From 74916ea530b00de5525f6f823ba8e46c2ca4b206 Mon Sep 17 00:00:00 2001 From: Holger Kohr Date: Fri, 23 Mar 2018 10:38:02 +0100 Subject: [PATCH] ENH: add random ellipsoid phantom --- odl/phantom/geometric.py | 118 +++++++++++++++++++++++++++++++++++++-- 1 file changed, 112 insertions(+), 6 deletions(-) diff --git a/odl/phantom/geometric.py b/odl/phantom/geometric.py index 745e68bd3b6..4af10133602 100644 --- a/odl/phantom/geometric.py +++ b/odl/phantom/geometric.py @@ -14,8 +14,8 @@ from odl.discr.lp_discr import uniform_discr_fromdiscr from odl.util.numerics import resize_array -__all__ = ('cuboid', 'defrise', 'ellipsoid_phantom', 'indicate_proj_axis', - 'smooth_cuboid', 'tgv_phantom') +__all__ = ('cuboid', 'defrise', 'ellipsoid_phantom', 'random_ellipsoids', + 'indicate_proj_axis', 'smooth_cuboid', 'tgv_phantom') def cuboid(space, min_pt=None, max_pt=None): @@ -596,7 +596,7 @@ def ellipsoid_phantom(space, ellipsoids, min_pt=None, max_pt=None): 'rotation_phi', 'rotation_theta', 'rotation_psi' The provided ellipsoids need to be specified relative to the - reference rectangle ``[-1, -1] x [1, 1]``, or analogously in 3d. + reference rectangle ``[-1, 1] x [-1, 1]``, or analogously in 3d. The angles are to be given in radians. min_pt, max_pt : array-like, optional @@ -764,12 +764,112 @@ def smooth_cuboid(space, min_pt=None, max_pt=None, axis=0): return space.element(values) +def random_ellipsoids(space, num, allow_overlap=True, min_axis=None, + max_axis=None, max_elongation=float('inf')): + """Generate a phantom of random ellipsoids in a given 2D or 3D space. + + The values of the individual ellipsoids are random between 0 and 1. + For non-overlapping ellipsoids, this also holds for the final phantom, + while for overlapping ellipsoids, the values add up. + + Parameters + ---------- + space : DiscreteLp + Discretized Lp space with ``space.ndim in (2, 3)``, where the phantom + should be created. + num : positive int + Number of ellipsoids that should be created. + allow_overlap : bool, optional + If ``False``, ellipsoids that overlap with prior ones are rejected. + + .. note:: + If ``num`` is large (in 2D, larger than 100 for the defaults), + it may take very long to generate enough non-overlapping + ellipsoids. + + min_axis, max_axis : float or sequence of float + Minimum/maximum values for the ellipsoid axes, given as a fraction + of the total space extent. A sequence of min/max is applied per + axis, a float is applied for all axes. + Default: 2 pixels/voxel for ``min_axis``, 0.4 for ``max_axis``. + max_elongation : positive float, optional + Reject ellipsoids whose elongation, i.e., the ratio of the longest + and shortest axes, is larger than this value. + + Returns + ------- + ellipsoids : DiscreteLpElement + The generated ellipsoid phantom as a ``space.element``. + """ + num = int(num) + ndim = space.ndim + if ndim not in (2, 3): + raise ValueError('`space` must be 2- or 3-dimensional, got space ' + 'with ndim = {}'.format(ndim)) + + if min_axis is None: + min_axis = [2.0 / space.shape[i] for i in range(ndim)] + else: + min_axis = np.array(min_axis, dtype=float, ndmin=1) + min_axis = np.broadcast_to(min_axis, shape=(2,)) + + if max_axis is None: + max_axis = [0.4] * ndim + else: + max_axis = np.array(max_axis, dtype=float, ndmin=1) + max_axis = np.broadcast_to(max_axis, shape=(2,)) + + tmp = space.zero() + ellipsoids = [] + ell_count = 0 + while True: + # Note: Space is normalized to extent [-1, 1]^n + center = [np.random.uniform(-0.9, 0.9) for i in range(ndim)] + axis = [np.random.uniform(min_axis[i], max_axis[i]) + for i in range(ndim)] + if ndim == 2: + rot = [np.random.uniform(0, 2 * np.pi)] + elif ndim == 3: + rot = [np.random.uniform(0, 2 * np.pi), + np.random.uniform(0, np.pi), + np.random.uniform(0, 2 * np.pi)] + + value = [np.random.uniform(0, 1)] + + # Reject if elongation is too large + if max(axis) / min(axis) > max_elongation: + continue + + if allow_overlap: + ell_count += 1 + ellipsoids.append(value + axis + center + rot) + else: + # Test for overlap by constructing a temporary phantom that has + # value 1 in all current ellipsoids. Adding the new ellipsoid + # should not result in a value larger than 1 anywhere. + tmp_ell = [1.0] + axis + center + rot + phan_next = tmp + ellipsoid_phantom(space, [tmp_ell]) + if np.any(phan_next.asarray() > 1): + # Reject overlapping ellipsoid + continue + else: + tmp = phan_next + ellipsoids.append(value + axis + center + rot) + ell_count += 1 + + if ell_count >= num: + break + + return ellipsoid_phantom(space, ellipsoids) + + def tgv_phantom(space, edge_smoothing=0.2): """Piecewise affine phantom. - This phantom is taken from [Bre+2010] and includes both linearly varying - regions and sharp discontinuities. It is designed to work well with - Total Generalized Variation (TGV) type regularization. + This phantom is taken from `[Bre+2010] + `_ and includes both + linearly varying regions and sharp discontinuities. It is designed to + work well with Total Generalized Variation (TGV) type regularization. Parameters ---------- @@ -888,6 +988,12 @@ def sigmoid(val): [1.0, 0.6, 0.6, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]] ellipsoid_phantom(space, ellipsoids).show('ellipsoid phantom 3d') + # random ellipses 2D + space = odl.uniform_discr([-1, -1], [1, 1], [300, 300]) + random_ellipsoids(space, num=40).show('overlapping random ellipses 2d') + random_ellipsoids(space, num=40, allow_overlap=False).show( + 'non-overlapping random ellipses 2d', clim=[0, 1]) + # Defrise phantom 2D space = odl.uniform_discr([-1, -1], [1, 1], [300, 300]) defrise(space).show('defrise 2D')