
Agile
Principles	and	Practices

Agile	Development	Processes
Eric	Knauss

Announcements
• Some	students	have	joined	late.	Please	register	for	
group	work:
– https://www.surveymonkey.com/r/EDA_397_2017

• Any	Roadblocks?

Overview	(might	take	2	lectures)

• Principles	
• Artefacts	and	Tools
• Practices
– XP
– Scrum
– Kanban (you	did	watch	the	video,	right?)

• Later:	Lean	software	development

Course	Objectives
Knowledge	and	
understanding

Skills	and	ability Judgement and	approach

Compare	agile	and	
traditional	softw.	dev,

Forming	a	team	organically Explain:	people/commun.
centric	dev.

Relate	lean	and	agile	
development

Collaborate in	small	
software	dev.	teams

Apply	fact:	people	drive	
project	success

Contrast different	agile	
methodologies

Interact and	show	progress	
continuously

Describe:	No	single	
methodology	fits	all

Use	the	agile	manifest	and	
its	accompanying	principles

Develop	SW using	small	
and	frequent	iterations

Discuss:	methodology	
needs	to	adopt	to	culture	

Discuss	what	is	different
when	leading	an	agile	team

Use	test-driven	dev.	and	
automated	tests

Refactor	a	program/design

Be	member	of	agile	team

Incremental	planning	using	
user	stories

Agile	Software	Dev.	|	Eric	Knauss 4

Sp
rin

t	1

Sp
rin

t	2

Sp
rin

t	3

User	story

• Widely	accepted	template:	As	a	<role>	I	want	
to	<feature>	so	that	<customer	value>

• Promise	to	discuss	this	user	goal	further
• Keep	track	of	what	the	team	is	doing
• A	lot	of	value	in	physical	artifact
• Usually	good	idea	to	add:	ID,	Story	Points,	List	
of	sub-tasks,	Indication	of	customer	value,	
notes	on	the	backside

Eric	Knauss	- Continuous	X	4	WASP 5

Agile	Principles	– Revised	list	
(according	to	[Mey2014])

Organizational
1. Put	the	customer	at	the	center.
2. Let	the	team	self-organize.
3. Work	at	a	sustainable	pace.
4. Develop	minimal	software:

1. Produce	minimal	
functionality.

2. Produce	only	the	product	
requested.

3. Develop	only	code	and	tests.
5. Accept	Change

Eric	Knauss	- Continuous	X	4	WASP 6

Technical
1. Develop	iteratively:

1. Produce	frequent	working	
iterations.

2. Freeze	requirements	during	
iterations.

2. Treat	tests	as	a	key	resource:
1. Do	not	start	any	new	

development	until	all	tests	
pass.

2. Test	first.
3. Express	requirements	through	

scenarios.

Agile	Practices

Eric	Knauss	- Continuous	X	4	WASP 7

https://techblog.betclicgroup.com/wp-content/uploads/2013/12/agileSubwayMap2.
Also	check:	http://guide.agilealliance.org

XP	Principles

• Rapid	feedback
• Assume	simplicity
• Incremental	change
• Embracing	change
• Quality	work

Core Less	central

• Teach	learning
• Small	initial	investment
• Play	to	win
• Concrete	requirements
• Open,	honest	communication
• Work	with	people’s	instincts,	

not	against	them
• Accepted	responsibility
• Local	adaptation
• Travel	light
• Hones	measurement

XP	Practices

• Planning	game

• Small	releases

• Metaphor

• Simple	design

• Testing	
(dedicated	lecture)

• Refactoring

• Pair	programming

• Collective	ownership

• Continuous	integration	
(dedicated	lecture)

• 40h	week

• On-site	customer

• Coding	standards

Planning	Game
• Basic	idea

– Create	a	rough	iteration	plan
– Plan	next	iteration	in	detail

• Players
– Onsite	Customer
– Team
– (Coach)

• Moves
– Write	User	stories	(OC	+	Team)
– [do	some	filtering]
– OC	ranks	US	by	business	value	[assign	Fibonacci	numbers]
– Team	assigns	story	points	[Planning	poker]
– OC	put	story	cards	in	strictly	prioritized	order
– Team	selects	the	top	n	stories	to	match	their	velocity

Eric	Knauss	- Continuous	X	4	WASP 10

Pair	Programming
• Basic	idea

– Two	people	on	one	computer
– Take	one user	story	with	them
– Review	each	other
– Share	knowledge

• Related	concepts
– User	story	as	vertical	increment
– Truck	factor

• Sentiment	in	research
– Studies	with	contradictory	results,	clearly	leaning	towards	rejecting	

the	idea	of	using	pair	programming	in	general
– But	Long	term	aspects	of	knowledge	management	not/insufficiently	

covered
– Good	results	for	specific	use	cases	(exploration,	difficult	task,	

knowledge	sharing,	…)

Eric	Knauss	- Continuous	X	4	WASP 11

Scrum	Principles

• Reflection
– Stop	and	review	product	&	process

• Self-correction
– Based	on	reflection

• Visibility
– Everything	is	visible	(=known)	for	all	stakeholders,	
e.g.	plans,	schedules,	issues,	…

Scrum	practices
• Product	backlog	vs.	Sprint	backlog

• Sprint	planning
– Planning	poker:	estimate	cost
– ROI	(Return	on	Investment):	cost	vs.	benefit

• Retrospective

• Fixed	sprint	length

• Burn-down	charts

• Daily	scrum:	no	longer	than	15min

Overview:	XP	and	Scrum

Agile	Dev.	Processes	|	Eric	Knauss 14

https://en.wikipedia.org/wiki/Scrum_(rugby)

• SCRUM	Meetings
– SCRUM	Master	minds the time	(2-3	min./Person)

• Standup-meeting:	faster
• Replace status meetings – safe time

– Important:	Always same	time	and place!	
• (not	important:	where)
• Daily	/	frequent meetings avoid long/quiet crisis

– Content
• What was	done since the last	meeting?
• What is planned to be done before the next meeting?
• Found obstacles?	Write	on	whiteboard!

– Useful:	Share	information and facilitate social aspects
– Schedule	further meetings to follow up on	things (e.g.	obstacles)

SCRUM	Practices
Hints

• Sprint
– During sprint:	Autonomous team:	Pioneers

• No new requirements /	no changes
• No external influences
• Only sprint goal

– Fixed:	Time	(approx.	30	Tage),	Cost (Developers	etc.),	Quality
– Variable:	Functionality

» Team	can adjust details and scope of functionality based on	the
time-cost-quality	frame and with respect to the sprint goal

– Sprint	can be cancelled
– After	Sprint:	4h	Sprint-Meeting

• Avoid long preparation (max.	2h)
• Avoid slides
• Often very informal

• Adjust SCRUM	(longer Sprints,	other Meetings…)
– Okay,	after	being successful with the traditional	setup
– Only based on	experiences – never without experience

SCRUM	Practices
Hints

SCRUM
Room

SCRUM	team	7+/-2

Product
Backlog
(prioritized)

Product	
Owner

SPRINT:	30	days

Others

Daily	SCRUM
15	min.

SPRINT
Backlog

Increment

Scrum
SCRUM	
Master

Agile	Software	Dev.	|	Eric	Knauss 17

Scrum:	organization

Or alternatively:

Project-goals:	Project	Backlog

Project	of
SPRINTS

SPRINT
With Backlog andGoal

Coord.	of
multiple	
Teams

Multiple	SCRUM-Teams	sprint in	parallel.	Master-SCRUMs

WorkdayA	workday:
SCRUM	to SCRUM

Dailiy SCRUM		Post-
Build (15	min.)		discuss.

SPRINT	im
30	SCRUM-Takt

Planning
SPRINT
Review	3h

SPRINT	creates
a	Product-Increment

Agile	Software	Dev.	|	Eric	Knauss 18

• XP	is often hard to introduce

• SCRUM	is easy	to introduce (according to Schwaber)

• Best-practice:	Combine!
– SCRUM	organizational shell:	Day-to-day management
– XP	method of implementation
– Shared values with XP
• Quickly generate executable code
• Facilitate communication

SCRUM	vs.	XP

Assess Sprint	Progress
A	possible trajectory

Frustration;
Reduce scope
wiht
SCRUM-
MasterMore and

more tasks
appear

Forgot to
update after
weekend: no
change Good

progress

c.f.	Schwaber,	Ken;	Beedle,	Mike	(2002):	
Agile	Software	Development	with Scrum.	Prentice Hall.

Assess Sprint	Progress
a typical trajectory for a	new SCRUM-Team

Slow task,
more and
more effort
appears

Joint effort
after week-
end results in
some
progress

Frustration;
Reduce scope
wiht
SCRUM-
Master

C.f.	Schwaber,	Ken;	Beedle,	Mike	(2002):	
Agile	Software	Development	with Scrum.	Prentice Hall.

Assess Sprint	Progress
another typical trajectory

After slow
start the team
speeds up

This way, the
sprint goal
would be
reached too
early

Increase
scope with
Prod. Owner/
Scrum Master

On this
foundation:
Good
progress

C.f.	Schwaber,	Ken;	Beedle,	Mike	(2002):	
Agile	Software	Development	with Scrum.	Prentice Hall.

Why	does	SCRUM	work?

• Integrated	instability
– Not	too	smoothly

• Self-organizing	teams
– Take	ownership

• Multi-Learning
– Between	functions
– Between	group,	organization,	

and	individual

• Subtle	controll
• Constant	learning

– Experienced	developers	in	
new	teams

Risk	management
• Risk: Customer	unhappy

– Show	working	system	often
• Risk: Incomplete	feature	set

– Prioritize:	If	something	is	
missing,	it	is	not	important

• Risk: Bad	estimation
– Daily	updates	during		

SCRUM
• Risk: Lack	of	experience	with	

Development	cycle
– Test	early	and	execute	

repeatedly
• Risk: Changes	in	performance	

estimation
– No	impact	on	Sprint

c.f.	Schwaber,	Ken;	Beedle,	Mike	(2002):	
Agile	Software	Development	with	Scrum.	Prentice	Hall.

• SCRUM	is	a	management	shell
– Around	XP
– Or	other	approach:	Even	waterfall	possible

• Overlap	with	XP,	but	differences	exist
– Similar	values
– Different	practices
– Partly	complement	each	other

• Not	as	much	impact	as	XP,	easier	to	introduce
• Strength

– Information	flows	not	only	in	one	direction
– Multiple	feedback	cycles	stabilize	system

Summary	SCRUM

Kanban principles

• Start	with	what	you	do	now

• Agree	to	pursue	incremental,	evolutionary	
change

• Respect	the	current	process,	roles,	
responsibilities	and	titles

• Leadership	at	all	levels
The	following	is	based	on	[KS2009]

Kanban core	practices
• Visualize

– Visualization	of	workflow	allows	to	understand	and	improve	it
• Limit	Work-in-Progress

– Limit	the	amount	of	workitems for	each	step
– Introduce	a	pull-system

• Manage	flow
– Measure	how	workitems flow	through	the	process	and	understand,	if	

a	change	improves	the	situation
• Make	policies	explicit
• Implement	feedback	loops

– Understand	(as	a	team)	how	good	the	process	is	working
• Improve	collaboratively,	evolve	experimentally

– Whole	team	needs	to	share	a	theory	on	why		(small)	change	helps

Kanban-Board

[KS2009]

Limit	work	in	progress

• Prevent	context	switching	
– Reduce	multi-tasking	
– performing	tasks	sequentially	yields	results	sooner	

• Maximize	throughput

• Enhance	teamwork	
– working	together	to	make	things	done	
– increase	cross-functionality	

We	stopped	here,	
2017-03-31

WIP	Strategy

• Start	with	some	initial	value	
– Small	constant	(1-3)	
– number	of	developers	
– number	of	testers	

• Measure	the	cycle	time	
– average	time	of	one	piece	full	cycle	flow	

• Change	limit	to	decrease	cycle	time	

Idle	Members

• Can	you	help	progress	an	existing	kanban?	– Work	on	that.	

• Don’t	have	the	right	skills?	– Find	the	bottleneck	and	work	
to	release	it.	

• Don’t	have	the	right	skills?	– Pull	in	work	from	the	queue.	

• Can’t	start	anything	in	the	queue?	– Check	if	there	is	any	
lower	priority	to	start	investigating.	

• There	is	nothing	lower	priority?	– Find	other	interesting	
work	(refactoring,	tool	automation,	innovation).	

Metrics

• Stories	in	progress	(SIP)

• When	story	enters	stories	queue	set	entry	date	(ED)	

• When	story	enters	first	process	step	set	start	processing	date	(SPD)	

• When	story	is	done	set	finish	date	(FD)	

• Cycle	time	(CT)	=	FD	– SPD

• Waiting	time	(WT)	=	SPD	– ED	

• Throughput	(T)	=	SIP	/	CT	

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Example

[KS2009]

Agile	Dev.	Processes	|	Eric	Knauss 44

?
• Compare	Kanban
with	your	favorite	
agile	method.
–What	is	similar?
–What	is	different?
– Is	Kanban agile?

Scrum	vs.	Kanban [KS2009]

Scrum	vs.	Kanban [KS2009]

Agile	Principles
1. Early	and	continuous	delivery	of	valuable	software
2. Welcome	changing	requirements,	even	late
3. Deliver	working	software	frequently
4. Business	people	and	developers	must	work	together
5. Build	projects	around	motivated	individuals
6. Face-to-face	communication	is	most	effective	and	efficient
7. Working	software	is	the	primary	measure	of	progress
8. Sustainable	development
9. Continuous	attention	to	technical	excellence	and	good	design
10. Simplicity	is	essential
11. Self-organizing	teams
12. Regular	reflection

Agile	Principles	– Revised	list	
(according	to	[Mey2014])

Organizational
1. Put	the	customer	at	the	center.
2. Let	the	team	self-organize.
3. Work	at	a	sustainable	pace.
4. Develop	minimal	software:

1. Produce	minimal	
functionality.

2. Produce	only	the	product	
requested.

3. Develop	only	code	and	tests.
5. Accept	Change

Eric	Knauss	- Continuous	X	4	WASP 48

Technical
1. Develop	iteratively:

1. Produce	frequent	working	
iterations.

2. Freeze	requirements	during	
iterations.

2. Treat	tests	as	a	key	resource:
1. Do	not	start	any	new	

development	until	all	tests	
pass.

2. Test	first.
3. Express	requirements	through	

scenarios.

Task:	For	each	of	the	principles,	compare	XP,	Scrum,	and	Kanban
and	discuss	differences	NOW:	Pick	two	– the	others	might	be	a	
good	exercise	for	exam	and	report.

References

[KS2009] Henrik Kniberg and	Mattias Skarin:	Kanban and	Scrum	– Making	the	
Most	of	Both.	InfoQ (2009)	Available	
online:http://infoq.com/minibooks/kanban-scrum-minibook

