From d0ba694f4abfee52c35c96465dbb70aca05fcf43 Mon Sep 17 00:00:00 2001 From: MengzhangLI Date: Tue, 16 Nov 2021 01:59:28 +0800 Subject: [PATCH] fixing dice metric in unet --- .dev/md2yml.py | 2 +- configs/unet/unet.yml | 24 ++++++++++++------------ 2 files changed, 13 insertions(+), 13 deletions(-) diff --git a/.dev/md2yml.py b/.dev/md2yml.py index 6bb1349d65..311f6d072e 100755 --- a/.dev/md2yml.py +++ b/.dev/md2yml.py @@ -176,7 +176,7 @@ def parse_md(md_file): 'Task': 'Semantic Segmentation', 'Dataset': current_dataset, 'Metrics': { - 'mIoU': float(els[ss_id]), + cols[ss_id]: float(els[ss_id]), }, }, ], diff --git a/configs/unet/unet.yml b/configs/unet/unet.yml index e7991f40fe..0fc77325d7 100644 --- a/configs/unet/unet.yml +++ b/configs/unet/unet.yml @@ -27,7 +27,7 @@ Models: - Task: Semantic Segmentation Dataset: DRIVE Metrics: - mIoU: 78.67 + Dice: 78.67 Config: configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth - Name: pspnet_unet_s5-d16_64x64_40k_drive @@ -41,7 +41,7 @@ Models: - Task: Semantic Segmentation Dataset: DRIVE Metrics: - mIoU: 78.62 + Dice: 78.62 Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth - Name: deeplabv3_unet_s5-d16_64x64_40k_drive @@ -55,7 +55,7 @@ Models: - Task: Semantic Segmentation Dataset: DRIVE Metrics: - mIoU: 78.69 + Dice: 78.69 Config: configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth - Name: fcn_unet_s5-d16_128x128_40k_stare @@ -69,7 +69,7 @@ Models: - Task: Semantic Segmentation Dataset: STARE Metrics: - mIoU: 81.02 + Dice: 81.02 Config: configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth - Name: pspnet_unet_s5-d16_128x128_40k_stare @@ -83,7 +83,7 @@ Models: - Task: Semantic Segmentation Dataset: STARE Metrics: - mIoU: 81.22 + Dice: 81.22 Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth - Name: deeplabv3_unet_s5-d16_128x128_40k_stare @@ -97,7 +97,7 @@ Models: - Task: Semantic Segmentation Dataset: STARE Metrics: - mIoU: 80.93 + Dice: 80.93 Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth - Name: fcn_unet_s5-d16_128x128_40k_chase_db1 @@ -111,7 +111,7 @@ Models: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: - mIoU: 80.24 + Dice: 80.24 Config: configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth - Name: pspnet_unet_s5-d16_128x128_40k_chase_db1 @@ -125,7 +125,7 @@ Models: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: - mIoU: 80.36 + Dice: 80.36 Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth - Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1 @@ -139,7 +139,7 @@ Models: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: - mIoU: 80.47 + Dice: 80.47 Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth - Name: fcn_unet_s5-d16_256x256_40k_hrf @@ -153,7 +153,7 @@ Models: - Task: Semantic Segmentation Dataset: HRF Metrics: - mIoU: 79.45 + Dice: 79.45 Config: configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth - Name: pspnet_unet_s5-d16_256x256_40k_hrf @@ -167,7 +167,7 @@ Models: - Task: Semantic Segmentation Dataset: HRF Metrics: - mIoU: 80.07 + Dice: 80.07 Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth - Name: deeplabv3_unet_s5-d16_256x256_40k_hrf @@ -181,6 +181,6 @@ Models: - Task: Semantic Segmentation Dataset: HRF Metrics: - mIoU: 80.21 + Dice: 80.21 Config: configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth