diff --git a/AI-and-Analytics/Getting-Started-Samples/README.md b/AI-and-Analytics/Getting-Started-Samples/README.md
index 643d4db0ca..238d8e36a2 100644
--- a/AI-and-Analytics/Getting-Started-Samples/README.md
+++ b/AI-and-Analytics/Getting-Started-Samples/README.md
@@ -23,7 +23,7 @@ Third party program Licenses can be found here: [third-party-programs.txt](https
|Classical Machine Learning| Intel® Optimization for XGBoost* | [IntelPython_XGBoost_GettingStarted](IntelPython_XGBoost_GettingStarted) | Set up and trains an XGBoost* model on datasets for prediction.
|Classical Machine Learning| daal4py | [IntelPython_daal4py_GettingStarted](IntelPython_daal4py_GettingStarted) | Batch linear regression using the Python API package daal4py from oneAPI Data Analytics Library (oneDAL).
|Deep Learning
Inference Optimization| Intel® Optimization for TensorFlow* | [IntelTensorFlow_GettingStarted](IntelTensorFlow_GettingStarted) | A simple training example for TensorFlow.
-|Deep Learning
Inference Optimization|Intel® Extension of PyTorch | [IntelPyTorch_GettingStarted]([https://github.com/intel/intel-extension-for-pytorch/tree/main/examples/cpu/inference/python/jupyter-notebooks](https://github.com/intel/intel-extension-for-pytorch/blob/main/examples/cpu/inference/python/jupyter-notebooks/IPEX_Getting_Started.ipynb)| A simple training example for Intel® Extension of PyTorch.
+|Deep Learning
Inference Optimization|Intel® Extension of PyTorch | [IntelPyTorch_GettingStarted](https://github.com/intel/intel-extension-for-pytorch/blob/main/examples/cpu/inference/python/jupyter-notebooks/IPEX_Getting_Started.ipynb) | A simple training example for Intel® Extension of PyTorch.
|Classical Machine Learning| Scikit-learn (OneDAL) | [Intel_Extension_For_SKLearn_GettingStarted](Intel_Extension_For_SKLearn_GettingStarted) | Speed up a scikit-learn application using Intel oneDAL.
|Deep Learning
Inference Optimization|Intel® Extension of TensorFlow | [Intel® Extension For TensorFlow GettingStarted](Intel_Extension_For_TensorFlow_GettingStarted) | Guides users how to run a TensorFlow inference workload on both GPU and CPU.
|Deep Learning Inference Optimization|oneCCL Bindings for PyTorch | [Intel oneCCL Bindings For PyTorch GettingStarted](Intel_oneCCL_Bindings_For_PyTorch_GettingStarted) | Guides users through the process of running a simple PyTorch* distributed workload on both GPU and CPU. |