FAS8pw5SPYHVQ32g+aV014+Hx+g/DQX1oz/vi36WRONGpXj8xvEEyzfM9SHuKgK6J5IsbhoAFzfAWKuJhopz4K9AA/KpYbxcgUFqbuSIZyQYW1WANW9Yrlsf4q4moHsKCWMbA/MFGGs1xUHGNiFh7P2OeEaCsbcLsOYty3XrQ9x3CuieRsLYpsB8AcZaTXOQsQ+QMPbBmGes8cxDYM9IHDpWAnx9x/K6ohs97hbQPYOkrjwM9CUw1moGyQ41Q0MBcINPbIf6EW+MzeIN7FA/Ep9+h1p/aNj3megdQsAOV8oO9SPAojSLBFLNgEmGbCiY7WBDAdAzajYJ5BkaCpoRQP5Rb4zNTUD+UR/kmxuAfDMg5B8FQv49Esg3ByYZsqFgnoMNBUDPqHkkkGdoKGhOAPkW3hhbmoB8Cx/kWxqAfHMg5FsAIb+QBPItgUmGbChY5GBDAdAzahEJ5BkaCloSQL6VN8bWJiDfygf51gYg3xII+VZAyC8lgXxrYJIhGwqWOdhQAPSMWmZo3y4S7FKtgTnXBnAv0w0FbYAFJO1428an/h5rKAh4Tx2ktgKrh3ZA80vpbhcPj9F/GgraRX+2j36WRONGg3j8xvFKyzfM9SHuRgK6V5EsbjoAFzfAWKtVhopz4C/EBvKpY7xcgUFq7uSIZyQY21iANR9Yrlsf4r5fQPcaEsZ2BuYLMNZqjYOMTSRhbJIjnpFgbFMB1qyzXLc+xP2ggO71JIx9DJgvwFir9Q4ytgsJYx+PecYazzwB9ozEoeP6Anz92PK6ohs9HhbQvZGkrjwJ9CUw1mojyQ41Q0MBcINPbIe6qzfGbvEGdqi7xqffodYfGvZ9JnqHELDDlbJD3RVYlLaQQKobMMmQDQVbHWwoAHpGbSWBPENDQTcCyHf3xviUCch390H+KQOQ7waEfHcg5D8lgfxTwCRDNhRsd7ChAOgZtZ0E8gwNBU8RQL6HN8anTUC+hw/yTxuA/FNAyPcAQv4LEsg/DUwyZEPBDgcbCoCeUTtIIM/QUPA0AeR7emPsZQLyPX2Q72UA8k8DId8TCPmvSCDfC5hkyIaCXQ42FAA9o3YZ2reLBLtUL2DO9Qbcy3RDQW9gAUk73j7xqb/HGgoC3lMHqY/A6qEv0PxSuvvGw2P0n4aCvtGfz0Q/S6Jxo0M8fuP4a8s3zPUh7k4CuveSLG76ARc3wFirvYaKc9D5Q/Kpf7xcgUFqHuCIZyQY21mANfst160PcScJ6D5AwtiBwHwBxlodcJCxg0gYO9gRz0gw9jEB1hyyXLc+xP24gO7DJIwdAswXYKzVYQcZ+ywJY4fGPGONZ54De0bi0HE7Ab5+b3ld0Y0eTwroPkpSV4YBfQmMtTpquW80G/oJ+OZHy3XrZzgDBHQfJ8mX54H5Aoy1Ok5SU0sAa+pwknXYC8Bx9gF6pi8BYwcKsOZny3XrZziDBXSfJGHsi8B8AcZanXSQsS+RMPZl4Dj7Az0zgICxQwRYc9py3foZzlAB3WdIGPsKMF+AsVZnHGTsCBLGjgSOczDQM0MsZ40+4NhXgDW/Wq5bP/McJqD7PAljRwHzBRhrdd5Bxr5KwtjRwHE+B/TMMJKcGwOcv6bA+XvAwZwbS5JzrznmGfT8jQPOXxvg/LV1MOdeJ8m58Y55Bj1/E4DzlwicvyQHc24iSc5Ncswz6PmbDJy/bsD56+5gzr1BknNTHPMMev7edOzvYZtzbio459DPG/UbQwoLPG/83fLnrEU8zUUFdF8kYcRbQF8CY61Y5m8acP7eAs7fNAcZ+zYBY4sJsOYvyxl7g6c5LKD7bxJGTAf6EhhrxTJ/7wDnz8Uv3UIydgYBY28UYM278Ry5MhMYHxff2YHMlVngXJHyzGzgOO8HeuZBEs/EAe81BxeLKqZewgYcc7qXsM2NT/099hK2gPfUQZobj7/ve0BgSul+Lx4eo5RX9yaAx6sLEPKtovp+yIM9+mAK8tCHLpKzBeITwuZmyuuA53ljnR9v4HXA8+LTvw5Yf2g4+hnoJEk2HXrVfMnyJxPJyYHWfdly3clJjNZ9xXLdybBB6w5dZ/Vfhymv6J4HLNbzgfeKMzR/kWCXAvJMXQa+7jueZP6AfFBpcy7o/GUimT9gniigZxRy/pIX1vHgudO1HnnaVp8WHS/wB9X8eBkvAsaYsghe4I1xoYlF8ALfInih8CJ4nMDiIOd1di+KMjJyUN25SKAKWMikLLAWABdFV9m9qEwZ50IgVHMCi3puEv8B80QBPaNykxR15HF+fRx9kkBRB+aIWFFf5I1xsYmivshX1BcLF/UJAsUtn+VFPSMjB9WdnwSqC4FFfRGwqBcgKeqLgVDNByzqBUn8B8wTBfSMKkhS1JH9QrrfZYpAUQfmiFhRX+KNcamJor7EV9SXChf1yQLFrbDlRT0jIwfVXYQEqouBRX0JsKgXJSnqS4FQLQws6sVI/AfMEwX0jJKaP3RhXwrMuWWAe5n+ttJlwAVD2vEuj0/9PXZQLuA9dZCWC6wWVwDNL6V7RTw8RilGfS86pyuiP1dGP0ticfi8wCLpZssXh/qN7i8I6C5OsrhZBVzcAGOtihsqzkHnD8mn9+PlCgxS82pHPCPB2BcFWHOr5br1G91fFtBdkoSxHwDzBRhrVdJBxq4hYeyHjnhGgrGvCLCmjOW69RvdRwroLkvC2LXAfAHGWpV1kLHrSBi7PuYZazzzEdgzEnVllABfK1heV/Rb7EcL6I6Q1JUNQF8CY60iJCcSJJpo0R4HbvCJnUj42BvjxngDJxI+jk9/IkF/aNj3megdQsAOV8oO9cfAolSJBFIbgUmGbLCr7GCDHdAzqjIJ5BkaxIA5Igb5Td4YN5uA/CYf5DcbgPxGIOQ3ASF/GwnkNwOTDNkwVM3BhiGgZ1Q1EsgzNAwBc0QM8lu8MW41AfktPshvNQD5zUDIbwFC/k4SyG8FJhmygeQuBxtIgJ5Rd5FAnqGBBJgjYpD/xBvjNhOQ/8QH+W0GIL8VCPlPgJC/hwTy24BJhmwoqOFgQwHQM6qGoX27SLBLbQPm3KeAe5luKPgUWEDSjnd7fOrvsYaCgPfUQdousHr4DGh+Kd2fxcNj9J+Ggs+iPz+PfpZE48aqePzGcS3LN8z1Ie7VArprkyxuvgAuboCxVrUNFeeg84fk0454uQKD1PylI56RYOwHAqypZ7lufYj7QwHd9UkYuxOYL8BYq/oOMvYrEsbucsQzEoxdK8Cahpbr1oe41wvobkTC2N3AfAHGWjVykLF7SBj7dcwz1nhmL9gzEoeOVwjw9X7L64pu9NggoLspSV35BuhLYKxVU5IdaoaGAuAGn9gO9T5vjPvjDexQ74tPv0OtPzTs+0z0DiFghytlh3ofsCg9RAKp/cAkQzYUPOxgQwHQM+phEsgzNBQAc0QM8ge8MR40AfkDPsgfNAD5/UDIHwBC/lESyB8EJhmyoaC5gw0FQM+o5iSQZ2goAOaIGOS/9cZ4yATkv/VB/pAByB8EQv5bIORbkUD+EDDJkA0FrR1sKAB6RrUmgTxDQwEwR8Qgf9gb43cmIH/YB/nvDED+EBDyh4GQb0cC+e+ASYZsKGjvYEMB0DOqvaF9u0iwS30HzLkjgHuZbig4Aiwgacf7fXzq77GGgoD31EH6XmD1cBRofindR+PhMfpPQ8HR6M8fop8l0bjxRTx+47iT5Rvm+hD3lwK6O5Msbo4BFzfAWKvOhopz0PlD8unHeLkCg9R83BHPSDB2pwBrHrNctz7EvUtAdxcSxv4EzBdgrFUXBxl7goSxPzviGQnG7hZgzZOW69aHuL8W0N2VhLEngfkCjLXq6iBjfyFh7KmYZ6zxzGmwZyQOHX8mwNenLK8rutHjGwHdPUjqyhmgL4GxVj1IdqgZGgqAG3xiO9RnvTGeizewQ302Pv0Otf7QsO8z0TuEgB2ulB3qs8Ci1IsEUueASYZsKOjtYEMB0DOqNwnkGRoKgDkiBvlfvTGeNwH5X32QP28A8ueAkP8VCPlnSCB/HphkyIaCfg42FAA9o/qRQJ6hoQCYI2KQ/80b4wUTkP/NB/kLBiB/Hgj534CQH0gC+QvAJEM2FAxysKEA6Bk1iATyDA0FwBwRg/zv3hgvmoD87z7IXzQA+QtAyP8OhPyzJJC/CEwyZEPBUAcbCoCeUUMN7dtFgl3qIjDn/gDcy3RDwR/AApJ2vH/Gp/4eaygIeE8dpD8FVg9/Ac0vpfuveHiM/tNQ8Ff059/Rz5Jo3DgWj984ft7yDXN9iPu4gO7hJIubf4CLG2Cs1XBDxTno/CH59G+8XIFBar7kiGckGPuTAGtesly3PsT9s4Dul0kYexmYL8BYq5cdZOwVEsbqG7rgGQnGnhRgzUjLdetD3KcEdI8iYWwcMF+AsVajHGRsfCYOxmaKecYazySAPSNx6PioAF/HWF5XdKPHGQHdY0nqSmagL4GxVmMt941mwz8Cvnndct36Gc4lAd3jSfIlCzBfgLFW40lq6nvAmpqVZB2WDTjOm4GeKU7A2MsCrJlkuW79DEebEK17MgljswPzBRhrNdlBxuYgYWxO4DhvBXqmJAFj4wRY86bluvUznEwCuqeSMDYXMF+AsVZTHWTsVSSMzQ0cZxmgZ8pazhp9wPEvgXXs25br1s88MwswdjoJY68G5gsw1mq6g4zNQ8LYa4DjrAD0TIQk5/IC5+8y8D0MwHc60ORcPpKcy++YZ9DzVwA4fzmBzMrlYJ0rSJJz1zrmGfT8FQLOXz7g/OV3MOeuI8m56x3zDHr+CgPnrzBw/oo4mHNFSHKuqCOeQT870m9/eFPgmdm7luue6ml+S0D3TBLGFgPmCzDWaqaDjL2BhLFhxzyDnr8bHXvmaHPO3WT5OXFdl6cJ1Kc5ltfltz3N0wV0zyVhxM1AXwJjrVjmrzhw/hoC56+Rg4y9hYCx7wiwZr7ljJ3haX5XQPcCEkaUAPoSGGvFMn+3AufPxS82RDK2JAFjZwqwplQmjlwpDYyPi+9FQuZKGZLnLGWB47wEPCcRIvFMHPBe5XCxqGrqRZfAMad70WX5TKm/x150GfCeOkjlM+HvWyETzvxSuitkgsco5fXoCeDx6gKEfHOzvh/y8KQ+/Ic8WKeLZFmB+ISwuZnyyvWIN1aVycAr1yOZ0r9yXX9oOPoZ6CRJNh161bzY8icTycmB1r3Ect3JSYzWvdRy3cmwQeteZveTlJSvQYgAi7UC3ms5yVcCAHmmlgC/UmEFyfwB+aCWAedvJcn8AfNEAT2jkPOXvLCOB8+drvXIjgZ9Iv9agT+olNCTRsAYUxbBFb0xVjKxCK7oWwRXEl4EFxBYHKyzfFGUkZGD6l5PAlXAQiZlgVURuCj6iGR7rhIQquuARX0Dif+AeaKAnlEbSIo6smVKt/xcL1DUKxEU9creGKuYKOqVfUW9inBRLyRQ3LZYXtQzMnJQ3VtJoFoJWNQrA4v6JyRFvQoQqluARX0bif+AeaKAnlHbSIo6sidT9xQWFSjqVQiKuj4EcJuJol7VV9RvEy7qhQWK2xeWF/WMjBxU9w4SqFYBFvWqwKL+JUlRvw0I1S+ARX0nif+AeaKAnlFS84cu7LcBc64a4F6mvxG6mtBBudvTnJ+JHZQLeE8dpNsFVot3WH5QTuu+Q+AgVvI4K0Tn9I7ozzujnyWxOMwisEj62vLFof7WjGwCuveSLG7uAi5ugLFWew0V56Dzh+TT3SSdD9Ud8YwEY7MLsGa/5br1t2bkFNB9gISx9wDzBRhrdcBBxtYgYey9jnhGgrG5BFhzyHLd+lszcgvoPkzC2JrAfAHGWh12kLG1SBhbO+YZazxTB+wZibpytQBfv7e8ruhvCrlGQPdRkrpSF+hLYKzVUZITCRJNtGiPAzf4xE4k1PPGWN/EiYR6vhMJ9dOcSMgoySLBLsQOV8oOdT1gUfqRBFL1gUmGbLA77mCDHdAz6jgJ5BkaxOoTQP4+b4wNTED+Ph/kGxiAfH0g5O8DQv5nEsg3sLRh6KSDDUNAz6iTJJBnaBhqQAD5ht4YG5mAfEMf5BsZgHwDIOQbAiF/mgTyjSxtIDnjYAMJ0DPqDAnkGRpIGhFAvrE3xiYmIN/YB/kmBiDfCAj5xkDI/0oC+SaWNhScd7ChAOgZdd7Qvl0k2KWaAHPufsKGgvuFGgqaZkr9PdZQEPCeOkhNBVYPD1jeUKB1P2CgoeCB6M8HhRoK9OGAuwQ2jn+3fMNcH+KuLqD7Isni5iHg4gYYa3XRUHEOOn9IPj1MchDrEUc8I8HYewRY85fluvUh7nsFdP9NwthmwHwBxlr97SBjHyVhbHNHPCPB2JoCrLlkuW59iLu2gO7LJIxtAcwXYKzVZQcZ25KEsa1inrHGM60tbyjQZ17vEOBr3PV21xXd6FFXQHf89Rx1pQ3Ql8BYK+T8Se5QMzQUADf4xHao23pjbGdih7qtb4e6nYEdasAOV8oOdVtgUcpMAql2ljYUZDE0f5FgF7ShAOgZlYUE8gwNBe0IIN/eG2MHE5Bv74N8BwOQbweEfHsg5LOTQL6DpQ0FOUggj2woAHpG5SCBPENDQQcCyHf0xtjJBOQ7+iDfyQDkOwAh3xEI+atIIN/J0oaC3CSQRzYUAD2jcpNAnqGhoBMB5Dt7Y0w0AfnOPsgnGoB8JyDkOwMhfw0J5BMtbSjISwJ5ZEMB0DNKav7QoE8E5lwSYUNBklBDwWOZUn+PNRQEvKcO0mMCq4culjcUaN1dDDQUdIn+fFyooUAfDnhIYOO4gOUb5voQ9yMCuguSLG6eAC5ugLFWBQ0V56Dzh+TTkyQHsbo64hkJxjYTYM11luvWh7ibC+i+noSx3ZCP4oH5cr2DjO1OwtinHPGMBGNbCLCmqOW69SHuVgK6i5EwtgcwX4CxVsUcZOzTJIztGfOMNZ7pZXlDgT7z+oAAX2+0vK7oRo82ArpvIqkrvYG+BMZa3USyQ83QUADc4BPboe7jjbGviR3qPr4d6r4GdqgBO1wpO9R9gEXpFhJI9bW0oaCEgw0FQM+oEiSQZ2go6EsA+We8MfYzAflnfJDvZwDyfYGQfwYI+VIkkO9naUNBaQcbCoCeUaVJIM/QUNCPAPL9vTEOMAH5/j7IDzAA+X5AyPcHQr4cCeQHWNpQUN7BhgKgZ1R5EsgzNBQMIID8QG+Mg0xAfqAP8oMMQH4AEPIDgZBXJJAfZGlDQUUHGwqAnlEVDe3bRYJdahAw5wYTNhQMFmooGJIp9fdYQ0HAe+ogDRFYPTxreUOB1v2sgYaCZ6M/hwo1FOjDAU8IbBxXsXzDXB/i7iqguyrJ4uY54OIGGGtVleRQDZJPw0gOYj3viGckGNtNgDW3W65bH+J+SkD3HSSMHQ7MF2Cs1R0OMvYFEsa+6IhnJBjbQ4A1d1uuWx/i7imguzoJY18C5gsw1qq6g4x9mYSxr8Q8Y41nRljeUKDPvHYR4Ou9ltcV3ejRW0B3TZK6MhLoS2CsVU3LfaPZ8JyAb+pYrls/w3leQHddknwZBcwXYKxVXZKaWgFYU18lWYeNBo7za+Bm817Lv5VOM3a4AGvus5yx+hnOiwK6G5AwdgwwX4CxVg0cZOxYEsa+BhznfiBjDxAw9iUB1jS2nLH6Gc4rArqbkDB2HDBfgLFWTRxk7OskjB0PHOchIGMPW87YQZlSzzch4/GA5YzVzzxHCuh+kISxE4D5Aoy1etBBxk4kYewk4Di/BzL2KMk3uU8Gzt8S4PwtJflWbmTOvUGSc1Mc8wx6/t4Ezt864PytdzDnppLk3FuOeQY9f9OEOrMjwS5kxzNNzr1NknPTHfMMev7eEWqUjQS7kA2oNDk3gyTn3nXEM+hnR/rtD8UEnh09Yvkzsxv0CxMEdDcjeWY2E5gvwFirZg4+M5tFwtjZjnhGgrE3CrCmheW6b/I03yyguyUJY+cA8wUYa9XSQcbOJWHse455Bj1/8xzb17E55+Zb3ouj63JxgfrUxvK6fIunuYSA7rYkjFgA9CUw1opl/hYC5+8SkLGXHWTsIgLG3irAmg6WM7akp7mUgO6OJIxYDPQlMNaKZf6WAOfPxS+PRTJ2KQFjSwuwZlkmjlxZDoyPi++eQ+bKCpLnLCuB41wMXMMuI1nDxgHvtQoXi9u0T0y8TBg45nQvE34/U+rvsZcJB7ynDtL7mfD3XQ0EppTu1ZngMUr5CooE8Hh1AUK+HV/fD3lAXR+wRh5e1kVypUB8QtjcTPlaiw+8sa7JZOBrLT7IlP5rLfSHhqOfgU6SZNOhV82Jlj+ZSE4OtO4ky3UnJzFa92OW606GDVp3F7ufpKR81cwHwGK9Bnivx0m+dgXIM5WWEUHn7wmS+QPyQXUBzt+TJPMHzBMF9IxCzl/ywjoePHe61iO7xnTX01sCf1CtEXrSCBhjyiL4Q2+Ma00sgj/0LYLXCi+C3xRYHPSyfFGUkZGD6u5NAlXAQiZlgfUhcFHUh2R7bi0Qqr2ARb0vif+AeaKAnlF9SYo6si1Vt1VOFyjqawmK+jpvjOtNFPV1vqK+XrioTxMobgMtL+oZGTnwF7eSQHUtsKivAxb1wSRFfT0QqgOBRX0Iif+AeaKAnlFDSIo6su9d922/K1DU1xMU9Y+8MW4wUdQ/8hX1DcJF/R2B4va85UU9IyMH/jI9EqiuBxb1j4BF/QWSor4BCNXngUX9RRL/AfNEAT2jpOYPXdg3AHPuY8C9EpOSkhI7R5Spg3IfCx2U25jm/EzsoFzAe+ogbRRYLW6y/KCc1r1J4CBW8jhXR+d0U/Tn5uhnSSwORwkskkZavjjU30w0WkD3KJLFzRbg4gYYazXKUHEOOn9IPm0l6Xz4xBHPSDB2jABrxliuW38z0WsCuseSMHYbMF+AsVZjHWTspySM3e6IZyQYO06ANa9brlt/M9F4Ad3jSRj7GTBfgLFW4x1k7OckjP0i5hlrPLMD7BmJujJBgK+TLK8r+tuYJgnonkxSV74E+hIYazWZ5ESCRBMt2uPADT6xEwk7vTF+ZeJEwk7fiYSv0pxIyCjJIsEuxA5Xyg71TmBRepMEUl8BkwzZYDfVwQY7oGfUVBLIMzSIfUUA+V3eGHebgPwuH+R3G4D8V0DI7wJC/m0SyO+2tGFouoMNQ0DPqOkkkGdoGNpNAPk93hi/NgH5PT7If20A8ruBkN8DhPy7JJD/2tIGkpkONpAAPaNmkkCeoYHkawLI7/XG+I0JyO/1Qf4bA5D/Ggj5vUDIzyGB/DeWNhTMdbChAOgZNdfQvl0k2KW+AebcPsKGgn1CDQX7M6X+HmsoCHhPHaT9AquHA5Y3FGjdBww0FByI/jwY/SyJxo0tAhvH8y3fMNeHuD8R0L2AZHHzLXBxA4y1WmCoOAedPySfDpEcxDrsiGckGLtNgDWLLdetD3FvF9C9hISx3wHzBRhrtcRBxh4hYez3jnhGgrGfCbBmueW69SHuLwR0ryBh7FFgvgBjrVY4yNgfSBh7LOYZazzzo+UNBfrM6yYBvr5veV3RjR5fCuheTVJXjgN9CYy1Wk2yQ83QUADc4BPbof7JG+MJEzvUP/l2qE8Y2KEG7HCl7FD/BCxKH5JA6oSlDQVrHWwoAHpGrSWBPENDwQkCyP/sjfGkCcj/7IP8SQOQPwGE/M9AyH9EAvmTljYUbHCwoQDoGbWBBPIMDQUnCSD/izfGUyYg/4sP8qcMQP4kEPK/ACG/iQTypyxtKNjsYEMB0DNqMwnkGRoKThFA/rQ3xjMmIH/aB/kzBiB/Cgj500DIf0IC+TOWNhRsc7ChAOgZtc3Qvl0k2KXOAHPuLGFDwVmhhoJzmVJ/jzUUBLynDtI5gdXDr5Y3FGjdvxpoKPg1+vN89LMkGje+Fdg4/szyDXN9iPuwgO7PSRY3vwEXN8BYq88NFeeg84fk0wWSg1i/O+IZCcZ+J8CaLy3XrQ9xfy+geycJYy8C8wUYa7XTQcb+QcLYPx3xjARjjwqwZrfluvUh7mMCuveQMPYvYL4AY632OMjYv0kY+0/MM9Z45l/LGwr0mdcDAnz9xvK6ohs9jgvo3kdSVy4BfQmMtdpHskPN0FAA3OAT26G+7I3xiokd6su+HeorBnaoATtcKTvUl4FF6SAJpK5Y2lDwrYMNBUDPqG9JIM/QUHCFAPJ6GzouwQDkQwnpIa8/NOz7THSSXQFCXo8/4L1SX/dCAvm4BFwskA0FRxxsKAB6Rh0hgTxDQwEwR8QgH++NMZMJyMf7IJ/JAOTjEnCQjwdC/gcSyGcCQh7ZUHDMwYYCoGfUMRLIMzQUZCKAfII3xswmIJ/gg3xmA5DPBIR8AhDyP5FAPjMQ8siGghMONhQAPaNOGNq3iwS7VGZgzmUB3Mt0Q0EWYAFJO96sCam/xxoKAt5TBylrAv6+2YDml9KdLQEeo/80FGSLzm326GdJNG78JrBx/IvlG+b6EPfvArpPkSxucgAXN8BYq1OGinPQ+UPyKWeCXIFBas7liGckGHtRgDVnLdetD3H/KaD7HAljrwLmCzDW6pyDjM1NwtirHfGMBGP/EmDNb5br1oe4/xHQfYGEsXmA+QKMtbrgIGOvIWFs3phnrPFMPrBnJA4d/yrA1z8sryu60eOSgO4/SepKfqAvgbFWf1ruG82GHAl43/xjuW79DCeXgO5/SfKlADBfgLFW/5LU1NXAfoiCJOuwa4HjHAn0zCgCxl4lwJorluvWz3CuFtAdKszB2ELAfAHGWknNn82MvY6EsdcDxzkG6JmxBIzNI8CaTIXt1q2f4eQV0J1AwtjCwHwBxlolOMjYIiSMLQoc5+tAxo63nLGZE1LPNyHjkdVyxupnnvkFdGcjYWwxYL4AY62yOcjYG0gYGwaOcxKQsZNJns/dCJy/JOD8Pebg87mbSHLuZsc8g56/4kKvAogEu5At9jQ5dwtJzpVwzDPo+btVqDM7EuxCdjzT5FxJkpwr5Zhn0PNXWqhRNhLsQjag0uRcGZKcK+uIZ9DPjvTbH2YKnMvKafkzs1me5tkCunORPDMrB8wXYKxVLgefmZUnYWwFRzwjwdg5Aqy52nLdcz3N7wnozkPC2AgwX4CxVnkcZKwiYWxFRzwjwdh5AqzJZ7nu+Z7mBQK685MwthIwX4CxVvkdZGxlEsZWccwz6Pmr6tjeuc05d5vl/Y66Li8UqE/XWl6XF3maFwvoLkTCiGpAXwJjrVjm73bg/C0HMnaFg4y9g4CxSwRYU9hyxi71NC8T0F2EhBF3An0JjLVimb+7gPPn4hd0Ixl7NwFjlwuwpnoCR67cE3u/pzW5UoPkOcu9wHEmAj3ThcQzccB71cTFopqpF7YDx5zuhe21Yi9sxwaplsAL22tb/sJ2rbu2wAvb46NjTQCPVxcg5DeQ6Pshm4B0EwuyQUQXyXsF4hPC5mbKVwfV8cZaN8HAVwfV8X11UN00Xx2ETpJk06FXzTdY/mQiOTnQusOW605OYrTuGy3XnQwbtO6b7H6SkvJ1XnWAxbou8F43G5q/SLBLAXmm0jIicMchyfwB+aBuAs7fLSTzB8wTBfSMQs5f8sI6Hjx3utYjO3N1Z2kJgT+o6go9aQSMMWURXM8bY30Ti+B6vkVwfeFFcHGBxUE5yxdFGRk5cLsECVQBC5mUBVY94KKoAsn2XH0gVMsBi3qExH/APFFAz6gISVFHtv7r1vVSAkW9PkFRv88bYwMTRf0+X1FvIFzUbxUoblUsL+oZGTnwmWISqNYHFvX7gEX9NpKi3gAI1SrAol6NxH/APFFAz6hqJEUd+W4R/W6MsgJFvQFBUW/ojbGRiaLe0FfUGwkX9dICxe1uy4t6RkYOfLiNBKoNgEW9IbCo30NS1BsBoXo3sKjXIPEfME8U0DNKav7Qhb0RMOcaA+6VmJSUlNg5okwdlGssdFCuSeygHDZITQRWi/dbflBO675f4CBW8jhrR+f0/ujPptHPklgcFhBYJNWxfHGov/3tWgHddUkWNw8AFzfAWKu6hopz0PlD8ulBks6HhxzxjARjCwmw5j7Ldetvf7teQHcDEsY+DMwXYKxVAwcZ+wgJY5s54hkJxhYWYE1jy3Xrb38rKqC7CQljHwXmCzDWqomDjG1OwtgWMc9Y45mWlr8hQdeVYgJ8fcDyuqK/8S4soPtBkrrSCuhLYKzVgyQnEiSaaNEeB27wiZ1IaO2NsY2JEwmtfScS2qQ5kZBRkkWCXYgdrpQd6tbIPxZJINUGmGTIBrtmDjbYAT2jmpFAnqFBrA0B5Nt6Y2xnAvJtfZBvZwDybYCQbwuEfAsSyLeztGGopYMNQ0DPqJYkkGdoGGpHAPn23hg7mIB8ex/kOxiAfDsg5NsDId+GBPIdLG0gaetgAwnQM6otCeQZGkg6EEC+ozfGTiYg39EH+U4GIN8BCPmOQMh3IIF8J0sbCjo62FAA9IzqaGjfLhLsUp2AOdeZsKGgs1BDQWKsoQAbpESB1UOS5Q0FWneSgYaCpOjPx4QaCvThgAcENo4TLd8w14e4HxLQnUSyuOkCXNwAY62SDBXnwHEG8ulxkoNYTzjiGQnGPizAmsct160PcTcT0P0ECWOfBOYLMNbqCQcZ25WEsd0c8YwEYx8VYE03y3XrQ9wtBHR3J2Fsd2C+AGOtujvI2KdIGNsj5hlrPPO05Q0FjRJSX+qAnMOnLa8rutGjlYDuniR1pSfQl8BYq54kO9QMDQXADT6xHepe3hh7m9ih7uXboe5tYIcasMOVskPdC1iU+pBAqrelDQV9HWwoAHpG9SWBPENDQW8CyPfxxtjXBOT7+CDf1wDkewMh3wcI+f4kkO9raUPBAAcbCoCeUQNIIM/QUNCXAPLPeGPsZwLyz/gg388A5PsCIf8MEPKDSSDfz9KGgiEONhQAPaOGkECeoaGgHwHk+3tjHGAC8v19kB9gAPL9gJDvD4T8cySQH2BpQ8EwBxsKgJ5Rwwzt20WCXWoAMOcGEjYUDBRqKBgUayjABmmQwOphsOUNBVr3YAMNBYOjP4cINRTowwFdBDaOX7B8w1wf4n5CQPeLJIubZ4GLG2Cs1YuGinPgJxVAPg0lOYj1nCOekWDskwKsecVy3foQdzcB3SNIGDsMmC/AWKsRDjL2eRLGDnfEMxKM7S7Amlct160PcfcQ0D2ahLEvAPMFGGs12kHGvkjC2JdinrHGMy9b3lDQKSH1pQ7IOXzN8rqiGz16CugeR1JXXgH6EhhrNY5kh5qhoQC4wSe2Qz3CG+NIEzvUI3w71CMN7FADdrhSdqhHAIvSBBJIjbS0oWCigw0FQM+oiSSQZ2goGEkA+VHeGF81AflRPsi/agDyI4GQHwWE/BskkH/V0oaCKQ42FAA9o6aQQJ6hoeBVAsiP9sY4xgTkR/sgP8YA5F8FQn40EPJvkUB+jKUNBdMcbCgAekZNI4E8Q0PBGALIj/XG+JoJyI/1Qf41A5AfA4T8WCDk3yGB/GuWNhTMcLChAOgZNcPQvl0k2KVeA+bcOMKGgnFCDQWvxxoKsEF6XWD1MN7yhgKte7yBhoLx0Z8ThBoK9OGAZwU2jmdZvmGuD3E/J6B7NsniZiJwcQOMtZptqDgHnT8knyaRHMSa7IhnJBg7TIA171muWx/iHi6gex4JY98A5gsw1mqeg4ydQsLYNx3xjARjXxBgzULLdetD3C8J6F5EwtipwHwBxlotcpCxb5EwdlrMM9Z45m3LGwoGJKS+1AE5h0stryu60eMVAd3LSOrKdKAvgbFWyyz3jWbDRAHfrLRct36GM1lA9yqSfHkHmC/AWKtVJDW1NrCmziBZh70LHGcdoGfqEjD2DQHWfGC5bv0M500B3WtIGDsTmC/AWKs1DjJ2FgljZwPHeR/QMw0IGDtVgDXrLNetn+FME9C9noSxc4D5Aoy1Wu8gY+eSMPY94DgbAz3TxHLWvJaQer4JGY+PLdetn3lOF9C9kYSx84D5Aoy12uggY+eTMHYBcJwPAD3zIEnOLRR690Qk2IV8pwNNzi0iybnFjnkGPX9LhF4FEAl2IVvsaXJuKUnOLXPMM+j5Wy7UmR0JdiE7nmlybgVJzq10zDPo+Vsl1CgbCXYhG1Bpcu59kpxb7Yhn0M+O9Nsfygk8O9piue7ynuYKArq3kjD2A2C+AGOttjrI2DUkjP3QEc9IMDYiwJpPLdetPM0VBXRvJ2HsWmC+AGOttjvI2HUkjF3viGckGFtJgDVfWK67sqe5ioDuHSSM/QiYL8BYqx0OMnYDCWM/dsQzEoytKsCaryzXfZunuZqA7l0kjN0IzBdgrNUuBxm7iYSxmx3zDHr+tjh2PsnmnNtqeU+5rsu3C9Snry2vy3d4mu8U0L2XhBGfAH0JjLVimb9twPnrBpy/7g4y9lMCxt4lwJr9ljP2bk9zdQHdB0gYsR3oS2CsFcv8fQacP5u/0D75spmxnxMw9h6JZ/gJHLmyI/YOZWty5UuS5yw7geO8AeiZm0g8Ewe811e4WNxu6ksxgGNO96UYuxJSf0/wxS4Uin0pxv/TPXWQdiXg77sbCEwp3bsT4DFK+Sq1BPB4dQFCfsuTvh+y0VI3CiKb8HSR3CkQnxA2N1O+nm2PN9avEwx8PduehPRfz6Y/NBz9DHSSJJsOvWo+ZPmTieTkQOs+bLnu5CRG6/7Oct3JsEHrPmL3k5SUr0zcAyzWXwPv9T3J1wcCeaYOA79+8SjJ/AH5oI4A5+8HkvkD5okCekYh5y95YR0Pnjtd65FvP9Dd+8sE/qD6WuhJI2CMKYvgvd4YvzGxCN7rWwR/I7wIXiKwOPjF8kVRRkYOqvsUCVQBC5mUBdZe4KLoNMn23DdAqP4CLOpnSPwHzBMF9Iw6Q1LUka9X0a8HWSlQ1L8hKOr7vDHuN1HU9/mK+n7hor5coLj9ZnlRz8jIQXVfIIHqN8Civg9Y1H8nKer7gVD9DVjUL5L4D5gnCugZdZGkqCPf36TfP7RaoKjvJyjqB7wxHjRR1A/4ivpB4aK+SqC4/WN5Uc/IyEF1/0sC1f3Aon4AWNQvkRT1g0Co/gMs6pdJ/AfMEwX0jJKaP3RhPwjMuW8B90pMSkpK7BxRpg7KfSt0UO5Q7KAcNkiHBFaLhy0/KKd1HxY4iJU8zt3ROT0c/fld9LMkFofvCCySMhWxe3Gov2HzXQHdCUU4FjdHgIsbYKyV1PzFg+cPyafvSTofjjriGQnGzhRgTVbLdetv2JwtoDsbCWN/AOYLMNYqm4OMPUbC2B8d8YwEY+cIsCan5br1N2y+J6A7FwljjwPzBRhrlctBxv5EwtgTMc9Y45mfwZ6RqCvzBPh6teV1RX+r6AIB3XlI6spJoC+BsVbI+ZM8kSDRRIv2OHCDT+xEwi/eGE+ZOJHwi+9Ewqk0JxIySrJIsAuxw5WyQ/0LsCjlI4HUKWCSIRvs8huav0iwC9pgB/SMyk8CeYYGsVMEkD/tjfGMCcif9kH+jAHInwJC/jQQ8teSQP6MpQ1DhUggj2wYAnpGFSKBPEPD0BkCyJ/1xnjOBOTP+iB/zgDkzwAhfxYI+cIkkD9naQNJERLIIxtIgJ5RRUggz9BAco4A8r96YzxvAvK/+iB/3gDkzwEh/ysQ8jeQQP68pQ0FYRLIIxsKgJ5RYUP7dpFglzoPzLnfCBsKfhNqKLgQayjABumCwOrhd8sbCrTu3w00FPwe/XlRqKFAHw44IrBxfLPlG+b6EPdRAd3FSRY3fwAXN8BYq+Ikh2qQfPqT5CDWX454RoKxPwiw5lbLdetD3D8K6C5Jwti/gfkCjLUq6SBj/yFh7L+OeEaCsccFWFPGct36EPcJAd1lSRh7CZgvwFirsg4y9jIJY6/EPGONZ0KZ7X6+dTAh9aUOyDmsYHld0Y0eJwV0R0jqShzQl8BYqwjJDjVDQwFwg09shzre82GmzAZ2qOMzp9+h1h8a9n0meocQsMOVskMdnxmX/JVIIJUJCClkQ0FlBxsKgJ5RlUkgz9BQAMwRMcgneGPMbALyCT7IZzYA+UyZcZBPAEL+NhLIZwZCHtlQUM3BhgKgZ1Q1EsgzNBRkJoB8Fm+MWU1APosP8lkNQD4zEPJZgJC/kwTyWYGQRzYU3OVgQwHQM+ouEsgzNBRkJYB8Nm+M2U1APpsP8tkNQD4rEPLZgJC/hwTy2YGQRzYU1HCwoQDoGVXD0L5dJNilsgNzLgfgXqYbCnIAC0ja8ebMnPp7rKEg4D11kHJmxt83F9D8UrpzZYbH6D8NBbmic3tV9LMkGjf+ENg4rmX5hrk+xP2XgO7aJIub3MDFDTDWqjbJoRokn67OLFdgkJrzOOIZCcb+LcCaepbr1oe4/xXQXZ+EsdcA8wUYa1XfQcbmJWFsPkc8I8HYSwKsaWi5bn2I+4qA7kYkjM0PzBdgrFUjBxlbgISxBWOescYz11reUHA+IfWlDsg5vN/yuqIbPeIy43U3JakrhYC+BMZaNSXZoWZoKABu8IntUF/njfF6EzvU1/l2qK83sEMN2OFK2aG+DliUHiKB1PWWNhQ87GBDAdAz6mESyDM0FFxPAPnC3hiLmIB8YR/kixiA/PVAyBcGQv5REsgXsbShoLmDDQVAz6jmJJBnaCgoQgD5ot4Yi5mAfFEf5IsZgHwRIOSLAiHfigTyxSxtKGjtYEMB0DOqNQnkGRoKihFA/gbNWhOQv8EH+bAByBcDQv4GIOTbkUA+bGlDQXsHGwqAnlHtDe3bRYJdKgzMuRsJGwpuFGoouCnWUIAN0k0CDQU3W95QoHXfbKCh4Obo3BYXaijQhwNyC2wcd7J8w1wf4s4joLszyeLmFuDiBhhr1ZnkUA2STyVIDmLd6ohnJBh7jQBrHrNctz7EnU9AdxcSxpYE5gsw1qqLg4wtRcLY0o54RoKx+QVY86TluvUh7oICuruSMLYMMF+AsVZdHWRsWRLGlot5xhrPlLe8oSB75tSXOiDn8CnL64pu9CgkoLsHSV2pAPQlMNaqh+W+0Wy4RcA3vSzXrZ/h3CqguzdJvkSA+QKMtepNUlN3A7/1R5GswyoCx5kJ6JkEAsaWFGDNM5br1s9wSgvo7kfC2ErAfAHGWvVzkLGVSRhbBTjOrEDPZCNgbBkB1gy0XLd+hlNOQPcgEsZWBeYLMNZqkIOMvY2EsdWA48wJ9Ewuy1kTzpx6vgkZj2ct162feVYQ0D2UhLG3A/MFGGs11EHG3kHC2DuB47wa6Jk8JDl3l9C7JyLBLuQ7HWhy7m6SnKvumGfQ83eP0KsAIsEuZIs9Tc7VIMm5ex3zDHr+agp1ZkeCXciOZ5qcq0WSc7Ud8wx6/uoINcpGgl3IBlSanKtLknP1HPEM+tmRfvvDBwIvuH3e8mdmazzNHwroHk7y93t9YL4AY62GO/jM7D4SxjZwxDMSjF0rwJqXLNe9ztO8XkD3yySMbQjMF2Cs1csOMrYRCWMbO+IZCcZ+JMCakZbr3uBp/lhA9ygSxjYB5gsw1mqUg4y9n4SxTR3xjARjNwqwZozlujd5mjcL6B5LwtgHgPkCjLUa6yBjHyRh7EOOeEaCsVsEWPO65bq3epo/EdA9noSxDwPzBRhrNd5Bxj5CwthmjnkGPX+POnYG1Oaca275ezt0Xd4mUJ8mWV6XP/U0bxfQPZmEES2AvgTGWrHMX0vg/JUBzl9ZBxnbioCxnwmw5k3LGfu5p/kLAd1TSRjRGuhLYKwVy/y1Ac5fPeD81XeQsW0JGLtDgDXtMnPkSvvYe+qtyZUOJM9ZOgLHeQh4tvgIyXn0OOC9OuFi0cHUFw8Bx5zui4c6x754CBukzgJfPJRo+RcPad2JAl88FB8dawJ4vLoAIb9JT98P2cyum7GRjc66SHYUiE8Im5spX4GZ5I31scwGvgIzKXP6r8DUHxqOfgY6SZJNh141v235k4nk5EDrnm657uQkRut+x3LdybBB655h95OUlK+lTQIW68eA93qX5CtagTxTaRkRdP5mkswfkA9qBnD+ZpHMHzBPFNAzCjl/yQvrePDc6VqPfMOMfkPKvQJ/UD0m9KQRMMaURXAXb4yPm1gEd/Etgh8XXgTfI7A4WGj5oigjIwfVvYgEqoCFTMoCqwtwUbSYZHvucSBUFwKL+hIS/wHzRAE9o5aQFHXkK6z0K5hqCxT1xwmK+hPeGJ80UdSf8BX1J4WLek2B4rbS8qKekZGD6l5FAtXHgUX9CWBRf5+kqD8JhOpKYFFfTeI/YJ4ooGfUapKijnxHnn7HWz2Bov4kQVHv6o2xm4mi3tVX1LsJF/U6AsVtneVFPSMjB9W9ngSqTwKLeldgUf+IpKh3A0J1HbCobyDxHzBPFNAzSmr+0IW9GzDnugPulZiUlJTYOaJMHZTrLnRQ7qnYQTlskJ4SWC32sPygnNbdQ+AgVvI4E6Nz2iP68+noZ0ksDiMCi6Qtli8O9bcYVxTQvZVkcdMTuLgBxlptNVScg84fkk+9SDofejviGQnGVhJgzaeW69bfYlxFQPd2Esb2AeYLMNZqu4OM7UvC2Gcc8YwEY6sKsOYLy3XrbzGuJqB7Bwlj+wHzBRhrtcNBxvYnYeyAmGes8cxAy9+QoOvK7QJ8/cryuqK/uflOAd27SOrKIKAvgbFWu0hOJEg00aI9DtzgEzuRMNgb4xATJxIG+04kDElzIiGjJIsEuxA7XCk71IOBRelrEkgNASYZssFur4MNdkDPqL0kkGdoEBtCAPlnvTEONQH5Z32QH2oA8kOAkH8WCPn9JJAfamnD0AEHG4aAnlEHSCDP0DA0lADyz3ljHGYC8s/5ID/MAOSHAiH/HBDyh0ggP8zSBpLDDjaQAD2jDpNAnqGBZBgB5J/3xjjcBOSf90F+uAHIDwNC/nkg5L8ngfxwSxsKjjrYUAD0jDpqaN8uEuxSw4E59wJhQ8ELQg0FL8YaCrBBelFg9fCS5Q0FWvdLBhoKXor+fFmooUAfDugpsHH8o+Ub5voQd28B3cdJFjevABc3wFir44aKc9D5Q/JpBMlBrJGOeEaCsX0EWPOz5br1Ie5nBHSfJGHsKGC+AGOtTjrI2FdJGDvaEc9IMLafAGtOW65bH+IeIKD7DAljxwDzBRhrdcZBxo4lYexrMc9Y45lxljcUdMuc+lIH5Bz+anld0Y0egwR0nyepK68DfQmMtTpPskPN0FAA3OAT26Ee741xgokd6vG+HeoJBnaoATtcKTvU44FF6XcSSE2wtKHgooMNBUDPqIskkGdoKJhAAPmJ3hgnmYD8RB/kJxmA/AQg5CcCIf8XCeQnWdpQ8LeDDQVAz6i/SSDP0FAwiQDyk70xvmEC8pN9kH/DAOQnASE/GQj5SySQf8PShoLLDjYUAD2jLpNAnqGh4A0CyE/xxvimCchP8UH+TQOQfwMI+SlAyMcV5YD8m5Y2FMQbmr9IsAvaUAD0jJKaPzTo3wTm3FTChoKpQg0Fb8UaCrBBektg9TDN8oYCrXuagYaCadGfbws1FOjDAa8IbBxnBkMWrVsf4h4poDsLyeJmOnBxA4y1ymKoOAedPySf3iE5iDXDEc9IMHaUAGuyW65bH+IeLaA7Bwlj3wXmCzDWKoeDjJ1JwthZjnhGgrFjBFhzleW69SHu1wR05yZh7GxgvgBjrXI7yNg5JIydG/OMNZ55z/KGguGZU1/qgJzDayyvK7rR43UB3XlJ6so8oC+BsVbI+ZPcoWZoKABu8IntUM/3xrjAxA71fN8O9QIDO9SAHa6UHer5wKJUgARSCyxtKChIskONbCgAekYVJIE8Q0PBAgLIL/TGuMgE5Bf6IL/IAOQXACG/EAj560ggv8jShoLrSSCPbCgAekZdTwJ5hoaCRQSQX+yNcYkJyC/2QX6JAcgvAkJ+MRDyRUkgv8TShoJiJJBHNhQAPaOKkUCeoaFgCQHkl3pjXGYC8kt9kF9mAPJLgJBfCoT8jSSQX2ZpQ8FNDjYUAD2jbjK0bxcJdqllwJxbTthQsFyooWBFrKEAG6QVAquHlZY3FGjdKw00FKyM/lwl1FCgDwdMF9g4vsXyDXN9iHuGgO4SJIub94GLG2CsVQmSQzVIPq0mOYj1gSOekWDsuwKsKWW5bn2Ie5aA7tIkjF0DzBdgrFVpBxn7IQlj1zriGQnGzhZgTTnLdetD3HMFdJcnYew6YL4AY63KO8jY9SSM/SjmGWs8s8HyhoI3M6e+1AE5h8ryuqIbPeYJ6K5IUlc+BvoSGGtV0XLfaDa8L+CbKpbr1s9wPhDQXZUkXzYC8wUYa1WVpKYmAmvqJpJ12GbgOLcAN5u3Wv7tQZqxawRYc7vljNXPcNYK6L6DhLFbgPkCjLW6w0HGbiVh7CfAcX4KZOx2AsauE2DN3ZYzVj/D+UhAd3USxm5DNkIDGVvdQcZ+SsLY7cBxfgFk7A7LGbssc+r5JmQ87rWcsfqZ58cCumuSMPYzYL4AY61qOsjYz0kY+wVwnF8BGbuL5Ctwdgi9eyIS7EK+04Em574kybmdjnkGPX9fCb0KIBLsQrbY0+TcLpKc2+2YZ9Dzt0eoMzsS7EJ2PNPk3NckObfXMc+g5+8boUbZSLAL2YBKk3P7SHJuvyOeQT870m9/qC/w7KiO5c/M7vM0NxDQXZfkmdkBYL4AY63qOvjM7CAJY791xDMSjG0owJr7LNfdyNPcWEB3AxLGHgLmCzDWqoGDjD1MwtjvHPGMBGObCLCmseW67/c0NxXQ3YSEsUeA+QKMtWriIGO/J2HsUUc8I8HYBwRY84Dluh/0ND8koPtBEsb+AMwXYKzVgw4y9hgJY390xDMSjH1YgDWPWK77EU9zMwHdzUgYexyYL8BYq2YOMvYnEsaecMQzEox9VIA1LSzX3dzT3EJAd0sSxv4MzBdgrFVLBxl7koSxvzjmGfT8nXLsnL3NOXfa8ncj6brcUqA+tbG8LrfyNLcW0N2WhBFngL4ExlqxzN9Z4PydBjL2jIOMPUfA2DYCrOlgOWPbeprbCejuSMKIX4G+BMZasczfeeD8ZQfOXw4H/3b8jYCx7QVYcyEzR678DoyPi98FgsyViyTPWf4AjvNt4Bp2BskaNg54rz9xseho6svdgGNO9+Vuf2VO/T325W4B76mD9Fdm/H3/BgJTSvffmeExSvlK4ATweHUBQn5bqb4f8oUh+oUXyJdJ6CL5h0B8QtjcTPma4X+8sf6b2cDXDP+TOf3XDOsPDUc/A50kyaZDr5oTLX8ykZwcaN1JlutOTmK07scs150MG7TuLnY/SUn56u9/gMX6X+C9Hif5Gmwgz1RaRgSdvydI5g/IB9UFOH9PkswfME8U0DMKOX/JC+t4dO56vEK+xUu/hWq3wB9U/wo9aQSMMWURfMkb42UTi+BLvkXwZeFF8FcCi4Neli+KMjJyUN29SaAKWMikLLAuARdFfUi25y4DodoLWNT7kvgPmCcK6BnVl6SoI18TqF9zt1egqF8mKOpX9FO4LAaK+hVfUdcfGo5+hkRR3yNQ3AZaXtQzMnJQ3YNIoHoZWNSvAIv6YJKirnMSFYuBwKI+hMR/wDxRQM+oISRFHfkeUv0ezf0CRR2YI2JFPc4bY7yJoh6XJX1Rjxcu6t8IFLfnLS/qGRk5qO7hJFBNm3BBi3pcFtz8vUBS1OOBRf15YFF/kcR/wDxRQM8oqflDF/Z4YM5lAtwrMSkpKbFzRJk6KJcJuGBIO96ELGl+98UuFIodlPt/uqcOUkIW/H0zA80vpTtzFniMUoz6d3Thkjk6t1minyWxONwosEgaafniUH9T/GYB3aNIFjdZgYsbYKzVKEPFOej8IfmULYtcgUFqzu6IZyQYu0WANWMs162/Kf4TAd1jSRibA5gvwFirsQ4yNicJY3M54hkJxm4TYM3rluvW3xS/XUD3eBLGXgXMF2Cs1XgHGZubhLFXxzxjjWfygD0jUVc+E+DrJMvryuee5i8EdE8mqSvXAH0JjLWaTHIiQaKJFu1x4Aaf2ImEvN4Y85k4kZDXdyIhX5oTCRklWSTYhdjhStmhzgssSm+SQCofEFLIBrupDjbYAT2jppJAnqFBLB8B5PN7YyxgAvL5fZAvYADy+YCQzw+E/NskkC8AhDyyYWi6gw1DQM+o6SSQZ2gYKkAA+YLeGK81AfmCPshfawDyBYCQLwiE/LskkL/W0gaSmQ42kAA9o2aSQJ6hgeRaAsgX8sZ4nQnIF/JB/joDkL8WCPlCQMjPIYH8dZY2FMx1sKEA6Bk119C+XSTYpa4D5tz1hA0F1ws1FBSONRRgg1RYoKGgiOUNBVp3EQMNBUWic1tUqKFAHw7ImgW/cTzf8g1zfYg7u4DuBSSLm2LAxQ0w1mqBoeIcdP6QfLqB5CBW2BHPSDA2hwBrFluuWx/iziWgewkJY28E5gsw1mqJg4y9iYSxNzviGQnGXiXAmuWW69aHuK8W0L2ChLHFgfkCjLVa4SBjbyFhbImYZ6zxzK2WNxTEZ0l9qQNyDt+3vK7oRo9rBHSvJqkrJYG+BMZarSbZoWZoKABu8IntUJfyxljaxA51Kd8OdWkDO9SAHa6UHepSwKL0IQmkSlvaULDWwYYCoGfUWhLIMzQUlCaAfBlvjGVNQL6MD/JlDUC+NBDyZYCQ/4gE8mUtbSjY4GBDAdAzagMJ5BkaCsoSQL6cN8byJiBfzgf58gYgXxYI+XJAyG8igXx5SxsKNjvYUAD0jNpMAnmGhoLyBJCv4I0xYgLyFXyQjxiAfHkg5CsAIf8JCeQjljYUbHOwoQDoGbXN0L5dJNilIsCcU4QNBUqooaBirKEAG6SKAg0FlSxvKNC6KxloKKgUndvKQg0F+nBAMYGN488s3zDXh7jDAro/J1ncVAEuboCxVp8bKs5B5w/Jp6okB7Fuc8QzEoy9UYA1X1quWx/ivllA904SxlYD5gsw1mqng4y9nYSxdzjiGQnGFhdgzW7LdetD3CUEdO8hYeydwHwBxlrtcZCxd5Ew9u6YZ6zxTHXLGwquy5L6UgfkHH5jeV3RjR4lBXTvI6kr9wB9CYy12keyQ83QUADc4BPboa7hjfFeEzvUNXw71Pca2KEG7HCl7FDXABalgySQutfShoJvHWwoAHpGfUsCeYaGgnsJIF/TG2MtE5Cv6YN8LQOQvxcI+ZpAyH9HAvlaljYUHHGwoQDoGXWEBPIMDQW1CCBf2xtjHROQr+2DfB0DkK8FhHxtIOR/IIF8HUsbCo452FAA9Iw6RgJ5hoaCOgSQr+uNsZ4JyNf1Qb6eAcjXAUK+LhDyP5FAvp6lDQUnHGwoAHpGnTC0bxcJdql6wJyrT9hQUF+ooeC+WEMBNkj3CTQUNLC8oUDrbmCgoaBBdG4bCjUU6MMBVQQ2jn+xfMNcH+K+TUD3KZLFTSPg4gYYa3XKUHEOOn9IPjUmOYjVxBHPSDC2mgBrzlquWx/ivkNA9zkSxt4PzBdgrNU5BxnblISxDzjiGQnG3inAmt8s160Pcd8toPsCCWMfBOYLMNbqgoOMfYiEsQ/HPGONZx6xvKEgkiX1pQ7IOfzD8rqiGz3uEdD9J0ldaQb0JTDW6k/LfaPZ0EjAN/9Yrls/w2kioPtfknx5FJgvwFirf0lq6t+ZcfdqTrIOawEc50igZ0YRMPZ+AdZcsVy3fobzgIDuUDEOxrYE5gsw1kpq/mxmbCsSxrYGjnMM0DNjCRj7oABrMhWzW7d+hvOwgO4EEsa2AeYLMNYqwUHGtiVhbDvgOF8HMna85YytlyX1fBMyHlktZ6x+5tlMQHc2Esa2B+YLMNYqm4OM7UDC2I7AcU4CMnYyyfO5TkLvnogEu5DvdKDJuc4kOZfomGfQ85ck9CqASLAL2WJPk3OPkeRcF8c8g56/x4U6syPBLmTHM03OPUGSc0865hn0/HUVapSNBLuQDag0OdeNJOe6O+IZ9LMj/faHA5nxz45yWv7M7KCn+VsB3blInpk9BcwXYKxVLgefmfUgYezTjnhGgrGHBFhzteW6D3uavxPQnYeEsT2B+QKMtcrjIGN7kTC2tyOekWDsEQHW5LNc9/ee5qMCuvOTMLYPMF+AsVb5HWRsXxLGPuOIZyQY+4MAa661XPcxT/OPAroLkTC2HzBfgLFWhRxkbH8Sxg5wxDMSjD0uwJrCluv+ydN8QkB3ERLGDgTmCzDWqoiDjB1EwtjBjnhGgrE/C7DmBst1n/Q0/yKgO0zC2CHAfAHGWoUdZOyzJIwd6ohnJBh7SoA1N1uu+7Sn+YyA7uIkjH0OmC/AWKviDjJ2GAljn3fMM+j5G+5YL5PNOfeC5e+f03X5rEB9utXyunzO0/yrgO6SJIx4EehLYKwVy/y9BJy/5UDGrnCQsS8TMPa8AGvKWM7Y3zzNFwR0lyVhxCtAXwJjrVjmbwRw/r4EMnang4wdScDY3wVYMyoLR668Gvu+JWtyZTTJc5YxwHEmAj3ThcQzccB7jcXFopOpL9AEjjndF2i+FvsCTWyQXhP4As1xln+BptY9TuALNOOjY00Aj1cXIOQ3Quv7IV/KpF8qhHxhjy6SYwTiE8LmZspXub/ujXV8FgNf5f56lvRf5a4/NBz9DHSSJJsOvWquYPmTieTkQOuOWK47OYnRupXlupNhg9Zd0e4nKRWj41SvA4v1eOC9Khmav0iwSwF5ptIyIuj8VSaZPyAfVEXg/FUhmT9gniigZxRy/pIX1vHgudO1HvmmRP2mvy4Cf1CNF3rSCBhjyiJ4gjfGiSYWwRN8i+CJwovgJIHFwd2WL4oyMnJQ3dVJoApYyKQssCYAF0X3kGzPTQRC9W5gUa9B4j9gniigZ1QNkqKOfBWrfpXokwJFfSJBUZ/kjXGyiaI+yVfUJwsX9ccFilsdy4t6RkYOqrsuCVQnAov6JGBRr0dS1CcDoVoHWNTrk/gPmCcK6BlVn6SoI9/1rN9V3F2gqE8mKOpveGOcYqKov+Er6lOEi3pXgeLW2PKinpGRg+puQgLVycCi/gawqN9PUtSnAKHaGFjUm5L4D5gnCugZJTV/6MI+BZhzbwLulZiUlJTYOaJMHZR7U+ig3NTYQTlskKYKrBbfsvygnNb9lsBBrORxjovO6VvRn9OinyWxOHxUYJH0iOWLw+ae5hYCupuRLG7eBi5ugLFWzQwV56Dzh+TTdJLOh3cc8YwEY1sKsKaF5bpbeZpbC+huScLYGcB8AcZatXSQse+SMHamI56RYGwbAda0sVx3W09zOwHdbUkYOwuYL8BYq7YOMnY2CWPnxDxjjWfmWv6GBF1X2gvwtYPldaWDp7mjgO6OJHXlPaAvgbFWHUlOJEg00aI9DtzgEzuRMM8b43wTJxLm+U4kzE9zIiGjJIsEuxA7XCk71POARSmRBFLzgUmGbLBLcrDBDugZlUQCeYYGsfkEkF/gjXGhCcgv8EF+oQHIzwdCfgEQ8o+TQH6hpQ1DTzjYMAT0jHqCBPIMDUMLCSC/yBvjYhOQX+SD/GIDkF8IhPwiIOS7kUB+saUNJN0dbCABekZ1J4E8QwPJYgLIL/HGuNQE5Jf4IL/UAOQXAyG/BAj5p0kgv9TShoKeDjYUAD2jehrat4sEu9RSYM4tI2woWCbUULA81lCADdJygdXDCssbCrTuFQYaClZEf64UaijQhwPeFtg47mP5hrk+xP2OgO6+JIubVcDFDTDWqq+h4hx0/pB8ep/kINZqRzwjwdgZAqzpb7lufYh7poDuASSM/QCYL8BYqwEOMnYNCWM/dMQzEoydJcCawZbr1oe45wjoHkLC2LXAfAHGWg1xkLHrSBi7PuYZazzzkeUNBVOypL7UATmHz1leV3Sjx3sCuoeR1JUNQF8CY62GkexQMzQUADf4xHaoP/bGuNHEDvXHvh3qjQZ2qAE7XCk71B8Di9ILJJDaaGlDwYsONhQAPaNeJIE8Q0PBRgLIb/LGuNkE5Df5IL/ZAOQ3AiG/CQj5V0ggv9nShoIRDjYUAD2jRpBAnqGhYDMB5Ld4Y9xqAvJbfJDfagDym4GQ3wKE/KskkN9qaUPBaAcbCoCeUaNJIM/QULCVAPKfeGPcZgLyn/ggv80A5LcCIf8JEPKvkUB+m6UNBeMcbCgAekaNM7RvFwl2qW3AnPuUsKHgU6GGgu2xhgJskLYLrB4+s7yhQOv+zEBDwWfRn58LNRTowwGrBDaOJ1i+Ya4Pca8W0D2RZHHzBXBxA4y1mmioOAedPySfdpAcxPrSEc9IMPYDAda8YblufYj7QwHdU0gYuxOYL8BYqykOMvYrEsbucsQzEoxdK8CatyzXrQ9xrxfQPY2EsbuB+QKMtZrmIGP3kDD265hnrPHMXssbCpZmSX2pA3IO37G8ruhGjw0CumeQ1JVvgL4ExlrNINmhZmgoAG7wie1Q7/PGuN/EDvU+3w71fgM71IAdrpQd6n3AojSLBFL7LW0omO1gQwHQM2o2CeQZGgr2E0D+gDfGgyYgf8AH+YMGIL8fCPkDQMi/RwL5g5Y2FMxzsKEA6Bk1jwTyDA0FBwkg/603xkMmIP+tD/KHDED+IBDy3wIhv5AE8ocsbShY5GBDAdAzahEJ5BkaCg4RQP6wN8bvTED+sA/y3xmA/CEg5A8DIb+UBPLfWdpQsMzBhgKgZ9QyQ/t2kWCX+g6Yc0cIGwqOCDUUfB9rKMAG6XuB1cNRyxsKtO6jBhoKjkZ//iDUUKAPB3whsHG80vINc32I+0sB3atIFjfHgIsbYKzVKkPFOej8Ifn0I8lBrOOOeEaCsTsFWPOB5br1Ie5dArrXkDD2J2C+AGOt1jjI2BMkjP3ZEc9IMHa3AGvWWa5bH+L+WkD3ehLGngTmCzDWar2DjP2FhLGnYp6xxjOnLW8o2JYl9aUOyDn82PK6ohs9vhHQvZGkrpwB+hIYa7XRct9oNhwT8M0Wy3XrZzjHBXRvJcmXs8B8AcZabSWpqeOANfUcyTrsV+A4HwF6phkBY38SYM2nluvWz3B+FtC9nYSx54H5Aoy12u4gY38jYewF4DhbAD3TkoCxJwVY84XluvUznFMCuneQMPZ3YL4AY612OMjYiySM/QM4zjZAz7S1nDXfZUk934SMx1eW69bPPM8I6N5Fwtg/gfkCjLXa5SBj/yJh7N/AcXYAeqYjSc79I/TuiUiwC/lOB5qc+5ck5y455hn0/F0WehVAJNiFbLGnybkrJDkXyuqWZ9DzFwecvzrA+avrYM7FZ+XIuUyOeQY9fwnA+WsMnL8mDuZcZpKcy+KIZ9DPjvTbH54SeHb0teW6e3ianxbQvZeEsVmB+QKMtdrrIGOzkTA2uyOekWBsTwHW7Ldcdy9Pc28B3QdIGJsDmC/AWKsDDjI2JwljczniGQnG9hFgzSHLdff1ND8joPswCWOvAuYLMNbqsIOMzU3C2Ksd8YwEY/sJsOZ7y3X39zQPENB9lISxeYD5Aoy1OuogY68hYWxeRzwjwdiBAqz50XLdgzzNgwV0HydhbD5gvgBjrY47yNj8JIwt4IhnJBg7RIA1P1uu+1lP81AB3SdJGFsQmC/AWKuTDjL2WhLGFnLEMxKMfU6ANact1z3M0/y8gO4zJIy9DpgvwFirMw4y9noSxhZ2xDMSjB0uwJpfLdf9gqf5RQHd50kYWwSYL8BYq/MOMrYoCWOLOeYZ9PzdAJw/hn5Rm3MuDM45ibr8kkB9+t3yuvyyp/kVAd0XSRhxI9CXwFgrlvm7CTh/g4HzN8RBxt5MwNgRAqz5y3LGjvQ0jxLQ/TcJI4oDfQmMtWKZv1uA8/cGcP6mOMjYEgSMfVWANbdm5ciVksD4uPiddshcKUXynKU0cJwVgJ6pSOKZOOC9yuBi0dnUlxQDx5zuS4rLZk39PfYlxQHvqYOkJxR933JZceaX0l0uKzxGkfjoWBPA49UF6Lss2PshX3ynX9yGfCmaLpKlBeITwuamSv6lvDfWClkFk1/fWJurfPRDkv+tPzQc/Qx0kiSbDr1qvmT5k4nk5EDrvmy57uQkRuu+YrnuZNigdYdusPqvw4rRcarywGJdAXivOEPzFwl2KSDPVFpGBH7LHMn8Afmg0uZc4LffkcwfME8U0DMKOX/JC+t48NzpWo98G61+m2pI4A+qCkJPGgFjTFkER7wxKhOL4IhvEayEF8GXBRZFOW+we1GUkZEDvxaGBKqAhUzKAisCXBRdZfeiMmWcCvj4OCewqOcm8R8wTxTQMyo3SVFHvu5av645k0BRVwRFvaI3xkominpFX1GvJFzU4wSKWz7Li3pGRg7cZ04CVQUs6hWBRb0ASVGvBIRqPmBRL0jiP2CeKKBnVEGSoo58n75+H3wWgaJeiaCoV/bGWMVEUa/sK+pVhIt6gkBxK2x5Uc/IyIGb80igWglY1CsDi3pRkqJeBQjVwsCiXozEf8A8UUDPKKn5Qxf2KsCcqwq4V2JSUlJiZ2/7ImTmoFxVoYNyt8UOymGDdJvAarGa5QfltO5qAgexksdZLjqn1aI/b49+lsTi8KzANs7Nli8Oz3mafxXQXZxkcXMHcHEDjLUqbqg4B50/JJ/uJOl8uMsRz0gw9rxEl5Xlun/zNF8Q0F2ShLF3A/MFGGtV0kHGVidh7D2OeEaCsb8LsKaM5bovepr/ENBdloSxNYD5Aoy1KusgY+8lYWzNmGes8Uwty9+QoOvKnwJ8rWB5XfnL0/y3gO4ISV2pjezyBzIiQnIiQaKJFu1x4Aaf2ImEOt4Y65o4kVDHdyKhbpoTCRklWSTYhdjhStmhrgMsSpVIIFUXCClkg11lBxvsgJ5RlUkgz9AgVpcA8vW8MdY3Afl6PsjXNwD5ukDI1wNC/jYSyNe3tGGomoMNQ0DPqGokkGdoGKpPAPn7vDE2MAH5+3yQb2AA8vWBkL8PubVOAvkGljaQ3OVgAwnQM+ouEsgzNJA0IIB8Q2+MjUxAvqEP8o0MQL4BEPINgZC/hwTyjSxtKKjhYEMB0DOqhqF9u0iwSzUC5lxjwoaCxkINBU1iDQXYIDURWD3cb3lDgdZ9v4GGgvujP5sKNRTowwF3CHRd1rJ8w1wf4r5LQHdtksXNA8DFDTDWqrah4hx0/pB8epDkINZDjnhGgrF3C7CmnuW69SHuewR01ydh7MPAfAHGWtV3kLGPkDC2mSOeEWlAFmBNQ8t160PcNQV0NyJh7KPAfAHGWjVykLHNSRjbIuYZazzT0vKGgipZU1/qAJ1Dy+uKbvSoLaC7KUldaQX0JTDWqinJDjVDQwFwg09sh7q1N8Y2JnaoW/t2qNsY2KEG7HCl7FC3Bhalh0gg1cbShoKHHWwoAHpGPUwCeYaGgjYEkG/rjbGdCci39UG+nQHItwFCvi0Q8o+SQL6dpQ0FzR1sKAB6RjUngTxDQ0E7Asi398bYwQTk2/sg38EA5NsBId8eCPlWJJDvYGlDQWsHGwqAnlGtSSDP0FDQgQDyHb0xdjIB+Y4+yHcyAPkOQMh3BEK+HQnkO1naUNDewYYCoGdUe0P7dpFgl+oEzLnOhA0FnYUaChJjDQXYICUKrB6SLG8o0LqTDDQUJEV/PibUUKAPBzwgsHHcyfINc32I+yEB3Z1JFjddgIsbYKxVZ0PFOej8Ifn0OMlBrCcc8YwEYx8WYM1jluvWh7ibCejuQsLYJ4H5Aoy16uIgY7uSMLabI56RYOyjAqx50nLd+hB3CwHdXUkY2x2YL8BYq64OMvYpEsb2iHnGGs88bXlDQaOsqS91QM7hU5bXFd3o0UpAdw+SutIT6EtgrFUPkh1qhoYC4Aaf2A51L2+MvU3sUPfy7VD3NrBDDdjhStmh7gUsSr1IINXb0oaC3g42FAA9o3qTQJ6hoaA3AeT7eGPsawLyfXyQ72sA8r2BkO8DhPwzJJDva2lDQT8HGwqAnlH9SCDP0FDQlwDyz3hj7GcC8s/4IN/PAOT7AiH/DBDyA0kg38/ShoJBDjYUAD2jBpFAnqGhoB8B5Pt7YxxgAvL9fZAfYADy/YCQ7w+E/LMkkB9gaUPBUAcbCoCeUUMN7dtFgl1qAHJhRdhQMFCooWBQrKEAG6RBAquHwZY3FGjdgw00FAyO/hwi1FCgDwd0Edg4ft7yDXN9iPsJAd3DSRY3zwIXN8BYq+GGinPQ+UPyaSjJQaznHPGMBGOfFGDNS5br1oe4uwnofpmEscOA+QKMtXrZQcY+T8LY4Y54RoKx3QVYM9Jy3foQdw8B3aNIGPsCMF+AsVajHGTsiySMfSnmGWs887LlDQWdsqa+1AE5h2Msryu60aOngO6xJHXlFaAvgbFWYy33jWbDswK+ed1y3foZznMCuseT5MsIYL4AY63Gk9TUcsCaOpJkHTYKOM6bgZ4pTsDYYQKsmWS5bv0MZ7iA7skkjH0VmC/AWKvJDjJ2NAljxwDHeSvQMyUJGPuCAGvetFy3fobzkoDuqSSMHQvMF2Cs1VQHGfsaCWPHAcdZBuiZspazZkDW1PNNyHi8bblu/czzFQHd00kY+zowX4CxVtMdZOx4EsZOAI6zAtAzEZKcmyj07olIsAv5TgeanJtEknOTHfMMev7eEHoVQCTYhWyxp8m5KSQ596ZjnkHP31ShzuxIsAvZ8UyTc2+R5Nw0xzyDnr+3hRplI8EuZAMqTc5NJ8m5dxzxDPrZkX77Q1aBZ0fvWq47m6c5u4DumSSMnQHMF2Cs1UwHGfsuCWNnOuIZCcbmEGDNHMt15/Q05xLQPZeEsbOA+QKMtZrrIGNnkzB2jiOekWDsVQKsmW+57tye5qsFdC8gYexcYL4AY60WOMjY90gYO88Rz0gwNo8AaxZbrvsaT3NeAd1LSBg7H5gvwFirJQ4ydgEJYxc64hkJxuYTYM1yy3Xn9zQXENC9goSxi4D5Aoy1WuEgYxeTMHaJI56RYGxBAda8b7nuaz3NhQR0ryZh7FJgvgBjrVY7yNhlJIxd7ohnJBh7nQBrPrRc9/We5sICuteSMHYFMF+AsVZrHWTsShLGrnLEMxKMLSLAmo8s113U01xMQPcGEsa+D8wXYKzVBgcZu5qEsR844hkJxt4gwJpNlusOe5pvFNC9mYSxa4D5Aoy12uwgYz8kYexaxzyDnr91jvXk25xz6y1/j7KuyzcJ1KdPLK/LN3uaiwvo3kbCiI+AvgTGWrHM3wbg/DUEzl8jBxn7MQFjbxFgzWeWM7aEp/lWAd2fkzBiI9CXwFgrlvnbBJy/x4Dz18VBxm4mYGxJAdZsycqRK1uB8XHxe0ORufIJyXOWbcBxXgK+RyxE4pk44L0+xcUi0dQXwQPHnO6L4LdnTf099kXwAe+pg7Q9K/6+nwGBKaX7s6zwGEXio2NNAI9XF6ABWbH3Q75cVL8cE/niSV0ktwnEJ4TNTZX8y+feWL/IKpj8+sbaXJ9HPyT53/pDw9HPQCdJsunQq+YvLX8ykZwcaN07LdednMRo3V9ZrjsZNmjdu+x+klIxOk71ObBYfwG8125D8xcJdikgz1RaRgSdvz0k8wfkg9oFnL+vSeYPmCcK6BmFnL/khXU8eO50rUe+8Vu/sfpNgT+ovhB60ggYY8oieIc3xi9NLIJ3+BbBXwovgt8QWBwcsnxRlJGRg+o+TAJVwEImZYG1A7go+o5ke+5LIFQPAYv6ERL/AfNEAT2jjpAUdeRXCuhX4k8TKOpfEhT1nd4YvzJR1Hf6ivpXwkV9qkBx+9Hyop6RkYPqPs7ylzqwqO8EFvWfSIr6V0Co/ggs6idI/AfMEwX0jDpBUtSR31miv3PjHYGi/hVBUd/ljXG3iaK+y1fUdwsX9bcFittpy4t6RkYOqvsMy+NjYFHfBSzqZ0mK+m4gVE8Di/o5Ev8B80QBPaOk5g9d2HcDc24P4F6JSUlJiZ0jytRBuT1CB+W+jh2Uwwbpa4HV4l7LD8pp3XsFDmIlj/Oz6Jzujf78JvpZEovDEQKLpN8tXxyO9DSPEtB9kWRxsw+4uAHGWl00VJyDzh+ST/tJOh8OOOIZCca+KsCavyzXPdrTPEZA998kjD0IzBdgrNXfDjL2WxLGHnLEMxKMHSvAmkuW637N0zxOQPdlEsYeRnZjAvPlsoOM/Y6EsUdinrHGM9+DPSNRV14X4Gtc2O66Mt7TPEFAd3yYo64cBfoSGGuFnD/JEwkSTbRojwM3+MROJPzgjfGYiRMJP/hOJBxLcyIhoySLBLsQO1wpO9Q/AItS5jAHpI4BkwzZYJfF0PxFgl3QBjugZxRy/iQhz9AgdowA8j96YzxuAvI/+iB/3ADkjwEh/yMQ8tnDHJA/bmnDUA5D8xcJdkEbhoCeUcj5k4Q8Q8PQcQLI/+SN8YQJyP/kg/wJA5A/DoT8T0DIXxXmgPwJSxtIchuav0iwC9pAAvSMQs6fJOQZGkhOEED+Z2+MJ01A/mcf5E8agPwJIOR/BkL+mjAH5E9a2lCQ19D8RYJd0IYCoGeU1PyhQX8SmHO/EDYU/CLUUHAq1lCADdIpgdXDacsbCrTu0wYaCk5Hf54RaijQhwP2CWwcFwjbvWGuD3EfENBdMMyxuDkLXNwAY62k5g99qAbJp3MkB7F+dcQzEow9KMCa6yzXrQ9xHxLQfX2Yg7HngfkCjLWSmj+bGfsbCWMvOOIZCcYeFmBNUct160PcRwR0FwtzMPZ3YL4AY62k5s9mxl4kYewfMc9Y45k/LW8o2J019aUOyDm8MWx3XdGNHkcFdN8U5qgrfwF9CYy1Qs6f5A41Q0MBcINPbIf6b2+M/5jYof7bt0P9j4EdasAOV8oO9d/AonRLmANS/1jaUFDC0PxFgl3QhgKgZxRy/iQhz9BQ8A8B5P/1xnjJBOT/9UH+kgHI/wOE/L9AyJcKc0D+kqUNBaUNzV8k2AVtKAB6RiHnTxLyDA0Flwggf9kb4xUTkL/sg/wVA5C/BIT8ZSDky4U5IH/F0oaC8obmLxLsgjYUAD2jkPMnCXmGhoIrBJAPZfN0ZzMA+VC29JDXHxr2fSY6ya4AIa/HH/BeKZBSYQ7Ix2XDxQLZUFDR0PxFgl3QhgKgZ5TU/KFBHwfMuXjAvUw3FMTj8i9dQ0GmbKm/xxoKAt5TBylTNvx9E4Dml9KdkA0eo/80FCRE5zZz9LMkGjfOCmwcVwnbvWGuD3H/KqC7aphjcZMFuLgBxlpJzR/6UA2ST1mzyRUYpOZsjnhGgrHnBVhzu+W69SHuCwK67whzMDY7MF+AsVZS82czY3OQMDanI56RYOzvAqy523Ld+hD3HwK6q4c5GJsLmC/AWCup+bOZsVeRMDZ3zDPWeOZqsGckDh2fFuDrvWG764pu9PhLQHfNMEddyQP0JTDWCjl/kjvUDA0FwA0+sR3qa7wx5jWxQ32Nb4c6r4EdasAOV8oO9TXAolQnzAGpvEBIIRsK6hqav0iwC9pQAPSMQs6fJOQZGgryEkA+nzfG/CYgn88H+fwGIJ8XCPl8QMjfF+aAfH4g5JENBQ0MzV8k2AVtKAB6RiHnTxLyDA0F+QkgX8AbY0ETkC/gg3xBA5DPD4R8ASDkG4c5IF8QCHlkQ0ETQ/MXCXZBGwqAnlHI+ZOEPENDQUECyF/rjbGQCchf64N8IQOQLwiE/LVAyD8Q5oB8IUsbCh40NH+RYBe0oQDoGSU1f2jQFwLm3HWEDQXXCTUUXB9rKMAG6XqBhoLCljcUaN2FDTQUFI7ObRGhhgJ9OCBLNvzG8SNhuzfM9SHubAK6m4U5FjdFgYsbYKyV1PyhD9Ug+VSM5CDWDY54RoKx2QVY08Jy3foQd04B3S3DHIwNA/MFGGslNX82M/ZGEsbe5IhnJBibS4A1bSzXrQ9x5xbQ3TbMwdibgfkCjLWSmj+bGVuchLG3xDxjjWdKWN5QEJct9aUOyDnsELa7ruhGjzwCujuGOerKrUBfAmOt0PMn8dy2qIBvEi3XrZ/h3CCgOynMkS8lgfkCjLWSmj90Tf0M+e5tknVYaeA4fwduNl+8wX7GhgVY83jYbt36Gc5NArqfCHMwtgwwX4CxVlLzZzNjy5IwthxwnH8BGfs3AWNvFmBNt7DduvUznFsEdHcPczC2PDBfgLFWUvNnM2MrkDA2AhznJSBjL1vO2ELZUs83IePxdNhu3fqZ560CunuGORirgPkCjLWSmj+bGVuRhLGVgOOMC+PuFR/myLnKQu+eiAS7kO90oMm5KiQ5V9Uxz6Dn7zahVwFEgl3IFnuanKtGknO3O+YZ9PzdIdSZHQl2ITueaXLuTpKcu8sxz6Dn726hRtlIsAvZgEqTc9VJcu4eRzyDfnak3/4wQ+BFr33Cdut+19M8U0B33zAHY2sA8wUYayU1fzYz9l4SxtZ0xDMSjJ0lwJr+luue7WmeI6B7QJiDsbWA+QKMtZKaP5sZW5uEsXUc8YwEY+cKsGaw5brf8zTPE9A9JMzB2LrAfAHGWknNn82MrUfC2PqOeEaCsfMFWPOc5boXeJoXCugeFuZg7H3AfAHGWknNn82MbUDC2IaOeEaCsYsEWPOC5boXe5qXCOh+MczB2EbAfAHGWknNn82MbUzC2CaOeEaCsUsFWPOK5bqXeZqXC+geEeZg7P3AfAHGWknNn82MbUrC2Acc8YwEY1cIsOZVy3Wv9DSvEtA9OszB2AeB+QKMtZKaP5sZ+xAJYx92xDMSjH1fgDWvWa57taf5AwHd48IcjH0EmC/AWCup+bOZsc1IGPuoI56RYOwaAdZMsFz3h57mtQK6J4Y5GNscmC/AWCup+bOZsS1IGNvSEc9IMHadAGvesFz3ek/zRwK6p4Q5GNsKmC/AWCup+bOZsa1JGNvGMc+g56+tY+89sTnn2ln+rnpdlzcI1Ke3wnbX5Y89zRsFdE8LczCiPdCXwFgrlvnrAJy/osD5KxZ2j7EdCRi7SYA174TtZuxmT/MWAd0zwhyM6AT0JTDWimX+OgPn73bg/N0Rdo+xiQSM3SrAmqRsHLnyWOy7ma3JlS4kz1keB47zS+D7dHaRvIMpDnivJ3CxSNI+iQv990IzFzjmSNrxPpkt9fcEX+xCafIgi4CmkO9z/POY+3/8N6sLow7Sk9nw9+0K/EJHKd1ds8FjFImPjjUBPF5dgAplw94P+QJn/QJi5Mt9dZF8XCA+IWxuquRfunlj7Z5NMPn1jbW5ukU/JPnf+kPD0c9AJ0my6dCr5llhu59MJCcHWvdsy3UnJzFa9xzLdSfDBq17blgGXKCVfsXoOFU3YLHuDrzXe4bmLxLsUkCeqbSMCDp/80jmD8gHNRc4f/NJ5g+YJwroGYWcv+SFdTx47nStR36rgv5WgNsF/qDqLvSkETDGlEXwU94Ye5hYBD/lWwT3EF4E3yawOFgetntRlJGRg+peEeaAKmAhk7LAegq4KFppaP6CjrMHEKppcyXouFaR+A+YJwroGYWcP8mijvzaFv21I3cJFPUeBEX9aW+MPU0U9ad9Rb2ncFG/Q6C4fRi2u6hnZOSguteGOaDaA1jUnwYW9XVhjqLeEwjVtLkSdFzrSfwHzBMF9IxCzp9kUUd+L5T+XqN7BIp6T4Ki3ssbY28TRb2Xr6j3Fi7qdwsUt01hu4t6RkYOqntzmAOqPYFFvRewqG8JcxT13kCops2VoOPaSuI/YJ4ooGeU1PyhC3tvYM71AdwrMSkpKbFzRJk6KNdH6KBc39hBOWyQ+gqsFp+x/KCc1v2MwEGs5HF2jc7pM9Gf/aKfJbE4LCmwSPosbPfisJSnubSA7s/DHIub/shDkzjNSmr+4sHzh+TTAJLOh4GOeEaCsWUEWPOl5brLeprLCejeGeZg7CBkpxBOs5KaP5sZO5iEsUMc8YwEY8sLsGa35boreJojArr3hDkY+ywwX4CxVlLzZzNjh5Iw9rmYZ6zxzDDL35Cg64oS4Os3YbvrSkVPcyUB3fvCHHXleaAvgbFWyPmTPJEg0USL9jhwg0/sRMJwb4wvmDiRMNx3IuGFNCcSMkqySLALscOVskM9HFiUDoY5IPUCMMmQDXbfGpq/SLAL2mAH9IxCzp8k5BkaxF4ggPyL3hhfMgH5F32Qf8kA5F8AQv5FIOS/C3NA/iVLG4aOGJq/SLAL2jAE9IxCzp8k5Bkahl4igPzL3hhfMQH5l32Qf8UA5F8CQv5lIOR/CHNA/hVLG0iOGZq/SLAL2kAC9IxCzp8k5BkaSF4hgPwIb4wjTUB+hA/yIw1A/hUg5EcAIf9TmAPyIy1tKDhhaP4iwS5oQwHQM0pq/tCgHwnMuVGEDQWjhBoKXo01FGCD9KrA6mG05Q0FWvdoAw0Fo6M/xwg1FOjDAf0FNo5/Cdu9Ya4PcQ8U0H0qzLG4GQtc3ABjraTmD32oBsmn10gOYo1zxDMSjB0kwJqzluvWh7iHCOg+F+Zg7OvAfAHGWknNn82MHU/C2AmOeEaCsc8KsOY3y3XrQ9zPCei+EOZg7ERgvgBjraTmz2bGTiJh7OSYZ6zxzBuWNxT0zpb6UgfkHP4Rtruu6EaP5wV0/xnmqCtTgL4Exloh509yh5qhoQC4wSe2Q/2mN8apJnao3/TtUE81sEMN2OFK2aF+E1iU/glzQGqqpQ0F/xqav0iwC9pQAPSMQs6fJOQZGgqmEkD+LW+M00xA/i0f5KcZgPxUIOTfAkL+SpgD8tMsbSgI3cgBeWRDAdAzCjl/kpBnaCiYRgD5t70xTjcB+bd9kJ9uAPLTgJB/Gwj5TDdyQH66pQ0FCSSQRzYUAD2jEkggz9BQMJ0A8u94Y5xhAvLv+CA/wwDkpwMh/w4Q8llJID/D0oaCbCSQRzYUAD2jpOYPDfoZwJx7l7Ch4F2hhoKZsYYCbJBmCqweZlneUKB1zzLQUDAr+nO2UEOBPhwwVmDjOCcYsmjd+hD3OAHduUgWN3OAixtgrFUuQ8U56Pwh+TSX5CDWe454RoKxrwuw5mrLdetD3BMEdOchYew8YL4AY63yOMjY+SSMXeCIZyQYO1GANfks160PcU8W0J2fhLELgfkCjLXK7yBjF5EwdnHMM9Z4ZonlDQUjs6W+1AE5h9daXld0o8cUAd2FSOrKUqAvgbFWyPmT3KFmaCgAbvCJ7VAv88a43MQO9TLfDvVyAzvUgB2ulB3qZcCiVJgEUsstbSgoQrJDjWwoAHpGFSGBPENDwXICyK/wxrjSBORX+CC/0gDklwMhvwII+RtIIL/S0oaCsIMNBUDPqDAJ5BkaClYSQH6VN8b3TUB+lQ/y7xuA/Eog5FcBIX8zCeTft7ShoLiDDQVAz6jiJJBnaCh4nwDyq70xfmAC8qt9kP/AAOTfB0J+NRDyt5JA/gNLGwpKOthQAPSMkpo/NOg/AObcGsKGgjVCDQUfxhoKsEH6UGD1sNbyhgKte62BhoK10Z/rhBoK9OGAOQIbx2Us3zDXh7jfE9BdlmRxsx64uAHGWpU1VJyDzh+STx+RHMTa4IhnJBg7T4A1FSzXrQ9xLxDQHSFh7MfAfAHGWkUcZOxGEsZucsQzEoxdKMCaSpbr1oe4FwvorkzC2M3AfAHGWlV2kLFbSBi7NeYZazzzieUNBTOypb7UATmHt1leV3Sjx1IB3dVI6so2oC+BsVbVLPeNZsN6Ad/cablu/Qxng4Duu0jy5VPksTNgvtxFUlO7AmvqdpJ12GfAcX4Wxt3r87D9jP1YgDX3WM5Y/Qxnk4DuGiSM/RyYL8BYqxoOMvYLEsbuAI7zyzDuXjvD9jN2swBralnOWP0MZ6uA7tokjP0SmC/AWKvaDjJ2JwljvwKOc3cYd689YbtZ80G21PNNyHjUs5yx+pnnNgHd9UkYuwuYL8BYq/oOMnY3CWP3AMf5TRh3r31hjpz7WujdE5FgF/KdDjQ5t5ck575xzDPo+dsn9CqASLAL2WJPk3P7SXLugGOeQc/fQaHO7EiwC9nxTJNz35Lk3CHHPIOev8NCjbKRYBeyAZUm574jybkjjngG/exIv/2hhsCzo4aWPzO719NcU0B3I5JnZt8D8wUYa9XIwWdmR0kY+4MjnpFgbC0B1txvue7anuY6ArqbkjD2GDBfgLFWTR1k7I8kjD3uiGckGFtXgDUPWa67nqe5voDuh0kY+xMwX4CxVg87yNgTJIz92RHPSDD2PgHWPGq57gae5oYCupuTMPYkMF+AsVbNHWTsLySMPeWIZyQY20iANa0s193Y09xEQHdrEsaeBuYLMNaqtYOMPUPC2LOOeEaCsfcLsKad5bqbepofENDdnoSx54D5Aoy1au8gY38lYex5RzwjwdgHBVjTyXLdD3maHxbQ3ZmEsb8B8wUYa9XZQcZeIGHs7454RoKxjwiw5jHLdTfzND8qoLsLCWMvAvMFGGvVxUHG/kHC2D8d8YwEY5sLsOZJy3W38DS3FNDdlYSxfwHzBRhr1dVBxv5Nwth/HPGMBGNbCbDmKct1t/Y0txHQ3YOEsf8C8wUYa9XDQcZeImHsZUc8I8HYtgKs6WW57nae5vYCunuTMPYKMF+AsVa9HWRsKDsHY+Oyu+UZ9PzFA+eP4d1SNudcJnDOSdTlDgL16RnL63JHT3MnAd39SBiRAPQlMNaKZf4yA+fvtzDuXhfC7jE2CwFjOwuwZqDljE30NCcJ6B5EwoisQF8CY61Y5i8bcP6uBs5fHgf/dsxOwNjHBFiTIztHruQExsfm7zJnyJVcJM9ZrgKOc1YYd6+5YQ7PxAHvlRsWCxXRPokL/fdCMzc3kI1px3t19tTfE3yx01dyHmQR0BTyfY5/HnP/j/9mdWHUQdITir5vnuzAB9NCuvNkh8coEh8dawJ4vLoAfZANez/kS/L1S96RL1DXRfIqgfiEsLmpkn+5xhtr3uyCya9vrM11TfRDkv+tPzQc/Qx0kiSbDr1qftbyJxPJyYHWPdRy3clJjNb9nOW6k2GD1j3M7icpFaPjVNcAi3Ve4L2eNzR/kWCXAvJMpWVE0PkbTjJ/QD6oYcD5e4Fk/oB5ooCeUcj5S15Yx4PnTtd65DfX6G9eOZANX6PyCj1pBIwxZRGczxtjfhOL4Hy+RXB+4UXwPoFF0auWL4oyMnJQ3aNJoApYyKQssPIBF0VjSLbn8gMfH78KLOpjSfwHzBMF9IwaS1LUkV+Npb/a6ZBAUc9PUNQLeGMsaKKoF/AV9YLCRf2gQHGbYHlRz8jIQXVPJIFqfmBRLwAs6pNIinpBYFGfACzqk0n8B8wTBfSMmkxS1JHfvae/O+6IQFEvSFDUr/XGWMhEUb/WV9QLCRf1wwLF7S3Li3pGRg6qexoJVAsCi/q1wKL+NklRLwQs6m8Bi/p0Ev8B80QBPaOk5g9d2AsBc+46wL0Sk5KSEjtHlKmDctcJHZS7PnZQDhuk6wUOyhW2/KCc1l1Y4CBW8jjzROe0cPRnkehnSSwOPxVYJM2yfHG43dP8mYDu2SSLm6LIU+zA4jzbUHEOOn9IPhUj6Xy4wRHPSDD2cwHWvGe57i88zTsEdM8jYWwYmC/AWKt5DjL2RhLG3uSIZyQY+6UAaxZarnunp/krAd2LSBh7MzBfgLFWixxkbHESxt4S84w1nilh+RsSdF3ZJcDXpZbXld2e5j0CupeR1JVbgb4Exloh50/yRIJEEy3a48ANPrETCSW9MZYycSKhpO9EQqk0JxIySrJIsAuxw5WyQ10SWJRWkkCqFBBSyAa7VQ422AE9o1aRQJ6hQawUAeRLe2MsYwLypX2QL2MA8qWAkC8NhPwHJJAvY2nD0BoHG4aAnlFrSCDP0DBUhgDyZb0xljMB+bI+yJczAPkyQMiXBUJ+HQnky1naQLLewQYSoGfUehLIMzSQlCOAfHlvjBVMQL68D/IVDEC+HBDy5YGQ/5gE8hUsbSjY6GBDAdAzSmr+0KCvAMy5CGFDQUSooUDFGgqwQVICDQUVLW8o0LorGmgoqBj9WUmooUAfDigq8NLILZZvmOtD3DcI6N5KsripDFzcAGOtthoqzkHnD8mnKiQHsao64hkJxoYFWPOp5br1Ie6bBHRvJ2HsbcB8AcZabXeQsdVIGHu7I56RYOzNAqz5wnLd+hD3LQK6d5Aw9g5gvgBjrXY4yNg7SRh7V8wz1njmbssbCgplT32pA3IOv7K8ruhGj1sFdO8iqSvVgb4Exloh509yh5qhoQC4wSe2Q32PHqOJHep7fDvUNQzsUAN2uFJ2qO8BFqWvSSBVw9KGgr0ONhQAPaP2kkCeoaGgBgHk7/XGWNME5O/1Qb6mAcjXAEL+XiDk95NAvqalDQUHHGwoAHpGHSCBPENDQU0CyNfyxljbBORr+SBf2wDkawIhXwsI+UMkkK9taUPBYQcbCoCeUYdJIM/QUFCbAPJ1vDHWNQH5Oj7I1zUA+dpAyNcBQv57EsjXtbSh4KiDDQVAzyip+UODvi4w5+oRNhTUE2ooqB9rKMAGqb5AQ8F9ljcUaN33GWgouC/6s4FQQ4E+HFBZYOP4R8s3zPUh7qoCuo+TLG4aAhc3wFir44aKc9D5Q/KpEclBrMaOeEaCsbcJsOZny3XrQ9y3C+g+ScLYJsB8AcZanXSQsfeTMLapI56RYOwdAqw5bblufYj7LgHdZ0gY+wAwX4CxVmccZOyDJIx9KOYZazzzsOUNBRWyp77UATmHv1peV3SjR3UB3edJ6sojQF8CY62Q8ye5Q83QUADc4BPboW7mjfFREzvUzXw71I8a2KEG7HCl7FA3Axal30kg9ailDQUXHWwoAHpGXSSBPENDwaMEkG/ujbGFCcg390G+hQHIPwqEfHMg5P8igXwLSxsK/nawoQDoGfU3CeQZGgpaEEC+pTfGViYg39IH+VYGIN8CCPmWQMhfIoF8K0sbCi472FAA9Iy6TAJ5hoaCVgSQb+2NsY0JyLf2Qb6NAci3AkK+NRDycTdxQL6NpQ0F8YbmLxLsgjYUAD2jpOYPDfo2wJxrS9hQ0FaooaBdrKEAG6R2Ag0F7S1vKNC62xtoKGgf/dlBqKFAHw5oKLBxnBkMWbRufYi7sYDuLCSLm47AxQ0w1iqLoeIcdP6QfOpEchCrsyOekWBsEwHWZLdctz7E3VRAdw4SxiYC8wUYa5XDQcYmkTD2MUc8I8HYBwRYc5XluvUh7ocEdOcmYWwXYL4AY61yO8jYx0kY+0TMM9Z45knLGwrqZk99qQNyDq+xvK7oRo9HBHTnJakrXYG+BMZa5bXcN5oNHQV8U8By3foZTmcB3QVJ8qUbMF+AsVYFSWpqHmBN7U6yDnsKOM5ZwM3m2Tfaz9hEAdZcZzlj9TOcxwR0X0/C2B7AfAHGWl3vIGOfJmFsT+A43wMydh4BY7sIsKao5YzVz3CeENBdjISxvYD5Aoy1KuYgY3uTMLYPcJwLgYxdZDlj22RPPd+EjMeNljNWP/PsKqD7JhLG9gXmCzDW6iYHGfsMCWP7Ace5FMjYZSQda/2F3j0RCXYh3+lAk3MDSHJuoGOeQc/fIKFXAUSCXcgWe5qcG0ySc0Mc8wx6/p4V6syOBLuQHc80OTeUJOeec8wz6PkbJtQoGwl2IRtQaXLueZKcG+6IZ9DPjvTbH77Phn92dIvlz8yOepp/ENBd4iYOxr4AzBdgrJXU/NnM2BdJGPuSI56RYOwxAdaUslz3j57m4wK6S5Mw9mVgvgBjrUo7yNhXSBg7whHPSDD2JwHWlLNc9wlP888CusuTMHYkMF+AsVblHWTsKBLGvuqIZyQYe1KANcpy3b94mk8J6K5IwtjRwHwBxlpVdJCxY0gYO9YRz0gw9rQAa6pYrvuMp/msgO6qJIx9DZgvwFirqg4ydhwJY193xDMSjD0nwJrbLdf9q6f5vIDuO0gYOx6YL8BYqzscZOwEEsZOdMQzEoz9TYA1d1uu+4Kn+XcB3dVJGDsJmC/AWKvqDjJ2Mglj33DEMxKMvSjAmnst1/2Hp/lPAd01SRg7BZgvwFirmg4y9k0Sxk51xDMSjP1LgDV1LNf9t6f5HwHddUkY+xYwX4CxVnUdZOw0Esa+7YhnJBj7rwBr7rNc9yVP82UB3Q1IGDsdmC/AWKsGDjL2HRLGznDEMxKMvSLAmsaW6w7p9yIJvBupCQlj3wXmCzDWqomDjJ1JwthZjnhGgrHxAqx5wHLdmTzNCQK6HyRh7GxgvgBjrR50kLFzSBg71zHPoOfvPcfe32dzzs2z/DuXdF3OLFCfHrG8LmfxNGcV0N2MhBHzgb4ExlqxzN8C4Px9AWTsDgcZu5CAsdkEWNPCcsZm9zTnENDdkoQRi4C+BMZasczfYuD8/Qxk7EkHGbuEgLE5BVizNDtHriwDxiczkDVZHHzOspzkOcsK4DifBfJ1GAlf44D3WgmLhVLaJ3Gh/15o5q4EsjHteFdlT/09wRe7UJo8yCKgKeT7HP885v4f/83qwqiDtCo7/r7vA4Eppfv97PAYReKjY00Aj1cXoDbZsfdDfhGJ/iIN5JdU6CK5QiA+IWxuquRfVntj/SC7YPLrG2tzrY5+SPK/9YeGo5+BTpJk06FXzW0sfzKRnBxo3W0t152cxGjd7SzXnQwbtO72dj9JqRgdp1oNLNYfAO/VwdD8RYJdCsgzlZYRQeevI8n8Afmg2gPnrxPJ/AHzRAE9o5Dzl7ywjgfPna71yG8H099uNUTgD6oPhJ40AsaYsghe443xQxOL4DW+RfCHwovgQQKLgyctXxRlZOSguruSQBWwkElZYK0BLoq6kWzPfQiE6pPAot6dxH/APFFAzyjk/EkWdeTXD+qvz3tOoKh/SFDU13pjXGeiqK/1FfV1wkX9WYHi1svyop6RkYPq7k0C1Q+BRX0tsKj3ISnq64BQ7QUs6n1J/AfMEwX0jELOn2RRR36/qf5+zuECRX0dQVFf743xIxNFfb2vqH8kXNSHCRS3gZYX9YyMHFT3IBKorgMW9fXAoj6YpKh/BITqQGBRH0LiP2CeKKBnlNT8oQv7R8Cc2wC4V2JSUlJi54ixg3IbhA7KfRw7KIcN0scCq8WNlh+U07o3ChzESh7n+9E53Rj9uSn6WRKLw24Ci6TnLV8cdvc0PyWgezjJ4mYz8i9GYHEebqg4B50/JJ+2kHQ+bHXEMxKM7SHAmpcs1/20p7mngO6XSRj7CTBfgLFWLzvI2G0kjP3UEc9IMLaXAGtGWq67t6e5j4DuUSSM3Q7MF2Cs1SgHGfsZCWM/j3nGGs98AfaMRF3pK8DXMZbXlWc8zf0EdI8lqSs7gL4Exloh5y8+JHciQaKJFu1x4Aaf2ImEL70x7jRxIuFL34mEnWlOJGSUZJFgF2KHK2WH+ktgUXqdBFI7gUmGbLAbb2j+IsEuaIMd0DNqPAnkGRrEdhJA/itvjLtMQP4rH+R3GYD8TiDkvwJCfhIJ5HdZ2jA0mQTyyIYhoGfUZBLIMzQM7SKA/G5vjHtMQH63D/J7DEB+FxDyu4GQf5ME8nssbSCZSgJ5ZAMJ0DNqKgnkGRpI9hBA/mtvjHtNQP5rH+T3GoD8HiDkvwZC/m0SyO+1tKFgOgnkkQ0FQM8oqflDg34vMOe+IWwo+EaooWBfrKEAG6R9AquH/ZY3FGjd+w00FOyP/jwg1FCgDwdsFtg4fhcMWbRufYh7q4DumSSLm4PAxQ0w1mqmoeIcdP6QfPqW5CDWIUc8I8HYTwRYM8dy3foQ96cCuueSMPYwMF+AsVZzHWTsdySMPeKIZyQYu12ANfMt160PcX8uoHsBCWO/B+YLMNZqgYOMPUrC2B9inrHGM8csbyj4KHvqSx2Qc7jY8rqiGz12COheQlJXfgT6EhhrhZy/+JDbDQXADT6xHerj3hh/MrFDfdy3Q/2TgR1qwA5Xyg71cWBRWk4CqZ8sbShYYWj+IsEuaEMB0DNqBQnkGRoKfiKA/AlvjD+bgPwJH+R/NgD5n4CQPwGE/PskkP/Z0oaC1SSQRzYUAD2jVpNAnqGh4GcCyJ/0xviLCcif9EH+FwOQ/xkI+ZNAyH9IAvlfLG0oWEsCeWRDAdAzai0J5BkaCn4hgPwpb4ynTUD+lA/ypw1A/hcg5E8BIf8RCeRPW9pQsIEE8siGAqBnlNT8oUF/GphzZwgbCs4INRScjTUUYIN0VmD1cM7yhgKt+5yBhoJz0Z+/CjUU6MMBBwU2jjeBIYvWrQ9xHxLQvZlkcXMeuLgBxlptNlScg84fkk+/kRzEuuCIZyQYe1iANZ9Yrlsf4j4ioHsbCWN/B+YLMNZqm4OMvUjC2D8c8YwEY78XYM1nluvWh7h/END9OQlj/wTmCzDW6nMHGfsXCWP/jnnGGs/8Y3lDwd7sqS91QM7hl5bXFd3o8aOA7p0kdeVfoC+BsVbI+YsPud1QANzgE9uhvuSN8bKJHepLvh3qywZ2qAE7XCk71JeARWk3CaQuW9pQsMfQ/EWCXdCGAqBn1B4SyDM0FFwmgPwVvbmXwwDkr/ggrz807PtMdJJdBkL+ChDy35BAXscIFQtkQ8E+EsgjGwqAnlH7SCDP0FAAzBExyMd5Y4w3Afm4HOkhH28A8mkDEBTycTlwkDpIAvl4IOSRDQXfkkAe2VAA9Iz6lgTyDA0F8QSQz+SNMcEE5DP5IJ9gAPLxQMhnAkL+OxLIJwAhj2woOEICeWRDAdAzSmr+0KBPAOZcZsC9TDcUZAYWkLTjzZIj9fdYQ0HAe+ogZcmBv29WoPmldGfNAY/RfxoKskbnNlv0syQaN84LbBz/AIYsWrc+xH1BQPcxksVNduDiBhhrdcxQcQ46f0g+5cghV2CQmnM64hkJxv4uwJqfLNetD3H/IaD7BAljcwHzBRhrdcJBxl5FwtjcjnhGgrF/CrDmF8t160PcfwvoPkXC2KuB+QKMtTrlIGPzkDD2mphnrPFMXrBnJA4dnxPg61nL64pu9PhXQPc5krqSD+hLYKzVOct9o9mQPQfeN79Zrls/w8kpoPsCSb7kB+YLMNbqAklNfR94VLYAyTqsIHCczwM9M5yAsbkEWPOH5br1M5zcArr/JGHstcB8AcZa/ekgYwuRMPY64DhfAnrmZQLGXi3Amn8s162f4VwjoPtfEsZeD8wXYKzVvw4ytjAJY4sAxzkS6JlRlrMmIUfq+SZkPK5Yrls/88wnoDt0MwdjiwLzBRhrJTV/NjO2GAljbwCOcwzQM2NJ1jVh4Py1Bc5fu5vcy7kbSXLuJsc8g56/m4VeBRAJdiFb7GlyrjhJzt3imGfQ81dCqDM7EuxCdjzT5NytJDlX0jHPoOevlFCjbCTYhWxApcm50iQ5V8YRz8Cfz3teeUHgXFamm+3W/aKn+SUB3Qkkz8zKAvMFGGuV4OAzs3IkjC3viGckGPuyAGuyWq77FU/zCAHd2UgYWwGYL8BYq2wOMjZCwljliGckGDtSgDU5Ldc9ytP8qoDuXCSMrQjMF2CsVS4HGVuJhLGVHfGMBGNHC7Dmast1j/E0jxXQnYeEsVWA+QKMtcrjIGOrkjD2Nkc8I8HY1wRYk89y3eM8za8L6M5PwthqwHwBxlrld5Cxt5Mw9g5HPCPB2PECrLnWct0TPM0TBXQXImHsncB8AcZaFXKQsXeRMPZuRzwjwdhJAqwpbLnuyZ7mNwR0FyFhbHVgvgBjrYo4yNh7SBhbwxHPSDB2igBrbrBc95ue5qkCusMkjL0XmC/AWKuwg4ytScLYWo54RoKxbwmw5mbLdU/zNL8toLs4CWNrA/MFGGtV3EHG1iFhbF1HPCPB2OkCrLnVct3veJpnCOguScLYesB8AcZalXSQsfVJGHufI56RYOy7AqwpY7numZ7mWQK6y5IwtgEwX4CxVmUdZGxDEsY2csQzEoydLcCaCpbrnuNpniugO0LC2MbAfAHGWkUcZGwTEsbe74hnJBj7ngBrKlmue56neb6A7sokjG0KzBdgrFVlBxn7AAljH3TMM+j5e8ixd6TanHMPW/69drouLxCoT7dZXpcXepoXCeiuRsKIR4C+BMZascxfM+D8zQcydoGDjH2UgLGLBVhzp+WMXeJpXiqg+y4SRjQH+hIYa8Uyfy2A8/cJkLHbHGRsSwLGLhNgTascHLnSGhifH4C5cszBXGlD8pylLXCcbYCeaU/imTjgvdrBYqEqap/Ehf57oZnbDsjGtONtnyP19wRf7EJp8iCLgKaQ73P885j7f/w3qwujDlL7HPj7dsiBM7+U7g454DGKxEfHmgAery5ACTmw90N+2ZP+siLkFwHpItlWID4hbG6q5F86emPtlEMw+fWNtbk6Rj8k+d/6Q8PRz0AnSbLp0Kvmeyx/MpGcHGjdNSzXnZzEaN33Wq47GTZo3TXtfpJSMTpO1RFYrDsB71XL0PxFgl0KyDOVlhGBu91I5g/IB1UTOH91SOYPmCcK6BmFnL/khXU8eO50rUd+A6P+BsFbBP6g6iT0pBEwxpRFcGdvjIkmFsGdfYvgROFF8M0Ci4PGli+KMjJy4KO8JFAFLGRSFlidgYui+0m25xKBUG0MLOpNSfwHzBMF9IxqSlLUkV/xqr+itKRAUU8kKOpJ3hgfM1HUk3xF/THhol5CoLg9YnlRz8jIgc+7kUA1EVjUk4BF/VGSov4YEKqPAIt6cxL/AfNEAT2jmpMUdeR3SOvvQC4jUNQfIyjqXbwxPm6iqHfxFfXHhYt6KYHi1sbyop6RkQMfACKB6mPAot4FWNTbkRT1x5H79sCi3p7Ef8A8UUDPKKn5Qxf2x4E59wTgXolJSUmJnSPK1EG5J4QOyj0ZOyiHDdKTAqvFrpYflNO6uwocxEoeZ4fonHaN/uwW/SyJxWF+gUVSouWLwwKe5oICupNIFjfdgYsbYKxVkqHiHHT+kHx6iqTzoYcjnpFg7LUCrHncct2FPM3XCeh+goSxTwPzBRhr9YSDjO1JwthejnhGgrHXC7Cmm+W6C3uaiwjo7k7C2N7AfAHGWnV3kLF9SBjbN+YZazzzjOVvSNB1pagAX5+2vK4U8zTfIKC7J0ld6Qf0JTDWCjl/kicSJJpo0R4HbvCJnUjo741xgIkTCf19JxIGpDmRkFGSRYJdiB2ulB3q/siFDAmkBgCTDNlg19fBBjugZ1RfEsgzNIgNIID8QG+Mg0xAfqAP8oMMQH4AEPIDgZDvTwL5QZY2DA1wsGEI6Bk1gATyDA1DgwggP9gb4xATkB/sg/wQA5AfBIT8YCDkB5NAfoilDSRDHGwgAXpGDSGBPEMDyRACyD/rjXGoCcg/64P8UAOQHwKE/LNAyD9HAvmhljYUDHOwoQDoGSU1f2jQD0XmHGFDwXNCDQXDYg0F2CANE1g9PG95Q4HW/byBhoLnoz+HCzUU6MMB3QU2jl+wfMNcH+LuIaD7RZLFzQvAxQ0w1upFQ8U56Pwh+fQiyUGslxzxjARjnxZgzSuW69aHuHsJ6B5BwtiXgfkCjLUa4SBjXyFh7AhHPCPB2N4CrHnVct36EHdfAd2jSRg7EpgvwFir0Q4ydhQJY1+NecYaz4y2vKHg8RypL3VAzuFrltcV3ejRT0D3OJK6MgboS2CsFXL+JHeoGRoKgBt8YjvUY70xvmZih3qsb4f6NQM71IAdrpQd6rHAojSBBFKvWdpQMNHBhgKgZ9REEsgzNBS8RgD5cd4YXzcB+XE+yL9uAPKvASE/Dgj5N0gg/7qlDQVTHGwoAHpGTSGBPENDwesEkB/vjXGCCciP90F+ggHIvw6E/Hgg5N8igfwESxsKpjnYUAD0jJpGAnmGhoIJBJCf6I1xkgnIT/RBfpIByE8AQn4iEPLvkEB+kqUNBTMcbCgAekZJzR8a9JOAOTeZsKFgslBDwRuxhgJskN4QWD1MsbyhQOueYqChYEr055tCDQX6cMALAhvHsyzfMNeHuF8S0D2bZHEzFbi4AcZazTZUnAM/TkU+9SA5iDXNEc9IMPZlAda8Z7lufYh7hIDueSSMfRuYL8BYq3kOMnY6CWPfccQzEowdKcCahZbr1oe4XxXQvYiEsTOA+QKMtVrkIGPfJWHszJhnrPHMLMsbCobmSH2pA3IOl1peV3SjxxgB3ctI6spsoC+BsVbI+ZPcoWZoKABu8IntUM/xxjjXxA71HN8O9VwDO9SAHa6UHeo5wKK0kgRScy1tKFjlYEMB0DNqFQnkGRoK5hJA/j1vjPNMQP49H+TnGYD8XCDk3wNC/gMSyM+ztKFgjYMNBUDPqDUkkGdoKJhHAPn53hgXmID8fB/kFxiA/Dwg5OcDIb+OBPILLG0oWO9gQwHQM2o9CeQZGgoWEEB+oTfGRSYgv9AH+UUGIL8ACPmFQMh/TAL5RZY2FGx0sKEA6BklNX9o0C8C5txiwoaCxUINBUtiDQXYIC0RWD0stbyhQOteaqChYGn05zKhhgJ9OGCqwMbxFss3zPUh7mkCureSLG6WAxc3wFirrYaKc+ADIUA+rSA5iLXSEc9IMPZtAdZ8arlufYj7HQHd20kYuwqYL8BYq+0OMvZ9EsaudsQzEoydIcCaLyzXrQ9xzxTQvYOEsR8A8wUYa7XDQcauIWHshzHPWOOZtZY3FEzKkfpSB+QcfmV5XdGNHrMFdO8iqSvrgL4Exlrtstw3mg3LBXzzteW69TOclQK695Lky3pgvgBjrfaS1NQOwJr6Eck6bANwnIlAzyQRMHaVAGv2W65bP8NZLaD7AAljPwbmCzDW6oCDjN1IwthNwHE+DvTMEwSM/UCANYcs162f4XwooPswCWM3A/MFGGt12EHGbiFh7FbgOLsBPdPdctYsypF6vgkZj+8t162fea4T0H2UhLGfAPMFGGt11EHGbiNh7KfAcT4N9ExPkpzbLvTuiUiwC/lOB5qc+4wk5z53zDPo+ftC6FUAkWAXssWeJud2kOTcl455Bj1/O4U6syPBLmTHM03OfUWSc7sc8wx6/nYLNcpGgl3IBlSanNtDknNfO+IZ+B5o9lCorMCzox8t113O01xeQPdxEsbuBeYLMNbquIOM/YaEsfsc8YwEYysIsOZny3VHPM1KQPdJEsbuB+YLMNbqpIOMPUDC2IOOeEaCsRUFWHPact2VPM2VBXSfIWHst8B8AcZanXGQsYdIGHvYEc9IMLaKAGt+tVx3VU/zbQK6z5Mw9jtgvgBjrc47yNgjJIz93hHPSDC2mgBrfrdc9+2e5jsEdF8kYexRYL4AY60uOsjYH0gYe8wRz0gw9k4B1vxlue67PM13C+j+m4SxPwLzBRhr9beDjD1OwtifHPGMBGOrC7DmkuW679F+EdB9mYSxJ4D5Aoy1uuwgY38mYexJRzwjwdh7BVgTV9xu3TU9zbUEdMcX52DsL8B8AcZaSc2fzYw9RcLY0454RoKxtQVYk9ly3XU8zXUFdGchYewZYL4AY62yOMjYsySMPeeIZyQYW0+ANdkt113f03yfgO4cJIz9FZgvwFirHA4y9jwJY39zxDMSjG0gwJqrLNfd0NPcSEB3bhLGXgDmCzDWKreDjP2dhLEXHfGMBGMbC7DmGst1N/E03y+gOy8JY/8A5gsw1iqvg4z9k4SxfzniGQnGNhVgTQHLdT/gaX5QQHdBEsb+DcwXYKxVQQcZ+w8JY/91xDMSjH1IgDXXWa77YU/zIwK6rydh7CVgvgBjra53kLGXSRh7xTHPoOcvlBOnmeE91DbnXFxObM5J1OVmAvWpqOV1+VFPc3MB3cVIGBEP9CUw1opl/jIB5+9VIGNHO8jYBALGthBgzY2WM7alp7mVgO6bSBiRGehLYKwVy/xlAc7fe0DGznOQsVkJGNtagDXZcnLkSnZgfLYAc2Wrg7mSA5wrUp7JCRznPUDP1CTxTBzwXrlgsVCVtE/iQv+90MzNBWRj2vFelTP19wRf7EJp8iCLgKaQ73P885j7f/w3qwujDpKeUPR9c+cEPrAU0p07JzxGkfjoWBPA49UFaFEO7P2QX6invxAO+WVrukjmFIhPCJubKvmXq72x5skpmPz6xtpcV0c/JPnf+kPD0c9AJ0my6dCr5lssfzKRnBxo3SUs152cxGjdt1quOxk2aN0l7X6SUjE6TnU1sFjnAd6rlKH5iwS7FJBnKi0jgs5faZL5A/JBlQTOXxmS+QPmiQJ6RiHnL3lhHQ+eO13rkd9yq7+l9csc+BqVR+hJI2CMKYvga7wx5jWxCL7GtwjOK7wI/kJgUVTJ8kVRRkYOqrsyCVQBC5mUBdY1wEVRFZLtubzAx8eVgEW9Kon/gHmigJ5RVUmKOvJrtPXXQO8SKOp5CYp6Pm+M+U0U9Xy+op5fuKjvFChud1pe1DMyclDdd5FANS+wqOcDFvW7SYp6fmBRvxNY1KuT+A+YJwroGVWdpKjvBhZ1/T3zXwsU9fwERb2AN8aCJop6AV9RLyhc1HcLFLdalhf1jIwcVHdtEqjmBxb1AsCiXoekqBcEFvVawKJel8R/wDxRQM8oqflDF/aCwJy7FnCvxKSkpMTOEWXqoNy1QgflCsUOymGDVEjgoNx1lh+U07qvEziIlTzO3NE5vS768/roZ0ksDtcLLJIaWr44/MjTvEFAdyOSxU1h4OIGGGvVyFBxDvwGFSCfipB0PhR1xDMSjP1YgDX3W657o6d5k4DupiSMLQbMF2CsVVMHGXsDCWPDjnhGgrGbBVjzkOW6t3iatwrofpiEsTcC8wUYa/Wwg4y9iYSxN8c8Y41nilv+hgRdVz4R4OujlteVbZ7mTwV0NyepK7cAfQmMtWpOciJBookW7XHgBp/YiYQS3hhvNXEioYTvRMKtaU4kZJRkkWAXYocrZYe6BLAotSKB1K1ASCEb7Fo72GAH9IxqTQJ5hgaxWwkgX9IbYykTkC/pg3wpA5C/FQj5kkDItyOBfClLG4baO9gwBPSMak8CeYaGoVIEkC/tjbGMCciX9kG+jAHIlwJCvjQQ8p1IIF/G0gaSzg42kAA9ozqTQJ6hgaQMAeTLemMsZwLyZX2QL2cA8mWAkC8LhPxjJJAvZ2lDQRcHGwqAnlFdDO3bRYJdqhww58oTNhSUF2ooqBBrKMAGqYJAQ0HE8oYCrTtioKEgEv2phBoK9OGAwgIvjXzS8g1zfYi7qIDuriSLm4rAxQ0w1qqroeIcdP6QfKpEchCrsiOekWBsMQHWPGW5bn2IOyyguwcJY6sA8wUYa9XDQcZWJWHsbY54RoKxNwqwppfluvUh7psFdPcmYWw1YL4AY616O8jY20kYe0fMM9Z45k7LGwoK5kx9qQNyDp+xvK7oRo9bBHT3I6krdwF9CYy16keyQ83QUADc4BPbob7bG2N1EzvUd/t2qKsb2KEG7HCl7FDfDSxKA0kgVd3ShoJBDjYUAD2jBpFAnqGhoDoB5O/RYzQB+Xt8kK9hAPLVgZC/Bwj5Z0kgX8PShoKhDjYUAD2jhpJAnqGhoAYB5O/1xljTBOTv9UG+pgHI1wBC/l4g5J8ngXxNSxsKhjvYUAD0jBpOAnmGhoKaBJCv5Y2xtgnI1/JBvrYByNcEQr4WEPIvkUC+tqUNBS872FAA9Ix62dC+XSTYpWoDc64OYUNBHaGGgrqxhgJskOoKNBTUs7yhQOuuZ6ChoF70Z32hhgJ9OKCiwMbxSMs3zPUh7soCukeRLG7uAy5ugLFWowwV56Dzh+RTA5KDWA0d8YwEY6sIsGaM5br1Ie7bBHSPJWFsI2C+AGOtxjrI2MYkjG3iiGckGFtNgDWvW65bH+K+Q0D3eBLG3g/MF2Cs1XgHGduUhLEPxDxjjWcetLyhoFz0xRFovk6yvK7oRo+7BHRPJqkrDwF9CYy1mkyyQ83QUADc4BPboX7YG+MjJnaoH/btUD9iYIcasMOVskP9MLAovUkCqUcsbSiY6mBDAdAzaioJ5BkaCh4hgHwzb4yPmoB8Mx/kHzUA+UeAkG8GhPzbJJB/1NKGgukONhQAPaOmk0CeoaHgUQLIN/fG2MIE5Jv7IN/CAOQfBUK+ORDy75JAvoWlDQUzHWwoAHpGzSSBPENDQQsCyLf0xtjKBORb+iDfygDkWwAh3xII+TkkkG9laUPBXAcbCoCeUXMN7dtFgl2qFTDnWhM2FLQWaihoE2sowAapjUBDQVvLGwq07rYGGgraRn+2E2oo0IcD7hPYOJ5v+Ya5PsTdUED3ApLFTXvg4gYYa7XAUHEOOn9IPnUgOYjV0RHPSDC2kQBrFluuWx/ibiKgewkJYzsB8wUYa7XEQcZ2JmFsoiOekWDs/QKsWW65bn2I+wEB3StIGJsEzBdgrNUKBxn7GAlju8Q8Y41nHre8oaB2ztSXOiDn8H3L64pu9HhIQPdqkrryBNCXwFir1Zb7RrOhvYBvPrRct36G01FA91qSfHkSmC/AWKu1JDU1N7CmdiVZh3UDjrMh0DONCBjbSYA1H1muWz/DSRTQvYGEsd2B+QKMtdrgIGOfImFsD+A47wd6pikBY5MEWLPJct36GU4XAd2bSRj7NDBfgLFWmx1kbE8SxvYCjvMhoGcetpw1rXKmnm9CxuMTy3XrZ55PCOjeRsLY3sB8AcZabXOQsX1IGNsXOM5HgZ5pTpJzzwi9eyIS7EK+04Em5/qR5Fx/xzyDnr8BQq8CiAS7kC32NDk3kCTnBjnmGfT8DRbqzI4Eu5AdzzQ5N4Qk5551zDPo+Rsq1CgbCXYhG1Bpcu45kpwb5ohn4OdMcoRCe3Pgnx19ZrnubzzN+wR0f07C2OeB+QKMtfrcQcYOJ2HsC454RoKx+wVY86Xlug94mg8K6N5JwtgXgfkCjLXa6SBjXyJh7MuOeEaCsd8KsGa35boPeZoPC+jeQ8LYV4D5Aoy12uMgY0eQMHakI56RYOx3Aqz5xnLdRzzN3wvo3kfC2FHAfAHGWu1zkLGvkjB2tCOekWDsUQHWHLRc9w+e5mMCur8lYewYYL4AY62+dZCxY0kY+5ojnpFg7I8CrPnOct3HPc0/Ceg+QsLYccB8AcZaHXGQsa+TMHa8I56RYOwJAdb8YLnunz3NJwV0HyNh7ARgvgBjrY45yNiJJIyd5IhnJBj7iwBrfrJc9ylP82kB3SdIGDsZmC/AWKsTDjL2DRLGTnHEMxKMPSPAml8s133W03xOQPcpEsa+CcwXYKzVKQcZO5WEsW854hkJxv4qwJqzlus+72n+TUD3ORLGTgPmCzDW6pyDjH2bhLHTHfGMBGMvCLDmN8t1/+5pviig+wIJY98B5gsw1uqCg4ydQcLYdx3xjARj/xBgzR+W6/7T0/yXgO4/SRg7E5gvwFirPx1k7CwSxs52xDMSjP1bgDX/WK77H0/zvwK6/yVh7BxgvgBjrf51kLFzSRj7niOekWDsJQHWXLFc92VP8xUB3aFbOBg7D5gvwFgrqfmzmbHzSRi7wBHPSDA2JPDO9kyW647zNMcL6E4gYexCYL4AY60SHGTsIhLGLnbMM+j5W+LYu/5tzrmlln8/s67LmQTqU1bL63KCpzmzgO5sJIxYBvQlMNaKZf6WA+evF5CxvR1k7AoCxmYRYE1Oyxmb1dOcTUB3LhJGrAT6EhhrxTJ/q4DzNwbI2LEOMvZ9AsZmF2DN6pwcufIBMD7zgbmywMFcWUPynOVD4DhvAXqmJIln4oD3WguLhaqsfRIX+u+FZu5aIBvTjnddztTfE3yxC6XJgywCmkK+z/HPY+7/8d+sLow6SOty4u+7HghMKd3rc8JjFImPjjUBPF5dgFrlxN4P+aWl+ks3kV9oqYvkhwLxCWFzUyX/8pE31g05BZNf31ib66PohyT/W39oOPoZ6CRJNh161Xy15U8mkpMDrTuP5bqTkxit+xrLdSfDBq07r91PUipGx6k+AhbrDcB75TM0f5FglwLyTKVlRND5y08yf0A+qLzA+StAMn/APFFAzyjk/CUvrOPBc6drPfKbxPU3YQ8S+INqg9CTRsAYUxbBH3tj3GhiEfyxbxG8UXgRPEBgcVDU8kVRRkYOqrsYCVQBC5mUBdbHwEXRDSTbcxuBUC0KLOphEv8B80QBPaPCJEV9MNB/Q7x7PStQ1DcSFPVN3hg3myjqm3xFfbNwUR8sUNxusbyoZ2TkoLpLkEB1I7CobwIW9VtJivpm5J4wsKiXJPEfME8U0DOqJElRHwr033PevYYJFPXNBEV9izfGrSaK+hZfUd8qXNSHChS3cpYX9YyMHFR3eRKobgYW9S3Aol6BpKhvBUK1HLCoR0j8B8wTBfSMkpo/dGHfCsy5TwD3SkxKSkrsHFGmDsp9InRQblvsoBw2SNsEVoufWn5QTuv+VOAgVvI410fn9NPoz+3Rz5JYHD4psEiqYvnisKunuZuA7qoki5vPgIsbYKxVVUPFOej8Ifn0OUnnwxeOeEaCsd0FWHO75bqf8jT3ENB9BwljdwDzBRhrdYeDjP2ShLE7HfGMBGOfFmDN3Zbr7ulp7iWguzoJY78C5gsw1qq6g4zdRcLY3THPWOOZPWDPSNSV3gJ8vdfyutLH09xXQHdNkrryNdCXwFirmiQnEiSaaNEeB27wiZ1I2OuN8RsTJxL2+k4kfJPmREJGSRYJdiF2uFJ2qPcCi1IdEkh9A0wyZINdXQcb7ICeUXVJIM/QIPYNAeT3eWPcbwLy+3yQ328A8t8AIb8PCPn7SCC/39KGoQYONgwBPaMakECeoWFoPwHkD3hjPGgC8gd8kD9oAPL7gZA/AIR8YxLIH7S0gaSJgw0kQM+oJiSQZ2ggOUgA+W+9MR4yAflvfZA/ZADyB4GQ/xYI+QdIIH/I0oaCBx1sKAB6Rj1oaN8uEuxSh4A5d5iwoeCwUEPBd7GGAmyQvhNYPRyxvKFA6z5ioKHgSPTn90INBfpwwGcCG8ePWL5hrg9xfyGguxnJ4uYocHEDjLVqZqg4B50/JJ9+IDmIdcwRz0gwdocAa1pYrlsf4t4poLslCWN/BOYLMNaqpYOMPU7C2J8c8YwEY78SYE0by3XrQ9y7BXS3JWHsCWC+AGOt2jrI2J9JGHsy5hlrPPOL5Q0FW3OmvtQBOYcdLK8rutHjawHdHUnqyimgL4GxVh1JdqgZGgqAG3xiO9SnvTGeMbFDfdq3Q33GwA41YIcrZYf6NLAoJZJA6oylDQVJDjYUAD2jkkggz9BQcIYA8me9MZ4zAfmzPsifMwD5M0DInwVC/nESyJ+ztKHgCQcbCoCeUU+QQJ6hoeAcAeR/9cZ43gTkf/VB/rwByJ8DQv5XIOS7kUD+vKUNBd0dbCgAekZ1J4E8Q0PBeQLI/+aN8YIJyP/mg/wFA5A/D4T8b0DIP00C+QuWNhT0dLChAOgZ1dPQvl0k2KUuAHPud8KGgt+FGgouxhoKsEG6KLB6+MPyhgKt+w8DDQV/RH/+KdRQoA8HHBXYOO5j+Ya5PsR9TEB3X5LFzV/AxQ0w1qqvoeIcdP6QfPqb5CDWP454RoKxPwqwpr/luvUh7p8EdA8gYey/wHwBxloNcJCxl0gYe9kRz0gw9oQAawZbrlsf4j4poHsICWOvAPMFGGs1xEHGhnJxMDYuV8wztngmHuwZiUPHRwT4+pzldUU3epwS0D2MpK5kAvoSGGs1jGSHmqGhALjBJ7ZDneD5MHMuAzvUCbnS71DrDw37PhO9QwjY4UrZoU7IhUv+F0gglRkIKWRDwYsONhQAPaNeJIE8Q0MBMEfEIJ/FG2NWE5DP4oN8VgOQz5wLB/ksQMi/QgL5rEDIIxsKRjjYUAD0jBpBAnmGhoKsBJDP5o0xuwnIZ/NBPrsByGcFQj4bEPKvkkA+OxDyyIaC0Q42FAA9o0aTQJ6hoSA7AeRzeGPMaQLyOXyQz2kA8tmBkM8BhPxrJJDPCYQ8sqFgnIMNBUDPqHGG9u0iwS6VE5hzuQD3Mt1QkAtYQNKO96pcqb/HGgoC3lMH6apcAl81DzS/lO7cueAx+k9DQe7o3F4d/SyJxo2/BDaOJ1i+Ya4Pcf8joHsiyeImD3BxA4y1mmioOAedPySfriE5iJXXEc9IMPZfAda8YblufYj7soDuKSSMzQfMF2Cs1RQHGZufhLEFHPGMBGOvCLDmLct160PccbnwuqeRMLYgMF+AsVbTHGTstSSMLRTzjDWeuc7yhoILOVNf6oCcw3csryu60SOTQF2ZQVJXrgf6EhhrNcNy32g25BHwzSzLdetnOHkFdM8myZfCwHwBxlrNJqmp64FNekVI1mFFgeOsAvRMVQLG5hNgzXuW69bPcAoI6J5HwthiwHwBxlrNc5CxN5AwNgwc5+1Az9xBwNiCAqxZaLlu/QynkIDuRSSMvRGYL8BYq0UOMvYmEsbeDBzn3UDPVLecNTlzpZ5vQsZjqeW69TPP6wV0LyNhbHFgvgBjrZY5yNhbSBhbAjjOe4GeqUmSc7cKvXsiEuxCvtOBJudKkuRcKcc8g56/0kKvAogEu5At9jQ5V4Yk58o65hn0/JUT6syOBLuQHc80OVeeJOcqOOYZ9PxFhBplI8EuZAMqTc4pkpyr6Ihn4PsSnleeFziPttJy3cM9zS8I6F5FwthKwHwBxlqtcpCxlUkYW8URz0gw9kUB1nxgue6XPM0vC+heQ8LYqsB8AcZarXGQsbeRMLaaI56RYOwrAqxZZ7nuEZ7mkQK615Mw9nZgvgBjrdY7yNg7SBh7pyOekWDsKAHWfGy57lc9zaMFdG8kYexdwHwBxlptdJCxd5MwtrojnpFg7BgB1myxXPdYT/NrArq3kjD2HmC+AGOttjrI2BokjL3XEc9IMHacAGs+tVz3657m8QK6t5MwtiYwX4CxVtsdZGwtEsbWdsQzEoydIMCaLyzXPdHTPElA9w4SxtYB5gsw1mqHg4ytS8LYeo54RoKxkwVY85Xlut/wNE8R0L2LhLH1gfkCjLXa5SBj7yNhbANHPCPB2DcFWPO15bqneprfEtC9l4SxDYH5Aoy12usgYxuRMLaxI56RYOw0Adbst1z3257m6QK6D5AwtgkwX4CxVgccZOz9JIxt6ohnJBj7jgBrDlmue4an+V0B3YdJGPsAMF+AsVaHHWTsgySMfcgRz0gwdqYAa763XPcsT/NsAd1HSRj7MDBfgLFWRx1k7CMkjG3miGckGDtHgDU/Wq57rqf5PQHdx0kY+ygwX4CxVscdZGxzEsa2cMQzEoydJ8Cany3XPd/TvEBA90kSxrYE5gsw1uqkg4xtRcLY1o54RoKxCwVYc9py3Ys8zYsFdJ8hYWwbYL4AY63OOMjYtiSMbeeIZyQYu0SANb9arnupp3mZgO7zJIxtD8wXYKzVeQcZ24GEsR0d8wx6/jo59n0qNudcZ3DOSdTl5QL16XfL6/IKT/NKAd0XSRiRCPQlMNaKZf6SgPPXBjh/bR1k7GMEjF0lwJq/LGfs+57m1QK6/yZhRBegL4GxVizz9zhw/voD52+Ag4x9goCxHwiw5slcHLnSFRifCcBcmehgrnQjec7SHTjOq4GeyUvimTjgvZ6CxUJV0T6JC/33QjP3KSAb0463R67U3xN8sQulyYMsAppCvs/xz2Pu//HfrC6MOkg9cuHv+3QunPmldD+dCx6jSHx0rAng8eoClDMX9n7IL4bWX2yM/NJgXSS7C8QnhM1NlfxLT2+svXIJJr++sTZXz+iHJP9bf2g4+hnoJEk2HXrVfMnyJxPJyYHWfdly3clJjNZ9xXLdybBB6w6VsPqvw4rRcaqewGLdC3ivOEPzFwl2KSDPVFpGBJ2/eJL5A/JBpc25oPOXiWT+gHmigJ5RyPlLXljHg+dO1/rSwIVrGe9eZQX+oOol9KQRMMaURXBvb4x9TCyCe/sWwX2EF8GlBRYHOUvYvSjKyMhBdecigSpgIZOywOoNXBRdZfeiMmWcfYBQzQks6rlJ/AfMEwX0jMpNUtTLAf1X3rtXBYGi3oegqPf1xviMiaLe11fUnxEu6uUEils+y4t6RkYOqjs/CVT7AIt6X2BRL0BS1J8BQjUfsKgXJPEfME8U0DOqIElRjwD9p7x7VRQo6s8QFPV+3hj7myjq/XxFvb9wUY8IFLfClhf1jIwcVHcREqg+Ayzq/YBFvShJUe8PhGphYFEvRuI/YJ4ooGeU1PyhC3t/YM4NANwrMSkpKbGzt30RMnNQboDQQbmBsYNy2CANFFgtDrL8oJzWPUjgIFbyOJ+Ozumg6M/B0c+SWBwWFlgk3Wz54rCIp7mogO7iJIubIcDFDTDWqrih4hx0/pB8epak82GoI56RYGwxAdbcarnuG/RDDQHdJUkY+xwwX4CxViUdZOwwEsY+74hnJBh7owBryliu+yZP880CusuSMHY48owiMF/KOsjYF0gY+2LMM9Z45iXL35Cg60pxAb5WsLyu3OJpLiGgO0JSV14G+hIYaxUhOZEg0USL9jhwg0/sRMIr3hhHmDiR8IrvRMKINCcSMkqySLALscOVskP9CrAoVSKB1AhgkiEb7Co72GAH9IyqTAJ5hgaxEQSQH+mNcZQJyI/0QX6UAciPAEJ+JBDyt5FAfpSlDUPVHGwYAnpGVSOBPEPD0CgCyL/qjXG0Cci/6oP8aAOQHwWE/KtAyN9JAvnRljaQ3OVgAwnQM+ouEsgzNJCMJoD8GG+MY01AfowP8mMNQH40EPJjgJC/hwTyYy1tKKjhYEMB0DOqhqF9u0iwS40F5txrhA0Frwk1FIyLNRRggzROYPXwuuUNBVr36wYaCl6P/hwv1FCgDwcMEdg4rmX5hrk+xD1UQHdtksXNBODiBhhrVdtQcQ46f0g+TSQ5iDXJEc9IMPY5AdbUs1y3PsT9vIDu+iSMnQzMF2CsVX0HGfsGCWOnOOIZCcYOF2BNQ8t160PcLwrobkTC2DeB+QKMtWrkIGOnkjD2rZhnrPHMNMsbCvrnSn2pA3IO77e8ruhGj5cFdDclqStvA30JjLVqSrJDzdBQANzgE9uhnu6N8R0TO9TTfTvU7xjYoQbscKXsUE8HFqWHSCD1jqUNBQ872FAA9Ix6mATyDA0F7xBAfoY3xndNQH6GD/LvGoD8O0DIzwBC/lESyL9raUNBcwcbCoCeUc1JIM/QUPAuAeRnemOcZQLyM32Qn2UA8u8CIT8TCPlWJJCfZWlDQWsHGwqAnlGtSSDP0FAwiwDys70xzjEB+dk+yM8xAPlZQMjPBkK+HQnk51jaUNDewYYCoGdUe0P7dpFgl5oDzLm5hA0Fc4UaCt6LNRRgg/SewOphnuUNBVr3PAMNBfOiP+cLNRTowwETBDaOO1m+Ya4PcU8S0N2ZZHGzALi4AcZadTZUnIPOH5JPC0kOYi1yxDMSjJ0swJrHLNetD3FPEdDdhYSxi4H5Aoy16uIgY5eQMHapI56RYOybAqx50nLd+hD3WwK6u5IwdhkwX4CxVl0dZOxyEsauiHnGGs+stLyhYGyu1Jc6IOfwKcvrim70eFtAdw+SurIK6EtgrFUPkh1qhoYC4Aaf2A71+94YV5vYoX7ft0O92sAONWCHK2WH+n1gUepFAqnVljYU9HawoQDoGdWbBPIMDQWrCSD/gTfGNSYg/4EP8msMQH41EPIfACH/DAnk11jaUNDPwYYCoGdUPxLIMzQUrCGA/IfeGNeagPyHPsivNQD5NUDIfwiE/EASyK+1tKFgkIMNBUDPqEEkkGdoKFhLAPl13hjXm4D8Oh/k1xuA/Fog5NcBIf8sCeTXW9pQMNTBhgKgZ9RQQ/t2kWCXWg/MuY8IGwo+Emoo2BBrKMAGaYPA6uFjyxsKtO6PDTQUfBz9uVGooUAfDlggsHH8vOUb5voQ9yIB3cNJFjebgIsbYKzVcEPFOej8Ifm0meQg1hZHPCPB2MUCrHnJct36EPdSAd0vkzB2KzBfgLFWLzvI2E9IGLvNEc9IMHaZAGtGWq5bH+JeIaB7FAljPwXmCzDWapSDjN1OwtjPYp6xxjOfW95QMCdX6ksdkHM4xvK6ohs9VgnoHktSV74A+hIYazXWct9oNmwS8M3rluvWz3C2COgeT5IvO4D5Aoy1Gk9SU58G1tQvSdZhO4HjvBnomeIEjN0qwJpJluvWz3C2CeieTMLYr4D5Aoy1muwgY3eRMHY3cJy3Aj1TkoCxnwqw5k3LdetnOJ8J6J5Kwtg9wHwBxlpNdZCxX5Mwdi+yrxLombKWs2Z9rtTzTch4vG25bv3M8wsB3dNJGPsNMF+AsVbTHWTsPhLG7geOswLQMxGSnDsg9O6JSLAL+U4Hmpw7SJJz3zrmGfT8HRJ6FUAk2IVssafJucMkOfedY55Bz98Roc7sSLAL2fFMk3Pfk+TcUcc8g56/H4QaZSPBLmQDKk3OHSPJuR8d8Qz8mVlOb+4Fnh29a7nuyp7mKgK6Z5Iw9jgwX4CxVjMdZOxPJIw94YhnJBhbVYA1cyzXfZunuZqA7rkkjP0ZmC/AWP9/7b0J1I3V+8f9eAzJ8BgfM5nn4WwhSaYkJCFJRDI8yZxkSqVSSUJIk0oSQpJUKklSSUKoJGWeCclQpnfv/++cx9Mp73rXe77fe13X2uesda+j3/qt++zvvr7X59rn3vs6j5ntIWMPKGHsQU88w2Ds1QTWzBWuu47VfA1B9zwljD0EzBdgrM08Dxl7WAljf/fEMwzG1iWw5h3huq+1musRdC9QwtgjwHwBxtos8JCxR5Uw9pgnnmEwtj6BNe8J193Aam5I0L1ICWP/AOYLMNZmkYeMPa6EsX964hkGYxsRWPOhcN3XWc2NCboXK2HsCWC+AGNtFnvI2JNKGHvKE88wGHs9gTWfCNfdxGq+gaB7iRLGngbmCzDWZomHjP1LCWP/9sQzDMY2JbDmM+G6m1nNzQm6lylh7BlgvgBjbZZ5yNizShh7zhPPMBh7I4E1XwjX3cJqvomge4USxp4H5gsw1maFh4y9oISxCdn98AyDsS0JrPlauO6breZWBN0rlTA2HTBfgLE2Kz1kbGJ2HYxN74lnGIxtTWDNt8J1t7GabyHoXq2EsRmA+QKMtVntIWMzKmFsJk88w2BsWwJr1grXfavV3I6ge50Sxl4GzBdgrM06DxmbWQljL/fEMwzG3kZgzQbhuttbzbcTdG9UwtgswHwBxtps9JCxWZUwNpsnnmEwtgOBNT8J193Rar6DoHuTEsZmB+YLMNZmk4eMTVLC2ByeeIbB2E4E1vwiXHdnq/lOgu4tShibE5gvwFibLR4yNpcSxub2xDMMxnYhsGarcN13Wc1dCbq3KWFsHmC+AGNttnnI2LxKGJvsiWcYjO1GYM1O4bq7W809CLp3KWFsPmC+AGNtdnnI2PxKGFvAM8+g568gcP40/M0qyTlXCJxzjLqcQqhPe4XX5but5p4E3fuUMKIw0JfAWBst81cEOH83AuevhYeMLaqAsfcQWHNQOGN7Wc29CboPKWFEMaAvgbE2WubvCuD83Q2cv54eMra4Asb2IbCmRHYduVISGJ/HgLkyysNcKaXkOUtp4DjPAf/OboISz6QD3qsMLBamlvNJuoR/v9DMLQNkY9rxls1+8d8ZomKXkCYPMhE0JUR9TvQ8Jv3H/ya6MLoguQlF37dcdpz5WbrLZYfHKJQYHmsG8HhdAVqaDXu/zcD7uT8ej/zD7K5IlibEJwGbmybyj/J2rBWyE5Pf3diZq3z4QyL/7T60ePgz0EkSMR161XxE+JOJSHKgdR8VrjuSxGjdx4TrjsAGrfsP2U9SqofHacoDi3UF4L2OBzR/odheBsgzk5YRMf+yv5L5A/LB/AGcvxNK5g+YJwboGYOcv8jCOhE8d67W/wpcuP5m77U1G75GVSA9aQSMMXURXNGOsVIQi+CKUYvgSuRF8K+ERdE54YuiSxk55p/EVAJVwEImdYFVEbgouqBke64S8vExsKgnlNPhP2CeGKBnDHL+mEV9G7Cob7f32kEo6pUUFPXKdoxVgijqlaOKehVyUd9GKG4Zy8ku6pcycsy/9aYEqpWARb0ysKhfVk5HUa8CLOppcyXm3+tS4j9gnhigZ0xmJUV9J7Co77L32k0o6lUUFPWqdozVgijqVaOKejVyUd9JKG7ZhRf1Sxk55h+PUQLVKsCiXhVY1HMoKerVgEU9O7Co51TiP2CeGKBnDGv+0IW9GjDnQoB79UhJSenRPWSCOigXIh2UM/GDctggGcJBuerCD8o53dUJB7Ei4ywXntPq4fcrw5/FWByuISySkoUvDtdazesIuvMpWdzUAC5ugLE2+QIqzrHOH5JPNZV0PtTyxDMMxn5PYE1B4brXW80bCLoLKWHsVcB8AcbaFPKQsbWVMPZqTzzDYOxGAmuKCtf9g9X8I0F3MSWMrQPMF2CsTTEPGXuNEsbWjXtGjGeuFf4LCa6u/MT4hQThdWWT1fwzQXdJJXWlHtCXwFibkkpOJDCaaNEeB27w0U4k1HdjDOJEQv2oEwkN0pxIuFSShWJ7IXa4Uneo6wOLUhklkGoAhBSywa6skh1qZIMd0DOmrBLIa2gQa6AA8g3tGBsFAfmGUZBvFADkGwAh3xDZka0E8o2ENgxV9LBhCOgZU1EJ5DU0DDVSAPnr7BgbBwH566Ig3zgAyDcCQv46IOSrKIF8Y6ENJFU9bCABesZUVQJ5DQ0kjRVA/no7xiZBQP76KMg3CQDyjYGQvx4IeaME8k2ENhRU97ChAOgZUz2gfbtQbC/TBJhzNyhsKLiB1FDQNN5QgA1SU0JDQTPhDQVOd7MAGgqahd+bkxoK3OGAGoQfjawpfMPcHeKuRdBdS8ni5kbg4gYYa1MroOIc6/wh+dRCyUGsmzzxDIOxVxFYc7Vw3e4Q99UE3XWUMLYlMF+AsTZ1PGTszUoY28oTzzAYW4fAmmuF63aHuOsSdNdTwtjWwHwBxtrU85CxbZQw9pa4Z8R4pq3whoJq2S/+qANyDhsKryuu0aMeQXcjJXXlVqAvgbE2jZTsUGtoKABu8NF2qNvZMd4WxA51u6gd6tsC2KEG7HCl7lC3Axal65VA6jahDQVNPGwoAHrGNFECeQ0NBbcpgHx7O8bbg4B8+yjI3x4A5G8DQr49EPLNlED+dqENBc09bCgAesY0VwJ5DQ0FtyuAfAc7xo5BQL5DFOQ7BgD524GQ7wCE/E1KIN9RaENBSw8bCoCeMS2VQF5DQ0FHBZC/w46xUxCQvyMK8p0CgHxHIOTvAEK+tRLIdxLaUNDGw4YCoGdMm4D27UKxvUwnYM51VthQ0JnUUHBnvKEAG6Q7CQ0FXYQ3FDjdXQJoKOgSfr+L1FDgDgfcSNg4vlX4hrk7xH0TQXc7JYubrsDFDTDWpl1AxTnW+UPyqZuSg1jdPfEMg7EtCay5Xbhud4i7FUF3ByWM7QHMF2CsTQcPGZuihLF3e+IZBmNbE1jTSbhud4j7FoLuzkoY2xOYL8BYm84eMvYeJYztFfeMGM/0Ft5Q0CT7xR91QM7hXcLrimv0uJWgu6uSutIH6EtgrE1XJTvUGhoKgBt8tB3qvnaM/YLYoe4btUPdL4AdasAOV+oOdV9gUeqhBFL9hDYUpHjYUAD0jElRAnkNDQX9FEC+vx3jgCAg3z8K8gMCgHw/IOT7I7+tKoH8AKENBb08bCgAesb0UgJ5DQ0FAxRA/l47xoFBQP7eKMgPDADyA4CQvxcI+b5KID9QaENBPw8bCoCeMf2UQF5DQ8FABZC/z45xUBCQvy8K8oMCgPxAIOTvA0L+XiWQHyS0oWCghw0FQM+YgQHt24Vie5lBwJy7X2FDwf2khoLB8YYCbJAGExoKhghvKHC6hwTQUDAk/D6U1FDgDgd0JWwc3y98w9wd4u5O0D1YyeJmGHBxA4y1GRxQcY51/pB8Gq7kINYDnniGwdgeBNYME67bHeK+m6B7uBLGjgDmCzDWZriHjH1QCWMf8sQzDMb2JLDmQeG63SHuXgTdDylh7MPAfAHG2jzkIWNHKmHsI3HPiPHMo8IbCjplv/ijDlAPCq8rrtGjD0H3o0rqymNAXwJjbR4V7hvHhmEE3zwuXLd7hvMAQfcTSvJlFDBfgLE2TyipqeWANfVxJeuwJ4DjTAZ6Jp8Cxo4gsOYp4brdM5yHCLrHKGHsk8B8AcbajPGQsaOVMPYp4DgLAj1TSAFjHyaw5hnhut0znEcIuscpYewYYL4AY23GecjYp5UwdixwnEWBnikmnDWDsl8834SMx7PCdbtnno8RdE9UwthngPkCjLWZ6CFjxylh7HjgOEsAPVNSSc5NIP32RCi2F/I3HdTk3LNKcm6iZ55Bz98k0k8BhGJ7IVvs1eTcZCU595xnnkHP3xRSZ3Yothey41lNzj2vJOde8Mwz6Pl7kdQoG4rthWxAVZNzLynJuZc98Qz62ZH79Yc92fDPjp4Trnuv1byPoHuKEsZOBeYLMNZmioeMfUUJY1/1xDMMxu4nsOZF4boPWM0HCbpfUsLY14D5Aoy1eclDxk5TwtjXPfEMg7GHCKx5Rbjuw1bz7wTdryph7HRgvgBjbV71kLFvKGHsDE88w2DsEQJrXheu+6jVfIyge7oSxr4JzBdgrM10Dxk7UwljZ3niGQZj/yCw5k3huo9bzX8SdM9UwtjZwHwBxtrM9JCxbylh7BxPPMNg7AkCa94Srvuk1XyKoHuOEsbOBeYLMNZmjoeMnaeEsW974hkGY08TWPO2cN1/Wc1/E3TPV8LY+cB8AcbazPeQse8oYewCTzzDYOwZAmveFa77rNV8jqB7oRLGvgvMF2CszUIPGbtQCWPf88QzDMaeJ7DmfeG6L1jNCYSe8g+UMHYRMF+AsTYfeMjY95Uw9gNPPMNgbDoCaz4SrjvRak5P0P2xEsZ+CMwXYKzNxx4ydrESxn7kiWcYjM1AYM2nwnVntJozEXQvVcLYj4H5Aoy1WeohYz9RwtglnniGwdjLCKz5XLjuzFbz5QTdy5Uw9lNgvgBjbZZ7yNilShj7mSeeYTA2C4E1XwrXndVqzkbQ/ZUSxi4D5gsw1uYrDxn7uRLGLvfEMwzGZiew5hvhupOs5hwE3auUMPYLYL4AY21WecjYFUoY+6UnnmEwNieBNd8J153Las5N0L1GCWO/AuYLMNZmjYeM/VoJY1d64hkGY/MQWPO9cN15reZkgu71Shj7DTBfgLE26z1k7ColjP3WE88wGJuPwJofhOvObzUXIOj+UQljVwPzBRhr86OHjP1OCWPXeOIZBmMLEljzs3DdhazmwgTdm5Uwdi0wX4CxNps9ZOw6JYz93jPPoOdvvWd/F1Byzm0A5xyjLhch1KdfhdflolZzMYLu35QwYiPQl8BYGy3z9wNw/q4Fzl89Dxn7owLGXkFgzXbhjC1uNZcg6N6hhBE/AX0JjLXRMn+bgPN3O3D+OnjI2J8VMLYk4zlLdh258gswPvcDc2Wwh7myRclzll+B4zwC/LvKfyj5W9zpgPf6DRYLc5XzSbqEf7/QzP0NyMa0492a/eK/M0TFLiFNHmQiaEqI+pzoeUz6j/9NdGF0QdqaHX/fbUBgsnRvyw6PUSgxPNYM4PG6AjQoO/Z+E4D3e9beayLwfq5I/kqITwI2N03kH9vtWHdkJya/u7Ez1/bwh0T+231o8fBnoJMkYjr0qnm38CcTkeRA694jXHckidG69wrXHYENWvc+2U9SqofHabYDi/UO4L32BzR/odheBsgzk5YRsc7fASXzB+SD2Qecv4NK5g+YJwboGYOcv8jCOhE8d67WTwIuXCfbez1H+EK1g/SkETDG1EXwTjvGXUEsgndGLYJ3kRfBkwiLg+PCF0WXMnKsuv9UAlXAQiZ1gbUTuCg6oWR7bhcQqseBRf2kEv8B88QAPWNOKinqU4D+e97e6wVCUd+loKjvtmPcE0RR3x1V1PeQi/oUQnE7I7yoX8rIseo+qwSqu4BFfTewqJ9TUtT3AKF6BljUzyvxHzBPDNAz5rySov4i0H8v2Xu9TCjqexQU9b12jPuCKOp7o4r6PnJRf5FQ3NKXl13UL2XkWHVnKK8DqnuARX0vsKhnLK+jqO8DQjVtrsQ6rkxK/AfMEwP0jGHNH7qw70NuGQLu1SMlJaVHd+vlhGAOyu0nHZQ7ED8ohw3SAcJq8aDwg3JO90HCQazIOLeF5/Rg+P1Q+LMYi8NRhEVSVuGLw8et5icIurMpWdwcBi5ugLE22QIqzjGfgQDy6XclnQ9HPPEMg7FPEliTQ7ju0VbzUwTdOZUw9igwX4CxNjk9ZOwxJYz9wxPPMBg7hsCaPMJ1P201jyXozquEsceB+QKMtcnrIWP/VMLYE3HPiPHMSbBnGHXlGQJf8wuvK+Os5vEE3QWU1JVTQF8CY22Q88c8kcBookV7HLjBRzuRcNqO8a8gTiScjjqR8FeaEwmXSrJQbC/EDlfqDvVpYFEqrARSfwGTDNlgV0TJDjWywQ7oGVNECeQ1NIj9pQDyf9sxngkC8n9HQf5MAJD/Cwj5v4GQv0IJ5M8IbRgqrgTyyIYhoGdMcSWQ19AwdEYB5M/aMZ4LAvJnoyB/LgDInwFC/iwQ8qWUQP6c0AaS0kogj2wgAXrGlFYCeQ0NJOcUQP68HeOFICB/PgryFwKA/Dkg5M8DIV9OCeQvCG0oKO9hQwHQM6Z8QPt2odhe5gLyTHVS7PcKuqEg7ZhDMb7Sjjdd0sV/xxsKYr1n0v8mFH3fxCSg+Um6E5PgMfpXQ0FieG7Thz+L0bhxmLBxXEn4hrk7xH2EoLuyksVNBhxcDTDWpnJAxTnW+UPyKWMSr8AgNWfyxDMMxh4lsKaacN3uEPcfBN0hJYy9DJgvwFibkIeMzayEsZd74hkGY48TWHOlcN3uEPcJgu4aShibBZgvwFibGh4yNqsSxmaLe0aMZ7KDPcM4dHyQwNerhNcV1+hxiqC7tpK6kgT0JTDWpraSHWoNDQUXFOxQ57A+zJkUwA51jqR/7lC7Dy0e9ZnoHcILwB3qHMCidI0SSOUEQgrZUFDXw4YCoGdMXSWQ19BQAMwRGuRz2THmDgLyuaIgnzsAyOdMwkE+FxDy9ZVAPjcQ8siGggYeNhQAPWMaKIG8hoaC3Aogn8eOMW8QkM8TBfm8AUA+NxDyeYCQv04J5PMCIY9sKGjsYUMB0DOmsRLIa2goyKsA8sl2jPmCgHxyFOTzBQD5vEDIJwMhf4MSyOcDQh7ZUNDUw4YCoGdM04D27UKxvUw+YM7lV9hQkJ/UUFAg3lCADVIBQkNBQeENBU53wQAaCgqG57YQqaHAHQ7IkITfOL5R+Ia5O8SdiaC7hZLFTWHg4gYYa9MioOIc6/wh+VREyUGsop54hsHYywisuVm4bneI+3KC7lZKGFsMmC/AWJtWHjL2CiWMLe6JZxiMzUJgzS3CdbtD3NkIutsqYWwJYL4AY23aesjYkkoYWyruGTGeKS28ocCdeU0k8PU24XXFNXokEXS3V1JXygB9CYy1aa9kh1pDQwFwg4+2Q13WjrFcEDvUZaN2qMsFsEMN2OFK3aEuCyxKHZVAqpzQhoI7PGwoAHrG3KEE8hoaCsopgHx5O8YKQUC+fBTkKwQA+XJAyJcHQv5OJZCvILShoIuHDQVAz5guSiCvoaGgggLIV7RjrBQE5CtGQb5SAJCvAIR8RSDkuymBfCWhDQXdPWwoAHrGdFcCeQ0NBZUUQL6yHWOVICBfOQryVQKAfCUg5CsDIX+3EshXEdpQ0NPDhgKgZ0zPgPbtQrG9TBVgzlVV2FBQldRQUC3eUIANUjVCQ0FIeEOB0x0KoKEgFJ5bQ2oocIcDChM2jnsL3zB3h7iLEnT3UbK4qQ5c3ABjbfoEVJxj/pV0IJ+uVHIQq4YnnmEwthiBNf2F63aHuIsTdA9QwtiawHwBxtoM8JCxtZQw9ipPPMNgbAkCa+4Trtsd4i5F0D1ICWNrA/MFGGszyEPGXq2EsXXinhHjmWuENxTkS7r4ow7IORwivK64Ro8yBN1DldSVukBfAmNthgr3jWNDdYJvHhCu2z3DqUHQPUJJvlwLzBdgrM0IJTV1G/DPkddTsg6rDxxnVqBnsilgbE0Cax4Wrts9w7mKoHukEsY2AOYLMNZmpIeMbaiEsY2A48wB9ExOBYytTWDNY8J1u2c4dQi6Rylh7HXAfAHG2ozykLGNlTD2euA48wA9k1c4a6okXTzfhIzHk8J1u2eedQm6RythbBNgvgBjbUZ7yNgblDC2KXCc+YGeKaAk55qRfnsiFNsL+ZsOanKuuZKcu9Ezz6DnrwXppwBCsb2QLfZqcu4mJTnX0jPPoOfvZlJndii2F7LjWU3OtVKSc6098wx6/tqQGmVDsb2QDahqcu4WJTnX1hPPwH8fzXplanb8s6Onhet+xWp+laB7rJLv77cC8wUYazPWQ8a2U8LY2zzxDIOxrxFYM1647mlW8+sE3ROUMLY9MF+AsTYTPGTs7UoY28ETzzAYO53AmknCdb9hNc8g6J6shLEdgfkCjLWZ7CFj71DC2E6eeIbB2DcJrHleuO6ZVvMsgu4XlDC2MzBfgLE2L3jI2DuVMLaLJ55hMHY2gTUvC9f9ltU8h6B7qhLG3gXMF2CszVQPGdtVCWO7eeIZBmPnEljzmnDd86zmtwm6pylhbHdgvgBjbaZ5yNgeShib4olnGIydT2DNG8J1v2M1LyDonqGEsXcD8wUYazPDQ8b2VMLYezzxDIOx7xJYM0u47oVW83sE3bOVMLYXMF+AsTazPWRsbyWM7eOJZxiMXURgzVzhut+3mj8g6J6nhLF9gfkCjLWZ5yFj+ylhbH9PPMNg7IcE1rwjXPdiq/kjgu4FShg7AJgvwFibBR4y9l4ljB3oiWcYjP2YwJr3hOv+xGpeQtC9SAlj7wPmCzDWZpGHjB2khLH3e+IZBmM/JbDmQ+G6l1rNnxF0L1bC2MHAfAHG2iz2kLFDlDB2qCeeYTB2GYE1nwjX/bnVvJyge4kSxg4D5gsw1maJh4wdroSxD3jiGQZjvyCw5jPhuldYzV8SdC9TwtgRwHwBxtos85CxDyph7EOeeIbB2K8IrPlCuO6vreaVBN0rlDD2YWC+AGNtVnjI2JFKGPuIJ55hMPYbAmu+Fq57ldX8LUH3SiWMfRSYL8BYm5UeMvYxJYwd5YlnGIxdTWDNt8J1f2c1ryHoXq2EsY8D8wUYa7PaQ8Y+oYSxT3riGQZj1xJYs1a47nVW8/cE3euUMHY0MF+AsTbrPGTsU0oYO8YTzzAYu57Amg3CdW+wmjcSdG9UwtingfkCjLXZ6CFjxyph7DOeeQY9f+M8+9urknNuPDjnGHX5B0J9+kl4Xf7Rav6JoHuTEkZMAPoSGGujZf6eBc7flcD5q+EhYycqYOwmAmt+Ec7Yn63mzQTdW5QwYhLQl8BYGy3zNxk4fzcD56+Vh4x9TgFjfyGwZkqSjlx5Hhif3sBc6eNhrryg5DnLi8Bx7gb+He19Sv72ejrgvV6CxcLUdj5Jl/DvF5q5LwHZmHa8Lydd/HeGqNglpMmDTARNCVGfEz2PSf/xv4kujC5IbkLR952ahDM/S/fUJHiMQonhsWYAj9cVoCpJ2Ps1A96vub3XjcD7uSL5IiE+CdjcNJF/vGLH+moSMfndjZ25Xgl/SOS/3YcWD38GOkkipkOvmrcKfzIRSQ607m3CdUeSGK17u3DdEdigde+Q/SSlenic5hVgsX4VeK+dAc1fKLaXAfLMpGVErPO3S8n8AflgdgDnb7eS+QPmiQF6xiDnL7KwTgTPnav1LYAL15vsvVoSvlC9SnrSCBhj6iL4NTvGaUEsgl+LWgRPIy+CWxAWB4eFL4ouZeRYdf+uBKqAhUzqAus14KLoiJLtuWlAqB4GFvWjSvwHzBMD9Iw5qqSo3wz0Xyt7r9aEoj5NQVF/3Y5xehBF/fWooj6dXNRvJhS3E8KL+qWMHKvuk0qgOg1Y1F8HFvVTSor6dCBUTwCL+mkl/gPmiQF6xpxWUtTbAP13i71XW0JRn66gqL9hxzgjiKL+RlRRn0Eu6m0Ixe2c8KJ+KSPHqvu8EqhOBxb1N4BF/YKSoj4DCNVzwKKeUEGH/4B5YoCeMaz5Qxf2GcCcexNwrx4pKSk9uodMUAfl3iQdlJsZPyiHDdJMwmpxlvCDck73LMJBrMg4p4bndFb4fXb4sxiLw2sJi6SMYMiiddezmusTdGeqoGNx8xZwcQOMtckUUHGOdf6QfJqjpPNhrieeYTC2AYE1lwvX3dBqbkTQnUUJY+cB8wUYa5PFQ8a+rYSx8z3xDIOx1xFYk1247sZW8/UE3UlKGPsOMF+AsTZJHjJ2gRLGvhv3jBjPLBT+CwmurjQh8DWX8Lpyg9XclKA7t5K68h7Ql8BYG+T8MU8kMJpo0R4HbvDRTiQssmN8P4gTCYuiTiS8n+ZEwqWSLBTbC7HDlbpDvQhYlJKVQOp9ZOc7cIc6n5IdamSDHdAzJp8SyGtoEHtfAeQ/sGP8MAjIfxAF+Q8DgPz7QMh/AIR8QSWQ/1Bow1AhJZBHNgwBPWMKKYG8hoahDxVAfrEd40dBQH5xFOQ/CgDyHwIhvxgI+aJKIP+R0AaSYkogj2wgAXrGFFMCeQ0NJB8pgPzHdoyfBAH5j6Mg/0kAkP8ICPmPgZAvoQTynwhtKCjpYUMB0DOmZED7dqHYXuYTYM4tUdhQsITUUPBpvKEAG6RPCauHpcIbCpzupQE0FCwNv39GaihwhwPeImwclxG+Ye4Occ8l6C6rZHGzDLi4AcbalFVyqAbJp8+VHMRa7olnGIydR2BNBeG63SHu+QTdFZUw9gtgvgBjbSp6yNgVShj7pSeeYTD2HQJrqgjX7Q5xv0vQXVUJY78C5gsw1qaqh4z9WgljV8Y9I8Yz3whvKJiRdPFHHZBzaITXFdfo8R5Bd3UldWUV0JfAWJvqSnaoNTQUADf4aDvU39oxrg5ih/rbqB3q1QHsUAN2uFJ3qL8FFqWaSiC1WmhDQS0PGwqAnjG1lEBeQ0PBagWQ/86OcU0QkP8uCvJrAoD8aiDkvwNC/molkF8jtKGgjocNBUDPmDpKIK+hoWCNAsivtWNcFwTk10ZBfl0AkF8DhPxaIOSvVQL5dUIbCup52FAA9IyppwTyGhoK1imA/Pd2jOuDgPz3UZBfHwDk1wEh/z0Q8g2VQH690IaCRh42FAA9YxoFtG8Xiu1l1gNzboPChoINpIaCjfGGAmyQNhJWDz8Ibyhwun8IoKHgh/D7j6SGAnc4YBlh4/h64Rvm7hD3coLuJkoWNz8BFzfAWJsmSg7VIPm0SclBrJ898QyDsV8QWNNMuG53iPtLgu7mShi7GZgvwFib5h4y9hcljN3iiWcYjP2KwJqbhOt2h7hXEnS3VMLYX5FnWoD50tJDxv6mhLFb454R45ltwhsKPkm6+KMOyDlsLbyuuEaPVQTdbZTUle1AXwJjbdoo2aHW0FAA3OCj7VDvsGPcGcQO9Y6oHeqdAexQA3a4UneodwCL0q1KILVTaENBOw8bCoCeMe2UQF5DQ8FOBZDfZce4OwjI74qC/O4AIL8TCPldQMjfrgTyu4U2FHTwsKEA6BnTQQnkNTQU7FYA+T12jHuDgPyeKMjvDQDyu4GQ3wOEfCclkN8rtKGgs4cNBUDPmM5KIK+hoWCvAsjvs2PcHwTk90VBfn8AkN8LhPw+IOTvUgL5/UIbCrp62FAA9IzpGtC+XSi2l9kPzLkDChsKDpAaCg7GGwqwQTpIWD0cEt5Q4HQfCqCh4FD4/TCpocAdDviJsHHcQ/iGuTvE/TNBd4qSxc3vwMUNMNYmRcmhGiSfjig5iHXUE88wGLuZwJp7hOt2h7i3EHT3UsLYY8B8Acba9PKQsX8oYexxTzzDYOyvBNb0Fa7bHeLeStDdTwlj/wTmCzDWpp+HjD2hhLEn454R45lTwhsK1idd/FEH5BzeK7yuuEaP7QTdA5XUldNAXwJjbQYK941jw+8E39wvXLd7hnOUoHuwknz5C5gvwFibwUpq6lRgTf1byTrsDHCcGYGeyaSAsccIrBkmXLd7hnOcoHu4EsaeBeYLMNZmuIeMPaeEseeB47wc6JksChj7J4E1DwrX7Z7hnCTofkgJYy8A8wUYa/OQh4xNyKGDsemA48wO9EyScNbsT7p4vgkZj0eE63bPPE8TdD+qhLGJwHwBxto86iFj0ythbAbgOHMBPZNbSc5lBM7fNuDBfuBvOqjJuUxKcu4yzzyDnr/MwPk7DJy/3z3MucuV5FwWzzyDnr+swPk7AZy/kx7mXDYlOZfdM8+g5y8JOH/ngPN33sOcy6Ek53J64hn4uazsCQm3Ep4dPS78mVk7q/k2gu4nlHx/zwXMF2CszRMePjPLrYSxeTzxDIOx7QmseUq47tut5g4E3WOUMDYvMF+AsTZjPGRsshLG5vPEMwzGdiSw5hnhuu+wmjsRdI9Twtj8wHwBxtqM85CxBZQwtqAnnmEwtjOBNc8K132n1dyFoHuiEsYWAuYLMNZmooeMLayEsUU88QyDsXcRWPOccN1dreZuBN1TlDC2KDBfgLE2UzxkbDEljL3CE88wGNudwJoXhevuYTWnEHS/pISxxYH5Aoy1eclDxpZQwtiSnniGwdi7Cax5RbjunlbzPQTdryphbClgvgBjbV71kLGllTC2jCeeYTC2F4E1rwvX3dtq7kPQPV0JY8sC8wUYazPdQ8aWU8LY8p54hsHYvgTWvClcdz+ruT9B90wljK0AzBdgrM1MDxlbUQljK3niGQZjBxBY85Zw3fdazQMJuucoYWxlYL4AY23meMjYKkoYW9UTzzAYex+BNW8L1z3Iar6foHu+EsZWA+YLMNZmvoeMDSlhrPHEMwzGDiaw5l3huodYzUMJuhcqYWx1YL4AY20WesjYK5UwtoYnnmEwdhiBNe8L1z3can6AoPsDJYytCcwXYKzNBx4ytpYSxl7liWcYjB1BYM1HwnU/aDU/RND9sRLG1gbmCzDW5mMPGXu1EsbW8cQzDMY+TGDNp8J1j7SaHyHoXqqEsdcA8wUYa7PUQ8bWVcLYaz3xDIOxjxJY87lw3Y9ZzaMIupcrYWw9YL4AY22We8jY+koY28ATzzAY+ziBNV8K1/2E1fwkQfdXShjbEJgvwFibrzxkbCMljL3OE88wGDuawJpvhOt+ymoeQ9C9SgljGwPzBRhrs8pDxl6vhLFNPPEMg7FPE1jznXDdY63mZwi61yhh7A3AfAHG2qzxkLFNlTC2mSeeYTB2HIE13wvXPd5qnkDQvV4JY5sD8wUYa7PeQ8beqISxLTzzDHr+bvLs71tLzrmW4Jxj1OVnCfXpB+F1eaLVPImg+0cljLgZ6EtgrI2W+WsFnL8qwPmr6iFjWytg7GQCa34WztjnrOYpBN2blTCiDdCXwFgbLfN3C3D+mgHnr7mHjG2rgLHPE1hzaw4dudIOGJ8ewFxJ8TBXblPynKU9cJxbgX83fUd5HZ5JB7zX7bBYmKudT9Il/PsF/xu/QDamHW+HHBf/nSEqdglp8iATQVNC1OdEz2PSf/xvogujC5KbUPR9O+bAmZ+lu2MOeIxCieGxZgCP1xWg/UnY+2UEAj6TvddlwPu5ItmeEJ8EbG6ayD/usGPtlIOY/O7Gzlx3hD8k8t/uQ4uHPwOdJBHToVfNvwp/MhFJDrTu34TrjiQxWvdW4bojsEHr3ib7SUr18DjNHcBi3Ql4r+0BzV8otpcB8sykZUSs87dDyfwB+WC2Aedvp5L5A+aJAXrGIOcvsrBOBM+dq/WZgQvXy+29shC+UHUiPWkEjDF1EdzZjvHOIBbBnaMWwXeSF8GZCYuDg8IXRZcycqy6DymBKmAhk7rA6gxcFB1Wsj13JxCqB4FF/Xcl/gPmiQF6xvyupKhnBfovm71XdkJRv1NBUe9ix3hXEEW9S1RRv4tc1LMSittx4UX9UkaOVfefSqB6J7CodwEW9RNKivpdQKgeBxb1k0r8B8wTA/SMOamkqCcB/ZfD3isnoajfpaCod7Vj7BZEUe8aVdS7kYt6EqG4nRFe1C9l5Fh1n1UC1buARb0rsKifU1LUuwGhegZY1M8r8R8wTwzQM4Y1f+jC3g2Yc90B9+qRkpLSo3vIBHVQrjvpoFyP+EE5bJB6EFaLKcIPyjndKYSDWJFxdgzPaUr4/e7wZzEWh38RzjKlryh7cfi31XyGoDtDRR2Lm57AxQ0w1oY1f4ng+UPy6R4lnQ+9PPEMg7FnCay5TLjuc1bzeYLuzEoY2xuYL8BYm8weMraPEsb29cQzDMZeILAmq3DdCe77AeEhZzYljO0HzBdgrE02DxnbXwljB8Q9I8Yz9wr/hQRXVxIJfM0hvK6kt5ozEHTnVFJXBiJ31IGMQM4f80QCo4kW7XHgBh/tRMJ9doyDgjiRcF/UiYRBaU4kXCrJQrG9EDtcqTvU9wGLUh4lkBoETDJkg13egOYvFNsL2mAH9IzJqwTyGhrEBimA/P12jIODgPz9UZAfHADkBwEhfz8Q8vmVQH6w0IahAkogj2wYAnrGFFACeQ0NQ4MVQH6IHePQICA/JAryQwOA/GAg5IcAIV9YCeSHCm0gKaIE8sgGEqBnTBElkNfQQDJUAeSH2TEODwLyw6IgPzwAyA8FQn4YEPJXKIH8cKENBcWVQB7ZUAD0jCke0L5dKLaXGQ7MuQcUNhQ8QGooGBFvKMAGaQRh9fCg8IYCp/vBABoKHgy/P0RqKHCHA3oSNo5LCd8wd4e4exF0l1ayuHkYuLgBxtqUVnKoBsmnkUoOYj3iiWcYjO1NYE054brdIe6+BN3llTD2UWC+AGNtynvI2MeUMHaUJ55hMLYfgTWVhOt2h7gHEHRXVsLYx4H5Aoy1qewhY59Qwtgn454R45nRwhsKuuW4+KMOyDmsJryuuEaPgQTdISV15SmgL4GxNiElO9QaGgqAG3y0HeoxdoxPB7FDPSZqh/rpAHaoATtcqTvUY4BF6UolkHpaaENBDQ8bCoCeMTWUQF5DQ8HTCiA/1o7xmSAgPzYK8s8EAPmngZAfC4T8VUog/4zQhoLaHjYUAD1jaiuBvIaGgmcUQH6cHeP4ICA/Lgry4wOA/DNAyI8DQv4aJZAfL7ShoK6HDQVAz5i6SiCvoaFgvALIT7BjfDYIyE+IgvyzAUB+PBDyE4CQr68E8s8KbSho4GFDAdAzpkFA+3ah2F7mWWDOTVTYUDCR1FAwKd5QgA3SJMLqYbLwhgKne3IADQWTw+/PkRoK3OGAhwkbx9cJ3zB3h7gfIehurGRxMwW4uAHG2jRWcqgGyafnlRzEesETzzAY+yiBNTcI1+0OcY8i6G6qhLEvAvMFGGvT1EPGvqSEsS974hkGYx8nsOZG4brdIe4nCbpbKGHsVGC+AGNtWnjI2FeUMPbVuGfEeOY14Q0Fw3Nc/FEH5BzeLLyuuEaPpwi6WympK9OAvgTG2rRSskOtoaEAuMFH26F+3Y5xehA71K9H7VBPD2CHGrDDlbpD/TqwKN2iBFLThTYUtPWwoQDoGdNWCeQ1NBRMVwD5N+wYZwQB+TeiID8jAMhPB0L+DSDkb1MC+RlCGwrae9hQAPSMaa8E8hoaCmYogPybdowzg4D8m1GQnxkA5GcAIf8mEPIdlUB+ptCGgjs8bCgAesbcoQTyGhoKZiqA/Cw7xtlBQH5WFORnBwD5mUDIzwJC/k4lkJ8ttKGgi4cNBUDPmC4B7duFYnuZ2cCce0thQ8FbpIaCOfGGAmyQ5hBWD3OFNxQ43XMDaCiYG36fR2oocIcDphA2jrsJ3zB3h7hfIOjurmRx8zZwcQOMtemu5FANkk/zlRzEescTzzAY+yKBNXcL1+0Ocb9M0N1TCWMXAPMFGGvT00PGvquEsQs98QyDsVMJrOktXLc7xP0qQXcfJYx9D5gvwFibPh4ydpESxr4f94wYz3wgvKHg2RwXf9QBOYf9hdcV1+gxjaB7gJK68iHQl8BYmwHCfePY8DbBN/cJ1+2e4bxD0D1ISb4sBuYLMNZmkJKa2hFYUz9Ssg77GDjO9EDPZFDA2AUE1gwRrts9w1lI0D1UCWM/AeYLMNZmqIeMXaKEsZ8Cx3kZ0DOZFTD2PQJrHhCu2z3DeZ+ge4QSxi4F5gsw1maEh4z9TAljlwHHmRXomWzCWTM7x8XzTch4PCxct3vm+SFB90gljP0cmC/AWJuRHjJ2uRLGfoHseAF6JqeSnFtB+u2JUGwv5G86qMm5L5Xk3FeeeQY9f1+TfgogFNsL2WKvJudWKsm5bzzzDHr+VpE6s0OxvZAdz2py7lslObfaM8+g5+87UqNsKLYXsgFVTc6tUZJzaz3xDPrZkfv1h1yEZ0ePCX9mlttqzkPQPUrJ9/d1wHwBxtqM8vCZ2fdKGLveE88wGJuXwJonhetOtprzEXSPVsLYDcB8AcbajPaQsRuVMPYHTzzDYGx+AmueFq67gNVckKB7rBLG/gjMF2CszVgPGfuTEsZu8sQzDMYWIrBmvHDdha3mIgTdE5Qw9mdgvgBjbSZ4yNjNShj7iyeeYTC2KIE1k4TrLmY1X0HQPVkJY7cA8wUYazPZQ8b+qoSxv3niGQZjixNY87xw3SWs5pIE3S8oYexWYL4AY21e8JCx25QwdrsnnmEwthSBNS8L113aai5D0D1VCWN3APMFGGsz1UPG7lTC2F2eeIbB2LIE1rwmXHc5q7k8Qfc0JYzdDcwXYKzNNA8Zu0cJY/d64hkGYysQWPOGcN0VreZKBN0zlDB2HzBfgLE2Mzxk7H4ljD3giWcYjK1MYM0s4bqrWM1VCbpnK2HsQWC+AGNtZnvI2ENKGHvYE88wGFuNwJq5wnWHrGZD0D1PCWN/B+YLMNZmnoeMPaKEsUc98QyDsdUJrHlHuO4rreYaBN0LlDD2GDBfgLE2Czxk7B9KGHvcE88wGFuTwJr3hOuuZTVfRdC9SAlj/wTmCzDWZpGHjD2hhLEnPfEMg7G1Caz5ULjuq63mOgTdi5Uw9hQwX4CxNos9ZOxpJYz9yxPPMBh7DYE1nwjXXddqvpage4kSxv4NzBdgrM0SDxl7Rgljz3riGQZj6xFY85lw3fWdXwi6lylh7DlgvgBjbZZ5yNjzShh7wRPPMBjbkMCaL4TrbmQ1X0fQvUIJYxNy4uYSGGuzwkPGpsupg7GJnniGwdjGBNZ8LVz39VZzE4LulUoYmx6YL8BYm5UeMjaDEsZm9MQzDMbeQGDNt8J1N7WamxF0r1bC2EzAfAHG2qz2kLGXKWFsZk88w2BscwJr1grXfaPV3IKge50Sxl4OzBdgrM06DxmbRQljs3riGQZjbyKwZoNw3S2t5psJujcqYWw2YL4AY202esjY7EoYm+SZZ9DzlwM4fzmA85fTw5zLCc45Rl1uRahPPwmvy62t5jYE3ZuUMCIX0JfAWBst85cbOH+VgPNX2UPG5lHA2FsIrPlFOGPbWs23EnRvUcKIvEBfAmNttMxfMnD+bgDOX1MPGZtPAWPbEViTP6eOXCkAjE83YK509zBXCip5zlIIOM5fK+Duta2CDs+kA96rMCwW5i7nk3QJ/37B//4kkI1px1sk58V/Z4iKXUKaPMhE0JQQ9TnR85j0H/+b6MLoguQmFH3fojlx5mfpLpoTHqNQYnisGcDjdQVodg7s/VYA7/elvddXwPu5IlmIEJ8EbG6ayD+K2bFekZOY/O7GzlzFwh8S+W/3ocXDn4FOkojp0KvmrcKfTESSA617m3DdkSRG694uXHcENmjdO2Q/SakeHqcpBizWVwDvtTOg+QvF9jJAnpm0jIj5L1QpmT8gH8wO4PztVjJ/wDwxQM8Y5PxFFtaJ4Llztf5r4MJ1pb3XNznwNeoK0pNGwBhTF8HF7RhLBLEILh61CC5BXgR/TVgUHRa+KLqUkWP+aXclUAUsZFIXWMWBi6IjSrbnSgAfHx8GFvWjSvwHzBMD9Iw5qqSorwIW9W/tvVYTinoJBUW9pB1jqSCKesmool6KXNRXEYrbCeFF/VJGjvk3i5VAtQSwqJcEFvVTSop6KWBRPwEs6qeV+A+YJwboGXNaSVH/DljU19h7rSUU9VIKinppO8YyQRT10lFFvQy5qH9HKG7nhBf1Sxk55h9BVALVUsCiXhpY1C8oKeplgEX9HLCoJ1TS4T9gnhigZwxr/tCFvQww58oC7tUjJSWlR/eQCeqgXFnSQbly8YNy2CCVIxyUKy/8oJzTXZ5wECsyzqLhOS0ffq8Q/izG4nAxYZGUEQxZtO6PrOaPCbozVdKxuKkIXNwAY20yBVScY50/JJ8qKel8qOyJZxiM/YTAmsuF615iNX9K0J1FCWOrAPMFGGuTxUPGVlXC2GqeeIbB2KUE1mQXrvszq3kZQXeSEsaGgPkCjLVJ8pCxRgljq8c9I8YzVwr/hQRXVz4n8DWX8Lqy3Gr+gqA7t5K6UgPoS2CsDXL+mCcSGE20aI8DN/hoJxJq2jHWCuJEQs2oEwm10pxIuFSShWJ7IXa4UneoawKLUrISSNUCQgrZYJdPyQ41ssEO6BmTTwnkNTSI1VIA+avsGGsHAfmroiBfOwDI1wJC/iog5AsqgXxtoQ1DhZRAHtkwBPSMKaQE8hoahmorgPzVdox1goD81VGQrxMA5GsDIX81EPJFlUC+jtAGkmJKII9sIAF6xhRTAnkNDSR1FED+GjvGukFA/pooyNcNAPJ1gJC/Bgj5EkogX1doQ0FJDxsKgJ4xJQPatwvF9jJ1gTl3rcKGgmtJDQX14g0F2CDVIzQU1BfeUOB01w+goaB++L0BqaHAHQ6omBO/cVxG+Ia5O8RdmaC7rJLFTUPg4gYYa1NWyaEaJJ8aKTmIdZ0nnmEwtgqBNRWE63aHuKsRdFdUwtjGwHwBxtpU9JCx1ythbBNPPMNgbIjAmirCdbtD3NUJuqsqYewNwHwBxtpU9ZCxTZUwtlncM2I801x4Q4E781qewFcjvK64Ro8aBN3VldSVG4G+BMbaVFeyQ62hoQC4wUfboW5hx3hTEDvULaJ2qG8KYIcasMOVukPdAliUaiqB1E1CGwpqedhQAPSMqaUE8hoaCm5SAPmWdow3BwH5llGQvzkAyN8EhHxLIOSvVgL5m4U2FNTxsKEA6BlTRwnkNTQU3KwA8q3sGFsHAflWUZBvHQDkbwZCvhXy3JsSyLcW2lBQz8OGAqBnTD0lkNfQUNBaAeTb2DHeEgTk20RB/pYAIN8aCPk2QMg3VAL5W4Q2FDTysKEA6BnTKKB9u1BsL3MLMOfaKmwoaEtqKLg1zTnweENBjPd0QbqV0FDQTnhDgdPdLoCGgnbh99tIDQXucEBDwsbx9cI3zN0h7usIupsoWdy0By5ugLE2TZQcqkHy6XYlB7E6eOIZBmMbE1jTTLhud4i7CUF3cyWM7QjMF2CsTXMPGXuHEsZ28sQzDMbeQGDNTcJ1u0PczQi6WyphbGdgvgBjbVp6yNg7lTC2S9wzYjxzl/CGAnfmtT6Br62F1xXX6HEjQXcbJXWlK9CXwFibNkp2qDU0FAA3+Gg71N3sGLsHsUPdLWqHunsAO9SAHa7UHepuwKJ0qxJIdRfaUNDOw4YCoGdMOyWQ19BQ0F0B5HvYMaYEAfkeUZBPCQDy3YGQ74HcdVEC+RShDQUdPGwoAHrGdFACeQ0NBSkKIH+3HWPPICB/dxTkewYA+RQg5O8GQr6TEsj3FNpQ0NnDhgKgZ0xnJZDX0FDQUwHk77Fj7BUE5O+JgnyvACDfEwj5e5B7CEog30toQ0FXDxsKgJ4xXQPatwvF9jK9gDnXW2FDQW9SQ0GfNOfA4w0FMd7TBakPoaGgr/CGAqe7bwANBX3D7/1IDQXucEB7wsZxD+Eb5u4QdweC7hQli5v+wMUNMNYmRcmhGiSfBig5iHWvJ55hMLYjgTX3CNftDnF3IujupYSxA4H5Aoy16eUhY+9TwthBnniGwdjOBNb0Fa7bHeLuQtDdTwlj7wfmCzDWpp+HjB2shLFD4p4R45mhwhsK3JnXdgS+3iu8rrhGj64E3QOV1JVhQF8CY20GCveNY0N/gm/uF67bPcO5l6B7sJJ8GQ7MF2CszWAlNbUosKY+oGQdNgI4zoxAz2RSwNiBBNYME67bPcMZRNA9XAljHwTmCzDWZriHjH1ICWMfBo7zcqBnsihg7P0E1jwoXLd7hjOEoPshJYwdCcwXYKzNQx4y9hEljH0UOM7sQM8kCWdNr5wXzzch4/GIcN3umecwgu5HlTD2MWC+AGNtHvWQsaOUMPZx4DhzAT2TW0nOPQGcv23Ag/3A33RQk3NPKsm50Z55Bj1/TwHn7zBw/n73MOfGKMm5pz3zDHr+xgLn7wRw/k56mHPPKMm5cZ55Bj1/44Hzdw44f+c9zLkJSnLuWU88g3525H79YV0O/LOjx4U/M/veal5P0P2Eku/vE4H5Aoy1ecLDZ2aTlDB2sieeYTB2A4E1TwnXvdFq/oGge4wSxj4HzBdgrM0YDxk7RQljn/fEMwzG/khgzTPCdf9kNW8i6B6nhLEvAPMFGGszzkPGvqiEsS954hkGY38msOZZ4bo3W82/EHRPVMLYl4H5Aoy1meghY6cqYewrnniGwdgtBNY8J1z3r1bzbwTdU5Qw9lVgvgBjbaZ4yNjXlDB2mieeYTB2K4E1LwrXvc1q3k7Q/ZISxr4OzBdgrM1LHjJ2uhLGvuGJZxiM3UFgzSvCde+0mncRdL+qhLEzgPkCjLV51UPGvqmEsTM98QyDsbsJrHlduO49VvNegu7pShg7C5gvwFib6R4ydrYSxr7liWcYjN1HYM2bwnXvt5oPEHTPVMLYOcB8AcbazPSQsXOVMHaeJ55hMPYggTVvCdd9yGo+TNA9Rwlj3wbmCzDWZo6HjJ2vhLHveOIZBmN/J7DmbeG6j1jNRwm65yth7AJgvgBjbeZ7yNh3lTB2oSeeYTD2GIE17wrX/YfVfJyge6ESxr4HzBdgrM1CDxm7SAlj3/fEMwzG/klgzfvCdZ+wmk8SdH+ghLEfAPMFGGvzgYeM/VAJYxd74hkGY08RWPORcN2nrea/CLo/VsLYj4D5Aoy1+dhDxn6shLGfeOIZBmP/JrDmU+G6z1jNZwm6lyph7BJgvgBjbZZ6yNhPlTB2qSeeYTD2HIE1nwvXfd5qvkDQvVwJYz8D5gsw1ma5h4xdpoSxn3viGQZjE3LiWfOlcN3prOZEgu6vlDB2OTBfgLE2X3nI2C+UMHaFJ55hMDY9gTXfCNedwWrOSNC9SgljvwTmCzDWZpWHjP1KCWO/9sQzDMZmIrDmO+G6L7OaMxN0r1HC2JXAfAHG2qzxkLHfKGHsKk88w2Ds5QTWfC9cdxarOStB93oljP0WmC/AWJv1HjJ2tRLGfueJZxiMzUZgzQ/CdWe3mpMIun9Uwtg1wHwBxtr86CFj1yph7DpPPMNgbA4Ca34Wrjun1ZyLoHuzEsZ+D8wXYKzNZg8Zu14JYzd45hn0/G0Ezl8u4Pzl9jDnfgDnHKMu5ybUp1+F1+U8VnNegu7flDDiR6AvgbE2WubvJ+D8VQHOX1UPGbtJAWOTCazZLpyx+azm/ATdO5Qw4megL4GxNlrmbzNw/poB56+5h4z9RQFjCxBYsyWnjlz5FRifHsBcSfEwV35T8pxlK3CcWysC61NFHZ5JB7zXNlgsTFfnk3QJ/37B/zYakI1px7s958V/Z4iKXUKaPMhE0JQQ9TnR85j0H/+b6MLogrQ9J/6+O4DAZOnekRMeo1BieKwZwON1BahXTuz9ngDe70l7r9HA+7kiuZUQnwRsbprIP3base7KSUx+d2Nnrp3hD4n8t/vQ4uHPQCdJxHToVfNu4U8mIsmB1r1HuO5IEqN17xWuOwIbtO59sp+kVA+P0+wEFutdwHvtD2j+QrG9DJBnJi0jYp2/A0rmD8gHsw84fweVzB8wTwzQMwY5f5GFdSJ47lytfwq4cB1j7/U04QvVLtKTRsAYUxfBu+0Y9wSxCN4dtQjeQ14EP0VYHBwXvii6lJFj1f2nEqgCFjKpC6zdwEXRCSXbc3uAUD0OLOonlfgPmCcG6BlzUklRHwv03zP2XuMIRX2PgqK+145xXxBFfW9UUd9HLupjCcXtjPCifikjx6r7rBKo7gEW9b3Aon5OSVHfB4TqGWBRP6/Ef8A8MUDPmPNKivp4oP8m2Hs9Syjq+xQU9f12jAeCKOr7o4r6AXJRH08obukryy7qlzJyrLozVNYB1X3Aor4fWNQzVtZR1A8AoZo2V2IdVyYl/gPmiQF6xrDmD13YDwBz7iDgXj1SUlJ6dLdeTgjmoNxB0kG5Q/GDctggHSKsFg8LPyjndB8mHMSKjHNHeE4Ph99/D38WY3E4nLBIyip8cfiA1TyCoDubksXNEeDiBhhrky2g4hzr/CH5dDQnr8AgNR/zxDMMxj5IYE0O4bofspofJujOqYSxfwDzBRhrk9NDxh5Xwtg/PfEMg7EjCazJI1z3I1bzowTdeZUw9gQwX4CxNnk9ZOxJJYw9FfeMGM+cBnuGUVceI/A1v/C6Mspqfpygu4CSuvIX0JfAWBvk/DFPJDCaaNEeB27w/cOLgDGmnkj4247xTBAnEv6OOpFwJs2JhEslWSi2F2KHK3WH+m9gUSqsBFJngEmGbLAromSHGtlgB/SMKaIE8hoaxM4ogPxZO8ZzQUD+bBTkzwUA+TNAyJ8FQv4KJZA/B0wyZMNQcSWQRzYMAT1jiiuBvIaGoXMKIH/ejvFCEJA/HwX5CwFA/hwQ8ueBkC+lBPIXhDaQlFYCeWQDCdAzprQSyGtoILmgAPIJuazuXAFAPiHXPyHvPrR41Geik+wCEPJu/DHeKxVS5ZRAPl0uXCyQDQXlPWwoAHrGlA9o3y4U28ukA+ZcIuBeQTcUJOLy7x8NBelzXfx3vKEgxnu6IKXPhb9vBqD5Wboz5ILH6F8NBRnCc5sx/FmMxo0jhI3jSsI3zN0h7mME3ZWVLG4yARc3wFibygEV55i7ioF8uiwXr8AgNWf2xDMMxv5BYE014brdIe4/CbpDShh7OTBfgLE2IQ8Zm0UJY7N64hkGY08QWHOlcN3uEPcpgu4aShibDZgvwFibGh4yNrsSxibFPSPGMznAnmEcOj5M4OtVwuuKa/T4i6C7tpK6khPoS2CsTW0lO9QaGgqAG3y0Hepcdoy5g9ihzhW1Q507gB1qwA5X6g51LmBRukYJpHIDIYVsKKjrYUMB0DOmrhLIa2goyK0A8nnsGPMGAfk8UZDPGwDkcwMhnwcI+fpKIJ8XCHlkQ0EDDxsKgJ4xDZRAXkNDQV4FkE+2Y8wXBOSToyCfLwDI5wVCPhkI+euUQD4fEPLIhoLGHjYUAD1jGiuBvIaGgnwKIJ/fjrFAEJDPHwX5AgFAPh8Q8vmBkL9BCeQLCG0oaOphQwHQM6ZpQPt2odhepgAw5woqbCgoSGooKBRvKMAGqRChoaCw8IYCp7twAA0FhcNzW4TUUOAOB2TKhd84vlH4hrk7xJ2ZoLuFksVNUeDiBhhr0yKg4hzzj5gB+VRMyUGsKzzxDIOxlxNYc7Nw3e4Qd1aC7lZKGFscmC/AWJtWHjK2hBLGlvTEMwzGZiOw5hbhut0h7iSC7rZKGFsKmC/AWJu2HjK2tBLGlol7RoxnygpvKEiX6+KPOiDn8DbhdcU1euQk6G6vpK6UA/oSGGvTXskOtYaGAuAGH22HurwdY4UgdqjLR+1QVwhghxqww5W6Q10eWJQ6KoFUBaENBXd42FAA9Iy5QwnkNTQUVFAA+Yp2jJWCgHzFKMhXCgDyFYCQrwiE/J1KIF9JaENBFw8bCoCeMV2UQF5DQ0ElBZCvbMdYJQjIV46CfJUAIF8JCPnKQMh3UwL5KkIbCrp72FAA9IzprgTyGhoKqiiAfFU7xmpBQL5qFOSrBQD5KkDIVwVC/m4lkK8mtKGgp4cNBUDPmJ4B7duFYnuZasCcCylsKAiRGgpMvKEAGyRDaCioLryhwOmuHkBDQfXw3F5JaihwhwOKEjaOewvfMHeHuK8g6O6jZHFTA7i4Acba9AmoOMc6f0g+1VRyEKuWJ55hMLY4gTX9het2h7hLEnQPUMLYq4D5Aoy1GeAhY2srYezVnniGwdhSBNbcJ1y3O8RdhqB7kBLG1gHmCzDWZpCHjL1GCWPrxj0jxjPXCm8oKJDr4o86IOdwiPC64ho9yhF0D1VSV+oBfQmMtRkq3DeODTUIvnlAuG73DKcWQfcIJflSH5gvwFibEUpq6o6cuHs1ULIOawgcZ1agZ7IpYOxVBNY8LFy3e4ZzNUH3SCWMbQTMF2CszUgPGXudEsY2Bo4zB9AzORUwtg6BNY8J1+2e4dQl6B6lhLHXA/MFGGszykPGNlHC2BuA48wD9Exe4aypluvi+SZkPJ4Urts986xH0D1aCWObAvMFGGsz2kPGNlPC2ObAceYHeqaAkpy7kfTbE6HYXsjfdFCTcy2U5NxNnnkGPX8tST8FEIrthWyxV5NzNyvJuVaeeQY9f61Jndmh2F7Ijmc1OddGSc7d4pln0PPXltQoG4rthWxAVZNztyrJuXaeeAb97Mj9+sPEnPhnR08L1z3Jap5M0D1Wyff324D5Aoy1GeshY9srYeztnniGwdjnCKwZL1z3FKv5eYLuCUoY2wGYL8BYmwkeMrajEsbe4YlnGIx9gcCaScJ1v2g1v0TQPVkJYzsB8wUYazPZQ8Z2VsLYOz3xDIOxLxNY87xw3VOt5lcIul9QwtguwHwBxtq84CFj71LC2K6eeIbB2FcJrHlZuO7XrOZpBN1TlTC2GzBfgLE2Uz1kbHcljO3hiWcYjH2dwJrXhOuebjW/QdA9TQljU4D5Aoy1meYhY+9WwtienniGwdgZBNa8IVz3m1bzTILuGUoYew8wX4CxNjM8ZGwvJYzt7YlnGIydRWDNLOG6Z1vNbxF0z1bC2D7AfAHG2sz2kLF9lTC2nyeeYTB2DoE1c4Xrnms1zyPonqeEsf2B+QKMtZnnIWMHKGHsvZ54hsHYtwmseUe47vlW8zsE3QuUMHYgMF+AsTYLPGTsfUoYO8gTzzAYu4DAmveE637Xal5I0L1ICWPvB+YLMNZmkYeMHayEsUM88QyDse8RWPOhcN2LrOb3CboXK2HsUGC+AGNtFnvI2GFKGDvcE88wGPsBgTWfCNf9odW8mKB7iRLGPgDMF2CszRIPGTtCCWMf9MQzDMZ+RGDNZ8J1f2w1f0LQvUwJYx8C5gsw1maZh4x9WAljR3riGQZjlxBY84Vw3Z9azUsJulcoYewjwHwBxtqs8JCxjyph7GOeeIbB2M8IrPlauO5lVvPnBN0rlTB2FDBfgLE2Kz1k7ONKGPuEJ55hMHY5gTXfCtf9hdW8gqB7tRLGPgnMF2CszWoPGTtaCWOf8sQzDMZ+SWDNWuG6v7KavyboXqeEsWOA+QKMtVnnIWOfVsLYsZ54hsHYlQTWbBCu+xureRVB90YljH0GmC/AWJuNHjJ2nBLGjvfEMwzGfktgzU/Cda+2mr8j6N6khLETgPkCjLXZ5CFjn1XC2ImeeIbB2DUE1vwiXPdaq3kdQfcWJYydBMwXYKzNFg8ZO1kJY5/zxDMMxn5PYM1W4brXW80bCLq3KWHsFGC+AGNttnnI2OeVMPYFTzzDYOxGAmt2Ctf9g9X8I0H3LiWMfRGYL8BYm10eMvYlJYx92TPPoOdvKnD+8gPnr4CHOfcKOOcYdfknQn3aK7wub7Kafybo3qeEEa8CfQmMtdEyf68B5+9K4PzV8JCx0xQwdjOBNQeFM/YXq3kLQfchJYx4HehLYKyNlvmbDpy/m4Hz18pDxr6hgLG/ElgzI5eOXHkTGJ/ewFzp42GuzFTynGUWcJy7KwG/A1TS4Zl0wHvNhsXCdHM+SZfw7xf87/YA2Zh2vG/luvjvDFGxS0iTB5kImhKiPid6HpP+438TXRhdkNyEou87JxfO/Czdc3LBYxRKDI81A3i8rgBVy4W9343A+7Ww97oJeD9XJGcR4pOAzU0T+cdcO9Z5uYjJ727szDU3/CGR/3YfWjz8GegkiZgOvWo+IvzJRCQ50LqPCtcdSWK07mPCdUdgg9b9h+wnKdXD4zRzgcV6HvBexwOav1BsLwPkmUnLiFjn708l8wfkg/kDOH8nlMwfME8M0DMGOX+RhXUieO5crW+JfJJs79WK8IVqHulJI2CMqYvgt+0Y5wexCH47ahE8n7wIbklYHJwTvii6lJFj1X1eCVQBC5nUBdbbwEXRBSXbc/OBUD0HLOoJVXT4D5gnBugZg5w/ZlFvDfRfG3uvWwhFfb6Cov6OHeOCIIr6O1FFfQG5qLcmFLeMVWQX9UsZOVbdmZRAdT6wqL8DLOqXVdFR1BcAoZo2V2IdV2Yl/gPmiQF6xmRWUtTbAv13q71XO0JRX6CgqL9rx7gwiKL+blRRX0gu6m0JxS278KJ+KSPHqjtJCVQXAIv6u8CinkNJUV8IhGp2YFHPqcR/wDwxQM8Y1vyhC/tCYM69B7hXj5SUlB7dQyaog3LvkQ7KLYoflMMGaRFhtfi+8INyTvf7hINYkXHOCc/p++H3D8KfxVgc1icskpKFLw4bWM0NCbrzKVncfAhc3ABjbfIFVJxjnT8knxYr6Xz4yBPPMBjbiMCagsJ1X2c1NyboLqSEsR8D8wUYa1PIQ8Z+ooSxSzzxDIOx1xNYU1S47iZW8w0E3cWUMPZTYL4AY22KecjYpUoY+1ncM2I8s0z4LyS4utKUwNcSwutKM6u5OUF3SSV15XOgL4GxNiWVnEhgNNGiPQ7c4KOdSFhux/hFECcSlkedSPgizYmESyVZKLYXYocrdYd6ObAolVECqS+ASYZssCurZIca2WAH9IwpqwTyGhrEvlAA+RV2jF8GAfkVUZD/MgDIfwGE/Aog5CsogfyXQhuGKnrYMAT0jKmoBPIaGoa+VAD5r+wYvw4C8l9FQf7rACD/JRDyXwEhX0UJ5L8W2kBS1cMGEqBnTFUlkNfQQPK1AsivtGP8JgjIr4yC/DcBQP5rIORXAiFvlED+G6ENBdU9bCgAesZUD2jfLhTby3wDzLlVChsKVpEaCr6NNxRgg/QtYfWwWnhDgdO9OoCGgtXh9+9IDQXucMCHhI3jmsI3zN0h7o8IumspWdysAS5ugLE2tQIqzrHOH5JPa5UcxFrniWcYjP2YwJqrhet2h7iXEHTXUcLY74H5Aoy1qeMhY9crYewGTzzDYOynBNZcK1y3O8T9GUF3PSWM3QjMF2CsTT0PGfuDEsb+GPeMGM/8JLyhYGGuiz/qgJzDhsLrimv0+Jygu5GSurIJ6EtgrE0jJTvUGhoKgBt8tB3qn+0YNwexQ/1z1A715gB2qAE7XKk71D8Di9L1SiC1WWhDQRMPGwqAnjFNlEBeQ0PBZgWQ/8WOcUsQkP8lCvJbAoD8ZiDkfwFCvpkSyG8R2lDQ3MOGAqBnTHMlkNfQULBFAeR/tWP8LQjI/xoF+d8CgPwWIOR/BUL+JiWQ/01oQ0FLDxsKgJ4xLZVAXkNDwW8KIL/VjnFbEJDfGgX5bQFA/jcg5LcCId9aCeS3CW0oaONhQwHQM6ZNQPt2odheZhsw57YrbCjYTmoo2BFvKMAGaQdh9bBTeEOB070zgIaCneH3XaSGAnc4YA1h4/hW4Rvm7hD3OoLudkoWN7uR3yCAxbldQMU51vlD8mmPkoNYez3xDIOx3xNYc7tw3e4Q9waC7g5KGLsPmC/AWJsOHjJ2vxLGHvDEMwzGbiSwppNw3e4Q948E3Z2VMPYgMF+AsTadPWTsISWMPRz3jBjP/C68oeCbXBd/1AE5h3cJryuu0WMTQXdXJXXlCNCXwFibrkp2qDU0FAA3+Gg71EftGI8FsUN9NGqH+lgAO9SAHa7UHeqjwKLUQwmkjgltKEjxsKEA6BmTogTyGhoKjimA/B92jMeDgPwfUZA/HgDkjwEh/wcQ8vcogfxxoQ0FvTxsKAB6xvRSAnkNDQXHFUD+TzvGE0FA/s8oyJ8IAPLHgZD/Ewj5vkogf0JoQ0E/DxsKgJ4x/ZRAXkNDwQkFkD9px3gqCMifjIL8qQAgfwII+ZNAyN+rBPKnhDYUDPSwoQDoGTMwoH27UGwvcwqYc6cVNhScJjUU/BVvKMAG6S/C6uFv4Q0FTvffATQU/B1+P0NqKHCHA3YTNo7vF75h7g5x7yXoHqxkcXMWuLgBxtoMDqg4xzp/SD6dU3IQ67wnnmEwdh+BNcOE63aHuA8QdA9XwtgLwHwBxtoM95CxCbl1MDZdbj88w2DsQQJrHhSu2x3iPkzQ/ZASxiYC8wUYa/OQh4xNr4SxGeKeEeOZjGDPMA4d7yTw9RHhdcU1ehwh6H5USV3JBPQlMNbmUeG+cWw4S/DN48J1u2c45wm6n1CSL5cB8wUYa/OEkpo6B1hTMytZh10OHGcy0DP5FDD2AoE1TwnX7Z7huOcjaN1jlDA2CzBfgLE2YzxkbFYljM0GHGdBoGcKKWBsIoE1zwjX7Z7hZCDoHqeEsdmB+QKMtRnnIWOTlDA2B3CcRYGeKSacNadyXTzfhIzHs8J1u2eemQiMnaiEsTmB+QKMtZnoIWNzKWFsbuA4SwA9U1JJzuUBzt9RYIsu8Dcd1ORcXiU5l+yZZ9Dzlw84f+eA83few5zLryTnCnjmGfT8FQTOX0bgOiGTh2vLQkpyrrBnnkHPXxHg/GUHzl+ShzlXVEnOFfPEM+hnR+7XH24jPDN7Trju9lbz7QTdU5Qw9gpgvgBjbaZ4yNjiShhbwhPPMBjbgcCaF4Xr7mg130HQ/ZISxpYE5gsw1uYlDxlbSgljS3viGQZjOxFY84pw3Z2t5jsJul9VwtgywHwBxtq86iFjyyphbDlPPMNgbBcCa14Xrvsuq7krQfd0JYwtD8wXYKzNdA8ZW0EJYyt64hkGY7sRWPOmcN3dreYeBN0zlTC2EjBfgLE2Mz1kbGUljK3iiWcYjE0hsOYt4brvtpp7EnTPUcLYqsB8AcbazPGQsdWUMDbkiWcYjL2HwJq3hevuZTX3Juier4SxBpgvwFib+R4ytroSxl7piWcYjO1DYM27wnX3tZr7EXQvVMLYGsB8AcbaLPSQsTWVMLaWJ55hMLY/gTXvC9c9wGq+l6D7AyWMvQqYL8BYmw88ZGxtJYy92hPPMBg7kMCaj4Trvs9qHkTQ/bESxtYB5gsw1uZjDxl7jRLG1vXEMwzG3k9gzafCdQ+2mocQdC9VwthrgfkCjLVZ6iFj6ylhbH1PPMNg7FACaz4XrnuY1TycoHu5EsY2AOYLMNZmuYeMbaiEsY088QyDsQ8QWPOlcN0jrOYHCbq/UsLY64D5Aoy1+cpDxjZWwtjrPfEMg7EPEVjzjXDdD1vNIwm6VylhbBNgvgBjbVZ5yNgblDC2qSeeYTD2EQJrvhOu+1Gr+TGC7jVKGNsMmC/AWJs1HjK2uRLG3uiJZxiMHUVgzffCdT9uNT9B0L1eCWNbAPMFGGuz3kPG3qSEsS098QyDsU8SWPODcN2jreanCLp/VMLYm4H5Aoy1+dFDxrZSwtjWnniGwdgxBNb8LFz301bzWILuzUoY2waYL8BYm80eMvYWJYxt64lnGIx9hsCaX4XrHmc1jyfo/k0JY28F5gsw1uY3DxnbTgljb/PEMwzGTiCwZrtw3c9azRMJuncoYWx7YL4AY212eMjY25UwtoMnnmEwdhKBNbuF655sNT9H0L1HCWM7AvMFGGuzx0PG3qGEsZ088QyDsVMIrNkvXPfzVvMLBN0HlDC2MzBfgLE2Bzxk7J1KGNvFE88wGPsigTWHhet+yWp+maD7dyWMvQuYL8BYm989ZGxXJYzt5olnGIydSmDNMeG6X7GaXyXo/kMJY7sD8wUYa/OHh4ztoYSxKZ55Bj1/dwPnrwRw/kp6mHM9wTnHqMuvEerTCeF1eZrV/DpB90kljLgH6EtgrI2W+esFnL9rgfNXz0PG9lbA2OkE1vwlnLFvWM0zCLr/VsKIPkBfAmNttMxfX+D83Q6cvw4eMrafAsa+SWBN/9w6cmUAMD73A3NlsIe5cq+S5ywDgeM8Uhn4nKWyDs+kA97rPlgsTHfnk3QJ/37B/6YEkI1pxzso98V/Z4iKXUKaPMhE0JQQ9TnR85j0H/+b6MLoguQmFH3f+3PjzM/SfX9ueIxCieGxZgCP1xWgU7mw98sDBHxee69k4P1ckRxIiE8CNjdN5B+D7ViH5CYmv7uxM9fg8IdE/tt9aPHwZ6CTJGI69Kr5nPAnE5HkQOs+L1x3JInRui8I1x2BDVp3QlXR3w6rh8dpBgOL9RDgvdIFNH+h2F4GyDOTlhGxzl+ikvkD8sGkzblY5y+9kvkD5okBesYg5y+ysE4Ez52r9fmAC9f89l4FCF+ohpCeNALGmLoIHmrHOCyIRfDQqEXwMPIiOB9hcZC1quxF0aWMHKvubEqgCljIpC6whgIXRdllLypTxzkMCNWswKKepMR/wDwxQM+YJCVFvSDQf4XsvQoTivowBUV9uB3jA0EU9eFRRf0BclEvSChueYQX9UsZOVbdeZVAdRiwqA8HFvVkJUX9ASBU8wCLej4l/gPmiQF6xuRTUtSLAP1X1N6rGKGoP6CgqI+wY3wwiKI+IqqoP0gu6kUIxa2w8KJ+KSPHqruIEqg+ACzqI4BFvaiSov4gEKqFgUW9mBL/AfPEAD1jWPOHLuwPAnPuIcC9eqSkpPTobrcvEoI5KPcQ6aDcw/GDctggPUxYLY4UflDO6R5JOIgVGef94TkdGX5/JPxZjMXhZYRFUinhi8PMVvPlBN2llSxuHgUuboCxNqUDKs6xzh+ST48p6XwY5YlnGIzNQmBNOeG6s1rN2Qi6yyth7OPAfAHG2pT3kLFPKGHsk554hsHY7ATWVBKuO8lqzkHQXVkJY0cD8wUYa1PZQ8Y+pYSxY+KeEeOZp4X/QoKrKzkJfK0mvK7ksppzE3SHlNSVsUBfAmNtQkpOJDCaaNEeB27w0U4kPGPHOC6IEwnPRJ1IGJfmRMKlkiwU2wuxw5W6Q/0MsChdqQRS44BJhmywq+Fhgx3QM6aGEshraBAbpwDy4+0YJwQB+fFRkJ8QAOTHASE/Hgj5q5RAfoLQhqHaHjYMAT1jaiuBvIaGoQkKIP+sHePEICD/bBTkJwYA+QlAyD8LhPw1SiA/UWgDSV0PG0iAnjF1lUBeQwPJRAWQn2THODkIyE+KgvzkACA/EQj5SUDI11cC+clCGwoaeNhQAPSMaRDQvl0otpeZDMy55xQ2FDxHaiiYEm8owAZpCmH18LzwhgKn+/kAGgqeD7+/QGoocIcDHiVsHF8nfMPcHeIeRdDdWMni5kXg4gYYa9M4oOIc6/wh+fSSkoNYL3viGQZjHyew5gbhut0h7icJupsqYexUYL4AY22aesjYV5Qw9lVPPMNg7GgCa24Urtsd4h5D0N1CCWNfA+YLMNamhYeMnaaEsa/HPSPGM9OFNxQ8mPvijzog5/Bm4XXFNXqMJehupaSuvAH0JTDWppWSHWoNDQXADT7aDvUMO8Y3g9ihnhG1Q/1mADvUgB2u1B3qGcCidIsSSL0ptKGgrYcNBUDPmLZKIK+hoeBNBZCfacc4KwjIz4yC/KwAIP8mEPIzgZC/TQnkZwltKGjvYUMB0DOmvRLIa2gomKUA8rPtGN8KAvKzoyD/VgCQnwWE/Gwg5DsqgfxbQhsK7vCwoQDoGXOHEshraCh4SwHk59gxzg0C8nOiID83AMi/BYT8HCDk71QC+blCGwq6eNhQAPSM6RLQvl0otpeZC8y5eQobCuaRGgrejjcUYIP0NmH1MF94Q4HTPT+AhoL54fd3SA0F7nDAi4SN427CN8zdIe6XCbq7K1ncLAAuboCxNt0DKs6xzh+ST+8qOYi10BPPMBg7lcCau4Xrdoe4XyXo7qmEse8B8wUYa9PTQ8YuUsLY9z3xDIOxrxFY01u4bneI+3WC7j5KGPsBMF+AsTZ9PGTsh0oYuzjuGTGe+Uh4Q8Hk3Bd/1AE5h/2F1xXX6PEGQfcAJXXlY6AvgbE2Awg71JEX2kPADTTaDvAndoxLgtgB/iRqB3hJADvAgB2k1B3gT4DQX5Jbj4mXKDDxp3aMS4Mw8adRJl4agImXAE38KdDESxWZeKkCE39mx7gsCBN/FmXiZQGYeCnQxJ8BTbxMkYmXKTDx53aMy4Mw8edRJl4egImXAU38OdDEy0nGSATP33Kg5i8UHuj5gnSgZ0X8QA82SCsIB3q+FH6gx+n+MoADPV+G378iHehxD+cWEB7c3Cf8gZU7RLGQoHuQkgdWXwMfWAFjbQYpeaiN5NNKJRsh33jiGQZj3yOwZohw3e4QxfsE3UOVMHYVMF+AsTZDPWTst0oYu9oTzzAY+wGBNQ8I1+0OUSwm6B6hhLHfAfMFGGszwkPGrlHC2LVxz4jxzDrhB3rm5r7YVIWcw4eF1xV30Opjgu6RSurK90BfAmNtRgr3jWPD1wTfPCZct3uG8w1B9ygl+bIemC/AWJtRSmrq/cCaukHJOmwjcJylgJ4prYCxqwiseVK4bvcMZzVB92gljP0BmC/AWJvRHjL2RyWM/Qk4znJAz5RXwNjvCKx5Wrhu9wxnLUH3WCWM3QTMF2CszVgPGfuzEsZuBo6zEtAzlYWzZnnui+ebkPEYL1y3e+b5PUH3BCWM/QWYL8BYmwkeMnaLEsb+ChxnNaBnQh565jclntkKHOd54B+TAf5hGjWe2abEM9uB48wK5Ew2DzmzQ4lndgLHmQfombweemaXEs/sBo6zMNAzRTz0zB7hZ1Dcn3C4gvB9cZLw78nFreYSBN2TlXxP3gv0JTDWZrKHjNingBElCbnyvHBGlLKaSxN0v6CEEfuBvgTG2rzgISMOKGBEGUKuvCycEWWt5nIE3VOVMOIg0JfAWJupHjLikAJGlCfkymvCGVHBaq5I0D1NCSMOA30JjLWZ5iEjflfAiEqEXHlDOCMqW81VCLpnKGHEEaAvgbE2MzxkxFEFjKhKyJVZwhlRzWoOEXTPVsKIY0BfAmNtZnvIiD8UMMIQcmWucEZUt5qvJOiep4QRx4G+BMbazPOQEX8qYEQNQq68I5wRNa3mWgTdC5Qw4gTQl8BYmwUeMuKkAkZcRciV94QzorbVfDVB9yIljDgF9CUw1maRh4w4rYARdQi58qFwRlxjNdcl6F6shBF/AX0JjLVZ7CEj/lbAiGsJufKJcEbUs5rrE3QvUcKIM0BfAmNtlnjIiLMKGNGAkCufCWdEQ6u5EUH3MiWMOAf0JTDWZpmHjDivgBHXEXLlC+GMaGw1X0/QvUIJIy4AfQmMtVnhISMS8shnRBNCrnwtnBE3WM1NCbpXKmFEOqAvgbE2Kz1kRKICRjQj5Mq3whnR3Gq+kaB7tRJGpAf6Ehhrs9pDRmRQwIgWhFxZK5wRN1nNLQm61ylhREagL4GxNus8ZEQmBYy4mZArG4QzopXV3Jqge6MSRlwG9CUw1majh4zIrIARbQi58pNwRtxiNbcl6N6khBGXA30JjLXZ5CEjsihgxK2EXPlFOCPaWc23EXRvUcKIrEBfAmNttnjIiGwKGNGekCtbhTPidqu5A0H3NiWMyA70JTDWZpuHjEhSwIiOhFzZKZwRd1jNnQi6dylhRA6gL4GxNrs8ZEROBYzoTMiVvcIZcafV3IWge58SRuQC+hIYa7PPQ0bkVsCIuwi5clA4I7pazd0Iug8pYUQeoC+BsTaHPGREXgWM6E7IlSPCGdHDak4h6D6qhBHJQF8CY22OesiIfAoYcTchV44LZ0RPq/kegu4/lTAiP9CXwFibPz1kRAEFjOhFyJVTwhnR22ruQ9B9WgkjCgJ9CYy1Oe0hIwopYERfQq6cEc6IflZzf4Lus0oYURjoS2CszVkPGVFEASMGEHKlaB7/Yl0MHOvIC82HK4DjPAf8O9QJSviQDniv4rBYmB7OJ+kS/v2C/x1MYG6nHW+JPBf/nSEqdglp8iATQVNC1OdEz2PSf/xvosHuguQmFH3fknlw5mfpLpkHHqNQYnis6cHjdQVoOfCHOn6z99oKvJ8ralcQ5jMBm0sm8o9Sdqyl8xCT1d3YmaFU+EMi/+0+tHj4M9CmjpgEvUq7IPybXMTMaN0J1WTrjiQdWne6apwEBq1Qq4fHaUoBi0xp4L0SA5q/UGwvA8xrkzZXYv4lCSXzB8wTA/SMQc5fZEGDZtc2y+vtufH3LU16ogAYY+rio4wdY9kgFh9lohYfZYmLj0sFNOZWTyUwABSQ1MJWBliMssgu5qnjLAt83AT0jMmiAKY7bN7tJMC0rAKYlrNjLB8ETMtFwbQ8EaaXCmjM/W5KYFoWCNNyQJgmKYFpeSBMgZ4xSQpgusvm3W4CTMsrgGkFO8aKQcC0QhRMKxJheqmAxtz0owSm5YEwrQCEaW4lMK0IhCnQM4Y1f4lg/1UEeqYS4F49UlJSenS3j0kSgtkIrUTaCK0c3wjFBqkyYSO0ivCNUKe7CmHjLjLOkuE5rRJ+rxr+LMbe13pCkU8Wvge0wWreSNCdT0lxrgYszsBYm3wBFedY5w/Jp5CSk23GE88wGPsDgTUFhev+0Wr+iaC7kBLGVgfmCzDWppCHjL1SCWNreOIZBmM3MU7aC9f9s9W8maC7mBLG1gTmCzDWppiHjK2lhLFXxT0jxjO1hXdwubryC4GvJYTXlS1W868E3SWV1JWrgb4ExtqUVLATfKlz5aHYXga4oUTbCa5jx3hNEDvBdaJ2gq9JsxN8qaQIxfZC7Eil7ojWARaRMkqgcg2y2AGhUkYBVFgHn69RAJW6dozXBgGVulFQuTYAqFwDhEpdIFTKKYHKtUIPAJdTABXWAeBrFUClnh1j/SCgUi8KKvUDgMq1QKjUA0KlghKo1Bd6ELaCAqiwDsLWVwCVBnaMDYOASoMoqDQMACr1gVBpgDzcpwQqDYUeCK0U0HPXUGwv0xDomUYKD4Q2Ih0IvS5+IBQbpOsIB0IbCz8Q6nQ3DuBAaOPw+/WkA6Fuc6ca4ccxqgjf8HCH8AxBd1UlxbkJsDgDY22qKtkURfLpBiUb6U098QyDsdUJrDHCdbtDeDUIuqsrYWwzYL4AY22qe8jY5koYe6MnnmEwtiaBNTWF63aH8K4i6K6lhLEtgPkCjLWp5SFjb1LC2JZxz4jxzM3CD4RWzHOxKRc5h1cLryvuoO7VBN11lNSVVkBfAmNt6hB2RCMvtIeAG0C0HczWdoxtgtjBbB21g9kmgB1MwA5S6g5mayD02+TRY+I2Ckx8ix1j2yBMfEuUidsGYOI2QBPfAjRxW0UmbqvAxLfaMbYLwsS3Rpm4XQAmbgs08a1AE7dTZOJ2Ckx8mx1j+yBMfFuUidsHYOJ2QBPfBjRxe5IxEsHz1x6o+XaFB3puJx3o6RA/0IMNUgfCgZ6Owg/0ON0dAzjQ0zH8fgfpQI97ONeE8ODmWuEPrNwhiqYE3fWUPLDqBHxgBYy1qafkoTaST52VbITc6YlnGIxtRmBNQ+G63SGKGwm6GylhbBdgvgBjbRp5yNi7lDC2qyeeYTC2BYE11wvX7Q5RtCTobqKEsd2A+QKMtWniIWO7K2Fsj7hnxHgmRfiBnoZ5LjZVIeewmfC64g5atSLobq6krtwN9CUw1qa5ogM9rI0WwBhTd+B62jHeE8QOXM+oHbh7AtiBA+wgpe7A9QRC/x5F28j3KDBxLzvG3kGYuFeUiXsHYOJ7gCbuBTRxb0Um7q3AxH3sGPsGYeI+USbuG4CJewNN3Ado4r6KTNxXgYn72TH2D8LE/aJM3D8AE/cFmrgf0MT9lRzo6Q/UPEDhgZ4BpAM998YP9GCDdC/hQM9A4Qd6nO6BARzoGRh+v490oMc9nOtEeHBzk/AHVu4QxZ0E3S2VPLAaBHxgBYy1aankoTaST/cr2QgZ7IlnGIztQmBNa+G63SGKrgTdbZQwdggwX4CxNm08ZOxQJYwd5olnGIztRmDNrcJ1u0MUPQi62ylh7HBgvgBjbdp5yNgHlDB2RNwzYjzzoPADPe3zXGyqQs7h7cLrijtodTdBdwcldeUhoC+BsTYdhPvGsWEQwTedpP/JcKt5MEF3ZyX58jAwX4CxNp2V1NSSwJo6Usk67BHgOJOBnsmngLFDCKy5S7hu9wxnGEF3VyWMfRSYL8BYm64eMvYxJYwdBRxnQaBnCilg7HACa3oI1+2e4Ywg6E5RwtjHgfkCjLVJ8ZCxTyhh7JPAcRYFeqaYcNb0z3PxfBMyHvcI1+2eeT5E0N1LCWNHA/MFGGvTy0PGPqWEsWOA4ywB9ExJDz3ztPA9m99yJyRszY3n69g8/sX6GeGx3mbjvJ0Q63Eexnq88FjvsHHeSYj1BA9j/azwWO+ycd5NiPVED2M9SXis99g47yXEerKHsX5OeKz32TjvJ8R6ioexfl54rA/YOB8kxPoFD2P9ovBYH7JxPkyI9Usexvpl4bH+3cb5CCHWUz2M9SvCY33UxvkYIdavehjr14TH+g8b5+OEWE/zMNavC4/1nzbOJwixnu5hrN8QHuuTNs6nCLGe4WGs3xQe69M2zn8RYj3Tw1jPEh7rv22czxBiPdvDWL8lPNZnbZzPEWI9x8NYzxUe6/M2zhcIsZ7nYazfFh7rBHcOjHAWbL6HsX5HeKwT7fjSE2K9wMNYvys81hns+DISYr3Qw1i/JzzWmez4LiPEepGHsX5feKwz2/FdToj1Bx7G+kPhsc5ix5eVEOvFHsb6I+GxzmbHl50Q6489jPUnwmOdZMeXgxDrJR7G+lPhsc5px5eLEOulHsb6M+Gxzm3Hl4cQ62Uexvpz4bHOa8eXTIj1cg9j/YXwWOez48tPiPUKD2P9pfBYF7DjK0iI9Vcexvpr4bEuZMdXmBDrlR7G+hvhsS5ix1eUEOtVHsb6W3CsIy90z/5q4DgvVMXdK52Snv10wHt9B4uFSQnqD8B9B8zttONdk+fiv+N/AC7Ge7ogrcmDv+9aIDBZutfmgcco9c+iov8apytAwL98adyPgAB/EMO4oraaMJ8J2FxK/dOt6+xYv88TwJ9uXZfnn3+61X1o8fBnoE0dMQl6ldZX+C9yRcyM1t1PuO5I0qF195f9S2Spf1Z4HbDIfA+814CA5i8U28sA89qkzZVY5+9eJfMHzBMD9IxBzl9kQYNml/tlqnGEhef3pCcKgDGmLj7W2zFuCGLxsT5q8bGBuPi4VEBjhcEQJTAAFJDUwrYeWIyGKvlZ0Q3AbyNAz5ihCmDqfvptAgGmGxTAdKMd4w9BwHRjFEx/IML0UgGNNckeUALTDUCYbgTCdIQSmP4AhCnQM2aEApi631acSIDpDwpg+qMd409BwPTHKJj+RITppQIaa5I9rASmPwBh+iMQpiOVwPQnIEyBnjEjA9oIDcX2Mj8BPbMJcK8eKSkpPbqHTFAboZtIG6E/xzdCsUH6mVD1NwvfCHW6NxM27iLjXBue083h91/Cn8XY+3qYUOQfE74H5P5a6CME3aOUFOctwOIMjLUZpeSUEpJPvyo52fabJ55hMPZRAmueFK7b/bXQUQTdo5UwdiswX4CxNqM9ZOw2JYzd7olnGIx9nMCap4Xrdn8t9EmC7rFKGLsDebgTmC9jPWTsTiWM3RX3jBjP7BbeweXqymgCX8cLryvuL6SOIeieoKSu7AH6EhhrM4GwExx5oT0E3ACi7dzutWPcF8TO7d6ondt9aXZuL2XiUGwvxA5S6g7mXiD09+XRY+J9Cky8347xQBAm3h9l4gMBmHgf0MT7gSY+oMjEBxSY+KAd46EgTHwwysSHAjDxAaCJDwJNfEiRiQ8pMPFhO8bfgzDx4SgT/x6AiQ8BTXwYaOLfScZIBM/f70DNRxQe6DlCOtBzNH6gBxuko4QDPceEH+hxuo8FcKDnWPj9D9KBHvdwbgvhwc0k4Q+s3CGK3wi6Jyt5YHUc+MAKGGszWclDbSSf/lSyEXLCE88wGLuVwJrnhet2hyi2E3S/oISxJ4H5Aoy1ecFDxp5SwtjTnniGwdgdBNa8LFy3O0Sxi6B7qhLG/gXMF2CszVQPGfu3EsaeiXtGjGfOCj/Q81Oei01VyDl8TXhdcQet9hB0T1NSV84BfQmMtZmm6EAPa6MFMMbUHbjzdowXgtiBOx+1A3chgB04wA5S6g7ceSD0LyjaRr6gwMQJea3uvAGYOCHvP03sPrR4AtfEF4AmduNHmThdXj0mRo41gWTiRDvG9EGYODHKxOkDMHG6vDgTJwJNnF6RidMrMHEGO8aMQZg4Q5SJMwZg4vRAE2cAmjgjyRiJ4PnLCNScCXCvoA/0ZALGKe14L8t78d/xAz0x3tMF6bK8+PtmBpqfpTtzXniM/nWgJ3N4bi8Pfxbj4NRxwoObN4Q/sHKHKE4QdM9Q8sAqCw6uBhhrM0PJQ20kn7Lm5RUYpOZsnniGwdiTBNbMEq7bHaI4TdA9WwljswPzBRhrM9tDxiYpYWwOTzzDYOxfBNbMFa7bHaI4Q9A9TwljcwLzBRhrM89DxuZSwtjccc+I8UwesGcYhxKOEfj6jvC64g5anSPoXqCkruQF+hIYa7NA0YEe1kYLYIypO3DJdoz5gtiBS47agcsXwA4cYAcpdQcuGQj9fIq2kfMpMHF+O8YCQZg4f5SJCwRg4nxAE+cHmriAIhMXUGDignaMhYIwccEoExcKwMQFgCYuCDRxIUUmLqTAxIXtGIsEYeLCUSYuEoCJCwFNXBho4iJKDvQUAWouqvBAT1HSgZ5i8QM92CAVIxzouUL4gR6n+4oADvRcEZ7b4qQDPe7hXPa8+Ac37wl/YOU2+HIQdC9S8sCqBPCBFTDWZpGSh9pIPpVUshFSyhPPMBibk8CaD4Xrdht8uQm6FythbGlgvgBjbRZ7yNgyShhbNu4ZMZ4pJ3yzOWPeiwf+kXP4ifC64g4B5CXoXqKkrpQH+hIYa7NEuG8cG0oQfPOZ9D9HaDWXIuhepiRfKgDzBRhrs0xJTV0L/HGOikrWYZWA4/TpT586xpYmsOYL4brd94uyBN0rlDC2MjBfgLE2KzxkbBUljK0KHKfkP32KZk2RvBf3hZDx+Fq4bvd9vDxB90oljK0GzBdgrM1KDxkbUsJYAxyn1D8dq8Uz1YU/T/zGal1FaOK4Mq9/sa6hhA81gePsC+RDf+FrEZfLVxLWIrWAuRLUQT3kmNOO96r4QT1skK4iHNSrLfygntNdm3BQLyHNy7c5dYWyCAF+3wqHvivqNQm6Vyv5Ano1cLEAjLVJO3+xnG63rxpBFc2rSUWzTrxoYoNUh1A0rxEOeKf7moCLZqzzcI2Sb5npgPeqC9Nc/cqgwFeXBL5r4+DDBulaAvjqCQef012PDD40UJBzWl/h44f6JKA0iAMFHCQCUBoKB4rT3VDZ4wf0nEZeieBxIldSjUAN0vZVPSjwNSKB77o4+LBBuo4AvsbCwed0Nw54JRWK7QUFyvU4oPQICijXk4DSJA4UbJCaEIByg3CgON03KPtqhpzTpsJPj7hNoQqEzZG1wjeFXEdDJYLudUo2hZoBfQmMtVmn5IQZkhHNFTCiMiFXNghnhDuRX5Wge6MSRtwI9CUw1majh4xooYAR1Qi58pNwRrgT5Yage5MSRtwE9CUw1maTcN+47wXNCL75JSDfhGJ7VUeysSXQg7/gDiWlBPUAqCXpAdDN8QdA2CDdTHgA1Er4AyCnu5WyQ0mtwAnlDJwxfD+XLJntdVn4PXJdHn7PEn4vHv7/t7ZjaWOvW+zV1l632qudvW6zV3t73W6vDvbqaK877NXJXp3tdae9utjrLnt1tVc3e3W3Vw97pdjrbnv1tNc99uplr9726mOvvvbqZ6/+9hoQ9mss47/X3mOgve6z1yB73W+vwfYaYq+h9hpmr+H2esBeI+z1oL0estfD9hppr0fs9ai9HrPXKHs9bq8n7PWkvUbb6yl7jbHX0/Yaa69n7DXOXuPtNSFvwj9e6MVPVmCe3AvM42cVngdBjjnteCfGixg2SBMJRWyS8CLmdE9SVsQmA1fFkbFNDsd+Uvj9OTJgswFjOBDosSkKATuFBNjn44DFBul5AmBfEA5Yp/sFAmAj43wuPKcvhN9fJIMrO3Bu7gPG7iWF4HqJBK6X4+DCBullArimCgeX0z2VCK4Xw3M6Nfz+ChlcScC5GQSM3asKwfUqCVyvxcGFDdJrBHBNEw4up3saEVyvhOd0Wvj9dTK4cgDn5n5g7KYrBNd0ErjeiIMLG6Q3COCaIRxcTvcMIrheD8/pjPD7m2Rw5QTOzWBg7GYqBNdMErhmxcGFDdIsArhmCweX0z2bCK43w3M6O/z+FhlcuYBzMwQYuzkKwTWHBK65cXBhgzSXAK55wsHldM8jguut8JzOC7+/TQZXbuDcDAXGbr5CcM0ngeudOLiwQXqHAK4FwsHldC8gguvt8JwuCL+/SwZXHuDcDAPGbqFCcC0kgeu9OLiwQXqPAK5FwsHldC8iguvd8JwuCr+/TwZXXuDcDAfG7gOF4PqABK4P4+DCBulDArgWCweX072YCK73w3O6OPz+ERlcycC5eQAYu48VgutjErg+iYMLG6RPCOBaIhxcTvcSIrg+Cs/pkvD7p2Rw5QPOzQhg7JYqBNdSErg+i4MLG6TPCOBaJhxcTvcyIrg+Dc/psvD752Rw5QfOzYPA2C1XCK7lJHB9EQcXNkhfEMC1Qji4nO4VRHB9Hp7TFeH3L8ngKgCcm4eAsftKIbi+IoHr6zi4sEH6mgCulcLB5XSvJILry/Ccrgy/f0MGV0Hg3DwMjN0qheBaRQLXt3FwYYP0LQFcq4WDy+leTQTXN+E5XR1+/44MrkLAuRkJjN0aheBaQwLX2ji4sEFaSwDXOuHgcrrXEcH1XXhO14XfvyeDqzBwbh4Bxm69QnCtJ4FrQxxc2CBtIIBro3BwOd0bieD6PjynG8PvP5DBVQQ4N48CY/ejQnD9SALXT3FwYYP0EwFcm4SDy+neRATXD+E53RR+/5kMrqLAuXkMGLvNCsG1mQSuX+LgwgbpFwK4tggHl9O9hQiun8NzuiX8/isZXMWAczMKGLvfFILrNxK4tsbBhQ3SVgK4tgkHl9O9jQiuX8Nzui38vp0MriuAc/M4MHY7FIJrBwlcO+PgwgZpJwFcu4SDy+neRQTX9vCc7gq/7yaDqzhwbp4Axm6PQnDtIYFrbxxc2CDtJYBrn3BwOd37iODaHZ7TfeH3/WRwlQDOzZPA2B1QCK4DJHAdjIMLG6SDBHAdEg4up/sQEVz7w3N6KPx+mAyuksC5GQ2M3e8KwfU7CVxH4uDCBukIAVxHhYPL6T5KBNfh8JweDb8fI4OrFHBungLG7g+F4PqDBK7jcXBhg3ScAK4/hYPL6f6TCK5j4Tn9M/x+ggyu0sC5GQOM3UmF4DpJAtepOLiwQTpFANdp4eByuk8TwXUiPKenw+9/kcFVBjg3TwNj97dCcP1NAteZOLiwQTpDANdZ4eByus8SwfVXeE7Pht/PkcFVFjg3Y4GxO68QXOdJ4LoQBxc2SBcI4EpIlg0up9uNERyjVKOei8xp8v/e06X5rIh50n5urHNUDjg3zwDBlZisD1zIMacdb/o0HoiDK8Z7uiClT8bfN4NwcDndGYjgShee0wzh94xkcJUHzs04ILgyKQRXJhK4LouDCxukywjgyiwcXE53ZiK4MobnNHP4/XIyuCoA52Y8EFxZFIIrCwlcWePgwgYpKwFc2YSDy+nORgTX5eE5zRZ+z04GV0Xg3EwAgitJIbiSSODKEQcXNkg5CODKKRxcTndOIriyh+c0Z/g9VxS40HpyAec7KECkS+AAInccENgg5SYAIo9wQLj75SEAIiHNK1HwnOZVCJS8pBVHchwo2CAlE4CSTzhQnO58ZKBIntPE8PjQY2xuv2bdiN+lvfKGvPgYSV5B5bexLpAmL/812Jj/9HcyVrgzlBt08fBY3X8XCP932ld6uZMOrdi/VuNABf5XZoCaCwI9lXb+Yh1XxI8F0/gxKPDFOvatAfkoFNvrH4CO+Xf4gT5Czx+jaORPxvtmuw7fGCR/CgN9s53sG0T9LkTwzU7h+eJ0Fybo3qUkXwqR8iXWe+1WMn9AfxugZwxy/iJf7qJfoPt3jdxP8heoItbbRbV9gSoS9QWq6P+HL1Ax/5I1EALFhH8BKEb8ApAuHD+0z/YrASvSR1cAfbRfwYLG6U0E+aZHyv+9auWRGY+u0cUJve2SP5nj6VCMr4SoV4z3NZF/FLdjLJFM3HaIwLN48sVHxu6/SwTwdI8VzFgT4qDsp3vVw+M0xYGaSwBjgZw/7QckSmrZz5S8gmYFvCRhRVeKVFUSweNEriBKC4+1i0lpBQdrLhXrUGyvu0oCx1lG4fFY5JjTjrds/LAKNkhlCUlaTvhhFae7XMCn32Ju8wbOaflkTlJILpgVhBdMF5MKhMXRYSWPu5CxrgiM9WHgY9Ogim9FUvGtFC++2CBVIhTfysKLr9NdWdlJ0cqkbx1giFZHHhqqAoToL9V0LLKQRahqMg9+QM9AD5pVE3zQTINnQh56xnh0OLGFnbebCIdaj+hY5NdA+qY60DdHPGTNlTpYA/VMDYWeCcX2qo70TE3AvcLnKVKC+jJck/RluFb8yzA2SLUIX4avEv5l2Om+StmXYeScaj9rUDsOAWyQahMgcLWCH2O4mvRrLc4YGRMumjCzvS4Lv0euy8PvWcLvxcP//zp2TNfYq669rrVXPXvVd3Npr4b2amSv6+zV2F7X26uJvW6wV1N7NbNXc3vdaK8W9rrJXi3tdbO9Wtmrtb3a2OsWe7W11632amev2+zV3l63h+eD4YU6hG2WY0raU7MmwFZw3ZB59YeS+esA/AYB9IwBzl/NoIoycC7/UZQ7xosyNkgdCUX5DuFF2em+Q9nKHDmniQkXT6Yjx+geRyC3lqpGHdePVX/k8QTiMG34VikJUa8Y75vaqtDJjrFzEK0KnaJaFTon8/q+IgZBr9BOCN8bcCauStB9UvjK6r8SLtY2jU5AEJ5SsjLtDITqCeChp9NKDqAB88QAPWMQ8/dfhQi9N4XMuTsD2puKdZxdSDkXiu1lTnq4N3WXkkPNyDzpGpDmUGwvaJy7KWFDd8/ZIClPegg//O/yoxph7X9O+Hced97NEHSfV7JmTwH6Ehhro2X+7vZs/iQztqcCxlYnsCZdSDZj3Tm/GgTdiSEdjLgH6EtgrI2W+evlwfxFNjsygOfO8RX5vdTd727wcxbkMwy3zk7BbZqlbnQkRL1Q9+1tx9oniA2U3lEbKH3+XzZQUKZD3zej8EIXSQ607kxk3agkRt/3MuHxjsAGrTuz7MKcusnVG1gI+gDvdXlA8xeK7WWAPDNpGRHzn/FVMn9APpjMwPnLqmT+gHligJ4xgPn7z4Ub+uEFkn99lWwq9EvmMCsU28sIr5mp89cf6JmMIblrLQ05N0D4A0P3faI7YX2ZR/i62m0qdyPozquEEfcCfQmMtdEyfwM9mz/JjL1PybpmkGd1GT1/93u2LpScc4MVrGt6Eep7fuHrGrdBfQ9BdwEljBgC9CUw1kbL/A31YP5YG6GOr8h1obvf/eDvosh1v1t3DVK0ETrMjnV4EBuhw6I2QocTN0IjpkPft7DwQhdJDrTuIsI3QiNJjL5vUeHxjsAGrbuYko3QYcBCMBx4ryuUbEQBeWaKAL98F1cyf0A+mGLA+SuhZP6AeWKAnjGA+QtkIxTJvweEP7xwa5v+hFpXQXiNdxvU/Qi6Kyr58j0C6EtgrI2W+XvQs/mTzNiHlGzKPAwcZxHSGikU44s5fyOBnikMXBcW9TDnHlGSc4965hn0/D3mGbMk59woBd8lhhLW1FWEf5dwG9RDCLqrKmHE40BfAmNttMzfEx7MH2sj1PEV+V3M3e8J8PMf5HdtVwMeV7QR+qQd6+ggNkKfjNoIHU3cCI2YDn1fI7zQRZIDrbu68I3QSBKj73ul8HhHYIPWXUPJRuiTwEIwGnivmko2ooA8M9WBX75rKZk/IB9MDeD8XaVk/oB5YoCeMYD5C2QjFMm/p5Q8MByTzGFWKLaXEV4zU+fvaaBnTEjuWktDzo0V/sDQfZ8YSVhf1he+rnYblg8TdDdQwohngL4Extpomb9xns2fZMaOV8DYxwisuU44Y90G9aME3Y2VMGIC0JfAWBst8/esZ/MnmbETlXx3nOTZdx/0/E324Ls3ayPU5RtyXejuNxn8XRS57ndMmKRoI/Q5O9YpQWyEPhe1ETqFuBEaMR36vjcIX1xGkgOtu6nwjdBIEqPv20x4vCOwQeturmQj9DlgIZgCvNeNSjaigDwzTYELwxZK5g/IB9McOH83KZk/YJ4YoGcMYP4C2QhF8u954Q8M3drmaUKtu1V4jXcb1GMIutsp+fL9AtCXwFgbLfP3omfzJ5mxLyl5YPgycJxNSWukUIwv5vxNBXrmBuC6sJmHOfeKgnXNs4T6frvwdY3boJ5A0N1BCSNeBfoSGGujZf5e82z+JDN2mpJ1zeue1WX0/E33YF3I2gh1+YZklrvfdPA6CVmTHBNeV7QR+oYd64wgNkLfiNoInUHcCI2YDv63R4UvLiPJgdbdWfhGaCSJ4X97VHi8I7BB6+6iZCP0DWAhmAG8111KNqKAPDOdgQvDrkrmD8gH0wU4f92UzB8wTwzQMwYwf4FshCL596bwB4ZubfMiodb1Fl7j3Qb1CwTdfZR8+Z4J9CUw1kbL/M3ybP4kM3a2AsZOJbCmv3DGug3qlwm6ByhhxFtAXwJjbbTM3xzP5k8yY+cq2ZSZBxxnZ9L30FCML+b8vQ30TCfgd+87Pcy5+Upy7h3PPIOevwWeMAu9vnS5NouwvrxPuG73TGkmQfcgJfnyLjBfgLE2yPlLn/Afm8cELwHnMpR2vAvTbNZHDj8k/ocnMhE0JUR9TvQ8JiUQN+ZZQVqYjL/ve8DCzdL9Hu7UR+orIc1L8pwGBYF0CRwILIpDABukRQQIvC8cAu5+7xMgoD25PognFzZIHxCS60MFyfUhucKiH7Eg53RxMnYu3ev9sI8Wh98/Sk5IYM4HEuAfK3nk9IkHXwHdPRiPTOYQHh0MEa7bbRG/RdA9VMkjkyXAfAHG2gxV8lgfydhPlTB2qSeeYTD2bQJrHhCu220RzyPoHqGEsZ8B8wUYazPCQ8YuU8LYzz3xDIOxCwiseVi4bnck4B2C7pFKGLscmC/AWJuRHjL2CyWMXRH3zP+v+euR8n+v7sjnbV/iYlHL3QPNV/f86xMCXx/T0TrWDcmHr4B5h5y/oDZ+gPr/sfHzdXzjBxukrwkbPyuFb/w43SuVbfwg5/Qb4T1DDsRfEgrR48IX+uFFB7QQrQLGGjh/NRm+cb5eRfDNkzoWMFciGfEt0DdPhmC5kRLUAuZb0gJmdXwBgw3SasIC5jvhCxin+ztlZ0ORc5qY8N8QiHGs9F9GW2PnYG1yAL+Mtib5n7+MtjbNL6NFXqAVauovJ60BBnhtMieYkh8ZrPP8kcE6UsX9Pl5xsUH6nlBx1wuvuE73emWPDJBzukHBI4MlhK9+TwnfE3XnqZYSdI9Rsie6EehLYKzNGIUFeCOpAP8QL8DYIP1AKMA/Ci/ATvePygowck5/El6A3Te2DYRC9IyOZ6/VkYutTcBYPyN8AeMWbp8RfDNeuG53SPNzgu4JShZuPwM9Doy1maBw4fYzaeG2Ob5wwwZpM2Hh9ovwhZvT/YuyhRtyTrcIX7i5heUmQiGapGTTHLlI/xUY60kKFm7LCb55Trhud/J7BUH3FCULt9+AHgfG2kxRuHD7jbRw2xpfuGGDtJWwcNsmfOHmdG9TtnBDzul24Qs3t7D8lVCIXtSxcKuBXKTvAMb6ReELGOfrHQTfvKzDNzWRjNgJ9M3LChcwO0kLmF3xBQw2SLsIC5jdwhcwTvduZadkkXOq/Uce98QhgA3SHgIE9gqHgLvfXjIE0I9Y9ik41KSlj2cfaYWyPw4nbJD2E+B0QDicnO4Dyh6xIOf0YDInKdCakUXukPDHSi4mhwiPB17R8XgAuqA5DIz1K8A/DhVU8T1MKr6/x4svNki/E4rvEeHF1+k+ouzxAHpOIy/JBfNoMi95gbGB9oIeE9oLqsUzfwTkmVjHedyD9iV3DzQHXXyPExaprynpNkDmyp9AD76m8AnRn6RF6on4IhUbpBOERepJ4YtUp/ukskUqck4TE/5pVDTwAXtXkR8aqZkQ9QLdN3TKzufp5AB+NeZU8j9/NcZ9aPGoz0SvgNLFfq/UX6A5BTTe6WScMSImRiea+2Z0jLynF4rtZRJISfGXHePfQSTFX1FJ8XeapAgqoLGa+XV/nr2mwuAvIAymKzmb/zcwcYGeMcD5M9ErgujHEKHYXsjTLAYYD9pv0p2xYzwbBEjPRIH07P+H1UUothctmLEm6puygZIK0TNAzWeBcELOX3x1dvEV431ToXLOjvF8EFA5FwWV8wFABblKOQdMsFlKVinnha5SZhFWKazmDfCq5x9NEaHYXua8glXPBfdMLV8AgLoQBSj3ocWjPpPZ4RKK7fWPYMaa+G8pWfVcQD4Uzoe71xwlX+OBnUwG6BkzR8lOOPI5Zrp8+KKG/sp9Kgxj1P2c5rPATRO3G9nV9KAVo0Q73vRBFKPEfP8sRunz8Z5lnoqqsA1Ahn5b+NGE/3uWQtA9X0nxTAQWvPTAe72jpHgC/W2AnjGI+fsvkKLzJDFfMEU+FNvLADY+UzVnAOTJ/47ddL8qqGM3GYBxSjvejPku/jt+7CbGe7ogZcyHv28mINjdPRi6M6UxEui+zD9V3AM5p5cBkzMooFxGAkrmOFCwQcpMAMrlwoHidF9OBorkOc2SZoz/980z4X/JlDHhf4lzmb0y2+tye7n/b/Hw/z+rvbLZK3vC/8yew1457ZXLXrntlcdeee0V/rKZkN9eBexV0F6F7FXYXkXsVdRexex1RfjeJexV0l6l7FXaXmXsVdZe5exV3l4V7FUxzdz+P+gaFXlYBykA","proving_key":null,"verification_key":null} \ No newline at end of file diff --git a/crates/nargo_cli/tests/test_data/9_conditional/target/witness.tr b/crates/nargo_cli/tests/test_data/9_conditional/target/witness.tr index ea4c9d0bf37cf31ee032c176b7ada0ef46e09201..0afa3de90ef0ea1fec1df527b17e3eb3ba5a1d29 100644 GIT binary patch literal 32163 zcmbTe2~-nj|350S?{0u$=XF6@BsN7^M7Fn8v0_C{2*N;whC&oUL|_nP3%qJXUKNcB zNUGE&fq`fgfnlwIYQ(gf#3E}`WJ-jHBtSv%K7;(uz4w34J?H-ap7UgeaC{6n-}!z& z+t{7cTY~>t`njt2hv@@D-BU@oy>B-((8(`Y+B#dduqzl+UTuT+%7&JN+S&&2r?$cD zy8*&fpIcp|uia!{$6zKlr=Im5ZtP;r4cD8CR(Jp9+f4rP)3J}IKl67Dex9K0?=ZOT zNq*f^+h$$^xe}Z=K0eN?6GZ=T)Sg=vEqS|{Tr7y?!Q!0SpTc$s@Bdu3+POOQB*fgr zDk*TT7nG%@%$1yo<~8<|)wac(Ufn$UYbdqnxtdb>n42jstaVC{6grV-J;}fK*M8JU zco(BtM#(I`;aS<5(5D+1j(+5@4jL4;#y%NL$YQSPnfN#H_o~svRnaBfTV<4V){Uv( z-VBA(9M1gIxazN`HEi?TAc3{TPj%NXpBp+HUc~VCG@3YmVAH|-B_W&;R$F7}1!o%c zS&1Y)uRS|N)C(GH{v7^4z&`R zNB&5gKIPk*Zsr((ER8X9a8BeM#%8$YuF4WK=chFvm9dxC4Fz2P>*?Ll@8aVeHvY1! zc2y;lS8kqnxcsjq^M5CCpiPpCcgyD}E(PkKC^SgSZM1g&&rk7e>BWlD4%(B@3%?T$ zZ{0238uWU#W|FJv#cigS>MReQ+jmi7wVQLmQ+MsNbXo^M=$R(f#-6=VL#IIk2A7$Zo5wd^ul_gg9yWudAw5 z3;XYF9a;VQr^A;W{b!oH_vS#1K&e-;VAFevx!eW7b%uxgC z4S(soVuAMcsdRa3M)yZ3ZuJ5F@#tq)t@4`5=g;jD95C8l5)jt)tmLrguFsiu+$;B~ zay$KV>W7e_q9mj$4AC80d&7j3pie#2DnQ+1j%rfh21rlVOp@#w>tl|ZzHB*}4Q*82 z4?v7yNzbRVABS!ZjR@+-O|{dXTwi6mf8+gkaSjRgRufJadyamDkhS_&Wi}6V^eOt~}_DC-ULM zqdR7|NLTt_o!uo5eH>P;wQEIw()UFVLhfC>Q+d~X$J0iL`*V`zm9v#0q310>*WWE) zU*f@XehSxyZgh-ogUht3vF)hb+9SD(2@SWR@>A^brC5qXkN2irf?EMJ!I7;?G>$OH zP=AG`c)mxRD`X`#j@7x4p}iu$vtCE42z#?q*4or;D^=)tI40!tZbS)hI4I1gKczUU z>W$%E6Lc&Qs`Tc_BD%Q8A7>N=E2%{XSzMa@P&vHf;Pbe!y&vIFw{P}s++g9vByt_& zo~$6Z!#=J*2#&k++?yPoR{i<)e;x>bJzAON#*<|hr}&mKO=kxQgShtsbBUl@JE{+`RoNj&a!G^uuA$WzXz3%eRQ%V#H zF?q6qzHzTo&trbb*1^7UbJ6q`6|6gEqika-{gEk-OgGUuQ;%vm=<-Pq&NM=|=Rh~V zB7gtM2+ka9{L}4Cx%t}2`I|mfm(8EkR>|4|o`jvr4GB#+0>v#O-=}hF&q$n}di+Pu z3;E9S&a{8%ZmW)2+P!e@YlD)tGX_!xqjN@Q%%;EX+Jud2#&*ocw}s^!fZPP1i6ojf zRLz*db2>8dzdFN=Vh5FCg(;?XRLwk3FZo;mefB_(oO$~ye)rYSW1Dvd`OEEGr19#* zA@eVHA0IkgTmJ1(fcuZ9HWIGng{`YPU^rB_$}#=*w8cTbP!Plx`OU@XmknbWIj|Dg`6xPH25KA zG~^_c(BO}Z)hIJsSUwzzTjz)|X)*`Obl}>F-q=l!Ea|k=BbnrqVu>-vIfTMCG>gEAqxS(|0TtcgByMeE>gc6rJy7cJ4M;me*Za%P4UDrVA0mx_><)P-=SGgV$ecX_j?ePb`ySUcr z-<6G}>(xO|4kVP``T6PEBB%4iKgDl!9ipuw$5Z7u|MTbJjV@Py|N7XGc(oIcqC<7B zOZ_YH-D{4lC{g)FpWZ`&N0&|&MbL!36|ylg!?dnoGM|SIxb#@Tqw>a}*#Km&LN+f} zEEz7b#U>w)_Yx=gOu#Nsy(XA+WyDgxN!|Efz3H&VFU(HpfUWtBD1)mGNk_E}F#3xpomo{A+z zX!~|(7pJ)M=G?`Kur%Gjy|5H?BIsB)v^4;^(c^hs{cZ^T80NDlh-Rtf&k2e9bb3qE z+5cGH>7;JldG2W)G&7azVw~&pX$t+BxN~B|cWnXpHiz5_3a#p0sz`B;>D3t?8BMJ2 z(?G}aXXOz@d9PSuTbJ5nNb1u?#|k0S7I&3>jE`3AV7pkceE49-D%eNo<$vu8p}l^H zV{htM>;C7y7EeVcsjunxbRnbDD)_->mi3T0<>oFmG2ixofAr8X`lH5s5#9)z^Jt8`*e z{n)`nV#U$4ra2Q8EK4ux&x4eKh$-k_|9tpdx`uMrUqG$`Eo;O;K?`?Xw~KTAa(v0% z%U8I&LJZsPhV3@2thjh5E`)cdUBNdO}T{T0;t~)IW}lHW5RDLeDFaRQ{S4nKd*&morKhp6*5Gu*!t)Wlljf_&!ty% zOFZ0S1s>-wg&lCy*+<^#d_J>^%=pB36<_{KdNhN3;M~*3@mJxScRKCj(7xyWb>40; z_h}8(94NI*R8Ft#Ds8Ti^@B5AdiYZG3Mf8;=*{hW6Jf2jXZP4}#iH8Wcf@EzO!9l} zPh?^=1C!`X#vfwW+Nk19XPY!dZt&K7c>xn!b-fPJF+9<22{c5!Kz5~Xu!d6_K z@NltE?6aiPR+UT~{{G0R6dTz``(G!BXSn+WtJhI|I-M(z7t3yaK6^gL5 zUtuJ9p10Z|A9@(Jhaco{?9|p*(~(zx@n08T`c(_8U2N9&#Ip5?Wgw!}C0QW~Er86X zOCPKd)qSN3(}t@IWa9W@cm1xmU&V}+;e(NyaMiD&{&nW6>wh->Dfk0)E5+9-r{~4> zHITwzIs@(|OS(#pIkE$FsYkR(2}bCaoQ#g2iE_G_k&Fqn!vkO0GrUTfhXRnQQc5}l z6P%xT_J|3+^+Zk;ynQu7`m8L!B6}6~y}?;^*b3=0=1g-lva{5}@^f0K=+B2?`p;?i zLcW^_il%Uf)AKBTQ3r&+wDj#dYN`-u##AOM@3vjLt@c{RHv!{W zD;U(4qV!fYdW$G+gUZWj%%-rNwZjit!;$SvG=7nT!e5Khj8tCclOst)`M6l2^@i)% z#&YyWF46jLE+v&4pzi{t+t}k@V<}$m&yb>oB#w-lc=V<*sazB7Vv=US_fBCc8t-Qf zX~J_AvZpo5;da*57S`3are-60qcy#8>Ev7qQGW14xn$|EStR=DWhX6sZtCYfrRMEn z>-O9dzLZGnE;G;HJR`pyzQ;MvHa30T?pt5qHM`h&z|_k3`yJGeHzO+<1H);qF%i0q z(>|(tjlQIY<#4Z-vaZ(%O~{$@N?@k;B;+&IJ@-;SmD zp6W_pLO-<(_R&IZ3mDk)PIy&UTStXV{-NmYO0i;BTF2-{O#OAEY}}|(KIsCMHBUBC ztX|sV4ds)D*J0|fz*!C23m2`O8>6Y$&AfX!o5 zjw~Pzk*@*UMuW976xr*bAl0RwGKuZ75G!_rGi_3qG1>$!$j3x^s#uYMsWrm`eFLO> z6V2z1(5#%)o-8KR47LQn*27?rRIp6J+8c^A+bfRMrGC0Qs1ofi4vBJxfbDXQJQeOnCn*h+gy}zUd&kXel~|Fx5wO9^9x#7ph*(z9)Zhf zO_cDziAOKw5_Yt+q6fNd4M|0ecVidNr$WEx)1UYIpKT8cIe(4`L#|r>=HK|+x;F_n zef#t<p*$qA44ggtcqnenR7qT`Ns+|a0i5)x+ zQJ-9E=%B>C8ym0EQV70^saiTbazC-US_fUh zQdhu#C9c!8L8k*gEXd(PJ%M*Bg(gn8IhR4E`hc&7W}R}!plO)qNTiU z8NE>tjxdr<0_3y;OW9cZ8$N;rBF<6$k@_S^8#VWnN{DiN`sl1Tp*PyXy-S8==ZW$? zMEQ%vtlp)hJ_Ayp&aiBhD7X30)Kk{QJt6zZTZ_c_*A^f6Ga%HJ8ArbN1M@Tz;y%BB z)9atMnOa7U+(`;cC=I`J9tpnhUs-%mA&CEd`dHT1Pu9vDUIuMcnFmd^H=H%~Lv#lt zo)%Wf+COA=Pj_JYoH5((v^wT+x3S>_KOv9b-vp*N!tz4^1PRxFWXseeuxD} zwmZ=nHKHOd)M+ObY}|M7lnsn(D4m-0(Z1ZN9D zDqq7MkH*ycJ>J`y1m8U9W+37=U^%mb-<12{0|QeVH*%+4RWl}i2S3@ub4!%NpY)VY z^IBjTDb$8Ba|TmI{R1MZ7HSS=i&XYF4q|$|=W_`-i19-J9Cc;#en>Rm5;xXJ{&8%~ zX$up2QA+8-OBAZS@}f85DH(r})<6qXmG-DL_l+%_lE}NeM)XD>PC3b|F%;GPOEqGE z*0;L9wwa7KW!E~YMzk{oTSaelVKo!&Hl@EeMRi)5>~Kf|uMLE`f+a>2J=h zEa!F>w}pT@iRvsx9{OF_uSEICi{7#pchD?fynB9g-!GLeLAQjI0LfazpN?-1YU4r3 zmZmEG_$2wx?RVEnYRYd9RU~bQbR%C9ZrzbyyXq6=i0iaxa1KvE8l8Rwsag^_`euSmzs@N4OJ+xDFwpCIE zvD3>MRA$SyZ+Puqyn@UF;D$R`}jg|@br*J;xm&EQ@g z*(6@2VnwjWEoClYp&>RkThJR#;a*d!X$#9V04cOr(AeY4G4+NRA05(m6SO>==SUOY zsgS)&w1ai%r_AZ6OvVE7I%{FMwPj-K*yBH>DaXx*52mO5lgy5H;4#%3f-g?@CpR1p z|JAZTYA9|}Y4Z+>y{xTnkKz3<(pJ)2CZ$6C6Z@!Cuc z?k|9pE#7yO0m#&V4|i&??3L*NSTxi;K)NHbI?HHy#8Ir+U+0^pL&`Eio3dYeMz*mc z{SkyC+Y0ClLu!93b=pTYqtWL%w;Z0+QkE|C&naFOGd1{hUTUyKE9_dp>jwmgZmH+# z0HhfZ5L-plrm8RiGb@SmuQ17NCO&-|>~Y{y4YwNJ2t>@gxIHUi0cbv8{1&DU9X(X% zeP=Wbf1#mXe&ih;241b#UJ>AwB;JqTuxp)FBkw|Ksq9)^)rdX{gF?09&$LkASiow= z;8^KoA*5MK*|rQeJ`Pp3y7rX4a=>3WHBh@f!=uOh+m>sj74Uh`EPiAs8L2D{r;5Np zmWH`&z&vPJpYHQn_s`u0OJ?#&JEU z+Cap8pc`6A4>yGO?9iuaGh&;^Tqgqs}cGe9)WRC-b#7@FT z;+Q>Os?34m%uWIWv2hRMF_Z8(j}Y5}o?I`g^AXi)_AvIdYrETeM@6NSutW2_d!byJ z!B9=e?!5RbcbJDA?#rA?JofBPy0>cG5WHE>slk(*@Ml^KUrrL zrF3>Lmu5L)f(H{pCv%_%FXY5lOwcg#Z1Ts!G0E5;ZN1!HLn-4}XSZ&bBy%vl*AyN# zo$Anx5^4fY^MmJb6nlIb=57eT0Q21UonA&=ZS5S{@-A)`D9dMM#|o1xWWRmb^vC8g zlaS*_3{#Owk5EMJpwOyIE!B(d+9g)RfU_?%E`VURqBKjDmknH|AroIKPBAZK#s(tE z188?LN0$Bp8vRGCSekbAJ(%hy{{`0JP~@ND6woy`F-gNX+1TS~$Y75xV4VcZBoy&>P;3G)+&H$&N34Lr znJ%f%6tx8yIgcn06f0<$S}#2CLK~E6L_cK>`)FjScd^IuiS@lCHcE&Shc(KZg@nj# z$Spv+n<#%SR+zn6iL|j0e?&Ieoux@XwGu|PV^wd7a&NIB;?0z@m4y$h_KHAul7nhS zkH5Wu;0yS_0BI~yJ}g!kcFwGze=>kGjj8=Dto{H*X|Kp&j{{)5=2ZE#KK&Dc{z-fL z-cJUkc^%TG+?OlQ(S-eja}wWDiu&bHbA}7~nc%jiV@bsdi|4c_;m%Lh6=5!tv+Bc@ zNp0r0{Yxni;9~8eMrgzO&sjGKfB8ezKl{(QO?%E8Q$M$KyX8Q;2YUy95Oa6!PEAc? zUg_fAn|O9za3Zzv#$)hus09|}^TR_)J>CUi(5;Z|#M}+4IlmRV>vXl%iW#MVsxO3AmQuDXhs{bU(20yNpCA7oGbyZr zmd89zRPG!QZS+R~U~nSJgTxF#aPXFrstr(b9&~BI^12a~+fJ?1QH4FIZ18SeM6Vo~ zR~PqT0{+9ISH{LZ%+x?ue$s+OB^ykX--;R0U^ZP!N-zKuYevUAqTF1}uvA?)k%_O= zP#)(J9v47wTcBQZdXEYGA{+HuN$;_RN0-ckp$4?WJf5Y99f$x3XG0T~Rmi#$k1Cgv z#thJtc_cWMon(p$9N*8PQ9_g>+g>bi6V=(Ny6yNT*#y&kNY`K5N|ZZ@8RjuB3J9i5 zsL)?JNR%%ZD|U8z8PH2L(V_z0;&}Su+TUsHaV_@vzo$hfR*2HR5~UfOqI;RqOBG|r z%n8s?yFbPjP{XTqOKPBvSMrV*=cgaI_Y3Wc`K805dtRMZ`cZyrB!AZqhx6QnSGNa| zUj&uBZ$5md{pGk(r`Jm9ybG4{Xd zX~HPp3mMqaPFT0AEtMn7_>iTV6)QB;d}jhN!Lq&!^Lk*d21`q-*xxw=ko?W|YZKb4 z82}O@TUn8T$T85>Tt(A3(+=iTnfO8t<#aCLbOF@d0?nDxKN-WWxoG`r`X?KBPGfd{ zFMHe#Q*Vu#(&Z(y9yovkg8G=tXA0Ar9K8?S; z>f&1Gr~5X(c&0uK{W=lmx%-yOPOHcbSL4-RvkcE4yL{>P_j`7ixXj#qlLp4hY~Gog zNp0-l324_6G+?;oTe0&=i2D1pUJW*HIP|n7+}mx2E!w8GHI$q5+&RvW_$%$ za~pa%Ad~b_X)fbOgP1Dg*g-EbBLYxNrf^k1*r9(3d=zW^^Ilbt&4=@0PrL`L+To*1 zsW(95AOYgM5IO{ib1)^_z()abToom(;>fm$8HWIIp2s63ns?KtHSUUod=z+c@7g3tE$_pp4W#Th6l)brxy#>&n7RUz_s3H2U74k8rZ^L`w z?EH6Z083N0#FS~0$_>%3JfEcPqBIRv{j%!Ob5X)`9N8(4TW&c7Hzwe)o0@T+2aeFE zE>>A_im@ooRaI}ouP!7kkk?WiKZ+IRo%Lq)MqFp3rnazB1CR!LMFM-=7E5u9>0Ru3 zJYAY_0R#RqwVXY^k3GJ5`u(hjXj)4&z4p{(rUCtwWuG7m%w#V&y)@Xp4|2KOzQNUk zAqjFl^Rcn`^6p(e_jWMXx|W>XMgC7-*ebJE9xgisK?j2W6k3c)Zj)VobbUL99TeK3 zvp8=2P(F+I%Cwhr2Qjr}#Al}R&#J>$HVY5C`hnLrIyJzpnVrlgcn2WCVlF8>Fv6bkjfY`F0FqGE z>oYYb<`zzz%?LoCF7E3Fe49J?i-nYH7o!G{c!@`{P5|N$+Mp51BnJu{?AvTaw>Ck) z^+W!fXnZ~w^|GW}Yofw7$VQh`1o~eT5}Z#k6m#`vw`UUqF*AR%5ox`ctCjJS5s6$O z3rakS7?G-%qGTosc4sH8P+d2g%}QY>8DoO=F;&{61xZTkMU>Zz89tq1cJv-lWqQ>8 zG~xLQ8LrNY>Ncvnjrdy%36HZOoU0Ypty6Uy@E;Wr9_K)~$WD|SVeTvWj|vH?Kx04E z1O^_0C^YZol&2^ZyqEuS%Da{2{rKe6uc=9pI^t^Vx=P~iw!<4)Ts6@pmKMseCLOqV zJLK1(A);yfL$>TQT4lX{UwBa7*SnneU5x$w&%w9GSw#(jQrntI@S8(RDg3Rf?vC`z zSs+4{QXZXVq+b1;EgjqRIj3f!Q6^T~g60DV9jmbmg>9@tf218;F3XAX|B4kGFn8T* z&MgPUY7fH;OsK;XnZYU7)I009Er-iMF<SN_Jq__IL;9k%muTDLOsg zUHOEUxzK|A%^nZOQfyUTcGVmpYzKH4y5&L^;PwKT*fSH)HsK{X%e~s(@QKm_RvR3l zO*I77?_TOD^FtVeeMyUmam;3G8*8gSa)TptO*HN`pgsn=y|=1fvu~(*CETm6{Mc`d zj^(8Oqhx}W2UejPUc$EpOm-j;ag0z~KwsV>%A>`Kq`K5?8l>&|Xn8KQ7l=4UU@oNz zhbv?gHI&F~LS#PV)(T}3=%=({)L?erojsm{sd1%;)TE8}75I#sh^Fx(s~(-A2~8_x zg^Ay~>dkgmq#xqupm1i7P2ChpOr_j@JF5&tGz|jcxmzfhmn!4U?*)|*p~iYEbP6e#6p?D&ueqTDije2o7cIaLEbKB}*yYD`7Rj zmdY(-nau4+du9zXY3PhU`LqW`x8;c!fQh-Y@+fwap32hTW^zF*3m_Xk%zZ^QXJ4_q zWmnr~F$1*93we~lp*4v5dfTLx}aF>UNY7uolsz7gr5MLV7?L1e zw7SsuPVW*@pB|}C>vV7ff!>JoF!QA+twd?wr`!fiI-L5Re7Y7~yZUM6wsRwu50m=# zzqk}%Ot}>GnaNr967T6iKkCl(ogBYK881w z%ku~~3n82?1yid&A1Zk8!3pkN z>;H9HU#f`hoY5Y$X$Ec(D^(b{DxVVNxak838TzDoZFC;+rNF$T#lO-H&vCY%I6g13JBLyBJd%|Oa^j}avCDypK*zVyA6FMSU*z%LFCFqGC6 z)VD&TCZx%1$cKhZ<`Oajk?l2<**4Z(1?BXcDL^IUh#AXbj0*^beh8<=ak0?q9^qqY zh3rR0oFxIe>qOk=h8Yw{s-2y5p zN*E_*czvRt*v(GDX_)B;7%oN-WxBA7V>-s!h2VCNpOlZ@pO+ay~hF`)xDWK zSx7L=hH#2>z|w0q-z4WjB7m`@jU$BtNPBnvRIo`Qw8I0L?!kjIRf>405%>X%FV=zAS}f!JP@~ic^D!&kgRPg zxH=D#wNC{n051jjDj`={)??J~{X|=;Aa~XqkJ&tKzm}}4s$V%~liJEk4MZ|P%XAZ^ z*{SO7U>`6r=haZ`atU??(1jK#a~1uR5$t1ETu>vlw~~rnc_W_u;*AP zvb|Vh(Iv@Btj3wqfq9Q*bZaeCr+v88fhhkTb2oyG3mHFZ#hlN7khn@^39hW@3fY^J zW4+gt#Eiy?vyKmwmD2By4EI%SY=MExH9KR6UTm-ydbloiEiqajE*b3GmqVcBLe7E6 z!2!!KGd?-*K_Zwy-#0$P*-=P*-pgbT%tdowur6b8@7dD2K$1 zV{f>#Ei8P#jOtgKl5CftCi%R)C?SsYY8>gUtOpz!C-JDA4$0O81t4!`Cwm;9EGOrF zBg!|66``G8i$*2tqLlBTSj8ScfVo@n-+hq?9TZ0F@$aw&_2G+<&zk@)C5{YOj~qm4 z%T@KO`R{;??}zMmP<+K6KaQnn$3*;p$%E9zArjaq+2dp^#p+Y=;7Rtl341(vx~vWN z7!l<@AH10vG~w)kx670_S=I7!_yV&riMQJ9K_i(p5fZ-Pa$ZRJ4{@$0uj1W}Z-qQb z%Dr~*EHeNKx)>04VK=o@NARq<`FGvH;pt^DK1PhsdMbETldo#E3bqD^1=i)-X#;Tj z^{LYsAry&qP@!u zHT&&g3mDY}2Rk@(iBfc0uiq{VtQkG2BD!-%3-B$VaS>EAK>CSnVJ*PCzHxWaw6SW& z9M060iKmLynx#x%+}}7G=o^Scf|DI8VXqr=j!NJYOJ0SO6g+5IH^2 zSF1%2H$bm|%VSr@)ggBt+|z3AYNCREq%2I?CiLBuQj?Bb2lZV#l+RTV$n7&Q8} zVXDyUVXD$JC0{+FMJ=;&#+Jr*ofUJr(ckn&2?5U2?eT`&SZD?17$yObqX{&QQ~7{NLEYY*PIf z@gdW0L42_1YLTvRDB65-E`d@2as8zCiSl?cV@1rK0s^HFV)#j~6XjuI22P}qsx?t5 zllQ+bJj5I|BqivgbU*2L?4%3~chnH00drD(FprRo9W3m>@m`NKrbQYvYTo*XHoeD; z-ea6~jPEU~+mSI<-c?>?rc|Hq3cUoEN-wT8y}xfAD`*#*bj0d)uE&3@9C<^+$e8r& z>-JqVdq$P7ejM^V*JbysyDPq)w^ADWc4XQ!B132AfXlGU*>eeO0~%yrg{-y9+50w{ zu_KXNGKBMpdflsOu<#Aho!9Tu>)p^VL#*+0DPN?@>;RN154Q!9_Z*NJ(Fl& zu7w5zD;XHE?~PR-_OO6oBtzqIqrKiCcOIuIca~`=Qr5?mX-^eB7!-Nx!eu}KTC7PR z1}>`h=(~3J6Z$a`2C;w`R~#Qc*aS$IzZ?173faY7S1nco-^kpsBXh+he#4pL*Li8!`o7+2$&D z`WW^97Y2;uzD^i0ju!yqh?m-!&E8hl-asT4Fpe&wX=@d13!|Vxo&!*CvCg1OGx{lG z7zGW|m_5D+Q=7k^eM}RkR>&HP)wZJP?W&n2lfM)a-Gp2Tr$mqjo89n7-W5xh(vRq)Vg6(WyVh70Z%7@D z5>AS_nlUN)1aE(&t5^aiIAE`1@)C&AshC8QzgS0|Bbua1CNyX5{N9uVcyV1X^4GYb zj%1R=i`pRa;N@jl#MMQwTXQ8^8+cyyo%Su$6@)ywa+?_xY8b?H+3g&606CEN5ZYk& z%HBzvdc`c){ydkq`8%h|4b^7P*9;DO81TPs@4k=&MT2t_82D)Z*23I>OaFmsGUiir zSa-@cbcw<&fUGqfZ!{dg6b(u|?b6NyaBczn#IBDZS(KVnd0O?Ukl&=>v_5-0ohm>G~ zJ_4KzP%BKRhrmE?rt0oaFTq(Cpwk0WOndqeskfZm-;|eOdPFxAS;fDfsO%gN-SbDl z9TJc{J1_yb>cB9b3befdq<6rw+lD_0?8tjD0R{XpZ*a|h*i31NP9{T@bKZ4REhZTF zq~6P<3j0nkpurRZO%zx6GCDX!IZdoctV^}lAlc%{11K5HotBd$i)HqP+tJQ)^g~tx z?~4|x+z1WM$vo{O!ix+{lfatGkr8Sf|A#;kWSWT5HmST!yRb#My+-NwB|hMwSiv3- z!BPk@5sShBj~gY_7B7Sc=#A!Zgf3Oq&cf9^2gQ2!I2}tdjOoP|&pS$p2M3B% zwu;hBRrMD9u{?qjcxwHmiy~eptVKVCJ8G#H+F7`v)5BFT9nOw`Go#lLVrR3X;hQcWJqe#ZT<|~(LXI|I;Q4C zmzdAreDJXmx~KJ2sF5M>Y&@{{oPSubbCR{$IogvemtWaeX${3+H#baQXP_vlxZV-B z&Sm|+;*v`j28O3M$7C*LeBP*V@W=(R!m-YG-iS266wPA3^lWZr;Wjledxi&|_LJTO9yT1&DeLDn(JL*fy;lN| zA3n?#t+(lINN_%JLRs%Vij7E&_}9J3;q+6NoG*c?(7u zKw)aptqsrue`F9)nAyDlCYpn*=azSUYOl}_sqJzG?10c4`8~gAEaLGQ{L^WNBL9lf zPE_g*iq2F}fKsDHclm#6dB9~K9>{HjB8=&!TIl+AC}L4N$VhQzCxPIT)#Tj&N@->s z1|FK_s_xa*qkE!+dpI(B;+IH~_pF3RwW%5HtXbe7bzu0i zlTKqPOJZ#FNVZz2NdYe~N=Owmw#3*NkZg5OlS1B_DB&7l0xfperEjx@Z8WJJUlKe( zAOC{NV#~VZ>oVMww66JpYgZl^XrevCM!mB>@Syw9W zqxSRur016czTZ%|%k@7WH*An__g#?%l?2tQlyRp+-3p$@L%SXX`RqPRE445bG!{$w ze>K+_4i2X+kBKm1_}ak{e>Ps+&5;3l1hs}E1{?X#-t|-eRF7bN!-tkAQru%AG>1n7 zK;Xm4mRY$mQGQ;mSU+8wOcJFTs_GX!FXGYS6x~uLt}T>O<`S@!3k?*jK0|aYPg&Dr z+CQAJr0M09Jx>-`tR?~}FNZX|4^soB*S3&wGaK3q8suV4s$lbK&ak~A-NO)<)!U~2 zfpQ_Yc5ujnkhauNC{HXrfPIUr3K z*vifs;5vO-AshaX+2mFsy9y3Sg-iwx#|CCk^@D$+DNj9P%g+Lo+l9n;pMd=w-2U8% za@>Aim+F#Bun0u@IWoIM<2n5dwHtf<7^XITFIh*FhhPGu$@ojbo8(_?paCRyt*0tp zgX&5XlEqy2_h+^cqYq({uG*g_iP508eyhz5CPv3%679*kv&3i$CNbvMx3hdID0@3c zv`HXKmTAv*6TLBA5XXsfKg?Z^uhY&7tdM=*X{kd35Pyw5W39-;06t&919xIz1vlXf z+gU3sWdH7TYGHkYnfa0RNI-@w;C(5gn1fNmk_y?gVu69E4rd|x>swiuII@vqfsUvS z05U`V&n+xGree>CU?%}@7~Y~t33}+y0n%@Ya-o>9a@yw|?%*cM-+jms;ZzAxegeFA zg(xSN^<*R;@+SXqBlvm0ocoK!;{|{1-Jc~7L(X0D=sNq9__8g&d~K!2vx~Qv{j$qa zM;#_8-ywlR&Yg{eSV3`_ho(Ifbg87MQNTKYTnk@Q6;wtEV?x&^p2e5-c%Msmoa#Dk zBW3L9>;@`g8E~ZFl;uVZ=|_QY|e%m0R-EG9xHc5q0nIE#NMXO8S(mou~k ztv(4=GQ6Ionj@os^-&v5qzbsR9w6AQZP$`ls_F@VB57eg4nW=lV#HgNhEI?{B#?=F zYbeSbf|3bMwL+*J{nQfJM=wL|z#hk4EAMA_(1abpXkDzv1w0jOF!{?XqMRgFQ0pGu z{6a~#5a#|RnqHxT36pcqL^)TiaPNc{b#dykR@SjVB-LIK!5;U))Z1e+myoi6brZP5 zi1H4x0xv2$o>()XE&?-q1%o|qg{fU*GIdE=rf60+&yFU%Ss{B_tTq%)JF8}l`R1Tu zab(J3wXSFygw724^92N4cC%+}6yfaS-|s_#I8eJ$6|X~mK@*ybx$9yCxddEnE0&nk zkLaS^fn;5F?HU!1z-YovV#YTe1`WVV4FFh?nL3-00RWh_GX_#)f4}cDey<3PYwmjf znR;<3#I-2sY0X8mi+7>>vWc~Oeh+eRDak#~v2~>SJa4ZFabrpXYRx5=To8~B{@gax z{xWGvjB&oe4iF^XNDQtC%raK1EXNx8%gcH*uC4KInEGl*>p~SKRu?goQ>;~%z$vwe z-d=is!`_??IjGJKSe|uo&UsLyg+A-zf}5E0X7aLXBa{pr$oG%zHM}VC0vkED!g~sM z65xr}DfMIoAcBFu&0r?Bf~z#Aic)AoJVq;KXx0^M$>-fmG*8e%x15BA_EgAz2K1p3 zd~~ewqbu%~l>UKU^#s+jyR#d3BoDP;djKdB^D!IH+esC&@4%30N*Y^&hF}Moj19n_ zQp)sH-6xSldzQnaKng44$Tk5#jPu)9Z66cxpR%DH_%*2+KyY{SNCr2jSs=JavXgu< zfp3rZ{}@$}yg^GZt;rD=b`szWS51!4i1IM%xh`?NjR{Gkx1YYN=T^ZnW_ey(6Rq-z+LCegXhC*zm;F{%CK83>#|NQ(Z zXnW30`JG}lfj5WS#iqyp#%W4$kckym(@m1cA9`OY2O945w*x;4)wk`*%*s;k0x>c_ z?JSzcMSz>h=IyNJK*YB~b`!KTZR+WE>Vhw`-zNfRMN;?PIFZx*nPM^3bnw-tvEEno zh@OT!FKB3(9~n<~Rq^uBeP7a1%23*3Nuplu?ymtuk^i6ucV;#|>*Y{PhfCD? z5Rh>D-U5MZJHFGR>Qxr)tLL0 z+O|IdH`15>6z_7w2c2qsTwN?0>QeV={{Iu*YAB9h{FzZm^_RRt3lw2R57&jO3}>@^ z*h!g~KqKa;9w``?+sfapruS&UM-60?c*g@iXpdWWT3G4UYPTpbnQ{F0x zGmQg1YjfGzb{M*^9cQ^#P;)spY2(hH>d3z;sOaU__jkEAm}eEq{H5xeNgT43QI3N) z_D6cS~B7`EMRjF#spFZ&qwBbg>mk+a))GQ(oPI(kF7q~RYh zwE;L|5+d<*BPw5{LsYO;H3x5MAUOoWjqOtm-)zXPZHi$LfLs{x{=p7^Cr2sEGEk@q zF`0lib{i1=vjWZp3=u*T9;=W&1|AX<`a&oH&B|wBj-4|=&y568#Se4c{S~r*O=peb zfb3NBq$xPP3Epjv0+@`qz&du7;_i|j@9RA5tLlN!ec# zO+y~#5#9zOCN&iAHda{$CHBo!#Q)p$6}4BDPss2``Vx;$bA1L)U&M9(tu==2emsev_u}b)0y`hQ4R{qoG)x;$w7Ru^SU0%yn?cvzm&Z>AGc8w zqXEZJe6WDvEM~0h3|nM4s9Z2HR>)#H!xmu|mC?%D4|MBdfr+SYlPb)VFD)eCd4d4x z0d~?FOt3lT=%R0u2O7C+h3xCj>;H$4t0kEk0aD3e-Wz<KeiFerhQ{!rFYUr;cG}m*^lCP@{21#5@e~-T$E8vkgX-htT`WyA% z%$nDIYnN4|>nF{rnbh@1^1wB!r@B7W`1>DX#rMM{HjjSFD4hOa*6aPt4xpgvQ+KpJ z@dAG6TX^8$^tQ#o!Oi60Y{K4r$PwiBKm)`}@Im4x)%D@Vkvm{WBslB6%!XpUkZG4k zceH=~!?`~7KQD9C3%Q_-j(-y0g)c!j0Z#`|kDiJd+kvO~i?7Qcc|K@azm#8{|KNiY zCTK}7K?)$52l74)ODUUphNNbM%@yDuZEG7y<59PQtJ~ZoIe`g11_?P_0l-o~6lUy8 z^1u(t0GpZe$3VDN15@MALx6p72MKf`0O=SgpY-T?Ri3SeSMbXL74-_(OEl4iv@lUV zAy#OEjIbW5NehK=7T;av^j;#163RF-s~So_PK!Xt+M!Hc`YD{mpPkQSk85IT2UVCJ zx*fNWluv8HnFca>tXPrkVc47vMYhe);MQgkz=QgMwYfqzC05|pX4Q;7Jcq~cAe_4g zRfGvv!*eEpw}(!HyCNY5pg%CjTJ3!_RPAPzJ9z)CpJxK?x4@7LmTs+Bx!a$e?i96MZE{gLPVn!5Y zDyzf33*@O%E(2iCJ z*c@$*(ISwDUGzv!&Vl*)j97sO{XtiQ%M3COgObvf$>YR|6CQ?mMYYX)8Ny}8C~ij% zKqe|=|A3GHcpQnUUJqpK(075z?h08YFd~C|fT|uhNTT?&NWR#Ru@u}O2}hWsxFQYG z{U93v43gOY{UDNT2q!TrWW6Ax4-As3dOWuSLIDt-+W{dtkkALY9TkiV(IB@2?F~Tg zfZUE)LBP~5D%b?}G3{5TY4k;ACZ&^CysHdzXIS^IOLyOxKNQ9Zca}cbc3wW+{{TH6 zX83BY)3;A+4mjTyG#U76{dovg;~%2~tniz;?`>L~+KmJYfdcSpLb*2QFM#}4B2AwXv! zR0n6`=nV30^BHxlyEFH{nW+2wT_YKL*LWQ$W@0YRb)aDKO=fuO1XU_xdFcFe&?S+OsH!&=G(neMq)8B?W_rd(if-TJVQdQ1sA$ zVP*~J7QB>VN@%E4Q3+3Vy4>;4n%_O%xS5Zn3zlh7S81nT)~0TDGM|8-j9-=94c$n7 zT4Q4j}7GYHSZOBzIr$40RzJ?z4?ex;Nh69Z!`1U%j1qSX0;9_CY3@+bSp^)3Mf; zIG`ztAY)p4YG1Y1Lf9w?l&!R;RvaP_49I-yn6?K;5Us7YX6ufzH~=9G6;qXjYO{lA z7)mwBW>7;w2*dlVP2207bG_$$?;r2={o%fPK{2xTUTZz;e(w9XUR5!P173nvn0ZN- zjbK5Wv{-a{!@<4pUT{B$Dc(P{FRJ8-;KrK^gHGnM)_zFh#owKr(fzK!BkPkz#0u;~ zR{q4W+XWjs=*Gr7I$kx`F>28#1DoSt3~9ce_sjF`iyHT4e81uK8J>rRop)WDsr@qk z`)6q@Ke-V9Uw5P99rit&sG@Q_bOm9Te4tO^E81dFwrU9&UpfreULNIr*7+#2eAc)* zxl0+AaM8_k%Q2frejo2|ijMv3Wk2%GB?m>*-%5%FpWXP@9ijrnS8_aL@kxgN&dDY_M-Cng@o)m4+3L(tx&Re?^=)?l6Og- zewHS04PG3qb=e>D)4Cz!`{mtn?>>&pXlyK*m&P+y0ME-?U*)=MyXjWiCgOu@j=K*( z&^D5(OB+_^>h&!yLy5$8;Tl6s>+MGK$6H^Fmb>mAZ8?!Ix9v%htQcLtY8b_J(gghMzbC-&zFUii2;>f^YeR zXO~)(DOcxf_;YIwu%a6wLpV%-_+m5&KC3ZL!#`Kse|L2e!ER6cIwhLIB*G&f)pYrSJdcG%1S_$DiQPH{yIQyZY7~XSgA(D~JLxlUy)(Pj3LC21KNLlc1$J6VOsFV^ zRy;d=3U;V&|DhI(WvBXH+EM2-YWq#O!WyBG@g;RpU~Irs~l@B;H@w|J8?xsJ7RT~<`{3=Keq>R?33$7`b^KysLT{dFru0iv6L+KA_F(a+ zU2(%7F5MwNP{I`_FWs^7#I+3HPrJK|w>HFmo4Vu0EJeWye#e{een0taOVRqpvDYh# zjR9MGAB%r*-o4w;z0oNS&Z2gBV^p&-*&)iPt#Lsu#*TNPrlX*nWO5PAOeOEu>w`gQYyVRV3l zQ|^-I;R>Fynq}Kwy^}tD;J6hnL}-c)hmcYu5mud;Rz5AUcTK*>n%uE}@^H471Ut)D z7kOy*lt+NC3N|K~g+)ip>wQIb&b;Clp zJJ&4a7YjYeoUm;OGQsAdHF?LcD~>*UtxL!zbn|8XTMLK>iM?BkcxjO&YVtMF&{=TB z^^O=C5vgI}778B}38Lx)J7+i1YlF}D=6U!6HYYgt={Lz6*UZ1^Aioyx8jz&;V4mG0 zKYQbMAADXvZ~kjHWXI2H-~8^+)YG@$E+=p;@!?P7^#S3|f(fS*siv+a!j2v8iY=`9 zL*}Wk&IZ+98rUh24U+X9V-3$u0dGakCy#s`ea4~Sqw?6Po!gIU9dAVY14!`um#m9_ zI81qEpY!22?kO?i$oR-wvmgmt{R6b!L5>FlKEx4@<-+MkO z{=MAoK1Gi{3R_t}Z~xcZc}{x^{PqemB)?@G{Zac}{QfTqpWli7gRCJBdl3Y;m>fYxcNM_W36hAdU zyM4poJR|u3j;XkHborMPLm}(Fzww-x5w>OY>BARqRLru~esJ9V?&kOJeEp{D^HXsS zxo?t(pA&J!-{l{?zdvA`zv|4ZE4?PF=@<=|UCU;45}EB!Fn6i{ET zKxCW2?pM2lJml0)VkdZJdPPC;nhY(K#w+;#>5hj}FP=W&A&q;OuVrb@fjC>l7NKBn z$uc&`sH&CzQU^0sSHfm~D2Gf)%cPyziE2w5r{Nx7kZz+EgPIs-=YDo z%8y!B_1%n(j)}cw;f`McOBGf!4Mhk1=_R^p!>~@Aqs>pDOeKv0%Pk^q+9i?UFpE7) zN?UL|%#t>}TCz+7fV+K_8K4xvExm_l&9;O2(QzFA~B(+$z`R=_-v3rQKVfrC{qo|_) z#qs+6&=_)QlAcK}C{1io_w68d6`8s%v9JWimpmD7EUCfrpqo>^$@91F7!MaZXbL5G zbHKAR?&ov}T&u~iX>z-TnN`U9+_*A8Evva6#O)}+Kz@|7M} zM5a`uAjo(K@C01VG$TVNIABL=HP4Xk6-U~0N7@5j4STO3sew*xcyLPBo4TdVlHF>r z+@W-(=&Wm3eD}0nkLc=-5jj!xHkGJO%M!mr(aVlL%XsnW^T}3>pota+D_e8NOiOym zp;J0|KJi^un|*8hUxXL5Jrmn1s`JGYZY9&u4!XVM1q$CAenhQG)rj}tn6IpV0(rXo zeU8-j`WZ84#chs*Vn_~ZGUfnd zRVXn!6o!x^fe?Ne?0!91*#PBsYStuSifN0Q7wlik-Iesi-69Rne#gBN)}t-i?nR-XjJ zh%H*fC3i05lIhuTq*Wp`(s@NS)e+NS_h`_eZk;Nm!6e=_ug5$M6i_uQ_(q0yjWD9p zaPE5l^tyYc++FTH+RO0h(1SAQ-fp5l3Ra?cP83yqvAWXl>hSqz9?Qj?QifPC6K`fl?O8cLx~HlK|Y%mzo5#O8AI&D38_+Vb*5QZf>brarZN{+$X*2ov)d8rG$J{3O3vx zZF&1>Jkq}nI%K;IRxSY!VI=h!?$G?iwyofe*v>270vO#;gWJ~rD!F$F_h>EeLhW$* z>;dS+k_o4EpQUE?BGwKePG~cjYpW;2kq(zdmF&{{@Vlrx)U5EjjBj@&l0GnUw>8n} z!OGRSyt(zmL5xX=?MMGtGv5$N?nuf`Kx)`n5V#ShU`IHVo1`372L$bh+M)LH&kBk4 zevsc^vCV6_fa%~&c05x$IDwt@Pl+e?apc^NlY`Tj3q+nLgA^9D=`XvNWZ1)hIw^N# zBeOspiHvZven#>gW@3c$@S>Cueogg+r$}t2IbL0qvMQqH^4YQu?A}6<$KRH5XVecP zJf@?XoYN$DqlC{I$jRO`8!zwbRPT%*+$L_b6_pEl#V+8Ifj21u9L`@G9V!8B*%227 zHqe`wz8-H9>`5-jW7OEbk#Jv2a~7KRsvJ7a*Djy67eB<-!B6G@(5zW%U&2S$vJ$>D zn$*Jc@fKaM#E{0*%%`JBQ&Kj9Dby-CzQ5IX)AAbeK`kcZUGCszekbK_KPu&Z;z9tj;nDYoNkg&B!Pcp)Wi!-@!2s02R`02WKv~%A9pFC(K4ubFwhS zQUd`sA2oU8lBmayG%=Pg`MVjYmr!qd>opZ@Pd@YvRbxmVTVUE_o-9Q z`etcc?J%Pps!9H7-PY7BMlU3k{-CpT!-a*! zMG3erMA5N;7j?wO`~-fub1qRU3HpW%z30)QD{XYn^8n4E69jUwqeI#f)-qt@*zdM| z{kmw*MlN~xyo@JZ7904JmQ~u*?Y1Vz6z@d|kaMEP3^sw;Fq#T@KsbI=H*|kz^U!(@ zxut{~Sf8Oy85E}M_=KOfgbRsem&|e(gASqTf|cOb&#W0{TnzHTG_kL*g?T)&OZYeA z`B~jnw_tI4@mJ8LA63;Q!(f6jYu`k_1%nCl8&FCkgoa$bU0hb?Y#s;KP_;2&!!Ph_ zBs@eHNb=lyUq4%nJV z>MIFjlEW58Qu`z(2VCKRZH=T(NK7uc!V&Y0q>3cvXwR6k%D0|fk9LjFB!R*qb&c6) z)2QW1k8xb(iq1ngHpZ)un9#kVKPI0hI%^ zI#k^)n$kugZ5XKro%T^xZnaw4N|uGPXEkd|JzTc)?!VtGt#2Rov{$UC9S(9A9mq2Z z{xT2{8QV1yelW4^$SLmqjF?zxkjDW1<)@5|FymeOPcxqJ&l#^^i}^aczIOy&AYYJY zT*+>h2EpUW=Y_)5#~NsHR+C|;bv(c|0PopMM|KHc>LHQKtB0%y5DHkk(M0SL(6h`I(F8SMM@YY$$;OV5a6>U)5E$TR?o+bn1lqd`-_TmXt;HgRO zDVH&p1pXj^T zZ}b6VFUaX?X_HbJdV5w=Tj@p@u)e-zD0V4Qguv$^lY0pt4XI$|-X_)_Vy66+W@fhQ zA!AOXIxm(nu}@dUd&#Lh!sIUqz=4%>BAVJH338U7P^Ww<+PqDuD;T8tMEu0kx$`5;Z z5iFjUF7lqeD}&Vt%m+MUVq2M|LY;4bqOcM^s>C}+8GyBc*_^5>G$!%xh#oT%iq+ERM~wjyfOJ0B?m^#!HELP2 zR0Hb?s`J#O4)PE% z5isK+AB~!+#U%_!!YuF@*u2gTcTniO#~Jhf3#7`BTh=Rj`ES{ z*a*NUV|jjp*Ky}O;tNTTgS;V{3Wg>i21K&x*ua`nk3y@5_qSTJ8v;AeHwl7Xe7e|v zQ%Mip$LVoE_+vi~fl93cDm92odo7EVU6OJuK9_QrJ5vH6rBlEMYaT*7q+lhom=F(5 z;#io%*#j*%GHfbg#qfc@y}uP*!oj!#KxfO;EQI6BG1BjM31^n@--#yA_|Y?UL(eYB z`q%8?%?%-My`h%wK5yK+W(V*76E$nO<6!sw)T~lFg&LL$REC%Ek3^HV{pgjtq2U-= zKMBFJ5VFo0eaZoJnXhJ5Ycsx01KjU4H8atrW`!Z;z{p7Xc$g)&1|~g}*EG{8xzh8; zID(`!)*nfMd)^WUVz)1cnkz9a!^M^upF=H`n8I-6vEWb(CFN7)?i{L2Vw!=^&mq2* zl!MFGX=lnY7F_PGva8tNn21o2FvEE#HXKBIqXHAKtJbD*$#06J-0v3>+=!bFBbB0W ztu`orMTDwE#foTht*jqO-IKMq$|0dG<>ekTbcsUA#Erno*mx@RtCMdwmA<=X7w`UY z8CREU6nF!3s)X+qNji6ow#;OB8I{$CuI>>lA;o_yBj$>b_o%moTct4G+Lg*nvdt`q zvie|?U@pvZ1-wd_cJ}4BI^+Qt+COC;P;ErdP`kNG2_+5%Z$rn=%#cD(`E#cn; z{5(|J_M%cJgKk6D?=xLeb}8bNjtMP+TrsGFK?Ly$7mOQ8O;J^N$}i>-G#I&66&~`> z@`wijVNz9ifo+>G`_uj^(M&l?(}GD`CGwP?%p-srF-Ilxkn?f~ZifdgcuI^S5a?vH zarfc%C>^W06;WgwnG*h0w!P+-GB@QBV}HrMGV=1t;t90)AQ+ixWSVHq#++q85bt2n zIRI#Gooe$URq4A|XZMcTUfIot*hLwhg2}Upa|UC0<+^#{u1HqxVJ5aY$6h&6YlMZq40}D=zy0xFk4pu zYXR{NGel89&qA(WX62Cx=imvzD1fx)P-$lRflx;kS>QqDd2G$&U9C^KgN*fhL!1Kb zTwh$Svx1SI2P6MxqQa*r!Wh=kT^w$&SzMN95&_pAp;~*)|1zfy|30UcaG!o}JfHoz z`hi-xv+a5jzxMK-tx05-ok52z?J&0?=IXF%GEY*N@@N7OYqpBxPP0OM<1(M zpFOIQQ)3V3?Rh5-64DweMs%7}n?@oAl(A!cSsb7_aGSC9JX zJ8*OVZd?f@ac}rI6s$6`!0AxJpVJjnNEG`E+?x4cfwiHTk8F2|*%z4Pl(V0JqiUHc zUy?&K`U@OYEw9MIE55}a8l^2ha?q%q@t{maBmmvok;2niSU=iwAaE?WR>evk-R#Yg%3BY!LoB5R(TKv?>|jBx?_Xl%N+@d zmGG`6IAyz+_IDTae(iSS1F+DI&>=Qx^AIxBz=~rd(mP;j@H+M7i?bp0pv$mv1;cAz zU+B>2%W3W}g?CrU=O&WC?$ja6XRwlotklCMCfd-ND)v>{o5#_HwQBuSOZejte-^-kQAFzPbRs9GU$uvT0DuIAyD>Ka2FYU!2(2HJ z<(8j~q`+w6gI{pPP;y(oimOT=tnQ009dce^2Hh9|{j$9l~0 zKKukj5UK({+6hYdW3Ul|W^)MHKE)8DO#NG>F)$l0sR;W~q!8JZ@KJX;H7fxb#fZnavpmhhWn)OU?9+VJSih6eBZ&a0UESHvH6j z;IJEF(lz?|uUGf?x#NxvE4GR5P)U0!cwH4YS7IG4xp-{-XzWf`Wo8ysHIP9-cOs+ zS$n!~LBnh{E9;kxZ`VND{1r8s0@-pX(%@haC>9X60qmXFRwx$iL<%Stklm$+Jak(3 zzb*^v0&i}1z~=iQV>2|pBw9;(NObHB6+%LDVqM|93k(7POkWE&q_E5|g9Kuth1V-> z&J^~b?sHTcQUks`iI_Mc%zR9T}FP&ZI=E~ z3#du)XK zR{l{>2W$wxqksAOM@K7X%WE=ja6`#~kY=e4R0HI9SCfoznx(f<^c50jKRTG>*=m%KHP81fhR<6>(J5fvpSWPQNeqN(4dY)lzVZ3Q|F zMD?+3NGwj4X+_G38F)|;5i9xU(%BKe5d2V|(G~JgpYQ~c);!E$6FTVTlJ8*$^LEHA zN|2xY_H2;1*TTB^Ovalwi*>ZCyVxBnxS13y$8CXvz+H%edGHD~qHI5|a&%*p`tLN^aw0PM9*1LTAxn+0hhVQVt-JXw+R;T&KSg zmy}<*?%q!8s!m(>l{_A>H+tZ}n4M+G$gKZ$5ARGV<0Hxb>yRy;swC_g&PiJBcLKKH37_d2562Vv}HLuoC)FnNd_V z?1%v*;0pt0JFfskA95dE>Pxx1^NlMFz<%>olbxq@&tRB9M7hu?KrSaNC6YP@eFj)- z>c%UOSJx~6war?-089ja0%RY+bYL8i2$5v~y9#Cji4fTYn0BbdgscJBAut6Y+Tf%wN^7Hn5h{#0G@@5 zg4#p80kchcQX6TffX-a;_i+2aFz#I{_fw>y;c;g`m z^KPc6cL@V}$a~E3GXJ4^)i%iT5^ z>hXjet_l6?dmY~2Y&z3kHqjLqwQntOcWGtx`WJNt+2@ zI9s4e@OzU-20wCFg)ZP$JW!wraZ!_>H%ToF$W0Zjgrn%3Fc!=|+#GR)J#^xD#X-;& zm=8|G&MLVOlr_s9?H^lBgN|{_E3d$4iK4E+bLfR$0$2)Dc?F;Ty)y4ZuSb1;0KWOP zw1iv1>e1?9^q>r-L08=b!7Zf=!#$m+I__+yQ@e!LJ>)Vt3aFXcW zdpohikKO>hDEWeX0`@ikCtJ+_aVbID{=Rwa(O*h0Jua)=4?MIs0Kv3t`XcJ~N5Dc* zF_jW58g+RLd->m7L1TI)j{Np%%N~EyXq;l!;D+YgaGSMa!J)4 z-lC7{wlr5S9q8_?${klr!xMj~^a@Hxmmf1W)+dn%_ZU%^)XJcn?2Z6oCiP#WFHyS)i%*DHS>!AGnAO^jiTU0vL8a8Sjt!D6YKow z4^<(^4nkb^qoLsqa%T~-&yW5{Re>x}1TsItF>rDKzI>Z5+cHUT%;kYvM$b%Jdj0{(Psp5Ta2o*oZC3Kb(hE805~XH&IbtdmO-8(ZaMNqk@PfZQNJXM?Vtw)d6vxFZSO_stlM0**7?qri-AsBn)gLz{@lo%P* zA?D$r4yCPB$E~n;ILNlM951!T=5nYFs^6CsiO>Zvb;M=>y-5<}D_@X9-1djeRJ;Yo z<2h7^I(eNDxxj8e7Pr1QL{W zvca};s7wju1Lx-xhx`z<<;T*o!mQjB_P88%~Z4ronW z+L2G6qRZcmw+icd-j)X4$6dgRCZ9D4rj+oRAZ*V_`0B(qP{miOrSkK}0P=CwuUhDT z78=1%01+THiIR07uc5x$a5)3MJbS%bbFRL+%~P}mx^(P@ib|Y)6E5Ey_e#~Q#w3!0 z=ZNGO19MIqtoe|Oi=G!_3} zw`WX@?Ul>hCg>L4)=r8 zZeCcT)^B?NEmYXG?ELq;7Revuq?x}15cM+ULBOGLsCR))h&L7x8E}XkUTTjSfJ7(} zLZvko0~^~bDuz2q0HFy|@Iay9P^%~lgV7TE>>j7#DElsSSLq)3)_Pv16_|fmFMjYhT1w=nk#Z)8q@+>e@ zHq>T*(&rR0;k;>sHG2VsV>{9~x8bOvPQAX;y^|RqYo*Wn`Vs_O@&jOi9PI2!Sj;7V zxGd#9^robC#H7+92BoFuQeAD6U@GpMCN4X$M?86WSS@IkWr3}F1?ym1TK^P7@r{2k zS04IPu8e`b%JUU4G5wOU5jHBR|9+#Q`E#RE*N6ViVGWg)X_=v9y04+Q&o$Fz0n0pc zbPNm8*;s1kRIEwa(o9=-2|;{c2eclUay1-Y%3*A_c&Qy`;81T%Ao!U8jvMfCNWgHD z07lwq${8%QxE{>2la0*(U)z&f{haklxs}tJcjn%1c4Csrp|Q=Dn|ivy)WVHJ^_DQr zv{D30(@34jw1YUMlyXCAv@9P7I>?C;k zN|F_3h^Am9_(S@Zc+ZdCu7Z>jI=Be3ws?Xowls=rlnA|WJy52jC_VK3adhAbm@^^0 zhljafYoe%o0P4fTz*HGU-Ikac5VQdCEEOHSJjA@d_0E$KQaDw@`b>k^q)hC-Ps@bnN&Gl`bHU=iaYlXI85|jizG;Ll2T32YSxaX}j*Gef? zJ&2?{6lX%zWnT>Cw!P5HpbLsTq$4f6Re4jszTHZj4romkH?MI^Q@g!b2Sb!_dWd4nec=qb>4{^i5trIZu^NVmJ-IeFAo1LOy@}n6Ly#W`&IFGPX7)0&n2PL z;Y+Im*L+Q06)5m|ojiw;On5XcwmOVYs5#6zPG4w`D=pC^*rr_WyHSE z)kmI_KX0Mq-g_ZoNsZCh%9Fa5Xt3gux&0N9^;?zCP!SsFngrdS>CC;kMCSG_x`+N5 ztU7eXJpDu%>=TN5TAN-H)h+*o~MQV~P zA`?nJpY`1991_LgAKG#6{p&5~KYc#NZv94e(y{JH=daNhE^#W{^gnN)_a3b|XhLVt z=e6t=5s(6@E$dOf{}UG{g0nzs&3cr|jqT4+`FdIDh14FbQ>Vqec)zXp7!{9V9~4@o zmmug5i)Q(iM~qZUcc>B1P?yA^DTh`qMgHI&wf1e0*p#kLSg44)FE&y&9_}7ZT-xh; z?);&M=enxFgQJQtK?!zi?XT?Fyu);6Lex|J&q-_UEXB^DM1)|0)R2`?%5E}NN-bC! zMes~ArpSq4CXlXWO&2n_P6P*m)QUA7G?&B9{Wy?EWbQQDhi+(nZl$ovyKSo<(zxoI zk}y{nd{@}P?_TAZWxfyeq%XM~I=GKeelKF%k!S4asP9q;lylg>!aDm`iP$td55E1u3V1EAwR!LKjB)p zUXdN=UN+VEYm7-cdZUr-?CprBU5$Gij#xd2P_%V?i^^RW!(8vA*fMiq_Iu8V2^sUG zeT2R~o}W-7Nv$WBk>R2Fn9YIA%kgHFCg{8EDlZGth0_e2Ij&LK+th#?|NOAKqBUPFuN_7#k5|QF7PVmJdxLYaaY5;Q| z*6aeA@q7s5p-GAzk1BU|RP3cqZsQvj(w!96w8`iZi&%ZMb%r}7E@ zhOAS?QNm~)-iy)eT`j4sZyhhhWOiQT z=#%=5(Q1^~go9CcUdz%DFBGM4@w}XOP6E<8{8=5AeaQ&(i6g;MIOCzb21AFoQ_?FU zheHI{jFEotTlR(qiIL;#veN@e3`f^s)#g0*hB((dCtU7}Z$>*+xfOTC++V!Iy7FsR z*pad%_HWeibMNnk*Gcb!<5c%nA!fv>S-(NjRO?=JhCaxqtv#5G79+lP>8$yHzb zT;E;{k1N2Oua?m3!L7=W3}ZO!SOfX+!D37@O8gcf^X_)ewqgww!LNESN9U-j0&nd< z{9+dVOt@D1{BadB9#VXjdMjwpP5SpJy23#{wgr$f>GDr`Yfl*) z(e&i)C;XiGy^i;m#%`Zos4`DvAFD*e&S9_IL0NB3-DtIm?O0`|So+{QB%LrsXLtCL zl0C@N1(-SB)bF_n*`i3Hk>%>M3h!e;vNPeD7WnRjjZ0#<)3!e_%ztp=_cGlMXW;OLr@2pdG zhJDQ3l#@csgWy)2t^8I*u&rQQbyA@7X_#SWhQ#P`Hw7@CW6feU(UCmv$8CZpYkUj; zj741uLlMtc)JVP&G-={1{%Uz;skdct-haa3c}befQ;Sz&uJ>`b16|5SnOfT# zXP1x<+Rh92-j1%dl?>{9gLZoH{+uc==2EC4RGa7MT3r4#Wh}XXu{A|JV5FAc7b$jm z5Wp|~IEeWV_?9Mez>xdpe6nxS7msogvK$dXkI_4a89v4mg(q$DOjO*|Fo~;y zY&B>zJZmT(Ez}zyG@Si<-qW?15jiAvD`Z4s`I4c>=a@m_W3)-wNO`LvI=O?A9K_6Y zRK%)dgFkb7xev;tubJQ6Y0?>U|H#r3I`8!5(AUQz3|>3_NGQo$DqcVcZ{|%j?7>FA z2oCwh`H$d(t>)#<`-Y@#W@v|YPo+~u(7qZ;@JFA?9l{wyWwc)6*j85{z;c|?Tb;X0n&g!EFJ1PDFOa~{$X7z#1^Ji3p-buG-2QA2` zM!(^G=%{@~XI-AZtG>kii-owqv~A7Z-oS<417Z7K$E^8d$*40e;=cJ!#7{+W;D9kg zw}Au38yqnCm^>bO&Pq75TRE%WEe%J=tO;IBy)p~NKT(aP)ZXv+gY%`7u?dlIc%(d8 z5B&nmx9q0BS;LC%pw!kx+6a=GH+gISBCTzl&9uAixIOY2J1}PO!p&&&tHvRhoHv*3 z-5U3w^Y1s@FFw>76Ovw1e`Npb4fk%}K70G%eTPk#wwy4Nw1PwGG^2iP-!1PTCfnAz zZI_T^svOly9BV=(M9SIr%2B=Sd)_!ze)jMzwRbK4!~2$JfU#)P8ZJ&fIB9^+!SZuO zbbs8*-@7#qooY{F)LUP9m$ZZa`-zGppV*GV#Kzx_`0F3prpo&vx^7b{JJ)lM3bvDQ9g68w!QLUH1u(Ug+j#cd zI->hc@O`$VlbQtLK3b}?obAr&JsHnGStH4)AAd}SXXayy90|d+)Xj1>lJQe)JU_NZ za;pAuCK;|D#Pp5d|G^MBuABH|pnlVI0bC6ZHV4K}3s^qHov{0Db&&Qgcjm??SIwl` zvSueP{$E(9yFt;c^N*Y`*ySYmz3bI7@b2>2UB!# zJLUe=-e=VE4vNJ{d4v;P4{4f?`SWKg(L5V(aik2B)3f!;xj);gZWWhosr$CqBl20e z5jLVuxA)gex?Ou?zLPP+w%&Q4cBwqAclIG;b_pM1d*#!KuWjoVc2M25x@!`KZM{rM zc4i|YLxk)nkzxZlFX4C}T~ehHcMs3r8amXtA5ROcVaOZ9ElG)iVgT25YWq!IHmvRf zcn=XX871)Q$!We+(ROD}-GI@MECvdi47#PMDHmJUkz&DJa2p{5hbFv&y*8fzyhdUn zQtW*b6p0e|rnt4}vFb|T%%Z_RV$9HMv3#3~$XyT@f+we8dapYXSb!6p`aFmXU|)&g z1+M#JTgZ{Ee8|JLE$5ccp1b z79#}Lj1tFArd+(C$2~=UnBgVN(pNUE?Upvj^P6iVz9I$YP0$w#Wi?=iHfyJteH~#g zEM}17`Q*yTc>|oU5z_DP7Ndubid6MNQtI?*W)$!2?N3$y_IJCthVSj#;$nW;@jo{? zs}|;-Tm-ECDz!ZNm+++CWA6vo2h_#fYl8{&Q>md7LIJ0S0g=NPXdyeO-Sghp~pS&BW6Hi4d3_YnXcvlaUDW-s+(T# zjf0(%x4!JZ1^vXKoat zBQZ?5=(ig0V@RqrQ7oF%CXdM7*Rb{gih^Rk#wK4Zh49bypPTFv?oH= zINn_LJ!5Kb_tAyefE{IfLp)8>*h!vNrD#8gh$+?Gd6b{Q1NN~6|0`3dty}J*ZNJ4H z$%|O^E2_4_Z87-6*_ref4VG&$A#XMA0+3J{n5P@5#H~V)fit(SqQpA1$+VdZZ!M_A z<3Vb>PvNlsOhIHPyA3)7(&b(rH_Y_m?v#QR>O~vaWzrLAUP~Bvv}m%>b*`q#W(UvBwD6Ub)InIcq;HGOLfsD~9J4V*ER!7a*vS z7W4?JOxmQGT(y}o*A~xjtC9Fq*+%%7TR%@F4Mn{KzS7QO%mrKL!FBi_w7A#2BHozb ze*iFRZ%Q^qJ}Si2I?-XmHzroF-Jl+EmeQS!mN;CXVaKmo0;@iD|-N5x8O=;J6Euq zfo8~*yRYk(g5$!sMuGuQgdxYZxj+ETb=XTCSf+rr6i|t)gjw}d+w8T_LGk>c%E(=i zD*`vm#PkAJgqWBg-T3pI*sF*TSHRd-!FJ~an-yV#dFX6&Vb)IN7Y(rtPNkRWv}lq_ z)ao-1EoNMf=U=vIoVXQQz&MQM|J?0tzbqoWnLMB&Zh=eA3ipg3RXiM$UMyfd9A^0H zkG~uVWHzLTZ|Ea$m~mb6A5I6-Ccl!qo04KpvgK={=vR3Z0RH3k5u4j7SA&?&@wFI3 zBu1B8S4zx-3A0?3O{T0mG8`BzHu3wv0{|<=?Cuz7h2twsxTgxTmEfd^kh@!m7fvE% zJLN=g+Gnw#F|4bPI;X$vRzNBvZE%sk>!+L3*)j?v7F+0_+) zRN00X13?y6DhON>6)o`v^+>5Ftzdc(iN8iQqSX zV_tX0_w)IbvA9BpZi*?_WJDAwR~h+)ZZCw#m0*}1>B9Wt-#Y4RYx-J8(H#ZJXot+BPo%Pa%=2@~mJ#AGTl6 zRnD&ImNMh{fW8obr%(WIE5SI|NHT$^KxR0ABV;{pK?k{L(x$nj%gQZ*=M@d+FPWnA z+9`RwWQ(OjM%%FZuch{hr;#1(xLZ5sr`l|tV_r8DmWt>ieu<@7uHIZf>1PRdiflP2)uc-TKNohTKmKQyykDMlBY&xRtG?1rE zxO%+kejR+DIq7|Tzdj8^LYMO%55D311r2)EqB54YpW$P zk4rFbQQ~QY%v3~Jg&Q+Kj_YtUN*OD(nacJSdaNUjX^x0)AY>SXY#_ySOdC0Fj2zb= z5iKHQniu*Xi}k&juTb;`UYhHJZ`fxmHcYlnq!n>~>8*+nf6Z7lgB69j*P1^}s`-U^ z9MyU-?~cW<=&1FU#cy(u{)~n> z{NjH&)4?e5%M?=>IbFU^?yhxXb6E-eViD#^XZr981C|rN{!nw+QE`N0RaVS6gpi%+ zre}EJE`WiVGPw1d6$(6JQ3XSf?93PxR=tHTZ&|l+hD!7Uy1dOS=OIkiMqI2e5;N9vP7)wyBV@#G=Vp7>CLU#X`^1jTDDj1H zlY`Cop`RGfnZE3#uml<#To(dnxAbj1|Aa`90lw8q$qZn6*GOXP$>XJrY;avST)#fD zJAbfoaGB2XCi=h+9E6Z{e)LucJ1P#%yqHh;c>OavWz2!h_%lW9r>T}hs@sDw!lQ(u zn0LW=)WcWkb8nPjdcYjB7muE$P3p>3Uom>G#`ASWisMmqV=OA$ z^gZL+--R))5nIdO?R5FQB+zfGxDc_uocD3?V%fv(KhjUsM%DT2Q5F}Rmp0FPF6yH5 zI@wG5tcVT@VQ1>#r``Ds_v;)AtTIw+z_JE-tcVnwv#z|{f9t*!G9 zV^Js@d9S$P(^x!zT0}2O_|^`~KOmwbmC?r2A}N(^+Gh-?AEbUq!jGD!OIT-h-guPO%AM766{9g*;`% zO%pli`CvfoJ0Kz?dJr;!=T?GgMlt)bX0TF*?+}Kw88@bj9Pj@<=XskM zZVZ5Pq~+a$lR|?w888y=VZbtlE^7Pg_kQDbKvW$RSOZao1@zLEWT%-3c=MH-NWH|9 zx_Cw)(^_e*mo5KK6g{|u5*);Yh-(2nIDnaet+m%j+M96?KCr?7xTr)=VV174X$`Bc5Y8;cNZO}f^sXqGbSdDK14wz2Q+T8$U zjmb}MUayQi^J%olz9_8W(l4@K&9A(xUT1N>JTS)iIjUyOABABH7jU%FRCYx#Z~OKL zLZjnn^%;B=jNX-IEk0G?|70tb=o~Y5pGve5dcX!EId-f&0FUi+Mk}N8W3x2dQGv-) z5Bp`QvH$W>vVC#-_nVX?gBzReOW_U$n2Wsh;RJ+iyIcjC^x1Ml!8L6)Z?hA@RXAhb z!u+@s=c|qEE>c_EC}E7m^GAj=*}w|a1(*F6yf$*CjU5%oJqT7j-&qSe8whX61FM!O z07Wf@59VW%1DTKG&A2f1L_7Cmtbk;OkI|ZNZh_1!iUV)XXrGf}J#8{!CU$Hym2EPR zGh+^3CUpxVRJLum)NROqVWV=^s9S0Q{49~e28_NEcw``RqFSP^C+Frf9ELG7YjF!E z$VG73dB~Wev~|uIel_Eb9z+vorDsYo%8oPTx;)$ zRzu+%bCP>HJRr5(}0G|tG!*kNlkfb0YQQhYxXhOE=( zHZ21T*h`F`P9YL9<-OX|(-6Gmy~g7&xmZ4|I?^FZZNsDF)I|CVM$M3?bhvr}Vm?9^ zAZIVjz3NB}^s-0v#mVLxQNxSj`<7!re4iHSq+!o@M>{A-J1KA5k*^;iWElwA^he=u zkkGr|Y*l}2>RCqg1q*y?qve&G(Ob8ab|HRx@HuR28EfZ%3h!0iSsEDL@}6Gqcp)kE z;Qh9rFYHBoI{(62`f&`*El3-tjAa%v`my|uZs$L>S<}UEbsFZM0V>-}$YD-Bn=WE3 zTyL7Q)89!{dz%7LwF+kk7>*N|UIiF3u(+X#CntLNSlMeL?}+Fo+^^pRSqL8Rxb=GI z&UpU%%E+-T0xxU4?Z6-XPd)Tld)g^ayqGf{0da@V1JUbAX9`M#yx*+*-wQErdVuWR7-G zi9dl8$o1stcqWBR$b;kd1A3aq369g`)&XU^jW(GiC&DV&5*|f@Vk&?u{U&I4fOrGP zYQO-!yMwZOH!<_;O+jK8gv@-zV$cW;Nb%c>NUSxkAN&RrH0X_^UAF)Uz6y3`r|+!2 zoak1;R(DX4)sh7;%ruaG23&j~lN@j6YeG=1rcEA_tJX1k!C~^nWA5F&>@i2FA&I~-SXjar5Iyuf14K4wGhJ$6cZ3Kg@~{N$JIo( z8gd5;8IQ62%xcMs%p-A^Q5DF%O;xQH&g@Xm>aebKP^to%J&uZWTB@gVR_lgw8;G6? z;gRj>!xDsSH$wLKV+;qlGNu4`182f>XR5rnpYZH1O!IrXF(l&0sgj+};=-i+(SQQ& ztSULNP>@y=w(pilWZun+4UK8hTaJHTI=5huR|X|mDPwsBj5sWRaEN<(&`DuNn+(mG z_{&W&YlENH&voD$vBcm1Jzl>PdSm=4tj!4$B>feIO?YB-Er5Ba3>d`7U1W@lt#i_{ zGz13mo1l|U^jPF$t4CypDIy_wBwV3`uEg@$*BY}o6N1EEhy<$<3#KtT_IjiDc7=O- zW>ixLd%_g$JH&`}7=P(o6X^y#m`;jK0MidlwB>B6Ix_D~kPS+#!Ld4Jg4V|J!L&_1 zEO^#IDVTZ|C^#3-Z<%_)rNL!Jjt;{Igne1$?E8JO$%EDtMT2 zl$Po(XZtFpz(8{pNLP=Sc%#HXzq-EY<6e$+BJ8H6W&#BWW*yLYm62FCfwcL*&7G`J zWG4A|9A|nCC0}Qc;OO!gelhRoufh<+Lk0r@YpYSe=HmM^ge)VAt(s&>y0@Kn0Z)?ci)6wJ) z!~58gE|fBm@qA>B1Wk2^{1;NCHX2Z{gc=FNBZXO-%BE#xp_u2L6l-XcVRCnSmTM7w zGe~-z6o4u1l@l#+u`nb?n_E|sI0ywjSpH8RKV*aB$q?VN`bG}qpJWXB?zvnUsk+jO zKI9Y!OY7QFWm&Yh@kq$0-XzzpmY1T#o{wDm?V!P>?N;RSvwr`P-J>yo`P8+c&OgO% zb9oxpXx?)GAaPhasE2+X&wpDP`L!KuJRd%B8uL#qmAG4&Wj3!jj}bJP4ZQxZ=EOgJ zW|Bos0cllt&3{u&eRa6@r6WH7|X{6(I8=VPPvHD;bK4<=T4g> z%Gp4>?~dp1u8|xSDNeo#ng|d#r?{OpV_j*dOmsH8I|PWy2w7Ox^ zO;~;<>eGHj;6*01LHzUK^gd2-o-Q{6@Jn~$3`{v|*)1(c$TCHWY`IGNLk*PLaI6+h z&~5FMHeR!P8%jKZkU4xj^`eTZg5sB!qf=(M+Cued@%Q87|LpvJT%5aKkR*@7u76@= z9mL!Oz-5HoRfKtA=bWU8d<5oPbtD0RE57zo3H&XJIb9#&-A=KqiQF7Thu~E$k=Bn( z3gFEFOrjIrS;&E66v9n!;TvsItyy;SX5kxSlBzUYsfS2#kh7f_bFGL3e|fJ1YgZv$ zKY)3`iQp*Y7%HXatTaS|2KNi7e3a*$oD1N_BDw*3BP|svXM5sKY9db=avv2kYO(y2 z)sjb4ww;gzfr+KpLGcb`Rt|m6O{Aq-(NZI`S_fhHK0CavNsl_aoszvPGc#%$7%tq% z#Em6e_T8*r)%8Bw+~VPu2YkTgNFDFgs z<%LfJ4wd6X@CWz{5^Ex41>Me`fNGY)%~CP{tP*&c<84PY?<~BVEY%J-r=gr?2M8oD{%t{AMKF z+mLmj6drnFeB7+k2)!Q5Kh*8)2V)&b9v}be!YS}psVQ0fPT*zSEd@!hAB4oju||X} zN=~$|V2^ZCfE{mKBl)(T%twj4Kxm=EaxH;B0j;RxRCi5$OW&E}kpW_GvxIlkN$$8< zS+@q8aJ{+tKavi18>H&c+1h=#KwNAy%-{lG!b$r}A5L4+QjL^N7Nq?pzNc+)`+Htx7=!M_CLKD*RP8l7;AY4F-Y2^-$*!36RqBznfbGQK6n)q{MWMV3m;BnIl=x~ zTzi0p9kf(SB?&OLKM}IEB7&)sv}Rfq6Gad0po9j29JRK)2wnwAy67Bxe1#bolTTdw zN;tDd8LfeK>!g6+&$)h+We0^B$dtq;pk4Xk9Glpy(?1@7QxyF=|Ysmn75OX z@TWE88D|D3tru7WZ{>9yr}Yq)70`0Si2*sJ?)O^KXKAMRR)W8z5= z8JLhxnsOiI`~J2OcT!i)TlO)Jj)eD_vL1nCG6nM|G~V!iPtSyB0*|E+Uj2vwU3fQV zx;aQ3??F%lQ|^X{00yqQ6t0Gf5a?zHA;(|or9rYY$d)?_yw;7EK$Zz@Qe-(^_Q$_X zh_2v(2%zICBb|yEd%-0iNWo|Dpo8t8hyG$?_T9Qzis=Lfq#oY(e^nurUaO}?A@vcV z0AU4~yS!*SLu6SY=59x{FE}S)+-@NEHVLyVm0t)XWh8)^4&+`5yr&2=(mBwofp1ww ziq%oeQxUQ*kz!4hdd0u|f-GComqG(262)ApTgi!bxL7mf0bp7J;z*m^BPXuK^_w6M zlwuwSh*!Kz)~O;mV6bnU2rGFXYrGIXQHoIqh*t^;xPCLFp9a^yxb5zXVz@&g+@ZAX zt}oO`K>F$BgfSp9DbxRur(W)(t!e!Zg>~goNpVcDnH?jW{du`6V9as?q8^G_bX+D#`BMZ%ig7`;4O!zJ;9|x z)(e#qD%f$r>jt>A?v^IU^OI{Ndx4f)0VLA_Yqp?+_6H2#N-%4IpN9=-&)KmS^WjUy z>h?uoUSj!qLpdekRQ8^InRgi|@b<%tE2qY60wchDv+<4)>5$w3M3A%wPi4|@)S-Q} z1`A~pj4N%oPclZ2MK^Klm(9yZr`7FVs0c7oTmWr^p%v|vSitdP1*6he{acSRZ#N$n z!|HM}1*4jYW3wq2#|^n8U})Ol`!q-@K=y)Y4Q|R&eeP_hz0^QFszFOlkh`xEk8VQ9 z?ueZA3GVsuAh|_HQ_mOs(vhx#v;^6m_;)-)_P2;&{N^oGO+qnifiVITa$J;BQ}M$8 zuYHNm=25ayOsHl_OO2DW9dKhSfgPhLo?lcWf!dOIA9E56B=_-rzy()R%XyUJ@^Vzf zGFimIir^QEF_8O+kfq3pCiAhUb%a^lg;}=qu}X+7f>|}wEDu4*p1Sns&=1=>`w&&h zk=x#%UG>dUZf$f~I@T#9Da6U;?(Gf6pHh$Hm4|;f%KSa8_iW>uM3hs=!&y2brZHyT z?1v5Wo@IrM*F(}OQ}it?A6XHZwh33Mi!1|k^-n6%RG3va^^6}VKI78QZJavVl$~zX z&TfOqX8QNG6+u=(%zZ;=-i6UpeUwcmH;h+uglb87J-M!sK_A9s!Emw0NX$q}k|ap{ z4Q*0SU3+Zjzp?$~3#$8{ImoKMSFif7U;lr~;Jujdz7voP@MqtgIesxfdy>r7>Xt6B^YvtcX@8E)0td@4CWeEs7<-%;>-n=%Gv1Hb?^8-Ka4S~8a+&V@2N z?iJ9mS&?%jmm*)~Rz~kixiE?z*G`EGWHRGx>wt$@iWzKgTC&8)7;;;S7!z2&L$%~$ z{ifVPcwQ-{t$kn-LKbNONErWkzJHA*u6}%}6b_XH9SIjATobgPJgYTC!?654BKi)T zdjb4fy@KcUN}C+m{hxrrD{nNwbue4 zV@4ttF;)f@PE`yCw=ZxOG=*>UN&i#1X-oLlrh}p#&%a>j?7s@%2NHlk8hEzCb-$%$ zLMkjGv7~GJRkL(<(j|I?(fh!dd*-YpcNfd_j<&%MzdS>+7cq6wOUdWZ(dVW@th-Wo zya+eCefF2XhI@9DGN9r$>l`BC>6wk!my3bj&i!jxj|$@kSTlXF(d%>nUmOqyT`~iwK~lm<`3|ZhiW!=@Pg)9m8HW zDcd8){RUA~B0`w;_qq#m>YZ8X_?xgMT9&k5O_Fk z!U?W2hRIgyekq|E7+Z$3Q!25mXVh z)NRTpn0Rz2Z8AgdZYLhKL&z#c3fCxgW+z1*z|3}1_|a1JluZue-=UaJMA-CUj0~DB zHIntfmN&oT6P?VXB%_#*ofLMo$ym9{9_La3A0%T| zM3`K)8kb{&%+=yvL5WvdbAo77WUeN+wYbL|;)?)Iory++?UX?t#d#Q6G7-<880I!Q z*g7xCMkgH7duItu8)J5CKk{&U?eB-8UGE-hJ;-S55bi~}M!IYWajoqt z*?ypN?>~cWud0T6CLyX>x4@*TY=kr3Ee~h(aSMjXMcs+*i!k(3JB2>ff6YDGJEBND zz9_p^+rRLnw6aEJ8zoS0?jYt5&+^dG05r_nWyjPFJF7f@tlqK!t z)`JRMG2Gje8J#GIHpa&^vzs4sOmV~lxP*vFjTA&P+09FDYN0o~x*Rh>v_rS_2AFNS zTv8{xc?Fb-C*x=h4$4t8?yf@Lof@oNfLB6=HUP>q7U@)rc1q3EvoE<^!_{i8@A(;v=~6~cbo1QBxknjl2Xzsl%^zo{kvLWWgb`Gt zO&oJV$X3aTTPoNq%@mQs;7t%X5x*AFP)s96?>1pn5vDV~*4_|lugfhfCHmXqeIQ-N zNWk)C)so5jO$YMfp~aZZ9Rq$VRWr5xXM}8voM_FMdyVD46e&yuUTg6_#-s}%^~Unk zt0j$8cT4=2mOk35onjTpJnu-b6=v;FHZ6;>Am(#Nf|fALQ`w}&sw;*w3o(&FVt0g$ zEmC+1nt|C9ej)aB@kh)cg(UzxhSCGI~-D#;`4 zMoK4Vv6LOPWQKNsap~-(_vg?H?x*fwDnVbl^EoVPscPoXO!`?97QTa>XUoEOQbIkL zxaGu~i23JV%ILonqKuh7RYl-MCipwBF!|~7Z#~GELX0sO(#L73PD+yQ4P&ci zRs`Jto+GJvu+tk05(P0*%jF~=5#o$#)SlW$S07`lr zCz$z?f5tt9G5i6XYQc=ezFg0Qe#pb@k+3 z`D`iBWUEN361EgnOCVUWy)^KB>qxL-Vw<6mv%Fq}EEPEyy8lduC&mW z5*QM;I8gV#p}{>++*5i0gl3TH0$-KDgL#x&Ll0|!L-+bEXYS%HJ7>=X_Xrw2d>?kJ z10Q?)AY;RcI`eQ|pzHHjVb_@D&#=+YEedxEt$5p?r(tRQ_gj9v6z1d*S@`b1A4jq* zaTf{*dAo3x+Q=Kmgk#%rm7s1i(eer!XrOK~QhuR`asJQ8&Zzg7c8%LBZl{cak$F7D zbU(N|)8s^5pU{|<(#Z&q5YH#nNQfc@=}pjDCxsrz>OdjG2Ft%*5jlnzTr)uqylb^9 zgX&!f*%4s-1Do*;-0{0p$+Gc=10Y7w$MqW~j>UpHsST+g+)pbK4%q$xjsZ;l8p(HW zg3M6jPH@jdJ1=mDbW9hTssdx}?V01D0b*O)WJp$U5-=Ly183&$TTV8kr=4A;kM04y z&KC4B$(SiX`ZV!pSChCPDb=D)9+$JB`Ii0tY8=-{&67APh_uulE!nerIIbbGRd?b> zD-@_vCV0(vCs5)wSr=6~;HAx(b_f)Qc@X@;4fI5$SnEN!x@`Z0B@kPDj48J@9}~y3 zpEVMXu0-98-efGlT%_=hq7N?D!?FEKP>+P0yX@pwOD5_!eGy`qypDlI$jB$vg3DW< zjOBxxcO6voMkK74_pW1IYo|bv5+s=-ALV0Qoah$9H`XL}0pk%O!CT&I&+=L}7zLvy z$U0rFxRgPR=evTP5W%PsvQD4dgo?pR-L$i%BkqljPCTQt!?v1?y1h{_g~sfi2Ct7r zpOXRA)3rD3yUyRtEuWvT{_DZ*vqzju-X~RDx#{?njNb9*>P6ekLPq7VbV3W=%%e1W zGI5y#YZK)7aLX%SCxRO-HF>0bOdCD-h?q%K6BOg4^fMQ~)#0|nM^MsO@FRAWel=07Wt#?#JW#}1P zmPwnMo1S#C{WVz!K)$sBkUv%+Xmfw25;cWcHB%2Dq6j>ljMSr8pX_EU@xXl&u6&0_Y(D zas-lBuu#MW+Z}qOSYvKok?(0=-2US1VHnjNSc^Y5+#Fh-Zoqar>PRpWX3?j%eOJPG z3m~=a0Q4~om`ZZJaQ#4BR{}^GllozaW4;I(SETUsASAX^)IrQIn;K+1FFFUPrFA4< zKsFE2CU?l)jm4ufgzN{oN{2D$iI80u5mwxL?u`QX9cK8mmLy;O>^aE12W{r@mn(d+ zemt%e4rX?wBLT>$ZA#Lz`U+z1c2unRi#V<}velS7P{i1Xkj;q{+Jf0t_!uLuUm@cn zmLFOz`C2dw8d@f#98>gjEZ?nKa+RvG5OTCgIWRQD76X~(RF$1@##cG3$;w@>NCt`B z5HhAnv0E@}ho9FbEkJu&l)NBjo+APL**)GPy&5d>X-2h^GD!!00n6VcqTf&W7PNdJ zruXF8<6<~Se{1cWf6zugI?ixR8j0$f20f*uOUCJ4TkaQsPV(FS$Ft9j=&ir(Mb#`m z^0(?O+_EKd--(C^$3s?i^*To0|NGV6EA#qd%|%=9z=+M9=}ISp3oZ5JNI63r4LVXp zP&Tn(iHqRi{$+p-iSI|o*E0vZ`-8^~C9RONnEt)C2YEJt2^&6h(@prsjHDuu@Givj zHAMu-_LvrJqO!O48LzOz2j5c5!5rfo-O^zhArfAm>DnleQYtlhxT%bBzfYDaV~>j& zwL^@4>+zRw1DGd=8U3dCK6}y_V0ezS)L=Oq+RB<1LEXqc-Q``*C^e+LKn?3l z580j+t4BDt!V{;bA(cGnVm>+K+t52Z-FKgTFs-VQA{|M=r5enP?A=$@XNbSPKuQr z8utPiji7bxq%fqVLJmFa@8!;wlVZibVBG*NJs3xz;6a=GR<2rub6L)yofHOM41)jEo|Ow2 zK(Gfn7iuU^{l0>~EZ6xJ0CE=#eU%U|RP!J&F?(htZ%4$zqib2vTI4!sigi%LT3W;X zsdLv+5mVFS-Nf_I+dj^8ts|YCP;%1N`Fqd`@r-B%>j0W0uy%BBt?&(;R0~Zr-`^m` zl|8)dfApNOX#O(K$Wzb6WX26dg4;;=7z}L#MarSsnIohi&UB6w-JycL0KCA}N^1au zm2yZ0`#O)}DYpn=62+r_ z2wAI$;2%Yw>!g6_P8-|r0QQKWjYS5KTQwrW7RFDV%eG?uW3VRyj0{e2R+yO1Tmjdi7V^OU-}%?lAVGkJA8#HcRar*X`&cD0eSP_ zs{;50q_ldHpdr+p?e$W-tlWJHQ%#kf%KiTB~ zD>~xB&9K^4<>{!6ar;=#e=ATbkf~3~N>GeQdnQ;ApfejbVY*o&h zfCXhN|Gh|IELUy(P{VX2=mK#Cwv&N1KOFmUWtg=XFKXi!43LXDz^Q<;=j``wJn#Zg zgQV8O=}=Dak}h`3wopdjD!R^wE$`NRDg8?TD?FW&jXf+#0@aR0#+L6j(Joki zM7Q%P82V&9|4}zx1RRXa6!kOj)6g4e5QBP$opTH*Q4xZeM6frYi;uA)5lbFs_|h6| zl%u9xQoDV$gE%Ra)?lR^g%OBgkuISPO6fY59*=T8fVm&L|F3wy z2C1a}@p{@0Gwv}?@Mc5;cq#+7A5=rpBEaRKISpctxJi3s`v zYaQgc0XGA1JuE-AT2e=4+Xy+{N^27|lt2eExsHTnS}I7u-Eg4OJZ{D{&1Yz1`9;-| z4l2<==%GWhGeQR~Z_!YRIzn0?^K0C3M1n2}G=sr99q8!?ioslYDI$2_?6i?(`Iskx z;#7oeQl!ukc&%*EfaefU?glb{rn(#9ePE=@WoNxw^52hVzBCnSlRwP(%mSqmLrdL$ z);`BxnB|wC`%5_zy~s)x~W2#re>>u8`Uz56WK!MhSX(X*;$ZNehYDR`NOK ze$>4^XaY-(|E|z%Tv?$RDaSx-zLZE$=7%IfQ)!Ny z)secfq4DlGeaRw8a1D5U{e3V0$Y z=96JYB@F4O$^AQkxfyHrqJ(i5RN9Pppo#5=2|!KNxYvMU0iYB1^p7 z&8PORgj)<4mftF(JAj8+eA&BqBqY#M9hFiY)~*tGIw%1%R^chtk@l=(v>gSQ(R1S@(#8 z5Ae4G8^gY%qi;tWvjSTq&ZV&fEstZ@==KI~{O&d4{x>B_mR7tC4v~9%qa&O*l&6I~ zEdx(cF=stX8AA#lv{S-I%KvaAtP^JaI<@y=;g``>{}}AJthVc~GE4a(SUsX`3-0DD zftO}?&04Ue3azpAtX)ANC=#u}kh`bT-b_%Oq#@0ME;W-U-uw)hq;QY%)p{{=It+^@9JD~3YVG5nC-*;=G7?at7 z&W8F?$|kFB>0CS?E>h&mRT>{^^qmNs`ivb48DuO!c%8G6eF@`9JRjZdocpg8$g>rY zE>&vYeAibt-lLyoRJQ3thI2)OBoGnkSk1)G57y%D-zym(>tRY%j(iebTU z!}6Kc5+lK^HGW=?lw*u`#`2;1FI5FK^8t`pxux*D0!&+=I2j?E5Gl+AvupA5#-xR1 zZ@pS#T{%>>^ggQNnuzX%b1#I0a{DGKXw&_m$GsL5VN7e-s7%sD*JAm*MD*oHUj#8t zslBW5A9T20LE>nHOe!MS2}ZS$b;jJLKrsoCuv^}1$0D^;6hX`z)Lvu!2N-u(J_8Ub zuutQLQx(DIf|y{FOhd@op|mzYUvH;?EUhBpTTS6Q9tAAiOd%3XkekXZEWvh5g6^TG z4co5Q@{Q>4!wx!^r}u7%gMGqUmb0RdJbf4Dx!?JApeMcbglF7~ZRp!k2G6lhk;a{l z&z7tndCq&D(nKHSu?Lq&S1RV|a)F9FwHJ!C5VEpv=eOX|J>!2ZniR)+HTr8~BSBjO zB_0PgULfy4k7Tn?=m${0hjFJ1MtC_`{zA0`dUC~^ApJlw3Ot);9m});P6o$x4b|No z??Y+e$x{SgTKMlOBV$S#ki7f#)zbyIK{#g`5?6_1KLfMgh-3$ZeF|+7+H&cZCM5!=`S*lS*{0 zU?&WN!3M-tx70YEZwwkyDdMvK>w|Jkxpny%$f~H8Kv?p4T~~q}^WtD6ATIXsK9!%{ zy+KY~UtzZ!bbbLrOv&i`U&D#*1;e-4k@l0>BzN!-dk_2 z(zUFut1CPE|Ns5J!{=|o%|wG83w5pKq?bzTtBEuSec%hjd!y2NYsS%gBVia~^KXit z*cFBAlVKg*DvEM0j4jBS zeg8?vi=GC{AejA}L|I2UlOAmSbgv29q3e2MEW7z+c9U*jb{G-lsa$fTc=xHcqK=B2 zcgP>&_ogW-WB1mKoTBloeQU9WfsdIhN-tV^Z-R>ZzA!@XBm!G+;vIUUiNK1(Z`+73(vWE#bWfrEKQenThXJ~ zRx09q_=~BCFY9TuTNlberT5uF%}moZlRJQFW~@8Gf?a)^pW3wD>h9xGWfpbk>_K1n zKaupQJ3;+-=5E zSLW>XA%ZKhK}dl|{;1b>)%* zmio=ARFry>v=y-WA@u|m7RVFA+XEFA$?`mwBUD)Aps8Z)?NuLVe(9S{9vvzAJuza3>u0`o zIX46~14nkZjbg&k^KAcez88(mDj7EJKNDzyA>XT4l2Zth#*s8~JN&Gy9YJt}u?rbK z7s9p$3w+R{;R$|L9!{}UPc=G}@s7O89YX)BA_UG@;yt_MjB=smMULKdfUD3hR zp57i=Y5&^1Dl+oMy4#-17KY5fAATie`BxJG-u4MEzn#ta9)OiCp$%ThrBy zddB^Y?<2h^h4!~+qBPmrFVmZ}uLo8!Rx>4xgR#6P9PdYZ-B7`!@Edn& zkB%i=D)D&rTKd7y-{S3=Z+Cn*xjO&W4%=`3e9qxAZ9)(M$I~$8?94vj>&W45UobC3 zVEm@P7FHzF2tmhg&5+>IByp(v8~(XH4h}8C`uta-sM7q79hpf_-o^&rUxM9cO=@p{ z&A*C$KhpC{HMn=*pLfNIsuN-xneR8sm@ogl8?QZ^#=2cn{qKvCwc*QZ$2T578NTf7 zT#qG*uU1_<4>-iczSsO)S9j`?JX)88*BoxJJ5!U4vv*2w9Oxgp@I`um_|v8V-~5mR z4R&dV$nfs3sx5zRd$Y9W#M6e$08gBec2MFv(8j#`HU<)zEd!(P1Nz=`Rvek=npf5U zTelz+ei;P6bT4bL&FL4I_Pr-*M<)E{!Y|=>>2E%yE?S#y15CD--uGk@{EkUk!;T{p zOIqGVOmC02KQeKn`5lCs8w#4q*uoa=@5&CbsATxhGC!2NG$=b1tVQOB#8HE?LwxC}G}sMO$_{=awsjMY zL}4$3vV()V?qPu3Q4pyqKnqSnwZNe4P1=Am8bFD1rLo24x3JYdkqs zg5#yyJ^a0tiX#XVjSMMCUce4OZE>u)@nmr*f!c47?TWu(K-AI54JFA_z5>N!ppjU~ zFyhQXZW&wAcydK3fhcn_F2tTJFhS$V6ErfsWY}BAb&Zd*#u6J(CWaEIhiVXHAS~&% z{3t#e+iFK6!%C7Dvooi8Wm#k8fJdQ`pO*}K$;Q#Bi$$X-7ZKs9oEmjO*@UJWk>;r! zm6PbqXefA7#vGkoeWZUpO{GOa5-dA}KrJ_j|Kr}oVH_%M3)tRy_@}&%&gx@eDlBGu z=i;w;9VS(oo4{5$=CsqF@dU+3sI@}&8unW{A62>oZaHWo=W#1rn6X5DbwXbq&^{0C z!Bgto;_iwMw0S5lR{#5Vg?z#5@v8c7%HZogvK#;I+0#9nSI6K>2Z8o^>(Wl0a0Spl z^>aNIji%x3KS^)cCZ%uv0U{$dhtjvk&aUYxJYT21@oFyrBeORyu625k<8wV`ysN6Y zQc`{VlKn_*!$m4wpmV0PNsX*j_hp7+&vG1ia$UbPR>cM zW%)Or%#CTCI%9$tE;^jA`{{t3lUCFJVmcxwWey-V+sSnJ4-up?{+V5seu9^3^zaCc z?FzmDuqJcDbwkl%H1e}rfo;AvbuQc0*2@jdxZ3`I#I{;+Ya&_TeMT@l9us0YtaG&PocN$ z;QWV2>@{`HRSIw6pa2MKyl3lF!rxup;j(8RZ`yX>Ef4lFJzh?=2RB%C zeD{wtH$xZef*475QM&ZLdaiqv&dF1$=V^_i1n5NhaO@*o_d8ilF|o3CeS2i4B;~zu zN2UGS+v7`K97~z+c=zrizFwEdcRqJHbh-7Wee)|jCeKGkZEfBdD2q7lsTU}e0Fi9b za!t68V8;9;N_X2+`FYYnc>$}v@peF>R@~nIV0+|-=H1>!$3vEte~SI1-H{(M_eFC? z)b|A&#Ln}ReWPvPZeUpPuZFI~iMNyY#+E)DbBWTSRHlq;EMn!6T2wobunO>ep4Ku- zuue{ftF+E+i7f`hpad~g_TH|6nLFt~gQ?_sK0X?=WhuPDt{xLcRf@tlqtdH?^y?sy z$tn*e_IfJ&8}spxroZ2D!HWO>lX7D6OOQGAzya7O8@CnJ17Kji zO6$eeLnSthfRYe$J=#x6}M zA%a2S0xs|ycpcJegh=VBUSitI-EYlFrNx^(knmCg35WJwVT{g|D%$m$Xb~c%XjBHVBZRvMqrWl+k-$Af0qt!AO#L~N9!$AhC zcY>N;MODe(Go#J1*{=LGGpZD)07eof*x4Jn(w^Hr9YCg7Q|#e$^mxicXaJLEJXNF7B#)r6|Cc7lo@VvF_fkv_gI7 zY_9g0p32ecs)IB@3z!~CED+Y4sO+1^kHga-`F}i(v4hVXxckj9#Qxp&?BF$o@&()s z5HWPg+aO9_k{r|-rn__U9_Vq9A^&O5X1hYx`bO+L%Fe>@n7dB4Xnu5BWSIyZg`0*)mtqkD->D?2@tQh zKtQ|t{^u@yANwl(exdvIFoAze&~ub_)31T0$qqwWFEhG0R3L>Xgvxs3rB;%%WB8Xm z?NXe29@je(ZKL+ zZz$Fg3bdbgK1IVfjZBN+{{nAEOhMRPDtHhzDLVnWv7j_5#YlO462# zTkWchSJKE?(i^AJ8cuvV8}^F-@9R`-hR_{xWSX*E z;8dT7!=J@~@IlkA?wef!t{%@pfC?14j~24b8?&hNoGy8h#?M-`L$;)496c3WaHT@= zv#|bC;7ma44_q5SOW>c=Ni+?EIE=#)6*bpIsP!KCE9qcKl zbDS~?KETh9sH-D%N2R&gAoM_*vOdh@LNNzPtHSz;JcxjeM}pVQZ10F@(e{o;gNiCD z4Pk7Ofqn`-ZC8jP<6C)RA2!l!=$ruA>*-jx;$VA3ItBWTR(047j_PAuk9sPhk=pZQ z&*qOyRt_;^)vK|J8iRG<2ruXXo_A+;LV8ty+5RCLMV5PKG03Z? zF+r3^t*1KD*!TR7HM#hWIQv3h#^E_pI?zp!m)4xM)|h+ILN`1|mAZs|@l}G@&so$K z)gJKFP01YgO&Vy=*B=Sg)ESK^*Qiogs-@t&t&&kGUTvz4rVbRBzo=48al!ct1yoDS z;Ix77;{lhddj^&kLP&V2?(6^~%r2B@;b|=(Vu4HP90ZUm*R>sGZ3`9jS18^k**=20 z2OJ$*yc$Et9_mqZ_{c=0b@}ZE8?Sm(I3KWvTE-($-bf;WkdY_v}1Y5IhnDUDFM3Q)wMx;%~n<@6bWKpeXzcH4}S$;EiqtctW892D~0r zQsK!=ZYp>{yDAxXf*Fbfga1rlEj^yzD2{d?iAz+8jnz_Q`KYDFkm!-2vaYcHW7U~L zZFmlA9Wxphz-2TJN7e-lbn1yFndg;-=uzA9Vq zZYzOLzokO)byA=kbboT3iu3oLRz|hHfYuxv0&jQsY~GgZw5<>rfWUVc_e1fSbRBvz z*ryJPOLv)IN>{#5Q$X%lRXLpO`D!VrLLr9L3UR}No==m&guD37d;Q;JrPF)NHWv<= z3?k`BElt0q$P~J}=dkRWv#9VGcC+`L?ibk7>#a(xdd${>w&c`V+#Vw6j}58^$@Q4t z&?OLr5Tvl4!sm^19k~*7l0^GD6b7*JU;>f2*qJceg%GQG+GXraI}CcH?L4g&fF`l* zV8a2-TQ$h!gff6?@T5CnVIoL1!2;OLPsOd4rC{wDxLgVuhlHrwz#H8HTg5b)HMzK?EhdX!wG?GJ^ zpe8a)x(D=%L>qa?^qhe~@&=hLY#U(v(K(JXh|*0DBiwl6)of&FLaQ7)L2OqDThmCn z+n}WRk8ONyzct`9TTV(Fy32hmM7y~M@E+}D+L-sN@p?ZrN#!a%q3NYdPC&p^sdU*&uJW31+V)ud|a#au0nUz zJZ;RnU@RGge`_{3U>a83Jn9Ld8=s8pUgq_W{|OlV#ht~-nh?78hY1{Gf|es`l=xW2 zwI>t^Uxy2j6)vnl8!Q;5bC808A?*UXGgx#mf%FOy1C$Eju!2TG?G`-kLbl!v<3q7b z+gJXJ83yt{B}1I$Av_*<6&oa_1l1`)^ArotZf>9vvbwC zl~8m%FpZ+WH;!9YL|CNz!!*S{1Ka)iFyd@c_)~7?Xw|-*wIjc8-}+i~N5zOTMkR*a z;6Q@+bGVlx4gd9M(HU23#l%OQ#SpoT6}lsush*k7@|OAChnZ~+`xLWB!traX{uPF# z@~I6&Eqz>}_)X}J7O4;d*-*IP-6e$?yduEGfL8?R<^&K$0jOq*DMASZIu{)Pd5X@l zWOrL)k7?v#S>0@C0OP0+CF2^2+<@;30=BHw3@Z*Jz-XN%Dl5SE(l~DH0IQyswIEj) zvcTT*04|FKC`v%}Y=4p1oE9?#NVBG%!n2KOF`Hsri=k;NCqHLKKe(iD6xN_k8yXTB ziP`{2?DQOk_u;7CQZca_-i1&>LrhTBF&0O2NZ%=3_+i3IR625Ks1nT2P0}Sl9LDiw zQM$vhBIU6zB7U|e(tLy>XS20Q;z*EBB9UoqNQjkB9xi|{E4i~72rZRBxRyyU3PHx!+~&Z!G>H+VHg2LRp_XS3PK3* z0bN8zM{yWeK}tc;1RPm|qCZrVj>i&rgP{Ro-V?oFrn)>_;}-v;^+c6t)1J*$2)fm9 zeV208wb?*&j%h_3wy+)<6tRgw_o@jaE>5WH8?SHvq-rE%f&pB45wNOhj zIhov9j0`)dOJ|g$u5|9ut5+>)2Uj$UvuBJbLxJq5mLjy3(A{u}#GN;pU9)84M)l`+ zTJ}83gfG|Z&SHchhz-hu2Iet6#qofnIPM;ksYi)=Ev51kiXJ)0`w4QZ37tEgYFbk2 z9C|GPhz{p)8sCeJhFTiR#=`_f=ObV#9>^2ZA)JAOu}ov{H^GeA`8@kDh6x5STWgU| zA-;@zdz1mYe`SS&rV?L?Tj$?&@(%pv&&U!!C{Y7hRLShCUmnM$Jv{P}A)7>!&<38S z9sre##wp=4rg6TBVkLE$7TpOMgb?C}(AYcc8hb)sHcp zA-%sG@pjeHO%;l(us@@F0D>sqCr-i~4QB7Rtig+YTZ-(r6>zdak@_Bx{hh^+FDa&$ zreMNaR_9JA5F{5DtOrhuus%Lau#iTDyRmm5zsgEMcnv0yhemFbja!K(3h?Y+-K}sr=hX8y z{=UTij)&EkA#lwpsXi6=@@d`44eLv)Psin7+|_!^>S68jhn+Uu)Ix0sI(19BsrITK z4ppW!PDNaY&%nU*J=2p0!a9pr0<1FVY=t5o4ikASv^P{Slmm1QFU~$K1^>bkT=(WI z7i-B#j=pxarV9>M$Yq!Lb;9Cf!L~tvklP?L*-}w&t*f?_BnaJ$Q8_e=;vL|#Y2;s+ z(a7qH&7@pDZR!GzpA|sR@q=_SLsn-bLUa%w#puC3KtY$)A?+Oh3RH85jbN+8h&i%4 zd(pKJVt_{#%&^f=A`{d*c7O$D7e@Sv=Z!*&xGzup2|EBV#KFW`8P}n{Ki!raU?*{a z{Cw|_D>N?edMf9=NvmJo=TD>|km=CVO}+l8R|*-9RVwXbT<{WNg`H15DijKycviim z9%8w9L(J>~_{rx?&QnXN?y);;U*0}BlN0NqgmnzRHm`Q{@*_I`YMedD(}Y7+roYtE zANs{bXQDxpHq}*oXd>-I+}g-WSWKSJt4+iIzphB$(?x9scr`E84O9=zF@!)lIX1ej z$0uosdJhb(BhYi9qrRYII384M_PLe+wDfvDz1(#3L8r(5v8{JvTB(V(-VIHx&$Ce7 z0lNvi+f6#BD6ZpG-QK~UAA|gPR6pjT;ku1bXt2&=v_0^&&Kc2n;7!OI%IYbAANXwD z)KU}-5V{8yuzsJGu;}JdF?=KDjSZ&F&luGOMCsgPf+o;@{o)G`<}h+T40N2Vf(RatVgpvgqu)yfeX! z8KNmc(4cnU=++e|eqwh*i5OWI(B`1%Nt+S_3-B;%L+Fx999=CXkckXeh37V02W9~^ zB=vl~zV_t38BmFS^Zus|%j5izsP0u%z}nk5PHhO100-_xbIh?W@)5iR^NYgg^++YB z%l;3iq`Jt;wqy7&na})x^DVM(hmRK)z%S(_2E)=Ng%zBqfs;??ppF*FS*hW|$cADX z%xG8&bwKnLL3?BmPrI0nEMW-PvY{*DK_>xPKU0)-437pA2a-yFr^g|S-da%9@sY?m zgn^>67%ES(#rgPQNFj;*-~t_hda_gVaV?FH0M?iUuCI{2w!-ufF=Forf*GB2+NN9A z1^p{qu6;$s&()V_L8A3x?U}fjHE`k>h;4Os@o;&u>e`*glh9Yng+{xuex!h8LNk>plYsv|ByZ^Qp|Q9^xiw!{Kk5kkp-P)NWPbaIP~Ix*m*G^)EJ3Ir4hjYQU( zs6G!Dz_(vE?m%tDG>ZEp$|}T>3@aNq7ddP4vnL!W$1Jlu{RK#WGbnTjXiE<9Y74K! zDR{=-b1Q#?_!r5Hjewcd*sIFU3qHMhjpMJaB;!rb0iN$ufNz0)!I-_SDEx%3E^W-L zc4Qq)NpOOW38F}GdIQ$#aEjO&wZ?oI$-=ljpj7o(jZpdf&SLXWL2gVC3WtOeeN_yY znD=CM`+v9*cNc*KX6Pu!)CgrZbryqgcbd-mgnjCm*4vqT(U{~|Yy9RBRLE-enD@=fFXst2$x7?slS8 zSBrS4ml+EQ(z9_dA#;-&8+16A1yj*=en;(Uwl*2x9WA{--XiXSGcTfRs--CH?GBCF zV8%VzUk}QQfUKm!Bsi=r_QGjAQ1-hP}cP~ z^VyX-J!>;e8@^=DP)zuD76*k2%3%+%lw{@V#};Z}EMhbb&2iSG{h=gH92hw7%jlfN z6~niGr>di^`f`yROybIc1TmPbbt7p#Ye9IbHILG1V}q!7Axn+kg)A4tyFm9aCq0g_ z;MOEF;N)w?NWOr0J-#21_%fio{a-vB{OhgwUw`jchY*kS-J?dQ;Z_GZ2U$UZ<+Zcp ze?(CEz@UD+X zZI^Ows`OKbf~KqtBpvA}O9-T+hH@sz-A#!r&$cA4tcSSylxiV#ZvYS($Qe#ty$R6A zh89lb0inHSF2A>Cu8q&J?1^)6`KK;L%$D9?Z2)2d$|#tT4qiP;ah{0?@D1QFitZW# zyb2Buow>*-51-(PXR>Yb@GUeH*B0%TZKUzRNe>~;^2GM+{Z`o15CTEG;OaAc7oFqD z9x%qz!w5K8AkYG3hEp2e|MvHu110U6uXS7d{!`m--vXX>MAONLmc0xGY~TphGxlTB zHxEjHhnIL1LK}joF_~KmS!s>Wsd6>u1%nR~x1~1%e*9YZ>5KnX-M$lfDmo8`dP9_o z`OC+(BZB6vD3q4ekNIf0Fj}M6fW0hL9I2lxI=lZx{ml0dtABl&G|&LUH|lKal7T90 zJEAO>lM4YjCCbXxYSC*zD3++itws^iHm)8D3lYd>P-h0}HX!ifN<18;>O}_ZrCBE<8>AJI8h)YY9waX1Z_8!pnsyWz^Y zsmn7n0YV79V3F-H;VQewCR{VglVz$p#+3&ft?#nRGU5<;a)T_9tRyKqP%Hs0-VI_cD;&vP8Nrd6Hqo*jxN9Uk#Ev)^ZD&8}FR^#z`Z�{ zF4}CY)^ClscHv_)V>E+Tpf>R$j+65$F?EK*__veM7V%yp1PzfQlUsK+1XSR4CO! z@>(<=On~i%u#-4|?q;yzcEC^u+?&HbLqqqcBH|CepU&}zCJ*KxN`PMK!A4O{=83dph@`O?vuLjh~%p`5|#Bpb0jCx0w|;y5-R{C{ed${b6x|r5ohr zr?OIYf_E8oI>DcQR4w}N-8R^QwcZGhLsB7PLa|n*UCMrh$}E{Ez6hQH@;23s!*3+;p zbiNZ?oQE@b9S)+d5C+(t(=Y_t1*8+ygmE{XI1pOFxDAa8x#Pw>@k+S32=kR4r+L_6 zPzebo42c~Z>}fDD0(TOzZJbs0Uv@%b_7(Hz80q~XNS-`Tf~+|USvWA&pqio98)0s- z#q2Y&nTV`OD7MSVe`7}fsX_qdcc0pWwketQ(0}T z*oZ5!#!f)miy3|5l42gX1qH03#_>oK$<#*xRd7v$Z9 z5QqTuL83(74K6?u#FpNM$>iB!_OlVb?x55%vRRyHqu>uD;ET?^c-Iliw7E=slz%m4 zW!p<-$`0$}AyFqiVpkr&aW|v-vnA&&Z|~q0-w0W@d|gM^q&|GVxumN_`xr_khvGs)K1YkpVwx;?CnA~ZeTOnFX^0vz^4lq zR03>7*7dw2bB{T5bShjWWQix?24EI7uW|>hFkJ|76z-)lFu~=Np63-W=L582uEuXx z+pVcCDCbw^*uk~7@oU{g$YFq++#nlR=Wg2WySD{gpDGHiQ+BW|7p}V{t^#(E_zC0# zRO_Us)xNH6P$UZ#+>?_IwF0n1ANRf!{00IBV1dmPBuiEbS3cSSbDL-p4g$^|$=d8k hNAcUB;;|p)>V7)N^G4JfQafqv^l`zCZ?i3p{sToufsgH{;; z&#~kH$QlGQF$A)PLDmT9*C;sG7{JPl6~@82Cb+rcBskX;H&-?dW?}}^I194oK#lVt zYXQ`_2(p$yjmzL%E8sV671X!}uw4E9wGQ3^HbB2N!8^bf=>0ax+5uU+VD9%o);_55 z0Aw9<9m6i+A8<2qxJ#%^$F(d d3uJwRtQzQ71oM@H`T7O(^#_-iKwjJ#006x4zn1_2 literal 398 zcmV;90df8xiwFP!00002|E-uuPsA`7MCrZv-g~uUJGQAy2O;2q5Q06R&8~xh|9=N5 zLE3wsrARqF&5XyNqm&!6)%f?6@^?{e*(Q#qnmJa~!m&gv=&=pd)ei1s2gvFK^XdXS z(ao`B56J2Tv+o1@)eo`;K-M6b{Sc^Y7+|H@@*|+GQBGGF19gpax@r?(CniCUQy^;^ z^f&{uW*wtH*bq9L9=UDLr=>j&)DFKtfw84Mc$04IvU$^ZZW diff --git a/crates/nargo_cli/tests/test_data/simple_bitwise/target/main.json b/crates/nargo_cli/tests/test_data/simple_bitwise/target/main.json index a7bae86b5a2..92af4b63d4c 100644 --- a/crates/nargo_cli/tests/test_data/simple_bitwise/target/main.json +++ b/crates/nargo_cli/tests/test_data/simple_bitwise/target/main.json @@ -1 +1 @@ -{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"a","type":{"kind":"boolean"},"visibility":"private"},{"name":"b","type":{"kind":"boolean"},"visibility":"private"},{"name":"c","type":{"kind":"integer","sign":"unsigned","width":8},"visibility":"private"},{"name":"d","type":{"kind":"integer","sign":"unsigned","width":8},"visibility":"private"}],"param_witnesses":{"a":[1],"b":[2],"c":[3],"d":[4]},"return_type":{"kind":"integer","sign":"unsigned","width":8},"return_witnesses":[22]},"bytecode":"H4sIAAAAAAAA/9VYW2rDMBDcOM771TwpaT9KaemvFNuJ/NerNNS6/xEqEQsklRKoRsZeMELYGWlntLOx34nog27RU1dSjz1rnnjzvrrG1jy15uQ9q8eBh2nfG1q/M7gGb2Q9798bkxtJPX7WY8bOeV5dThXP+Bc7lVdRsLy4ngUXvBDF90lkWSVycSmv5YWVPM8qLosyk+wWfSDWxMJiQSFlzJxTINYUmLM5H5Na92k9zqxz9BcnLCz4AIg1xGEx8gKCyxmbK4yFxymUUFP8c3LNYEG/i7rfETFDi+WR4hwMn7//7rOSOhifA3NeALVA8mc3OwLmazdPdD2hsBIgFlDfaGa3VBgrasDsluSanV7UmF2sg4bGPVIzJsXCIlpBhPL31BH+kMZ8BPL3TO1ukmafD0D+gGeGt50/8ydjCdRiBeQPqCuL/dYyAmIBOYzWyNcKY0MNNPI1uY1cLxr7rSWWmKHF9ULdMJQ1MOcNUAskf7ENZQzEAnIYzVC2CmNHDRjKllxD0YvGNpRYYoYW1yt1w1C2wJx3QC2Q/N0zlNC8Z8C8cRy639dhNacMZa8wDtSAoezJNRS96D1DaauYoft6o24Yyh6Y8wGoBY4/KdMax/4OmlqcmsLQ+/8B0bvyaJUcAAA=","proving_key":null,"verification_key":null} \ No newline at end of file +{"backend":"acvm-backend-barretenberg","abi":{"parameters":[{"name":"a","type":{"kind":"boolean"},"visibility":"private"},{"name":"b","type":{"kind":"boolean"},"visibility":"private"},{"name":"c","type":{"kind":"integer","sign":"unsigned","width":8},"visibility":"private"},{"name":"d","type":{"kind":"integer","sign":"unsigned","width":8},"visibility":"private"}],"param_witnesses":{"a":[1],"b":[2],"c":[3],"d":[4]},"return_type":{"kind":"integer","sign":"unsigned","width":8},"return_witnesses":[21]},"bytecode":"H4sIAAAAAAAA/9VY22rDMAxV0/Te9F5Gt72Mse3VbpLWeduvrCz+/0+YTWOwPUZhPg6NIBiT5Fg6ko5I3onog67WU1fSrD1rn3j7vrrG1j619uQ9q9eBh2nfG1rvGVyDN7Ke9++NybWkWT+bNWenoqjPx5rn/Isdq4soWVFeToILXory+yjyvBaFOFeX6swqXuQ1l2WVS3a1PhBrYmGxIJMyZswpEGsKjNnUx6TJ+7RZZ1Yd/cUJCzM+AGINcViMPIPgcsbmCiPzOIUSapp/Tq4YZPS7qfsdSWZoszxQnMLw+fuvn7XUxvgcGHMGzAWSP3vYETBee3ii+wmFlQCxgPmNJnYLhbGkFsRuQa7Y6UON2MUqNDTugdoRKRZm0RoilL/HjvCXEW5gLID8PdF9D0nj5xKYiwPQr+eO1B+wTziwZjiSv9hfLSMgFrCeow3ylcJYUwuDfEXuINeHxv5qiZXMUEF5ofsWZDOEVsCY18BcIPmLLShjIBaQw2iCslEYW2pBUDbkCoo+NLagxEpmaHO9UjcEZQOMeQvMBZK/W4ISGvcMGDeOQ/f/OqznlKDsFMaeWhCUHbmCog+9JSj3msxQv96oG4KyA8a8B+YCx5+UaYNj/wdNLU5NY2j/fwAp1Qo/lRwAAA==","proving_key":null,"verification_key":null} \ No newline at end of file diff --git a/crates/nargo_cli/tests/test_data/simple_bitwise/target/witness.tr b/crates/nargo_cli/tests/test_data/simple_bitwise/target/witness.tr index 52fe05628fbe85f7601454589d4f2f16f8c8b495..506cdcb8d87dff16bec242ce97015e4bfb783379 100644 GIT binary patch literal 191 zcmV;w06_mAiwFP!00002|E-cq4#F@H1ljj}5n?+a#N89y$@s=sV&eS&2_S_7cWNX{ zK9#CleQh<@{=Db+Z~i;!a4gg1SY?l6#XgvE0CqnF`x=2>V~kb%3CD6%kTnB0F$cR} zfL=?Em90RpHOG2wK(8&ws&=5)9%G3fz^xv^j3?0R46-giENgP-QjsOGQkpD8^~U*_ ttEhPORi@S^by|cN3KPWHB()DV)y>_&-QU5jKCp~Zz5x`G5i_I+002_TSQY>P literal 191 zcmV;w06_mAiwFP!00002|E zkk!Yl;+-3xX};e5`#1lMv^dMOIjih&R_ua1_Q2cs!FvtBTtm#N{fM*N7_=r}C#K-- zXJD>5XJre}T7o;SIP0+nb8R@Q+Jd=um?gRgdw&3TJc7ASpmhPedIkG+`?0Laol8ZQ t#7b$h5Y-#!W3Hm&)mNEXo78C$Vkk@yXOq-E*i^qq$|vQPKtQAj001a%UQ_@8 From a94e0e8e2486385b6cbb4b9f9105313a0ded1e5c Mon Sep 17 00:00:00 2001 From: guipublic <47281315+guipublic@users.noreply.github.com> Date: Tue, 1 Aug 2023 13:58:15 +0200 Subject: [PATCH 07/13] chore: Document `GeneratedAcir::more_than_eq_comparison` (#2085) * document comparison * code review * Update crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs --------- Co-authored-by: Tom French <15848336+TomAFrench@users.noreply.github.com> --- .../acir_gen/acir_ir/generated_acir.rs | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs index 24f001b74db..c368a042dc9 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs @@ -700,8 +700,20 @@ impl GeneratedAcir { /// - `1` if lhs >= rhs /// - `0` otherwise /// - /// See [R1CS Workshop - Section 10](https://github.com/mir-protocol/r1cs-workshop/blob/master/workshop.pdf) - /// for an explanation. + /// We essentially computes the sign bit of `b-a` + /// For this we sign-extend `b-a` with `c = 2^{max_bits} - (b - a)`, since both `a` and `b` are less than `2^{max_bits}` + /// Then we get the bit sign of `c`, the 2-complement representation of `(b-a)`, which is a `max_bits+1` integer, + /// by doing the euclidean division `c / 2^{max_bits}` + /// + /// To see why it really works; + /// We first note that `c` is an integer of `(max_bits+1)` bits. Therefore, + /// if `b-a>0`, then `c < 2^{max_bits}`, so the division by `2^{max_bits}` will give `0` + /// If `b-a<=0`, then `c >= 2^{max_bits}`, so the division by `2^{max_bits}` will give `1`. + /// + /// In other words, `1` means `a >= b` and `0` means `b > a`. + /// The important thing here is that `c` does not overflow nor underflow the field; + /// - By construction we have `c >= 0`, so there is no underflow + /// - We assert at the beginning that `2^{max_bits+1}` does not overflow the field, so neither c. pub(crate) fn more_than_eq_comparison( &mut self, a: &Expression, From e4185d7686087fd4278ff5f04087541271d29086 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jos=C3=A9=20Pedro=20Sousa?= Date: Tue, 1 Aug 2023 13:01:30 +0100 Subject: [PATCH 08/13] chore: Update `noir-source-resolver` to v1.1.3 (#1912) chore: updating noir-source-resolver --- crates/wasm/package.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/crates/wasm/package.json b/crates/wasm/package.json index a09d0885a21..4aa881ddea6 100644 --- a/crates/wasm/package.json +++ b/crates/wasm/package.json @@ -14,7 +14,7 @@ "module": "./web/noir_wasm.js", "sideEffects": false, "peerDependencies": { - "@noir-lang/noir-source-resolver": "1.1.2" + "@noir-lang/noir-source-resolver": "1.1.3" }, "repository": { "type": "git", From a484a31267f52c6cffecfc849e72f6d6cd6686d8 Mon Sep 17 00:00:00 2001 From: Tom French <15848336+TomAFrench@users.noreply.github.com> Date: Tue, 1 Aug 2023 13:28:47 +0100 Subject: [PATCH 09/13] chore: clippy fixes (#2101) --- crates/fm/src/lib.rs | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/crates/fm/src/lib.rs b/crates/fm/src/lib.rs index 368043ea601..dc78db87684 100644 --- a/crates/fm/src/lib.rs +++ b/crates/fm/src/lib.rs @@ -149,7 +149,7 @@ mod tests { fn create_dummy_file(dir: &TempDir, file_name: &Path) { let file_path = dir.path().join(file_name); - let _file = std::fs::File::create(file_path.clone()).unwrap(); + let _file = std::fs::File::create(file_path).unwrap(); } #[test] @@ -175,7 +175,7 @@ mod tests { let mut fm = FileManager::new(dir.path()); - let file_id = fm.add_file(&file_name).unwrap(); + let file_id = fm.add_file(file_name).unwrap(); assert!(fm.path(file_id).ends_with("foo")); } @@ -189,7 +189,7 @@ mod tests { let file_name = Path::new("lib.nr"); create_dummy_file(&dir, file_name); - let file_id = fm.add_file(&file_name).unwrap(); + let file_id = fm.add_file(file_name).unwrap(); // Create a sub directory // we now have: @@ -238,7 +238,7 @@ mod tests { let second_file_name = PathBuf::from(sub_sub_dir.path()).join("./../../lib.nr"); // Add both files to the file manager - let file_id = fm.add_file(&file_name).unwrap(); + let file_id = fm.add_file(file_name).unwrap(); let second_file_id = fm.add_file(&second_file_name).unwrap(); assert_eq!(file_id, second_file_id); From ab61e3ab70aa0f7a037e0ad4a430975f50266097 Mon Sep 17 00:00:00 2001 From: jfecher Date: Tue, 1 Aug 2023 09:52:19 -0500 Subject: [PATCH 10/13] fix: Implement `.len()` in Acir-Gen (#2077) * Start experiment to merge array and slice types * Finish merger of slices and arrays * Implement missing try_bind function * Add missed case for NotConstant * Fix some tests * Fix poseidon test * Fix evaluation of slice length * Fix tests * Fix 2070 --- crates/nargo_cli/tests/test_data/array_len/Prover.toml | 1 + crates/nargo_cli/tests/test_data/array_len/src/main.nr | 7 ++++++- .../src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs | 5 +++++ crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs | 8 ++++++++ 4 files changed, 20 insertions(+), 1 deletion(-) diff --git a/crates/nargo_cli/tests/test_data/array_len/Prover.toml b/crates/nargo_cli/tests/test_data/array_len/Prover.toml index 3c3295e6848..a5ffe607b73 100644 --- a/crates/nargo_cli/tests/test_data/array_len/Prover.toml +++ b/crates/nargo_cli/tests/test_data/array_len/Prover.toml @@ -1,2 +1,3 @@ len3 = [1, 2, 3] len4 = [1, 2, 3, 4] +x = 123 diff --git a/crates/nargo_cli/tests/test_data/array_len/src/main.nr b/crates/nargo_cli/tests/test_data/array_len/src/main.nr index 2c3cc0aee60..65c2295cefb 100644 --- a/crates/nargo_cli/tests/test_data/array_len/src/main.nr +++ b/crates/nargo_cli/tests/test_data/array_len/src/main.nr @@ -12,7 +12,7 @@ fn nested_call(b: [Field; N]) -> Field { len_plus_1(b) } -fn main(len3: [u8; 3], len4: [Field; 4]) { +fn main(x: Field, len3: [u8; 3], len4: [Field; 4]) { assert(len_plus_1(len3) == 4); assert(len_plus_1(len4) == 5); assert(add_lens(len3, len4) == 7); @@ -20,4 +20,9 @@ fn main(len3: [u8; 3], len4: [Field; 4]) { // std::array::len returns a comptime value assert(len4[len3.len()] == 4); + + // Regression for #1023, ensure .len still works after calling to_le_bytes on a witness. + // This was needed because normally .len is evaluated before acir-gen where to_le_bytes + // on a witness is only evaluated during/after acir-gen. + assert(x.to_le_bytes(8).len() != 0); } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs index 6d8178b6a2c..25d92ed8b85 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs @@ -55,6 +55,11 @@ impl AcirType { } } + /// Returns a field type + pub(crate) fn field() -> Self { + AcirType::NumericType(NumericType::NativeField) + } + /// Returns a boolean type fn boolean() -> Self { AcirType::NumericType(NumericType::Unsigned { bit_size: 1 }) diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs index 1fce4cd76ad..da8409431ce 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs @@ -996,6 +996,14 @@ impl Context { Ok(Self::convert_vars_to_values(out_vars, dfg, result_ids)) } + Intrinsic::ArrayLen => { + let len = match self.convert_value(arguments[0], dfg) { + AcirValue::Var(_, _) => unreachable!("Non-array passed to array.len() method"), + AcirValue::Array(values) => (values.len() as u128).into(), + AcirValue::DynamicArray(array) => (array.len as u128).into(), + }; + Ok(vec![AcirValue::Var(self.acir_context.add_constant(len), AcirType::field())]) + } _ => todo!("expected a black box function"), } } From e85e4850546552b7240466031e770c2667280444 Mon Sep 17 00:00:00 2001 From: jfecher Date: Tue, 1 Aug 2023 09:54:22 -0500 Subject: [PATCH 11/13] fix: Mutating a variable no longer mutates its copy (#2057) * Fix 2054 * Rename function --- .../tests/test_data/references/src/main.nr | 10 ++++++ .../src/ssa_refactor/ssa_gen/mod.rs | 31 ++++++++++++++++--- 2 files changed, 37 insertions(+), 4 deletions(-) diff --git a/crates/nargo_cli/tests/test_data/references/src/main.nr b/crates/nargo_cli/tests/test_data/references/src/main.nr index b112875b9ff..f70293cb5a6 100644 --- a/crates/nargo_cli/tests/test_data/references/src/main.nr +++ b/crates/nargo_cli/tests/test_data/references/src/main.nr @@ -32,6 +32,7 @@ fn main(mut x: Field) { assert(*c.bar.array == [3, 4]); regression_1887(); + regression_2054(); } fn add1(x: &mut Field) { @@ -77,3 +78,12 @@ impl Bar { self.x = 32; } } + +// Ensure that mutating a variable does not also mutate its copy +fn regression_2054() { + let mut x = 2; + let z = x; + + x += 1; + assert(z == 2); +} diff --git a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs index 710450eb1e6..d6169dfd218 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs @@ -89,8 +89,13 @@ impl<'a> FunctionContext<'a> { self.codegen_expression(expr).into_leaf().eval(self) } - /// Codegen for identifiers - fn codegen_ident(&mut self, ident: &ast::Ident) -> Values { + /// Codegen a reference to an ident. + /// The only difference between this and codegen_ident is that if the variable is mutable + /// as in `let mut var = ...;` the `Value::Mutable` will be returned directly instead of + /// being automatically loaded from. This is needed when taking the reference of a variable + /// to reassign to it. Note that mutable references `let x = &mut ...;` do not require this + /// since they are not automatically loaded from and must be explicitly dereferenced. + fn codegen_ident_reference(&mut self, ident: &ast::Ident) -> Values { match &ident.definition { ast::Definition::Local(id) => self.lookup(*id), ast::Definition::Function(id) => self.get_or_queue_function(*id), @@ -104,6 +109,11 @@ impl<'a> FunctionContext<'a> { } } + /// Codegen an identifier, automatically loading its value if it is mutable. + fn codegen_ident(&mut self, ident: &ast::Ident) -> Values { + self.codegen_ident_reference(ident).map(|value| value.eval(self).into()) + } + fn codegen_literal(&mut self, literal: &ast::Literal) -> Values { match literal { ast::Literal::Array(array) => { @@ -159,20 +169,21 @@ impl<'a> FunctionContext<'a> { } fn codegen_unary(&mut self, unary: &ast::Unary) -> Values { - let rhs = self.codegen_expression(&unary.rhs); match unary.operator { noirc_frontend::UnaryOp::Not => { + let rhs = self.codegen_expression(&unary.rhs); let rhs = rhs.into_leaf().eval(self); self.builder.insert_not(rhs).into() } noirc_frontend::UnaryOp::Minus => { + let rhs = self.codegen_expression(&unary.rhs); let rhs = rhs.into_leaf().eval(self); let typ = self.builder.type_of_value(rhs); let zero = self.builder.numeric_constant(0u128, typ); self.builder.insert_binary(zero, BinaryOp::Sub, rhs).into() } noirc_frontend::UnaryOp::MutableReference => { - rhs.map(|rhs| { + self.codegen_reference(&unary.rhs).map(|rhs| { match rhs { value::Value::Normal(value) => { let alloc = self.builder.insert_allocate(); @@ -186,11 +197,23 @@ impl<'a> FunctionContext<'a> { }) } noirc_frontend::UnaryOp::Dereference { .. } => { + let rhs = self.codegen_expression(&unary.rhs); self.dereference(&rhs, &unary.result_type) } } } + fn codegen_reference(&mut self, expr: &Expression) -> Values { + match expr { + Expression::Ident(ident) => self.codegen_ident_reference(ident), + Expression::ExtractTupleField(tuple, index) => { + let tuple = self.codegen_reference(tuple); + Self::get_field(tuple, *index) + } + other => self.codegen_expression(other), + } + } + fn codegen_binary(&mut self, binary: &ast::Binary) -> Values { let lhs = self.codegen_non_tuple_expression(&binary.lhs); let rhs = self.codegen_non_tuple_expression(&binary.rhs); From 5cb816664e03992a766ba9dcb2650e9596fbb291 Mon Sep 17 00:00:00 2001 From: Maxim Vezenov Date: Tue, 1 Aug 2023 19:10:18 +0100 Subject: [PATCH 12/13] feat(acir_gen): RecursiveAggregation opcode and updates to black box func call generation (#2097) * update black box opcodes to accept multiple variables inputs and variable outputs, add RecursiveAggregation opcode * remove old method and comment * remove config change * remove NotImplemented InternalError --- crates/noirc_evaluator/src/errors.rs | 3 - .../acir_gen/acir_ir/acir_variable.rs | 15 +- .../acir_gen/acir_ir/generated_acir.rs | 173 +++++++++++------- .../src/ssa_refactor/acir_gen/mod.rs | 6 +- noir_stdlib/src/lib.nr | 4 +- 5 files changed, 122 insertions(+), 79 deletions(-) diff --git a/crates/noirc_evaluator/src/errors.rs b/crates/noirc_evaluator/src/errors.rs index 6d53668d7cb..27a87ccce36 100644 --- a/crates/noirc_evaluator/src/errors.rs +++ b/crates/noirc_evaluator/src/errors.rs @@ -44,8 +44,6 @@ pub enum InternalError { MissingArg { name: String, arg: String, location: Option }, #[error("ICE: {name:?} should be a constant")] NotAConstant { name: String, location: Option }, - #[error("{name:?} is not implemented yet")] - NotImplemented { name: String, location: Option }, #[error("ICE: Undeclared AcirVar")] UndeclaredAcirVar { location: Option }, #[error("ICE: Expected {expected:?}, found {found:?}")] @@ -61,7 +59,6 @@ impl From for FileDiagnostic { | InternalError::General { location, .. } | InternalError::MissingArg { location, .. } | InternalError::NotAConstant { location, .. } - | InternalError::NotImplemented { location, .. } | InternalError::UndeclaredAcirVar { location } | InternalError::UnExpected { location, .. } => { let file_id = location.map(|loc| loc.file).unwrap(); diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs index 25d92ed8b85..9177dc9ae6c 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/acir_variable.rs @@ -265,7 +265,7 @@ impl AcirContext { typ: AcirType, ) -> Result { let inputs = vec![AcirValue::Var(lhs, typ.clone()), AcirValue::Var(rhs, typ)]; - let outputs = self.black_box_function(BlackBoxFunc::XOR, inputs)?; + let outputs = self.black_box_function(BlackBoxFunc::XOR, inputs, 1)?; Ok(outputs[0]) } @@ -277,7 +277,7 @@ impl AcirContext { typ: AcirType, ) -> Result { let inputs = vec![AcirValue::Var(lhs, typ.clone()), AcirValue::Var(rhs, typ)]; - let outputs = self.black_box_function(BlackBoxFunc::AND, inputs)?; + let outputs = self.black_box_function(BlackBoxFunc::AND, inputs, 1)?; Ok(outputs[0]) } @@ -304,7 +304,7 @@ impl AcirContext { let a = self.sub_var(max, lhs)?; let b = self.sub_var(max, rhs)?; let inputs = vec![AcirValue::Var(a, typ.clone()), AcirValue::Var(b, typ)]; - let outputs = self.black_box_function(BlackBoxFunc::AND, inputs)?; + let outputs = self.black_box_function(BlackBoxFunc::AND, inputs, 1)?; self.sub_var(max, outputs[0]) } } @@ -682,6 +682,7 @@ impl AcirContext { &mut self, name: BlackBoxFunc, mut inputs: Vec, + output_count: usize, ) -> Result, RuntimeError> { // Separate out any arguments that should be constants let constants = match name { @@ -717,7 +718,7 @@ impl AcirContext { let inputs = self.prepare_inputs_for_black_box_func_call(inputs)?; // Call Black box with `FunctionInput` - let outputs = self.acir_ir.call_black_box(name, inputs, constants)?; + let outputs = self.acir_ir.call_black_box(name, &inputs, constants, output_count)?; // Convert `Witness` values which are now constrained to be the output of the // black box function call into `AcirVar`s. @@ -733,9 +734,10 @@ impl AcirContext { fn prepare_inputs_for_black_box_func_call( &mut self, inputs: Vec, - ) -> Result, RuntimeError> { + ) -> Result>, RuntimeError> { let mut witnesses = Vec::new(); for input in inputs { + let mut single_val_witnesses = Vec::new(); for (input, typ) in input.flatten() { let var_data = &self.vars[&input]; @@ -745,8 +747,9 @@ impl AcirContext { let expr = var_data.to_expression(); let witness = self.acir_ir.get_or_create_witness(&expr); let num_bits = typ.bit_size(); - witnesses.push(FunctionInput { witness, num_bits }); + single_val_witnesses.push(FunctionInput { witness, num_bits }); } + witnesses.push(single_val_witnesses); } Ok(witnesses) } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs index c368a042dc9..738387fbaab 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/acir_ir/generated_acir.rs @@ -122,12 +122,14 @@ impl GeneratedAcir { pub(crate) fn call_black_box( &mut self, func_name: BlackBoxFunc, - mut inputs: Vec, + inputs: &[Vec], constants: Vec, + output_count: usize, ) -> Result, InternalError> { - intrinsics_check_inputs(func_name, &inputs)?; + let input_count = inputs.iter().fold(0usize, |sum, val| sum + val.len()); + intrinsics_check_inputs(func_name, input_count); + intrinsics_check_outputs(func_name, output_count); - let output_count = black_box_expected_output_size(func_name)?; let outputs = vecmap(0..output_count, |_| self.next_witness_index()); // clone is needed since outputs is moved when used in blackbox function. @@ -135,57 +137,60 @@ impl GeneratedAcir { let black_box_func_call = match func_name { BlackBoxFunc::AND => { - BlackBoxFuncCall::AND { lhs: inputs[0], rhs: inputs[1], output: outputs[0] } + BlackBoxFuncCall::AND { lhs: inputs[0][0], rhs: inputs[1][0], output: outputs[0] } } BlackBoxFunc::XOR => { - BlackBoxFuncCall::XOR { lhs: inputs[0], rhs: inputs[1], output: outputs[0] } + BlackBoxFuncCall::XOR { lhs: inputs[0][0], rhs: inputs[1][0], output: outputs[0] } } - BlackBoxFunc::RANGE => BlackBoxFuncCall::RANGE { input: inputs[0] }, - BlackBoxFunc::SHA256 => BlackBoxFuncCall::SHA256 { inputs, outputs }, - BlackBoxFunc::Blake2s => BlackBoxFuncCall::Blake2s { inputs, outputs }, - BlackBoxFunc::HashToField128Security => { - BlackBoxFuncCall::HashToField128Security { inputs, output: outputs[0] } + BlackBoxFunc::RANGE => BlackBoxFuncCall::RANGE { input: inputs[0][0] }, + BlackBoxFunc::SHA256 => BlackBoxFuncCall::SHA256 { inputs: inputs[0].clone(), outputs }, + BlackBoxFunc::Blake2s => { + BlackBoxFuncCall::Blake2s { inputs: inputs[0].clone(), outputs } } + BlackBoxFunc::HashToField128Security => BlackBoxFuncCall::HashToField128Security { + inputs: inputs[0].clone(), + output: outputs[0], + }, BlackBoxFunc::SchnorrVerify => BlackBoxFuncCall::SchnorrVerify { - public_key_x: inputs[0], - public_key_y: inputs[1], + public_key_x: inputs[0][0], + public_key_y: inputs[1][0], // Schnorr signature is an r & s, 32 bytes each - signature: inputs[2..66].to_vec(), - message: inputs[66..].to_vec(), + signature: inputs[2].clone(), + message: inputs[3].clone(), output: outputs[0], }, BlackBoxFunc::Pedersen => BlackBoxFuncCall::Pedersen { - inputs, + inputs: inputs[0].clone(), outputs: (outputs[0], outputs[1]), domain_separator: constants[0].to_u128() as u32, }, BlackBoxFunc::EcdsaSecp256k1 => BlackBoxFuncCall::EcdsaSecp256k1 { // 32 bytes for each public key co-ordinate - public_key_x: inputs[0..32].to_vec(), - public_key_y: inputs[32..64].to_vec(), + public_key_x: inputs[0].clone(), + public_key_y: inputs[1].clone(), // (r,s) are both 32 bytes each, so signature // takes up 64 bytes - signature: inputs[64..128].to_vec(), - hashed_message: inputs[128..].to_vec(), + signature: inputs[2].clone(), + hashed_message: inputs[3].clone(), output: outputs[0], }, BlackBoxFunc::EcdsaSecp256r1 => BlackBoxFuncCall::EcdsaSecp256r1 { // 32 bytes for each public key co-ordinate - public_key_x: inputs[0..32].to_vec(), - public_key_y: inputs[32..64].to_vec(), + public_key_x: inputs[0].clone(), + public_key_y: inputs[1].clone(), // (r,s) are both 32 bytes each, so signature // takes up 64 bytes - signature: inputs[64..128].to_vec(), - hashed_message: inputs[128..].to_vec(), + signature: inputs[2].clone(), + hashed_message: inputs[3].clone(), output: outputs[0], }, BlackBoxFunc::FixedBaseScalarMul => BlackBoxFuncCall::FixedBaseScalarMul { - input: inputs[0], + input: inputs[0][0], outputs: (outputs[0], outputs[1]), }, BlackBoxFunc::Keccak256 => { - let var_message_size = match inputs.pop() { - Some(var_message_size) => var_message_size, + let var_message_size = match inputs.to_vec().pop() { + Some(var_message_size) => var_message_size[0], None => { return Err(InternalError::MissingArg { name: "".to_string(), @@ -194,14 +199,31 @@ impl GeneratedAcir { }); } }; - BlackBoxFuncCall::Keccak256VariableLength { inputs, var_message_size, outputs } + BlackBoxFuncCall::Keccak256VariableLength { + inputs: inputs[0].clone(), + var_message_size, + outputs, + } } - // TODO(#1570): Generate ACIR for recursive aggregation BlackBoxFunc::RecursiveAggregation => { - return Err(InternalError::NotImplemented { - name: "recursive aggregation".to_string(), - location: None, - }) + let has_previous_aggregation = self.opcodes.iter().any(|op| { + matches!( + op, + AcirOpcode::BlackBoxFuncCall(BlackBoxFuncCall::RecursiveAggregation { .. }) + ) + }); + + let input_aggregation_object = + if !has_previous_aggregation { None } else { Some(inputs[4].clone()) }; + + BlackBoxFuncCall::RecursiveAggregation { + verification_key: inputs[0].clone(), + proof: inputs[1].clone(), + public_inputs: inputs[2].clone(), + key_hash: inputs[3][0], + input_aggregation_object, + output_aggregation_object: outputs, + } } }; @@ -819,68 +841,60 @@ impl GeneratedAcir { /// This function will return the number of inputs that a blackbox function /// expects. Returning `None` if there is no expectation. -fn black_box_func_expected_input_size(name: BlackBoxFunc) -> Result, InternalError> { +fn black_box_func_expected_input_size(name: BlackBoxFunc) -> Option { match name { // Bitwise opcodes will take in 2 parameters - BlackBoxFunc::AND | BlackBoxFunc::XOR => Ok(Some(2)), + BlackBoxFunc::AND | BlackBoxFunc::XOR => Some(2), // All of the hash/cipher methods will take in a // variable number of inputs. BlackBoxFunc::Keccak256 | BlackBoxFunc::SHA256 | BlackBoxFunc::Blake2s | BlackBoxFunc::Pedersen - | BlackBoxFunc::HashToField128Security => Ok(None), + | BlackBoxFunc::HashToField128Security => None, // Can only apply a range constraint to one // witness at a time. - BlackBoxFunc::RANGE => Ok(Some(1)), + BlackBoxFunc::RANGE => Some(1), // Signature verification algorithms will take in a variable // number of inputs, since the message/hashed-message can vary in size. BlackBoxFunc::SchnorrVerify | BlackBoxFunc::EcdsaSecp256k1 - | BlackBoxFunc::EcdsaSecp256r1 => Ok(None), + | BlackBoxFunc::EcdsaSecp256r1 => None, // Inputs for fixed based scalar multiplication // is just a scalar - BlackBoxFunc::FixedBaseScalarMul => Ok(Some(1)), - // TODO(#1570): Generate ACIR for recursive aggregation - // RecursiveAggregation has variable inputs and we could return `None` here, - // but as it is not fully implemented we return an ICE error for now - BlackBoxFunc::RecursiveAggregation => Err(InternalError::NotImplemented { - name: "recursive aggregation".to_string(), - location: None, - }), + BlackBoxFunc::FixedBaseScalarMul => Some(1), + // Recursive aggregation has a variable number of inputs + BlackBoxFunc::RecursiveAggregation => None, } } /// This function will return the number of outputs that a blackbox function /// expects. Returning `None` if there is no expectation. -fn black_box_expected_output_size(name: BlackBoxFunc) -> Result { +fn black_box_expected_output_size(name: BlackBoxFunc) -> Option { match name { // Bitwise opcodes will return 1 parameter which is the output // or the operation. - BlackBoxFunc::AND | BlackBoxFunc::XOR => Ok(1), + BlackBoxFunc::AND | BlackBoxFunc::XOR => Some(1), // 32 byte hash algorithms - BlackBoxFunc::Keccak256 | BlackBoxFunc::SHA256 | BlackBoxFunc::Blake2s => Ok(32), + BlackBoxFunc::Keccak256 | BlackBoxFunc::SHA256 | BlackBoxFunc::Blake2s => Some(32), // Hash to field returns a field element - BlackBoxFunc::HashToField128Security => Ok(1), + BlackBoxFunc::HashToField128Security => Some(1), // Pedersen returns a point - BlackBoxFunc::Pedersen => Ok(2), + BlackBoxFunc::Pedersen => Some(2), // Can only apply a range constraint to one // witness at a time. - BlackBoxFunc::RANGE => Ok(0), + BlackBoxFunc::RANGE => Some(0), // Signature verification algorithms will return a boolean BlackBoxFunc::SchnorrVerify | BlackBoxFunc::EcdsaSecp256k1 - | BlackBoxFunc::EcdsaSecp256r1 => Ok(1), + | BlackBoxFunc::EcdsaSecp256r1 => Some(1), // Output of fixed based scalar mul over the embedded curve // will be 2 field elements representing the point. - BlackBoxFunc::FixedBaseScalarMul => Ok(2), - // TODO(#1570): Generate ACIR for recursive aggregation - BlackBoxFunc::RecursiveAggregation => Err(InternalError::NotImplemented { - name: "recursive aggregation".to_string(), - location: None, - }), + BlackBoxFunc::FixedBaseScalarMul => Some(2), + // Recursive aggregation has a variable number of outputs + BlackBoxFunc::RecursiveAggregation => None, } } @@ -899,16 +913,41 @@ fn black_box_expected_output_size(name: BlackBoxFunc) -> Result(_input : [u8; N]) -> [u8; 32] {} /// `` -fn intrinsics_check_inputs( - name: BlackBoxFunc, - inputs: &[FunctionInput], -) -> Result<(), InternalError> { - let expected_num_inputs = match black_box_func_expected_input_size(name)? { +fn intrinsics_check_inputs(name: BlackBoxFunc, input_count: usize) { + let expected_num_inputs = match black_box_func_expected_input_size(name) { + Some(expected_num_inputs) => expected_num_inputs, + None => return, + }; + + assert_eq!(expected_num_inputs,input_count,"Tried to call black box function {name} with {input_count} inputs, but this function's definition requires {expected_num_inputs} inputs"); +} + +/// Checks that the number of outputs being used to call the blackbox function +/// is correct according to the function definition. +/// +/// Some functions expect a variable number of outputs and in such a case, +/// this method will do nothing. An example of this is recursive aggregation. +/// In that case, this function will not check anything. +/// +/// Since we expect black box functions to be called behind a Noir shim function, +/// we trigger a compiler error if the inputs do not match. +/// +/// An example of Noir shim function is the following: +/// `` +/// #[foreign(sha256)] +/// fn verify_proof( +/// _verification_key : [Field], +/// _proof : [Field], +/// _public_inputs : [Field], +/// _key_hash : Field, +/// _input_aggregation_object : [Field; N] +/// ) -> [Field; N] {} +/// `` +fn intrinsics_check_outputs(name: BlackBoxFunc, output_count: usize) { + let expected_num_outputs = match black_box_expected_output_size(name) { Some(expected_num_inputs) => expected_num_inputs, - None => return Ok(()), + None => return, }; - let got_num_inputs = inputs.len(); - assert_eq!(expected_num_inputs,inputs.len(),"Tried to call black box function {name} with {got_num_inputs} inputs, but this function's definition requires {expected_num_inputs} inputs"); - Ok(()) + assert_eq!(expected_num_outputs,output_count,"Tried to call black box function {name} with {output_count} inputs, but this function's definition requires {expected_num_outputs} inputs"); } diff --git a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs index da8409431ce..5253cb71875 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/acir_gen/mod.rs @@ -943,7 +943,11 @@ impl Context { Intrinsic::BlackBox(black_box) => { let inputs = vecmap(arguments, |arg| self.convert_value(*arg, dfg)); - let vars = self.acir_context.black_box_function(black_box, inputs)?; + let output_count = result_ids.iter().fold(0usize, |sum, result_id| { + sum + dfg.try_get_array_length(*result_id).unwrap_or(1) + }); + + let vars = self.acir_context.black_box_function(black_box, inputs, output_count)?; Ok(Self::convert_vars_to_values(vars, dfg, result_ids)) } diff --git a/noir_stdlib/src/lib.nr b/noir_stdlib/src/lib.nr index f6c01ecdfaa..e654a20b1d8 100644 --- a/noir_stdlib/src/lib.nr +++ b/noir_stdlib/src/lib.nr @@ -18,11 +18,11 @@ mod compat; // Oracle calls are required to be wrapped in an unconstrained function // Thus, the only argument to the `println` oracle is expected to always be an ident #[oracle(println)] -unconstrained fn println_oracle(_input: T) {} +unconstrained fn println_oracle(_input: T) {} unconstrained fn println(input: T) { println_oracle(input); } #[foreign(recursive_aggregation)] -fn verify_proof(_verification_key : [Field], _proof : [Field], _public_inputs : [Field], _key_hash : Field, _input_aggregation_object : [Field]) -> [Field] {} +fn verify_proof(_verification_key : [Field], _proof : [Field], _public_inputs : [Field], _key_hash : Field, _input_aggregation_object : [Field; N]) -> [Field; N] {} From 3c827217900d19a710ee8a49d782ed3d43a6336c Mon Sep 17 00:00:00 2001 From: Maxim Vezenov Date: Tue, 1 Aug 2023 19:54:33 +0100 Subject: [PATCH 13/13] feat: Format strings for prints (#1952) * initial stdlib methods to start refactoring logign * foreign call enum * working println and println_format w/ brillig oracles * fix up brillig_oracle test * uncomment regression test for slice return from foreign calls in brillig * cargo clippy * got structs serialized correctly without aos_to_soa * remove dbg * working println_format * cargo clippy * rename enable_slices to experimental_ssa * remove dbg and fix format_field_string * initial work towards FmtStr literal * working format strins with one unified println method, still have some cleanup to-do, use Display/Debug for pretty printing * remove old comment * moved resolution of string to fmt string only when passing literals to functions * delete temp intrinsic for println new * remove unnecessary subtype * remove debugging code w/ def id as part of mono pass Ident * cleanup formatting stuff * cargo clippy * resolver test for fmt string * remove TODO comment * cargo clippy * pr comments * expose full fmtstr type to the user * add back fmt string resolver test * don't allow comparison of format strings * use JsonType Display trait * add issue for printing func params * remove Token::F variant * remove old append_abi_arg func * add comments to append_abi-arg * fix: format printing function parameters, store exprs rather than idents as part of HirLiteral::FmtStr * remove ve old comment about not being able to use witness values in fmt strings * push fix for asfs{x}{x} case and more specific regex for idents * Update crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs Co-authored-by: jfecher * remove is_match check * breakout literal fmt str case in resolver to its own func * update resolve_fmt_strings test * switch to_owned placement in resolve_fmt_str_literal * Update crates/noirc_frontend/src/ast/mod.rs Co-authored-by: jfecher * fix find_numeric_generics_in_type * add case of fmt string in if statement * add contains_numeric_typevar cases for string and fmtstring * add unify and subtype checks and fix resolver fmt string test * working generic fmtstr types * separate fmtstr codegen into variables * Update crates/noirc_frontend/src/parser/parser.rs * Update crates/noirc_abi/src/input_parser/json.rs Co-authored-by: jfecher * Update crates/noirc_frontend/src/ast/mod.rs Co-authored-by: jfecher * Update crates/noirc_frontend/src/monomorphization/mod.rs Co-authored-by: jfecher * Update crates/noirc_frontend/src/monomorphization/mod.rs Co-authored-by: jfecher * Update crates/noirc_frontend/src/monomorphization/mod.rs Co-authored-by: jfecher * Update crates/noirc_frontend/src/parser/parser.rs Co-authored-by: jfecher * keep the size of fmtrstr type as mandatory * print original fmt string in monomorphization printer * print literal update for fmtstr * add parens to f-string literal printer --------- Co-authored-by: jfecher --- Cargo.lock | 2 + crates/nargo/Cargo.toml | 3 +- crates/nargo/src/ops/foreign_calls.rs | 89 +++++++++++++++---- .../tests/test_data/debug_logs/src/main.nr | 48 +++++++++- .../src/ssa_refactor/ssa_gen/context.rs | 12 +++ .../src/ssa_refactor/ssa_gen/mod.rs | 12 +++ crates/noirc_frontend/Cargo.toml | 1 + crates/noirc_frontend/src/ast/expression.rs | 6 ++ crates/noirc_frontend/src/ast/mod.rs | 6 +- .../src/hir/resolution/errors.rs | 7 ++ .../src/hir/resolution/resolver.rs | 86 +++++++++++++++++- .../noirc_frontend/src/hir/type_check/expr.rs | 5 ++ crates/noirc_frontend/src/hir_def/expr.rs | 1 + crates/noirc_frontend/src/hir_def/types.rs | 43 ++++++++- crates/noirc_frontend/src/lexer/lexer.rs | 17 +++- crates/noirc_frontend/src/lexer/token.rs | 7 +- .../src/monomorphization/ast.rs | 7 +- .../src/monomorphization/mod.rs | 75 ++++++++++++++-- .../src/monomorphization/printer.rs | 5 ++ crates/noirc_frontend/src/node_interner.rs | 9 +- crates/noirc_frontend/src/parser/parser.rs | 15 ++++ 21 files changed, 414 insertions(+), 42 deletions(-) diff --git a/Cargo.lock b/Cargo.lock index 4e1510c8df9..1b7a70b2063 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -1982,6 +1982,7 @@ dependencies = [ "noirc_abi", "noirc_driver", "noirc_errors", + "regex", "rustc_version", "serde", "serde_json", @@ -2128,6 +2129,7 @@ dependencies = [ "iter-extended", "noirc_abi", "noirc_errors", + "regex", "rustc-hash", "serde", "serde_json", diff --git a/crates/nargo/Cargo.toml b/crates/nargo/Cargo.toml index 6c053cba931..afbafdff931 100644 --- a/crates/nargo/Cargo.toml +++ b/crates/nargo/Cargo.toml @@ -20,4 +20,5 @@ serde.workspace = true serde_json.workspace = true thiserror.workspace = true noirc_errors.workspace = true -base64.workspace = true \ No newline at end of file +base64.workspace = true +regex = "1.9.1" diff --git a/crates/nargo/src/ops/foreign_calls.rs b/crates/nargo/src/ops/foreign_calls.rs index 4bbd4eb58bc..2abc62b1032 100644 --- a/crates/nargo/src/ops/foreign_calls.rs +++ b/crates/nargo/src/ops/foreign_calls.rs @@ -4,6 +4,7 @@ use acvm::{ }; use iter_extended::vecmap; use noirc_abi::{decode_string_value, input_parser::InputValueDisplay, AbiType}; +use regex::{Captures, Regex}; use crate::errors::ForeignCallError; @@ -63,31 +64,89 @@ impl ForeignCall { } fn execute_println(foreign_call_inputs: &[Vec]) -> Result<(), ForeignCallError> { - let (abi_type, input_values) = fetch_abi_type(foreign_call_inputs)?; + let (is_fmt_str, foreign_call_inputs) = + foreign_call_inputs.split_last().ok_or(ForeignCallError::MissingForeignCallInputs)?; - // We must use a flat map here as each value in a struct will be in a separate input value - let mut input_values_as_fields = - input_values.iter().flat_map(|values| values.iter().map(|value| value.to_field())); - - let input_value_display = - InputValueDisplay::try_from_fields(&mut input_values_as_fields, abi_type)?; - - println!("{input_value_display}"); + let output_string = if is_fmt_str[0].to_field().is_one() { + convert_fmt_string_inputs(foreign_call_inputs)? + } else { + convert_string_inputs(foreign_call_inputs)? + }; + println!("{output_string}"); Ok(()) } } -/// Fetch the abi type from the foreign call input -/// The remaining input values should hold the values to be printed -fn fetch_abi_type( - foreign_call_inputs: &[Vec], -) -> Result<(AbiType, &[Vec]), ForeignCallError> { +fn convert_string_inputs(foreign_call_inputs: &[Vec]) -> Result { + // Fetch the abi type from the foreign call input + // The remaining input values should hold what is to be printed let (abi_type_as_values, input_values) = foreign_call_inputs.split_last().ok_or(ForeignCallError::MissingForeignCallInputs)?; + let abi_type = fetch_abi_type(abi_type_as_values)?; + + // We must use a flat map here as each value in a struct will be in a separate input value + let mut input_values_as_fields = + input_values.iter().flat_map(|values| vecmap(values, |value| value.to_field())); + + let input_value_display = + InputValueDisplay::try_from_fields(&mut input_values_as_fields, abi_type)?; + + Ok(input_value_display.to_string()) +} + +fn convert_fmt_string_inputs( + foreign_call_inputs: &[Vec], +) -> Result { + let (message_as_values, input_and_abi_values) = + foreign_call_inputs.split_first().ok_or(ForeignCallError::MissingForeignCallInputs)?; + + let message_as_fields = vecmap(message_as_values, |value| value.to_field()); + let message_as_string = decode_string_value(&message_as_fields); + + let (num_values, input_and_abi_values) = + input_and_abi_values.split_first().ok_or(ForeignCallError::MissingForeignCallInputs)?; + + let mut output_strings = Vec::new(); + let num_values = num_values[0].to_field().to_u128() as usize; + + let mut abi_types = Vec::new(); + for abi_values in input_and_abi_values.iter().skip(input_and_abi_values.len() - num_values) { + let abi_type = fetch_abi_type(abi_values)?; + abi_types.push(abi_type); + } + + for i in 0..num_values { + let abi_type = &abi_types[i]; + let type_size = abi_type.field_count() as usize; + + let mut input_values_as_fields = input_and_abi_values[i..(i + type_size)] + .iter() + .flat_map(|values| vecmap(values, |value| value.to_field())); + + let input_value_display = + InputValueDisplay::try_from_fields(&mut input_values_as_fields, abi_type.clone())?; + + output_strings.push(input_value_display.to_string()); + } + + let mut output_strings_iter = output_strings.into_iter(); + let re = Regex::new(r"\{([a-zA-Z0-9_]+)\}") + .expect("ICE: an invalid regex pattern was used for checking format strings"); + + let formatted_str = re.replace_all(&message_as_string, |_: &Captures| { + output_strings_iter + .next() + .expect("ICE: there are more regex matches than fields supplied to the format string") + }); + + Ok(formatted_str.into_owned()) +} + +fn fetch_abi_type(abi_type_as_values: &[Value]) -> Result { let abi_type_as_fields = vecmap(abi_type_as_values, |value| value.to_field()); let abi_type_as_string = decode_string_value(&abi_type_as_fields); let abi_type: AbiType = serde_json::from_str(&abi_type_as_string) .map_err(|err| ForeignCallError::InputParserError(err.into()))?; - Ok((abi_type, input_values)) + Ok(abi_type) } diff --git a/crates/nargo_cli/tests/test_data/debug_logs/src/main.nr b/crates/nargo_cli/tests/test_data/debug_logs/src/main.nr index 29386feb98c..c8d37a938c7 100644 --- a/crates/nargo_cli/tests/test_data/debug_logs/src/main.nr +++ b/crates/nargo_cli/tests/test_data/debug_logs/src/main.nr @@ -1,14 +1,56 @@ use dep::std; fn main(x : Field, y : pub Field) { + let string = "i: {i}, j: {j}"; + std::println(string); + + // A `fmtstr` lets you easily perform string interpolation. + let fmt_str: fmtstr<14, (Field, Field)> = f"i: {x}, j: {y}"; + let fmt_str = string_identity(fmt_str); + std::println(fmt_str); + + let fmt_str_no_type = f"i: {x}, j: {y}"; + std::println(fmt_str_no_type); + + let fmt_str_generic = string_with_generics(fmt_str_no_type); + std::println(fmt_str_generic); + + let s = myStruct { y: x, x: y }; + std::println(s); + + std::println(f"randomstring{x}{x}"); + + let fmt_str = string_with_partial_generics(f"i: {x}, s: {s}"); + std::println(fmt_str); - std::println("*** println ***"); std::println(x); std::println([x, y]); - let s = myStruct { y: x, x: y }; let foo = fooStruct { my_struct: s, foo: 15 }; - std::println(foo); + std::println(f"s: {s}, foo: {foo}"); + + std::println(f"x: 0, y: 1"); + + let s_2 = myStruct { x: 20, y: 30 }; + std::println(f"s1: {s}, s2: {s_2}"); + + let bar = fooStruct { my_struct: s_2, foo: 20 }; + std::println(f"foo1: {foo}, foo2: {bar}"); + + let struct_string = if x != 5 { f"{foo}" } else { f"{bar}" }; + std::println(struct_string); +} + +fn string_identity(string: fmtstr<14, (Field, Field)>) -> fmtstr<14, (Field, Field)> { + string +} + +fn string_with_generics(string: fmtstr) -> fmtstr { + string +} + +fn string_with_partial_generics(string: fmtstr) -> fmtstr { + string } struct myStruct { diff --git a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/context.rs b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/context.rs index 769ee6aa09f..c485200a53e 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/context.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/context.rs @@ -177,6 +177,15 @@ impl<'a> FunctionContext<'a> { ast::Type::MutableReference(element) => { Self::map_type_helper(element, &mut |_| f(Type::Reference)) } + ast::Type::FmtString(len, fields) => { + // A format string is represented by multiple values + // The message string, the number of fields to be formatted, and + // then the encapsulated fields themselves + let final_fmt_str_fields = + vec![ast::Type::String(*len), ast::Type::Field, *fields.clone()]; + let fmt_str_tuple = ast::Type::Tuple(final_fmt_str_fields); + Self::map_type_helper(&fmt_str_tuple, f) + } other => Tree::Leaf(f(Self::convert_non_tuple_type(other))), } } @@ -204,6 +213,9 @@ impl<'a> FunctionContext<'a> { ast::Type::Integer(Signedness::Unsigned, bits) => Type::unsigned(*bits), ast::Type::Bool => Type::unsigned(1), ast::Type::String(len) => Type::Array(Rc::new(vec![Type::char()]), *len as usize), + ast::Type::FmtString(_, _) => { + panic!("convert_non_tuple_type called on a fmt string: {typ}") + } ast::Type::Unit => panic!("convert_non_tuple_type called on a unit type"), ast::Type::Tuple(_) => panic!("convert_non_tuple_type called on a tuple: {typ}"), ast::Type::Function(_, _) => Type::Function, diff --git a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs index d6169dfd218..0c0dd35211b 100644 --- a/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs +++ b/crates/noirc_evaluator/src/ssa_refactor/ssa_gen/mod.rs @@ -135,6 +135,18 @@ impl<'a> FunctionContext<'a> { let typ = Self::convert_non_tuple_type(&ast::Type::String(elements.len() as u64)); self.codegen_array(elements, typ) } + ast::Literal::FmtStr(string, number_of_fields, fields) => { + // A caller needs multiple pieces of information to make use of a format string + // The message string, the number of fields to be formatted, and the fields themselves + let string = Expression::Literal(ast::Literal::Str(string.clone())); + let number_of_fields = Expression::Literal(ast::Literal::Integer( + (*number_of_fields as u128).into(), + ast::Type::Field, + )); + let fields = *fields.clone(); + let fmt_str_tuple = &[string, number_of_fields, fields]; + self.codegen_tuple(fmt_str_tuple) + } } } diff --git a/crates/noirc_frontend/Cargo.toml b/crates/noirc_frontend/Cargo.toml index a9a62673af6..1f902d2d399 100644 --- a/crates/noirc_frontend/Cargo.toml +++ b/crates/noirc_frontend/Cargo.toml @@ -20,6 +20,7 @@ serde.workspace = true serde_json.workspace = true rustc-hash = "1.1.0" small-ord-set = "0.1.3" +regex = "1.9.1" [dev-dependencies] strum = "0.24" diff --git a/crates/noirc_frontend/src/ast/expression.rs b/crates/noirc_frontend/src/ast/expression.rs index 1f1d226310f..b1829e8c1ee 100644 --- a/crates/noirc_frontend/src/ast/expression.rs +++ b/crates/noirc_frontend/src/ast/expression.rs @@ -72,6 +72,10 @@ impl ExpressionKind { ExpressionKind::Literal(Literal::Str(contents)) } + pub fn format_string(contents: String) -> ExpressionKind { + ExpressionKind::Literal(Literal::FmtStr(contents)) + } + pub fn constructor((type_name, fields): (Path, Vec<(Ident, Expression)>)) -> ExpressionKind { ExpressionKind::Constructor(Box::new(ConstructorExpression { type_name, fields })) } @@ -298,6 +302,7 @@ pub enum Literal { Bool(bool), Integer(FieldElement), Str(String), + FmtStr(String), Unit, } @@ -473,6 +478,7 @@ impl Display for Literal { Literal::Bool(boolean) => write!(f, "{}", if *boolean { "true" } else { "false" }), Literal::Integer(integer) => write!(f, "{}", integer.to_u128()), Literal::Str(string) => write!(f, "\"{string}\""), + Literal::FmtStr(string) => write!(f, "f\"{string}\""), Literal::Unit => write!(f, "()"), } } diff --git a/crates/noirc_frontend/src/ast/mod.rs b/crates/noirc_frontend/src/ast/mod.rs index ed73cce486a..b52c3e685d3 100644 --- a/crates/noirc_frontend/src/ast/mod.rs +++ b/crates/noirc_frontend/src/ast/mod.rs @@ -36,6 +36,7 @@ pub enum UnresolvedType { Bool(CompTime), Expression(UnresolvedTypeExpression), String(Option), + FormatString(UnresolvedTypeExpression, Box), Unit, /// A Named UnresolvedType can be a struct type or a type variable @@ -102,9 +103,10 @@ impl std::fmt::Display for UnresolvedType { Expression(expression) => expression.fmt(f), Bool(is_const) => write!(f, "{is_const}bool"), String(len) => match len { - None => write!(f, "str[]"), - Some(len) => write!(f, "str[{len}]"), + None => write!(f, "str<_>"), + Some(len) => write!(f, "str<{len}>"), }, + FormatString(len, elements) => write!(f, "fmt<{len}, {elements}"), Function(args, ret) => { let args = vecmap(args, ToString::to_string); write!(f, "fn({}) -> {ret}", args.join(", ")) diff --git a/crates/noirc_frontend/src/hir/resolution/errors.rs b/crates/noirc_frontend/src/hir/resolution/errors.rs index 82688928575..e9cf8f31393 100644 --- a/crates/noirc_frontend/src/hir/resolution/errors.rs +++ b/crates/noirc_frontend/src/hir/resolution/errors.rs @@ -74,6 +74,8 @@ pub enum ResolverError { MutableReferenceToArrayElement { span: Span }, #[error("Function is not defined in a contract yet sets is_internal")] ContractFunctionInternalInNormalFunction { span: Span }, + #[error("Numeric constants should be printed without formatting braces")] + NumericConstantInFormatString { name: String, span: Span }, } impl ResolverError { @@ -283,6 +285,11 @@ impl From for Diagnostic { "Non-contract functions cannot be 'internal'".into(), span, ), + ResolverError::NumericConstantInFormatString { name, span } => Diagnostic::simple_error( + format!("cannot find `{name}` in this scope "), + "Numeric constants should be printed without formatting braces".to_string(), + span, + ), } } } diff --git a/crates/noirc_frontend/src/hir/resolution/resolver.rs b/crates/noirc_frontend/src/hir/resolution/resolver.rs index 29b3cc485d5..fe19cb633e4 100644 --- a/crates/noirc_frontend/src/hir/resolution/resolver.rs +++ b/crates/noirc_frontend/src/hir/resolution/resolver.rs @@ -18,6 +18,7 @@ use crate::hir_def::expr::{ HirMethodCallExpression, HirPrefixExpression, }; use crate::token::Attribute; +use regex::Regex; use std::collections::{HashMap, HashSet}; use std::rc::Rc; @@ -347,6 +348,11 @@ impl<'a> Resolver<'a> { let resolved_size = self.resolve_array_size(size, new_variables); Type::String(Box::new(resolved_size)) } + UnresolvedType::FormatString(size, fields) => { + let resolved_size = self.convert_expression_type(size); + let fields = self.resolve_type_inner(*fields, new_variables); + Type::FmtString(Box::new(resolved_size), Box::new(fields)) + } UnresolvedType::Unit => Type::Unit, UnresolvedType::Unspecified => Type::Error, UnresolvedType::Error => Type::Error, @@ -775,7 +781,6 @@ impl<'a> Resolver<'a> { Type::FieldElement(_) | Type::Integer(_, _, _) | Type::Bool(_) - | Type::String(_) | Type::Unit | Type::Error | Type::TypeVariable(_, _) @@ -784,10 +789,11 @@ impl<'a> Resolver<'a> { | Type::NotConstant | Type::Forall(_, _) => (), - Type::Array(length, _) => { + Type::Array(length, element_type) => { if let Type::NamedGeneric(type_variable, name) = length.as_ref() { found.insert(name.to_string(), type_variable.clone()); } + Self::find_numeric_generics_in_type(element_type, found); } Type::Tuple(fields) => { @@ -813,6 +819,17 @@ impl<'a> Resolver<'a> { } } Type::MutableReference(element) => Self::find_numeric_generics_in_type(element, found), + Type::String(length) => { + if let Type::NamedGeneric(type_variable, name) = length.as_ref() { + found.insert(name.to_string(), type_variable.clone()); + } + } + Type::FmtString(length, fields) => { + if let Type::NamedGeneric(type_variable, name) = length.as_ref() { + found.insert(name.to_string(), type_variable.clone()); + } + Self::find_numeric_generics_in_type(fields, found); + } } } @@ -904,6 +921,7 @@ impl<'a> Resolver<'a> { } Literal::Integer(integer) => HirLiteral::Integer(integer), Literal::Str(str) => HirLiteral::Str(str), + Literal::FmtStr(str) => self.resolve_fmt_str_literal(str, expr.span), Literal::Unit => HirLiteral::Unit, }), ExpressionKind::Variable(path) => { @@ -939,6 +957,7 @@ impl<'a> Resolver<'a> { ExpressionKind::Call(call_expr) => { // Get the span and name of path for error reporting let func = self.resolve_expression(*call_expr.func); + let arguments = vecmap(call_expr.arguments, |arg| self.resolve_expression(arg)); let location = Location::new(expr.span, self.file); HirExpression::Call(HirCallExpression { func, arguments, location }) @@ -1288,6 +1307,36 @@ impl<'a> Resolver<'a> { let module_id = self.path_resolver.module_id(); module_id.module(self.def_maps).is_contract } + + fn resolve_fmt_str_literal(&mut self, str: String, call_expr_span: Span) -> HirLiteral { + let re = Regex::new(r"\{([a-zA-Z0-9_]+)\}") + .expect("ICE: an invalid regex pattern was used for checking format strings"); + let mut fmt_str_idents = Vec::new(); + for field in re.find_iter(&str) { + let matched_str = field.as_str(); + let ident_name = &matched_str[1..(matched_str.len() - 1)]; + + let scope_tree = self.scopes.current_scope_tree(); + let variable = scope_tree.find(ident_name); + if let Some((old_value, _)) = variable { + old_value.num_times_used += 1; + let expr_id = self.interner.push_expr(HirExpression::Ident(old_value.ident)); + self.interner.push_expr_location(expr_id, call_expr_span, self.file); + fmt_str_idents.push(expr_id); + } else if ident_name.parse::().is_ok() { + self.errors.push(ResolverError::NumericConstantInFormatString { + name: ident_name.to_owned(), + span: call_expr_span, + }); + } else { + self.errors.push(ResolverError::VariableNotDeclared { + name: ident_name.to_owned(), + span: call_expr_span, + }); + } + } + HirLiteral::FmtStr(str, fmt_str_idents) + } } /// Gives an error if a user tries to create a mutable reference @@ -1572,6 +1621,39 @@ mod test { assert!(errors.is_empty()); } + #[test] + fn resolve_fmt_strings() { + let src = r#" + fn main() { + let string = f"this is i: {i}"; + println(string); + + println(f"I want to print {0}"); + + let new_val = 10; + println(f"randomstring{new_val}{new_val}"); + } + fn println(x : T) -> T { + x + } + "#; + + let errors = resolve_src_code(src, vec!["main", "println"]); + assert!(errors.len() == 2, "Expected 2 errors, got: {:?}", errors); + + for err in errors { + match &err { + ResolverError::VariableNotDeclared { name, .. } => { + assert_eq!(name, "i"); + } + ResolverError::NumericConstantInFormatString { name, .. } => { + assert_eq!(name, "0"); + } + _ => unimplemented!(), + }; + } + } + fn path_unresolved_error(err: ResolverError, expected_unresolved_path: &str) { match err { ResolverError::PathResolutionError(PathResolutionError::Unresolved(name)) => { diff --git a/crates/noirc_frontend/src/hir/type_check/expr.rs b/crates/noirc_frontend/src/hir/type_check/expr.rs index b19833fb311..12c11bf20e1 100644 --- a/crates/noirc_frontend/src/hir/type_check/expr.rs +++ b/crates/noirc_frontend/src/hir/type_check/expr.rs @@ -111,6 +111,11 @@ impl<'interner> TypeChecker<'interner> { let len = Type::Constant(string.len() as u64); Type::String(Box::new(len)) } + HirLiteral::FmtStr(string, idents) => { + let len = Type::Constant(string.len() as u64); + let types = vecmap(&idents, |elem| self.check_expression(elem)); + Type::FmtString(Box::new(len), Box::new(Type::Tuple(types))) + } HirLiteral::Unit => Type::Unit, } } diff --git a/crates/noirc_frontend/src/hir_def/expr.rs b/crates/noirc_frontend/src/hir_def/expr.rs index 63b7e421dc3..5db9751591a 100644 --- a/crates/noirc_frontend/src/hir_def/expr.rs +++ b/crates/noirc_frontend/src/hir_def/expr.rs @@ -80,6 +80,7 @@ pub enum HirLiteral { Bool(bool), Integer(FieldElement), Str(String), + FmtStr(String, Vec), Unit, } diff --git a/crates/noirc_frontend/src/hir_def/types.rs b/crates/noirc_frontend/src/hir_def/types.rs index 6e1113345a8..4b4318f79d6 100644 --- a/crates/noirc_frontend/src/hir_def/types.rs +++ b/crates/noirc_frontend/src/hir_def/types.rs @@ -39,6 +39,10 @@ pub enum Type { /// is either a type variable of some kind or a Type::Constant. String(Box), + /// FmtString(N, Vec) is an array of characters of length N that contains + /// a list of fields specified inside the string by the following regular expression r"\{([\S]+)\}" + FmtString(Box, Box), + /// The unit type `()`. Unit, @@ -608,7 +612,6 @@ impl Type { Type::FieldElement(_) | Type::Integer(_, _, _) | Type::Bool(_) - | Type::String(_) | Type::Unit | Type::Error | Type::TypeVariable(_, _) @@ -638,6 +641,11 @@ impl Type { }) } Type::MutableReference(element) => element.contains_numeric_typevar(target_id), + Type::String(length) => named_generic_id_matches_target(length), + Type::FmtString(length, elements) => { + elements.contains_numeric_typevar(target_id) + || named_generic_id_matches_target(length) + } } } @@ -704,6 +712,9 @@ impl std::fmt::Display for Type { } Type::Bool(comp_time) => write!(f, "{comp_time}bool"), Type::String(len) => write!(f, "str<{len}>"), + Type::FmtString(len, elements) => { + write!(f, "fmtstr<{len}, {elements}>") + } Type::Unit => write!(f, "()"), Type::Error => write!(f, "error"), Type::NamedGeneric(binding, name) => match &*binding.borrow() { @@ -1057,6 +1068,13 @@ impl Type { elem_a.try_unify(elem_b, span) } + (String(len_a), String(len_b)) => len_a.try_unify(len_b, span), + + (FmtString(len_a, elements_a), FmtString(len_b, elements_b)) => { + len_a.try_unify(len_b, span)?; + elements_a.try_unify(elements_b, span) + } + (Tuple(elements_a), Tuple(elements_b)) => { if elements_a.len() != elements_b.len() { Err(SpanKind::None) @@ -1258,6 +1276,13 @@ impl Type { elem_a.is_subtype_of(elem_b, span) } + (String(len_a), String(len_b)) => len_a.is_subtype_of(len_b, span), + + (FmtString(len_a, elements_a), FmtString(len_b, elements_b)) => { + len_a.is_subtype_of(len_b, span)?; + elements_a.is_subtype_of(elements_b, span) + } + (Tuple(elements_a), Tuple(elements_b)) => { if elements_a.len() != elements_b.len() { Err(SpanKind::None) @@ -1396,6 +1421,7 @@ impl Type { .expect("Cannot have variable sized strings as a parameter to main"); AbiType::String { length: size } } + Type::FmtString(_, _) => unreachable!("format strings cannot be used in the abi"), Type::Error => unreachable!(), Type::Unit => unreachable!(), Type::Constant(_) => unreachable!(), @@ -1497,6 +1523,11 @@ impl Type { let size = Box::new(size.substitute(type_bindings)); Type::String(size) } + Type::FmtString(size, fields) => { + let size = Box::new(size.substitute(type_bindings)); + let fields = Box::new(fields.substitute(type_bindings)); + Type::FmtString(size, fields) + } Type::NamedGeneric(binding, _) | Type::TypeVariable(binding, _) => { substitute_binding(binding) } @@ -1543,6 +1574,11 @@ impl Type { match self { Type::Array(len, elem) => len.occurs(target_id) || elem.occurs(target_id), Type::String(len) => len.occurs(target_id), + Type::FmtString(len, fields) => { + let len_occurs = len.occurs(target_id); + let field_occurs = fields.occurs(target_id); + len_occurs || field_occurs + } Type::Struct(_, generic_args) => generic_args.iter().any(|arg| arg.occurs(target_id)), Type::Tuple(fields) => fields.iter().any(|field| field.occurs(target_id)), Type::NamedGeneric(binding, _) | Type::TypeVariable(binding, _) => { @@ -1582,6 +1618,11 @@ impl Type { Array(Box::new(size.follow_bindings()), Box::new(elem.follow_bindings())) } String(size) => String(Box::new(size.follow_bindings())), + FmtString(size, args) => { + let size = Box::new(size.follow_bindings()); + let args = Box::new(args.follow_bindings()); + FmtString(size, args) + } Struct(def, args) => { let args = vecmap(args, |arg| arg.follow_bindings()); Struct(def.clone(), args) diff --git a/crates/noirc_frontend/src/lexer/lexer.rs b/crates/noirc_frontend/src/lexer/lexer.rs index e376d85ddf0..8a98d5bfa3c 100644 --- a/crates/noirc_frontend/src/lexer/lexer.rs +++ b/crates/noirc_frontend/src/lexer/lexer.rs @@ -102,7 +102,8 @@ impl<'a> Lexer<'a> { Some('}') => self.single_char_token(Token::RightBrace), Some('[') => self.single_char_token(Token::LeftBracket), Some(']') => self.single_char_token(Token::RightBracket), - Some('"') => Ok(self.eat_string_literal()), + Some('"') => Ok(self.eat_string_literal(false)), + Some('f') => self.eat_format_string_or_alpha_numeric(), Some('#') => self.eat_attribute(), Some(ch) if ch.is_ascii_alphanumeric() || ch == '_' => self.eat_alpha_numeric(ch), Some(ch) => { @@ -307,13 +308,23 @@ impl<'a> Lexer<'a> { Ok(integer_token.into_span(start, end)) } - fn eat_string_literal(&mut self) -> SpannedToken { + fn eat_string_literal(&mut self, is_format_string: bool) -> SpannedToken { let (str_literal, start_span, end_span) = self.eat_while(None, |ch| ch != '"'); - let str_literal_token = Token::Str(str_literal); + let str_literal_token = + if is_format_string { Token::FmtStr(str_literal) } else { Token::Str(str_literal) }; self.next_char(); // Advance past the closing quote str_literal_token.into_span(start_span, end_span) } + fn eat_format_string_or_alpha_numeric(&mut self) -> SpannedTokenResult { + if self.peek_char_is('"') { + self.next_char(); + Ok(self.eat_string_literal(true)) + } else { + self.eat_alpha_numeric('f') + } + } + fn parse_comment(&mut self) -> SpannedTokenResult { let _ = self.eat_while(None, |ch| ch != '\n'); self.next_token() diff --git a/crates/noirc_frontend/src/lexer/token.rs b/crates/noirc_frontend/src/lexer/token.rs index b39d1640c57..3ef1d2a5dde 100644 --- a/crates/noirc_frontend/src/lexer/token.rs +++ b/crates/noirc_frontend/src/lexer/token.rs @@ -15,6 +15,7 @@ pub enum Token { Int(FieldElement), Bool(bool), Str(String), + FmtStr(String), Keyword(Keyword), IntType(IntType), Attribute(Attribute), @@ -145,6 +146,7 @@ impl fmt::Display for Token { Token::Int(n) => write!(f, "{}", n.to_u128()), Token::Bool(b) => write!(f, "{b}"), Token::Str(ref b) => write!(f, "{b}"), + Token::FmtStr(ref b) => write!(f, "f{b}"), Token::Keyword(k) => write!(f, "{k}"), Token::Attribute(ref a) => write!(f, "{a}"), Token::IntType(ref i) => write!(f, "{i}"), @@ -212,7 +214,7 @@ impl Token { pub fn kind(&self) -> TokenKind { match *self { Token::Ident(_) => TokenKind::Ident, - Token::Int(_) | Token::Bool(_) | Token::Str(_) => TokenKind::Literal, + Token::Int(_) | Token::Bool(_) | Token::Str(_) | Token::FmtStr(_) => TokenKind::Literal, Token::Keyword(_) => TokenKind::Keyword, Token::Attribute(_) => TokenKind::Attribute, ref tok => TokenKind::Token(tok.clone()), @@ -451,6 +453,7 @@ pub enum Keyword { Field, Fn, For, + FormatString, Global, If, Impl, @@ -489,6 +492,7 @@ impl fmt::Display for Keyword { Keyword::Field => write!(f, "Field"), Keyword::Fn => write!(f, "fn"), Keyword::For => write!(f, "for"), + Keyword::FormatString => write!(f, "fmtstr"), Keyword::Global => write!(f, "global"), Keyword::If => write!(f, "if"), Keyword::Impl => write!(f, "impl"), @@ -530,6 +534,7 @@ impl Keyword { "Field" => Keyword::Field, "fn" => Keyword::Fn, "for" => Keyword::For, + "fmtstr" => Keyword::FormatString, "global" => Keyword::Global, "if" => Keyword::If, "impl" => Keyword::Impl, diff --git a/crates/noirc_frontend/src/monomorphization/ast.rs b/crates/noirc_frontend/src/monomorphization/ast.rs index 488d05c6509..7ad05f09231 100644 --- a/crates/noirc_frontend/src/monomorphization/ast.rs +++ b/crates/noirc_frontend/src/monomorphization/ast.rs @@ -83,6 +83,7 @@ pub enum Literal { Integer(FieldElement, Type), Bool(bool), Str(String), + FmtStr(String, u64, Box), } #[derive(Debug, Clone)] @@ -207,6 +208,7 @@ pub enum Type { Integer(Signedness, /*bits:*/ u32), // u32 = Integer(unsigned, 32) Bool, String(/*len:*/ u64), // String(4) = str[4] + FmtString(/*len:*/ u64, Box), Unit, Tuple(Vec), Slice(Box), @@ -313,7 +315,10 @@ impl std::fmt::Display for Type { Signedness::Signed => write!(f, "i{bits}"), }, Type::Bool => write!(f, "bool"), - Type::String(len) => write!(f, "str[{len}]"), + Type::String(len) => write!(f, "str<{len}>"), + Type::FmtString(len, elements) => { + write!(f, "fmtstr<{len}, {elements}>") + } Type::Unit => write!(f, "()"), Type::Tuple(elements) => { let elements = vecmap(elements, ToString::to_string); diff --git a/crates/noirc_frontend/src/monomorphization/mod.rs b/crates/noirc_frontend/src/monomorphization/mod.rs index bb0228091da..963d16a311c 100644 --- a/crates/noirc_frontend/src/monomorphization/mod.rs +++ b/crates/noirc_frontend/src/monomorphization/mod.rs @@ -22,7 +22,7 @@ use crate::{ }, node_interner::{self, DefinitionKind, NodeInterner, StmtId}, token::Attribute, - ContractFunctionType, FunctionKind, TypeBinding, TypeBindings, TypeVariableKind, + ContractFunctionType, FunctionKind, Type, TypeBinding, TypeBindings, TypeVariableKind, }; use self::ast::{Definition, FuncId, Function, LocalId, Program}; @@ -261,6 +261,14 @@ impl<'interner> Monomorphizer<'interner> { match self.interner.expression(&expr) { HirExpression::Ident(ident) => self.ident(ident, expr), HirExpression::Literal(HirLiteral::Str(contents)) => Literal(Str(contents)), + HirExpression::Literal(HirLiteral::FmtStr(contents, idents)) => { + let fields = vecmap(idents, |ident| self.expr(ident)); + Literal(FmtStr( + contents, + fields.len() as u64, + Box::new(ast::Expression::Tuple(fields)), + )) + } HirExpression::Literal(HirLiteral::Bool(value)) => Literal(Bool(value)), HirExpression::Literal(HirLiteral::Integer(value)) => { let typ = Self::convert_type(&self.interner.id_type(expr)); @@ -587,6 +595,11 @@ impl<'interner> Monomorphizer<'interner> { HirType::Integer(_, sign, bits) => ast::Type::Integer(*sign, *bits), HirType::Bool(_) => ast::Type::Bool, HirType::String(size) => ast::Type::String(size.evaluate_to_u64().unwrap_or(0)), + HirType::FmtString(size, fields) => { + let size = size.evaluate_to_u64().unwrap_or(0); + let fields = Box::new(Self::convert_type(fields.as_ref())); + ast::Type::FmtString(size, fields) + } HirType::Unit => ast::Type::Unit, HirType::Array(length, element) => { @@ -704,18 +717,50 @@ impl<'interner> Monomorphizer<'interner> { /// of field elements to/from JSON. The type metadata attached in this method /// is the serialized `AbiType` for the argument passed to the function. /// The caller that is running a Noir program should then deserialize the `AbiType`, - /// and accurately decode the list of field elements passed to the foreign call. - fn append_abi_arg(&self, hir_argument: &HirExpression, arguments: &mut Vec) { + /// and accurately decode the list of field elements passed to the foreign call. + fn append_abi_arg( + &mut self, + hir_argument: &HirExpression, + arguments: &mut Vec, + ) { match hir_argument { HirExpression::Ident(ident) => { let typ = self.interner.id_type(ident.id); - let typ = typ.follow_bindings(); - - let abi_type = typ.as_abi_type(); - let abi_as_string = - serde_json::to_string(&abi_type).expect("ICE: expected Abi type to serialize"); + let typ: Type = typ.follow_bindings(); + match &typ { + // A format string has many different possible types that need to be handled. + // Loop over each element in the format string to fetch each type's relevant metadata + Type::FmtString(_, elements) => { + match elements.as_ref() { + Type::Tuple(element_types) => { + for typ in element_types { + let abi_type = typ.as_abi_type(); + let abi_as_string = serde_json::to_string(&abi_type) + .expect("ICE: expected Abi type to serialize"); + + arguments.push(ast::Expression::Literal(ast::Literal::Str( + abi_as_string, + ))); + } + } + _ => unreachable!( + "ICE: format string type should be a tuple but got a {elements}" + ), + } - arguments.push(ast::Expression::Literal(ast::Literal::Str(abi_as_string))); + // The caller needs information as to whether it is handling a format string or a single type + arguments.push(ast::Expression::Literal(ast::Literal::Bool(true))); + } + _ => { + let abi_type = typ.as_abi_type(); + let abi_as_string = serde_json::to_string(&abi_type) + .expect("ICE: expected Abi type to serialize"); + + arguments.push(ast::Expression::Literal(ast::Literal::Str(abi_as_string))); + // The caller needs information as to whether it is handling a format string or a single type + arguments.push(ast::Expression::Literal(ast::Literal::Bool(false))); + } + } } _ => unreachable!("logging expr {:?} is not supported", arguments[0]), } @@ -922,6 +967,18 @@ impl<'interner> Monomorphizer<'interner> { ast::Type::String(length) => { ast::Expression::Literal(ast::Literal::Str("\0".repeat(*length as usize))) } + ast::Type::FmtString(length, fields) => { + let zeroed_tuple = self.zeroed_value_of_type(fields); + let fields_len = match &zeroed_tuple { + ast::Expression::Tuple(fields) => fields.len() as u64, + _ => unreachable!("ICE: format string fields should be structured in a tuple, but got a {zeroed_tuple}"), + }; + ast::Expression::Literal(ast::Literal::FmtStr( + "\0".repeat(*length as usize), + fields_len, + Box::new(zeroed_tuple), + )) + } ast::Type::Tuple(fields) => { ast::Expression::Tuple(vecmap(fields, |field| self.zeroed_value_of_type(field))) } diff --git a/crates/noirc_frontend/src/monomorphization/printer.rs b/crates/noirc_frontend/src/monomorphization/printer.rs index 929a14e07da..ff2b7d0d256 100644 --- a/crates/noirc_frontend/src/monomorphization/printer.rs +++ b/crates/noirc_frontend/src/monomorphization/printer.rs @@ -96,6 +96,11 @@ impl AstPrinter { super::ast::Literal::Integer(x, _) => x.fmt(f), super::ast::Literal::Bool(x) => x.fmt(f), super::ast::Literal::Str(s) => s.fmt(f), + super::ast::Literal::FmtStr(s, _, _) => { + write!(f, "f\"")?; + s.fmt(f)?; + write!(f, "\"") + } } } diff --git a/crates/noirc_frontend/src/node_interner.rs b/crates/noirc_frontend/src/node_interner.rs index f01c5f22a50..062e9daf2d6 100644 --- a/crates/noirc_frontend/src/node_interner.rs +++ b/crates/noirc_frontend/src/node_interner.rs @@ -213,11 +213,11 @@ impl DefinitionKind { matches!(self, DefinitionKind::Global(..)) } - pub fn get_rhs(self) -> Option { + pub fn get_rhs(&self) -> Option { match self { DefinitionKind::Function(_) => None, - DefinitionKind::Global(id) => Some(id), - DefinitionKind::Local(id) => id, + DefinitionKind::Global(id) => Some(*id), + DefinitionKind::Local(id) => *id, DefinitionKind::GenericType(_) => None, } } @@ -637,6 +637,7 @@ fn get_type_method_key(typ: &Type) -> Option { | Type::Constant(_) | Type::Error | Type::NotConstant - | Type::Struct(_, _) => None, + | Type::Struct(_, _) + | Type::FmtString(_, _) => None, } } diff --git a/crates/noirc_frontend/src/parser/parser.rs b/crates/noirc_frontend/src/parser/parser.rs index c6d84416975..65446e5d6c6 100644 --- a/crates/noirc_frontend/src/parser/parser.rs +++ b/crates/noirc_frontend/src/parser/parser.rs @@ -795,6 +795,7 @@ fn parse_type_inner( int_type(), bool_type(), string_type(), + format_string_type(recursive_type_parser.clone()), named_type(recursive_type_parser.clone()), array_type(recursive_type_parser.clone()), recursive_type_parser.clone().delimited_by(just(Token::LeftParen), just(Token::RightParen)), @@ -841,6 +842,19 @@ fn string_type() -> impl NoirParser { .map(UnresolvedType::String) } +fn format_string_type( + type_parser: impl NoirParser, +) -> impl NoirParser { + keyword(Keyword::FormatString) + .ignore_then( + type_expression() + .then_ignore(just(Token::Comma)) + .then(type_parser) + .delimited_by(just(Token::Less), just(Token::Greater)), + ) + .map(|(size, fields)| UnresolvedType::FormatString(size, Box::new(fields))) +} + fn int_type() -> impl NoirParser { maybe_comp_time() .then(filter_map(|span, token: Token| match token { @@ -1366,6 +1380,7 @@ fn literal() -> impl NoirParser { Token::Int(x) => ExpressionKind::integer(x), Token::Bool(b) => ExpressionKind::boolean(b), Token::Str(s) => ExpressionKind::string(s), + Token::FmtStr(s) => ExpressionKind::format_string(s), unexpected => unreachable!("Non-literal {} parsed as a literal", unexpected), }) }