diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 056c046592..efa84b8cfa 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -33,7 +33,8 @@ repos:
rev: 2.1.4
hooks:
- id: markdownlint
- args: ["-r", "~MD002,~MD013,~MD029,~MD033,~MD034"]
+ args: ["-r", "~MD002,~MD013,~MD029,~MD033,~MD034",
+ "-t", "allow_different_nesting"]
- repo: https://github.com/myint/docformatter
rev: v1.3.1
hooks:
diff --git a/docs/deployment.rst b/docs/deployment.rst
new file mode 100644
index 0000000000..68f81f9520
--- /dev/null
+++ b/docs/deployment.rst
@@ -0,0 +1,11 @@
+Deployment
+========
+
+.. toctree::
+ :maxdepth: 2
+
+ onnx.md
+ onnxruntime_op.md
+ onnxruntime_custom_ops.md
+ tensorrt_plugin.md
+ tensorrt_custom_ops.md
diff --git a/docs/index.rst b/docs/index.rst
index 996b200ca1..444ba1f2ca 100644
--- a/docs/index.rst
+++ b/docs/index.rst
@@ -17,6 +17,7 @@ Contents
cnn.md
ops.md
build.md
+ deployment.rst
trouble_shooting.md
api.rst
diff --git a/docs/onnxruntime_custom_ops.md b/docs/onnxruntime_custom_ops.md
new file mode 100644
index 0000000000..e42032d23d
--- /dev/null
+++ b/docs/onnxruntime_custom_ops.md
@@ -0,0 +1,173 @@
+# Onnxruntime Custom Ops
+
+
+
+- [Onnxruntime Custom Ops](#onnxruntime-custom-ops)
+ - [SoftNMS](#softnms)
+ - [Description](#description)
+ - [Parameters](#parameters)
+ - [Inputs](#inputs)
+ - [Outputs](#outputs)
+ - [Type Constraints](#type-constraints)
+ - [RoIAlign](#roialign)
+ - [Description](#description-1)
+ - [Parameters](#parameters-1)
+ - [Inputs](#inputs-1)
+ - [Outputs](#outputs-1)
+ - [Type Constraints](#type-constraints-1)
+ - [NMS](#nms)
+ - [Description](#description-2)
+ - [Parameters](#parameters-2)
+ - [Inputs](#inputs-2)
+ - [Outputs](#outputs-2)
+ - [Type Constraints](#type-constraints-2)
+ - [grid_sampler](#grid_sampler)
+ - [Description](#description-3)
+ - [Parameters](#parameters-3)
+ - [Inputs](#inputs-3)
+ - [Outputs](#outputs-3)
+ - [Type Constraints](#type-constraints-3)
+
+
+
+## SoftNMS
+
+### Description
+
+Perform soft NMS on `boxes` with `scores`. Read [Soft-NMS -- Improving Object Detection With One Line of Code](https://arxiv.org/abs/1704.04503) for detail.
+
+### Parameters
+
+| Type | Parameter | Description |
+| ------- | --------------- | -------------------------------------------------------------- |
+| `float` | `iou_threshold` | IoU threshold for NMS |
+| `float` | `sigma` | hyperparameter for gaussian method |
+| `float` | `min_score` | score filter threshold |
+| `int` | `method` | method to do the nms, (0: `naive`, 1: `linear`, 2: `gaussian`) |
+| `int` | `offset` | `boxes` width or height is (x2 - x1 + offset). (0 or 1) |
+
+### Inputs
+
+
+- boxes: T
+- Input boxes. 2-D tensor of shape (N, 4). N is the number of boxes.
+- scores: T
+- Input scores. 1-D tensor of shape (N, ).
+
+
+### Outputs
+
+
+- dets: tensor(int64)
+- Output boxes and scores. 2-D tensor of shape (num_valid_boxes, 5), [[x1, y1, x2, y2, score], ...]. num_valid_boxes is the number of valid boxes.
+- indices: T
+- Output indices. 1-D tensor of shape (num_valid_boxes, ).
+
+
+### Type Constraints
+
+- T:tensor(float32)
+
+## RoIAlign
+
+### Description
+
+Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors.
+
+### Parameters
+
+| Type | Parameter | Description |
+| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- |
+| `int` | `output_height` | height of output roi |
+| `int` | `output_width` | width of output roi |
+| `float` | `spatial_scale` | used to scale the input boxes |
+| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
+| `str` | `mode` | pooling mode in each bin. `avg` or `max` |
+| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
+
+### Inputs
+
+
+- input: T
+- Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
+- rois: T
+- RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.
+
+
+### Outputs
+
+
+- feat: T
+- RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].
-
+
+
+### Type Constraints
+
+- T:tensor(float32)
+
+## NMS
+
+### Description
+
+Filter out boxes has high IoU overlap with previously selected boxes.
+
+### Parameters
+
+| Type | Parameter | Description |
+| ------- | --------------- | ---------------------------------------------------------------------------------------------------------------- |
+| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range [0, 1]. Default to 0. |
+| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). |
+
+### Inputs
+
+
+- bboxes: T
+- Input boxes. 2-D tensor of shape (num_boxes, 4). num_boxes is the number of input boxes.
+- scores: T
+- Input scores. 1-D tensor of shape (num_boxes, ).
+
+
+### Outputs
+
+
+- indices: tensor(int32, Linear)
+- Selected indices. 1-D tensor of shape (num_valid_boxes, ). num_valid_boxes is the number of valid boxes.
+
+
+### Type Constraints
+
+- T:tensor(float32)
+
+## grid_sampler
+
+### Description
+
+Perform sample from `input` with pixel locations from `grid`.
+
+### Parameters
+
+| Type | Parameter | Description |
+| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) |
+| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) |
+| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |
+
+### Inputs
+
+
+- input: T
+- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
+- grid: T
+- Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output.
+
+
+### Outputs
+
+
+- output: T
+- Output feature; 4-D tensor of shape (N, C, outH, outW).
+
+
+### Type Constraints
+
+- T:tensor(float32, Linear)
diff --git a/docs/onnxruntime_op.md b/docs/onnxruntime_op.md
index 9090656bc2..9324524e39 100644
--- a/docs/onnxruntime_op.md
+++ b/docs/onnxruntime_op.md
@@ -15,10 +15,12 @@
## List of operators for ONNX Runtime supported in MMCV
-| Operator | CPU | GPU | Note |
-| :------: | :---: | :---: | :-------------------------------------------------------------------------------------------------: |
-| SoftNMS | Y | N | commit [94810f](https://github.com/open-mmlab/mmcv/commit/94810f2297871d0ea3ca650dcb2e842f5374d998) |
-| RoiAlign | Y | N | None |
+| Operator | CPU | GPU | MMCV Releases |
+| :----------------------------------------------------: | :---: | :---: | :-----------: |
+| [SoftNMS](onnxruntime_custom_ops.md#softnms) | Y | N | 1.2.3 |
+| [RoIAlign](onnxruntime_custom_ops.md#roialign) | Y | N | 1.2.5 |
+| [NMS](onnxruntime_custom_ops.md#nms) | Y | N | 1.2.7 |
+| [grid_sampler](onnxruntime_custom_ops.md#grid_sampler) | Y | N | master |
## How to build custom operators for ONNX Runtime
diff --git a/docs/tensorrt_custom_ops.md b/docs/tensorrt_custom_ops.md
new file mode 100644
index 0000000000..da696f03e9
--- /dev/null
+++ b/docs/tensorrt_custom_ops.md
@@ -0,0 +1,229 @@
+# TensorRT Custom Ops
+
+
+
+- [TensorRT Custom Ops](#tensorrt-custom-ops)
+ - [MMCVRoIAlign](#mmcvroialign)
+ - [Description](#description)
+ - [Parameters](#parameters)
+ - [Inputs](#inputs)
+ - [Outputs](#outputs)
+ - [Type Constraints](#type-constraints)
+ - [ScatterND](#scatternd)
+ - [Description](#description-1)
+ - [Parameters](#parameters-1)
+ - [Inputs](#inputs-1)
+ - [Outputs](#outputs-1)
+ - [Type Constraints](#type-constraints-1)
+ - [NonMaxSuppression](#nonmaxsuppression)
+ - [Description](#description-2)
+ - [Parameters](#parameters-2)
+ - [Inputs](#inputs-2)
+ - [Outputs](#outputs-2)
+ - [Type Constraints](#type-constraints-2)
+ - [MMCVDeformConv2d](#mmcvdeformconv2d)
+ - [Description](#description-3)
+ - [Parameters](#parameters-3)
+ - [Inputs](#inputs-3)
+ - [Outputs](#outputs-3)
+ - [Type Constraints](#type-constraints-3)
+ - [grid_sampler](#grid_sampler)
+ - [Description](#description-4)
+ - [Parameters](#parameters-4)
+ - [Inputs](#inputs-4)
+ - [Outputs](#outputs-4)
+ - [Type Constraints](#type-constraints-4)
+
+
+
+## MMCVRoIAlign
+
+### Description
+
+Perform RoIAlign on output feature, used in bbox_head of most two stage
+detectors.
+
+### Parameters
+
+| Type | Parameter | Description |
+| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- |
+| `int` | `output_height` | height of output roi |
+| `int` | `output_width` | width of output roi |
+| `float` | `spatial_scale` | used to scale the input boxes |
+| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
+| `str` | `mode` | pooling mode in each bin. `avg` or `max` |
+| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
+
+### Inputs
+
+
+- inputs[0]: T
+- Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
+- inputs[1]: T
+- RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of inputs[0].
+
+
+### Outputs
+
+
+- outputs[0]: T
+- RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].
-
+
+
+### Type Constraints
+
+- T:tensor(float32, Linear)
+
+## ScatterND
+
+### Description
+
+ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1, and `updates` tensor of rank q + r - indices.shape[-1] - 1. The output of the operation is produced by creating a copy of the input `data`, and then updating its value to values specified by updates at specific index positions specified by `indices`. Its output shape is the same as the shape of `data`. Note that `indices` should not have duplicate entries. That is, two or more updates for the same index-location is not supported.
+
+The `output` is calculated via the following equation:
+
+```python
+ output = np.copy(data)
+ update_indices = indices.shape[:-1]
+ for idx in np.ndindex(update_indices):
+ output[indices[idx]] = updates[idx]
+```
+
+### Parameters
+
+None
+
+### Inputs
+
+
+- inputs[0]: T
+- Tensor of rank r>=1.
+
+- inputs[1]: tensor(int32, Linear)
+- Tensor of rank q>=1.
+
+- inputs[2]: T
+- Tensor of rank q + r - indices_shape[-1] - 1.
+
+
+### Outputs
+
+
+- outputs[0]: T
+- Tensor of rank r >= 1.
+
+
+### Type Constraints
+
+- T:tensor(float32, Linear), tensor(int32, Linear)
+
+## NonMaxSuppression
+
+### Description
+
+Filter out boxes has high IoU overlap with previously selected boxes or low score. Output the indices of valid boxes. Indices of invalid boxes will be filled with -1.
+
+### Parameters
+
+| Type | Parameter | Description |
+| ------- | ---------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
+| `int` | `center_point_box` | 0 - the box data is supplied as [y1, x1, y2, x2], 1-the box data is supplied as [x_center, y_center, width, height]. |
+| `int` | `max_output_boxes_per_class` | The maximum number of boxes to be selected per batch per class. Default to 0, number of output boxes equal to number of input boxes. |
+| `float` | `iou_threshold` | The threshold for deciding whether boxes overlap too much with respect to IoU. Value range [0, 1]. Default to 0. |
+| `float` | `score_threshold` | The threshold for deciding when to remove boxes based on score. |
+| `int` | `offset` | 0 or 1, boxes' width or height is (x2 - x1 + offset). |
+
+### Inputs
+
+
+- inputs[0]: T
+- Input boxes. 3-D tensor of shape (num_batches, spatial_dimension, 4).
+- inputs[1]: T
+- Input scores. 3-D tensor of shape (num_batches, num_classes, spatial_dimension).
+
+
+### Outputs
+
+
+- outputs[0]: tensor(int32, Linear)
+- Selected indices. 2-D tensor of shape (num_selected_indices, 3) as [[batch_index, class_index, box_index], ...].
+- num_selected_indices=num_batches* num_classes* min(max_output_boxes_per_class, spatial_dimension).
+- All invalid indices will be filled with -1.
+
+
+### Type Constraints
+
+- T:tensor(float32, Linear)
+
+## MMCVDeformConv2d
+
+### Description
+
+Perform Deformable Convolution on input feature, read [Deformable Convolutional Network](https://arxiv.org/abs/1703.06211) for detail.
+
+### Parameters
+
+| Type | Parameter | Description |
+| -------------- | ------------------ | --------------------------------------------------------------------------------------------------------------------------------- |
+| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) |
+| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) |
+| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) |
+| `int` | `deformable_group` | Groups of deformable offset. |
+| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. |
+| `int` | `im2col_step` | DeformableConv2d use im2col to compute convolution. im2col_step is used to split input and offset, reduce memory usage of column. |
+
+### Inputs
+
+
+- inputs[0]: T
+- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
+- inputs[1]: T
+- Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
+- inputs[2]: T
+- Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
+
+
+### Outputs
+
+
+- outputs[0]: T
+- Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
+
+
+### Type Constraints
+
+- T:tensor(float32, Linear)
+
+## grid_sampler
+
+### Description
+
+Perform sample from `input` with pixel locations from `grid`.
+
+### Parameters
+
+| Type | Parameter | Description |
+| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) |
+| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) |
+| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |
+
+### Inputs
+
+
+- inputs[0]: T
+- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
+- inputs[1]: T
+- Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output.
+
+
+### Outputs
+
+
+- outputs[0]: T
+- Output feature; 4-D tensor of shape (N, C, outH, outW).
+
+
+### Type Constraints
+
+- T:tensor(float32, Linear)
diff --git a/docs/tensorrt_plugin.md b/docs/tensorrt_plugin.md
index 69a20fd9da..5ed62d1ba3 100644
--- a/docs/tensorrt_plugin.md
+++ b/docs/tensorrt_plugin.md
@@ -24,11 +24,13 @@ To ease the deployment of trained models with custom operators from `mmcv.ops` u
## List of TensorRT plugins supported in MMCV
-| ONNX Operator | TensorRT Plugin | Note |
-| :---------------: | :-------------------: | :---: |
-| RoiAlign | MMCVRoiAlign | Y |
-| ScatterND | ScatterND | Y |
-| NonMaxSuppression | MMCVNonMaxSuppression | WIP |
+| ONNX Operator | TensorRT Plugin | MMCV Releases |
+| :---------------: | :-------------------------------------------------------------: | :-----------: |
+| MMCVRoiAlign | [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign) | 1.2.6 |
+| ScatterND | [ScatterND](./tensorrt_custom_ops.md#scatternd) | 1.2.6 |
+| NonMaxSuppression | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression) | 1.3.0 |
+| MMCVDeformConv2d | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d) | 1.3.0 |
+| grid_sampler | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler) | master |
Notes