diff --git a/.dev_scripts/linter.sh b/.dev_scripts/linter.sh index af19fe28e87..46a055110b0 100644 --- a/.dev_scripts/linter.sh +++ b/.dev_scripts/linter.sh @@ -1,3 +1,3 @@ -yapf -r -i --style .style.yapf mmdet/ configs/ tests/ tools/ +yapf -r -i --style mmdet/ configs/ tests/ tools/ isort -rc mmdet/ configs/ tests/ tools/ flake8 . diff --git a/.github/CONTRIBUTING.md b/.github/CONTRIBUTING.md index 39c145a1fb9..ce5b38cf9bf 100644 --- a/.github/CONTRIBUTING.md +++ b/.github/CONTRIBUTING.md @@ -27,7 +27,7 @@ We use the following tools for linting and formatting: - [yapf](https://github.com/google/yapf): formatter - [isort](https://github.com/timothycrosley/isort): sort imports -Style configurations of yapf and isort can be found in [.style.yapf](../.style.yapf) and [.isort.cfg](../.isort.cfg). +Style configurations of yapf and isort can be found in [setup.cfg](../setup.cfg). We use [pre-commit hook](https://pre-commit.com/) that checks and formats for `flake8`, `yapf`, `isort`, `trailing whitespaces`, fixes `end-of-files`, sorts `requirments.txt` automatically on every commit. diff --git a/.style.yapf b/.style.yapf deleted file mode 100644 index 286a3f1d7ae..00000000000 --- a/.style.yapf +++ /dev/null @@ -1,4 +0,0 @@ -[style] -BASED_ON_STYLE = pep8 -BLANK_LINE_BEFORE_NESTED_CLASS_OR_DEF = true -SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN = true diff --git a/docs/conf.py b/docs/conf.py index c5cbd24a550..f0f7a3f67ba 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -39,10 +39,7 @@ ] autodoc_mock_imports = [ - 'matplotlib', 'pycocotools', 'terminaltables', 'mmdet.version', - 'mmdet.ops.corner_pool', 'mmdet.ops.dcn', 'mmdet.ops.masked_conv', - 'mmdet.ops.nms', 'mmdet.ops.roi_align', 'mmdet.ops.roi_pool', - 'mmdet.ops.sigmoid_focal_loss', 'mmdet.ops.carafe', 'mmdet.ops.utils' + 'matplotlib', 'pycocotools', 'terminaltables', 'mmdet.version', 'mmcv.ops' ] # Add any paths that contain templates here, relative to this directory. diff --git a/docs/index.rst b/docs/index.rst index 0d9248bcb73..41ebef04510 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -8,13 +8,19 @@ Welcome to MMDetection's documentation! getting_started.md config.md model_zoo.md - tutorials/finetune.md - tutorials/new_dataset.md - tutorials/data_pipeline.md - tutorials/new_modules.md compatibility.md changelog.md projects.md + +.. toctree:: + :maxdepth: 2 + :caption: Tutorials + + tutorials/index.rst + +.. toctree:: + :caption: API Reference + api.rst diff --git a/docs/tutorials/index.rst b/docs/tutorials/index.rst new file mode 100644 index 00000000000..e98d69805bb --- /dev/null +++ b/docs/tutorials/index.rst @@ -0,0 +1,7 @@ +.. toctree:: + :maxdepth: 2 + + finetune.md + new_dataset.md + data_pipeline.md + new_modules.md diff --git a/mmdet/core/anchor/anchor_generator.py b/mmdet/core/anchor/anchor_generator.py index 92307cb1222..611c0eb53ba 100644 --- a/mmdet/core/anchor/anchor_generator.py +++ b/mmdet/core/anchor/anchor_generator.py @@ -123,7 +123,7 @@ def gen_base_anchors(self): """Generate base anchors. Returns: - list(torch.Tensor): Base anchors of a feature grid in multiple + list(torch.Tensor): Base anchors of a feature grid in multiple \ feature levels. """ multi_level_base_anchors = [] @@ -155,7 +155,7 @@ def gen_single_level_base_anchors(self, related to a single feature grid. Defaults to None. Returns: - torch.Tensor: Anchors in a single-level feature maps + torch.Tensor: Anchors in a single-level feature maps. """ w = base_size h = base_size @@ -212,10 +212,10 @@ def grid_anchors(self, featmap_sizes, device='cuda'): device (str): Device where the anchors will be put on. Return: - list[torch.Tensor]: Anchors in multiple feature levels. - The sizes of each tensor should be [N, 4], where - N = width * height * num_base_anchors, width and height - are the sizes of the corresponding feature lavel, + list[torch.Tensor]: Anchors in multiple feature levels. \ + The sizes of each tensor should be [N, 4], where \ + N = width * height * num_base_anchors, width and height \ + are the sizes of the corresponding feature lavel, \ num_base_anchors is the number of anchors for that level. """ assert self.num_levels == len(featmap_sizes) @@ -308,7 +308,7 @@ def single_level_valid_flags(self, Defaults to 'cuda'. Returns: - torch.Tensor: The valid flags of each anchor in a single level + torch.Tensor: The valid flags of each anchor in a single level \ feature map. """ feat_h, feat_w = featmap_size @@ -433,7 +433,7 @@ def gen_base_anchors(self): """Generate base anchors. Returns: - list(torch.Tensor): Base anchors of a feature grid in multiple + list(torch.Tensor): Base anchors of a feature grid in multiple \ feature levels. """ multi_level_base_anchors = [] @@ -471,12 +471,13 @@ def __repr__(self): class LegacyAnchorGenerator(AnchorGenerator): """Legacy anchor generator used in MMDetection V1.x. - Difference to the V2.0 anchor generator: + Note: + Difference to the V2.0 anchor generator: - 1. The center offset of V1.x anchors are set to be 0.5 rather than 0. - 2. The width/height are minused by 1 when calculating the anchors' centers - and corners to meet the V1.x coordinate system. - 3. The anchors' corners are quantized. + 1. The center offset of V1.x anchors are set to be 0.5 rather than 0. + 2. The width/height are minused by 1 when calculating the anchors' \ + centers and corners to meet the V1.x coordinate system. + 3. The anchors' corners are quantized. Args: strides (list[int] | list[tuple[int]]): Strides of anchors @@ -523,7 +524,7 @@ def gen_single_level_base_anchors(self, """Generate base anchors of a single level. Note: - The width/height of anchors are minused by 1 when calculating + The width/height of anchors are minused by 1 when calculating \ the centers and corners to meet the V1.x coordinate system. Args: diff --git a/mmdet/core/anchor/utils.py b/mmdet/core/anchor/utils.py index ee83bba9325..ab9b53f37f7 100644 --- a/mmdet/core/anchor/utils.py +++ b/mmdet/core/anchor/utils.py @@ -31,7 +31,7 @@ def anchor_inside_flags(flat_anchors, Defaults to 0. Returns: - torch.Tensor: Flags indicating whether the anchors are inside a + torch.Tensor: Flags indicating whether the anchors are inside a \ valid range. """ img_h, img_w = img_shape[:2] diff --git a/mmdet/core/bbox/assigners/center_region_assigner.py b/mmdet/core/bbox/assigners/center_region_assigner.py index 6d8de0ba441..a222fcec256 100644 --- a/mmdet/core/bbox/assigners/center_region_assigner.py +++ b/mmdet/core/bbox/assigners/center_region_assigner.py @@ -108,7 +108,7 @@ def get_gt_priorities(self, gt_bboxes): gt_bboxes (Tensor): Ground truth boxes, shape (k, 4). Returns: - Tensor: The priority of gts so that gts with larger priority is + Tensor: The priority of gts so that gts with larger priority is \ more likely to be assigned. Shape (k, ) """ gt_areas = bboxes_area(gt_bboxes) @@ -119,9 +119,10 @@ def get_gt_priorities(self, gt_bboxes): def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): """Assign gt to bboxes. - This method assigns gts to every bbox (proposal/anchor), each bbox will - be assigned with -1, or a semi-positive number. -1 means negative - sample, semi-positive number is the index (0-based) of assigned gt. + This method assigns gts to every bbox (proposal/anchor), each bbox \ + will be assigned with -1, or a semi-positive number. -1 means \ + negative sample, semi-positive number is the index (0-based) of \ + assigned gt. Args: bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). @@ -131,12 +132,13 @@ def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): gt_labels (tensor, optional): Label of gt_bboxes, shape (num_gts,). Returns: - :obj:`AssignResult`: The assigned result. Note that shadowed_labels - of shape (N, 2) is also added as an `assign_result` attribute. - `shadowed_labels` is a tensor composed of N pairs of - [anchor_ind, class_label], where N is the number of anchors that - lie in the outer region of a gt, anchor_ind is the shadowed - anchor index and class_label is the shadowed class label. + :obj:`AssignResult`: The assigned result. Note that \ + shadowed_labels of shape (N, 2) is also added as an \ + `assign_result` attribute. `shadowed_labels` is a tensor \ + composed of N pairs of anchor_ind, class_label], where N \ + is the number of anchors that lie in the outer region of a \ + gt, anchor_ind is the shadowed anchor index and class_label \ + is the shadowed class label. Example: >>> self = CenterRegionAssigner(0.2, 0.2) @@ -261,11 +263,14 @@ def assign_one_hot_gt_indices(self, match with multiple gts. Shape: (num_gt, ). Returns: - assigned_gt_inds: The assigned gt index of each prior bbox - (i.e. index from 1 to num_gts). Shape: (num_prior, ). - shadowed_gt_inds: shadowed gt indices. It is a tensor of shape - (num_ignore, 2) with first column being the shadowed prior bbox - indices and the second column the shadowed gt indices (1-based) + tuple: Returns (assigned_gt_inds, shadowed_gt_inds). + + - assigned_gt_inds: The assigned gt index of each prior bbox \ + (i.e. index from 1 to num_gts). Shape: (num_prior, ). + - shadowed_gt_inds: shadowed gt indices. It is a tensor of \ + shape (num_ignore, 2) with first column being the \ + shadowed prior bbox indices and the second column the \ + shadowed gt indices (1-based). """ num_bboxes, num_gts = is_bbox_in_gt_core.shape diff --git a/mmdet/core/bbox/samplers/sampling_result.py b/mmdet/core/bbox/samplers/sampling_result.py index bbf9ee39e3d..419a8e39a3c 100644 --- a/mmdet/core/bbox/samplers/sampling_result.py +++ b/mmdet/core/bbox/samplers/sampling_result.py @@ -97,9 +97,9 @@ def random(cls, rng=None, **kwargs): kwargs (keyword arguments): - num_preds: number of predicted boxes - num_gts: number of true boxes - - p_ignore (float): probability of a predicted box assinged to + - p_ignore (float): probability of a predicted box assinged to \ an ignored truth. - - p_assigned (float): probability of a predicted box not being + - p_assigned (float): probability of a predicted box not being \ assigned. - p_use_label (float | bool): with labels or not. diff --git a/mmdet/core/mask/structures.py b/mmdet/core/mask/structures.py index b7888c39bbc..8bbbfe47f44 100644 --- a/mmdet/core/mask/structures.py +++ b/mmdet/core/mask/structures.py @@ -507,9 +507,9 @@ def to_bitmap(self): def areas(self): """Compute areas of masks. - This func is modified from - https://github.com/facebookresearch/detectron2/blob/ffff8acc35ea88ad1cb1806ab0f00b4c1c5dbfd9/detectron2/structures/masks.py#L387 - Only works with Polygons, using the shoelace formula + This func is modified from `detectron2 + `_. + The function only works with Polygons using the shoelace formula. Return: ndarray: areas of each instance diff --git a/mmdet/core/mask/utils.py b/mmdet/core/mask/utils.py index 34e60b25a11..c88208291ab 100644 --- a/mmdet/core/mask/utils.py +++ b/mmdet/core/mask/utils.py @@ -17,8 +17,8 @@ def split_combined_polys(polys, poly_lens, polys_per_mask): of each mask Returns: - list: a list (length = image num) of list (length = mask num) of - list (length = poly num) of numpy array + list: a list (length = image num) of list (length = mask num) of \ + list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): diff --git a/mmdet/core/post_processing/bbox_nms.py b/mmdet/core/post_processing/bbox_nms.py index b583dbffa82..1c89bb43efa 100644 --- a/mmdet/core/post_processing/bbox_nms.py +++ b/mmdet/core/post_processing/bbox_nms.py @@ -23,7 +23,7 @@ def multiclass_nms(multi_bboxes, applying NMS Returns: - tuple: (bboxes, labels), tensors of shape (k, 5) and (k, 1). Labels + tuple: (bboxes, labels), tensors of shape (k, 5) and (k, 1). Labels \ are 0-based. """ num_classes = multi_scores.size(1) - 1 diff --git a/mmdet/core/utils/misc.py b/mmdet/core/utils/misc.py index 58c2a0cf33f..bff74963fbb 100644 --- a/mmdet/core/utils/misc.py +++ b/mmdet/core/utils/misc.py @@ -37,16 +37,16 @@ def multi_apply(func, *args, **kwargs): Note: This function applies the ``func`` to multiple inputs and - map the multiple outputs of the ``func`` into different - list. Each list contains the same type of outputs corresponding - to different inputs. + map the multiple outputs of the ``func`` into different + list. Each list contains the same type of outputs corresponding + to different inputs. Args: func (Function): A function that will be applied to a list of arguments Returns: - tuple(list): A tuple containing multiple list, each list contains + tuple(list): A tuple containing multiple list, each list contains \ a kind of returned results by the function """ pfunc = partial(func, **kwargs) if kwargs else func diff --git a/mmdet/datasets/cityscapes.py b/mmdet/datasets/cityscapes.py index 64c349010ee..fc6431b6686 100644 --- a/mmdet/datasets/cityscapes.py +++ b/mmdet/datasets/cityscapes.py @@ -45,8 +45,8 @@ def _parse_ann_info(self, img_info, ann_info): ann_info (list[dict]): Annotation info of an image. Returns: - dict: A dict containing the following keys: bboxes, bboxes_ignore, - labels, masks, seg_map. + dict: A dict containing the following keys: bboxes, \ + bboxes_ignore, labels, masks, seg_map. \ "masks" are already decoded into binary masks. """ gt_bboxes = [] @@ -102,8 +102,8 @@ def results2txt(self, results, outfile_prefix): the txt files will be named "somepath/xxx.txt". Returns: - list[str: str]: result txt files which contains corresponding - instance segmentation images. + list[str]: Result txt files which contains corresponding \ + instance segmentation images. """ try: import cityscapesscripts.helpers.labels as CSLabels @@ -168,8 +168,8 @@ def format_results(self, results, txtfile_prefix=None): If not specified, a temp file will be created. Default: None. Returns: - tuple: (result_files, tmp_dir), result_files is a dict containing - the json filepaths, tmp_dir is the temporal directory created + tuple: (result_files, tmp_dir), result_files is a dict containing \ + the json filepaths, tmp_dir is the temporal directory created \ for saving txt/png files when txtfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' @@ -229,7 +229,7 @@ def evaluate(self, also be computed. Default: 0.5. Returns: - dict[str, float]: COCO style evaluation metric or cityscapes mAP + dict[str, float]: COCO style evaluation metric or cityscapes mAP \ and AP@50. """ eval_results = dict() @@ -268,7 +268,7 @@ def _evaluate_cityscapes(self, results, txtfile_prefix, logger): related information during evaluation. Default: None. Returns: - dict[str: float]: Cityscapes evaluation results, contains 'mAP' + dict[str: float]: Cityscapes evaluation results, contains 'mAP' \ and 'AP@50'. """ diff --git a/mmdet/datasets/coco.py b/mmdet/datasets/coco.py index c11a8feff08..9efdb05b51c 100644 --- a/mmdet/datasets/coco.py +++ b/mmdet/datasets/coco.py @@ -128,8 +128,8 @@ def _parse_ann_info(self, img_info, ann_info): with_mask (bool): Whether to parse mask annotations. Returns: - dict: A dict containing the following keys: bboxes, bboxes_ignore, - labels, masks, seg_map. "masks" are raw annotations and not + dict: A dict containing the following keys: bboxes, bboxes_ignore,\ + labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] @@ -285,7 +285,7 @@ def results2json(self, results, outfile_prefix): "somepath/xxx.proposal.json". Returns: - dict[str: str]: Possible keys are "bbox", "segm", "proposal", and + dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() @@ -344,8 +344,8 @@ def format_results(self, results, jsonfile_prefix=None, **kwargs): If not specified, a temp file will be created. Default: None. Returns: - tuple: (result_files, tmp_dir), result_files is a dict containing - the json filepaths, tmp_dir is the temporal directory created + tuple: (result_files, tmp_dir), result_files is a dict containing \ + the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' diff --git a/mmdet/datasets/custom.py b/mmdet/datasets/custom.py index 23599314f1a..da9a5f24e85 100644 --- a/mmdet/datasets/custom.py +++ b/mmdet/datasets/custom.py @@ -177,7 +177,7 @@ def __getitem__(self, idx): idx (int): Index of data. Returns: - dict: Training/test data (with annotation if `test_mode` is set + dict: Training/test data (with annotation if `test_mode` is set \ True). """ @@ -197,7 +197,7 @@ def prepare_train_img(self, idx): idx (int): Index of data. Returns: - dict: Training data and annotation after pipeline with new keys + dict: Training data and annotation after pipeline with new keys \ introduced by pipeline. """ @@ -216,7 +216,7 @@ def prepare_test_img(self, idx): idx (int): Index of data. Returns: - dict: Testing data after pipeline with new keys intorduced by + dict: Testing data after pipeline with new keys intorduced by \ piepline. """ diff --git a/mmdet/datasets/pipelines/formating.py b/mmdet/datasets/pipelines/formating.py index adab60fdec0..b47074121d4 100644 --- a/mmdet/datasets/pipelines/formating.py +++ b/mmdet/datasets/pipelines/formating.py @@ -119,7 +119,7 @@ def __call__(self, results): results (dict): Result dict contains the data to transpose. Returns: - dict: The result dict contains the data transposed to + dict: The result dict contains the data transposed to \ ``self.order``. """ for key in self.keys: @@ -156,7 +156,7 @@ def __call__(self, results): results (dict): Result dict contains the data to convert. Returns: - dict: The result dict contains the data converted to + dict: The result dict contains the data converted to \ :obj:`mmcv.DataContainer`. """ @@ -184,7 +184,7 @@ class DefaultFormatBundle(object): - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer - gt_labels: (1)to tensor, (2)to DataContainer - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True) - - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, + - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \ (3)to DataContainer (stack=True) """ @@ -195,7 +195,7 @@ def __call__(self, results): results (dict): Result dict contains the data to convert. Returns: - dict: The result dict contains the data that is formatted with + dict: The result dict contains the data that is formatted with \ default bundle. """ @@ -258,9 +258,9 @@ class Collect(object): The "img_meta" item is always populated. The contents of the "img_meta" dictionary depends on "meta_keys". By default this includes: - - "img_shape": shape of the image input to the network as a tuple - (h, w, c). Note that images may be zero padded on the bottom/right - if the batch tensor is larger than this shape. + - "img_shape": shape of the image input to the network as a tuple \ + (h, w, c). Note that images may be zero padded on the \ + bottom/right if the batch tensor is larger than this shape. - "scale_factor": a float indicating the preprocessing scale @@ -273,6 +273,7 @@ class Collect(object): - "pad_shape": image shape after padding - "img_norm_cfg": a dict of normalization information: + - mean - per channel mean subtraction - std - per channel std divisor - to_rgb - bool indicating if bgr was converted to rgb @@ -303,6 +304,7 @@ def __call__(self, results): Returns: dict: The result dict contains the following keys + - keys in``self.keys`` - ``img_metas`` """ @@ -349,7 +351,7 @@ def __call__(self, results): results (dict): Result dict contains the data to wrap. Returns: - dict: The result dict where value of ``self.keys`` are wrapped + dict: The result dict where value of ``self.keys`` are wrapped \ into list. """ diff --git a/mmdet/datasets/pipelines/transforms.py b/mmdet/datasets/pipelines/transforms.py index 6c4000d099a..d51d4cb041a 100644 --- a/mmdet/datasets/pipelines/transforms.py +++ b/mmdet/datasets/pipelines/transforms.py @@ -36,11 +36,11 @@ class Resize(object): `img_scale` can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes: - - ``ratio_range is not None``: randomly sample a ratio from the ratio range - and multiply it with the image scale. - - ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly + - ``ratio_range is not None``: randomly sample a ratio from the ratio \ + range and multiply it with the image scale. + - ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \ sample a scale from the multiscale range. - - ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly + - ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \ sample a scale from multiple scales. Args: @@ -84,8 +84,8 @@ def random_select(img_scales): img_scales (list[tuple]): Images scales for selection. Returns: - (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, - where ``img_scale`` is the selected image scale and + (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \ + where ``img_scale`` is the selected image scale and \ ``scale_idx`` is the selected index in the given candidates. """ @@ -104,8 +104,8 @@ def random_sample(img_scales): and uper bound of image scales. Returns: - (tuple, None): Returns a tuple ``(img_scale, None)``, where - ``img_scale`` is sampled scale and None is just a placeholder + (tuple, None): Returns a tuple ``(img_scale, None)``, where \ + ``img_scale`` is sampled scale and None is just a placeholder \ to be consistent with :func:`random_select`. """ @@ -135,9 +135,9 @@ def random_sample_ratio(img_scale, ratio_range): the ``img_scale``. Returns: - (tuple, None): Returns a tuple ``(scale, None)``, where - ``scale`` is sampled ratio multiplied with ``img_scale`` and - None is just a placeholder to be consistent with + (tuple, None): Returns a tuple ``(scale, None)``, where \ + ``scale`` is sampled ratio multiplied with ``img_scale`` and \ + None is just a placeholder to be consistent with \ :func:`random_select`. """ @@ -162,7 +162,7 @@ def _random_scale(self, results): results (dict): Result dict from :obj:`dataset`. Returns: - dict: Two new keys 'scale` and 'scale_idx` are added into + dict: Two new keys 'scale` and 'scale_idx` are added into \ ``results``, which would be used by subsequent pipelines. """ @@ -244,7 +244,7 @@ def __call__(self, results): results (dict): Result dict from loading pipeline. Returns: - dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', + dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \ 'keep_ratio' keys are added into result dict. """ @@ -332,8 +332,8 @@ def __call__(self, results): results (dict): Result dict from loading pipeline. Returns: - dict: Flipped results, 'flip', 'flip_direction' keys are added into - result dict. + dict: Flipped results, 'flip', 'flip_direction' keys are added \ + into result dict. """ if 'flip' not in results: @@ -486,7 +486,7 @@ class RandomCrop(object): allow_negative_crop (bool): Whether to allow a crop that does not contain any bbox area. Default to False. - Notes: + Note: - If the image is smaller than the crop size, return the original image - The keys for bboxes, labels and masks must be aligned. That is, `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and @@ -810,9 +810,9 @@ class MinIoURandomCrop(object): min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, where a >= min_crop_size). - Notes: - The keys for bboxes, labels and masks should be paired. That is, - `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and + Note: + The keys for bboxes, labels and masks should be paired. That is, \ + `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \ `gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`. """ @@ -838,7 +838,7 @@ def __call__(self, results): results (dict): Result dict from loading pipeline. Returns: - dict: Result dict with images and bounding boxes cropped, + dict: Result dict with images and bounding boxes cropped, \ 'img_shape' key is updated. """ @@ -1174,19 +1174,19 @@ class RandomCenterCropPad(object): """Random center crop and random around padding for CornerNet. This operation generates randomly cropped image from the original image and - pads it simultaneously. Different from `RandomCrop`, the output shape may - not equal to `crop_size` strictly. We choose a random value from `ratios` - and the output shape could be larger or smaller than `crop_size`. Also the - pad in this operation is different from `Pad`, actually we use around - padding instead of right-bottom padding. + pads it simultaneously. Different from :class:`RandomCrop`, the output + shape may not equal to ``crop_size`` strictly. We choose a random value + from ``ratios`` and the output shape could be larger or smaller than + ``crop_size``. The padding operation is also different from :class:`Pad`, + here we use around padding instead of right-bottom padding. The relation between output image (padding image) and original image: - .. code-block: text + .. code-block:: - output image - +----------------------------+ - | padded area | + output image + +----------------------------+ + | padded area | +------|----------------------------|----------+ | | cropped area | | | | +---------------+ | | @@ -1194,24 +1194,26 @@ class RandomCenterCropPad(object): | | | range | | | | | +---------------+ | | +------|----------------------------|----------+ - | padded area | - +----------------------------+ + | padded area | + +----------------------------+ There are 5 main areas in the figure: - - output image: output image of this operation, also called padding + + - output image: output image of this operation, also called padding \ image in following instruction. - original image: input image of this operation. - padded area: non-intersect area of output image and original image. - cropped area: the overlap of output image and original image. - - center range: a smaller area where random center chosen from. - center range is computed by `border` and original image's shape + - center range: a smaller area where random center chosen from. \ + center range is computed by `border` and original image's shape \ to avoid our random center is too close to original image's border. Also this operation act differently in train and test mode, the summary pipeline is listed below. Train pipeline: - 1. Choose a `random_ratio` from `ratios`, the shape of padding image + + 1. Choose a `random_ratio` from `ratios`, the shape of padding image \ will be `random_ratio * crop_size`. 2. Choose a `random_center` in `center range`. 3. Generate padding image with center matches the `random_center`. @@ -1220,8 +1222,9 @@ class RandomCenterCropPad(object): 6. Refine annotations. Test pipeline: + 1. Compute output shape according to `test_pad_mode`. - 2. Generate padding image with center matches the original image + 2. Generate padding image with center matches the original image \ center. 3. Initialize the padding image with pixel value equals to `mean`. 4. Copy the `cropped area` to padding image. @@ -1247,7 +1250,7 @@ class RandomCenterCropPad(object): 127 as padding shape value. - 'logical_or': final_shape = input_shape | padding_shape_value - - 'size_divisor': final_shape = int( + - 'size_divisor': final_shape = int( \ ceil(input_shape / padding_shape_value) * padding_shape_value) """ @@ -1316,6 +1319,7 @@ def _filter_boxes(self, patch, boxes): Args: patch (list[int]): The cropped area, [left, top, right, bottom]. boxes (numpy array, (N x 4)): Ground truth boxes. + Returns: mask (numpy array, (N,)): Each box is inside or outside the patch. """ @@ -1339,6 +1343,7 @@ def _crop_image_and_paste(self, image, center, size): image (np array, H x W x C): Original image. center (list[int]): Target crop center coord. size (list[int]): Target crop size. [target_h, target_w] + Returns: cropped_img (np array, target_h x target_w x C): Cropped image. border (np array, 4): The distance of four border of `cropped_img` diff --git a/mmdet/models/backbones/regnet.py b/mmdet/models/backbones/regnet.py index 1aa2bc59ee3..b786a3f8add 100644 --- a/mmdet/models/backbones/regnet.py +++ b/mmdet/models/backbones/regnet.py @@ -234,8 +234,8 @@ def generate_regnet(self, divisor (int, optional): The divisor of channels. Defaults to 8. Returns: - list, int: return a list of widths of each stage and the number of - stages + list, int: return a list of widths of each stage and the number \ + of stages """ assert width_slope >= 0 assert initial_width > 0 diff --git a/mmdet/models/dense_heads/anchor_head.py b/mmdet/models/dense_heads/anchor_head.py index 8277f656488..2faec705ecf 100644 --- a/mmdet/models/dense_heads/anchor_head.py +++ b/mmdet/models/dense_heads/anchor_head.py @@ -119,9 +119,9 @@ def forward_single(self, x): Returns: tuple: - cls_score (Tensor): Cls scores for a single scale level + cls_score (Tensor): Cls scores for a single scale level \ the channels number is num_anchors * num_classes. - bbox_pred (Tensor): Box energies / deltas for a single scale + bbox_pred (Tensor): Box energies / deltas for a single scale \ level, the channels number is num_anchors * 4. """ cls_score = self.conv_cls(x) @@ -136,13 +136,14 @@ def forward(self, feats): a 4D-tensor. Returns: - tuple: Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification scores for all scale - levels, each is a 4D-tensor, the channels number is - num_anchors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all scale - levels, each is a 4D-tensor, the channels number is - num_anchors * 4. + tuple: A tuple of classification scores and bbox prediction. + + - cls_scores (list[Tensor]): Classification scores for all \ + scale levels, each is a 4D-tensor, the channels number \ + is num_anchors * num_classes. + - bbox_preds (list[Tensor]): Box energies / deltas for all \ + scale levels, each is a 4D-tensor, the channels number \ + is num_anchors * 4. """ return multi_apply(self.forward_single, feats) @@ -156,8 +157,8 @@ def get_anchors(self, featmap_sizes, img_metas, device='cuda'): Returns: tuple: - anchor_list (list[Tensor]): Anchors of each image - valid_flag_list (list[Tensor]): Valid flags of each image + anchor_list (list[Tensor]): Anchors of each image. + valid_flag_list (list[Tensor]): Valid flags of each image. """ num_imgs = len(img_metas) @@ -308,13 +309,17 @@ def get_targets(self, set of anchors. Returns: - tuple: - labels_list (list[Tensor]): Labels of each level - label_weights_list (list[Tensor]): Label weights of each level - bbox_targets_list (list[Tensor]): BBox targets of each level - bbox_weights_list (list[Tensor]): BBox weights of each level - num_total_pos (int): Number of positive samples in all images - num_total_neg (int): Number of negative samples in all images + tuple: Usually returns a tuple containing learning targets. + + - labels_list (list[Tensor]): Labels of each level. + - label_weights_list (list[Tensor]): Label weights of each \ + level. + - bbox_targets_list (list[Tensor]): BBox targets of each level. + - bbox_weights_list (list[Tensor]): BBox weights of each level. + - num_total_pos (int): Number of positive samples in all \ + images. + - num_total_neg (int): Number of negative samples in all \ + images. additional_returns: This function enables user-defined returns from `self._get_targets_single`. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). diff --git a/mmdet/models/dense_heads/fcos_head.py b/mmdet/models/dense_heads/fcos_head.py index 048fa1ddf98..d7b30ec3c4e 100644 --- a/mmdet/models/dense_heads/fcos_head.py +++ b/mmdet/models/dense_heads/fcos_head.py @@ -45,6 +45,7 @@ class FCOSHead(AnchorFreeHead): loss_centerness (dict): Config of centerness loss. norm_cfg (dict): dictionary to construct and config norm layer. Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). + Example: >>> self = FCOSHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] @@ -108,13 +109,13 @@ def forward(self, feats): Returns: tuple: - cls_scores (list[Tensor]): Box scores for each scale level, - each is a 4D-tensor, the channel number is + cls_scores (list[Tensor]): Box scores for each scale level, \ + each is a 4D-tensor, the channel number is \ num_points * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for each scale - level, each is a 4D-tensor, the channel number is + bbox_preds (list[Tensor]): Box energies / deltas for each \ + scale level, each is a 4D-tensor, the channel number is \ num_points * 4. - centernesses (list[Tensor]): Centerss for each scale level, + centernesses (list[Tensor]): Centerss for each scale level, \ each is a 4D-tensor, the channel number is num_points * 1. """ return multi_apply(self.forward_single, feats, self.scales, @@ -132,7 +133,7 @@ def forward_single(self, x, scale, stride): is True. Returns: - tuple: scores for each class, bbox predictions and centerness + tuple: scores for each class, bbox predictions and centerness \ predictions of input feature maps. """ cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x) @@ -272,12 +273,12 @@ def get_bboxes(self, rescale (bool): If True, return boxes in original image space Returns: - list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. - The first item is an (n, 5) tensor, where the first 4 columns - are bounding box positions (tl_x, tl_y, br_x, br_y) and the - 5-th column is a score between 0 and 1. The second item is a - (n,) tensor where each item is the predicted class label of the - corresponding box. + list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ + The first item is an (n, 5) tensor, where the first 4 columns \ + are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ + 5-th column is a score between 0 and 1. The second item is a \ + (n,) tensor where each item is the predicted class label of \ + the corresponding box. """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) @@ -335,8 +336,8 @@ def _get_bboxes_single(self, rescale (bool): If True, return boxes in original image space. Returns: - Tensor: Labeled boxes in shape (n, 5), where the first 4 columns - are bounding box positions (tl_x, tl_y, br_x, br_y) and the + Tensor: Labeled boxes in shape (n, 5), where the first 4 columns \ + are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ 5-th column is a score between 0 and 1. """ cfg = self.test_cfg if cfg is None else cfg @@ -408,8 +409,8 @@ def get_targets(self, points, gt_bboxes_list, gt_labels_list): Returns: tuple: - concat_lvl_labels (list[Tensor]): Labels of each level. - concat_lvl_bbox_targets (list[Tensor]): BBox targets of each + concat_lvl_labels (list[Tensor]): Labels of each level. \ + concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ level. """ assert len(points) == len(self.regress_ranges) diff --git a/mmdet/models/detectors/atss.py b/mmdet/models/detectors/atss.py index fe8805c442d..db7139c6b4f 100644 --- a/mmdet/models/detectors/atss.py +++ b/mmdet/models/detectors/atss.py @@ -4,6 +4,7 @@ @DETECTORS.register_module() class ATSS(SingleStageDetector): + """Implementation of `ATSS `_.""" def __init__(self, backbone, diff --git a/mmdet/models/detectors/base.py b/mmdet/models/detectors/base.py index 5959ff1ac94..ddecb8f9be5 100644 --- a/mmdet/models/detectors/base.py +++ b/mmdet/models/detectors/base.py @@ -180,8 +180,8 @@ def _parse_losses(self, losses): losses and other necessary infomation. Returns: - tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor - which may be a weighted sum of all losses, log_vars contains + tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor \ + which may be a weighted sum of all losses, log_vars contains \ all the variables to be sent to the logger. """ log_vars = OrderedDict() @@ -223,14 +223,15 @@ def train_step(self, data, optimizer): and reserved. Returns: - dict: It should contain at least 3 keys: ``loss``, ``log_vars``, + dict: It should contain at least 3 keys: ``loss``, ``log_vars``, \ ``num_samples``. - ``loss`` is a tensor for back propagation, which can be a + + - ``loss`` is a tensor for back propagation, which can be a \ weighted sum of multiple losses. - ``log_vars`` contains all the variables to be sent to the + - ``log_vars`` contains all the variables to be sent to the logger. - ``num_samples`` indicates the batch size (when the model is - DDP, it means the batch size on each GPU), which is used for + - ``num_samples`` indicates the batch size (when the model is \ + DDP, it means the batch size on each GPU), which is used for \ averaging the logs. """ losses = self(**data) diff --git a/mmdet/models/losses/ghm_loss.py b/mmdet/models/losses/ghm_loss.py index ed736c775b8..8969a23fd98 100644 --- a/mmdet/models/losses/ghm_loss.py +++ b/mmdet/models/losses/ghm_loss.py @@ -22,8 +22,8 @@ class GHMC(nn.Module): """GHM Classification Loss. Details of the theorem can be viewed in the paper - "Gradient Harmonized Single-stage Detector". - https://arxiv.org/abs/1811.05181 + `Gradient Harmonized Single-stage Detector + `_. Args: bins (int): Number of the unit regions for distribution calculation. @@ -100,8 +100,8 @@ class GHMR(nn.Module): """GHM Regression Loss. Details of the theorem can be viewed in the paper - "Gradient Harmonized Single-stage Detector" - https://arxiv.org/abs/1811.05181 + `Gradient Harmonized Single-stage Detector + `_. Args: mu (float): The parameter for the Authentic Smooth L1 loss. diff --git a/mmdet/models/losses/iou_loss.py b/mmdet/models/losses/iou_loss.py index b65676b7668..6b1d43f9ff1 100644 --- a/mmdet/models/losses/iou_loss.py +++ b/mmdet/models/losses/iou_loss.py @@ -29,8 +29,10 @@ def iou_loss(pred, target, eps=1e-6): @weighted_loss def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3): - """`Improving Object Localization with Fitness NMS and Bounded IoU Loss. + """BIoULoss. + This is an implementation of paper + `Improving Object Localization with Fitness NMS and Bounded IoU Loss. `_. Args: diff --git a/mmdet/models/necks/bfp.py b/mmdet/models/necks/bfp.py index 863a55530ed..bc61b094e93 100644 --- a/mmdet/models/necks/bfp.py +++ b/mmdet/models/necks/bfp.py @@ -13,7 +13,8 @@ class BFP(nn.Module): BFP takes multi-level features as inputs and gather them into a single one, then refine the gathered feature and scatter the refined results to multi-level features. This module is used in Libra R-CNN (CVPR 2019), see - https://arxiv.org/pdf/1904.02701.pdf for details. + the paper `Libra R-CNN: Towards Balanced Learning for Object Detection + `_ for details. Args: in_channels (int): Number of input channels (feature maps of all levels diff --git a/mmdet/models/necks/fpn.py b/mmdet/models/necks/fpn.py index 927094a7159..f07a5725b78 100644 --- a/mmdet/models/necks/fpn.py +++ b/mmdet/models/necks/fpn.py @@ -8,10 +8,10 @@ @NECKS.register_module() class FPN(nn.Module): - """Feature Pyramid Network. + r"""Feature Pyramid Network. - This is an implementation of - Feature Pyramid Networks for Object - Detection (https://arxiv.org/abs/1612.03144) + This is an implementation of paper `Feature Pyramid Networks for Object + Detection `_. Args: in_channels (List[int]): Number of input channels per scale. diff --git a/mmdet/models/necks/hrfpn.py b/mmdet/models/necks/hrfpn.py index 09ee381a2a1..cf87cfa7918 100644 --- a/mmdet/models/necks/hrfpn.py +++ b/mmdet/models/necks/hrfpn.py @@ -11,7 +11,8 @@ class HRFPN(nn.Module): """HRFPN (High Resolution Feature Pyrmamids) - arXiv: https://arxiv.org/abs/1904.04514 + paper: `High-Resolution Representations for Labeling Pixels and Regions + `_. Args: in_channels (list): number of channels for each branch. diff --git a/.isort.cfg b/setup.cfg similarity index 72% rename from .isort.cfg rename to setup.cfg index 947555524bb..39934a823b1 100644 --- a/.isort.cfg +++ b/setup.cfg @@ -6,3 +6,8 @@ known_first_party = mmdet known_third_party = PIL,asynctest,cityscapesscripts,cv2,matplotlib,mmcv,numpy,onnx,pycocotools,pytest,robustness_eval,seaborn,six,terminaltables,torch,torchvision no_lines_before = STDLIB,LOCALFOLDER default_section = THIRDPARTY + +[yapf] +BASED_ON_STYLE = pep8 +BLANK_LINE_BEFORE_NESTED_CLASS_OR_DEF = true +SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN = true