forked from Atlantic777/pmu-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bdx_server_ratios.py
2784 lines (2580 loc) · 96 KB
/
bdx_server_ratios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# auto generated TopDown/TMAM 3.14 description for Intel Xeon E5 v4 (code named Broadwell EP)
# Please see http://ark.intel.com for more details on these CPUs.
#
# References:
# http://halobates.de/blog/p/262
# https://sites.google.com/site/analysismethods/yasin-pubs
# https://download.01.org/perfmon/
#
# Helpers
print_error = lambda msg: False
smt_enabled = False
version = "3.14"
# Constants
Pipeline_Width = 4
Mem_L2_Store_Cost = 9
Mem_L3_Weight = 7
Mem_STLB_Hit_Cost = 7
Mem_4K_Alias_Cost = 7
Mem_XSNP_HitM_Cost = 60
MEM_XSNP_Hit_Cost = 43
MEM_XSNP_None_Cost = 41
Mem_Local_DRAM_Cost = 200
Mem_Remote_DRAM_Cost = 310
Mem_Remote_HitM_Cost = 200
Mem_Remote_Fwd_Cost = 180
MS_Switches_Cost = 2
OneMillion = 1000000
OneBillion = 1000000000
Energy_Unit = 61
# Aux. formulas
# Floating Point computational (arithmetic) Operations Count
def FLOP_Count(self, EV, level):
return (1 *(EV("FP_ARITH_INST_RETIRED.SCALAR_SINGLE", level) + EV("FP_ARITH_INST_RETIRED.SCALAR_DOUBLE", level)) + 2 * EV("FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE", level) + 4 *(EV("FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE", level) + EV("FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE", level)) + 8 * EV("FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE", level))
def Recovery_Cycles(self, EV, level):
return (EV("INT_MISC.RECOVERY_CYCLES_ANY", level) / 2) if smt_enabled else EV("INT_MISC.RECOVERY_CYCLES", level)
def Execute_Cycles(self, EV, level):
return (EV("UOPS_EXECUTED.CORE:c1", level) / 2) if smt_enabled else EV("UOPS_EXECUTED.CYCLES_GE_1_UOP_EXEC", level)
def L1D_Miss_Cycles(self, EV, level):
return (EV("L1D_PEND_MISS.PENDING_CYCLES:amt1", level) / 2) if smt_enabled else EV("L1D_PEND_MISS.PENDING_CYCLES", level)
def SQ_Full_Cycles(self, EV, level):
return (EV("OFFCORE_REQUESTS_BUFFER.SQ_FULL", level) / 2) if smt_enabled else EV("OFFCORE_REQUESTS_BUFFER.SQ_FULL", level)
def ITLB_Miss_Cycles(self, EV, level):
return (9 * EV("ITLB_MISSES.STLB_HIT", level) + EV("ITLB_MISSES.WALK_DURATION:c1", level) + 7 * EV("ITLB_MISSES.WALK_COMPLETED", level))
def Frontend_RS_Empty_Cycles(self, EV, level):
EV("RS_EVENTS.EMPTY_CYCLES", level)
return EV("RS_EVENTS.EMPTY_CYCLES", level) if(self.Frontend_Latency.compute(EV)> 0.1)else 0
def Cycles_0_Ports_Utilized(self, EV, level):
return (EV("UOPS_EXECUTED.CORE:i1:c1", level)) / 2 if smt_enabled else(EV("CYCLE_ACTIVITY.STALLS_TOTAL", level) - Frontend_RS_Empty_Cycles(self, EV, level))
def Cycles_1_Port_Utilized(self, EV, level):
return (EV("UOPS_EXECUTED.CORE:c1", level) - EV("UOPS_EXECUTED.CORE:c2", level)) / 2 if smt_enabled else(EV("UOPS_EXECUTED.CYCLES_GE_1_UOP_EXEC", level) - EV("UOPS_EXECUTED.CYCLES_GE_2_UOPS_EXEC", level))
def Cycles_2_Ports_Utilized(self, EV, level):
return (EV("UOPS_EXECUTED.CORE:c2", level) - EV("UOPS_EXECUTED.CORE:c3", level)) / 2 if smt_enabled else(EV("UOPS_EXECUTED.CYCLES_GE_2_UOPS_EXEC", level) - EV("UOPS_EXECUTED.CYCLES_GE_3_UOPS_EXEC", level))
def Cycles_3m_Ports_Utilized(self, EV, level):
return (EV("UOPS_EXECUTED.CORE:c3", level) / 2) if smt_enabled else EV("UOPS_EXECUTED.CYCLES_GE_3_UOPS_EXEC", level)
def ORO_DRD_Any_Cycles(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DATA_RD", level)) , level )
def ORO_DRD_BW_Cycles(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD:c4", level)) , level )
def ORO_Demand_RFO_C1(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO", level)) , level )
def Store_L2_Hit_Cycles(self, EV, level):
return EV("L2_RQSTS.RFO_HIT", level)* Mem_L2_Store_Cost *(1 - Mem_Lock_St_Fraction(self, EV, level))
def LOAD_L1_MISS_CLT(self, EV, level):
return EV("MEM_LOAD_UOPS_RETIRED.L2_HIT", level) + EV("MEM_LOAD_UOPS_RETIRED.L3_HIT", level) + EV("MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT", level) + EV("MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM", level) + EV("MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS", level)
def LOAD_L1_MISS_NET(self, EV, level):
return LOAD_L1_MISS_CLT(self, EV, level) + EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM", level) + EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM", level) + EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM", level) + EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD", level)
def LOAD_L3_HIT(self, EV, level):
return EV("MEM_LOAD_UOPS_RETIRED.L3_HIT", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def LOAD_XSNP_HIT(self, EV, level):
return EV("MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def LOAD_XSNP_HITM(self, EV, level):
return EV("MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def LOAD_XSNP_MISS(self, EV, level):
return EV("MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def LOAD_LCL_MEM(self, EV, level):
return EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def LOAD_RMT_MEM(self, EV, level):
return EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def LOAD_RMT_HITM(self, EV, level):
return EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def LOAD_RMT_FWD(self, EV, level):
return EV("MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_FWD", level)*(1 + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level) / LOAD_L1_MISS_NET(self, EV, level))
def Few_Uops_Executed_Threshold(self, EV, level):
EV("UOPS_EXECUTED.CYCLES_GE_3_UOPS_EXEC", level)
EV("UOPS_EXECUTED.CYCLES_GE_2_UOPS_EXEC", level)
return EV("UOPS_EXECUTED.CYCLES_GE_3_UOPS_EXEC", level) if(IPC(self, EV, level)> 1.8)else EV("UOPS_EXECUTED.CYCLES_GE_2_UOPS_EXEC", level)
def Backend_Bound_Cycles(self, EV, level):
return (EV("CYCLE_ACTIVITY.STALLS_TOTAL", level) + EV("UOPS_EXECUTED.CYCLES_GE_1_UOP_EXEC", level) - Few_Uops_Executed_Threshold(self, EV, level) - Frontend_RS_Empty_Cycles(self, EV, level) + EV("RESOURCE_STALLS.SB", level))
def Memory_Bound_Fraction(self, EV, level):
return (EV("CYCLE_ACTIVITY.STALLS_MEM_ANY", level) + EV("RESOURCE_STALLS.SB", level)) / Backend_Bound_Cycles(self, EV, level)
def Mem_L3_Hit_Fraction(self, EV, level):
return EV("MEM_LOAD_UOPS_RETIRED.L3_HIT", level) /(EV("MEM_LOAD_UOPS_RETIRED.L3_HIT", level) + Mem_L3_Weight * EV("MEM_LOAD_UOPS_RETIRED.L3_MISS", level))
def Mem_Lock_St_Fraction(self, EV, level):
return EV("MEM_UOPS_RETIRED.LOCK_LOADS", level) / EV("MEM_UOPS_RETIRED.ALL_STORES", level)
def Mispred_Clears_Fraction(self, EV, level):
return EV("BR_MISP_RETIRED.ALL_BRANCHES", level) /(EV("BR_MISP_RETIRED.ALL_BRANCHES", level) + EV("MACHINE_CLEARS.COUNT", level))
def Avg_RS_Empty_Period_Clears(self, EV, level):
return (EV("RS_EVENTS.EMPTY_CYCLES", level) - EV("ICACHE.IFDATA_STALL", level) - ITLB_Miss_Cycles(self, EV, level)) / EV("RS_EVENTS.EMPTY_END", level)
def Retire_Uop_Fraction(self, EV, level):
return EV("UOPS_RETIRED.RETIRE_SLOTS", level) / EV("UOPS_ISSUED.ANY", level)
def DurationTimeInSeconds(self, EV, level):
return 0 if 0 > 0 else(EV("interval-ns", 0) / 1e+06 / 1000 )
def r2r_delta(self, EV, level):
return max_delta_clk
# Instructions Per Cycle (per logical thread)
def IPC(self, EV, level):
return EV("INST_RETIRED.ANY", level) / CLKS(self, EV, level)
# Uops Per Instruction
def UPI(self, EV, level):
return EV("UOPS_RETIRED.RETIRE_SLOTS", level) / EV("INST_RETIRED.ANY", level)
# Instruction per taken branch
def IPTB(self, EV, level):
return EV("INST_RETIRED.ANY", level) / EV("BR_INST_RETIRED.NEAR_TAKEN", level)
# Branch instructions per taken branch. Can be used to approximate PGO-likelihood for non-loopy codes.
def BPTB(self, EV, level):
return EV("BR_INST_RETIRED.ALL_BRANCHES", level) / EV("BR_INST_RETIRED.NEAR_TAKEN", level)
# Rough Estimation of fraction of fetched lines bytes that were likely consumed by program instructions
def IFetch_Line_Utilization(self, EV, level):
return min(1 , EV("IDQ.MITE_UOPS", level) /(UPI(self, EV, level)* 16 *(EV("ICACHE.HIT", level) + EV("ICACHE.MISSES", level)) / 4.0))
# Fraction of Uops delivered by the DSB (decoded instructions cache)
def DSB_Coverage(self, EV, level):
return (EV("IDQ.DSB_UOPS", level) + EV("LSD.UOPS", level)) /(EV("IDQ.DSB_UOPS", level) + EV("LSD.UOPS", level) + EV("IDQ.MITE_UOPS", level) + EV("IDQ.MS_UOPS", level))
# Cycles Per Instruction (threaded)
def CPI(self, EV, level):
return 1 / IPC(self, EV, level)
# Per-thread actual clocks when the thread is active
def CLKS(self, EV, level):
return EV("CPU_CLK_UNHALTED.THREAD", level)
# Total issue-pipeline slots
def SLOTS(self, EV, level):
return Pipeline_Width * CORE_CLKS(self, EV, level)
# Instructions Per Cycle (per physical core)
def CoreIPC(self, EV, level):
return EV("INST_RETIRED.ANY", level) / CORE_CLKS(self, EV, level)
# Floating Point Operations Per Cycle
def FLOPc(self, EV, level):
return FLOP_Count(self, EV, level) / CORE_CLKS(self, EV, level)
# Instruction-Level-Parallelism (average number of uops executed when there is at least 1 uop executed)
def ILP(self, EV, level):
return EV("UOPS_EXECUTED.THREAD", level) / Execute_Cycles(self, EV, level)
# Memory-Level-Parallelism (average number of L1 miss demand load when there is at least 1 such miss)
def MLP(self, EV, level):
return EV("L1D_PEND_MISS.PENDING", level) / L1D_Miss_Cycles(self, EV, level)
# Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses
def Page_Walks_Utilization(self, EV, level):
return (EV("ITLB_MISSES.WALK_DURATION", level) + EV("DTLB_LOAD_MISSES.WALK_DURATION", level) + EV("DTLB_STORE_MISSES.WALK_DURATION", level) + 7 *(EV("DTLB_STORE_MISSES.WALK_COMPLETED", level) + EV("DTLB_LOAD_MISSES.WALK_COMPLETED", level) + EV("ITLB_MISSES.WALK_COMPLETED", level))) /(2 * CORE_CLKS(self, EV, level))
# Core actual clocks when any thread is active on the physical core
def CORE_CLKS(self, EV, level):
return (EV("CPU_CLK_UNHALTED.THREAD_ANY", level) / 2) if smt_enabled else CLKS(self, EV, level)
# Actual Average Latency for L1 data-cache miss demand loads
def Load_Miss_Real_Latency(self, EV, level):
return EV("L1D_PEND_MISS.PENDING", level) /(EV("MEM_LOAD_UOPS_RETIRED.L1_MISS", level) + EV("MEM_LOAD_UOPS_RETIRED.HIT_LFB", level))
# Fraction of cycles where the CPU is running in Transactional Memory mode (HLE or RTM)
def TSX_Transactional_Cycles(self, EV, level):
return EV("CPU_CLK_UNHALTED.THREAD_P:tx", level) / EV("CPU_CLK_UNHALTED.THREAD", level)
# Fraction of cycles where the CPU is running in Transactional Memory mode (HLE or RTM)
def TSX_Aborted_Cycles(self, EV, level):
return (EV("CPU_CLK_UNHALTED.THREAD_P:tx", level) - EV("CPU_CLK_UNHALTED.THREAD_P:cp", level)) / EV("CPU_CLK_UNHALTED.THREAD", level)
# Average CPU Utilization
def CPU_Utilization(self, EV, level):
return EV("CPU_CLK_UNHALTED.REF_TSC", level) / EV("msr/tsc/", 0)
# Giga Floating Point Operations Per Second
def GFLOPs(self, EV, level):
return FLOP_Count(self, EV, level) / OneBillion / DurationTimeInSeconds(self, EV, level)
# Average Frequency Utilization relative nominal frequency
def Turbo_Utilization(self, EV, level):
return CLKS(self, EV, level) / EV("CPU_CLK_UNHALTED.REF_TSC", level)
# Fraction of cycles where both hardware threads were active
def SMT_2T_Utilization(self, EV, level):
return 1 - EV("CPU_CLK_THREAD_UNHALTED.ONE_THREAD_ACTIVE", level) /(EV("CPU_CLK_THREAD_UNHALTED.REF_XCLK_ANY", level) / 2) if smt_enabled else 0
# Fraction of cycles spent in Kernel mode
def Kernel_Utilization(self, EV, level):
return EV("CPU_CLK_UNHALTED.REF_TSC:sup", level) / EV("CPU_CLK_UNHALTED.REF_TSC", level)
# Average external Memory Bandwidth Use for reads and writes [GB / sec]
def MEM_BW_GBs(self, EV, level):
return 64 *(EV("UNC_M_CAS_COUNT.RD", level) + EV("UNC_M_CAS_COUNT.WR", level)) / OneMillion / DurationTimeInSeconds(self, EV, level) / 1000
# Average latency of data read request to external memory (in Uncore cycles). Accounts for demand loads and L1/L2 prefetches
def MEM_Read_Latency(self, EV, level):
return EV("UNC_C_TOR_OCCUPANCY.MISS_OPCODE:opc=0x182", level) / EV("UNC_C_TOR_INSERTS.MISS_OPCODE:opc=0x182", level)
# Average number of parallel data read requests to external memory (in Uncore cycles). Accounts for demand loads and L1/L2 prefetches
def MEM_Parallel_Reads(self, EV, level):
return EV("UNC_C_TOR_OCCUPANCY.MISS_OPCODE:opc=0x182", level) / EV("UNC_C_TOR_OCCUPANCY.MISS_OPCODE:opc=0x182:c1", level)
# Run duration time in seconds
def Time(self, EV, level):
return DurationTimeInSeconds(self, EV, level)
# Event groups
class Frontend_Bound:
name = "Frontend_Bound"
domain = "Slots"
area = "FE"
desc = """
This category represents slots fraction where the
processor's Frontend undersupplies its Backend. Frontend
denotes the first part of the processor core responsible to
fetch operations that are executed later on by the Backend
part. Within the Frontend, a branch predictor predicts the
next address to fetch, cache-lines are fetched from the
memory subsystem, parsed into instructions, and lastly
decoded into micro-ops (uops). Ideally the Frontend can
issue 4 uops every cycle to the Backend. Frontend Bound
denotes unutilized issue-slots when there is no Backend
stall; i.e. bubbles where Frontend delivered no uops while
Backend could have accepted them. For example, stalls due to
instruction-cache misses would be categorized under Frontend
Bound."""
level = 1
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = EV("IDQ_UOPS_NOT_DELIVERED.CORE", 1) / SLOTS(self, EV, 1 )
self.thresh = (self.val > 0.2)
except ZeroDivisionError:
print_error("Frontend_Bound zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Frontend_Latency:
name = "Frontend_Latency"
domain = "Slots"
area = "FE"
desc = """
This metric represents slots fraction the CPU was stalled
due to Frontend latency issues. For example, instruction-
cache misses, iTLB misses or fetch stalls after a branch
misprediction are categorized under Frontend Latency. In
such cases, the Frontend eventually delivers no uops for
some period."""
level = 2
htoff = False
sample = ['RS_EVENTS.EMPTY_END']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = Pipeline_Width * EV("IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE", 2) / SLOTS(self, EV, 2 )
self.thresh = (self.val > 0.15) and self.parent.thresh
except ZeroDivisionError:
print_error("Frontend_Latency zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class ICache_Misses:
name = "ICache_Misses"
domain = "Clocks"
area = "FE"
desc = """
This metric represents cycles fraction the CPU was stalled
due to instruction cache misses.. Using compiler's Profile-
Guided Optimization (PGO) can reduce i-cache misses through
improved hot code layout."""
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = EV("ICACHE.IFDATA_STALL", 3) / CLKS(self, EV, 3 )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("ICache_Misses zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class ITLB_Misses:
name = "ITLB_Misses"
domain = "Clocks"
area = "FE"
desc = """
This metric represents cycles fraction the CPU was stalled
due to instruction TLB misses.. Using large code pages may
be considered here."""
level = 3
htoff = False
sample = ['ITLB_MISSES.WALK_COMPLETED']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = ITLB_Miss_Cycles(self, EV, 3) / CLKS(self, EV, 3 )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("ITLB_Misses zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Branch_Resteers:
name = "Branch_Resteers"
domain = "Clocks"
area = "FE"
desc = """
This metric represents cycles fraction the CPU was stalled
due to Branch Resteers. Branch Resteers estimates the
Frontend delay in fetching operations from corrected path,
following all sorts of miss-predicted branches. For example,
branchy code with lots of miss-predictions might get
categorized under Branch Resteers. Note the value of this
node may overlap with its siblings."""
level = 3
htoff = False
sample = ['BR_MISP_RETIRED.ALL_BRANCHES:pp']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = Avg_RS_Empty_Period_Clears(self, EV, 3)*(EV("BR_MISP_RETIRED.ALL_BRANCHES", 3) + EV("MACHINE_CLEARS.COUNT", 3) + EV("BACLEARS.ANY", 3)) / CLKS(self, EV, 3 )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("Branch_Resteers zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class DSB_Switches:
name = "DSB_Switches"
domain = "Clocks"
area = "FE"
desc = """
This metric represents cycles fraction the CPU was stalled
due to switches from DSB to MITE pipelines. The DSB (decoded
i-cache, introduced with the Sandy Bridge microarchitecture)
pipeline has shorter latency and delivered higher bandwidth
than the MITE (legacy instruction decode pipeline).
Switching between the two pipelines can cause penalties.
This metric estimates when such penalty can be exposed.
Optimizing for better DSB hit rate may be considered.. See
section \"Optimization for Decoded ICache\" in Optimization
Guide:. http://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-optimization-
manual.html"""
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = EV("DSB2MITE_SWITCHES.PENALTY_CYCLES", 3) / CLKS(self, EV, 3 )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("DSB_Switches zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class LCP:
name = "LCP"
domain = "Clocks"
area = "FE"
desc = """
This metric represents cycles fraction CPU was stalled due
to Length Changing Prefixes (LCPs). Using proper compiler
flags or Intel Compiler by default will certainly avoid
this."""
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
def compute(self, EV):
try:
self.val = EV("ILD_STALL.LCP", 3) / CLKS(self, EV, 3 )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("LCP zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class MS_Switches:
name = "MS_Switches"
domain = "Clocks"
area = "FE"
desc = """
This metric estimates the fraction of cycles when the CPU
was stalled due to switches of uop delivery to the Microcode
Sequencer (MS). Commonly used instructions are optimized for
delivery by the DSB or MITE pipelines. Certain operations
cannot be handled natively by the execution pipeline, and
must be performed by microcode (small programs injected into
the execution stream). Switching to the MS too often can
negatively impact performance. The MS is designated to
deliver long uop flows required by CISC instructions like
CPUID, or uncommon conditions like Floating Point Assists
when dealing with Denormals."""
level = 3
htoff = False
sample = ['IDQ.MS_SWITCHES']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = MS_Switches_Cost * EV("IDQ.MS_SWITCHES", 3) / CLKS(self, EV, 3 )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("MS_Switches zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Frontend_Bandwidth:
name = "Frontend_Bandwidth"
domain = "Slots"
area = "BAD"
desc = """
This metric represents slots fraction the CPU was stalled
due to Frontend bandwidth issues. For example,
inefficiencies at the instruction decoders, or code
restrictions for caching in the DSB (decoded uops cache) are
categorized under Frontend Bandwidth. In such cases, the
Frontend typically delivers non-optimal amount of uops to
the Backend (less than four)."""
level = 2
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = self.Frontend_Bound.compute(EV) - self.Frontend_Latency.compute(EV )
self.thresh = (self.val > 0.1) & (IPC(self, EV, 2) > 2.0) and self.parent.thresh
except ZeroDivisionError:
print_error("Frontend_Bandwidth zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class MITE:
name = "MITE"
domain = "CoreClocks"
area = "FE"
desc = """
This metric represents Core cycles fraction in which CPU was
likely limited due to the MITE fetch pipeline (legacy non
cached decoding). This pipeline is used for code that was
not pre-cached in the DSB or LSD. For example,
inefficiencies in the instruction decoders are categorized
here."""
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
def compute(self, EV):
try:
self.val = (EV("IDQ.ALL_MITE_CYCLES_ANY_UOPS", 3) - EV("IDQ.ALL_MITE_CYCLES_4_UOPS", 3)) / CORE_CLKS(self, EV, 3 )
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
print_error("MITE zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class DSB:
name = "DSB"
domain = "CoreClocks"
area = "FE"
desc = """
This metric represents Core cycles fraction in which CPU was
likely limited due to DSB (decoded uop cache) fetch
pipeline. For example, inefficient utilization of the DSB
cache structure or bank conflict when reading from it, are
categorized here."""
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
def compute(self, EV):
try:
self.val = (EV("IDQ.ALL_DSB_CYCLES_ANY_UOPS", 3) - EV("IDQ.ALL_DSB_CYCLES_4_UOPS", 3)) / CORE_CLKS(self, EV, 3 )
self.thresh = (self.val > 0.3) and self.parent.thresh
except ZeroDivisionError:
print_error("DSB zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class LSD:
name = "LSD"
domain = "CoreClocks"
area = "FE"
desc = """
This metric represents Core cycles fraction in which CPU was
likely limited due to LSD (Loop Stream Detector) unit. LSD
typically does well sustaining Uop supply. However, in some
rare cases, optimal uop-delivery could not be reached for
small loops whose size (in terms of number of uops) does not
suit well the LSD structure."""
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
def compute(self, EV):
try:
self.val = (EV("LSD.CYCLES_ACTIVE", 3) - EV("LSD.CYCLES_4_UOPS", 3)) / CORE_CLKS(self, EV, 3 )
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
print_error("LSD zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Bad_Speculation:
name = "Bad_Speculation"
domain = "Slots"
area = "BAD"
desc = """
This category represents slots fraction wasted due to
incorrect speculations. This include slots used to issue
uops that do not eventually get retired and slots for which
the issue-pipeline was blocked due to recovery from earlier
incorrect speculation. For example, wasted work due to miss-
predicted branches are categorized under Bad Speculation
category. Incorrect data speculation followed by Memory
Ordering Nukes is another example."""
level = 1
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = (EV("UOPS_ISSUED.ANY", 1) - EV("UOPS_RETIRED.RETIRE_SLOTS", 1) + Pipeline_Width * Recovery_Cycles(self, EV, 1)) / SLOTS(self, EV, 1 )
self.thresh = (self.val > 0.1)
except ZeroDivisionError:
print_error("Bad_Speculation zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Branch_Mispredicts:
name = "Branch_Mispredicts"
domain = "Slots"
area = "BAD"
desc = """
This metric represents slots fraction the CPU has wasted due
to Branch Misprediction. These slots are either wasted by
uops fetched from an incorrectly speculated program path, or
stalls when the out-of-order part of the machine needs to
recover its state from a speculative path.. Using profile
feedback in the compiler may help. Please see the
optimization manual for general strategies for addressing
branch misprediction issues..
http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-manual.html"""
level = 2
htoff = False
sample = ['BR_MISP_RETIRED.ALL_BRANCHES:pp']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = Mispred_Clears_Fraction(self, EV, 2)* self.Bad_Speculation.compute(EV )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("Branch_Mispredicts zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Machine_Clears:
name = "Machine_Clears"
domain = "Slots"
area = "BAD"
desc = """
This metric represents slots fraction the CPU has wasted due
to Machine Clears. These slots are either wasted by uops
fetched prior to the clear, or stalls the out-of-order
portion of the machine needs to recover its state after the
clear. For example, this can happen due to memory ordering
Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code
(SMC) nukes.. See \"Memory Disambiguation\" in Optimization
Guide and:. https://software.intel.com/sites/default/files/m
/d/4/1/d/8/sma.pdf"""
level = 2
htoff = False
sample = ['MACHINE_CLEARS.COUNT']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = self.Bad_Speculation.compute(EV) - self.Branch_Mispredicts.compute(EV )
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
print_error("Machine_Clears zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Backend_Bound:
name = "Backend_Bound"
domain = "Slots"
area = "BE"
desc = """
This category represents slots fraction where no uops are
being delivered due to a lack of required resources for
accepting new uops in the Backend. Backend is the portion of
the processor core where the out-of-order scheduler
dispatches ready uops into their respective execution units,
and once completed these uops get retired according to
program order. For example, stalls due to data-cache misses
or stalls due to the divider unit being overloaded are both
categorized under Backend Bound. Backend Bound is further
divided into two main categories: Memory Bound and Core
Bound."""
level = 1
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = 1 -(self.Frontend_Bound.compute(EV) + self.Bad_Speculation.compute(EV) + self.Retiring.compute(EV))
self.thresh = (self.val > 0.2)
except ZeroDivisionError:
print_error("Backend_Bound zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Memory_Bound:
name = "Memory_Bound"
domain = "Slots"
area = "BE/Mem"
desc = """
This metric represents slots fraction the Memory subsystem
within the Backend was a bottleneck. Memory Bound estimates
slots fraction where pipeline is likely stalled due to
demand load or store instructions. This accounts mainly for
(1) non-completed in-flight memory demand loads which
coincides with execution units starvation, in addition to
(2) cases where stores could impose backpressure on the
pipeline when many of them get buffered at the same time
(less common out of the two)."""
level = 2
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = Memory_Bound_Fraction(self, EV, 2)* self.Backend_Bound.compute(EV )
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
print_error("Memory_Bound zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class L1_Bound:
name = "L1_Bound"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric estimates how often the CPU was stalled without
loads missing the L1 data cache. The L1 data cache
typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might
suffer due to high latency even though it is being satisfied
by the L1. Another example is loads who miss in the TLB.
These cases are characterized by execution unit stalls,
while some non-completed demand load lives in the machine
without having that demand load missing the L1 cache."""
level = 3
htoff = False
sample = ['MEM_LOAD_UOPS_RETIRED.L1_HIT:pp', 'MEM_LOAD_UOPS_RETIRED.HIT_LFB:pp']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = (EV("CYCLE_ACTIVITY.STALLS_MEM_ANY", 3) - EV("CYCLE_ACTIVITY.STALLS_L1D_MISS", 3)) / CLKS(self, EV, 3 )
self.thresh = ((self.val > 0.1) and self.parent.thresh) | self.DTLB_Load.thresh
except ZeroDivisionError:
print_error("L1_Bound zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class DTLB_Load:
name = "DTLB_Load"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric represents cycles fraction where the TLB was
missed by load instructions. TLBs (Translation Look-aside
Buffers) are processor caches for recently used entries out
of the Page Tables that are used to map virtual- to
physical-addresses by the operating system. This metric
estimates the performance penalty paid by demand loads when
missing the first-level data TLB (DTLB). This includes
hitting in the second-level TLB (STLB) as well as performing
a hardware page walk on an STLB miss.."""
level = 4
htoff = False
sample = ['MEM_UOPS_RETIRED.STLB_MISS_LOADS:pp']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = (Mem_STLB_Hit_Cost * EV("DTLB_LOAD_MISSES.STLB_HIT", 4) + EV("DTLB_LOAD_MISSES.WALK_DURATION:c1", 4) + 7 * EV("DTLB_LOAD_MISSES.WALK_COMPLETED", 4)) / CLKS(self, EV, 4 )
self.thresh = (self.val > 0.1)
except ZeroDivisionError:
print_error("DTLB_Load zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Store_Fwd_Blk:
name = "Store_Fwd_Blk"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric roughly estimates cycles fraction when the
memory subsystem had loads blocked since they could not
forward data from earlier (in program order) overlapping
stores. To streamline memory operations in the pipeline, a
load can avoid waiting for memory if a prior in-flight store
is writing the data that the load wants to read (store
forwarding process). However, in some cases the load may be
blocked for a significant time pending the store forward.
For example, when the prior store is writing a smaller
region than the load is reading."""
level = 4
htoff = False
sample = []
errcount = 0
sibling = None
server = False
def compute(self, EV):
try:
self.val = 13 * EV("LD_BLOCKS.STORE_FORWARD", 4) / CLKS(self, EV, 4 )
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
print_error("Store_Fwd_Blk zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Lock_Latency:
name = "Lock_Latency"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric represents cycles fraction the CPU spent
handling cache misses due to lock operations. Due to the
microarchitecture handling of locks, they are classified as
L1_Bound regardless of what memory source satisfied them."""
level = 4
htoff = False
sample = ['MEM_UOPS_RETIRED.LOCK_LOADS:pp']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = Mem_Lock_St_Fraction(self, EV, 4)* ORO_Demand_RFO_C1(self, EV, 4) / CLKS(self, EV, 4 )
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
print_error("Lock_Latency zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class Split_Loads:
name = "Split_Loads"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric estimates cycles fraction handling memory load
split accesses - load that cross 64-byte cacheline boundary.
. Consider aligning data or hot structure fields. See the
Optimization Guide for more details"""
level = 4
htoff = False
sample = ['MEM_UOPS_RETIRED.SPLIT_LOADS:pp']
errcount = 0
sibling = None
server = False
def compute(self, EV):
try:
self.val = Load_Miss_Real_Latency(self, EV, 4)* EV("LD_BLOCKS.NO_SR", 4) / CLKS(self, EV, 4 )
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
print_error("Split_Loads zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class G4K_Aliasing:
name = "4K_Aliasing"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric estimates how often memory load accesses were
aliased by preceding stores (in program order) with a 4K
address offset. False match is possible, which incur a few
cycles load re-issue. However, the short re-issue duration
is often hidden by the out-of-order core and HW
optimizations; hence a user may safely ignore a high value
of this metric unless it manages to propagate up into parent
nodes of the hierarchy (e.g. to L1_Bound).. Consider
reducing independent loads/stores accesses with 4K offsets.
See the Optimization Guide for more details"""
level = 4
htoff = False
sample = []
errcount = 0
sibling = None
server = False
def compute(self, EV):
try:
self.val = Mem_4K_Alias_Cost * EV("LD_BLOCKS_PARTIAL.ADDRESS_ALIAS", 4) / CLKS(self, EV, 4 )
self.thresh = (self.val > 0.7) and self.parent.thresh
except ZeroDivisionError:
print_error("G4K_Aliasing zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class FB_Full:
name = "FB_Full"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric does a *rough estimation* of how often L1D Fill
Buffer unavailability limited additional L1D miss memory
access requests to proceed. The higher the metric value, the
deeper the memory hierarchy level the misses are satisfied
from (metric values >1 are valid). Often it hints on
approaching bandwidth limits (to L2 cache, L3 cache or
external memory).. See $issueBW and $issueSL hints. Avoid
adding software prefetches if indeed memory BW limited."""
level = 4
htoff = False
sample = []
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = Load_Miss_Real_Latency(self, EV, 4)* EV("L1D_PEND_MISS.FB_FULL:c1", 4) / CLKS(self, EV, 4 )
self.thresh = (self.val > 0.3)
except ZeroDivisionError:
print_error("FB_Full zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val
class L2_Bound:
name = "L2_Bound"
domain = "Clocks"
area = "BE/Mem"
desc = """
This metric estimates how often the CPU was stalled due to
L2 cache accesses by loads. Avoiding cache misses (i.e. L1
misses/L2 hits) can improve the latency and increase
performance."""
level = 3
htoff = False
sample = ['MEM_LOAD_UOPS_RETIRED.L2_HIT:pp']
errcount = 0
sibling = None
server = True
def compute(self, EV):
try:
self.val = (EV("CYCLE_ACTIVITY.STALLS_L1D_MISS", 3) - EV("CYCLE_ACTIVITY.STALLS_L2_MISS", 3)) / CLKS(self, EV, 3 )
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
print_error("L2_Bound zero division")
self.errcount += 1
self.val = 0
self.thresh = False
return self.val