
Lean	Software	Development

Agile	Development	Processes
Eric	Knauss

Administrative	stuff

• Guest	lecture:	Currently	being	clarified.	
–May-19	on	Large-Scale	Agile	by	Daniel	Borgentun
(KnowIT,	Volvo	Trucks)

–May-24	on	Agility	and	Architecting	by	Patrizio	
Pelliccione

• Any	other	business?

SPRINT	2
Focus	on	Getting	work	done

http://www.flickr.com/photos/bnsd/15643117918

Course	Objectives
Knowledge	and	
understanding

Skills	and	ability Judgement and	approach

Compare	agile	and	
traditional	softw.	dev,

Forming	a	team	organically Explain:	people/commun.
centric	dev.

Relate	lean	and	agile	
development

Collaborate in	small	
software	dev.	teams

Apply	fact:	people	drive	
project	success

Contrast different	agile	
methodologies

Interact and	show	progress	
continuously

Describe:	No	single	
methodology	fits	all

Use	the	agile	manifest	and	
its	accompanying	principles

Develop SW using	small	
and	frequent	iterations

Discuss:	methodology	
needs	to	adopt	to	culture	

Discuss	what	is	different
when	leading	an	agile	team

Use	test-driven	dev.	and	
automated	tests

Refactor	a	program/design

Be	member	of	agile	team

Incremental	planning	using	
user	stories Agile	Software	Dev.	|	Eric	Knauss 4

Sp
rin

t	1

Sp
rin

t	2

Sp
rin

t	3

Legend

Addressed

Open

Mainly	in	project

Focus	today

Lean	History
• Toyota	(1980s):	

"Lean	Manufacturing“,	revolutionize	
the	automotive	industry
– eliminate	waste	
– streamline	the	value	chain	

(even	across	enterprises)	
– produce	on	request	(just	in	time),	and	
– focus	on	the	people	who	add	value.	

• Mary	and	Tom	Poppendieck:	transferred	principles	
and	practices	from	manufacturing	to	the	software	
development

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 5

- http://en.wikipedia.org/wiki/Fordism

Software	Development	as	
Manufacturing

Manufacturing	Mass	
Production	

Waterfall	Model	

Hi
dd

en
	

Co
st

• Transportation
• Managing	inventory	and	

storage	
• Capital	costs	of	inventory

• Handoffs	
• Lots	of	open	items;	can	lead	to	

overwhelming	the	workforce	
• Cost	of	training	people	to	build	software	

Ri
sk
s

• Building	things	you	don’t	
need	because	production	
goes	on	after	needs	go	
away	

• Inventory	becoming	
obsolete	Huge	latency	if	an	
error	occurs	

• Building	things	you	don’t	need	because	
requirements	aren’t	clear	or	customers	
change	their	minds	

• Knowledge	degrading	quickly
If	a	line	is	discontinued,	all	WIP	wasted	

• Errors	in	requirements	discovered	late	in	
the	process	

• Errors	in	completed	code	discovered	late	in	
testing	

Lean-Agile	Software	Development:	Achieving	Enterprise	Agility,	by	Alan	Shalloway,	
Guy	Beaver,	and	Jim	Trott.	Chapter	1.

Lean	Mindset
• Most	errors	are	of	a	systemic	nature

à Development	system	must	be	improved.	

• You	must	respect	your	people	in	order	to	improve	your	
system.	

• Doing	things	too	early	causes	waste.	
– Do	things	just	before	you	need	to	do	them
– This	is	called	“Just-In-Time,”	or	JIT.	

• Focus	on	shortening	time-to-market	by	removing	delays	in	
the	development	process
– Using	JIT	methods	to	do	this	is	more	important	than	keeping	

everyone	busy.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 7

Lean-Agile	Software	Development:	Achieving	Enterprise	Agility,	by	Alan	Shalloway,	
Guy	Beaver,	and	Jim	Trott.	Chapter	1.

Related	to,	but	
not	the	same	as	
agile	mindset!

LSD:	7	Principles,	22	Tools
• Eliminate	Waste

– Seeing	Waste,	Value	Stream	Mapping	
• Amplify	Learning

– Feedback,	Iterations,	Synchronization,	Set-Based	Development	
• Decide	as	Late	as	Possible

– Options	Thinking,	The	Last	Responsible	Moment,	Making	
Decisions	

• Deliver	as	Fast	as	Possible
– Pull	Systems,	Queuing	Theory,	Cost	of	Delay	

• Empower	the	Team
– Self-Determination,	Motivation,	Leadership,	Expertise	

• Build	Integrity	In
– Perceived	Integrity,	Conceptual	Integrity,	Refactoring,	Testing	

• See	the	Whole
– Measurements,	Contracts	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 8

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#1:	Eliminate	Waste	
• ...	does	not	mean	to	throw	away	all	
documentation
– spend	time	only	on	what	adds	real	customer	value.	

• Eliminating	waste	is	the	most	fundamental	lean	
principle.	
– First	step	to	implementing	
lean	development:	
learning	to	see	waste.	

– Second	step:	
uncover biggest	sources	of	
waste	and	eliminate	them.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 9

Uncover	Waste Eliminate	Waste

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Rates	of	Feature	Usage	in	Software	Projects

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 10

#1:	Eliminating	Waste
Tool	#1:	Seeing	Waste

1. Inventory
– Partially	done	work

2. Extra	processing
– Paperwork

3. Over	production
– Unused	features

4. Transportation
– Task	switching

5. Waiting
– For	staffing,	
– For	approval,	
– For	review,	
– For	exessive requirements,	
– For	testing,	
– For	deployment	

6. Motion
– Handovers,	finding	answers	

for	questions

7. Defects
– Waste	produced	by	defect	=	

impact	x	time

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 11

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#1:	Eliminating	Waste
Tool	#2:	Value	Stream	Mapping

1. Pretend	you	are	a	customer	request
– Imagine	yourself	going	through	each	step	of	your	process
– Don’t	ask	people;	walk	around,	look	at	data,	find	out	yourself.	

2. Go	to	the	start	(where	a	customer	request	comes	into	your	
organization)	

3. Draw	a	chart	(average	customer	request,	from	arrival	to	completion)

4. Work	with	people	involved	in	each	activity
– Sketch	all	process	steps	necessary	to	handle	request,	
– Capture	average	amount	of	time	it	spends	in	each	step.	

5. Draw	Timeline	(at	the	bottom	of	the	map),	showing	how	much	time
– Request	spends	in	value-adding	activities.	
– Request	spends	waiting	or	in	non-value	adding	activities.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 12

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Examples:	Value-Stream	Mapping

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 13

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Examples:	Value-Stream	Mapping

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 14

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Group	work

?
With	your	neighbors	and	
about	your	agile	projects:
• Discuss	waste	and	value
• Discuss	the	value-
stream	(e.g.	how	long	
does	it	take	to	get	
Terese’s or	Magnus’	
requests	during	
acceptance	tests	on	
their	or	on	my	phone?)

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 15

#Principle	2:	Amplify	Learning
• Imagine	a	company	with	SW	development	challenges

• Usual	reaction:	Increase	discipline	/	control
– Specify	requirements	more	completely
– All	agreements	with	customer	are	written	
– Changes	are	controlled	more	carefully
– More	tracing
– …

• As	control	theory	predicts,	this	generally	makes	a	bad	
situation	worse

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 16

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#2:	Amplify	Learning
Tool	#3:	Feedback

If	a	problem	develops:

1. Make	sure	that	all	
feedback	loops	are	in	
place

2. Increase	the	frequency	
of	feedback	loops	in	
problem	areas

Instead	of… …focus	on

Gather	more	
requirements

Discuss UI	prototypes	

Accumulate	defects Test	as	soon	as	code	is	
written

More documentation	
and	detailed	planning

Check	out	ideas	by
writing	code

Study	carefully	which	
tool	to	use

Bring	top	3
candidates	in	house	
and	test	them

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 17

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#2:	Amplify	Learning
Tool	#3:	Feedback

If	a	problem	develops:

1. Make	sure	that	all	
feedback	loops	are	in	
place

2. Increase	the	frequency	
of	feedback	loops	in	
problem	areas

Instead	of… …focus	on

Gather	more	
requirements

Discuss UI	prototypes	

Accumulate	defects Test	as	soon	as	code	is	
written

More documentation	
and	detailed	planning

Check	out	ideas	by
writing	code

Study	carefully	which	
tool	to	use

Bring	top	3
candidates	in	house	
and	test	them

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 18

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#2:	Amplify	Learning
Tool	#4:	Short	iterations

Short	iterations	
• Increase	control	
• Help	synchronizing	developers	and	customer
• Force	decisions	to	be	made

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 19

Waterfall	Process

Increment	1 Increment	2 Increment	3

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#2:	Amplify	Learning
Tool	#4:	Short	iterations

Short	iterations	
• Increase	control	
• Help	synchronizing	developers	and	customer
• Force	decisions	to	be	made

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 20

Increment	1 Increment	2 Increment	3X
X Cristoph Steindl (IBM),	Lean	Software	Development,	

2004	(Presentation)

#2:	Amplify	Learning
Tool	#5:	Synchronisation

• Sync	individuals	that	work	on	the	same	thing
– Fundamental	for	every	complex	development	process

• Daily	within	the	team
– Daily	Scrum
– Daily	Build
– Daily	System	Test

• Weekly	within	several	teams
– Push	to	master	at	least	weekly
– Weekly	meetings	(e.g.	Scrum-of-Scrum)

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 21

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#2:	Amplify	Learning
Tool	#6:	Set	based	development

• Communicate	about	constraints,	not	choices
– Use	less	data	to	convey	more	information
– Defer	making	choices	until	they	have	to	be	made

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 22

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#3:	
Decide	as	late	as	possible
• …does	not	mean	to	procrastinate,	

– but	to	keep	your	options	open	as	long	as	practical,
– but	no	longer

• Reason
– Most	common	problem:	Drill	down	to	details	too	fast
– In	the	presence	of	the	risk	to	make	big	mistakes:	survey	the	

landscape	and	delay	detailed	decisions

• Wait:	Is	that	not	equal	to	sequential	development	(analyze	
requirements	up-front)?
– Sequential	development	implies	depth-first
– Breadth-first	is	far	better	to	manage	risk!

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 23

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#3:	Decide	as	late	as	possible
Tool	#7:	Options	Thinking

• Common	sense:	
– Resist	making	irrevocable	decisions	under	uncertainty
– Options	allow	fact-based	decisions	

(based	on	learning,	not	speculation)

– E.g.	premature	design	commitment	restricts	learning,	limits	
usefulness	of	the	product,	and	increases	the	cost	of	change

• Plans	and	predictions	are	not	bad,	but	avoid	making	
irrevocable	decisions	based	on	speculation	
– Develop	options,	communicate	them	and	decide	together	with	

the	customer.	
– But:	options	are	not	free	and	it	takes	expertise	to	know	which	

options	to	keep	open.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 24

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Example	in	Automotive	Ecosystem

Decisions
- Make	or	Buy
- HW	or	SW

Integration
- Non-functional	
verification	/	fixing

Uncertainty

later earlier
Allow	
iterative	
development

Eric	Knauss	and	Daniela	Damian. Towards	Enabling	Cross-Organizational	Modeling	in	Automotive	Ecosystems. In	Proceedings	of	1st	
International	Workshop	on	Model-Driven	Development	Processes	and	Practices	(MD2P2	’14),	Valencia,	Spain,	2014.

“Cone	of	Uncertainty”
B.	Boehm.	Software	Engineering	Economics.	Prentice-Hall,	1981.

#3:	Decide	as	late	as	possible
Tool	#8:	The	Last	Responsible	Moment

• Last	responsible	moment	=	the	moment	at	which	failing	to	
make	a	decision	eliminates	an	important	alternative
– Concurrent	development	allows	you	to	wait	for	that	moment

• Share	partially	complete	work
– Avoid	increasing	length	of	the	feedback	loop	and	forcing	

irreversible	decisions	to	be	made	sooner	than	necessary
– Good	work	is	a	discovery	process,	done	through	short,	repeated	

exploratory	cycles.	

• Develop	a	sense	of	
– how	to	absorb	changes	
– what	is	critically	important	in	the	domain
– when	decisions	must	be	made

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 26

Cristoph Steindl (IBM),	Lean	Software	
Development,	2004	(Presentation)

#3:	Decide	as	late	as	possible
Tool	#9:	Making	decisions

Intuitive	decision	making	is	more	mature	than	rational	
decision	making
• Usually	leads	to	better	decisions
• Rational	decision	making		

– Decompose	problem,	remove	context,	apply	analytical	
techniques,	and	discuss	process	and	results

– Suffers	from	tunnel	vision,	intentionally	ignoring	the	instincts	of	
experienced	people.

– Unlikely	to	detect	high-stakes	mistakes.	

Developing	people	with	skill	to	make	wise	decision	
beats

developing	decision-making	processes	that	think	for	people
Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 27

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#3:	
Decide	as	late	as	possible
• Options	Thinking,	Last	Responsible	Moment,	
Making	Decisions

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 28

Depth-
First

Breadth-First

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#3:	
Decide	as	late	as	possible
• Options	Thinking,	Last	Responsible	Moment,	
Making	Decisions

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 29

t0

t1

t2
t3

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#4:	
Deliver	as	fast	as	possible
• …does	not	mean	to	rush	and	do	sloppy	work,	but	to	deliver	value	to	

customers	as	soon	as	they	ask	for	it
• Customers	like	rapid	delivery

– Often	translates	to	increased	business	flexibility
– Deliver	faster	than	their	customers	can	change	their	minds
– Fewer	resources	tied	up	in	work-in	progress.	

• Deliver	as	Fast	as	Possible complements	Decide	as	Late	as	Possible
– The	faster	you	can	deliver,	the	longer	you	can	delay	decisions
– E.g.	if	you	can	make	a	software	change	in	a	week,	then	you	do	not	

have	to	decide	exactly	what	you	are	going	to	do	until	a	week	before	
the	change	is	needed.	

– Allows	to	keep	options	open	until	uncertainty	is	reduced,	which	leads	
to	more	informed,	fact-based	decisions.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 30

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

#4:	Deliver	as	fast	as	possible
Tool	#10:	Pull-System

• Fundamental:	Every	team	member	knows	what	to	do	to	
make	the	most	effective	contribution	to	business	
– Option	1:	tell	them	what	to	do	(“command	&	control”)	
– Option	2:	set	things	up	so	they	can	figure	it	out	for	themselves	

(“self-organization”).	
– In	a	fast-moving	environment,	only	the	second	option	works

• Information	radiators	/	feedback	devices:	
– One	of	the	features	of	a	pull	system	is	visual	control,	or	

management	by	sight.	
– Everyone	must	be	able	to	see	what	is	going	on,	what	needs	to	

be	done,	what	problems	exist,	what	progress	is	being	made.	

#4:	Deliver	as	fast	as	possible
Tool	#10:	Pull-System

• Fundamental:	Every	team	member	knows	what	to	do	to	
make	the	most	effective	contribution	to	business	
– Option	1:	tell	them	what	to	do	(“command	&	control”)	
– Option	2:	set	things	up	so	they	can	figure	it	out	for	themselves	

(“self-organization”).	
– In	a	fast-moving	environment,	only	the	second	option	works

• Information	radiators	/	feedback	devices:	
– One	of	the	features	of	a	pull	system	is	visual	control,	or	

management	by	sight.	
– Everyone	must	be	able	to	see	what	is	going	on,	what	needs	to	

be	done,	what	problems	exist,	what	progress	is	being	made.	

ht
tp
:/
/w

w
w
.d
ev
el
op

er
te
st
in
g.
co
m
/a
rc
hi
ve
s/
20
04
04
/	

Xt
re
m
eF
ee
db

ac
kF
or
So
ftw

ar
eD

ev
el
op

m
en

t.h
tm

l

#4:	Deliver	as	fast	as	possible
Tool	#11:	Queuing	Theory

• Cycle	time
– The	fundamental	measurement	of	a	queue
–When	you	are	in	a	queue,	you	always	want	cycle	
time	to	be	as	short	as	possible.	

• Steady	rate	of	arrival
• Steady	rate	of	service:	
• Slack

#4:	Deliver	as	fast	as	possible
Tool	#11:	Queuing	Theory

• Cycle	time

• Steady	rate	of	arrival
– When	arrival	of	demand	is	spread	out	to	match	the	
capacity	of	the	system,	queues,	and	therefore	cycle	
times,	will	be	shortened

– One	way	to	control	the	rate	of	work	arrival	is	to	
release	small	packages	of	work.	

• Steady	rate	of	service
• Slack

#4:	Deliver	as	fast	as	possible
Tool	#11:	Queuing	Theory

• Cycle	time
• Steady	rate	of	arrival

• Steady	rate	of	service	
– The	easiest	way	to	remove	variability	in	the	processing	time	is	to	

increase	the	number	of	servers	that	process	work	in	a	single	
queue.	

– Small	work	packages	will	allow	parallel	processing	of	the	small	
jobs	by	multiple	teams	so	that	if	one	is	stalled	by	a	problem,	the	
rest	of	the	project	can	proceed	without	delay.	

• Slack

#4:	Deliver	as	fast	as	possible
Tool	#11:	Queuing	Theory

• Cycle	time
• Steady	rate	of	arrival
• Steady	rate	of	service	

• Slack
– Short	cycle	times	are	not	possible	if	resources	are	
overloaded.	

– Full	utilization	provides	no	value	to	the	overall	value	
stream;	in	fact,	it	usually	does	more	harm	than	good.	

#4:	Deliver	as	fast	as	possible
Tool	#11:	Queuing	Theory

• Cycle	time
• Steady	rate	of	arrival
• Steady	rate	of	service	
• Slack

How	Queues	work
• To	increase	throughput:	look	for	the	current	bottleneck	that	is	

slowing	things	down	and	fix	it
– Do	not	increase	the	utilization	of	non-bottleneck	areas.	Don’t	

keep	piling	up	work	that	can’t	be	used	immediately.	
• As	variability	(in	arrival	time	or	processing	time)	increases,	cycle	

time	will	increase.	
• As	batch	size	increases,	variability	in	arrival	and	processing	time	

increases,	and	therefore	cycle	time	will	increase.	
• As	utilization	increases,	cycle	time	will	increase	nonlinearly.	
• Continuous	flow	requires	a	reduction	in	variability.	
• Variability	may	be	reduced	by	an	even	arrival	of	demand,	small	

batches,	an	even	rate	of	processing,	and	parallel	processing.	
• Decreasing	variability	early	in	the	process	has	larger	impact	

than	decreasing	variability	late	in	the	process.	

Group	work

?
With	your	neighbors	and	
about	your	agile	projects:
• How	can	you	apply	
queuing	theory	in	your	
projects?

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 39

#4:	Deliver	as	fast	as	possible
Tool	#12:	Cost	of	delay

• Create	a	simple	economic	
model	(get	good	estimates	
from	Marketing)
– Show	how	differences	in	

revenue	and	market	share	
affect	profits	

– If	delay	means	
• “loss	of	early	high	pricing”	or	
• “long-term	loss	of	market	
share”,	

cost	of	delay	can	be	very	high
• Keep	the	model	simple

– Make	sure	everyone	
understands	and	buys	into	

the	economic	model
• Economic	models	may	help	

to	
– Justify	cost	of	reducing	cycle	

time,	eliminating	
bottlenecks,	and	purchasing	
tools	that	increase	speed

– Drive	development	decisions
– Empower	the	team

Principle	#5:	
Empower	the	team
• …does	not	mean	to	abandon	leadership,	but	to	let	the	people	who	

add	value	use	their	full	potential.	
• Lean	thinking	=	believing	that	frontline	workers	should	determine	

and	continually	improve	the	way	they	do	their	jobs.	
• Discipline	is	important,	but	experimentation	and	feedback	are	more	

effective	than	trying	to	getting	things	right	the	first	time.	
• Empowerment	is	a	critical	motivating	factor:

– Move	decisions	to	the	lowest	possible	level	in	an	organization	while	
developing	the	capacity	of	those	people	to	make	decisions	wisely.	

• In	a	lean	organization,	people	who	add	value	are	the	center	of	
organizational	energy.	
– Frontline	workers	have	process	design	authority	and	decision-making	

responsibility;	they	are	the	focus	of	resources,	information	and	
training.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 41

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#5:	
Empower	the	team
• …does	not	mean	to	abandon	leadership,	but	to	let	the	people	who	

add	value	use	their	full	potential.	
• Lean	thinking	=	believing	that	frontline	workers	should	determine	

and	continually	improve	the	way	they	do	their	jobs.	
• Discipline	is	important,	but	experimentation	and	feedback	are	more	

effective	than	trying	to	getting	things	right	the	first	time.	
• Empowerment	is	a	critical	motivating	factor:

– Move	decisions	to	the	lowest	possible	level	in	an	organization	while	
developing	the	capacity	of	those	people	to	make	decisions	wisely.	

• In	a	lean	organization,	people	who	add	value	are	the	center	of	
organizational	energy.	
– Frontline	workers	have	process	design	authority	and	decision-making	

responsibility;	they	are	the	focus	of	resources,	information	and	
training.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 42

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#5:	
Empower	the	team
• Tool	#13: Self-Determination

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 43

”Here	comes	Edward	Bear	now,	
down	the	stairs	behind	Christopher	
Robin.	Bump!	Bump!	Bump!	on	the	
back	of	his	head.	It	is,	as	far	as	he	
knows,	the	only	way	of	coming	
down	stairs.	He	is	sure	that	there	
must	be	a	better	way,	if	only	he	
could	stop	bumping	for	a	moment	
to	think	of	it.”
Winnie	-The	Pooh

A.A.	Milne,	1926

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#5:	
Empower	the	team
• Tool	#13:	Self-Determination
• Tool #14:	Motivation

Vision	statements	from	William	McKnight	(leader	of	3M	
from	1930s	through	the	1950s):	

• “Hire	good	people,	and	leave	them	alone.”
• “If	you	put	fences	around	people,	you	get	sheep.	Give	
people	the	room	they	need.”

• “Encourage,	don't	itpick.	Let	people	run	with	an	idea.”	
• “Give	it	a	try	– and	quick!”	

• Tool	#15:	Leadership
– Not	management!

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 44

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#5:	
Empower	the	team
• Tool	#13:	Self-Determination

• Tool	#14:	Motivation

• Tool #15:	Leadership
– Not	management!

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 45

Managers Leaders

Cope	with	Complexity	
• Plan	and	Budget
• Organize	and	Staff
• Track	and	Control	

Cope	with	Change	
• Set	Direction
• Align	People
• Enable	Motivation	

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#5:	
Empower	the	team
• Tool	#13:	Self-Determination

• Tool	#14:	Motivation

• Tool	#15:	Leadership

• Tool	#16:	Expertise

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 46

Principle	#6:	
Build	Integrity	in
• …does	not	mean	big,	upfront	design,	but	don't	try	to	tack	on	integrity	after	the	

fact,	build	it	in.	

• Kim	Clark	(Harvard	Business	School):	some	companies	consistently	develop	
superior	products.	
– Key	differentiator:	the	products	had	integrity.	

• External	(perceived)	integrity:	
the	totality	of	the	product	achieves	a	balance	of	function,	usability,	
reliability,	and	economy	that	delights	customers.	

• Internal	(conceptual)	integrity:	the	system’s	central	concepts	work	
together	as	a	smooth,	cohesive	whole.	

• The	measure	of	perceived	integrity	is	roughly	equivalent	to	market	share
• Conceptual	integrity	is	a	prerequisite	for	perceived	integrity

The	way	to	build	a	system	with	high	perceived	and	conceptual	integrity	is	to	have	
excellent	information	flows	both	from	customer	to	development	team	and	between	
the	upstream	and	downstream	processes	of	the	development	team.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 47

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#6:	Build	integrity	in
Tool	#17:	Perceived	integrity

“Companies	that	consistently	achieve	perceived	integrity	
have	a	way	of	constantly	keeping	customer	values	in	
front	of	the	technical	peoplemaking	detailed	design	

decisions.	Chief	engineers	have	added	to	their	
engineering	and	leadership	skills	the	ability	to	understand	

the	target	customer	base	and	create	a	vision.”

“Customers	will	know	a	good	design	when	they	see	it,	but	
they	can't	envision	it	beforehand.	

To	make	matters	worse,	as	their	circumstances	change,	so	
will	customers'	perception	of	system	integrity.	“

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 48

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#6:	Build	integrity	in
Tool	#18:	Conceptual	integrity

• Use	integrated	problem	solving	to	assure	excellent	
technical	information	flow	
– Understanding	the	problem	and	solving	the	problem	at	the	
same	time,	not	sequentially.	

– Preliminary	information	is	released	early;	information	flow	
is	not	delayed	until	complete	information	is	available.	

– Information	is	transmitted	frequently	in	small	batches,	not	
all	at	once	in	a	large	batch.	

– Information	flows	in	two	directions,	not	just	one.	
– The	preferred	media	for	transmitting	information	is	face-
to-face	communication	as	opposed	to	documents.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 49

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#6:	Build	integrity	in
Tool	#19:	Refactoring
Tool	#20:	Testing

• If	there	is	not	enough	time,	move	resources	
from	writing	requirements	to	writing	
customer	tests

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 50

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#7:	See	the	Whole

This	area Must	attend	this	work

Business • Continuously	prioritize	and	decompose	incremental	needs	
across	the	organization	

• Manage	a	portfolio	of	business	needs
• Do	release	planning	

Management • Organize	cross-functional	teams	that	can	deliver	incremental,	
end- to-end	features	

• Manage	the	value	stream	
• Bring	visibility	to	impediments	

Delivery	team • Work	together,	every	day,	and	deliver	fully	tested	and	
integrated	code	

• Learn	how	to	deliver	business	needs	incrementally	
• Become	proficient	at	acceptance	test-driven	development	and	

refactoring	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 51

Lean-Agile	Software	Development:	Achieving	Enterprise	Agility,	by	Alan	Shalloway,	
Guy	Beaver,	and	Jim	Trott.	Chapter	1.

Principle	#7:	See	the	whole
Tool	#21:	Measurement

• Avoid	local	sub-optimization
– Try	to	give	the	whole	picture
– Do	not	measure	individual	performance,	but	give	
information

–Make	clear	how	measurements	relate	to	business	
goals

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 52

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Principle	#7:	See	the	whole
Tool	#21:	Measurement

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 53

Principle	#7:	See	the	whole
Tool	#22:	Contracts

• Remember:	up	to	45%	of	the	features	delivered	might	never	be	
used	(according	to	a	study	of	the	Standish	Group).	

• Barry	Boehm	and	Philip	Papaccio (1988):	the	best	way	to	develop	
low-cost,	high-quality	software	is	to	write	less	code.	

• Rigid	control	of	scope	tends	to	expand,	not	reduce,	the	scope.	Save	
money	overall	by	collaborating	with	the	customer	by	using	some	
form	of	optional	scope	contract.	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 54

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

qualitytime

costs scope

LSD:	7	Principles,	22	Tools
• Eliminate	Waste

– Seeing	Waste,	Value	Stream	Mapping	
• Amplify	Learning

– Feedback,	Iterations,	Synchronization,	Set-Based	Development	
• Decide	as	Late	as	Possible

– Options	Thinking,	The	Last	Responsible	Moment,	Making	
Decisions	

• Deliver	as	Fast	as	Possible
– Pull	Systems,	Queuing	Theory,	Cost	of	Delay	

• Empower	the	Team
– Self-Determination,	Motivation,	Leadership,	Expertise	

• Build	Integrity	In
– Perceived	Integrity,	Conceptual	Integrity,	Refactoring,	Testing	

• See	the	Whole
– Measurements,	Contracts	

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 55

Cristoph Steindl (IBM),	Lean	Software	Development,	
2004	(Presentation)

Group	work

?
With	your	neighbors:
• Give	an	example	of	a	

software	development	
scenario	that	is	suitable	for	
lean	software	development	
and	one	example	that	is	
more	suitable	for	agile	
software	development	(e.g.	
XP	or	Scrum).	

• Discuss	similarities	and	
differences	between	agile	
software	development	and	
lean	software	development.

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 56

Agile	vs.	Lean
• Agile	tends	to	emphasize	communication	at	the	local	level
• Lean	advocates	a	holistic	view	of	the	delivery	chain

• XP:	Decide	now,	change	later
• Lean:	Defer	commitment

• Learning	goal	today:
– Relate	lean	and	agile
– Contrast	different	agile	methodologies
• Agile	has	to	do	a	lot	with	culture	and	spirit

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 57

Lean-Agile	Software	Development:	Achieving	Enterprise	Agility,	by	Alan	Shalloway,	
Guy	Beaver,	and	Jim	Trott.	Chapter	1.

Further	reading
• Yasuhiro	Monden (1998),	Toyota	Production	System,	An	

Integrated	Approach	to	Just-In-Time,	Third	edition,	Norcross,	
GA:	Engineering	&	Management	Press	

• Mary	Poppendieck,	Tom	Poppendieck (2003),	"Lean	Software	
Development:	An	Agile	Toolkit",	Addison-Wesley	Professional

Lean	|	Agile	Dev.	Proc.	|	Eric	Knauss 58

2015	– VersionOne
http://info.versionone.com/state-of-agile-report-thank-you.html

