From 860a31db3401c030beae0a357af0df8bdc33a742 Mon Sep 17 00:00:00 2001 From: Haodong Duan Date: Thu, 14 Dec 2023 11:57:46 +0800 Subject: [PATCH] [Fix] Fix README (#14) * update * update * update * update * update --- README.md | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index bfd99c303..6106bb57a 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,6 @@ ![LOGO](assets/LOGO.svg)
A Toolkit for Evaluating Large Vision-Language Models.
-
-📊Datasets, Models, Evaluation Results 🏗️ QuickStart 🛠️ Custom Benchmark & Model 🎯 Goal 🖊️ Citation +


**VLMEvalKit** (the python package name is **vlmeval**) is an **open-source evaluation toolkit** of **large vision-language models (LVLMs)**. It enables **one-command evaluation** of LVLMs on various benchmarks, without the heavy workload of data preparation under multiple repositories. In VLMEvalKit, we adopt **generation-based evaluation** for all LVLMs (obtain the answer via `generate` / `chat` interface), and provide the evaluation results obtained with both **exact matching** and **LLM(ChatGPT)-based answer extraction**. @@ -102,9 +101,9 @@ torchrun --nproc-per-node=2 run.py --data MME --model qwen_chat --verbose The evaluation results will be printed as logs, besides. **Result Files** will also be generated in the directory `$YOUR_WORKING_DIRECTORY/{model_name}`. Files ending with `.csv` contain the evaluated metrics. -## 🛠️ How to implement a new Benchmark / VLM in VLMEvalKit? +## 🛠️ Custom Benchmark or VLM -Please refer to [Custom_Benchmark_and_Model](/Custom_Benchmark_and_Model.md). +To implement a custom benchmark or VLM in VLMEvalKit, please refer to [Custom_Benchmark_and_Model](/Custom_Benchmark_and_Model.md). ## 🎯 The Goal of VLMEvalKit