From c09594d7a84d88ad0ff998e0c0e2206ed3b3c191 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Tue, 2 Mar 2021 15:09:56 +0800 Subject: [PATCH 01/29] dice loss --- mmseg/models/losses/__init__.py | 3 +- mmseg/models/losses/dice_loss.py | 97 ++++++++++++++++++++++++++++++++ tests/test_models/test_losses.py | 40 +++++++++++++ 3 files changed, 139 insertions(+), 1 deletion(-) create mode 100644 mmseg/models/losses/dice_loss.py diff --git a/mmseg/models/losses/__init__.py b/mmseg/models/losses/__init__.py index d623887760..4401bd42d0 100644 --- a/mmseg/models/losses/__init__.py +++ b/mmseg/models/losses/__init__.py @@ -2,10 +2,11 @@ from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .lovasz_loss import LovaszLoss +from .dice_loss import DiceLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss', - 'weight_reduce_loss', 'weighted_loss', 'LovaszLoss' + 'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss' ] diff --git a/mmseg/models/losses/dice_loss.py b/mmseg/models/losses/dice_loss.py new file mode 100644 index 0000000000..0956d26f9f --- /dev/null +++ b/mmseg/models/losses/dice_loss.py @@ -0,0 +1,97 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from ..builder import LOSSES +from .utils import weighted_loss + +@weighted_loss +def dice_loss(pred, + target, + valid_mask, + smooth=1, + exponent=2, + class_weight=None, + ignore_index=-1): + assert pred.shape[0] == target.shape[0] + total_loss = 0 + num_classes = pred.shape[1] + for i in range(num_classes): + if i != ignore_index: + dice_loss = binary_dice_loss(pred[:, i], target[..., i], valid_mask=valid_mask, smooth=smooth, exponent=exponent) + if class_weight is not None: + dice_loss *= class_weight[i] + total_loss += dice_loss + return total_loss / num_classes + +@weighted_loss +def binary_dice_loss(pred, + target, + valid_mask, + smooth=1, + exponent=2, + **kwards): + assert pred.shape[0] == target.shape[0] + pred = pred.contiguous().view(pred.shape[0], -1) + target = target.contiguous().view(target.shape[0], -1) + valid_mask = valid_mask.contiguous().view(valid_mask.shape[0], -1) + + num = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) * 2 + smooth + den = torch.sum((pred.pow(exponent) + target.pow(exponent)) * valid_mask, dim=1) + smooth + + return 1 - num / den + +@LOSSES.register_module() +class DiceLoss(nn.Module): + """DiceLoss. + + """ + def __init__(self, + loss_type='multi_class', + smooth=1, + exponent=2, + reduction='mean', + class_weight=None, + loss_weight=1.0, + ignore_index=-1): + super(DiceLoss, self).__init__() + assert loss_type in ['multi_class', 'binary'] + if loss_type == 'multi_class': + self.cls_criterion = dice_loss + else: + self.cls_criterion = binary_dice_loss + self.smooth = smooth + self.exponent = exponent + self.reduction = reduction + self.class_weight = class_weight + self.loss_weight = loss_weight + self.ignore_index = ignore_index + + def forward(self, + pred, + target, + avg_factor=None, + reduction_override=None): + assert reduction_override in (None, 'none', 'mean', 'sum') + reduction = ( + reduction_override if reduction_override else self.reduction) + if self.class_weight is not None: + class_weight = pred.new_tensor(self.class_weight) + else: + class_weight = None + + pred = F.softmax(pred, dim=1) + one_hot_target = F.one_hot(torch.clamp_min(target.long(), 0)) + valid_mask = (target != self.ignore_index).long() + + loss = self.loss_weight * self.cls_criterion( + pred, + one_hot_target, + valid_mask=valid_mask, + reduction=reduction, + avg_factor=avg_factor, + smooth=self.smooth, + exponent=self.exponent, + class_weight=class_weight, + ignore_index=self.ignore_index) + return loss diff --git a/tests/test_models/test_losses.py b/tests/test_models/test_losses.py index 005d939114..0984003bdc 100644 --- a/tests/test_models/test_losses.py +++ b/tests/test_models/test_losses.py @@ -202,3 +202,43 @@ def test_lovasz_loss(): logits = torch.rand(2, 4, 4) labels = (torch.rand(2, 4, 4)).long() lovasz_loss(logits, labels, ignore_index=None) + +def test_dice_lose(): + from mmseg.models import build_loss + import sys + + # loss_type should be 'binary' or 'multi_class' + with pytest.raises(AssertionError): + loss_cfg = dict( + type='DiceLoss', + loss_type='Binary', + reduction='none', + loss_weight=1.0) + build_loss(loss_cfg) + + # test dice loss with loss_type = 'multi_class' + loss_cfg = dict( + type='DiceLoss', + loss_type='multi_class', + reduction='none', + class_weight=[1.0, 2.0, 3.0], + loss_weight=1.0, + ignore_index=1) + dice_loss = build_loss(loss_cfg) + logits = torch.rand(8, 3, 4, 4) + labels = (torch.rand(8, 4, 4) * 3).long() + dice_loss(logits, labels) + + # test dice loss with loss_type = 'binary' + loss_cfg = dict( + type='DiceLoss', + loss_type='binary', + smooth=2, + exponent=3, + reduction='sum', + loss_weight=1.0, + ignore_index=0) + dice_loss = build_loss(loss_cfg) + logits = torch.rand(16, 4, 4) + labels = (torch.rand(16, 4, 4)).long() + dice_loss(logits, labels) \ No newline at end of file From 85d5eb4c940936568cc283ee099e44bd7f787bd2 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Tue, 2 Mar 2021 20:35:43 +0800 Subject: [PATCH 02/29] format code, add docstring and calculate denominator without valid_mask --- mmseg/models/losses/dice_loss.py | 67 ++++++++++++++++++++------------ tests/test_models/test_losses.py | 6 +-- 2 files changed, 45 insertions(+), 28 deletions(-) diff --git a/mmseg/models/losses/dice_loss.py b/mmseg/models/losses/dice_loss.py index 0956d26f9f..06d44a9497 100644 --- a/mmseg/models/losses/dice_loss.py +++ b/mmseg/models/losses/dice_loss.py @@ -5,11 +5,12 @@ from ..builder import LOSSES from .utils import weighted_loss + @weighted_loss def dice_loss(pred, target, valid_mask, - smooth=1, + smooth=1, exponent=2, class_weight=None, ignore_index=-1): @@ -18,40 +19,60 @@ def dice_loss(pred, num_classes = pred.shape[1] for i in range(num_classes): if i != ignore_index: - dice_loss = binary_dice_loss(pred[:, i], target[..., i], valid_mask=valid_mask, smooth=smooth, exponent=exponent) + dice_loss = binary_dice_loss( + pred[:, i], + target[..., i], + valid_mask=valid_mask, + smooth=smooth, + exponent=exponent) if class_weight is not None: dice_loss *= class_weight[i] total_loss += dice_loss return total_loss / num_classes + @weighted_loss -def binary_dice_loss(pred, - target, - valid_mask, - smooth=1, - exponent=2, - **kwards): +def binary_dice_loss(pred, target, valid_mask, smooth=1, exponent=2, **kwards): assert pred.shape[0] == target.shape[0] pred = pred.contiguous().view(pred.shape[0], -1) target = target.contiguous().view(target.shape[0], -1) valid_mask = valid_mask.contiguous().view(valid_mask.shape[0], -1) num = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) * 2 + smooth - den = torch.sum((pred.pow(exponent) + target.pow(exponent)) * valid_mask, dim=1) + smooth + den = torch.sum(pred.pow(exponent) + target.pow(exponent), dim=1) + smooth return 1 - num / den + @LOSSES.register_module() class DiceLoss(nn.Module): """DiceLoss. + This loss is proposed in `V-Net: Fully Convolutional Neural Networks for + Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. + + Args: + loss_type (str, optional): Binary or multi-class loss. + Default: 'multi_class'. Options are "binary" and "multi_class". + smooth (float): A float number to smooth loss, and avoid NaN error. + Default: 1 + exponent (float): An float number to calculate denominator + value: \\sum{x^exponent} + \\sum{y^exponent}. Default: 2. + reduction (str, optional): The method used to reduce the loss. Options + are "none", "mean" and "sum". This parameter only works when + per_image is True. Default: 'mean'. + class_weight (list[float], optional): The weight for each class. + Default: None. + loss_weight (float, optional): Weight of the loss. Default to 1.0. + ignore_index (int | None): The label index to be ignored. Default: -1. """ - def __init__(self, + + def __init__(self, loss_type='multi_class', - smooth=1, + smooth=1, exponent=2, reduction='mean', - class_weight=None, + class_weight=None, loss_weight=1.0, ignore_index=-1): super(DiceLoss, self).__init__() @@ -67,29 +88,25 @@ def __init__(self, self.loss_weight = loss_weight self.ignore_index = ignore_index - def forward(self, - pred, - target, - avg_factor=None, - reduction_override=None): + def forward(self, pred, target, avg_factor=None, reduction_override=None): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = pred.new_tensor(self.class_weight) else: - class_weight = None - + class_weight = None + pred = F.softmax(pred, dim=1) - one_hot_target = F.one_hot(torch.clamp_min(target.long(), 0)) + one_hot_target = F.one_hot(torch.clamp_min(target.long(), 0)) valid_mask = (target != self.ignore_index).long() - + loss = self.loss_weight * self.cls_criterion( - pred, - one_hot_target, + pred, + one_hot_target, valid_mask=valid_mask, - reduction=reduction, - avg_factor=avg_factor, + reduction=reduction, + avg_factor=avg_factor, smooth=self.smooth, exponent=self.exponent, class_weight=class_weight, diff --git a/tests/test_models/test_losses.py b/tests/test_models/test_losses.py index 0984003bdc..481a8e92ce 100644 --- a/tests/test_models/test_losses.py +++ b/tests/test_models/test_losses.py @@ -203,9 +203,9 @@ def test_lovasz_loss(): labels = (torch.rand(2, 4, 4)).long() lovasz_loss(logits, labels, ignore_index=None) + def test_dice_lose(): from mmseg.models import build_loss - import sys # loss_type should be 'binary' or 'multi_class' with pytest.raises(AssertionError): @@ -216,7 +216,7 @@ def test_dice_lose(): loss_weight=1.0) build_loss(loss_cfg) - # test dice loss with loss_type = 'multi_class' + # test dice loss with loss_type = 'multi_class' loss_cfg = dict( type='DiceLoss', loss_type='multi_class', @@ -241,4 +241,4 @@ def test_dice_lose(): dice_loss = build_loss(loss_cfg) logits = torch.rand(16, 4, 4) labels = (torch.rand(16, 4, 4)).long() - dice_loss(logits, labels) \ No newline at end of file + dice_loss(logits, labels) From 631322bc1149b23a5fd80a8e457d2834b64d5993 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Tue, 2 Mar 2021 20:44:38 +0800 Subject: [PATCH 03/29] minor change --- mmseg/models/losses/__init__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mmseg/models/losses/__init__.py b/mmseg/models/losses/__init__.py index 4401bd42d0..beca720456 100644 --- a/mmseg/models/losses/__init__.py +++ b/mmseg/models/losses/__init__.py @@ -1,8 +1,8 @@ from .accuracy import Accuracy, accuracy from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) -from .lovasz_loss import LovaszLoss from .dice_loss import DiceLoss +from .lovasz_loss import LovaszLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss __all__ = [ From 20c9f627eaefa95acae95c59b1e329a5f6d7f464 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Thu, 11 Mar 2021 10:25:49 +0800 Subject: [PATCH 04/29] restore --- mmseg/models/losses/dice_loss.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/mmseg/models/losses/dice_loss.py b/mmseg/models/losses/dice_loss.py index 06d44a9497..27da861f98 100644 --- a/mmseg/models/losses/dice_loss.py +++ b/mmseg/models/losses/dice_loss.py @@ -1,3 +1,5 @@ +"""Modified from https://github.com/LikeLy-Journey/SegmenTron/blob/master/ +segmentron/solver/loss.py (Apache-2.0 License)""" import torch import torch.nn as nn import torch.nn.functional as F @@ -64,7 +66,7 @@ class DiceLoss(nn.Module): class_weight (list[float], optional): The weight for each class. Default: None. loss_weight (float, optional): Weight of the loss. Default to 1.0. - ignore_index (int | None): The label index to be ignored. Default: -1. + ignore_index (int | None): The label index to be ignored. Default: 255. """ def __init__(self, @@ -74,7 +76,7 @@ def __init__(self, reduction='mean', class_weight=None, loss_weight=1.0, - ignore_index=-1): + ignore_index=255): super(DiceLoss, self).__init__() assert loss_type in ['multi_class', 'binary'] if loss_type == 'multi_class': From bdbb9c684d589f4567091a7140664ed55362deca Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Wed, 12 May 2021 14:40:00 +0800 Subject: [PATCH 05/29] add metafile --- configs/fcn/metafile.yml | 7 +++++++ model_zoo.yml | 4 ++++ 2 files changed, 11 insertions(+) create mode 100644 configs/fcn/metafile.yml create mode 100644 model_zoo.yml diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml new file mode 100644 index 0000000000..96ad802e9c --- /dev/null +++ b/configs/fcn/metafile.yml @@ -0,0 +1,7 @@ +Collections: + - Name: FCN +Models: + - Name: fcn_r50-d8_512x1024_40k_cityscapes + In Collection: FCN + Metadata: + Training Data: Cityscapes diff --git a/model_zoo.yml b/model_zoo.yml new file mode 100644 index 0000000000..aae808abb7 --- /dev/null +++ b/model_zoo.yml @@ -0,0 +1,4 @@ +Import: + - configs/fcn/metafile.yml + - configs/pspnet/metafile.yml + - configs/deeplabv3/metafile.yml From 7a12e7c99d7b8c4e90fbb7a66e1d615fed03d0ca Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Wed, 12 May 2021 15:06:45 +0800 Subject: [PATCH 06/29] add manifest.in and add config at setup.py --- MANIFEST.in | 10 ++++++++++ setup.py | 1 + 2 files changed, 11 insertions(+) create mode 100644 MANIFEST.in diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 0000000000..f45525bccf --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,10 @@ + +include requirements/*.txt +include mmseg/VERSION +include mmseg/model_zoo.yml +include mmseg/configs/*/*.py +include mmseg/configs/*/*.yml +include mmseg/tools/*.py +include mmseg/tools/*.sh +include mmseg/tools/*/*.py +include mmseg/demo/*/* diff --git a/setup.py b/setup.py index 2e69551b8f..321664bcdd 100755 --- a/setup.py +++ b/setup.py @@ -104,6 +104,7 @@ def gen_packages_items(): keywords='computer vision, semantic segmentation', url='http://github.com/open-mmlab/mmsegmentation', packages=find_packages(exclude=('configs', 'tools', 'demo')), + include_package_data=True, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', From d11b00ee8d38a7636f1a759fcb5520788120cad4 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Wed, 12 May 2021 15:12:06 +0800 Subject: [PATCH 07/29] add requirements --- requirements/mminstall.txt | 1 + 1 file changed, 1 insertion(+) create mode 100644 requirements/mminstall.txt diff --git a/requirements/mminstall.txt b/requirements/mminstall.txt new file mode 100644 index 0000000000..d371e1cc8e --- /dev/null +++ b/requirements/mminstall.txt @@ -0,0 +1 @@ +mmcv-full>=1.3.0 From 5a2448b8623c0c8f58b82ce14d6a79c93431b3a2 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Wed, 12 May 2021 15:16:41 +0800 Subject: [PATCH 08/29] modify manifest --- MANIFEST.in | 10 ++-------- 1 file changed, 2 insertions(+), 8 deletions(-) diff --git a/MANIFEST.in b/MANIFEST.in index f45525bccf..735cc8d040 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,10 +1,4 @@ include requirements/*.txt -include mmseg/VERSION -include mmseg/model_zoo.yml -include mmseg/configs/*/*.py -include mmseg/configs/*/*.yml -include mmseg/tools/*.py -include mmseg/tools/*.sh -include mmseg/tools/*/*.py -include mmseg/demo/*/* +recursive-include mmcls/configs *.py *.yml +recursive-include mmcls/tools *.sh *.py From ee12cf2329d4e1d9e667e4641d27535b6d44dc4b Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Wed, 12 May 2021 15:19:08 +0800 Subject: [PATCH 09/29] modify manifest --- MANIFEST.in | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/MANIFEST.in b/MANIFEST.in index 735cc8d040..04c7fe77e1 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,4 +1,4 @@ include requirements/*.txt -recursive-include mmcls/configs *.py *.yml -recursive-include mmcls/tools *.sh *.py +recursive-include mmseg/configs *.py *.yml +recursive-include mmseg/tools *.sh *.py From 15cb1ba61989c16d9163f37b61c469266faf403e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E8=B0=A2=E6=98=95=E8=BE=B0?= <xinchen.xie@qq.com> Date: Wed, 12 May 2021 15:41:56 +0800 Subject: [PATCH 10/29] Update MANIFEST.in --- MANIFEST.in | 1 + 1 file changed, 1 insertion(+) diff --git a/MANIFEST.in b/MANIFEST.in index 04c7fe77e1..a1a7c9f8f5 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,4 +1,5 @@ include requirements/*.txt +include mmseg/model_zoo.yml recursive-include mmseg/configs *.py *.yml recursive-include mmseg/tools *.sh *.py From e1a54407bf49dd1c20e46a9d03f2ce6e121bde23 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Wed, 12 May 2021 17:41:13 +0800 Subject: [PATCH 11/29] add metafile --- configs/deeplabv3/metafile.yml | 422 +++++++++++++++++++++++++++ configs/fcn/metafile.yml | 503 ++++++++++++++++++++++++++++++++- configs/pspnet/metafile.yml | 394 ++++++++++++++++++++++++++ 3 files changed, 1317 insertions(+), 2 deletions(-) create mode 100644 configs/deeplabv3/metafile.yml create mode 100644 configs/pspnet/metafile.yml diff --git a/configs/deeplabv3/metafile.yml b/configs/deeplabv3/metafile.yml new file mode 100644 index 0000000000..bb496064bf --- /dev/null +++ b/configs/deeplabv3/metafile.yml @@ -0,0 +1,422 @@ +Collections: + - Name: DeepLabV3 + +Modles: + + - Name: deeplabv3_r50-d8_512x1024_40k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 2.57 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.09 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes + + + + - Name: deeplabv3_r101-d8_512x1024_40k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 1.92 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.12 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes + + + + - Name: deeplabv3_r50-d8_769x769_40k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 1.11 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.58 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes + + + + - Name: deeplabv3_r101-d8_769x769_40k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 0.83 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.27 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes + + + + - Name: deeplabv3_r18-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 13.78 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.70 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth + Config: configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes + + + + - Name: deeplabv3_r50-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.32 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes + + + + - Name: deeplabv3_r101-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.20 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes + + + + - Name: deeplabv3_r18-d8_769x769_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 5.55 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.60 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth + Config: configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes + + + + - Name: deeplabv3_r50-d8_769x769_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.89 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes + + + + - Name: deeplabv3_r101-d8_769x769_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes + + + + - Name: deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 6.96 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.71 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth + Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes + + + + - Name: deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth + Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes + + + + - Name: deeplabv3_r18b-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 13.93 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.26 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth + Config: configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes + + + + - Name: deeplabv3_r50b-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 2.74 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.63 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth + Config: configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes + + + + - Name: deeplabv3_r101b-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 1.81 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.01 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth + Config: configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes + + + + - Name: deeplabv3_r18b-d8_769x769_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 5.79 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.63 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth + Config: configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes + + + + - Name: deeplabv3_r50b-d8_769x769_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 1.16 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.80 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth + Config: configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes + + + + - Name: deeplabv3_r101b-d8_769x769_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 0.82 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth + Config: configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes + + + + - Name: deeplabv3_r50-d8_512x512_80k_ade20k + In Collection: DeepLabV3 + Metadata: + inference time (fps): 14.76 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.42 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k + + + + - Name: deeplabv3_r101-d8_512x512_80k_ade20k + In Collection: DeepLabV3 + Metadata: + inference time (fps): 10.14 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.08 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k + + + + - Name: deeplabv3_r50-d8_512x512_160k_ade20k + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.66 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k + + + + - Name: deeplabv3_r101-d8_512x512_160k_ade20k + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.00 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k + + + + - Name: deeplabv3_r50-d8_512x512_20k_voc12aug + In Collection: DeepLabV3 + Metadata: + inference time (fps): 13.88 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.17 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug + + + + - Name: deeplabv3_r101-d8_512x512_20k_voc12aug + In Collection: DeepLabV3 + Metadata: + inference time (fps): 9.81 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.70 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug + + + + - Name: deeplabv3_r50-d8_512x512_40k_voc12aug + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.68 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug + + + + - Name: deeplabv3_r101-d8_512x512_40k_voc12aug + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.92 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug + + + + - Name: deeplabv3_r101-d8_480x480_40k_pascal_context + In Collection: DeepLabV3 + Metadata: + inference time (fps): 7.09 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.55 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context + + + + - Name: deeplabv3_r101-d8_480x480_80k_pascal_context + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.42 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context + + + + - Name: deeplabv3_r101-d8_480x480_40k_pascal_context + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 52.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context + + + + - Name: deeplabv3_r101-d8_480x480_80k_pascal_context_59 + In Collection: DeepLabV3 + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 52.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59 diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index 96ad802e9c..2bbcba6478 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -1,7 +1,506 @@ Collections: - Name: FCN -Models: + +Modles: + - Name: fcn_r50-d8_512x1024_40k_cityscapes In Collection: FCN Metadata: - Training Data: Cityscapes + inference time (fps): 4.17 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.25 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth + Config: configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes + + + + - Name: fcn_r101-d8_512x1024_40k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 2.66 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth + Config: configs/fcn/fcn_r101-d8_512x1024_40k_cityscapes + + + + - Name: fcn_r50-d8_769x769_40k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 1.80 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth + Config: configs/fcn/fcn_r50-d8_769x769_40k_cityscapes + + + + - Name: fcn_r101-d8_769x769_40k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 1.19 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.93 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth + Config: configs/fcn/fcn_r101-d8_769x769_40k_cityscapes + + + + - Name: fcn_r18-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 14.65 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.11 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth + Config: configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes + + + + - Name: fcn_r50-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth + Config: configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes + + + + - Name: fcn_r101-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.13 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth + Config: configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes + + + + - Name: fcn_r18-d8_769x769_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 6.40 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.80 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth + Config: configs/fcn/fcn_r18-d8_769x769_80k_cityscapes + + + + - Name: fcn_r50-d8_769x769_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.64 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth + Config: configs/fcn/fcn_r50-d8_769x769_80k_cityscapes + + + + - Name: fcn_r101-d8_769x769_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.52 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth + Config: configs/fcn/fcn_r101-d8_769x769_80k_cityscapes + + + + - Name: fcn_r18b-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 16.74 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.24 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth + Config: configs/fcn/fcn_r18b-d8_512x1024_80k_cityscapes + + + + - Name: fcn_r50b-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 4.20 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.65 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth + Config: configs/fcn/fcn_r50b-d8_512x1024_80k_cityscapes + + + + - Name: fcn_r101b-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 2.73 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.37 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth + Config: configs/fcn/fcn_r101b-d8_512x1024_80k_cityscapes + + + + - Name: fcn_r18b-d8_769x769_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 6.70 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 69.66 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth + Config: configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes + + + + - Name: fcn_r50b-d8_769x769_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 1.82 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.83 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth + Config: configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes + + + + - Name: fcn_r101b-d8_769x769_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 1.15 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth + Config: configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes + + + + - Name: fcn_d6_r50-d16_512x1024_40k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 10.22 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.06 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth + Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_40k_cityscapes + + + + - Name: fcn_d6_r50-d16_512x1024_80k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 10.35 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.27 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth + Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_80k_cityscapes + + + + - Name: fcn_d6_r50-d16_769x769_40k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 4.17 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.82 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-1aab18ed.pth + Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_40k_cityscapes + + + + - Name: fcn_d6_r50-d16_769x769_80k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 4.15 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.04 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-109d88eb.pth + Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_80k_cityscapes + + + + - Name: fcn_d6_r101-d16_512x1024_40k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 8.04 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-9cf2b450.pth + Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_40k_cityscapes + + + + - Name: fcn_d6_r101-d16_512x1024_80k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 8.26 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-cb336445.pth + Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_80k_cityscapes + + + + - Name: fcn_d6_r101-d16_769x769_40k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 3.12 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.28 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-60b114e9.pth + Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_40k_cityscapes + + + + - Name: fcn_d6_r101-d16_769x769_80k_cityscapes + In Collection: FCN-D6 + Metadata: + inference time (fps): 3.21 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.06 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-e33adc4f.pth + Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_80k_cityscapes + + + + - Name: fcn_r50-d8_512x512_80k_ade20k + In Collection: FCN + Metadata: + inference time (fps): 23.49 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 35.94 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth + Config: configs/fcn/fcn_r50-d8_512x512_80k_ade20k + + + + - Name: fcn_r101-d8_512x512_80k_ade20k + In Collection: FCN + Metadata: + inference time (fps): 14.78 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth + Config: configs/fcn/fcn_r101-d8_512x512_80k_ade20k + + + + - Name: fcn_r50-d8_512x512_160k_ade20k + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 36.10 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth + Config: configs/fcn/fcn_r50-d8_512x512_160k_ade20k + + + + - Name: fcn_r101-d8_512x512_160k_ade20k + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.91 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth + Config: configs/fcn/fcn_r101-d8_512x512_160k_ade20k + + + + - Name: fcn_r50-d8_512x512_20k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): 23.28 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 67.08 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth + Config: configs/fcn/fcn_r50-d8_512x512_20k_voc12aug + + + + - Name: fcn_r101-d8_512x512_20k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): 14.81 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 71.16 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth + Config: configs/fcn/fcn_r101-d8_512x512_20k_voc12aug + + + + - Name: fcn_r50-d8_512x512_40k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 66.97 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth + Config: configs/fcn/fcn_r50-d8_512x512_40k_voc12aug + + + + - Name: fcn_r101-d8_512x512_40k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 69.91 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth + Config: configs/fcn/fcn_r101-d8_512x512_40k_voc12aug + + + + - Name: fcn_r101-d8_480x480_40k_pascal_context + In Collection: FCN + Metadata: + inference time (fps): 9.93 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 44.43 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757-b5e97937.pth + Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context + + + + - Name: fcn_r101-d8_480x480_80k_pascal_context + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 44.13 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310-4711813f.pth + Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context + + + + - Name: fcn_r101-d8_480x480_40k_pascal_context_59 + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 48.42 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth + Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59 + + + + - Name: fcn_r101-d8_480x480_80k_pascal_context_59 + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 49.35 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth + Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context_59 diff --git a/configs/pspnet/metafile.yml b/configs/pspnet/metafile.yml new file mode 100644 index 0000000000..b112bcac41 --- /dev/null +++ b/configs/pspnet/metafile.yml @@ -0,0 +1,394 @@ +Collections: + - Name: PSPNet + +Modles: + + - Name: pspnet_r50-d8_512x1024_40k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 4.07 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.85 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth + Config: configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes + + + + - Name: pspnet_r101-d8_512x1024_40k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 2.68 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.34 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth + Config: configs/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes + + + + - Name: pspnet_r50-d8_769x769_40k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 1.76 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.26 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth + Config: configs/pspnet/pspnet_r50-d8_769x769_40k_cityscapes + + + + - Name: pspnet_r101-d8_769x769_40k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 1.15 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.08 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth + Config: configs/pspnet/pspnet_r101-d8_769x769_40k_cityscapes + + + + - Name: pspnet_r18-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 15.71 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth + Config: configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes + + + + - Name: pspnet_r50-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.55 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth + Config: configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes + + + + - Name: pspnet_r101-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth + Config: configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes + + + + - Name: pspnet_r18-d8_769x769_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 6.20 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.90 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth + Config: configs/pspnet/pspnet_r18-d8_769x769_80k_cityscapes + + + + - Name: pspnet_r50-d8_769x769_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.59 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth + Config: configs/pspnet/pspnet_r50-d8_769x769_80k_cityscapes + + + + - Name: pspnet_r101-d8_769x769_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.77 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth + Config: configs/pspnet/pspnet_r101-d8_769x769_80k_cityscapes + + + + - Name: pspnet_r18b-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 16.28 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.23 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth + Config: configs/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes + + + + - Name: pspnet_r50b-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 4.30 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.22 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth + Config: configs/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes + + + + - Name: pspnet_r101b-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 2.76 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.69 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth + Config: configs/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes + + + + - Name: pspnet_r18b-d8_769x769_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 6.41 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.92 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth + Config: configs/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes + + + + - Name: pspnet_r50b-d8_769x769_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 1.88 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.50 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth + Config: configs/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes + + + + - Name: pspnet_r101b-d8_769x769_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 1.17 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth + Config: configs/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes + + + + - Name: pspnet_r50-d8_512x512_80k_ade20k + In Collection: PSPNet + Metadata: + inference time (fps): 23.53 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.13 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth + Config: configs/pspnet/pspnet_r50-d8_512x512_80k_ade20k + + + + - Name: pspnet_r101-d8_512x512_80k_ade20k + In Collection: PSPNet + Metadata: + inference time (fps): 15.30 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.57 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth + Config: configs/pspnet/pspnet_r101-d8_512x512_80k_ade20k + + + + - Name: pspnet_r50-d8_512x512_160k_ade20k + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.48 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth + Config: configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k + + + + - Name: pspnet_r101-d8_512x512_160k_ade20k + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.39 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth + Config: configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k + + + + - Name: pspnet_r50-d8_512x512_20k_voc12aug + In Collection: PSPNet + Metadata: + inference time (fps): 23.59 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.78 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth + Config: configs/pspnet/pspnet_r50-d8_512x512_20k_voc12aug + + + + - Name: pspnet_r101-d8_512x512_20k_voc12aug + In Collection: PSPNet + Metadata: + inference time (fps): 15.02 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth + Config: configs/pspnet/pspnet_r101-d8_512x512_20k_voc12aug + + + + - Name: pspnet_r50-d8_512x512_40k_voc12aug + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.29 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth + Config: configs/pspnet/pspnet_r50-d8_512x512_40k_voc12aug + + + + - Name: pspnet_r101-d8_512x512_40k_voc12aug + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.52 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth + Config: configs/pspnet/pspnet_r101-d8_512x512_40k_voc12aug + + + + - Name: pspnet_r101-d8_480x480_40k_pascal_context + In Collection: PSPNet + Metadata: + inference time (fps): 9.68 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.60 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth + Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context + + + + - Name: pspnet_r101-d8_480x480_80k_pascal_context + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.03 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth + Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context + + + + - Name: pspnet_r101-d8_480x480_40k_pascal_context + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 52.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth + Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context + + + + - Name: pspnet_r101-d8_480x480_80k_pascal_context_59 + In Collection: PSPNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 52.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth + Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59 From c419a241528769d4f14028cbadcc2902d2808690 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Thu, 13 May 2021 10:21:07 +0800 Subject: [PATCH 12/29] add metadata --- configs/deeplabv3/metafile.yml | 2 ++ configs/fcn/metafile.yml | 2 ++ configs/pspnet/metafile.yml | 2 ++ 3 files changed, 6 insertions(+) diff --git a/configs/deeplabv3/metafile.yml b/configs/deeplabv3/metafile.yml index bb496064bf..0c88ceb9df 100644 --- a/configs/deeplabv3/metafile.yml +++ b/configs/deeplabv3/metafile.yml @@ -1,5 +1,7 @@ Collections: - Name: DeepLabV3 + Metadata: + Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K Modles: diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index 2bbcba6478..b78b407fe7 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -1,5 +1,7 @@ Collections: - Name: FCN + Metadata: + Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K Modles: diff --git a/configs/pspnet/metafile.yml b/configs/pspnet/metafile.yml index b112bcac41..f42cf99d63 100644 --- a/configs/pspnet/metafile.yml +++ b/configs/pspnet/metafile.yml @@ -1,5 +1,7 @@ Collections: - Name: PSPNet + Metadata: + Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K Modles: From 249005e791b66354ceef8a6590d57a4bad7bd8d8 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Thu, 13 May 2021 19:20:27 +0800 Subject: [PATCH 13/29] fix typo --- configs/deeplabv3/metafile.yml | 2 +- configs/fcn/metafile.yml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/configs/deeplabv3/metafile.yml b/configs/deeplabv3/metafile.yml index 0c88ceb9df..2530acadf6 100644 --- a/configs/deeplabv3/metafile.yml +++ b/configs/deeplabv3/metafile.yml @@ -3,7 +3,7 @@ Collections: Metadata: Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K -Modles: +Models: - Name: deeplabv3_r50-d8_512x1024_40k_cityscapes In Collection: DeepLabV3 diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index b78b407fe7..d53f802a3a 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -3,7 +3,7 @@ Collections: Metadata: Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K -Modles: +Models: - Name: fcn_r50-d8_512x1024_40k_cityscapes In Collection: FCN From 23e7424ecc47e0423b3c9a1aa35fc0ead01b58b8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E8=B0=A2=E6=98=95=E8=BE=B0?= <xinchen.xie@qq.com> Date: Thu, 13 May 2021 19:36:44 +0800 Subject: [PATCH 14/29] Update metafile.yml --- configs/fcn/metafile.yml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index d53f802a3a..a576a6731b 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -2,6 +2,9 @@ Collections: - Name: FCN Metadata: Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K + - Name: FCN-D6 + Metadata: + Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K Models: From 146d72a03f7cbd61f8af122d51729ae4d5278b0e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E8=B0=A2=E6=98=95=E8=BE=B0?= <xinchen.xie@qq.com> Date: Thu, 13 May 2021 19:40:10 +0800 Subject: [PATCH 15/29] Update metafile.yml --- configs/fcn/metafile.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index a576a6731b..c26d785d8c 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -3,7 +3,7 @@ Collections: Metadata: Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K - Name: FCN-D6 - Metadata: + Metadata: Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K Models: From 193391a21a9249385acb1739f217435f2e6cb7c2 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Thu, 13 May 2021 20:01:48 +0800 Subject: [PATCH 16/29] minor change --- configs/deeplabv3/metafile.yml | 6 +++++- configs/fcn/metafile.yml | 6 +++++- configs/pspnet/metafile.yml | 6 +++++- 3 files changed, 15 insertions(+), 3 deletions(-) diff --git a/configs/deeplabv3/metafile.yml b/configs/deeplabv3/metafile.yml index 2530acadf6..c304c3cec0 100644 --- a/configs/deeplabv3/metafile.yml +++ b/configs/deeplabv3/metafile.yml @@ -1,7 +1,11 @@ Collections: - Name: DeepLabV3 Metadata: - Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K Models: diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index d53f802a3a..9bbc1cb131 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -1,7 +1,11 @@ Collections: - Name: FCN Metadata: - Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K Models: diff --git a/configs/pspnet/metafile.yml b/configs/pspnet/metafile.yml index f42cf99d63..c862825290 100644 --- a/configs/pspnet/metafile.yml +++ b/configs/pspnet/metafile.yml @@ -1,7 +1,11 @@ Collections: - Name: PSPNet Metadata: - Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K Modles: From 2c6b5c5e63bbbab0c83497d4724d6e046eaa9ac1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E8=B0=A2=E6=98=95=E8=BE=B0?= <xinchen.xie@qq.com> Date: Thu, 13 May 2021 20:05:39 +0800 Subject: [PATCH 17/29] Update metafile.yml --- configs/fcn/metafile.yml | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index 9bbc1cb131..424e56d59d 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -6,6 +6,13 @@ Collections: - Pascal Context - Pascal VOC 2012 + Aug - ADE20K + - Name: FCN-D6 + Metadata: + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K Models: From c5c0ef5a5a025d611afe0337acec85a56e0490ab Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Sat, 15 May 2021 13:10:02 +0800 Subject: [PATCH 18/29] add subfix --- configs/deeplabv3/metafile.yml | 66 +++++++++++++------------- configs/fcn/metafile.yml | 85 +++++++++++++++------------------- configs/pspnet/metafile.yml | 64 ++++++++++++------------- 3 files changed, 98 insertions(+), 117 deletions(-) diff --git a/configs/deeplabv3/metafile.yml b/configs/deeplabv3/metafile.yml index c304c3cec0..27d9b8cc61 100644 --- a/configs/deeplabv3/metafile.yml +++ b/configs/deeplabv3/metafile.yml @@ -1,11 +1,7 @@ Collections: - Name: DeepLabV3 Metadata: - Training Data: - - Cityscapes - - Pascal Context - - Pascal VOC 2012 + Aug - - ADE20K + Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K Models: @@ -19,7 +15,7 @@ Models: Metrics: mIoU: 79.09 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes + Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py @@ -33,7 +29,7 @@ Models: Metrics: mIoU: 77.12 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py @@ -47,7 +43,7 @@ Models: Metrics: mIoU: 78.58 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes + Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes.py @@ -61,7 +57,7 @@ Models: Metrics: mIoU: 79.27 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py @@ -75,7 +71,7 @@ Models: Metrics: mIoU: 76.70 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth - Config: configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py @@ -89,7 +85,7 @@ Models: Metrics: mIoU: 79.32 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py @@ -103,7 +99,7 @@ Models: Metrics: mIoU: 80.20 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py @@ -117,7 +113,7 @@ Models: Metrics: mIoU: 76.60 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth - Config: configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py @@ -131,7 +127,7 @@ Models: Metrics: mIoU: 79.89 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py @@ -145,7 +141,7 @@ Models: Metrics: mIoU: 79.67 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py @@ -159,7 +155,7 @@ Models: Metrics: mIoU: 76.71 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth - Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes.py @@ -173,7 +169,7 @@ Models: Metrics: mIoU: 78.36 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth - Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py @@ -187,7 +183,7 @@ Models: Metrics: mIoU: 76.26 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth - Config: configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes.py @@ -201,7 +197,7 @@ Models: Metrics: mIoU: 79.63 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth - Config: configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py @@ -215,7 +211,7 @@ Models: Metrics: mIoU: 80.01 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth - Config: configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py @@ -229,7 +225,7 @@ Models: Metrics: mIoU: 76.63 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth - Config: configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes.py @@ -243,7 +239,7 @@ Models: Metrics: mIoU: 78.80 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth - Config: configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py @@ -257,7 +253,7 @@ Models: Metrics: mIoU: 79.41 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth - Config: configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes + Config: configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py @@ -271,7 +267,7 @@ Models: Metrics: mIoU: 42.42 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py @@ -285,7 +281,7 @@ Models: Metrics: mIoU: 44.08 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py @@ -299,7 +295,7 @@ Models: Metrics: mIoU: 42.66 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py @@ -313,7 +309,7 @@ Models: Metrics: mIoU: 45.00 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py @@ -327,7 +323,7 @@ Models: Metrics: mIoU: 76.17 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py @@ -341,7 +337,7 @@ Models: Metrics: mIoU: 78.70 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py @@ -355,7 +351,7 @@ Models: Metrics: mIoU: 77.68 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth - Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py @@ -369,7 +365,7 @@ Models: Metrics: mIoU: 77.92 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py @@ -383,7 +379,7 @@ Models: Metrics: mIoU: 46.55 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py @@ -397,7 +393,7 @@ Models: Metrics: mIoU: 46.42 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py @@ -411,7 +407,7 @@ Models: Metrics: mIoU: 52.61 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py @@ -425,4 +421,4 @@ Models: Metrics: mIoU: 52.46 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth - Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59 + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59.py diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index 424e56d59d..c60b169c93 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -1,18 +1,7 @@ Collections: - Name: FCN Metadata: - Training Data: - - Cityscapes - - Pascal Context - - Pascal VOC 2012 + Aug - - ADE20K - - Name: FCN-D6 - Metadata: - Training Data: - - Cityscapes - - Pascal Context - - Pascal VOC 2012 + Aug - - ADE20K + Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K Models: @@ -26,7 +15,7 @@ Models: Metrics: mIoU: 72.25 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth - Config: configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes + Config: configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py @@ -40,7 +29,7 @@ Models: Metrics: mIoU: 75.45 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth - Config: configs/fcn/fcn_r101-d8_512x1024_40k_cityscapes + Config: configs/fcn/fcn_r101-d8_512x1024_40k_cityscapes.py @@ -54,7 +43,7 @@ Models: Metrics: mIoU: 71.47 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth - Config: configs/fcn/fcn_r50-d8_769x769_40k_cityscapes + Config: configs/fcn/fcn_r50-d8_769x769_40k_cityscapes.py @@ -68,7 +57,7 @@ Models: Metrics: mIoU: 73.93 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth - Config: configs/fcn/fcn_r101-d8_769x769_40k_cityscapes + Config: configs/fcn/fcn_r101-d8_769x769_40k_cityscapes.py @@ -82,7 +71,7 @@ Models: Metrics: mIoU: 71.11 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth - Config: configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes + Config: configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes.py @@ -96,7 +85,7 @@ Models: Metrics: mIoU: 73.61 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth - Config: configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes + Config: configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes.py @@ -110,7 +99,7 @@ Models: Metrics: mIoU: 75.13 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth - Config: configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes + Config: configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes.py @@ -124,7 +113,7 @@ Models: Metrics: mIoU: 70.80 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth - Config: configs/fcn/fcn_r18-d8_769x769_80k_cityscapes + Config: configs/fcn/fcn_r18-d8_769x769_80k_cityscapes.py @@ -138,7 +127,7 @@ Models: Metrics: mIoU: 72.64 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth - Config: configs/fcn/fcn_r50-d8_769x769_80k_cityscapes + Config: configs/fcn/fcn_r50-d8_769x769_80k_cityscapes.py @@ -152,7 +141,7 @@ Models: Metrics: mIoU: 75.52 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth - Config: configs/fcn/fcn_r101-d8_769x769_80k_cityscapes + Config: configs/fcn/fcn_r101-d8_769x769_80k_cityscapes.py @@ -166,7 +155,7 @@ Models: Metrics: mIoU: 70.24 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth - Config: configs/fcn/fcn_r18b-d8_512x1024_80k_cityscapes + Config: configs/fcn/fcn_r18b-d8_512x1024_80k_cityscapes.py @@ -180,7 +169,7 @@ Models: Metrics: mIoU: 75.65 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth - Config: configs/fcn/fcn_r50b-d8_512x1024_80k_cityscapes + Config: configs/fcn/fcn_r50b-d8_512x1024_80k_cityscapes.py @@ -194,7 +183,7 @@ Models: Metrics: mIoU: 77.37 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth - Config: configs/fcn/fcn_r101b-d8_512x1024_80k_cityscapes + Config: configs/fcn/fcn_r101b-d8_512x1024_80k_cityscapes.py @@ -208,7 +197,7 @@ Models: Metrics: mIoU: 69.66 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth - Config: configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes + Config: configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes.py @@ -222,7 +211,7 @@ Models: Metrics: mIoU: 73.83 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth - Config: configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes + Config: configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes.py @@ -236,7 +225,7 @@ Models: Metrics: mIoU: 77.02 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth - Config: configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes + Config: configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes.py @@ -250,7 +239,7 @@ Models: Metrics: mIoU: 77.06 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth - Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_40k_cityscapes + Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_40k_cityscapes.py @@ -264,7 +253,7 @@ Models: Metrics: mIoU: 77.27 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth - Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_80k_cityscapes + Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_80k_cityscapes.py @@ -278,7 +267,7 @@ Models: Metrics: mIoU: 76.82 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-1aab18ed.pth - Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_40k_cityscapes + Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_40k_cityscapes.py @@ -292,7 +281,7 @@ Models: Metrics: mIoU: 77.04 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-109d88eb.pth - Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_80k_cityscapes + Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_80k_cityscapes.py @@ -306,7 +295,7 @@ Models: Metrics: mIoU: 77.36 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-9cf2b450.pth - Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_40k_cityscapes + Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_40k_cityscapes.py @@ -320,7 +309,7 @@ Models: Metrics: mIoU: 78.46 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-cb336445.pth - Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_80k_cityscapes + Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_80k_cityscapes.py @@ -334,7 +323,7 @@ Models: Metrics: mIoU: 77.28 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-60b114e9.pth - Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_40k_cityscapes + Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_40k_cityscapes.py @@ -348,7 +337,7 @@ Models: Metrics: mIoU: 78.06 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-e33adc4f.pth - Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_80k_cityscapes + Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_80k_cityscapes.py @@ -362,7 +351,7 @@ Models: Metrics: mIoU: 35.94 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth - Config: configs/fcn/fcn_r50-d8_512x512_80k_ade20k + Config: configs/fcn/fcn_r50-d8_512x512_80k_ade20k.py @@ -376,7 +365,7 @@ Models: Metrics: mIoU: 39.61 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth - Config: configs/fcn/fcn_r101-d8_512x512_80k_ade20k + Config: configs/fcn/fcn_r101-d8_512x512_80k_ade20k.py @@ -390,7 +379,7 @@ Models: Metrics: mIoU: 36.10 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth - Config: configs/fcn/fcn_r50-d8_512x512_160k_ade20k + Config: configs/fcn/fcn_r50-d8_512x512_160k_ade20k.py @@ -404,7 +393,7 @@ Models: Metrics: mIoU: 39.91 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth - Config: configs/fcn/fcn_r101-d8_512x512_160k_ade20k + Config: configs/fcn/fcn_r101-d8_512x512_160k_ade20k.py @@ -418,7 +407,7 @@ Models: Metrics: mIoU: 67.08 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth - Config: configs/fcn/fcn_r50-d8_512x512_20k_voc12aug + Config: configs/fcn/fcn_r50-d8_512x512_20k_voc12aug.py @@ -432,7 +421,7 @@ Models: Metrics: mIoU: 71.16 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth - Config: configs/fcn/fcn_r101-d8_512x512_20k_voc12aug + Config: configs/fcn/fcn_r101-d8_512x512_20k_voc12aug.py @@ -446,7 +435,7 @@ Models: Metrics: mIoU: 66.97 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth - Config: configs/fcn/fcn_r50-d8_512x512_40k_voc12aug + Config: configs/fcn/fcn_r50-d8_512x512_40k_voc12aug.py @@ -460,7 +449,7 @@ Models: Metrics: mIoU: 69.91 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth - Config: configs/fcn/fcn_r101-d8_512x512_40k_voc12aug + Config: configs/fcn/fcn_r101-d8_512x512_40k_voc12aug.py @@ -474,7 +463,7 @@ Models: Metrics: mIoU: 44.43 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757-b5e97937.pth - Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context + Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context.py @@ -488,7 +477,7 @@ Models: Metrics: mIoU: 44.13 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310-4711813f.pth - Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context + Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py @@ -502,7 +491,7 @@ Models: Metrics: mIoU: 48.42 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth - Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59 + Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59.py @@ -516,4 +505,4 @@ Models: Metrics: mIoU: 49.35 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth - Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context_59 + Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context_59.py diff --git a/configs/pspnet/metafile.yml b/configs/pspnet/metafile.yml index c862825290..7d9f53cb7a 100644 --- a/configs/pspnet/metafile.yml +++ b/configs/pspnet/metafile.yml @@ -1,13 +1,9 @@ Collections: - Name: PSPNet Metadata: - Training Data: - - Cityscapes - - Pascal Context - - Pascal VOC 2012 + Aug - - ADE20K + Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K -Modles: +Models: - Name: pspnet_r50-d8_512x1024_40k_cityscapes In Collection: PSPNet @@ -19,7 +15,7 @@ Modles: Metrics: mIoU: 77.85 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth - Config: configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes + Config: configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py @@ -33,7 +29,7 @@ Modles: Metrics: mIoU: 78.34 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth - Config: configs/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes + Config: configs/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes.py @@ -47,7 +43,7 @@ Modles: Metrics: mIoU: 78.26 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth - Config: configs/pspnet/pspnet_r50-d8_769x769_40k_cityscapes + Config: configs/pspnet/pspnet_r50-d8_769x769_40k_cityscapes.py @@ -61,7 +57,7 @@ Modles: Metrics: mIoU: 79.08 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth - Config: configs/pspnet/pspnet_r101-d8_769x769_40k_cityscapes + Config: configs/pspnet/pspnet_r101-d8_769x769_40k_cityscapes.py @@ -75,7 +71,7 @@ Modles: Metrics: mIoU: 74.87 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth - Config: configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes + Config: configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes.py @@ -89,7 +85,7 @@ Modles: Metrics: mIoU: 78.55 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth - Config: configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes + Config: configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py @@ -103,7 +99,7 @@ Modles: Metrics: mIoU: 79.76 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth - Config: configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes + Config: configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py @@ -117,7 +113,7 @@ Modles: Metrics: mIoU: 75.90 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth - Config: configs/pspnet/pspnet_r18-d8_769x769_80k_cityscapes + Config: configs/pspnet/pspnet_r18-d8_769x769_80k_cityscapes.py @@ -131,7 +127,7 @@ Modles: Metrics: mIoU: 79.59 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth - Config: configs/pspnet/pspnet_r50-d8_769x769_80k_cityscapes + Config: configs/pspnet/pspnet_r50-d8_769x769_80k_cityscapes.py @@ -145,7 +141,7 @@ Modles: Metrics: mIoU: 79.77 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth - Config: configs/pspnet/pspnet_r101-d8_769x769_80k_cityscapes + Config: configs/pspnet/pspnet_r101-d8_769x769_80k_cityscapes.py @@ -159,7 +155,7 @@ Modles: Metrics: mIoU: 74.23 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth - Config: configs/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes + Config: configs/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes.py @@ -173,7 +169,7 @@ Modles: Metrics: mIoU: 78.22 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth - Config: configs/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes + Config: configs/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes.py @@ -187,7 +183,7 @@ Modles: Metrics: mIoU: 79.69 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth - Config: configs/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes + Config: configs/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes.py @@ -201,7 +197,7 @@ Modles: Metrics: mIoU: 74.92 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth - Config: configs/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes + Config: configs/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes.py @@ -215,7 +211,7 @@ Modles: Metrics: mIoU: 78.50 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth - Config: configs/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes + Config: configs/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes.py @@ -229,7 +225,7 @@ Modles: Metrics: mIoU: 78.87 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth - Config: configs/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes + Config: configs/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes.py @@ -243,7 +239,7 @@ Modles: Metrics: mIoU: 41.13 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth - Config: configs/pspnet/pspnet_r50-d8_512x512_80k_ade20k + Config: configs/pspnet/pspnet_r50-d8_512x512_80k_ade20k.py @@ -257,7 +253,7 @@ Modles: Metrics: mIoU: 43.57 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth - Config: configs/pspnet/pspnet_r101-d8_512x512_80k_ade20k + Config: configs/pspnet/pspnet_r101-d8_512x512_80k_ade20k.py @@ -271,7 +267,7 @@ Modles: Metrics: mIoU: 42.48 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth - Config: configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k + Config: configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py @@ -285,7 +281,7 @@ Modles: Metrics: mIoU: 44.39 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth - Config: configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k + Config: configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py @@ -299,7 +295,7 @@ Modles: Metrics: mIoU: 76.78 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth - Config: configs/pspnet/pspnet_r50-d8_512x512_20k_voc12aug + Config: configs/pspnet/pspnet_r50-d8_512x512_20k_voc12aug.py @@ -313,7 +309,7 @@ Modles: Metrics: mIoU: 78.47 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth - Config: configs/pspnet/pspnet_r101-d8_512x512_20k_voc12aug + Config: configs/pspnet/pspnet_r101-d8_512x512_20k_voc12aug.py @@ -327,7 +323,7 @@ Modles: Metrics: mIoU: 77.29 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth - Config: configs/pspnet/pspnet_r50-d8_512x512_40k_voc12aug + Config: configs/pspnet/pspnet_r50-d8_512x512_40k_voc12aug.py @@ -341,7 +337,7 @@ Modles: Metrics: mIoU: 78.52 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth - Config: configs/pspnet/pspnet_r101-d8_512x512_40k_voc12aug + Config: configs/pspnet/pspnet_r101-d8_512x512_40k_voc12aug.py @@ -355,7 +351,7 @@ Modles: Metrics: mIoU: 46.60 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth - Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context + Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context.py @@ -369,7 +365,7 @@ Modles: Metrics: mIoU: 46.03 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth - Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context + Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context.py @@ -383,7 +379,7 @@ Modles: Metrics: mIoU: 52.02 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth - Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context + Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context.py @@ -397,4 +393,4 @@ Modles: Metrics: mIoU: 52.47 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth - Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59 + Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59.py From c005345816485f9a0198caf3d2544e17c39c9935 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Sat, 15 May 2021 13:22:23 +0800 Subject: [PATCH 19/29] fix mmshow --- configs/deeplabv3/metafile.yml | 6 +++++- configs/fcn/metafile.yml | 13 ++++++++++++- configs/pspnet/metafile.yml | 6 +++++- 3 files changed, 22 insertions(+), 3 deletions(-) diff --git a/configs/deeplabv3/metafile.yml b/configs/deeplabv3/metafile.yml index 27d9b8cc61..9f4da8946f 100644 --- a/configs/deeplabv3/metafile.yml +++ b/configs/deeplabv3/metafile.yml @@ -1,7 +1,11 @@ Collections: - Name: DeepLabV3 Metadata: - Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K Models: diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index c60b169c93..46e69820a5 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -1,7 +1,18 @@ Collections: - Name: FCN Metadata: - Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K + - Name: FCN-D6 + Metadata: + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K Models: diff --git a/configs/pspnet/metafile.yml b/configs/pspnet/metafile.yml index 7d9f53cb7a..3823d5918a 100644 --- a/configs/pspnet/metafile.yml +++ b/configs/pspnet/metafile.yml @@ -1,7 +1,11 @@ Collections: - Name: PSPNet Metadata: - Training Data: Cityscapes/Pascal Context/Pascal VOC 2012 + Aug/ADE20K + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K Models: From d9903c31ed9ca68f29a767cd2e90a6adb92b62ea Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Sat, 15 May 2021 14:49:18 +0800 Subject: [PATCH 20/29] add more metafile --- configs/ann/metafile.yml | 231 ++++++++++++++++ configs/apcnet/metafile.yml | 174 ++++++++++++ configs/ccnet/metafile.yml | 231 ++++++++++++++++ configs/cgnet/metafile.yml | 33 +++ configs/danet/metafile.yml | 231 ++++++++++++++++ configs/deeplabv3plus/metafile.yml | 428 +++++++++++++++++++++++++++++ configs/dmnet/metafile.yml | 174 ++++++++++++ configs/dnlnet/metafile.yml | 174 ++++++++++++ configs/emanet/metafile.yml | 61 ++++ configs/encnet/metafile.yml | 175 ++++++++++++ configs/fastscnn/metafile.yml | 19 ++ configs/fp16/metafile.yml | 56 ++++ configs/gcnet/metafile.yml | 231 ++++++++++++++++ configs/hrnet/metafile.yml | 348 +++++++++++++++++++++++ configs/mobilenet_v2/metafile.yml | 112 ++++++++ configs/mobilenet_v3/metafile.yml | 56 ++++ configs/nonlocal_net/metafile.yml | 231 ++++++++++++++++ configs/ocrnet/metafile.yml | 343 +++++++++++++++++++++++ configs/point_rend/metafile.yml | 62 +++++ configs/psanet/metafile.yml | 231 ++++++++++++++++ configs/resnest/metafile.yml | 118 ++++++++ configs/sem_fpn/metafile.yml | 63 +++++ configs/unet/metafile.yml | 175 ++++++++++++ configs/upernet/metafile.yml | 231 ++++++++++++++++ 24 files changed, 4188 insertions(+) create mode 100644 configs/ann/metafile.yml create mode 100644 configs/apcnet/metafile.yml create mode 100644 configs/ccnet/metafile.yml create mode 100644 configs/cgnet/metafile.yml create mode 100644 configs/danet/metafile.yml create mode 100644 configs/deeplabv3plus/metafile.yml create mode 100644 configs/dmnet/metafile.yml create mode 100644 configs/dnlnet/metafile.yml create mode 100644 configs/emanet/metafile.yml create mode 100644 configs/encnet/metafile.yml create mode 100644 configs/fastscnn/metafile.yml create mode 100644 configs/fp16/metafile.yml create mode 100644 configs/gcnet/metafile.yml create mode 100644 configs/hrnet/metafile.yml create mode 100644 configs/mobilenet_v2/metafile.yml create mode 100644 configs/mobilenet_v3/metafile.yml create mode 100644 configs/nonlocal_net/metafile.yml create mode 100644 configs/ocrnet/metafile.yml create mode 100644 configs/point_rend/metafile.yml create mode 100644 configs/psanet/metafile.yml create mode 100644 configs/resnest/metafile.yml create mode 100644 configs/sem_fpn/metafile.yml create mode 100644 configs/unet/metafile.yml create mode 100644 configs/upernet/metafile.yml diff --git a/configs/ann/metafile.yml b/configs/ann/metafile.yml new file mode 100644 index 0000000000..8ece7ee76e --- /dev/null +++ b/configs/ann/metafile.yml @@ -0,0 +1,231 @@ +Collections: + - Name: ANN + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: ann_r50-d8_512x1024_40k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): 3.71 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.40 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth + Config: configs/ann/ann_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: ann_r101-d8_512x1024_40k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): 2.55 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.55 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth + Config: configs/ann/ann_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: ann_r50-d8_769x769_40k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): 1.70 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.89 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth + Config: configs/ann/ann_r50-d8_769x769_40k_cityscapes.py + + + + - Name: ann_r101-d8_769x769_40k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): 1.15 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.32 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth + Config: configs/ann/ann_r101-d8_769x769_40k_cityscapes.py + + + + - Name: ann_r50-d8_512x1024_80k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.34 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth + Config: configs/ann/ann_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: ann_r101-d8_512x1024_80k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth + Config: configs/ann/ann_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: ann_r50-d8_769x769_80k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.88 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth + Config: configs/ann/ann_r50-d8_769x769_80k_cityscapes.py + + + + - Name: ann_r101-d8_769x769_80k_cityscapes + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.80 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth + Config: configs/ann/ann_r101-d8_769x769_80k_cityscapes.py + + + + - Name: ann_r50-d8_512x512_80k_ade20k + In Collection: ANN + Metadata: + inference time (fps): 21.01 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.01 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth + Config: configs/ann/ann_r50-d8_512x512_80k_ade20k.py + + + + - Name: ann_r101-d8_512x512_80k_ade20k + In Collection: ANN + Metadata: + inference time (fps): 14.12 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.94 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth + Config: configs/ann/ann_r101-d8_512x512_80k_ade20k.py + + + + - Name: ann_r50-d8_512x512_160k_ade20k + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.74 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth + Config: configs/ann/ann_r50-d8_512x512_160k_ade20k.py + + + + - Name: ann_r101-d8_512x512_160k_ade20k + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.94 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth + Config: configs/ann/ann_r101-d8_512x512_160k_ade20k.py + + + + - Name: ann_r50-d8_512x512_20k_voc12aug + In Collection: ANN + Metadata: + inference time (fps): 20.92 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.86 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth + Config: configs/ann/ann_r50-d8_512x512_20k_voc12aug.py + + + + - Name: ann_r101-d8_512x512_20k_voc12aug + In Collection: ANN + Metadata: + inference time (fps): 13.94 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth + Config: configs/ann/ann_r101-d8_512x512_20k_voc12aug.py + + + + - Name: ann_r50-d8_512x512_40k_voc12aug + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.56 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth + Config: configs/ann/ann_r50-d8_512x512_40k_voc12aug.py + + + + - Name: ann_r101-d8_512x512_40k_voc12aug + In Collection: ANN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.70 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth + Config: configs/ann/ann_r101-d8_512x512_40k_voc12aug.py diff --git a/configs/apcnet/metafile.yml b/configs/apcnet/metafile.yml new file mode 100644 index 0000000000..f91635be85 --- /dev/null +++ b/configs/apcnet/metafile.yml @@ -0,0 +1,174 @@ +Collections: + - Name: APCNet + Metadata: + Training Data: + - Cityscapes + - ADE20K + +Models: + + - Name: apcnet_r50-d8_512x1024_40k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): 3.57 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth + Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: apcnet_r101-d8_512x1024_40k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): 2.15 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.08 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth + Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: apcnet_r50-d8_769x769_40k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): 1.52 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.89 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth + Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py + + + + - Name: apcnet_r101-d8_769x769_40k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): 1.03 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.96 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth + Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py + + + + - Name: apcnet_r50-d8_512x1024_80k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.96 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth + Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: apcnet_r101-d8_512x1024_80k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.64 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth + Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: apcnet_r50-d8_769x769_80k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.79 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth + Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: apcnet_r101-d8_769x769_80k_cityscapes + In Collection: APCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth + Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py + + + + - Name: apcnet_r50-d8_512x512_80k_ade20k + In Collection: APCNet + Metadata: + inference time (fps): 19.61 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.20 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth + Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py + + + + - Name: apcnet_r101-d8_512x512_80k_ade20k + In Collection: APCNet + Metadata: + inference time (fps): 13.10 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.54 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth + Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py + + + + - Name: apcnet_r50-d8_512x512_160k_ade20k + In Collection: APCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.40 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth + Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py + + + + - Name: apcnet_r101-d8_512x512_160k_ade20k + In Collection: APCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth + Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py diff --git a/configs/ccnet/metafile.yml b/configs/ccnet/metafile.yml new file mode 100644 index 0000000000..0f28967ea8 --- /dev/null +++ b/configs/ccnet/metafile.yml @@ -0,0 +1,231 @@ +Collections: + - Name: CCNet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: ccnet_r50-d8_512x1024_40k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): 3.32 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517-4123f401.pth + Config: configs/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: ccnet_r101-d8_512x1024_40k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): 2.31 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.35 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540-a3b84ba6.pth + Config: configs/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: ccnet_r50-d8_769x769_40k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): 1.43 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125-76d11884.pth + Config: configs/ccnet/ccnet_r50-d8_769x769_40k_cityscapes.py + + + + - Name: ccnet_r101-d8_769x769_40k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): 1.01 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.94 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428-4f57c8d0.pth + Config: configs/ccnet/ccnet_r101-d8_769x769_40k_cityscapes.py + + + + - Name: ccnet_r50-d8_512x1024_80k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.03 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421-869a3423.pth + Config: configs/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: ccnet_r101-d8_512x1024_80k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935-ffae8917.pth + Config: configs/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: ccnet_r50-d8_769x769_80k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.29 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421-73eed8ca.pth + Config: configs/ccnet/ccnet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: ccnet_r101-d8_769x769_80k_cityscapes + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502-ad3cd481.pth + Config: configs/ccnet/ccnet_r101-d8_769x769_80k_cityscapes.py + + + + - Name: ccnet_r50-d8_512x512_80k_ade20k + In Collection: CCNet + Metadata: + inference time (fps): 20.89 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.78 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848-aa37f61e.pth + Config: configs/ccnet/ccnet_r50-d8_512x512_80k_ade20k.py + + + + - Name: ccnet_r101-d8_512x512_80k_ade20k + In Collection: CCNet + Metadata: + inference time (fps): 14.11 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.97 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848-1f4929a3.pth + Config: configs/ccnet/ccnet_r101-d8_512x512_80k_ade20k.py + + + + - Name: ccnet_r50-d8_512x512_160k_ade20k + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.08 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435-7c97193b.pth + Config: configs/ccnet/ccnet_r50-d8_512x512_160k_ade20k.py + + + + - Name: ccnet_r101-d8_512x512_160k_ade20k + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.71 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644-e849e007.pth + Config: configs/ccnet/ccnet_r101-d8_512x512_160k_ade20k.py + + + + - Name: ccnet_r50-d8_512x512_20k_voc12aug + In Collection: CCNet + Metadata: + inference time (fps): 20.45 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.17 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212-fad81784.pth + Config: configs/ccnet/ccnet_r50-d8_512x512_20k_voc12aug.py + + + + - Name: ccnet_r101-d8_512x512_20k_voc12aug + In Collection: CCNet + Metadata: + inference time (fps): 13.64 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.27 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212-0007b61d.pth + Config: configs/ccnet/ccnet_r101-d8_512x512_20k_voc12aug.py + + + + - Name: ccnet_r50-d8_512x512_40k_voc12aug + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.96 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127-c2a15f02.pth + Config: configs/ccnet/ccnet_r50-d8_512x512_40k_voc12aug.py + + + + - Name: ccnet_r101-d8_512x512_40k_voc12aug + In Collection: CCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127-c30da577.pth + Config: configs/ccnet/ccnet_r101-d8_512x512_40k_voc12aug.py diff --git a/configs/cgnet/metafile.yml b/configs/cgnet/metafile.yml new file mode 100644 index 0000000000..29f1fbb416 --- /dev/null +++ b/configs/cgnet/metafile.yml @@ -0,0 +1,33 @@ +Collections: + - Name: CGNet + Metadata: + Training Data: + - Cityscapes + +Models: + + - Name: cgnet_680x680_60k_cityscapes + In Collection: CGNet + Metadata: + inference time (fps): 30.51 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 65.63 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_680x680_60k_cityscapes/cgnet_680x680_60k_cityscapes_20201101_110253-4c0b2f2d.pth + Config: configs/cgnet/cgnet_680x680_60k_cityscapes.py + + + + - Name: cgnet_512x1024_60k_cityscapes + In Collection: CGNet + Metadata: + inference time (fps): 31.14 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 68.27 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_512x1024_60k_cityscapes/cgnet_512x1024_60k_cityscapes_20201101_110254-124ea03b.pth + Config: configs/cgnet/cgnet_512x1024_60k_cityscapes.py diff --git a/configs/danet/metafile.yml b/configs/danet/metafile.yml new file mode 100644 index 0000000000..a9e2b21139 --- /dev/null +++ b/configs/danet/metafile.yml @@ -0,0 +1,231 @@ +Collections: + - Name: DANet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: danet_r50-d8_512x1024_40k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): 2.66 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.74 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth + Config: configs/danet/danet_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: danet_r101-d8_512x1024_40k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): 1.99 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.52 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth + Config: configs/danet/danet_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: danet_r50-d8_769x769_40k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): 1.56 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.88 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth + Config: configs/danet/danet_r50-d8_769x769_40k_cityscapes.py + + + + - Name: danet_r101-d8_769x769_40k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): 1.07 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.88 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth + Config: configs/danet/danet_r101-d8_769x769_40k_cityscapes.py + + + + - Name: danet_r50-d8_512x1024_80k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.34 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth + Config: configs/danet/danet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: danet_r101-d8_512x1024_80k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth + Config: configs/danet/danet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: danet_r50-d8_769x769_80k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.27 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth + Config: configs/danet/danet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: danet_r101-d8_769x769_80k_cityscapes + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth + Config: configs/danet/danet_r101-d8_769x769_80k_cityscapes.py + + + + - Name: danet_r50-d8_512x512_80k_ade20k + In Collection: DANet + Metadata: + inference time (fps): 21.20 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.66 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth + Config: configs/danet/danet_r50-d8_512x512_80k_ade20k.py + + + + - Name: danet_r101-d8_512x512_80k_ade20k + In Collection: DANet + Metadata: + inference time (fps): 14.18 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.64 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth + Config: configs/danet/danet_r101-d8_512x512_80k_ade20k.py + + + + - Name: danet_r50-d8_512x512_160k_ade20k + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth + Config: configs/danet/danet_r50-d8_512x512_160k_ade20k.py + + + + - Name: danet_r101-d8_512x512_160k_ade20k + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.17 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth + Config: configs/danet/danet_r101-d8_512x512_160k_ade20k.py + + + + - Name: danet_r50-d8_512x512_20k_voc12aug + In Collection: DANet + Metadata: + inference time (fps): 20.94 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth + Config: configs/danet/danet_r50-d8_512x512_20k_voc12aug.py + + + + - Name: danet_r101-d8_512x512_20k_voc12aug + In Collection: DANet + Metadata: + inference time (fps): 13.76 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth + Config: configs/danet/danet_r101-d8_512x512_20k_voc12aug.py + + + + - Name: danet_r50-d8_512x512_40k_voc12aug + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.37 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth + Config: configs/danet/danet_r50-d8_512x512_40k_voc12aug.py + + + + - Name: danet_r101-d8_512x512_40k_voc12aug + In Collection: DANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.51 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth + Config: configs/danet/danet_r101-d8_512x512_40k_voc12aug.py diff --git a/configs/deeplabv3plus/metafile.yml b/configs/deeplabv3plus/metafile.yml new file mode 100644 index 0000000000..4d3a72af30 --- /dev/null +++ b/configs/deeplabv3plus/metafile.yml @@ -0,0 +1,428 @@ +Collections: + - Name: DeepLabV3+ + Metadata: + Training Data: + - Cityscapes + - Pascal Context + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: deeplabv3plus_r50-d8_512x1024_40k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 3.94 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: deeplabv3plus_r101-d8_512x1024_40k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 2.60 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.21 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: deeplabv3plus_r50-d8_769x769_40k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 1.72 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.97 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_769x769_40k_cityscapes.py + + + + - Name: deeplabv3plus_r101-d8_769x769_40k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 1.15 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_769x769_40k_cityscapes.py + + + + - Name: deeplabv3plus_r18-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 14.27 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.89 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth + Config: configs/deeplabv3+/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.09 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.97 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 5.74 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.26 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth + Config: configs/deeplabv3+/deeplabv3plus_r18-d8_769x769_80k_cityscapes.py + + + + - Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.83 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py + + + + - Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.98 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py + + + + - Name: deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 7.48 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.09 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py + + + + - Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.90 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_r18b-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 14.95 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth + Config: configs/deeplabv3+/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_r50b-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 3.94 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.28 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth + Config: configs/deeplabv3+/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_r101b-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 2.60 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.16 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth + Config: configs/deeplabv3+/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_r18b-d8_769x769_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 5.96 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth + Config: configs/deeplabv3+/deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py + + + + - Name: deeplabv3plus_r50b-d8_769x769_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 1.72 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth + Config: configs/deeplabv3+/deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py + + + + - Name: deeplabv3plus_r101b-d8_769x769_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 1.10 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.88 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth + Config: configs/deeplabv3+/deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py + + + + - Name: deeplabv3plus_r50-d8_512x512_80k_ade20k + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 21.01 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.72 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_512x512_80k_ade20k.py + + + + - Name: deeplabv3plus_r101-d8_512x512_80k_ade20k + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 14.16 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.60 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_512x512_80k_ade20k.py + + + + - Name: deeplabv3plus_r50-d8_512x512_160k_ade20k + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.95 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_512x512_160k_ade20k.py + + + + - Name: deeplabv3plus_r101-d8_512x512_160k_ade20k + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_512x512_160k_ade20k.py + + + + - Name: deeplabv3plus_r50-d8_512x512_20k_voc12aug + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 21 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.93 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py + + + + - Name: deeplabv3plus_r101-d8_512x512_20k_voc12aug + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 13.88 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.22 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_512x512_20k_voc12aug.py + + + + - Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.81 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth + Config: configs/deeplabv3+/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py + + + + - Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.62 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py + + + + - Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 9.09 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 47.30 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py + + + + - Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 47.23 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py + + + + - Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 52.86 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py + + + + - Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context + In Collection: DeepLabV3+ + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 53.2 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py diff --git a/configs/dmnet/metafile.yml b/configs/dmnet/metafile.yml new file mode 100644 index 0000000000..ea7b7d070d --- /dev/null +++ b/configs/dmnet/metafile.yml @@ -0,0 +1,174 @@ +Collections: + - Name: DMNet + Metadata: + Training Data: + - Cityscapes + - ADE20K + +Models: + + - Name: dmnet_r50-d8_512x1024_40k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): 3.66 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.78 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth + Config: configs/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: dmnet_r101-d8_512x1024_40k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): 2.54 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.37 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth + Config: configs/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: dmnet_r50-d8_769x769_40k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): 1.57 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.49 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth + Config: configs/dmnet/dmnet_r50-d8_769x769_40k_cityscapes.py + + + + - Name: dmnet_r101-d8_769x769_40k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): 1.01 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.62 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth + Config: configs/dmnet/dmnet_r101-d8_769x769_40k_cityscapes.py + + + + - Name: dmnet_r50-d8_512x1024_80k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.07 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth + Config: configs/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: dmnet_r101-d8_512x1024_80k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.64 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth + Config: configs/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: dmnet_r50-d8_769x769_80k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.22 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth + Config: configs/dmnet/dmnet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: dmnet_r101-d8_769x769_80k_cityscapes + In Collection: DMNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.19 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth + Config: configs/dmnet/dmnet_r101-d8_769x769_80k_cityscapes.py + + + + - Name: dmnet_r50-d8_512x512_80k_ade20k + In Collection: DMNet + Metadata: + inference time (fps): 20.95 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.37 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth + Config: configs/dmnet/dmnet_r50-d8_512x512_80k_ade20k.py + + + + - Name: dmnet_r101-d8_512x512_80k_ade20k + In Collection: DMNet + Metadata: + inference time (fps): 13.88 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.34 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth + Config: configs/dmnet/dmnet_r101-d8_512x512_80k_ade20k.py + + + + - Name: dmnet_r50-d8_512x512_160k_ade20k + In Collection: DMNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.15 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth + Config: configs/dmnet/dmnet_r50-d8_512x512_160k_ade20k.py + + + + - Name: dmnet_r101-d8_512x512_160k_ade20k + In Collection: DMNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.42 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth + Config: configs/dmnet/dmnet_r101-d8_512x512_160k_ade20k.py diff --git a/configs/dnlnet/metafile.yml b/configs/dnlnet/metafile.yml new file mode 100644 index 0000000000..bbb010d674 --- /dev/null +++ b/configs/dnlnet/metafile.yml @@ -0,0 +1,174 @@ +Collections: + - Name: dnl + Metadata: + Training Data: + - Cityscapes + - ADE20K + +Models: + + - Name: dnl_r50-d8_512x1024_40k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): 2.56 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth + Config: configs/dnl/dnl_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: dnl_r101-d8_512x1024_40k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): 1.96 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.31 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth + Config: configs/dnl/dnl_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: dnl_r50-d8_769x769_40k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): 1.50 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.44 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth + Config: configs/dnl/dnl_r50-d8_769x769_40k_cityscapes.py + + + + - Name: dnl_r101-d8_769x769_40k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): 1.02 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.39 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth + Config: configs/dnl/dnl_r101-d8_769x769_40k_cityscapes.py + + + + - Name: dnl_r50-d8_512x1024_80k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.33 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth + Config: configs/dnl/dnl_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: dnl_r101-d8_512x1024_80k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth + Config: configs/dnl/dnl_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: dnl_r50-d8_769x769_80k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth + Config: configs/dnl/dnl_r50-d8_769x769_80k_cityscapes.py + + + + - Name: dnl_r101-d8_769x769_80k_cityscapes + In Collection: dnl + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth + Config: configs/dnl/dnl_r101-d8_769x769_80k_cityscapes.py + + + + - Name: dnl_r50-d8_512x512_80k_ade20k + In Collection: DNL + Metadata: + inference time (fps): 20.66 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth + Config: configs/dnl/dnl_r50-d8_512x512_80k_ade20k.py + + + + - Name: dnl_r101-d8_512x512_80k_ade20k + In Collection: DNL + Metadata: + inference time (fps): 12.54 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth + Config: configs/dnl/dnl_r101-d8_512x512_80k_ade20k.py + + + + - Name: dnl_r50-d8_512x512_160k_ade20k + In Collection: DNL + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth + Config: configs/dnl/dnl_r50-d8_512x512_160k_ade20k.py + + + + - Name: dnl_r101-d8_512x512_160k_ade20k + In Collection: DNL + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.25 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth + Config: configs/dnl/dnl_r101-d8_512x512_160k_ade20k.py diff --git a/configs/emanet/metafile.yml b/configs/emanet/metafile.yml new file mode 100644 index 0000000000..f37dcec6d6 --- /dev/null +++ b/configs/emanet/metafile.yml @@ -0,0 +1,61 @@ +Collections: + - Name: EMANet + Metadata: + Training Data: + - Cityscapes + +Models: + + - Name: emanet_r50-d8_512x1024_80k_cityscapes + In Collection: EMANet + Metadata: + inference time (fps): 4.58 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.59 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth + Config: configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: emanet_r101-d8_512x1024_80k_cityscapes + In Collection: EMANet + Metadata: + inference time (fps): 2.87 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.10 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth + Config: configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: emanet_r50-d8_769x769_80k_cityscapes + In Collection: EMANet + Metadata: + inference time (fps): 1.97 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.33 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth + Config: configs/emanet/emanet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: emanet_r101-d8_769x769_80k_cityscapes + In Collection: EMANet + Metadata: + inference time (fps): 1.22 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.62 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth + Config: configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py diff --git a/configs/encnet/metafile.yml b/configs/encnet/metafile.yml new file mode 100644 index 0000000000..dbb8a542d8 --- /dev/null +++ b/configs/encnet/metafile.yml @@ -0,0 +1,175 @@ +Collections: + - Name: encnet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: encnet_r50-d8_512x1024_40k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): 4.58 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth + Config: configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: encnet_r101-d8_512x1024_40k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): 2.66 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.81 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth + Config: configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: encnet_r50-d8_769x769_40k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): 1.82 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.24 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth + Config: configs/encnet/encnet_r50-d8_769x769_40k_cityscapes.py + + + + - Name: encnet_r101-d8_769x769_40k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): 1.26 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.25 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth + Config: configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py + + + + - Name: encnet_r50-d8_512x1024_80k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.94 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth + Config: configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: encnet_r101-d8_512x1024_80k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.55 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth + Config: configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: encnet_r50-d8_769x769_80k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.44 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth + Config: configs/encnet/encnet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: encnet_r101-d8_769x769_80k_cityscapes + In Collection: encnet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.10 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth + Config: configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py + + + + - Name: encnet_r50-d8_512x512_80k_ade20k + In Collection: encnet + Metadata: + inference time (fps): 22.81 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.53 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth + Config: configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py + + + + - Name: encnet_r101-d8_512x512_80k_ade20k + In Collection: encnet + Metadata: + inference time (fps): 14.87 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.11 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth + Config: configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py + + + + - Name: encnet_r50-d8_512x512_160k_ade20k + In Collection: encnet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.10 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth + Config: configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py + + + + - Name: encnet_r101-d8_512x512_160k_ade20k + In Collection: encnet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth + Config: configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py diff --git a/configs/fastscnn/metafile.yml b/configs/fastscnn/metafile.yml new file mode 100644 index 0000000000..edae6f6aa3 --- /dev/null +++ b/configs/fastscnn/metafile.yml @@ -0,0 +1,19 @@ +Collections: + - Name: Fast-SCNN + Metadata: + Training Data: + - Cityscapes + +Models: + + - Name: fast_scnn_4x8_80k_lr0.12_cityscapes + In Collection: Fast-SCNN + Metadata: + inference time (fps): 63.61 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 69.06 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_4x8_80k_lr0.12_cityscapes-f5096c79.pth + Config: configs/fast-scnn/fast_scnn_4x8_80k_lr0.12_cityscapes.py diff --git a/configs/fp16/metafile.yml b/configs/fp16/metafile.yml new file mode 100644 index 0000000000..e4187bdad2 --- /dev/null +++ b/configs/fp16/metafile.yml @@ -0,0 +1,56 @@ + +Models: + + - Name: fcn_r101-d8_512x1024_80k_fp16_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 8.64 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.80 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes-50245227.pth + Config: configs/fcn/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py + + + + - Name: pspnet_r101-d8_512x1024_80k_fp16_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 8.77 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes-ade37931.pth + Config: configs/pspnet/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py + + + + - Name: deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 3.86 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.48 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes-bc86dc84.pth + Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py + + + + - Name: deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 7.87 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.46 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth + Config: configs/deeplabv3+/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py diff --git a/configs/gcnet/metafile.yml b/configs/gcnet/metafile.yml new file mode 100644 index 0000000000..03d78931a7 --- /dev/null +++ b/configs/gcnet/metafile.yml @@ -0,0 +1,231 @@ +Collections: + - Name: GCNet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: gcnet_r50-d8_512x1024_40k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): 3.93 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.69 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth + Config: configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: gcnet_r101-d8_512x1024_40k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): 2.61 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.28 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth + Config: configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: gcnet_r50-d8_769x769_40k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): 1.67 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.12 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth + Config: configs/gcnet/gcnet_r50-d8_769x769_40k_cityscapes.py + + + + - Name: gcnet_r101-d8_769x769_40k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): 1.13 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.95 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth + Config: configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py + + + + - Name: gcnet_r50-d8_512x1024_80k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.48 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth + Config: configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: gcnet_r101-d8_512x1024_80k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.03 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth + Config: configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: gcnet_r50-d8_769x769_80k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.68 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth + Config: configs/gcnet/gcnet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: gcnet_r101-d8_769x769_80k_cityscapes + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.18 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth + Config: configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py + + + + - Name: gcnet_r50-d8_512x512_80k_ade20k + In Collection: GCNet + Metadata: + inference time (fps): 23.38 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth + Config: configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py + + + + - Name: gcnet_r101-d8_512x512_80k_ade20k + In Collection: GCNet + Metadata: + inference time (fps): 15.20 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.82 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth + Config: configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py + + + + - Name: gcnet_r50-d8_512x512_160k_ade20k + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.37 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth + Config: configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py + + + + - Name: gcnet_r101-d8_512x512_160k_ade20k + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.69 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth + Config: configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py + + + + - Name: gcnet_r50-d8_512x512_20k_voc12aug + In Collection: GCNet + Metadata: + inference time (fps): 23.35 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.42 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth + Config: configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py + + + + - Name: gcnet_r101-d8_512x512_20k_voc12aug + In Collection: GCNet + Metadata: + inference time (fps): 14.80 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.41 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth + Config: configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py + + + + - Name: gcnet_r50-d8_512x512_40k_voc12aug + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.24 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth + Config: configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py + + + + - Name: gcnet_r101-d8_512x512_40k_voc12aug + In Collection: GCNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.84 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth + Config: configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py diff --git a/configs/hrnet/metafile.yml b/configs/hrnet/metafile.yml new file mode 100644 index 0000000000..b2145845ca --- /dev/null +++ b/configs/hrnet/metafile.yml @@ -0,0 +1,348 @@ + + - Name: fcn_hr18s_512x1024_40k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 23.74 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.86 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth + Config: configs/fcn/fcn_hr18s_512x1024_40k_cityscapes.py + + + + - Name: fcn_hr18_512x1024_40k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 12.97 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.19 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth + Config: configs/fcn/fcn_hr18_512x1024_40k_cityscapes.py + + + + - Name: fcn_hr48_512x1024_40k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 6.42 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.48 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth + Config: configs/fcn/fcn_hr48_512x1024_40k_cityscapes.py + + + + - Name: fcn_hr18s_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.31 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth + Config: configs/fcn/fcn_hr18s_512x1024_80k_cityscapes.py + + + + - Name: fcn_hr18_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.65 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth + Config: configs/fcn/fcn_hr18_512x1024_80k_cityscapes.py + + + + - Name: fcn_hr48_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.93 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth + Config: configs/fcn/fcn_hr48_512x1024_80k_cityscapes.py + + + + - Name: fcn_hr18s_512x1024_160k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.31 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth + Config: configs/fcn/fcn_hr18s_512x1024_160k_cityscapes.py + + + + - Name: fcn_hr18_512x1024_160k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.80 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth + Config: configs/fcn/fcn_hr18_512x1024_160k_cityscapes.py + + + + - Name: fcn_hr48_512x1024_160k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.65 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth + Config: configs/fcn/fcn_hr48_512x1024_160k_cityscapes.py + + + + - Name: fcn_hr18s_512x512_80k_ade20k + In Collection: FCN + Metadata: + inference time (fps): 38.66 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 31.38 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth + Config: configs/fcn/fcn_hr18s_512x512_80k_ade20k.py + + + + - Name: fcn_hr18_512x512_80k_ade20k + In Collection: FCN + Metadata: + inference time (fps): 22.57 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 35.51 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20200614_185145-66f20cb7.pth + Config: configs/fcn/fcn_hr18_512x512_80k_ade20k.py + + + + - Name: fcn_hr48_512x512_80k_ade20k + In Collection: FCN + Metadata: + inference time (fps): 21.23 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.90 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth + Config: configs/fcn/fcn_hr48_512x512_80k_ade20k.py + + + + - Name: fcn_hr18s_512x512_160k_ade20k + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 33.00 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth + Config: configs/fcn/fcn_hr18s_512x512_160k_ade20k.py + + + + - Name: fcn_hr18_512x512_160k_ade20k + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 36.79 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth + Config: configs/fcn/fcn_hr18_512x512_160k_ade20k.py + + + + - Name: fcn_hr48_512x512_160k_ade20k + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth + Config: configs/fcn/fcn_hr48_512x512_160k_ade20k.py + + + + - Name: fcn_hr18s_512x512_20k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): 43.36 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 65.20 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20200617_224503-56e36088.pth + Config: configs/fcn/fcn_hr18s_512x512_20k_voc12aug.py + + + + - Name: fcn_hr18_512x512_20k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): 23.48 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 72.30 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth + Config: configs/fcn/fcn_hr18_512x512_20k_voc12aug.py + + + + - Name: fcn_hr48_512x512_20k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): 22.05 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth + Config: configs/fcn/fcn_hr48_512x512_20k_voc12aug.py + + + + - Name: fcn_hr18s_512x512_40k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 66.61 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth + Config: configs/fcn/fcn_hr18s_512x512_40k_voc12aug.py + + + + - Name: fcn_hr18_512x512_40k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 72.90 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth + Config: configs/fcn/fcn_hr18_512x512_40k_voc12aug.py + + + + - Name: fcn_hr48_512x512_40k_voc12aug + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.24 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth + Config: configs/fcn/fcn_hr48_512x512_40k_voc12aug.py + + + + - Name: fcn_hr48_480x480_40k_pascal_context + In Collection: FCN + Metadata: + inference time (fps): 8.86 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 45.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth + Config: configs/fcn/fcn_hr48_480x480_40k_pascal_context.py + + + + - Name: fcn_hr48_480x480_80k_pascal_context + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 45.84 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth + Config: configs/fcn/fcn_hr48_480x480_80k_pascal_context.py + + + + - Name: fcn_hr48_480x480_40k_pascal_context_59 + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 50.33 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth + Config: configs/fcn/fcn_hr48_480x480_40k_pascal_context_59.py + + + + - Name: fcn_hr48_480x480_80k_pascal_context + In Collection: FCN + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 51.12 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth + Config: configs/fcn/fcn_hr48_480x480_80k_pascal_context.py diff --git a/configs/mobilenet_v2/metafile.yml b/configs/mobilenet_v2/metafile.yml new file mode 100644 index 0000000000..7146869385 --- /dev/null +++ b/configs/mobilenet_v2/metafile.yml @@ -0,0 +1,112 @@ + +Models: + + - Name: fcn_m-v2-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 14.2 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 61.54 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth + Config: configs/fcn/fcn_m-v2-d8_512x1024_80k_cityscapes.py + + + + - Name: pspnet_m-v2-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 11.2 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.23 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth + Config: configs/pspnet/pspnet_m-v2-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3_m-v2-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 8.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.84 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth + Config: configs/deeplabv3/deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 8.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.20 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth + Config: configs/deeplabv3+/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py + + + + - Name: fcn_m-v2-d8_512x512_160k_ade20k + In Collection: FCN + Metadata: + inference time (fps): 64.4 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 19.71 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth + Config: configs/fcn/fcn_m-v2-d8_512x512_160k_ade20k.py + + + + - Name: pspnet_m-v2-d8_512x512_160k_ade20k + In Collection: PSPNet + Metadata: + inference time (fps): 57.7 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 29.68 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth + Config: configs/pspnet/pspnet_m-v2-d8_512x512_160k_ade20k.py + + + + - Name: deeplabv3_m-v2-d8_512x512_160k_ade20k + In Collection: DeepLabV3 + Metadata: + inference time (fps): 39.9 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 34.08 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth + Config: configs/deeplabv3/deeplabv3_m-v2-d8_512x512_160k_ade20k.py + + + + - Name: deeplabv3plus_m-v2-d8_512x512_160k_ade20k + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 43.1 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 34.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth + Config: configs/deeplabv3+/deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py diff --git a/configs/mobilenet_v3/metafile.yml b/configs/mobilenet_v3/metafile.yml new file mode 100644 index 0000000000..6a9e92ea8c --- /dev/null +++ b/configs/mobilenet_v3/metafile.yml @@ -0,0 +1,56 @@ + +Models: + + - Name: lraspp_m-v3-d8_512x1024_320k_cityscapes + In Collection: LRASPP + Metadata: + inference time (fps): 15.22 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 69.54 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes_20201224_220337-cfe8fb07.pth + Config: configs/lraspp/lraspp_m-v3-d8_512x1024_320k_cityscapes.py + + + + - Name: lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes + In Collection: LRASPP + Metadata: + inference time (fps): 14.77 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 67.87 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes_20201224_220337-9f29cd72.pth + Config: configs/lraspp/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes.py + + + + - Name: lraspp_m-v3s-d8_512x1024_320k_cityscapes + In Collection: LRASPP + Metadata: + inference time (fps): 23.64 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 64.11 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes_20201224_223935-61565b34.pth + Config: configs/lraspp/lraspp_m-v3s-d8_512x1024_320k_cityscapes.py + + + + - Name: lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes + In Collection: LRASPP + Metadata: + inference time (fps): 24.50 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 62.74 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes_20201224_223935-03daeabb.pth + Config: configs/lraspp/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes.py diff --git a/configs/nonlocal_net/metafile.yml b/configs/nonlocal_net/metafile.yml new file mode 100644 index 0000000000..4c545ebab0 --- /dev/null +++ b/configs/nonlocal_net/metafile.yml @@ -0,0 +1,231 @@ +Collections: + - Name: NonLocal + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: nonlocal_r50-d8_512x1024_40k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): 2.72 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.24 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748-c75e81e3.pth + Config: configs/nonlocal/nonlocal_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: nonlocal_r101-d8_512x1024_40k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): 1.95 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.66 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748-d63729fa.pth + Config: configs/nonlocal/nonlocal_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: nonlocal_r50-d8_769x769_40k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): 1.52 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.33 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243-82ef6749.pth + Config: configs/nonlocal/nonlocal_r50-d8_769x769_40k_cityscapes.py + + + + - Name: nonlocal_r101-d8_769x769_40k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): 1.05 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.57 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348-8fe9a9dc.pth + Config: configs/nonlocal/nonlocal_r101-d8_769x769_40k_cityscapes.py + + + + - Name: nonlocal_r50-d8_512x1024_80k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.01 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518-d6839fae.pth + Config: configs/nonlocal/nonlocal_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: nonlocal_r101-d8_512x1024_80k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.93 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411-32700183.pth + Config: configs/nonlocal/nonlocal_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: nonlocal_r50-d8_769x769_80k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.05 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506-1f9792f6.pth + Config: configs/nonlocal/nonlocal_r50-d8_769x769_80k_cityscapes.py + + + + - Name: nonlocal_r101-d8_769x769_80k_cityscapes + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.40 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428-0e1fa4f9.pth + Config: configs/nonlocal/nonlocal_r101-d8_769x769_80k_cityscapes.py + + + + - Name: nonlocal_r50-d8_512x512_80k_ade20k + In Collection: NonLocal + Metadata: + inference time (fps): 21.37 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.75 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth + Config: configs/nonlocal/nonlocal_r50-d8_512x512_80k_ade20k.py + + + + - Name: nonlocal_r101-d8_512x512_80k_ade20k + In Collection: NonLocal + Metadata: + inference time (fps): 13.97 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.90 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth + Config: configs/nonlocal/nonlocal_r101-d8_512x512_80k_ade20k.py + + + + - Name: nonlocal_r50-d8_512x512_160k_ade20k + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.03 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth + Config: configs/nonlocal/nonlocal_r50-d8_512x512_160k_ade20k.py + + + + - Name: nonlocal_r101-d8_512x512_160k_ade20k + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.36 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20200616_003422-affd0f8d.pth + Config: configs/nonlocal/nonlocal_r101-d8_512x512_160k_ade20k.py + + + + - Name: nonlocal_r50-d8_512x512_20k_voc12aug + In Collection: NonLocal + Metadata: + inference time (fps): 21.21 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.20 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613-07f2a57c.pth + Config: configs/nonlocal/nonlocal_r50-d8_512x512_20k_voc12aug.py + + + + - Name: nonlocal_r101-d8_512x512_20k_voc12aug + In Collection: NonLocal + Metadata: + inference time (fps): 14.01 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.15 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615-948c68ab.pth + Config: configs/nonlocal/nonlocal_r101-d8_512x512_20k_voc12aug.py + + + + - Name: nonlocal_r50-d8_512x512_40k_voc12aug + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.65 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028-0139d4a9.pth + Config: configs/nonlocal/nonlocal_r50-d8_512x512_40k_voc12aug.py + + + + - Name: nonlocal_r101-d8_512x512_40k_voc12aug + In Collection: NonLocal + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.27 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028-7e5ff470.pth + Config: configs/nonlocal/nonlocal_r101-d8_512x512_40k_voc12aug.py diff --git a/configs/ocrnet/metafile.yml b/configs/ocrnet/metafile.yml new file mode 100644 index 0000000000..50b6d0a5ed --- /dev/null +++ b/configs/ocrnet/metafile.yml @@ -0,0 +1,343 @@ +Collections: + - Name: OCRNet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: ocrnet_hr18s_512x1024_40k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): 10.45 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.30 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes/ocrnet_hr18s_512x1024_40k_cityscapes_20200601_033304-fa2436c2.pth + Config: configs/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes.py + + + + - Name: ocrnet_hr18_512x1024_40k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): 7.50 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.72 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth + Config: configs/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes.py + + + + - Name: ocrnet_hr48_512x1024_40k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): 4.22 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.58 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth + Config: configs/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes.py + + + + - Name: ocrnet_hr18s_512x1024_80k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.16 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth + Config: configs/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes.py + + + + - Name: ocrnet_hr18_512x1024_80k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.57 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth + Config: configs/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes.py + + + + - Name: ocrnet_hr48_512x1024_80k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.70 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth + Config: configs/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes.py + + + + - Name: ocrnet_hr18s_512x1024_160k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.45 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth + Config: configs/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes.py + + + + - Name: ocrnet_hr18_512x1024_160k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth + Config: configs/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes.py + + + + - Name: ocrnet_hr48_512x1024_160k_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 81.35 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth + Config: configs/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes.py + + + + - Name: ocrnet_r101-d8_512x1024_40k_b8_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: + Weights: https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py + Config: configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py + + + + - Name: ocrnet_r101-d8_512x1024_40k_b16_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): 8.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 3.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes-02ac0f13.pth + Config: configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py + + + + - Name: ocrnet_r101-d8_512x1024_80k_b16_cityscapes + In Collection: OCRNet + Metadata: + inference time (fps): 8.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 3.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes-db500f80.pth + Config: configs/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py + + + + - Name: ocrnet_hr18s_512x512_80k_ade20k + In Collection: OCRNet + Metadata: + inference time (fps): 28.98 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 35.06 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth + Config: configs/ocrnet/ocrnet_hr18s_512x512_80k_ade20k.py + + + + - Name: ocrnet_hr18_512x512_80k_ade20k + In Collection: OCRNet + Metadata: + inference time (fps): 18.93 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.79 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth + Config: configs/ocrnet/ocrnet_hr18_512x512_80k_ade20k.py + + + + - Name: ocrnet_hr48_512x512_80k_ade20k + In Collection: OCRNet + Metadata: + inference time (fps): 16.99 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.00 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth + Config: configs/ocrnet/ocrnet_hr48_512x512_80k_ade20k.py + + + + - Name: ocrnet_hr18s_512x512_160k_ade20k + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.19 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth + Config: configs/ocrnet/ocrnet_hr18s_512x512_160k_ade20k.py + + + + - Name: ocrnet_hr18_512x512_160k_ade20k + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.32 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth + Config: configs/ocrnet/ocrnet_hr18_512x512_160k_ade20k.py + + + + - Name: ocrnet_hr48_512x512_160k_ade20k + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.25 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth + Config: configs/ocrnet/ocrnet_hr48_512x512_160k_ade20k.py + + + + - Name: ocrnet_hr18s_512x512_20k_voc12aug + In Collection: OCRNet + Metadata: + inference time (fps): 31.55 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 71.70 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth + Config: configs/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug.py + + + + - Name: ocrnet_hr18_512x512_20k_voc12aug + In Collection: OCRNet + Metadata: + inference time (fps): 19.91 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.75 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth + Config: configs/ocrnet/ocrnet_hr18_512x512_20k_voc12aug.py + + + + - Name: ocrnet_hr48_512x512_20k_voc12aug + In Collection: OCRNet + Metadata: + inference time (fps): 17.83 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.72 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth + Config: configs/ocrnet/ocrnet_hr48_512x512_20k_voc12aug.py + + + + - Name: ocrnet_hr18s_512x512_40k_voc12aug + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 72.76 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth + Config: configs/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug.py + + + + - Name: ocrnet_hr18_512x512_40k_voc12aug + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.98 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth + Config: configs/ocrnet/ocrnet_hr18_512x512_40k_voc12aug.py + + + + - Name: ocrnet_hr48_512x512_40k_voc12aug + In Collection: OCRNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth + Config: configs/ocrnet/ocrnet_hr48_512x512_40k_voc12aug.py diff --git a/configs/point_rend/metafile.yml b/configs/point_rend/metafile.yml new file mode 100644 index 0000000000..aba00e0931 --- /dev/null +++ b/configs/point_rend/metafile.yml @@ -0,0 +1,62 @@ +Collections: + - Name: PointRend + Metadata: + Training Data: + - Cityscapes + - ADE20K + +Models: + + - Name: pointrend_r50_512x1024_80k_cityscapes + In Collection: PointRend + Metadata: + inference time (fps): 8.48 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth + Config: configs/pointrend/pointrend_r50_512x1024_80k_cityscapes.py + + + + - Name: pointrend_r101_512x1024_80k_cityscapes + In Collection: PointRend + Metadata: + inference time (fps): 7.00 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.30 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth + Config: configs/pointrend/pointrend_r101_512x1024_80k_cityscapes.py + + + + - Name: pointrend_r50_512x512_160k_ade20k + In Collection: PointRend + Metadata: + inference time (fps): 17.31 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.64 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth + Config: configs/pointrend/pointrend_r50_512x512_160k_ade20k.py + + + + - Name: pointrend_r101_512x512_160k_ade20k + In Collection: PointRend + Metadata: + inference time (fps): 15.50 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.02 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth + Config: configs/pointrend/pointrend_r101_512x512_160k_ade20k.py diff --git a/configs/psanet/metafile.yml b/configs/psanet/metafile.yml new file mode 100644 index 0000000000..1052ec1e19 --- /dev/null +++ b/configs/psanet/metafile.yml @@ -0,0 +1,231 @@ +Collections: + - Name: PSANet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: psanet_r50-d8_512x1024_40k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): 3.17 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.63 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth + Config: configs/psanet/psanet_r50-d8_512x1024_40k_cityscapes.py + + + + - Name: psanet_r101-d8_512x1024_40k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): 2.20 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth + Config: configs/psanet/psanet_r101-d8_512x1024_40k_cityscapes.py + + + + - Name: psanet_r50-d8_769x769_40k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): 1.40 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.99 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth + Config: configs/psanet/psanet_r50-d8_769x769_40k_cityscapes.py + + + + - Name: psanet_r101-d8_769x769_40k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): 0.98 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.43 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth + Config: configs/psanet/psanet_r101-d8_769x769_40k_cityscapes.py + + + + - Name: psanet_r50-d8_512x1024_80k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.24 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth + Config: configs/psanet/psanet_r50-d8_512x1024_80k_cityscapes.py + + + + - Name: psanet_r101-d8_512x1024_80k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.31 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth + Config: configs/psanet/psanet_r101-d8_512x1024_80k_cityscapes.py + + + + - Name: psanet_r50-d8_769x769_80k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.31 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth + Config: configs/psanet/psanet_r50-d8_769x769_80k_cityscapes.py + + + + - Name: psanet_r101-d8_769x769_80k_cityscapes + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.69 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth + Config: configs/psanet/psanet_r101-d8_769x769_80k_cityscapes.py + + + + - Name: psanet_r50-d8_512x512_80k_ade20k + In Collection: PSANet + Metadata: + inference time (fps): 18.91 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.14 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth + Config: configs/psanet/psanet_r50-d8_512x512_80k_ade20k.py + + + + - Name: psanet_r101-d8_512x512_80k_ade20k + In Collection: PSANet + Metadata: + inference time (fps): 13.13 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.80 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth + Config: configs/psanet/psanet_r101-d8_512x512_80k_ade20k.py + + + + - Name: psanet_r50-d8_512x512_160k_ade20k + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth + Config: configs/psanet/psanet_r50-d8_512x512_160k_ade20k.py + + + + - Name: psanet_r101-d8_512x512_160k_ade20k + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.74 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth + Config: configs/psanet/psanet_r101-d8_512x512_160k_ade20k.py + + + + - Name: psanet_r50-d8_512x512_20k_voc12aug + In Collection: PSANet + Metadata: + inference time (fps): 18.24 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.39 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth + Config: configs/psanet/psanet_r50-d8_512x512_20k_voc12aug.py + + + + - Name: psanet_r101-d8_512x512_20k_voc12aug + In Collection: PSANet + Metadata: + inference time (fps): 12.63 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.91 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth + Config: configs/psanet/psanet_r101-d8_512x512_20k_voc12aug.py + + + + - Name: psanet_r50-d8_512x512_40k_voc12aug + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.30 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth + Config: configs/psanet/psanet_r50-d8_512x512_40k_voc12aug.py + + + + - Name: psanet_r101-d8_512x512_40k_voc12aug + In Collection: PSANet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.73 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth + Config: configs/psanet/psanet_r101-d8_512x512_40k_voc12aug.py diff --git a/configs/resnest/metafile.yml b/configs/resnest/metafile.yml new file mode 100644 index 0000000000..d6775ac9d5 --- /dev/null +++ b/configs/resnest/metafile.yml @@ -0,0 +1,118 @@ +Collections: + - Name: ResNeSt + Metadata: + Training Data: + - Cityscapes + - ADE20K + +Models: + + - Name: fcn_s101-d8_512x1024_80k_cityscapes + In Collection: FCN + Metadata: + inference time (fps): 2.39 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.56 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth + Config: configs/fcn/fcn_s101-d8_512x1024_80k_cityscapes.py + + + + - Name: pspnet_s101-d8_512x1024_80k_cityscapes + In Collection: PSPNet + Metadata: + inference time (fps): 2.52 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.57 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth + Config: configs/pspnet/pspnet_s101-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3_s101-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3 + Metadata: + inference time (fps): 1.88 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.67 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth + Config: configs/deeplabv3/deeplabv3_s101-d8_512x1024_80k_cityscapes.py + + + + - Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 2.36 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.62 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth + Config: configs/deeplabv3+/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py + + + + - Name: fcn_s101-d8_512x512_160k_ade20k + In Collection: FCN + Metadata: + inference time (fps): 12.86 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.62 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth + Config: configs/fcn/fcn_s101-d8_512x512_160k_ade20k.py + + + + - Name: pspnet_s101-d8_512x512_160k_ade20k + In Collection: PSPNet + Metadata: + inference time (fps): 13.02 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.44 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth + Config: configs/pspnet/pspnet_s101-d8_512x512_160k_ade20k.py + + + + - Name: deeplabv3_s101-d8_512x512_160k_ade20k + In Collection: DeepLabV3 + Metadata: + inference time (fps): 9.28 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.71 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth + Config: configs/deeplabv3/deeplabv3_s101-d8_512x512_160k_ade20k.py + + + + - Name: deeplabv3plus_s101-d8_512x512_160k_ade20k + In Collection: DeepLabV3+ + Metadata: + inference time (fps): 11.96 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 46.47 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth + Config: configs/deeplabv3+/deeplabv3plus_s101-d8_512x512_160k_ade20k.py diff --git a/configs/sem_fpn/metafile.yml b/configs/sem_fpn/metafile.yml new file mode 100644 index 0000000000..9bbb04be19 --- /dev/null +++ b/configs/sem_fpn/metafile.yml @@ -0,0 +1,63 @@ +Collections: + - Name: SEM FPN + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: fpn_r50_512x1024_80k_cityscapes + In Collection: FPN + Metadata: + inference time (fps): 13.54 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.52 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth + Config: configs/fpn/fpn_r50_512x1024_80k_cityscapes.py + + + + - Name: fpn_r101_512x1024_80k_cityscapes + In Collection: FPN + Metadata: + inference time (fps): 10.29 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.80 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth + Config: configs/fpn/fpn_r101_512x1024_80k_cityscapes.py + + + + - Name: fpn_r50_512x512_160k_ade20k + In Collection: FPN + Metadata: + inference time (fps): 55.77 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 37.49 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth + Config: configs/fpn/fpn_r50_512x512_160k_ade20k.py + + + + - Name: fpn_r101_512x512_160k_ade20k + In Collection: FPN + Metadata: + inference time (fps): 40.58 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.35 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth + Config: configs/fpn/fpn_r101_512x512_160k_ade20k.py diff --git a/configs/unet/metafile.yml b/configs/unet/metafile.yml new file mode 100644 index 0000000000..932ef287ce --- /dev/null +++ b/configs/unet/metafile.yml @@ -0,0 +1,175 @@ +Collections: + - Name: UPerNet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: fcn_unet_s5-d16_64x64_40k_drive + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.680 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-26cee593.pth + Config: configs/unet-s5-d16/fcn_unet_s5-d16_64x64_40k_drive.py + + + + - Name: pspnet_unet_s5-d16_64x64_40k_drive + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.599 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth + Config: configs/unet-s5-d16/pspnet_unet_s5-d16_64x64_40k_drive.py + + + + - Name: deeplabv3_unet_s5-d16_64x64_40k_drive + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.596 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth + Config: configs/unet-s5-d16/deeplabv3_unet_s5-d16_64x64_40k_drive.py + + + + - Name: fcn_unet_s5-d16_128x128_40k_stare + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.968 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-6ea7cfda.pth + Config: configs/unet-s5-d16/fcn_unet_s5-d16_128x128_40k_stare.py + + + + - Name: pspnet_unet_s5-d16_128x128_40k_stare + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.982 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth + Config: configs/unet-s5-d16/pspnet_unet_s5-d16_128x128_40k_stare.py + + + + - Name: deeplabv3_unet_s5-d16_128x128_40k_stare + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.999 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth + Config: configs/unet-s5-d16/deeplabv3_unet_s5-d16_128x128_40k_stare.py + + + + - Name: fcn_unet_s5-d16_128x128_40k_chase_db1 + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.968 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-95852f45.pth + Config: configs/unet-s5-d16/fcn_unet_s5-d16_128x128_40k_chase_db1.py + + + + - Name: pspnet_unet_s5-d16_128x128_40k_chase_db1 + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.982 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth + Config: configs/unet-s5-d16/pspnet_unet_s5-d16_128x128_40k_chase_db1.py + + + + - Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1 + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 0.999 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth + Config: configs/unet-s5-d16/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py + + + + - Name: fcn_unet_s5-d16_256x256_40k_hrf + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 2.525 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-df3ec8c4.pth + Config: configs/unet-s5-d16/fcn_unet_s5-d16_256x256_40k_hrf.py + + + + - Name: pspnet_unet_s5-d16_256x256_40k_hrf + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 2.588 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth + Config: configs/unet-s5-d16/pspnet_unet_s5-d16_256x256_40k_hrf.py + + + + - Name: deeplabv3_unet_s5-d16_256x256_40k_hrf + In Collection: UNet-S5-D16 + Metadata: + inference time (fps): 40000 + Results: + - Task: Semantic Segmentation + Dataset: + Metrics: + mIoU: 2.604 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth + Config: configs/unet-s5-d16/deeplabv3_unet_s5-d16_256x256_40k_hrf.py diff --git a/configs/upernet/metafile.yml b/configs/upernet/metafile.yml new file mode 100644 index 0000000000..7c6773febc --- /dev/null +++ b/configs/upernet/metafile.yml @@ -0,0 +1,231 @@ +Collections: + - Name: UPerNet + Metadata: + Training Data: + - Cityscapes + - Pascal VOC 2012 + Aug + - ADE20K + +Models: + + - Name: upernet_r50_512x1024_40k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): 4.25 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.10 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth + Config: configs/upernet/upernet_r50_512x1024_40k_cityscapes.py + + + + - Name: upernet_r101_512x1024_40k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): 3.79 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.69 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth + Config: configs/upernet/upernet_r101_512x1024_40k_cityscapes.py + + + + - Name: upernet_r50_769x769_40k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): 1.76 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.98 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth + Config: configs/upernet/upernet_r50_769x769_40k_cityscapes.py + + + + - Name: upernet_r101_769x769_40k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): 1.56 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.03 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth + Config: configs/upernet/upernet_r101_769x769_40k_cityscapes.py + + + + - Name: upernet_r50_512x1024_80k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.19 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth + Config: configs/upernet/upernet_r50_512x1024_80k_cityscapes.py + + + + - Name: upernet_r101_512x1024_80k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.40 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth + Config: configs/upernet/upernet_r101_512x1024_80k_cityscapes.py + + + + - Name: upernet_r50_769x769_80k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.39 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth + Config: configs/upernet/upernet_r50_769x769_80k_cityscapes.py + + + + - Name: upernet_r101_769x769_80k_cityscapes + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.10 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth + Config: configs/upernet/upernet_r101_769x769_80k_cityscapes.py + + + + - Name: upernet_r50_512x512_80k_ade20k + In Collection: UPerNet + Metadata: + inference time (fps): 23.40 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.70 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth + Config: configs/upernet/upernet_r50_512x512_80k_ade20k.py + + + + - Name: upernet_r101_512x512_80k_ade20k + In Collection: UPerNet + Metadata: + inference time (fps): 20.34 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.91 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth + Config: configs/upernet/upernet_r101_512x512_80k_ade20k.py + + + + - Name: upernet_r50_512x512_160k_ade20k + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.05 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth + Config: configs/upernet/upernet_r50_512x512_160k_ade20k.py + + + + - Name: upernet_r101_512x512_160k_ade20k + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.82 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth + Config: configs/upernet/upernet_r101_512x512_160k_ade20k.py + + + + - Name: upernet_r50_512x512_20k_voc12aug + In Collection: UPerNet + Metadata: + inference time (fps): 23.17 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.82 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth + Config: configs/upernet/upernet_r50_512x512_20k_voc12aug.py + + + + - Name: upernet_r101_512x512_20k_voc12aug + In Collection: UPerNet + Metadata: + inference time (fps): 19.98 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.10 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth + Config: configs/upernet/upernet_r101_512x512_20k_voc12aug.py + + + + - Name: upernet_r50_512x512_40k_voc12aug + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.92 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth + Config: configs/upernet/upernet_r50_512x512_40k_voc12aug.py + + + + - Name: upernet_r101_512x512_40k_voc12aug + In Collection: UPerNet + Metadata: + inference time (fps): + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.43 + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth + Config: configs/upernet/upernet_r101_512x512_40k_voc12aug.py From 06ea96b7fd56a5a5615e41308e7a72e6785f4b0a Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Sat, 15 May 2021 15:06:41 +0800 Subject: [PATCH 21/29] add config to model_zoo --- model_zoo.yml | 25 ++++++++++++++++++++++++- 1 file changed, 24 insertions(+), 1 deletion(-) diff --git a/model_zoo.yml b/model_zoo.yml index aae808abb7..6a95f49c32 100644 --- a/model_zoo.yml +++ b/model_zoo.yml @@ -1,4 +1,27 @@ Import: + - configs/ann/metafile.yml + - configs/apcnet/metafile.yml + - configs/ccnet/metafile.yml + - configs/cgnet/metafile.yml + - configs/danet/metafile.yml + - configs/deeplabv3/metafile.yml + - configs/deeplabv3plus/metafile.yml + - configs/dnlnet/metafile.yml + - configs/emanet/metafile.yml + - configs/encnet/metafile.yml + - configs/fastscnn/metafile.yml - configs/fcn/metafile.yml + - configs/fp16/metafile.yml + - configs/gcnet/metafile.yml + - configs/hrnet/metafile.yml + - configs/mobilenet_v2/metafile.yml + - configs/mobilenet_v3/metafile.yml + - configs/nonlocal_net/metafile.yml + - configs/ocrnet/metafile.yml + - configs/point_rend/metafile.yml + - configs/psanet/metafile.yml - configs/pspnet/metafile.yml - - configs/deeplabv3/metafile.yml + - configs/resnest/metafile.yml + - configs/sem_fpn/metafile.yml + - configs/unet/metafile.yml + - configs/upernet/metafile.yml From 708a6c212ce4f36f8d90c5d7d639b4701087223e Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Sat, 15 May 2021 15:29:02 +0800 Subject: [PATCH 22/29] fix bug --- configs/dnlnet/metafile.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/configs/dnlnet/metafile.yml b/configs/dnlnet/metafile.yml index bbb010d674..9a05dfbb2b 100644 --- a/configs/dnlnet/metafile.yml +++ b/configs/dnlnet/metafile.yml @@ -120,7 +120,7 @@ Models: - Name: dnl_r50-d8_512x512_80k_ade20k - In Collection: DNL + In Collection: dnl Metadata: inference time (fps): 20.66 Results: @@ -134,7 +134,7 @@ Models: - Name: dnl_r101-d8_512x512_80k_ade20k - In Collection: DNL + In Collection: dnl Metadata: inference time (fps): 12.54 Results: @@ -148,7 +148,7 @@ Models: - Name: dnl_r50-d8_512x512_160k_ade20k - In Collection: DNL + In Collection: dnl Metadata: inference time (fps): Results: @@ -162,7 +162,7 @@ Models: - Name: dnl_r101-d8_512x512_160k_ade20k - In Collection: DNL + In Collection: dnl Metadata: inference time (fps): Results: From d32a4a6d7b6c35e523ee57864063194530334fbe Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E8=B0=A2=E6=98=95=E8=BE=B0?= <xinchen.xie@qq.com> Date: Sat, 15 May 2021 15:51:38 +0800 Subject: [PATCH 23/29] Update mminstall.txt --- requirements/mminstall.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements/mminstall.txt b/requirements/mminstall.txt index d371e1cc8e..b1c42eb464 100644 --- a/requirements/mminstall.txt +++ b/requirements/mminstall.txt @@ -1 +1 @@ -mmcv-full>=1.3.0 +mmcv-full>=1.3.1,<=1.4.0 From 605d3e643d199492d735aa3992df1bd72d79cb2e Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Mon, 24 May 2021 14:23:04 +0800 Subject: [PATCH 24/29] [fix] Add models --- configs/hrnet/metafile.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/configs/hrnet/metafile.yml b/configs/hrnet/metafile.yml index b2145845ca..ed33e2d7d9 100644 --- a/configs/hrnet/metafile.yml +++ b/configs/hrnet/metafile.yml @@ -1,4 +1,4 @@ - +Models: - Name: fcn_hr18s_512x1024_40k_cityscapes In Collection: FCN Metadata: From 063efd15ff6efb1148d563f84268b00a4726a75f Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Mon, 24 May 2021 14:32:03 +0800 Subject: [PATCH 25/29] [Fix] Add collections --- configs/mobilenet_v3/metafile.yml | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/configs/mobilenet_v3/metafile.yml b/configs/mobilenet_v3/metafile.yml index 6a9e92ea8c..efd700058e 100644 --- a/configs/mobilenet_v3/metafile.yml +++ b/configs/mobilenet_v3/metafile.yml @@ -1,3 +1,8 @@ +Collections: + - Name: LRASPP + Metadata: + Training Data: + - Cityscapes Models: From 478522498d3ea00dfced352a8bfcdcf630263ddb Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Mon, 24 May 2021 14:38:05 +0800 Subject: [PATCH 26/29] [fix] Modify collection name --- configs/sem_fpn/metafile.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/configs/sem_fpn/metafile.yml b/configs/sem_fpn/metafile.yml index 9bbb04be19..781589ac0b 100644 --- a/configs/sem_fpn/metafile.yml +++ b/configs/sem_fpn/metafile.yml @@ -1,5 +1,5 @@ Collections: - - Name: SEM FPN + - Name: FPN Metadata: Training Data: - Cityscapes From 7473cbe47673f875026533ad9353c9db12127c64 Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Mon, 24 May 2021 14:47:41 +0800 Subject: [PATCH 27/29] [Fix] Set datasets to unet metafile --- configs/unet/metafile.yml | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/configs/unet/metafile.yml b/configs/unet/metafile.yml index 932ef287ce..7de02cf7fc 100644 --- a/configs/unet/metafile.yml +++ b/configs/unet/metafile.yml @@ -14,7 +14,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: DRIVE Metrics: mIoU: 0.680 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-26cee593.pth @@ -28,7 +28,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: DRIVE Metrics: mIoU: 0.599 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth @@ -42,7 +42,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: DRIVE Metrics: mIoU: 0.596 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth @@ -56,7 +56,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: STARE Metrics: mIoU: 0.968 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-6ea7cfda.pth @@ -70,7 +70,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: STARE Metrics: mIoU: 0.982 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth @@ -84,7 +84,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: STARE Metrics: mIoU: 0.999 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth @@ -98,7 +98,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: CHASE_DB1 Metrics: mIoU: 0.968 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-95852f45.pth @@ -112,7 +112,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: CHASE_DB1 Metrics: mIoU: 0.982 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth @@ -126,7 +126,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: CHASE_DB1 Metrics: mIoU: 0.999 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth @@ -140,7 +140,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: HRF Metrics: mIoU: 2.525 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-df3ec8c4.pth @@ -154,7 +154,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: HRF Metrics: mIoU: 2.588 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth @@ -168,7 +168,7 @@ Models: inference time (fps): 40000 Results: - Task: Semantic Segmentation - Dataset: + Dataset: HRF Metrics: mIoU: 2.604 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth From 0bfb6d5fa4937dd7942f22a9676a23bc0a2484de Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Mon, 24 May 2021 14:53:00 +0800 Subject: [PATCH 28/29] [Fix] Modify collection names --- configs/unet/metafile.yml | 32 ++++++++++++-------------------- 1 file changed, 12 insertions(+), 20 deletions(-) diff --git a/configs/unet/metafile.yml b/configs/unet/metafile.yml index 7de02cf7fc..3a84cf2b2c 100644 --- a/configs/unet/metafile.yml +++ b/configs/unet/metafile.yml @@ -1,15 +1,7 @@ -Collections: - - Name: UPerNet - Metadata: - Training Data: - - Cityscapes - - Pascal VOC 2012 + Aug - - ADE20K - Models: - Name: fcn_unet_s5-d16_64x64_40k_drive - In Collection: UNet-S5-D16 + In Collection: FCN Metadata: inference time (fps): 40000 Results: @@ -23,7 +15,7 @@ Models: - Name: pspnet_unet_s5-d16_64x64_40k_drive - In Collection: UNet-S5-D16 + In Collection: PSPNet Metadata: inference time (fps): 40000 Results: @@ -37,7 +29,7 @@ Models: - Name: deeplabv3_unet_s5-d16_64x64_40k_drive - In Collection: UNet-S5-D16 + In Collection: DeepLabV3 Metadata: inference time (fps): 40000 Results: @@ -51,7 +43,7 @@ Models: - Name: fcn_unet_s5-d16_128x128_40k_stare - In Collection: UNet-S5-D16 + In Collection: FCN Metadata: inference time (fps): 40000 Results: @@ -65,7 +57,7 @@ Models: - Name: pspnet_unet_s5-d16_128x128_40k_stare - In Collection: UNet-S5-D16 + In Collection: PSPNet Metadata: inference time (fps): 40000 Results: @@ -79,7 +71,7 @@ Models: - Name: deeplabv3_unet_s5-d16_128x128_40k_stare - In Collection: UNet-S5-D16 + In Collection: DeepLabV3 Metadata: inference time (fps): 40000 Results: @@ -93,7 +85,7 @@ Models: - Name: fcn_unet_s5-d16_128x128_40k_chase_db1 - In Collection: UNet-S5-D16 + In Collection: FCN Metadata: inference time (fps): 40000 Results: @@ -107,7 +99,7 @@ Models: - Name: pspnet_unet_s5-d16_128x128_40k_chase_db1 - In Collection: UNet-S5-D16 + In Collection: PSPNet Metadata: inference time (fps): 40000 Results: @@ -121,7 +113,7 @@ Models: - Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1 - In Collection: UNet-S5-D16 + In Collection: DeepLabV3 Metadata: inference time (fps): 40000 Results: @@ -135,7 +127,7 @@ Models: - Name: fcn_unet_s5-d16_256x256_40k_hrf - In Collection: UNet-S5-D16 + In Collection: FCN Metadata: inference time (fps): 40000 Results: @@ -149,7 +141,7 @@ Models: - Name: pspnet_unet_s5-d16_256x256_40k_hrf - In Collection: UNet-S5-D16 + In Collection: PSPNet Metadata: inference time (fps): 40000 Results: @@ -163,7 +155,7 @@ Models: - Name: deeplabv3_unet_s5-d16_256x256_40k_hrf - In Collection: UNet-S5-D16 + In Collection: DeepLabV3 Metadata: inference time (fps): 40000 Results: From bcbfc1e112bc1b0528f673d2c1974aaa553f998e Mon Sep 17 00:00:00 2001 From: xiexinch <xinchen.xie@qq.com> Date: Mon, 31 May 2021 13:31:07 +0800 Subject: [PATCH 29/29] complement inference time --- configs/ann/metafile.yml | 14 +++++++------- configs/apcnet/metafile.yml | 12 ++++++------ configs/ccnet/metafile.yml | 16 ++++++++-------- configs/danet/metafile.yml | 16 ++++++++-------- configs/deeplabv3/metafile.yml | 24 ++++++++++++------------ configs/deeplabv3plus/metafile.yml | 24 ++++++++++++------------ configs/dmnet/metafile.yml | 12 ++++++------ configs/dnlnet/metafile.yml | 12 ++++++------ configs/encnet/metafile.yml | 12 ++++++------ configs/fcn/metafile.yml | 22 +++++++++++----------- configs/gcnet/metafile.yml | 16 ++++++++-------- configs/hrnet/metafile.yml | 30 +++++++++++++++--------------- configs/nonlocal_net/metafile.yml | 16 ++++++++-------- configs/ocrnet/metafile.yml | 26 +++++++++++++------------- configs/psanet/metafile.yml | 16 ++++++++-------- configs/pspnet/metafile.yml | 22 +++++++++++----------- configs/unet/metafile.yml | 24 ++++++++++++------------ configs/upernet/metafile.yml | 16 ++++++++-------- 18 files changed, 165 insertions(+), 165 deletions(-) diff --git a/configs/ann/metafile.yml b/configs/ann/metafile.yml index 8ece7ee76e..17959f4282 100644 --- a/configs/ann/metafile.yml +++ b/configs/ann/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: ann_r50-d8_512x1024_80k_cityscapes In Collection: ANN Metadata: - inference time (fps): + inference time (fps): 3.71 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: ann_r101-d8_512x1024_80k_cityscapes In Collection: ANN Metadata: - inference time (fps): + inference time (fps): 2.55 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: ann_r50-d8_769x769_80k_cityscapes In Collection: ANN Metadata: - inference time (fps): + inference time (fps): 1.70 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: ann_r50-d8_512x512_160k_ade20k In Collection: ANN Metadata: - inference time (fps): + inference time (fps): 21.01 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: ann_r101-d8_512x512_160k_ade20k In Collection: ANN Metadata: - inference time (fps): + inference time (fps): 14.12 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -207,7 +207,7 @@ Models: - Name: ann_r50-d8_512x512_40k_voc12aug In Collection: ANN Metadata: - inference time (fps): + inference time (fps): 20.92 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -221,7 +221,7 @@ Models: - Name: ann_r101-d8_512x512_40k_voc12aug In Collection: ANN Metadata: - inference time (fps): + inference time (fps): 13.94 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/apcnet/metafile.yml b/configs/apcnet/metafile.yml index f91635be85..de3ab01729 100644 --- a/configs/apcnet/metafile.yml +++ b/configs/apcnet/metafile.yml @@ -66,7 +66,7 @@ Models: - Name: apcnet_r50-d8_512x1024_80k_cityscapes In Collection: APCNet Metadata: - inference time (fps): + inference time (fps): 3.57 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -80,7 +80,7 @@ Models: - Name: apcnet_r101-d8_512x1024_80k_cityscapes In Collection: APCNet Metadata: - inference time (fps): + inference time (fps): 2.15 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: - Name: apcnet_r50-d8_769x769_80k_cityscapes In Collection: APCNet Metadata: - inference time (fps): + inference time (fps): 1.52 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -108,7 +108,7 @@ Models: - Name: apcnet_r101-d8_769x769_80k_cityscapes In Collection: APCNet Metadata: - inference time (fps): + inference time (fps): 1.03 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -150,7 +150,7 @@ Models: - Name: apcnet_r50-d8_512x512_160k_ade20k In Collection: APCNet Metadata: - inference time (fps): + inference time (fps): 19.61 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -164,7 +164,7 @@ Models: - Name: apcnet_r101-d8_512x512_160k_ade20k In Collection: APCNet Metadata: - inference time (fps): + inference time (fps): 13.10 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/ccnet/metafile.yml b/configs/ccnet/metafile.yml index 0f28967ea8..e9babb5b44 100644 --- a/configs/ccnet/metafile.yml +++ b/configs/ccnet/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: ccnet_r50-d8_512x1024_80k_cityscapes In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 3.32 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: ccnet_r101-d8_512x1024_80k_cityscapes In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 2.31 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: ccnet_r50-d8_769x769_80k_cityscapes In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 1.43 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: ccnet_r101-d8_769x769_80k_cityscapes In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 1.01 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: ccnet_r50-d8_512x512_160k_ade20k In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 20.89 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: ccnet_r101-d8_512x512_160k_ade20k In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 14.11 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -207,7 +207,7 @@ Models: - Name: ccnet_r50-d8_512x512_40k_voc12aug In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 20.45 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -221,7 +221,7 @@ Models: - Name: ccnet_r101-d8_512x512_40k_voc12aug In Collection: CCNet Metadata: - inference time (fps): + inference time (fps): 13.64 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/danet/metafile.yml b/configs/danet/metafile.yml index a9e2b21139..233cf19a15 100644 --- a/configs/danet/metafile.yml +++ b/configs/danet/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: danet_r50-d8_512x1024_80k_cityscapes In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 2.66 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: danet_r101-d8_512x1024_80k_cityscapes In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 1.99 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: danet_r50-d8_769x769_80k_cityscapes In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 1.56 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: danet_r101-d8_769x769_80k_cityscapes In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 1.07 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: danet_r50-d8_512x512_160k_ade20k In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 21.20 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: danet_r101-d8_512x512_160k_ade20k In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 14.18 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -207,7 +207,7 @@ Models: - Name: danet_r50-d8_512x512_40k_voc12aug In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 20.94 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -221,7 +221,7 @@ Models: - Name: danet_r101-d8_512x512_40k_voc12aug In Collection: DANet Metadata: - inference time (fps): + inference time (fps): 13.76 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/deeplabv3/metafile.yml b/configs/deeplabv3/metafile.yml index 9f4da8946f..8c7e416d36 100644 --- a/configs/deeplabv3/metafile.yml +++ b/configs/deeplabv3/metafile.yml @@ -82,7 +82,7 @@ Models: - Name: deeplabv3_r50-d8_512x1024_80k_cityscapes In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 2.57 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -96,7 +96,7 @@ Models: - Name: deeplabv3_r101-d8_512x1024_80k_cityscapes In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 1.92 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -124,7 +124,7 @@ Models: - Name: deeplabv3_r50-d8_769x769_80k_cityscapes In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 1.11 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -138,7 +138,7 @@ Models: - Name: deeplabv3_r101-d8_769x769_80k_cityscapes In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 0.83 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -166,7 +166,7 @@ Models: - Name: deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 6.96 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -292,7 +292,7 @@ Models: - Name: deeplabv3_r50-d8_512x512_160k_ade20k In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 14.76 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -306,7 +306,7 @@ Models: - Name: deeplabv3_r101-d8_512x512_160k_ade20k In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 10.14 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -348,7 +348,7 @@ Models: - Name: deeplabv3_r50-d8_512x512_40k_voc12aug In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 13.88 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -362,7 +362,7 @@ Models: - Name: deeplabv3_r101-d8_512x512_40k_voc12aug In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 9.81 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -390,7 +390,7 @@ Models: - Name: deeplabv3_r101-d8_480x480_80k_pascal_context In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): 7.09 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -404,7 +404,7 @@ Models: - Name: deeplabv3_r101-d8_480x480_40k_pascal_context In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -418,7 +418,7 @@ Models: - Name: deeplabv3_r101-d8_480x480_80k_pascal_context_59 In Collection: DeepLabV3 Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context diff --git a/configs/deeplabv3plus/metafile.yml b/configs/deeplabv3plus/metafile.yml index 4d3a72af30..d5256b7894 100644 --- a/configs/deeplabv3plus/metafile.yml +++ b/configs/deeplabv3plus/metafile.yml @@ -82,7 +82,7 @@ Models: - Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 3.94 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -96,7 +96,7 @@ Models: - Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 2.60 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -124,7 +124,7 @@ Models: - Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 1.72 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -138,7 +138,7 @@ Models: - Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 1.15 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -166,7 +166,7 @@ Models: - Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 7.48 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -292,7 +292,7 @@ Models: - Name: deeplabv3plus_r50-d8_512x512_160k_ade20k In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 21.01 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -306,7 +306,7 @@ Models: - Name: deeplabv3plus_r101-d8_512x512_160k_ade20k In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 14.16 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -348,7 +348,7 @@ Models: - Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 21 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -362,7 +362,7 @@ Models: - Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 13.88 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -390,7 +390,7 @@ Models: - Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): 9.09 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -404,7 +404,7 @@ Models: - Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -418,7 +418,7 @@ Models: - Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context In Collection: DeepLabV3+ Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context diff --git a/configs/dmnet/metafile.yml b/configs/dmnet/metafile.yml index ea7b7d070d..936b2e2d36 100644 --- a/configs/dmnet/metafile.yml +++ b/configs/dmnet/metafile.yml @@ -66,7 +66,7 @@ Models: - Name: dmnet_r50-d8_512x1024_80k_cityscapes In Collection: DMNet Metadata: - inference time (fps): + inference time (fps): 3.66 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -80,7 +80,7 @@ Models: - Name: dmnet_r101-d8_512x1024_80k_cityscapes In Collection: DMNet Metadata: - inference time (fps): + inference time (fps): 2.54 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: - Name: dmnet_r50-d8_769x769_80k_cityscapes In Collection: DMNet Metadata: - inference time (fps): + inference time (fps): 1.57 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -108,7 +108,7 @@ Models: - Name: dmnet_r101-d8_769x769_80k_cityscapes In Collection: DMNet Metadata: - inference time (fps): + inference time (fps): 1.01 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -150,7 +150,7 @@ Models: - Name: dmnet_r50-d8_512x512_160k_ade20k In Collection: DMNet Metadata: - inference time (fps): + inference time (fps): 20.95 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -164,7 +164,7 @@ Models: - Name: dmnet_r101-d8_512x512_160k_ade20k In Collection: DMNet Metadata: - inference time (fps): + inference time (fps): 13.88 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/dnlnet/metafile.yml b/configs/dnlnet/metafile.yml index 9a05dfbb2b..e4df52fa1c 100644 --- a/configs/dnlnet/metafile.yml +++ b/configs/dnlnet/metafile.yml @@ -66,7 +66,7 @@ Models: - Name: dnl_r50-d8_512x1024_80k_cityscapes In Collection: dnl Metadata: - inference time (fps): + inference time (fps): 2.56 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -80,7 +80,7 @@ Models: - Name: dnl_r101-d8_512x1024_80k_cityscapes In Collection: dnl Metadata: - inference time (fps): + inference time (fps): 1.96 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: - Name: dnl_r50-d8_769x769_80k_cityscapes In Collection: dnl Metadata: - inference time (fps): + inference time (fps): 1.50 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -108,7 +108,7 @@ Models: - Name: dnl_r101-d8_769x769_80k_cityscapes In Collection: dnl Metadata: - inference time (fps): + inference time (fps): 1.02 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -150,7 +150,7 @@ Models: - Name: dnl_r50-d8_512x512_160k_ade20k In Collection: dnl Metadata: - inference time (fps): + inference time (fps): 20.66 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -164,7 +164,7 @@ Models: - Name: dnl_r101-d8_512x512_160k_ade20k In Collection: dnl Metadata: - inference time (fps): + inference time (fps): 12.54 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/encnet/metafile.yml b/configs/encnet/metafile.yml index dbb8a542d8..df8bc20074 100644 --- a/configs/encnet/metafile.yml +++ b/configs/encnet/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: encnet_r50-d8_512x1024_80k_cityscapes In Collection: encnet Metadata: - inference time (fps): + inference time (fps): 4.58 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: encnet_r101-d8_512x1024_80k_cityscapes In Collection: encnet Metadata: - inference time (fps): + inference time (fps): 2.66 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: encnet_r50-d8_769x769_80k_cityscapes In Collection: encnet Metadata: - inference time (fps): + inference time (fps): 1.82 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: encnet_r101-d8_769x769_80k_cityscapes In Collection: encnet Metadata: - inference time (fps): + inference time (fps): 1.26 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: encnet_r50-d8_512x512_160k_ade20k In Collection: encnet Metadata: - inference time (fps): + inference time (fps): 22.81 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: encnet_r101-d8_512x512_160k_ade20k In Collection: encnet Metadata: - inference time (fps): + inference time (fps): 14.87 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/fcn/metafile.yml b/configs/fcn/metafile.yml index 46e69820a5..6419a40aa4 100644 --- a/configs/fcn/metafile.yml +++ b/configs/fcn/metafile.yml @@ -89,7 +89,7 @@ Models: - Name: fcn_r50-d8_512x1024_80k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 4.17 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -103,7 +103,7 @@ Models: - Name: fcn_r101-d8_512x1024_80k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 2.66 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -131,7 +131,7 @@ Models: - Name: fcn_r50-d8_769x769_80k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 1.80 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -145,7 +145,7 @@ Models: - Name: fcn_r101-d8_769x769_80k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 1.19 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -383,7 +383,7 @@ Models: - Name: fcn_r50-d8_512x512_160k_ade20k In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 23.49 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -397,7 +397,7 @@ Models: - Name: fcn_r101-d8_512x512_160k_ade20k In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 14.78 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -439,7 +439,7 @@ Models: - Name: fcn_r50-d8_512x512_40k_voc12aug In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 23.28 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -453,7 +453,7 @@ Models: - Name: fcn_r101-d8_512x512_40k_voc12aug In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 14.81 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -481,7 +481,7 @@ Models: - Name: fcn_r101-d8_480x480_80k_pascal_context In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 9.93 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -495,7 +495,7 @@ Models: - Name: fcn_r101-d8_480x480_40k_pascal_context_59 In Collection: FCN Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -509,7 +509,7 @@ Models: - Name: fcn_r101-d8_480x480_80k_pascal_context_59 In Collection: FCN Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context diff --git a/configs/gcnet/metafile.yml b/configs/gcnet/metafile.yml index 03d78931a7..c10c918a4e 100644 --- a/configs/gcnet/metafile.yml +++ b/configs/gcnet/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: gcnet_r50-d8_512x1024_80k_cityscapes In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 3.93 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: gcnet_r101-d8_512x1024_80k_cityscapes In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 2.61 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: gcnet_r50-d8_769x769_80k_cityscapes In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 1.67 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: gcnet_r101-d8_769x769_80k_cityscapes In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 1.13 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: gcnet_r50-d8_512x512_160k_ade20k In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 23.38 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: gcnet_r101-d8_512x512_160k_ade20k In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 15.20 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -207,7 +207,7 @@ Models: - Name: gcnet_r50-d8_512x512_40k_voc12aug In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 23.35 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -221,7 +221,7 @@ Models: - Name: gcnet_r101-d8_512x512_40k_voc12aug In Collection: GCNet Metadata: - inference time (fps): + inference time (fps): 14.80 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/hrnet/metafile.yml b/configs/hrnet/metafile.yml index ed33e2d7d9..d2ac3bfa47 100644 --- a/configs/hrnet/metafile.yml +++ b/configs/hrnet/metafile.yml @@ -44,7 +44,7 @@ Models: - Name: fcn_hr18s_512x1024_80k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 23.74 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -58,7 +58,7 @@ Models: - Name: fcn_hr18_512x1024_80k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 12.97 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: - Name: fcn_hr48_512x1024_80k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 6.42 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -86,7 +86,7 @@ Models: - Name: fcn_hr18s_512x1024_160k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 23.74 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -100,7 +100,7 @@ Models: - Name: fcn_hr18_512x1024_160k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 12.97 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -114,7 +114,7 @@ Models: - Name: fcn_hr48_512x1024_160k_cityscapes In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 6.42 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -170,7 +170,7 @@ Models: - Name: fcn_hr18s_512x512_160k_ade20k In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 38.66 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -184,7 +184,7 @@ Models: - Name: fcn_hr18_512x512_160k_ade20k In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 22.57 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -198,7 +198,7 @@ Models: - Name: fcn_hr48_512x512_160k_ade20k In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 21.23 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -254,7 +254,7 @@ Models: - Name: fcn_hr18s_512x512_40k_voc12aug In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 43.36 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -268,7 +268,7 @@ Models: - Name: fcn_hr18_512x512_40k_voc12aug In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 23.48 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -282,7 +282,7 @@ Models: - Name: fcn_hr48_512x512_40k_voc12aug In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 22.05 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -310,7 +310,7 @@ Models: - Name: fcn_hr48_480x480_80k_pascal_context In Collection: FCN Metadata: - inference time (fps): + inference time (fps): 8.86 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -324,7 +324,7 @@ Models: - Name: fcn_hr48_480x480_40k_pascal_context_59 In Collection: FCN Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -338,7 +338,7 @@ Models: - Name: fcn_hr48_480x480_80k_pascal_context In Collection: FCN Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context diff --git a/configs/nonlocal_net/metafile.yml b/configs/nonlocal_net/metafile.yml index 4c545ebab0..0f41ac015e 100644 --- a/configs/nonlocal_net/metafile.yml +++ b/configs/nonlocal_net/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: nonlocal_r50-d8_512x1024_80k_cityscapes In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 2.72 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: nonlocal_r101-d8_512x1024_80k_cityscapes In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 1.95 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: nonlocal_r50-d8_769x769_80k_cityscapes In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 1.52 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: nonlocal_r101-d8_769x769_80k_cityscapes In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 1.05 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: nonlocal_r50-d8_512x512_160k_ade20k In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 21.37 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: nonlocal_r101-d8_512x512_160k_ade20k In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 13.97 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -207,7 +207,7 @@ Models: - Name: nonlocal_r50-d8_512x512_40k_voc12aug In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 21.21 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -221,7 +221,7 @@ Models: - Name: nonlocal_r101-d8_512x512_40k_voc12aug In Collection: NonLocal Metadata: - inference time (fps): + inference time (fps): 14.01 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/ocrnet/metafile.yml b/configs/ocrnet/metafile.yml index 50b6d0a5ed..fcdf72d791 100644 --- a/configs/ocrnet/metafile.yml +++ b/configs/ocrnet/metafile.yml @@ -53,7 +53,7 @@ Models: - Name: ocrnet_hr18s_512x1024_80k_cityscapes In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 10.45 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -67,7 +67,7 @@ Models: - Name: ocrnet_hr18_512x1024_80k_cityscapes In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 7.50 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: ocrnet_hr48_512x1024_80k_cityscapes In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 4.22 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: ocrnet_hr18s_512x1024_160k_cityscapes In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 10.45 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: ocrnet_hr18_512x1024_160k_cityscapes In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 7.50 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -123,7 +123,7 @@ Models: - Name: ocrnet_hr48_512x1024_160k_cityscapes In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 4.22 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -137,7 +137,7 @@ Models: - Name: ocrnet_r101-d8_512x1024_40k_b8_cityscapes In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -221,7 +221,7 @@ Models: - Name: ocrnet_hr18s_512x512_160k_ade20k In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 28.98 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -235,7 +235,7 @@ Models: - Name: ocrnet_hr18_512x512_160k_ade20k In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 18.93 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -249,7 +249,7 @@ Models: - Name: ocrnet_hr48_512x512_160k_ade20k In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 16.99 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -305,7 +305,7 @@ Models: - Name: ocrnet_hr18s_512x512_40k_voc12aug In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 31.55 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -319,7 +319,7 @@ Models: - Name: ocrnet_hr18_512x512_40k_voc12aug In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 19.91 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -333,7 +333,7 @@ Models: - Name: ocrnet_hr48_512x512_40k_voc12aug In Collection: OCRNet Metadata: - inference time (fps): + inference time (fps): 17.83 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/psanet/metafile.yml b/configs/psanet/metafile.yml index 1052ec1e19..7e2b3138ba 100644 --- a/configs/psanet/metafile.yml +++ b/configs/psanet/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: psanet_r50-d8_512x1024_80k_cityscapes In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 3.17 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: psanet_r101-d8_512x1024_80k_cityscapes In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 2.20 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: psanet_r50-d8_769x769_80k_cityscapes In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 1.40 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: psanet_r101-d8_769x769_80k_cityscapes In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 0.98 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: psanet_r50-d8_512x512_160k_ade20k In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 18.91 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: psanet_r101-d8_512x512_160k_ade20k In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 13.13 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -207,7 +207,7 @@ Models: - Name: psanet_r50-d8_512x512_40k_voc12aug In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 18.24 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -221,7 +221,7 @@ Models: - Name: psanet_r101-d8_512x512_40k_voc12aug In Collection: PSANet Metadata: - inference time (fps): + inference time (fps): 12.63 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/pspnet/metafile.yml b/configs/pspnet/metafile.yml index 3823d5918a..4981f02c32 100644 --- a/configs/pspnet/metafile.yml +++ b/configs/pspnet/metafile.yml @@ -82,7 +82,7 @@ Models: - Name: pspnet_r50-d8_512x1024_80k_cityscapes In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 4.07 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -96,7 +96,7 @@ Models: - Name: pspnet_r101-d8_512x1024_80k_cityscapes In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 2.68 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -124,7 +124,7 @@ Models: - Name: pspnet_r50-d8_769x769_80k_cityscapes In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 1.76 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -138,7 +138,7 @@ Models: - Name: pspnet_r101-d8_769x769_80k_cityscapes In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 1.15 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -264,7 +264,7 @@ Models: - Name: pspnet_r50-d8_512x512_160k_ade20k In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 23.53 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -278,7 +278,7 @@ Models: - Name: pspnet_r101-d8_512x512_160k_ade20k In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 15.30 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -320,7 +320,7 @@ Models: - Name: pspnet_r50-d8_512x512_40k_voc12aug In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 23.59 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -334,7 +334,7 @@ Models: - Name: pspnet_r101-d8_512x512_40k_voc12aug In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 15.02 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -362,7 +362,7 @@ Models: - Name: pspnet_r101-d8_480x480_80k_pascal_context In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): 9.68 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -376,7 +376,7 @@ Models: - Name: pspnet_r101-d8_480x480_40k_pascal_context In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -390,7 +390,7 @@ Models: - Name: pspnet_r101-d8_480x480_80k_pascal_context_59 In Collection: PSPNet Metadata: - inference time (fps): + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: Pascal Context diff --git a/configs/unet/metafile.yml b/configs/unet/metafile.yml index 3a84cf2b2c..51058d00af 100644 --- a/configs/unet/metafile.yml +++ b/configs/unet/metafile.yml @@ -3,7 +3,7 @@ Models: - Name: fcn_unet_s5-d16_64x64_40k_drive In Collection: FCN Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: DRIVE @@ -17,7 +17,7 @@ Models: - Name: pspnet_unet_s5-d16_64x64_40k_drive In Collection: PSPNet Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: DRIVE @@ -31,7 +31,7 @@ Models: - Name: deeplabv3_unet_s5-d16_64x64_40k_drive In Collection: DeepLabV3 Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: DRIVE @@ -45,7 +45,7 @@ Models: - Name: fcn_unet_s5-d16_128x128_40k_stare In Collection: FCN Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: STARE @@ -59,7 +59,7 @@ Models: - Name: pspnet_unet_s5-d16_128x128_40k_stare In Collection: PSPNet Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: STARE @@ -73,7 +73,7 @@ Models: - Name: deeplabv3_unet_s5-d16_128x128_40k_stare In Collection: DeepLabV3 Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: STARE @@ -87,7 +87,7 @@ Models: - Name: fcn_unet_s5-d16_128x128_40k_chase_db1 In Collection: FCN Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 @@ -101,7 +101,7 @@ Models: - Name: pspnet_unet_s5-d16_128x128_40k_chase_db1 In Collection: PSPNet Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 @@ -115,7 +115,7 @@ Models: - Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1 In Collection: DeepLabV3 Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 @@ -129,7 +129,7 @@ Models: - Name: fcn_unet_s5-d16_256x256_40k_hrf In Collection: FCN Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: HRF @@ -143,7 +143,7 @@ Models: - Name: pspnet_unet_s5-d16_256x256_40k_hrf In Collection: PSPNet Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: HRF @@ -157,7 +157,7 @@ Models: - Name: deeplabv3_unet_s5-d16_256x256_40k_hrf In Collection: DeepLabV3 Metadata: - inference time (fps): 40000 + inference time (fps): None Results: - Task: Semantic Segmentation Dataset: HRF diff --git a/configs/upernet/metafile.yml b/configs/upernet/metafile.yml index 7c6773febc..315c25568e 100644 --- a/configs/upernet/metafile.yml +++ b/configs/upernet/metafile.yml @@ -67,7 +67,7 @@ Models: - Name: upernet_r50_512x1024_80k_cityscapes In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 4.25 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -81,7 +81,7 @@ Models: - Name: upernet_r101_512x1024_80k_cityscapes In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 3.79 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -95,7 +95,7 @@ Models: - Name: upernet_r50_769x769_80k_cityscapes In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 1.76 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -109,7 +109,7 @@ Models: - Name: upernet_r101_769x769_80k_cityscapes In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 1.56 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: - Name: upernet_r50_512x512_160k_ade20k In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 23.40 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -165,7 +165,7 @@ Models: - Name: upernet_r101_512x512_160k_ade20k In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 20.34 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -207,7 +207,7 @@ Models: - Name: upernet_r50_512x512_40k_voc12aug In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 23.17 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -221,7 +221,7 @@ Models: - Name: upernet_r101_512x512_40k_voc12aug In Collection: UPerNet Metadata: - inference time (fps): + inference time (fps): 19.98 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug