-
Notifications
You must be signed in to change notification settings - Fork 643
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add gfl_trt * add gfl_head.py * add batch_integral * lint code * add gfl unit test * fix unit test * add gfl benchmark * fix unit test bug * Update gfl_head.py * Update __init__.py remove '**_forward_single' * fix lint error and ut error * fix docs and benchmark Co-authored-by: VVsssssk <shenkun@pjlab.org.cn>
- Loading branch information
1 parent
e89becd
commit ba5351e
Showing
6 changed files
with
311 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
from mmdeploy.codebase.mmdet import (get_post_processing_params, | ||
multiclass_nms, pad_with_value) | ||
from mmdeploy.core import FUNCTION_REWRITER | ||
from mmdeploy.utils import Backend, get_backend, is_dynamic_shape | ||
|
||
|
||
@FUNCTION_REWRITER.register_rewriter( | ||
func_name='mmdet.models.dense_heads.gfl_head.' | ||
'GFLHead.get_bboxes') | ||
def gfl_head__get_bbox(ctx, | ||
self, | ||
cls_scores, | ||
bbox_preds, | ||
score_factors=None, | ||
img_metas=None, | ||
cfg=None, | ||
rescale=False, | ||
with_nms=True, | ||
**kwargs): | ||
"""Rewrite `get_bboxes` of `GFLHead` for default backend. | ||
Rewrite this function to deploy model, transform network output for a | ||
batch into bbox predictions. | ||
Args: | ||
ctx (ContextCaller): The context with additional information. | ||
self: The instance of the original class. | ||
cls_scores (list[Tensor]): Classification scores for all | ||
scale levels, each is a 4D-tensor, has shape | ||
(batch_size, num_priors * num_classes, H, W). | ||
bbox_preds (list[Tensor]): Box energies / deltas for all | ||
scale levels, each is a 4D-tensor, has shape | ||
(batch_size, num_priors * 4, H, W). | ||
score_factors (list[Tensor], Optional): Score factor for | ||
all scale level, each is a 4D-tensor, has shape | ||
(batch_size, num_priors * 1, H, W). Default None. | ||
img_metas (list[dict], Optional): Image meta info. Default None. | ||
cfg (mmcv.Config, Optional): Test / postprocessing configuration, | ||
if None, test_cfg would be used. Default None. | ||
rescale (bool): If True, return boxes in original image space. | ||
Default False. | ||
with_nms (bool): If True, do nms before return boxes. | ||
Default True. | ||
Returns: | ||
If with_nms == True: | ||
tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), | ||
`dets` of shape [N, num_det, 5] and `labels` of shape | ||
[N, num_det]. | ||
Else: | ||
tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, | ||
batch_mlvl_scores, batch_mlvl_centerness | ||
""" | ||
deploy_cfg = ctx.cfg | ||
is_dynamic_flag = is_dynamic_shape(deploy_cfg) | ||
backend = get_backend(deploy_cfg) | ||
num_levels = len(cls_scores) | ||
|
||
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | ||
mlvl_priors = self.prior_generator.grid_priors( | ||
featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) | ||
|
||
mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] | ||
mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] | ||
if score_factors is None: | ||
with_score_factors = False | ||
mlvl_score_factor = [None for _ in range(num_levels)] | ||
else: | ||
with_score_factors = True | ||
mlvl_score_factor = [ | ||
score_factors[i].detach() for i in range(num_levels) | ||
] | ||
mlvl_score_factors = [] | ||
assert img_metas is not None | ||
img_shape = img_metas[0]['img_shape'] | ||
|
||
assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors) | ||
batch_size = cls_scores[0].shape[0] | ||
cfg = self.test_cfg | ||
pre_topk = cfg.get('nms_pre', -1) | ||
|
||
mlvl_valid_bboxes = [] | ||
mlvl_valid_scores = [] | ||
mlvl_valid_priors = [] | ||
|
||
for cls_score, bbox_pred, score_factors, priors, stride in zip( | ||
mlvl_cls_scores, mlvl_bbox_preds, mlvl_score_factor, mlvl_priors, | ||
self.prior_generator.strides): | ||
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | ||
assert stride[0] == stride[1] | ||
|
||
scores = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, | ||
self.cls_out_channels) | ||
if self.use_sigmoid_cls: | ||
scores = scores.sigmoid() | ||
nms_pre_score = scores | ||
else: | ||
scores = scores.softmax(-1) | ||
nms_pre_score = scores | ||
if with_score_factors: | ||
score_factors = score_factors.permute(0, 2, 3, | ||
1).reshape(batch_size, | ||
-1).sigmoid() | ||
score_factors = score_factors.unsqueeze(2) | ||
bbox_pred = batched_integral(self.integral, | ||
bbox_pred.permute(0, 2, 3, 1)) * stride[0] | ||
if not is_dynamic_flag: | ||
priors = priors.data | ||
priors = priors.expand(batch_size, -1, priors.size(-1)) | ||
if pre_topk > 0: | ||
if with_score_factors: | ||
nms_pre_score = nms_pre_score * score_factors | ||
if backend == Backend.TENSORRT: | ||
priors = pad_with_value(priors, 1, pre_topk) | ||
bbox_pred = pad_with_value(bbox_pred, 1, pre_topk) | ||
scores = pad_with_value(scores, 1, pre_topk, 0.) | ||
nms_pre_score = pad_with_value(nms_pre_score, 1, pre_topk, 0.) | ||
if with_score_factors: | ||
score_factors = pad_with_value(score_factors, 1, pre_topk, | ||
0.) | ||
|
||
# Get maximum scores for foreground classes. | ||
if self.use_sigmoid_cls: | ||
max_scores, _ = nms_pre_score.max(-1) | ||
else: | ||
max_scores, _ = nms_pre_score[..., :-1].max(-1) | ||
_, topk_inds = max_scores.topk(pre_topk) | ||
batch_inds = torch.arange( | ||
batch_size, | ||
device=bbox_pred.device).view(-1, 1).expand_as(topk_inds) | ||
priors = priors[batch_inds, topk_inds, :] | ||
bbox_pred = bbox_pred[batch_inds, topk_inds, :] | ||
scores = scores[batch_inds, topk_inds, :] | ||
if with_score_factors: | ||
score_factors = score_factors[batch_inds, topk_inds, :] | ||
|
||
mlvl_valid_bboxes.append(bbox_pred) | ||
mlvl_valid_scores.append(scores) | ||
priors = self.anchor_center(priors) | ||
mlvl_valid_priors.append(priors) | ||
if with_score_factors: | ||
mlvl_score_factors.append(score_factors) | ||
|
||
batch_mlvl_bboxes_pred = torch.cat(mlvl_valid_bboxes, dim=1) | ||
batch_scores = torch.cat(mlvl_valid_scores, dim=1) | ||
batch_priors = torch.cat(mlvl_valid_priors, dim=1) | ||
batch_bboxes = self.bbox_coder.decode( | ||
batch_priors, batch_mlvl_bboxes_pred, max_shape=img_shape) | ||
if with_score_factors: | ||
batch_score_factors = torch.cat(mlvl_score_factors, dim=1) | ||
|
||
if not self.use_sigmoid_cls: | ||
batch_scores = batch_scores[..., :self.num_classes] | ||
|
||
if with_score_factors: | ||
batch_scores = batch_scores * batch_score_factors | ||
if not with_nms: | ||
return batch_bboxes, batch_scores | ||
post_params = get_post_processing_params(deploy_cfg) | ||
max_output_boxes_per_class = post_params.max_output_boxes_per_class | ||
iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) | ||
score_threshold = cfg.get('score_thr', post_params.score_threshold) | ||
pre_top_k = post_params.pre_top_k | ||
keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) | ||
return multiclass_nms( | ||
batch_bboxes, | ||
batch_scores, | ||
max_output_boxes_per_class, | ||
iou_threshold=iou_threshold, | ||
score_threshold=score_threshold, | ||
pre_top_k=pre_top_k, | ||
keep_top_k=keep_top_k) | ||
|
||
|
||
def batched_integral(intergral, x): | ||
batch_size = x.size(0) | ||
x = F.softmax(x.reshape(batch_size, -1, intergral.reg_max + 1), dim=2) | ||
x = F.linear(x, | ||
intergral.project.type_as(x).unsqueeze(0)).reshape( | ||
batch_size, -1, 4) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters