diff --git a/numpy-stubs/__init__.pyi b/numpy-stubs/__init__.pyi index 0847317..b6c4b0d 100644 --- a/numpy-stubs/__init__.pyi +++ b/numpy-stubs/__init__.pyi @@ -7,6 +7,7 @@ from typing import ( Any, ByteString, Container, + Callable, Dict, IO, Iterable, @@ -485,6 +486,90 @@ def zeros( def ones( shape: _ShapeLike, dtype: _DtypeLike = ..., order: Optional[str] = ... ) -> ndarray: ... +def zeros_like( + a: _ArrayLike, + dtype: Optional[dtype] = ..., + order: str = ..., + subok: bool = ..., + shape: Optional[Union[int, Sequence[int]]] = ..., +) -> ndarray: ... +def ones_like( + a: _ArrayLike, + dtype: Optional[dtype] = ..., + order: str = ..., + subok: bool = ..., + shape: Optional[_ShapeLike] = ..., +) -> ndarray[int]: ... +def full( + shape: _ShapeLike, fill_value: Any, dtype: Optional[dtype] = ..., order: str = ... +) -> ndarray: ... +def full_like( + a: _ArrayLike, + fill_value: Any, + dtype: Optional[dtype] = ..., + order: str = ..., + subok: bool = ..., + shape: Optional[_ShapeLike] = ..., +) -> ndarray: ... +def count_nonzero( + a: _ArrayLike, axis: Optional[Union[int, Tuple[int], Tuple[int, int]]] = ... +) -> Union[int, ndarray]: ... +def isfortran(a: ndarray) -> bool: ... +def argwhere(a: _ArrayLike) -> ndarray: ... +def flatnonzero(a: _ArrayLike) -> ndarray: ... +def correlate(a: _ArrayLike, v: _ArrayLike, mode: str = ...) -> ndarray: ... +def convolve(a: _ArrayLike, v: _ArrayLike, mode: str = ...) -> ndarray: ... +def outer(a: _ArrayLike, b: _ArrayLike, out: ndarray = ...) -> ndarray: ... +def tensordot( + a: _ArrayLike, + b: _ArrayLike, + axes: Union[ + int, Tuple[int, int], Tuple[Tuple[int, int], ...], Tuple[List[int, int], ...] + ] = ..., +) -> ndarray: ... +def roll( + a: _ArrayLike, + shift: Union[int, Tuple[int, ...]], + axis: Optional[Union[int, Tuple[int, ...]]] = ..., +) -> ndarray: ... +def rollaxis(a: _ArrayLike, axis: int, start: int = ...) -> ndarray: ... +def moveaxis( + a: ndarray, + source: Union[int, Sequence[int]], + destination: Union[int, Sequence[int]], +) -> ndarray: ... +def cross( + a: _ArrayLike, + b: _ArrayLike, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: Optional[int] = ..., +) -> ndarray: ... +def indices( + dimensions: Sequence[int], dtype: dtype = ..., sparse: bool = ... +) -> Union[ndarray, Tuple[ndarray, ...]]: ... +def fromfunction(function: Callable, shape: Tuple[int, int], **kwargs) -> Any: ... +def isscalar(element: Any) -> bool: ... +def binary_repr(num: int, width: Optional[int] = ...) -> str: ... +def base_repr(number: int, base: int = ..., padding: int = ...) -> str: ... +def identity(n: int, dtype: Optional[dtype] = ...) -> ndarray: ... +def allclose( + a: _ArrayLike, + b: _ArrayLike, + rtol: float = ..., + atol: float = ..., + equal_nan: bool = ..., +) -> bool: ... +def isclose( + a: _ArrayLike, + b: _ArrayLike, + rtol: float = ..., + atol: float = ..., + equal_nan: bool = ..., +) -> Union[bool_, ndarray]: ... +def array_equal(a1: _ArrayLike, a2: _ArrayLike) -> bool: ... +def array_equiv(a1: _ArrayLike, a2: _ArrayLike) -> bool: ... # TODO(shoyer): remove when the full numpy namespace is defined def __getattr__(name: str) -> Any: ... diff --git a/numpy-stubs/core/numeric.pyi b/numpy-stubs/core/numeric.pyi deleted file mode 100644 index 1e43676..0000000 --- a/numpy-stubs/core/numeric.pyi +++ /dev/null @@ -1,111 +0,0 @@ -from types import ModuleType -from typing import ( - Sequence, - Optional, - TypeVar, - Union, - Tuple, - List, - Iterable, - Callable, - Any, -) - -from numpy import ndarray, dtype, _ArrayLike, _ShapeLike - -_T = TypeVar("_T") - -def zeros_like( - a: _ArrayLike, - dtype: Optional[dtype] = ..., - order: str = ..., - subok: bool = ..., - shape: Optional[Union[int, Sequence[int]]] = ..., -) -> ndarray[int]: ... -def ones( - shape: _ShapeLike, dtype: Optional[dtype] = ..., order: str = ... -) -> ndarray[int]: ... -def ones_like( - a: _ArrayLike, - dtype: Optional[dtype] = ..., - order: str = ..., - subok: bool = ..., - shape: Optional[_ShapeLike] = ..., -) -> ndarray[int]: ... -def full( - shape: _ShapeLike, fill_value: _T, dtype: Optional[dtype] = ..., order: str = ... -) -> ndarray[_T]: ... -def full_like( - a: _ArrayLike, - fill_value: _T, - dtype: Optional[dtype] = ..., - order: str = ..., - subok: bool = ..., - shape: Optional[_ShapeLike] = ..., -) -> ndarray[_T]: ... -def count_nonzero( - a: _ArrayLike, axis: Optional[Union[int, Tuple[int], Tuple[int, int]]] = ... -) -> Union[int, ndarray[int]]: ... -def isfortran(a: ndarray) -> bool: ... -def argwhere(a: _ArrayLike) -> ndarray: ... -def flatnonzero(a: _ArrayLike) -> ndarray: ... -def correlate(a: _ArrayLike, v: _ArrayLike, mode: str = ...) -> ndarray: ... -def convolve(a: _ArrayLike, v: _ArrayLike, mode: str = ...) -> ndarray: ... -def outer(a: _ArrayLike, b: _ArrayLike, out: ndarray = ...) -> ndarray: ... -def tensordot( - a: _ArrayLike, - b: _ArrayLike, - axes: Union[ - int, Tuple[int, int], Tuple[Tuple[int, int], ...], Tuple[List[int, int], ...] - ] = ..., -) -> ndarray: ... -def roll( - a: _ArrayLike, - shift: Union[int, Tuple[int, ...]], - axis: Optional[Union[int, Tuple[int, ...]]] = ..., -) -> _T: ... -def rollaxis(a: _ArrayLike, axis: int, start: int = ...) -> ndarray: ... -def normalize_axis_tuple( - axis: Union[int, Iterable[int]], - ndim: int, - argname: Optional[str] = ..., - allow_duplicate: bool = ..., -) -> Tuple[int, ...]: ... -def moveaxis( - a: ndarray, - source: Union[int, Sequence[int]], - destination: Union[int, Sequence[int]], -) -> ndarray: ... -def cross( - a: _ArrayLike, - b: _ArrayLike, - axisa: int = ..., - axisb: int = ..., - axisc: int = ..., - axis: Optional[int] = ..., -) -> ndarray: ... -def indices( - dimensions: Sequence[int], dtype: dtype = ..., sparse: bool = ... -) -> Union[ndarray, Tuple[ndarray, ...]]: ... -def fromfunction(function: Callable, shape: Tuple[int, int], **kwargs) -> Any: ... -def isscalar(element: Any) -> bool: ... -def binary_repr(num: int, width: Optional[int] = ...) -> str: ... -def base_repr(number: int, base: int = ..., padding: int = ...) -> str: ... -def identity(n: int, dtype: Optional[dtype] = ...) -> ndarray: ... -def allclose( - a: _ArrayLike, - b: _ArrayLike, - rtol: float = ..., - atol: float = ..., - equal_nan: bool = ..., -) -> bool: ... -def isclose( - a: _ArrayLike, - b: _ArrayLike, - rtol: float = ..., - atol: float = ..., - equal_nan: bool = ..., -) -> _ArrayLike: ... -def array_equal(a1: _ArrayLike, a2: _ArrayLike) -> bool: ... -def array_equiv(a1: _ArrayLike, a2: _ArrayLike) -> bool: ... -def extend_all(module: ModuleType): ...