From ee93530acc675231014b92a58fd6e4a59e27cc13 Mon Sep 17 00:00:00 2001 From: CokeDong <408244909@qq.com> Date: Tue, 22 Aug 2023 12:32:52 +0800 Subject: [PATCH] Adapt new dipu device (#2905) --- mmcv/ops/csrc/pytorch/bbox_overlaps.cpp | 3 ++- mmcv/ops/csrc/pytorch/nms.cpp | 3 ++- mmcv/ops/csrc/pytorch/roi_align.cpp | 10 +++++----- 3 files changed, 9 insertions(+), 7 deletions(-) diff --git a/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp b/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp index 95868e495c..52269a1fd9 100644 --- a/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp +++ b/mmcv/ops/csrc/pytorch/bbox_overlaps.cpp @@ -6,6 +6,7 @@ #include #include +#include "csrc_dipu/base/basedef.h" #include "csrc_dipu/diopirt/diopirt_impl.h" using dipu::diopi_helper::toDiopiScalar; @@ -33,7 +34,7 @@ void bbox_overlaps_diopi(const Tensor bboxes1, const Tensor bboxes2, diopiContextHandle_t ch = &ctx; auto bboxes2_p = toDiopiTensorHandle(bboxes2); auto ious_p = toDiopiTensorHandle(ious); - bool is_mock_cuda = bboxes1.device().type() == c10::DeviceType::PrivateUse1; + bool is_mock_cuda = bboxes1.device().type() == dipu::DIPU_DEVICE_TYPE; if (is_mock_cuda && reinterpret_cast(diopiBboxOverlapsMmcv) != nullptr) { auto ret = diopiBboxOverlapsMmcv(ch, ious_p, bboxes1_p, bboxes2_p, mode, diff --git a/mmcv/ops/csrc/pytorch/nms.cpp b/mmcv/ops/csrc/pytorch/nms.cpp index 3ebe224f96..4370091d2b 100644 --- a/mmcv/ops/csrc/pytorch/nms.cpp +++ b/mmcv/ops/csrc/pytorch/nms.cpp @@ -6,6 +6,7 @@ #include #include +#include "csrc_dipu/base/basedef.h" #include "csrc_dipu/diopirt/diopirt_impl.h" using dipu::diopi_helper::toDiopiScalar; @@ -42,7 +43,7 @@ Tensor nms_diopi(Tensor boxes, Tensor scores, float iou_threshold, int offset) { auto outp = toDiopiTensorHandle(out); diopiTensorHandle_t* outhandle = &outp; auto scores_p = toDiopiTensorHandle(scores); - bool is_mock_cuda = boxes.device().type() == c10::DeviceType::PrivateUse1; + bool is_mock_cuda = boxes.device().type() == dipu::DIPU_DEVICE_TYPE; if (is_mock_cuda && reinterpret_cast(diopiNmsMmcv) != nullptr) { auto ret = diopiNmsMmcv(ch, outhandle, boxes_p, scores_p, iou_threshold, offset); diff --git a/mmcv/ops/csrc/pytorch/roi_align.cpp b/mmcv/ops/csrc/pytorch/roi_align.cpp index df136c8126..a59c2b43b0 100644 --- a/mmcv/ops/csrc/pytorch/roi_align.cpp +++ b/mmcv/ops/csrc/pytorch/roi_align.cpp @@ -6,6 +6,7 @@ #include #include +#include "csrc_dipu/base/basedef.h" #include "csrc_dipu/diopirt/diopirt_impl.h" using dipu::diopi_helper::toDiopiScalar; @@ -53,8 +54,8 @@ void roi_align_forward_diopi(Tensor input, Tensor rois, Tensor output, auto out_p = toDiopiTensorHandle(output); auto argmax_y_p = toDiopiTensorHandle(argmax_y); auto argmax_x_p = toDiopiTensorHandle(argmax_x); - bool is_mock_cuda = input.device().type() == c10::DeviceType::PrivateUse1; - if (is_mock_cuda && reinterpret_cast(diopiRoiAlignMmcv) != nullptr) { + bool is_mock_cuda = input.device().type() == dipu::DIPU_DEVICE_TYPE; + if (is_mock_cuda && reinterpret_cast(diopiRoiAlignMmcv) != nullptr) { auto ret = diopiRoiAlignMmcv( ch, out_p, argmax_y_p, argmax_x_p, input_p, rois_p, aligned_height, aligned_width, sampling_ratio, pool_mode, spatial_scale, aligned); @@ -92,10 +93,9 @@ void roi_align_backward_diopi(Tensor grad_output, Tensor rois, Tensor argmax_y, auto grad_input_ = toDiopiTensorHandle(grad_input); diopiContext ctx(dipu::getCurrentDIPUStream().rawstream()); diopiContextHandle_t ch = &ctx; - bool is_mock_cuda = - grad_output.device().type() == c10::DeviceType::PrivateUse1; + bool is_mock_cuda = grad_output.device().type() == dipu::DIPU_DEVICE_TYPE; if (is_mock_cuda && - reinterpret_cast(diopiRoiAlignBackwardMmcv) != nullptr) { + reinterpret_cast(diopiRoiAlignBackwardMmcv) != nullptr) { auto ret = diopiRoiAlignBackwardMmcv(ch, grad_input_, grad_output_, rois_, argmax_y_, argmax_x_, aligned_height, aligned_width, sampling_ratio,