
Testing	and	Agile

Agile	Development	Processes
Eric	Knauss

Organizatorical

• Respond	to	change:	
– Proposal	to	switch	TDD	and	LSD:	Have	TDD	today?

• Course	representatives:
– Send	email	(very	recent),	please	let	me	know	if	
you	can	help

– Need	a	volunteer	from	GU
– Goal:	meet	today	after	lecture

Eric	Knauss:	Agile	Development	Processes 2

Course	Objectives
Knowledge	and	
understanding

Skills	and	ability Judgement and	approach

Compare	agile	and	
traditional	softw.	dev,

Forming	a	team	organically Explain:	people/commun.
centric	dev.

Relate	lean	and	agile	
development

Collaborate in	small	
software	dev.	teams

Apply	fact:	people	drive	
project	success

Contrast different	agile	
methodologies

Interact and	show	progress	
continuously

Describe:	No	single	
methodology	fits	all

Use	the	agile	manifest	and	
its	accompanying	principles

Develop	SW using	small	
and	frequent	iterations

Discuss:	methodology	
needs	to	adopt	to	culture	

Discuss	what	is	different
when	leading	an	agile	team

Use	test-driven	dev.	and	
automated	tests

Refactor	a	program/design

Be	member	of	agile	team

Incremental	planning	using	
user	stories

Eric	Knauss:	Agile	Development	Processes 3

Sp
rin

t	1

Sp
rin

t	2

Sp
rin

t	3

Magical	Triangle of	Project	Management

Eric	Knauss:	Agile	Development	Processes 4

Functionality

Time Cost

The	triangle	consists	of	
deadline,	budget,	and	
project	goals	(functionality	
and	quality).	The	project	
manager	tries	to	fulfill	these	
goals	at	the	same	time	or	to	
balance	them.	Changes	on	
one	dimension	lead	to	
changes	on	one	or	both	
other	dimensions..

Magical	Rectangle	of	Project	Management

Eric	Knauss:	Agile	Development	Processes 5

Functionality

Time Cost

Quality

In	contrast	to	the	magical	triangle,	the	
rectangle	distinguishes	between	
functionality	and	quality.

Eric	Knauss:	Agile	Development	Processes 6

?
• How	would	you	
shorten	time-to-
market?
a) Reduce	testing	

effort
b) Reduce	

functionality
c) Add	more	

developers

How	do	you	manage	software	quality?

Eric	Knauss:	Agile	Development	Processes 7

Black	box	tests

White	box	tests

Regression	tests

Stress	tests

Acceptance	tests

Integration	tests

Checklist	based	reviews

Perspective	based	reviews

Walkthroughs

And	many	more…

How	do	you	manage	software	quality?

Eric	Knauss:	Agile	Development	Processes 8

Black	box	tests

White	box	tests

Regression	tests

Stress	tests

Acceptance	tests

Integration	tests

Checklist	based	reviews

Perspective	based	reviews

Walkthroughs

Test-driven development

Onsite customer

Pair programming

TestFirst

• If	testing	is	good,	then	testing	more	often	/	always	is	even	better
– We	want	to	embrace	change	– Regression	testing

• Idea:	Write	test	early,	even	before	implementation

1. Write	test
2. Let	test	fail

– Do	we	really	test	non-existing	functionality?
3. Implementing,	until	test	is	green

– As	simple	as	possible!
4. Refactoring

Eric	Knauss:	Agile	Development	Processes 9

Principle	of	TestFirst:	a	Dialogue

Eric	Knauss:	Agile	Development	Processes 10

Task: Java method len(int) returns number of digits of an int.

Test starts
„len(5) should be 1!“
assertEquals(1,

len(5));

JUnit

COMPILER-ERROR!
What is the meaning of
“len”? Program: That is easy:

public int len (int num) { return 1; }

JUnit: ok. Testcase
fulfilled.Test: Just you wait!

„len(321) should be 3!“
assertEquals(3,

len(321));
JUnit: Error!
1 instead of 3 Program: No problem …

if num<10 then return 1 else return 3

Test: I don’t believe this!
“len(12345678) should be 8!“
assertEquals(8,len(12345678));

JUnit: ok.

Program: … ok, I see a pattern here:
for (i=…

JUnit: Error!
3 instead of 8

Test-Driven	Development

Eric	Knauss:	Agile	Development	Processes 11

Testcases and	automatic	regression	tests	for	every	class	in	product
10 The	automated	tests	are	the	design.	The	on-site	customer	makes	the	acceptance	tests.

8 After	doing	design	and	prototypes,	we	create	a	few	testcases

6 As	soon	as	the	code	is	done,	we	create	thorough	unit	tests,	
only	after	that	goes	the	code	to	the	test	team.

4 We	have	heard	about	JUnit.	Never	tried	it	though.

2 Our	system	test	phase	always	runs	out	of	time:	There	are	many	errors!

0 We	do	not	test	explicitly.	Sometimes	a	customer	tells	us	when	there	is	a	problem.

c.f.: Krebs, William (2002):
Turning the Knobs: A Coaching
Pattern for XP through Agile
Metrics. Springer, Lecture Notes
on Computer Science 2418

Roman	Numbers	Kata
• Idea	of	Katas:	Practice	by	repetition.	

– Here:	Test-First

The	Kata	says	you	should	write	a	function	to	convert	from	normal	
numbers	to	Roman	Numerals:	eg

1	-->	I
10	-->	X
7	-->	VII

etc.	For	a	full	description	of	how	it	works,	take	a	look	at	
[http://www.novaroma.org/via_romana/numbers.html].

For	some	ideas	on	how	to	continue,	look	at	
https://github.com/pedrovgs/RomanNumerals-Kata

Eric	Knauss:	Agile	Development	Processes 12

Eric	Knauss:	Agile	Development	Processes 13

?
• Are	those	tests	
Blackbox or	Glassbox?

• Traditionally,	
programmers	and	
testers	are	supposed	
to	be	different	
persons.	
– Why?
– Does	that	not	kill	the	
testfirst idea?	

Assume	that	you	are	a	quality	agent

• What	is	your	goal?
– Systematically	manage	quality
– Make	sure	that	system	works	as	specified

• What	are	your	competencies?
– Methods	and	practices	of	QM
– Delay	delivery	to	customer?

• What	are	your	responsibilities?
– Sign	of	that	software	was	developed	according	to	
state	of	practice	in	quality	management

Eric	Knauss:	Agile	Development	Processes 14

You are a Quality Agent / Agile Coach

Daily	builds

Face-to-face	
communication	over	
written documents

Iterative	requirements

Long	code- /	feature-
freezing

Exact	specification

QM strategy

Eric Knauss: Agile Development
Processes 15

TESTING	IN	AGILE	ENVIRONMENTS

Inspired	by	/	based	on	Original	Software:	The	reality	of	software	testing	
in	an	agile	Environment,	Whitepaper

Eric	Knauss:	Agile	Development	Processes 16

“You	only	need	to	unit	test”

• Investigative	testing?
– Goal	of	developer:	Show	that	code	works
– Goal	of	tester:	Show	that	code	does	not	work

Eric	Knauss:	Agile	Development	Processes 17

“You	can	reuse	unit	tests	to	build	
a	regression	test	suite”

Unit	test
• Prove	that	code	will	
do	what	is	expected

Eric	Knauss:	Agile	Development	Processes 18

Regression	test
• Ensure	that	no	
unexpected	effects	
result	from	changes

“Unit	tests	remove	the	need	
for	manual	testing”

• Manual	testing	is	a	repetitive	task;	it’s	
expensive,	boring	and	error-prone.	

• Though	manual	testing	is	a	time-consuming	
(and	therefore	expensive)	way	to	find	errors,	
the	costs	of	not	finding	them	are	often	much	
higher.	

Eric	Knauss:	Agile	Development	Processes 19

“We	no	longer	need	testers”

• Quantity	of	productive	code	=	quantity	of	test	
code

• Need	to	do	regression	tests

• Need	to	ensure	a	systematic	approach

• Need	to	coach	developers

Eric	Knauss:	Agile	Development	Processes 20

“User	acceptance	testing	is	
no	longer	necessary”

• Seeing	the	product	leads	to	new	requirements
– Expectations	change	/	are	not	met

• Agile	offers	feedback	cycles	to	capture	this	
effect	early

• Still	need	to	sign	of	

Eric	Knauss:	Agile	Development	Processes 21

“Developers	have	adequate	testing	
skills”

Eric	Knauss:	Agile	Development	Processes 22

Integration	testing	– “Which	tests	do	I	need	to	run	to	
ensure	the	new	code	works	seamlessly	with	the	
surrounding	code”

System	testing	– “Does	the	functionality	supported	by	
the	new	code	dovetail	with	functionality	elsewhere	in	
this	system,	or	in	other	systems	within	the	process	
flow?	”

Regression	testing	– “How	often	do	I	need	to	run	a	
regression	test	to	ensure	there	are	no	unforeseen	
impacts	of	the	new	code?”

Acceptance	testing	– “While	TDD	(in	collaboration	with	
business	users)	should	ensure	that	a	specific	function	
performs	correctly,	is	the	cumulative	impact	of	changes	
still	acceptable	to	the	business	users?”

From	story	to	unit	test – “For	each	requirement,	how	
would	I	test	that?”

“The	unit	tests	form	100%	of	
our	design	specification”

• That	might	be	a	lot	of	stuff

• Is	test	code	always	a	good	choice	to	document	
that	amount	of	information?

• As	size	of	project	is	increased,	the	execution	time	
of	tests	is	increased	as	well
– Need	to	partition	the	project	and/or	the	tests
– Test	and	Execution	Management!

Eric	Knauss:	Agile	Development	Processes 23

Conclusion
• QA	can	play	an	important	role	in	agile	projects

• Who	else	is	better	placed	to	
– Bridge	the	gap	between	users	and	developers,	
– Understand	what	is	required,	
– Understand	how	it	can	be	achieved
– Understand	how	it	can	be	assured	prior	to	deployment?	

• To	allow	this,	QA’s	need	to	be	experts	in
– Quality	management
– Agile	development
– Requirements	engineering

Eric	Knauss:	Agile	Development	Processes 24

