diff --git a/pcdet/datasets/augmentor/augmentor_utils.py b/pcdet/datasets/augmentor/augmentor_utils.py index 3c088e33c..075b44ba4 100644 --- a/pcdet/datasets/augmentor/augmentor_utils.py +++ b/pcdet/datasets/augmentor/augmentor_utils.py @@ -5,109 +5,104 @@ from ...utils import box_utils -def random_flip_along_x(gt_boxes, points, return_flip=False, enable=None): +def random_flip_along(dim, return_flip=False, enable=None): """ Args: - gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] - points: (M, 3 + C) + gt_boxes: (*, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] + points: (*, 3 + C) Returns: """ + assert dim in [0, 1] # corresponds to x-, y-axis respectively + other_dim = 1 - dim if enable is None: enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) + if enable: - gt_boxes[:, 1] = -gt_boxes[:, 1] - gt_boxes[:, 6] = -gt_boxes[:, 6] - points[:, 1] = -points[:, 1] - - if gt_boxes.shape[1] > 7: - gt_boxes[:, 8] = -gt_boxes[:, 8] - if return_flip: - return gt_boxes, points, enable - return gt_boxes, points + def flip_pointlike(points): + points[..., other_dim] = -points[..., other_dim] + return points + def flip_boxlike(boxes): + boxes[..., other_dim] = -boxes[..., other_dim] + boxes[..., 6] = -(boxes[..., 6] + np.pi * dim) -def random_flip_along_y(gt_boxes, points, return_flip=False, enable=None): - """ - Args: - gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] - points: (M, 3 + C) - Returns: - """ - if enable is None: - enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) - if enable: - gt_boxes[:, 0] = -gt_boxes[:, 0] - gt_boxes[:, 6] = -(gt_boxes[:, 6] + np.pi) - points[:, 0] = -points[:, 0] + if boxes.shape[-1] > 7: + boxes[..., 7 + other_dim] = -boxes[..., 7 + other_dim] + + return boxes + + tfs = dict(point=flip_pointlike, box=flip_boxlike) + else: + tfs = dict() - if gt_boxes.shape[1] > 7: - gt_boxes[:, 7] = -gt_boxes[:, 7] if return_flip: - return gt_boxes, points, enable - return gt_boxes, points + return tfs, enable + return tfs -def global_rotation(gt_boxes, points, rot_range, return_rot=False, noise_rotation=None): +def global_rotation(rot_range, return_rot=False, noise_rotation=None): """ Args: - gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] + gt_boxes: (*, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C), rot_range: [min, max] Returns: """ if noise_rotation is None: noise_rotation = np.random.uniform(rot_range[0], rot_range[1]) - points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0] - gt_boxes[:, 0:3] = common_utils.rotate_points_along_z(gt_boxes[np.newaxis, :, 0:3], np.array([noise_rotation]))[0] - gt_boxes[:, 6] += noise_rotation - if gt_boxes.shape[1] > 7: - gt_boxes[:, 7:9] = common_utils.rotate_points_along_z( - np.hstack((gt_boxes[:, 7:9], np.zeros((gt_boxes.shape[0], 1))))[np.newaxis, :, :], - np.array([noise_rotation]) - )[0][:, 0:2] + + def rotate_pointlike(points): + points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0] + return points + + def rotate_boxlike(boxes): + boxes[..., 0:3] = common_utils.rotate_points_along_z(boxes[np.newaxis, ..., 0:3], np.array([noise_rotation]))[0] + boxes[..., 6] += noise_rotation + if boxes.shape[-1] > 7: + boxes[..., 7:9] = common_utils.rotate_points_along_z( + np.concatenate((boxes[..., 7:9], np.zeros((*boxes.shape[:-1], 1))), axis=-1)[np.newaxis, ...], + np.array([noise_rotation]) + )[0, ..., 0:2] + return boxes + + tfs = dict(point=rotate_pointlike, box=rotate_boxlike) if return_rot: - return gt_boxes, points, noise_rotation - return gt_boxes, points + return tfs, noise_rotation + return tfs -def global_scaling(gt_boxes, points, scale_range, return_scale=False): +def global_scaling(scale_range, return_scale=False): """ Args: - gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] + gt_boxes: (*, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]] points: (M, 3 + C), scale_range: [min, max] Returns: """ if scale_range[1] - scale_range[0] < 1e-3: - return gt_boxes, points + noise_scale = sum(scale_range) / len(scale_range) + assert noise_scale == 1.0, (noise_scale, scale_range) noise_scale = np.random.uniform(scale_range[0], scale_range[1]) - points[:, :3] *= noise_scale - gt_boxes[:, :6] *= noise_scale - if gt_boxes.shape[1] > 7: - gt_boxes[:, 7:] *= noise_scale - - if return_scale: - return gt_boxes, points, noise_scale - return gt_boxes, points -def global_scaling_with_roi_boxes(gt_boxes, roi_boxes, points, scale_range, return_scale=False): - """ - Args: - gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] - points: (M, 3 + C), - scale_range: [min, max] - Returns: - """ - if scale_range[1] - scale_range[0] < 1e-3: - return gt_boxes, points - noise_scale = np.random.uniform(scale_range[0], scale_range[1]) - points[:, :3] *= noise_scale - gt_boxes[:, :6] *= noise_scale - roi_boxes[:,:, [0,1,2,3,4,5,7,8]] *= noise_scale + def scale_pointlike(points): + points[:, :3] *= noise_scale + return points + + def scale_boxlike(boxes): + boxes[..., :6] *= noise_scale + if boxes.shape[-1] > 7: + boxes[..., 7:9] *= noise_scale + return boxes + + if noise_scale != 1.0: + tfs = dict(point=scale_pointlike, box=scale_boxlike) + else: + tfs = {} + if return_scale: - return gt_boxes,roi_boxes, points, noise_scale - return gt_boxes, roi_boxes, points + return tfs, noise_scale + return tfs def random_image_flip_horizontal(image, depth_map, gt_boxes, calib): diff --git a/pcdet/datasets/augmentor/data_augmentor.py b/pcdet/datasets/augmentor/data_augmentor.py index 56acebc81..2d5f64f18 100644 --- a/pcdet/datasets/augmentor/data_augmentor.py +++ b/pcdet/datasets/augmentor/data_augmentor.py @@ -56,22 +56,15 @@ def __setstate__(self, d): def random_world_flip(self, data_dict=None, config=None): if data_dict is None: return partial(self.random_world_flip, config=config) - gt_boxes, points = data_dict['gt_boxes'], data_dict['points'] for cur_axis in config['ALONG_AXIS_LIST']: assert cur_axis in ['x', 'y'] - gt_boxes, points, enable = getattr(augmentor_utils, 'random_flip_along_%s' % cur_axis)( - gt_boxes, points, return_flip=True + cur_dim = ['x', 'y'].index(cur_axis) + tfs, enable = augmentor_utils.random_flip_along( + cur_dim, return_flip=True ) + common_utils.apply_data_transform(data_dict, tfs) data_dict['flip_%s'%cur_axis] = enable - if 'roi_boxes' in data_dict.keys(): - num_frame, num_rois,dim = data_dict['roi_boxes'].shape - roi_boxes, _, _ = getattr(augmentor_utils, 'random_flip_along_%s' % cur_axis)( - data_dict['roi_boxes'].reshape(-1,dim), np.zeros([1,3]), return_flip=True, enable=enable - ) - data_dict['roi_boxes'] = roi_boxes.reshape(num_frame, num_rois,dim) - data_dict['gt_boxes'] = gt_boxes - data_dict['points'] = points return data_dict def random_world_rotation(self, data_dict=None, config=None): @@ -80,36 +73,18 @@ def random_world_rotation(self, data_dict=None, config=None): rot_range = config['WORLD_ROT_ANGLE'] if not isinstance(rot_range, list): rot_range = [-rot_range, rot_range] - gt_boxes, points, noise_rot = augmentor_utils.global_rotation( - data_dict['gt_boxes'], data_dict['points'], rot_range=rot_range, return_rot=True + tfs, noise_rot = augmentor_utils.global_rotation( + rot_range=rot_range, return_rot=True ) - if 'roi_boxes' in data_dict.keys(): - num_frame, num_rois,dim = data_dict['roi_boxes'].shape - roi_boxes, _, _ = augmentor_utils.global_rotation( - data_dict['roi_boxes'].reshape(-1, dim), np.zeros([1, 3]), rot_range=rot_range, return_rot=True, noise_rotation=noise_rot) - data_dict['roi_boxes'] = roi_boxes.reshape(num_frame, num_rois,dim) - - data_dict['gt_boxes'] = gt_boxes - data_dict['points'] = points + common_utils.apply_data_transform(data_dict, tfs) data_dict['noise_rot'] = noise_rot return data_dict def random_world_scaling(self, data_dict=None, config=None): if data_dict is None: return partial(self.random_world_scaling, config=config) - - if 'roi_boxes' in data_dict.keys(): - gt_boxes, roi_boxes, points, noise_scale = augmentor_utils.global_scaling_with_roi_boxes( - data_dict['gt_boxes'], data_dict['roi_boxes'], data_dict['points'], config['WORLD_SCALE_RANGE'], return_scale=True - ) - data_dict['roi_boxes'] = roi_boxes - else: - gt_boxes, points, noise_scale = augmentor_utils.global_scaling( - data_dict['gt_boxes'], data_dict['points'], config['WORLD_SCALE_RANGE'], return_scale=True - ) - - data_dict['gt_boxes'] = gt_boxes - data_dict['points'] = points + tfs, noise_scale = augmentor_utils.global_scaling(scale_range=config['WORLD_SCALE_RANGE'], return_scale=True) + common_utils.apply_data_transform(data_dict, tfs) data_dict['noise_scale'] = noise_scale return data_dict @@ -143,15 +118,12 @@ def random_world_translation(self, data_dict=None, config=None): np.random.normal(0, noise_translate_std[2], 1), ], dtype=np.float32).T - gt_boxes, points = data_dict['gt_boxes'], data_dict['points'] - points[:, :3] += noise_translate - gt_boxes[:, :3] += noise_translate - - if 'roi_boxes' in data_dict.keys(): - data_dict['roi_boxes'][:, :3] += noise_translate + def translate_locationlike(locations): + locations[..., :3] += noise_translate + return locations - data_dict['gt_boxes'] = gt_boxes - data_dict['points'] = points + tfs = dict(point=translate_locationlike, box=translate_locationlike) + common_utils.apply_data_transform(data_dict, tfs) data_dict['noise_translate'] = noise_translate return data_dict diff --git a/pcdet/datasets/dataset.py b/pcdet/datasets/dataset.py index c1a7f6b03..0becd65f2 100644 --- a/pcdet/datasets/dataset.py +++ b/pcdet/datasets/dataset.py @@ -234,7 +234,7 @@ def collate_batch(batch_list, _unused=False): batch_size_ratio = len(val[0]) val = [i for item in val for i in item] ret[key] = np.concatenate(val, axis=0) - elif key in ['points', 'voxel_coords']: + elif key in ['points', 'origins', 'voxel_coords']: coors = [] if isinstance(val[0], list): val = [i for item in val for i in item] diff --git a/pcdet/datasets/processor/data_processor.py b/pcdet/datasets/processor/data_processor.py index 4f72ab532..0e5660048 100644 --- a/pcdet/datasets/processor/data_processor.py +++ b/pcdet/datasets/processor/data_processor.py @@ -82,7 +82,8 @@ def mask_points_and_boxes_outside_range(self, data_dict=None, config=None): if data_dict.get('points', None) is not None: mask = common_utils.mask_points_by_range(data_dict['points'], self.point_cloud_range) - data_dict['points'] = data_dict['points'][mask] + tfs = dict(point=lambda x: x[mask]) + common_utils.apply_data_transform(data_dict, tfs) if data_dict.get('gt_boxes', None) is not None and config.REMOVE_OUTSIDE_BOXES and self.training: mask = box_utils.mask_boxes_outside_range_numpy( @@ -97,10 +98,9 @@ def shuffle_points(self, data_dict=None, config=None): return partial(self.shuffle_points, config=config) if config.SHUFFLE_ENABLED[self.mode]: - points = data_dict['points'] - shuffle_idx = np.random.permutation(points.shape[0]) - points = points[shuffle_idx] - data_dict['points'] = points + shuffle_idx = np.random.permutation(data_dict['points'].shape[0]) + tfs = dict(point=lambda x: x[shuffle_idx]) + common_utils.apply_data_transform(data_dict, tfs) return data_dict @@ -208,7 +208,8 @@ def sample_points(self, data_dict=None, config=None): extra_choice = np.random.choice(choice, num_points - len(points), replace=False) choice = np.concatenate((choice, extra_choice), axis=0) np.random.shuffle(choice) - data_dict['points'] = points[choice] + tfs = dict(point=lambda x: x[choice]) + common_utils.apply_data_transform(data_dict, tfs) return data_dict def calculate_grid_size(self, data_dict=None, config=None): diff --git a/pcdet/datasets/waymo/waymo_dataset.py b/pcdet/datasets/waymo/waymo_dataset.py index 44632d53f..1554edcb8 100644 --- a/pcdet/datasets/waymo/waymo_dataset.py +++ b/pcdet/datasets/waymo/waymo_dataset.py @@ -127,7 +127,7 @@ def load_data_to_shared_memory(self): if os.path.exists(f"/dev/shm/{sa_key}"): continue - points = self.get_lidar(sequence_name, sample_idx) + points, _origins = self.get_lidar(sequence_name, sample_idx) common_utils.sa_create(f"shm://{sa_key}", points) dist.barrier() @@ -193,19 +193,34 @@ def get_infos(self, raw_data_path, save_path, num_workers=multiprocessing.cpu_co all_sequences_infos = [item for infos in sequence_infos for item in infos] return all_sequences_infos - def get_lidar(self, sequence_name, sample_idx): + def get_lidar(self, sequence_name, sample_idx, load_origins=False): lidar_file = self.data_path / sequence_name / ('%04d.npy' % sample_idx) point_features = np.load(lidar_file) # (N, 7): [x, y, z, intensity, elongation, NLZ_flag] points_all, NLZ_flag = point_features[:, 0:5], point_features[:, 5] if not self.dataset_cfg.get('DISABLE_NLZ_FLAG_ON_POINTS', False): points_all = points_all[NLZ_flag == -1] + if self.dataset_cfg.get('POINTS_TANH_DIM', None) is None: points_all[:, 3] = np.tanh(points_all[:, 3]) else: for dim_idx in self.dataset_cfg.POINTS_TANH_DIM: points_all[:, dim_idx] = np.tanh(points_all[:, dim_idx]) - return points_all + + if load_origins: + sample_info = self.seq_name_to_infos[sequence_name][sample_idx] + if 'extrinsics' not in sample_info: + raise ValueError('extrinsics not saved to database, use db version >= v0_6_0') + origins = [extr[:3, 3] for extr in sample_info['extrinsics']] + laser_counts = sample_info['num_points_of_each_lidar'] + assert sum(laser_counts) == points_all.shape[0], (laser_counts, points_all.shape) + assert len(origins) == len(laser_counts), (origins, laser_counts) + origins = np.concatenate([np.tile(extr[None, :], (c, 1)) for c, extr in zip(laser_counts, origins)], axis=0) + assert origins.shape == points_all[:, :3].shape, (origins.shape, points_all.shape) + else: + origins = None + + return points_all, origins @staticmethod def transform_prebox_to_current(pred_boxes3d, pose_pre, pose_cur): @@ -247,7 +262,7 @@ def reorder_rois_for_refining(pred_bboxes): ordered_bboxes[bs_idx, :len(pred_bboxes[bs_idx])] = pred_bboxes[bs_idx] return ordered_bboxes - def get_sequence_data(self, info, points, sequence_name, sample_idx, sequence_cfg, load_pred_boxes=False): + def get_sequence_data(self, info, points, origins, sequence_name, sample_idx, sequence_cfg, load_pred_boxes=False): """ Args: info: @@ -260,7 +275,7 @@ def get_sequence_data(self, info, points, sequence_name, sample_idx, sequence_cf def remove_ego_points(points, center_radius=1.0): mask = ~((np.abs(points[:, 0]) < center_radius) & (np.abs(points[:, 1]) < center_radius)) - return points[mask] + return points[mask], mask def load_pred_boxes_from_dict(sequence_name, sample_idx): """ @@ -272,6 +287,7 @@ def load_pred_boxes_from_dict(sequence_name, sample_idx): load_boxes[:, 7:9] = -0.1 * load_boxes[:, 7:9] # transfer speed to negtive motion from t to t-1 return load_boxes + load_origins = origins is not None pose_cur = info['pose'].reshape((4, 4)) num_pts_cur = points.shape[0] sample_idx_pre_list = np.clip(sample_idx + np.arange(sequence_cfg.SAMPLE_OFFSET[0], sequence_cfg.SAMPLE_OFFSET[1]), 0, 0x7FFFFFFF) @@ -285,6 +301,7 @@ def load_pred_boxes_from_dict(sequence_name, sample_idx): points = np.hstack([points, np.zeros((points.shape[0], 1)).astype(points.dtype)]) points_pre_all = [] num_points_pre = [] + origins_pre_all = [] pose_all = [pose_cur] pred_boxes_all = [] @@ -296,7 +313,7 @@ def load_pred_boxes_from_dict(sequence_name, sample_idx): for idx, sample_idx_pre in enumerate(sample_idx_pre_list): - points_pre = self.get_lidar(sequence_name, sample_idx_pre) + points_pre, origins_pre = self.get_lidar(sequence_name, sample_idx_pre, load_origins=load_origins) pose_pre = sequence_info[sample_idx_pre]['pose'].reshape((4, 4)) expand_points_pre = np.concatenate([points_pre[:, :3], np.ones((points_pre.shape[0], 1))], axis=-1) points_pre_global = np.dot(expand_points_pre, pose_pre.T)[:, :3] @@ -310,11 +327,19 @@ def load_pred_boxes_from_dict(sequence_name, sample_idx): else: # add timestamp points_pre = np.hstack([points_pre, 0.1 * (sample_idx - sample_idx_pre) * np.ones((points_pre.shape[0], 1)).astype(points_pre.dtype)]) # one frame 0.1s - points_pre = remove_ego_points(points_pre, 1.0) + points_pre, ego_mask = remove_ego_points(points_pre, 1.0) points_pre_all.append(points_pre) num_points_pre.append(points_pre.shape[0]) pose_all.append(pose_pre) + if load_origins: + expand_origins_pre = np.concatenate([origins_pre[:, :3], np.ones((origins_pre.shape[0], 1))], axis=-1) + origins_pre_global = np.dot(expand_origins_pre, pose_pre.T)[:, :3] + expand_origins_pre_global = np.concatenate([origins_pre_global, np.ones((origins_pre_global.shape[0], 1))], axis=-1) + origins_pre = np.dot(expand_origins_pre_global, np.linalg.inv(pose_cur.T))[:, :3] + origins_pre = origins_pre[ego_mask] + origins_pre_all.append(origins_pre) + if load_pred_boxes: pose_pre = sequence_info[sample_idx_pre]['pose'].reshape((4, 4)) pred_boxes = load_pred_boxes_from_dict(sequence_name, sample_idx_pre) @@ -325,6 +350,11 @@ def load_pred_boxes_from_dict(sequence_name, sample_idx): num_points_all = np.array([num_pts_cur] + num_points_pre).astype(np.int32) poses = np.concatenate(pose_all, axis=0).astype(np.float32) + if load_origins: + origins = np.concatenate([origins] + origins_pre_all, axis=0).astype(np.float32) + else: + origins = None + if load_pred_boxes: temp_pred_boxes = self.reorder_rois_for_refining(pred_boxes_all) pred_boxes = temp_pred_boxes[:, :, 0:9] @@ -333,7 +363,7 @@ def load_pred_boxes_from_dict(sequence_name, sample_idx): else: pred_boxes = pred_scores = pred_labels = None - return points, num_points_all, sample_idx_pre_list, poses, pred_boxes, pred_scores, pred_labels + return points, origins, num_points_all, sample_idx_pre_list, poses, pred_boxes, pred_scores, pred_labels def __len__(self): if self._merge_all_iters_to_one_epoch: @@ -352,15 +382,15 @@ def __getitem__(self, index): input_dict = { 'sample_idx': sample_idx } - if self.use_shared_memory and index < self.shared_memory_file_limit: + if self.use_shared_memory and index < self.shared_memory_file_limit and not self.dataset_cfg.get('USE_ORIGINS', False): sa_key = f'{sequence_name}___{sample_idx}' points = SharedArray.attach(f"shm://{sa_key}").copy() else: - points = self.get_lidar(sequence_name, sample_idx) + points, origins = self.get_lidar(sequence_name, sample_idx, load_origins=self.dataset_cfg.get('USE_ORIGINS', False)) if self.dataset_cfg.get('SEQUENCE_CONFIG', None) is not None and self.dataset_cfg.SEQUENCE_CONFIG.ENABLED: - points, num_points_all, sample_idx_pre_list, poses, pred_boxes, pred_scores, pred_labels = self.get_sequence_data( - info, points, sequence_name, sample_idx, self.dataset_cfg.SEQUENCE_CONFIG, + points, origins, num_points_all, sample_idx_pre_list, poses, pred_boxes, pred_scores, pred_labels = self.get_sequence_data( + info, points, origins, sequence_name, sample_idx, self.dataset_cfg.SEQUENCE_CONFIG, load_pred_boxes=self.dataset_cfg.get('USE_PREDBOX', False) ) input_dict['poses'] = poses @@ -373,6 +403,7 @@ def __getitem__(self, index): input_dict.update({ 'points': points, + 'origins': origins, 'frame_id': info['frame_id'], }) @@ -491,11 +522,11 @@ def create_groundtruth_database(self, info_path, save_path, used_classes=None, s pc_info = info['point_cloud'] sequence_name = pc_info['lidar_sequence'] sample_idx = pc_info['sample_idx'] - points = self.get_lidar(sequence_name, sample_idx) + points, _origins = self.get_lidar(sequence_name, sample_idx) if use_sequence_data: - points, num_points_all, sample_idx_pre_list, _, _, _, _ = self.get_sequence_data( - info, points, sequence_name, sample_idx, self.dataset_cfg.SEQUENCE_CONFIG + points, _origins, num_points_all, sample_idx_pre_list, _, _, _, _ = self.get_sequence_data( + info, points, _origins, sequence_name, sample_idx, self.dataset_cfg.SEQUENCE_CONFIG ) annos = info['annos'] @@ -569,11 +600,11 @@ def create_gt_database_of_single_scene(self, info_with_idx, database_save_path=N pc_info = info['point_cloud'] sequence_name = pc_info['lidar_sequence'] sample_idx = pc_info['sample_idx'] - points = self.get_lidar(sequence_name, sample_idx) + points, _origins = self.get_lidar(sequence_name, sample_idx) if use_sequence_data: - points, num_points_all, sample_idx_pre_list, _, _, _, _ = self.get_sequence_data( - info, points, sequence_name, sample_idx, self.dataset_cfg.SEQUENCE_CONFIG + points, _origins, num_points_all, sample_idx_pre_list, _, _, _, _ = self.get_sequence_data( + info, points, _origins, sequence_name, sample_idx, self.dataset_cfg.SEQUENCE_CONFIG ) annos = info['annos'] @@ -782,7 +813,7 @@ def create_waymo_gt_database( parser = argparse.ArgumentParser(description='arg parser') parser.add_argument('--cfg_file', type=str, default=None, help='specify the config of dataset') parser.add_argument('--func', type=str, default='create_waymo_infos', help='') - parser.add_argument('--processed_data_tag', type=str, default='waymo_processed_data_v0_5_0', help='') + parser.add_argument('--processed_data_tag', type=str, default='waymo_processed_data_v0_6_0', help='') parser.add_argument('--update_info_only', action='store_true', default=False, help='') parser.add_argument('--use_parallel', action='store_true', default=False, help='') parser.add_argument('--wo_crop_gt_with_tail', action='store_true', default=False, help='') diff --git a/pcdet/datasets/waymo/waymo_utils.py b/pcdet/datasets/waymo/waymo_utils.py index 9bdcfe7b2..4dcb620d0 100644 --- a/pcdet/datasets/waymo/waymo_utils.py +++ b/pcdet/datasets/waymo/waymo_utils.py @@ -92,6 +92,7 @@ def convert_range_image_to_point_cloud(frame, range_images, camera_projections, points_NLZ = [] points_intensity = [] points_elongation = [] + extrinsics = [] frame_pose = tf.convert_to_tensor(np.reshape(np.array(frame.pose.transform), [4, 4])) # [H, W, 6] @@ -162,8 +163,9 @@ def convert_range_image_to_point_cloud(frame, range_images, camera_projections, points_NLZ.append(np.concatenate(points_NLZ_single, axis=0)) points_intensity.append(np.concatenate(points_intensity_single, axis=0)) points_elongation.append(np.concatenate(points_elongation_single, axis=0)) + extrinsics.append(extrinsic) - return points, cp_points, points_NLZ, points_intensity, points_elongation + return points, cp_points, points_NLZ, points_intensity, points_elongation, extrinsics def save_lidar_points(frame, cur_save_path, use_two_returns=True): @@ -174,7 +176,7 @@ def save_lidar_points(frame, cur_save_path, use_two_returns=True): assert len(ret_outputs) == 3 range_images, camera_projections, range_image_top_pose = ret_outputs - points, cp_points, points_in_NLZ_flag, points_intensity, points_elongation = convert_range_image_to_point_cloud( + points, cp_points, points_in_NLZ_flag, points_intensity, points_elongation, extrinsics = convert_range_image_to_point_cloud( frame, range_images, camera_projections, range_image_top_pose, ri_index=(0, 1) if use_two_returns else (0,) ) @@ -191,7 +193,7 @@ def save_lidar_points(frame, cur_save_path, use_two_returns=True): np.save(cur_save_path, save_points) # print('saving to ', cur_save_path) - return num_points_of_each_lidar + return num_points_of_each_lidar, extrinsics def process_single_sequence(sequence_file, save_path, sampled_interval, has_label=True, use_two_returns=True, update_info_only=False): @@ -251,11 +253,13 @@ def process_single_sequence(sequence_file, save_path, sampled_interval, has_labe if update_info_only and sequence_infos_old is not None: assert info['frame_id'] == sequence_infos_old[cnt]['frame_id'] num_points_of_each_lidar = sequence_infos_old[cnt]['num_points_of_each_lidar'] + extrinsics = sequence_infos_old[cnt]['extrinsics'] else: - num_points_of_each_lidar = save_lidar_points( + num_points_of_each_lidar, extrinsics = save_lidar_points( frame, cur_save_dir / ('%04d.npy' % cnt), use_two_returns=use_two_returns ) info['num_points_of_each_lidar'] = num_points_of_each_lidar + info['extrinsics'] = extrinsics sequence_infos.append(info) diff --git a/pcdet/utils/common_utils.py b/pcdet/utils/common_utils.py index af70728db..caa57d94d 100644 --- a/pcdet/utils/common_utils.py +++ b/pcdet/utils/common_utils.py @@ -32,10 +32,22 @@ def drop_info_with_name(info, name): return ret_info +def apply_data_transform(data_dict, transforms): + assert set(transforms.keys()).issubset({'point', 'box'}) + data_keys = { + 'point': ['points', 'origins'], + 'box': ['gt_boxes', 'roi_boxes'] + } + for tf_type, tf in transforms.items(): + for data_key in data_keys[tf_type]: + if data_key in data_dict: + data_dict[data_key] = tf(data_dict[data_key]) + + def rotate_points_along_z(points, angle): """ Args: - points: (B, N, 3 + C) + points: (B, *, 3 + C) angle: (B), angle along z-axis, angle increases x ==> y Returns: @@ -43,6 +55,10 @@ def rotate_points_along_z(points, angle): points, is_numpy = check_numpy_to_torch(points) angle, _ = check_numpy_to_torch(angle) + orig_shape = points.shape + if len(orig_shape) > 3: + points = points.view(orig_shape[0], -1, orig_shape[-1]) + cosa = torch.cos(angle) sina = torch.sin(angle) zeros = angle.new_zeros(points.shape[0]) @@ -54,6 +70,7 @@ def rotate_points_along_z(points, angle): ), dim=1).view(-1, 3, 3).float() points_rot = torch.matmul(points[:, :, 0:3], rot_matrix) points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1) + points_rot = points_rot.view(orig_shape) return points_rot.numpy() if is_numpy else points_rot