From 761dfc535daf649ae0f7d07eb5df462e6381d466 Mon Sep 17 00:00:00 2001 From: Alexander Lyulkov Date: Mon, 19 Feb 2024 22:16:24 +0300 Subject: [PATCH] Removed float indices from dnn tests --- testdata/dnn/onnx/data/input_argmax.npy | Bin 608 -> 608 bytes testdata/dnn/onnx/data/input_argmin.npy | Bin 608 -> 608 bytes testdata/dnn/onnx/data/output_argmax.npy | Bin 248 -> 368 bytes testdata/dnn/onnx/data/output_argmin.npy | Bin 224 -> 320 bytes testdata/dnn/onnx/generate_onnx_models.py | 4 ++-- testdata/dnn/onnx/models/argmax.onnx | Bin 184 -> 197 bytes testdata/dnn/onnx/models/argmin.onnx | Bin 197 -> 210 bytes testdata/dnn/tensorflow/argmax_in.npy | Bin 224 -> 224 bytes testdata/dnn/tensorflow/argmax_net.pb | Bin 216 -> 1047 bytes testdata/dnn/tensorflow/argmax_out.npy | Bin 152 -> 176 bytes testdata/dnn/tensorflow/argmin_in.npy | Bin 224 -> 224 bytes testdata/dnn/tensorflow/argmin_net.pb | Bin 211 -> 1038 bytes testdata/dnn/tensorflow/argmin_out.npy | Bin 160 -> 192 bytes testdata/dnn/tensorflow/generate_tf2_models.py | 14 +++++++++++++- testdata/dnn/tensorflow/generate_tf_models.py | 8 -------- 15 files changed, 15 insertions(+), 11 deletions(-) diff --git a/testdata/dnn/onnx/data/input_argmax.npy b/testdata/dnn/onnx/data/input_argmax.npy index 1f5635f6597698461502c662a977f57c8750e7c3..678b8123105ab7e2015a18b31cbadcf0da3c272d 100644 GIT binary patch delta 490 zcmV1mFaafPXXY#=j~M)j#qE+&*%{CBI8)nLo-hd%r^idOo<6tiK6JlRu6B zp+CTT7(aQ{1wW6K%D!LehChGfgFjo^-@a@FS3my?aX*qbY`@^S%)aG?#6C0Fc0Wio zlD|MHd%x8=wLd{(*S>^vWk0pCZ@wYJfxlHG?mk^m5x)?1U4K8z@;g5jyeGdY98^Cz z>F+>*rdK~IgtlMB8thP^(7kikEwq@%sApDe$v4~M@me9Ap$KZC#0dj&q@ zQtLkCPRGB|G=CjHffU8Q0z2ZqR~N;fvR-REY~ekdSOYlMYxv?0Z8$GILlzmV0SG)in6N_YJN)IwOp~l$Z9tNXsq1%E#cp#KDz6USsVaKeOqJzgophzkF0nzR>X# zKjgZJK7ecWJ~QN_zx`xRKEW^{z5>F(KZDx8zuBMWKLB%`zuO@LKBEx9z6s6RKgnB& gJo{b~J_KKSJCl*eKi|KLKBbsIzp6(>KGH$bKg=}pGynhq delta 490 zcmV1mFaafPaM>kiUw6lfTwWfWBQN-o6z@SwDj(F+Xk0p}xUi2f#Q1r9Sku zp}+qyvp&1Soj!MO^*xhooWUN zV17Q(AK^aMH|9O~3M4-~-{C&Fhta*9-AX@GPn5nF5?4Jh+66yVR}(-D|!Gl*qna6$?KXQp&!RcI3V!cs@UMufjjAMOr}F{lmW_ z_?^GP?C3xIFnQ)&&NRKhi%ldz!aVZ6PtB`7!Hv+r0K5#p z)~xluLe~Gj(2|J1SGJBnEDR97-bGG7TrI!7hT<7J_v{(r}JY&c;KgFxkKLi@Czu{`IJ`ENH zKdnF~z!N6fzc;vPzC%`zJ`I;MzbCSUKOl-4zm%?{zp-4tJ%fcRzx${gKb7J-zdix5 gKb74mKTH4fK3x`qzaO$VJ{jHJJsCVfzoRaCKHR?OSpWb4 diff --git a/testdata/dnn/onnx/data/input_argmin.npy b/testdata/dnn/onnx/data/input_argmin.npy index 8dca6d86383d58585585cc47591307fe25706832..34a417953dc09a2a592170fce1c9a97d76cea2e7 100644 GIT binary patch delta 490 zcmV1mFaafPd|KhdvF|6u&Xtwm&Z{6~N=gH$O4Ex4*0r@IUPlia%6LLcbdc zxIF+RR6m4lNk2>~%sl)FH^1%+RX;_b9Y5F~;XWBr7e7eQ9>4Brx4(LEmWe%kRd<(IEO#qT~9v- ze<43CvZTJR2QNQ2?y0{D`0%~~fv&y7|GK_R5Ba{*wfeqV z8dkrS&&9uXsDFh&y8Up!oJr5WM|KLnOZDTwaM!E9vu8uU_y*)Z!Z|xU1bhL%)`qq} z0}!3Qt9G)z8zkXBrX|9^SP3w{>dBZtw{8W$r1p(Jdu3BT0X?n1p7Sj}>dDSN_FSO9 z`G8zM@{_o}b7sW9V$}6NT6kK&;OD2m>Nk)-3TJOUVq@ZEJ>&}DKD35Mzol5lKQ*QZ zKFHIAzkz~JzHwV9zt1fVzl#I~KmAk#zeSogz?`X$KW!EQzh$D(zkUv{zR(^IzshK+ gzIy?rK5N}VKKkc(KdJi3zi+G^K2sPRKambJKUGceIRF3v delta 490 zcmV1mFaafPVw`kv|s{xV`PuIzMVN?7yD&%)H=7uRp5{DnQ9Fd_Vmi!9GLv zj6aJ;lD{SM89mF7EI@%Ro)5x3qLYsp*?2gTtB*~pS(l0eLtTWM}NQUNSVInNI(L*JI!yziD45zcM4-KP&-uzg;sU zziJ7YJt|Ly+|!hzx=oTzF!!*zWd1)KL+@dzdp_qz7%RlzTP{p gy`g`yKXJ|&Kjt_0zDIGpzT4cXzwG|lKP52)K!!`{nE(I) diff --git a/testdata/dnn/onnx/data/output_argmax.npy b/testdata/dnn/onnx/data/output_argmax.npy index e166ce0044021b11b29020a306c11251367f9aaa..fa9fc0f82c02407a95785a0d2458da799de90d3a 100644 GIT binary patch literal 368 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlWC!@qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7Its=*3Z|Mm3bhL40WKy6RKN`7GNREiahPhDK6G)IJUR_i52Io7F#RwZ WCJwV7osTXKGY_U8#z$8NlLr7!_#3+b literal 248 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlV+l>qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7Its=*3Z|Mm3bhL40WJoH273ku1_w;+02Bku0i{4Rj13ZpVRUg2A6X7& L227j*s273(WfCca diff --git a/testdata/dnn/onnx/data/output_argmin.npy b/testdata/dnn/onnx/data/output_argmin.npy index 09e82a2e3d182a304239756ebfb9dfbf17c93b04..c8975d7a043d53fe77da680ff792a8524acedb48 100644 GIT binary patch literal 320 zcmbR27wQ`j$;eQ~P_3SlTAW;@Zl$1ZlWC!@qoAIaUsO_*m=~X4l#&V(cT3DEP6dh= zXCxM+0{I$7Its=*3MM)VhMGDGwF+baE@lQ)0OPYjg&CnVj1QA%!Xb~Y9;OZ#4KojB NKDs)X>tN=h(*Qt(8{_~0 delta 109 zcmX@W^nh`K7*m?bM2U<91_lQQ2xb5QAR7c49Dvv!f~ID8;T1;VH2} zXf19omc)w8VhN@Nj7(bmTpZb{sRb#Sxy2F;AOQ(3!Q#}M)Z~)*oW$ai_{_YN)C#bS z5GUBW_^iy5C=CpY#JEH_7=;A5m^he#m>Gy!fS5H&oQu&=NQg^-gI$ORNs`rxNq`Rk Dh-oV> delta 130 zcmX@gxPwuZgH4FNpt2;tC^Ef!9-&Ro_fYf=jSCH77N>Bt9pxxFkL^FD11?f?)w8lMpA^u=uRZk|+%{Va5Tl_KhhtH?Z)RS+!9-(yb1r!< zMnfS+BPllL#Nv{8LnRgvt;Na3RFW^jxPXyKNC0e#ZdPWAZfZqAeo;x3G#BH<8M3lQ cLSkGZ9E?H&TudBHK+FupEI`cY#3aB807LE@qyPW_ diff --git a/testdata/dnn/tensorflow/argmax_in.npy b/testdata/dnn/tensorflow/argmax_in.npy index 8fba6393d4f98093aa94efa4d45f77c43a158c80..766b29f67ec0bcfab226dd68414aeee9ec49b767 100644 GIT binary patch delta 103 zcmV-t0GR*a0pJ0UfM7LIkUzTeKtDF+Ha}yw6+oYM%D+x#$i8*;o4*jrmp&mfD8C?s z$-miFsJ{q8%)V{2$v$@cM893XyFQ&VQNF(twLem7#J^boAwEozx<7BRg}>7c*FGJQ JfIbs%YP~Y(GFJcq delta 103 zcmV-t0GR*a0pJ0UfMDTzu079rd_RE-Yd;ho9z8qn#6Mu}AV1zw&%P4P5kPi$V?Xqu zP(NwD7(Xb?$i81S6opOGXnIpbXQM=P;YtD~t)h!U7g|tU6uRhE!q6F;Kz>RxkyLyiAI-cs(}iFE*4>fsqhyS+AQ=nZ~Uewvm68ewyO z(da1f0{0`FFrWExM9BaLfg{&pOlaVC9rk30n0Yo%rXkLqn`AoVKjMcpN_jWZ262=! z>j<=G9Ap%s+dZzh)q{`XQ$%eQuHg7CizeR${b-gk$L%2ffzXJv%}ph@c0d__A!9gS z*(P%@$6N?w*6URg?+WzgadN#j7PP&H$J`9n{I6wL`(VTw<2ky^Rkuoa7C>|ClbnaC z!YiD~#^kzKf{^3i!YN2v5Q1H6l?yA5dnqu~=C0%(;jo6e4UwwxLpWLKrl9W%^gn`B TJ57*m?bM2QRu28ITE1_lQQ1~`E50h2ohGynhq diff --git a/testdata/dnn/tensorflow/argmin_in.npy b/testdata/dnn/tensorflow/argmin_in.npy index c788844a53f1e3852530e7d6be72de7251785e84..49c37344051e483683822e81bf634e2455a5b2f0 100644 GIT binary patch delta 103 zcmV-t0GR*a0pJ0UfMA6v06$s%6}`F|gS~#67r&n)alfz%EI%r}FhKDR&Ogurfj^4X z#lKBUBEV42pFckMO+fsGfjsDPKfmC}Fh4uIg}vjf+rL<#_P*$)Sv_64_rIJ;vpyrq JkUrLW#y{e?Gywnr delta 103 zcmV-t0GR*a0pJ0UfMD7XCO*#y+1fA!#smN6ThmN|2{QQkUzTeKtDF+Ha}yw z6+oYM%D+x#$i8*;o4*jrmp&mfD8C?s$-miFsJ{q8%)V{2$v$@cM893XyFQ&VQNF(t JwLem7#J_#bF-ZUb diff --git a/testdata/dnn/tensorflow/argmin_net.pb b/testdata/dnn/tensorflow/argmin_net.pb index 5796b795434e066ae32b8954b57b9442860bbfb3..ace040bf00e858f7e9005db8f9dd333fab9639c4 100644 GIT binary patch literal 1038 zcmb`F%}T>S6os9pvB^yloQ)FDg)0e|)QT<&U1&jZQRt#u2}5UW0?DK%6G_4M@zHz@ z2iyD*YfaI`FkFUv&UeopxB--5V-k=V^P+&V*g66=@yLSVgFzR!w3a-IJZ;MWm5QZ& zX!Q`hz{7;Z!WVwT86A-zaO!m!Q5Lv;M?Bjh5uQ!rdFXTJHlB~=Mg5TRM0R6!6!An< zbpTDjNC{kQY^&q0 zW%?DF?S7@j2ZCW;u3m3V1Mja=F?T~X|7!=uC>B6_>eEanr&xzzM5&PBy6d&;@CN7g z!RmFsgi4No3nz!uAq2b8Dp%BwdsSg*%w5_&!EuA(c0?-W$8frFnwGy!xU9GY9E;L@GxPLQGILY&iZk=`gjk*P^NLHfgt%DC5_3vZg*ctqfvOp- z7#WcbW#$UyVuR=vg3?l)P?uO4NMRVOCCJ5{Us?ikDb!h; diff --git a/testdata/dnn/tensorflow/argmin_out.npy b/testdata/dnn/tensorflow/argmin_out.npy index ed43e6ac103f14f71252e664c9f68553d80c1288..01b64eac0d4ff31cb2a8ef823befacdbc4bebb9e 100644 GIT binary patch delta 77 lcmZ3$cz|(&7*nRjM2QRsMg|CALZhKv2ADWZ9ZVd?2LK*A1O@;A delta 45 lcmX@WxPWnj7*m?bM2QRq28ITE2xf3#U;tq_AIN23007)+2T}k4 diff --git a/testdata/dnn/tensorflow/generate_tf2_models.py b/testdata/dnn/tensorflow/generate_tf2_models.py index 61928554b..21b56c1ee 100644 --- a/testdata/dnn/tensorflow/generate_tf2_models.py +++ b/testdata/dnn/tensorflow/generate_tf2_models.py @@ -28,7 +28,7 @@ def writeBlob(data, name, nchw = False): # NDHWC->NCDHW data = data.transpose(0, 4, 1, 2, 3) - data = np.ascontiguousarray(data.astype(np.float32)) + data = np.ascontiguousarray(data) np.save(name + '.npy', data) @@ -148,6 +148,18 @@ def saveBroken(graph, name): y = tf.compat.v1.nn.conv2d_backprop_input(input_sizes=tf.constant([1, 3, 4, 2]), filter=kernel, out_backprop=x, data_format = "NHWC", padding = [[0, 0], [2, 1], [2, 1], [0, 0]], strides = [1, 3, 2, 1]) model = tf.keras.Model(x, y) save(model, 'conv2d_backprop_input_asymmetric_pads_nhwc', False, x=tf.TensorSpec(shape=(1, 2, 3, 3), dtype=tf.float32)) +################################################################################ +tf.keras.backend.set_image_data_format('channels_first') +x = tf.keras.layers.Input(batch_shape = (2, 3, 4), name='x') +y = tf.math.argmax(x, axis=-1) +model = tf.keras.Model(x, y) +save(model, 'argmax', True, x=tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32)) +################################################################################ +tf.keras.backend.set_image_data_format('channels_last') +x = tf.keras.layers.Input(batch_shape = (2, 3, 4), name='x') +y = tf.math.argmin(x, axis=1) +model = tf.keras.Model(x, y) +save(model, 'argmin', False, x=tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32)) # Uncomment to print the final graph. # with tf.io.gfile.GFile('tf2_prelu_net.pb', 'rb') as f: diff --git a/testdata/dnn/tensorflow/generate_tf_models.py b/testdata/dnn/tensorflow/generate_tf_models.py index 4e0c0423b..20a62a431 100644 --- a/testdata/dnn/tensorflow/generate_tf_models.py +++ b/testdata/dnn/tensorflow/generate_tf_models.py @@ -1070,14 +1070,6 @@ def pad_depth(x, desired_channels): square = tf.square(inp) save(inp, square, 'square') ################################################################################ -inp = tf.placeholder(tf.float32, [2, 3, 4], 'input') -argmax = tf.argmax(inp, -1) -save(inp, argmax, 'argmax') -################################################################################ -inp = tf.placeholder(tf.float32, [2, 3, 4], 'input') -argmin = tf.argmin(inp, 1) -save(inp, argmin, 'argmin') -################################################################################ # Generate graph and test data for Reshape permutations check stride = 1 kernel_size = 3