Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.06452 #5363

Merged
merged 3 commits into from
May 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
214 changes: 214 additions & 0 deletions joss.06452/10.21105.joss.06452.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240520T205420-4a4e413a1a67cb30a2cb88f7f631936219ebd363</doi_batch_id>
<timestamp>20240520205420</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>05</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>97</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Jury: A Comprehensive Evaluation Toolkit</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Devrim</given_name>
<surname>Cavusoglu</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Secil</given_name>
<surname>Sen</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ulas</given_name>
<surname>Sert</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Sinan</given_name>
<surname>Altinuc</surname>
</person_name>
</contributors>
<publication_date>
<month>05</month>
<day>20</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6452</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06452</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11170894</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6452</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06452</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06452</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06452.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="sharma2017nlgeval">
<article_title>Relevance of unsupervised metrics in
task-oriented dialogue for evaluating natural language
generation</article_title>
<author>Sharma</author>
<journal_title>CoRR</journal_title>
<volume>abs/1706.09799</volume>
<cYear>2017</cYear>
<unstructured_citation>Sharma, S., El Asri, L., Schulz, H.,
&amp; Zumer, J. (2017). Relevance of unsupervised metrics in
task-oriented dialogue for evaluating natural language generation. CoRR,
abs/1706.09799. http://arxiv.org/abs/1706.09799</unstructured_citation>
</citation>
<citation key="barrault-etal-2020-findings">
<article_title>Findings of the 2020 conference on machine
translation (WMT20)</article_title>
<author>Barrault</author>
<journal_title>Proceedings of the fifth conference on
machine translation</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Barrault, L., Biesialska, M., Bojar,
O., Costa-jussà, M. R., Federmann, C., Graham, Y., Grundkiewicz, R.,
Haddow, B., Huck, M., Joanis, E., Kocmi, T., Koehn, P., Lo, C.,
Ljubešić, N., Monz, C., Morishita, M., Nagata, M., Nakazawa, T., Pal,
S., … Zampieri, M. (2020). Findings of the 2020 conference on machine
translation (WMT20). Proceedings of the Fifth Conference on Machine
Translation, 1–55.
https://aclanthology.org/2020.wmt-1.1</unstructured_citation>
</citation>
<citation key="wang-etal-2018-glue">
<article_title>GLUE: A multi-task benchmark and analysis
platform for natural language understanding</article_title>
<author>Wang</author>
<journal_title>Proceedings of the 2018 EMNLP workshop
BlackboxNLP: Analyzing and interpreting neural networks for
NLP</journal_title>
<doi>10.18653/v1/W18-5446</doi>
<cYear>2018</cYear>
<unstructured_citation>Wang, A., Singh, A., Michael, J.,
Hill, F., Levy, O., &amp; Bowman, S. (2018). GLUE: A multi-task
benchmark and analysis platform for natural language understanding.
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, 353–355.
https://doi.org/10.18653/v1/W18-5446</unstructured_citation>
</citation>
<citation key="devlin-etal-2019-bert">
<article_title>BERT: Pre-training of deep bidirectional
transformers for language understanding</article_title>
<author>Devlin</author>
<journal_title>Proceedings of the 2019 conference of the
north American chapter of the association for computational linguistics:
Human language technologies, volume 1 (long and short
papers)</journal_title>
<doi>10.18653/v1/N19-1423</doi>
<cYear>2019</cYear>
<unstructured_citation>Devlin, J., Chang, M.-W., Lee, K.,
&amp; Toutanova, K. (2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 4171–4186.
https://doi.org/10.18653/v1/N19-1423</unstructured_citation>
</citation>
<citation key="zhilin-etal-2019-xlnet">
<article_title>XLNet: Generalized autoregressive pretraining
for language understanding</article_title>
<author>Yang</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>32</volume>
<cYear>2019</cYear>
<unstructured_citation>Yang, Z., Dai, Z., Yang, Y.,
Carbonell, J., Salakhutdinov, R. R., &amp; Le, Q. V. (2019). XLNet:
Generalized autoregressive pretraining for language understanding. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, &amp; R.
Garnett (Eds.), Advances in neural information processing systems (Vol.
32). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf</unstructured_citation>
</citation>
<citation key="lhoest-etal-2021-datasets">
<article_title>Datasets: A community library for natural
language processing</article_title>
<author>Lhoest</author>
<journal_title>Proceedings of the 2021 conference on
empirical methods in natural language processing: System
demonstrations</journal_title>
<doi>10.18653/v1/2021.emnlp-demo.21</doi>
<cYear>2021</cYear>
<unstructured_citation>Lhoest, Q., Villanova del Moral, A.,
Jernite, Y., Thakur, A., Platen, P. von, Patil, S., Chaumond, J., Drame,
M., Plu, J., Tunstall, L., Davison, J., Šaško, M., Chhablani, G., Malik,
B., Brandeis, S., Le Scao, T., Sanh, V., Xu, C., Patry, N., … Wolf, T.
(2021). Datasets: A community library for natural language processing.
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 175–184.
https://doi.org/10.18653/v1/2021.emnlp-demo.21</unstructured_citation>
</citation>
<citation key="papineni-etal-2002-bleu">
<article_title>Bleu: A method for automatic evaluation of
machine translation</article_title>
<author>Papineni</author>
<journal_title>Proceedings of the 40th annual meeting of the
association for computational linguistics</journal_title>
<doi>10.3115/1073083.1073135</doi>
<cYear>2002</cYear>
<unstructured_citation>Papineni, K., Roukos, S., Ward, T.,
&amp; Zhu, W.-J. (2002). Bleu: A method for automatic evaluation of
machine translation. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, 311–318.
https://doi.org/10.3115/1073083.1073135</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06452/10.21105.joss.06452.pdf
Binary file not shown.
Loading