
Page 1 of 11 
 

Review of AUTOEIS routine for JOSS 

This paper presents a comprehensive and highly anticipated analysis tool, AutoEIS, designed to 

enhance the efficiency of Electrochemical Impedance Spectroscopy (EIS) analysis when employed 

judiciously. 

General Remarks on the Scientific Applicability of AutoEIS 

It is imperative for users to recognise that the construction of specific equivalent circuit models 

for an electrochemical system must be informed and justified by the physicochemical properties 

of the system itself and be adequately supported by a suite of chemical and microscopic analyses. 

The frequent reliance on impedance analysis models, justified merely by their fit quality as 

indicated by high statistical correlation values, has regrettably contributed to a tarnished 

reputation for electrochemical impedance spectroscopy. For instance, the indiscriminate use of an 

excessive number of Constant Phase Elements (CPEs) with arbitrary phase values, transmission 

lines, and similar circuit components can enable the fitting of any data set without yielding 

scientifically meaningful insights. The code under review, particularly within the Models and 

main.py files, introduces a "capacitance filter" designed to exclude equivalent circuits devoid of 

ideal capacitors. A model comprising ideal capacitors that results in a less precise fit is preferable 

to one incorporating CPEs with arbitrary phase values. The impedance data from highly complex 

systems may lack the distinct geometric features necessary to identify a suitable and minimalist 

model. This code does not consider the physical system in any capacity, which would pose a 

significant challenge. Nevertheless, it facilitates the fitting of complex impedance data, potentially 

promoting the continuation of practices that overlook rigorous and scientifically sound analysis. 

Moreover, an essential aspect of impedance spectroscopic measurement involves 

meticulous setup. Unique to electrochemical measurements, the cell constitutes an integral 

component of the measurement system, with each element and accompanying chemical reactions 

and physical phenomena within the cell (e.g., adsorption, charge-transfer, mass-transfer or 

diffusion, field-line geometries, or even simple issues like poor contacts and cabling) having a 

substantial impact on the data. Consequently, the awareness and consideration of such potential 

influences are crucial for accurate analysis. Regrettably, impedance measurements yield scant 

chemical information to identify the origins of artefacts. Thus, assuring the scientific validity of 

the measurements is challenging. In the context of Kronig-Kramers transform (KKT) validation, 

ideally, data spanning a broad frequency range would facilitate the application of direct integration 

KKT validation checks. However, it is important to note that KKT validation may provide a 

sufficient, but not necessary, condition for data validation. The implementation of linear KKT in 

this code serves merely to eliminate non-conforming points rather than to verify data validity. 

 

Comments on the Code's Programming 

The routine demonstrates commendable adherence to software engineering best practices, 

encompassing modular design, extensive testing, and thorough documentation. Nevertheless, 

there are areas for improvement, such as error handling, test coverage, and potential 

enhancements through techniques like JAX's Just-In-Time (JIT) compilation. 

The subsequent sections of this review provide detailed comments on specific sub-routines, 

highlighting their strengths, weaknesses, and potential improvements. While some observations 

may seem trivial or perhaps extraneous, others could offer valuable suggestions for future 

enhancements. The decision to incorporate these comments into revisions of the AutoEIS routine 

rests with the much-experienced editors and authors. Finally, I extend my apologies for the delay 

in reviewing this routine and compiling these comments, with the hope that they will contribute 

constructively to the refinement of this valuable tool. 

 

 

 

 



Page 2 of 11 
 

0 - README.md 

Strengths: 

1. Provides a clear introduction and overview of AutoEIS, including its purpose and target 

audience, which is good for user engagement and clarity. 

2. Includes badges for workflow status, enhancing visibility into the current state of the 

codebase's CI/CD pipelines. 

3. Directs users on how to contribute, encouraging community involvement and feedback. 

Weaknesses: 

1. The mention of the API not being stable could deter potential users or contributors 

from adopting or contributing to the project. More confidence could be instilled by 

detailing the roadmap or expected stability timelines. 

Suggestions: 

1. Consider adding a section on "Current Limitations and Future Work" to manage user 

expectations and encourage contributions in specific areas of need. 

1 __init__.py 

Strengths: 

1. Modular Import Structure: The module effectively organises the package's components by 

importing core functionalities, input/output operations, metrics calculations, parsing 

capabilities, utilities, and visualisation tools. This modular approach facilitates easy 

navigation and usage of the package's diverse features. 

2. Centralised Version Control: Including version information directly within the initialisation 

file ensures that version checks can be easily performed, enhancing the management of 

dependencies and compatibility checks. 

Weaknesses: 

1. Wildcard Imports: The use of from .core import * potentially introduces a risk of 

namespace pollution, where unnecessary or conflicting names might be imported, leading 

to less predictable code behaviour and potential clashes with other modules or user-

defined variables. 

2. Noqa Flags: The extensive use of # noqa: F401, E402 comments to bypass flake8 linting 

rules might be indicative of underlying issues with import order or unused imports that 

could be addressed more systematically. 

Improvements: 

1. Refine Import Strategy: To mitigate risks associated with wildcard imports, it's advisable 

to explicitly list imported entities, thereby enhancing code clarity and maintainability. This 

change would also aid in understanding the module's dependencies. 

2. Address Linting Warnings: Instead of bypassing linting warnings, a review and potential 

refactor of the import statements and module structure could resolve underlying issues, 

leading to cleaner and more compliant code. 

3. Enhanced Documentation: While the module's purpose is relatively straightforward, 

additional comments or a module docstring explaining the rationale behind the 

organisation and the role of each imported component could provide valuable context to 

users and contributors. 

2 - _main_.py 

Strengths: 

1. Simplicity: The code is straightforward, making it easy to understand and maintain. It 

adheres to the common Python idiom of checking if __name__ == "__main__": to 

determine if the script is being run as the main program. 



Page 3 of 11 
 

2. Modular Design: Importing the autoeis_installer function from a separate CLI module 

promotes code modularity and reuse, allowing the CLI functionality to be easily expanded 

or modified without altering the entry script. 

Weaknesses: 

1. Limited Functionality: The current implementation only invokes the autoeis_installer 

function with a hardcoded prog_name argument. This approach might limit the flexibility 

of the CLI, as users cannot pass additional arguments or commands directly through the 

command line when executing the script. 

2. Error Handling: No visible error handling provided. Any errors or exceptions raised by 

autoeis_installer or during the import process will lead to an abrupt termination of the 

script, potentially leaving the user without clear guidance on the issue. 

Improvements: 

1. Enhanced CLI Options: Extending the CLI functionality to accept command-line arguments 

and flags could provide users with more control over the execution of the package. Utilising 

libraries like argparse or click (already used in the .cli module) could facilitate this 

enhancement. 

2. Error Handling and Feedback: Implementing error handling and providing meaningful 

feedback to the user in case of exceptions could improve the user experience. This might 

include catching specific exceptions and displaying user-friendly error messages or 

suggestions for resolution. 

3. Logging and Debugging Support: Introducing logging statements and a debug mode could 

aid in troubleshooting and provide users with more insight into the execution flow and 

potential issues 

3 - .cli.py: 

Strengths: 

1. User-Friendly Interface: The use of Click makes the CLI intuitive and easy to use, adhering 

to common command-line conventions. 

2. Flexibility in Installation: The --ec-path option allows users to specify a local copy of 

EquivalentCircuits, offering flexibility in managing dependencies. 

3. Clear Command Purpose: The command install is clearly named, indicating its purpose to 

install Julia dependencies, making it straightforward for users to understand what action 

will be taken. 

Weaknesses: 

1. Error Handling: The script lacks explicit error handling for the installation process, which 

could leave users without clear guidance in case of failures or exceptions during the 

installation. 

2. Dependency on External Functions: The script depends on functions from .julia_helpers, 

which could introduce coupling and dependency issues if those functions are modified or 

removed. 

3. Limited Functionality: The script currently focuses solely on the installation process, 

potentially underutilising the capabilities of a CLI in enhancing user interaction with the 

package. 

Improvements: 

1. Enhanced Error Handling: Implement robust error handling and user feedback for the 

installation process to guide users through resolving potential issues. 

2. Decoupling and Modularity: Ensure that the CLI script and the Julia helpers module are 

loosely coupled, allowing independent updates and modifications without breaking 

functionality. 

3. Expand CLI Capabilities: Consider extending the CLI with additional commands and options 

to cover more functionalities of the AutoEIS package, such as running analyses, managing 

configurations, or providing help and documentation directly through the command line. 



Page 4 of 11 
 

4 - cli_pyjulia.py: 

Strengths: 

1. Project-Specific Installations: The -p or --project option allows for targeted Julia 

dependency installations within specific Julia projects, enhancing modularity and project 

management. 

2. Control Over Precompilation: The options --precompile and --no-precompile provide users 

with control over the precompilation of Julia libraries, offering flexibility based on user 

preferences and system requirements. 

3. Consistent User Interface: Maintaining a consistent CLI design with autoeis_installer as 

the main entry point ensures a uniform user experience across different CLI components 

of the package. 

Weaknesses: 

1. Complexity for New Users: The additional options, while powerful, might introduce 

complexity that could be overwhelming for new or less technical users. 

2. Potential Redundancy: There seems to be an overlap in functionality with .cli.py, which 

could confuse users about when to use each script. 

3. Documentation and Examples: The script could benefit from inline documentation or 

examples demonstrating the use of project-specific installations and precompilation 

options. 

Improvements: 

1. Unified CLI Interface: Consider integrating the functionalities of cli_pyjulia.py into .cli.py 

to centralise CLI interactions and reduce redundancy. 

2. User Guidance: Enhance the script with more detailed help messages, examples, and error 

messages to guide users through using advanced options effectively. 

3. Interactive CLI Features: Introduce interactive CLI features that guide users through the 

installation process, making decisions based on user input and system checks to simplify 

the process for non-expert users. 

5 - .core.py 

Data Preprocessing (preprocess_impedance_data): 

Strengths: 

1. Implements noise reduction and data normalisation, crucial for ensuring the quality and 

consistency of EIS data before Analysis. 

2. Utilises a threshold parameter to flexibly adjust the level of noise reduction based on the 

dataset's characteristics. 

Weaknesses: 

1. Lacks detailed documentation on how the preprocessing impacts different types of EIS 

data, potentially leaving users uncertain about the appropriateness of the default settings 

for their specific data. 

2. The fixed threshold value might not be optimal for all datasets, possibly leading to over- 

or under-filtering in certain cases. 

Improvements: 

1. Enhance the documentation to include examples and guidelines on selecting the threshold 

value. 

2. Introduce adaptive noise reduction techniques that adjust based on the data's 

characteristics, improving preprocessing outcomes across diverse datasets. 

ECM Generation (generate_equivalent_circuits): 

Strengths: 



Page 5 of 11 
 

1. Facilitates the generation of ECMs using genetic programming, a robust method for 

exploring the vast space of possible circuit configurations. 

2. Offers parameters like complexity, population_size, and generations for fine-tuning the 

genetic programming process, providing users with control over the balance between 

search thoroughness and computational efficiency. 

Weaknesses: 

1. The complexity of the genetic programming approach might be daunting for users 

unfamiliar with evolutionary algorithms, potentially hindering accessibility. 

2. Parameter tuning requires a good understanding of genetic programming, which might not 

be straightforward for all users, leading to suboptimal configurations. 

Improvements: 

1. Develop a more user-friendly interface for ECM generation that abstracts away some of 

the complexities of genetic programming, possibly through higher-level presets or 

automated parameter tuning based on data characteristics. 

2. Include more comprehensive examples and tutorials that demonstrate effective parameter 

tuning strategies for different types of EIS data. 

Bayesian Inference (perform_bayesian_inference): 

Strengths: 

1. Employs Bayesian inference to estimate ECM parameters, providing not only point 

estimates but also uncertainty measures, which are invaluable for rigorous scientific 

Analysis. 

2. Configurable through kwargs_mcmc, allowing users to adjust inference settings like 

num_warmup and num_samples to balance accuracy and computational load. 

Weaknesses: 

1. The implementation assumes a certain level of familiarity with Bayesian statistics and 

MCMC sampling, which might not be the case for all users, potentially limiting the method's 

accessibility. 

2. The choice of priors and MCMC settings can significantly impact inference results, yet 

guidance on these aspects seems limited, which could lead to non-optimal usage. 

Improvements: 

1. Provide more extensive documentation and educational materials on the Bayesian 

inference process within the context of EIS analysis, including how to choose priors and 

interpret the results. 

2. Implement heuristic methods or provide tools to assist users in selecting appropriate 

MCMC settings and priors based on their data, enhancing the approachability of Bayesian 

inference for a broader audience. 

Plausibility Filtering (filter_implausible_circuits): 

Strengths: 

1. Introduces a necessary step to eliminate physically implausible ECMs from consideration, 

ensuring that the resulting models are not only statistically but also scientifically valid. 

2. Automates the filtering process, significantly reducing the manual effort required to vet 

the generated ECMs. 

Weaknesses: 

1. The criteria for plausibility might not be transparent or customisable, which could lead to 

the exclusion of viable models or inclusion of implausible ones based on the predefined 

thresholds. 

2. Lacks a mechanism to adjust the stringency of the filtering process, which might be 

necessary for applications with unique plausibility considerations. 



Page 6 of 11 
 

Improvements: 

1. Enhance transparency by clearly documenting the plausibility criteria used and their 

scientific justification, providing users with a better understanding of the filtering process. 

2. Introduce configurable parameters that allow users to adjust the stringency of the 

plausibility filtering, accommodating a wider range of EIS applications and research needs. 

6 - io.py Analysis: 

Strengths: 

1. Modularity and Clarity: The module is well-organised with clear, dedicated functions for 

each type of data interaction, enhancing readability and maintainability. 

2. Ease of Use: Functions like load_test_dataset and load_test_circuits abstract away the 

complexities of data handling, making it easier for users to access test datasets and circuits 

for experimentation. 

3. Integration with Pandas and Numpy: Leveraging these libraries for data manipulation and 

numerical operations ensures efficient and familiar data handling practices for the Python 

community. 

Weaknesses: 

1. Hardcoded Paths: The reliance on hardcoded paths (e.g., in get_assets_path) could reduce 

the flexibility and portability of the module, especially when the package structure changes 

or in different deployment environments. 

2. Error Handling: There's a lack of explicit error handling for potential issues like missing 

files, incorrect formats, or read errors, which could lead to uninformative exceptions for 

the end-users. 

3. String Evaluation in load_test_circuits: The use of eval to convert stringified lists to Python 

objects poses a security risk, especially if the function is ever adapted to handle user-

provided data. 

Improvements: 

1. Configurable Paths: Implement a configuration system or environment variables to allow 

dynamic specification of asset paths, improving flexibility and adaptability to different 

environments. 

2. Robust Error Handling: Introduce more comprehensive error handling and validation to 

gracefully manage and report issues with data files, enhancing user experience and 

debugging ease. 

3. Safe String Evaluation: Replace eval in load_test_circuits with a safer alternative like 

ast.literal_eval or custom parsing logic to mitigate potential security risks. 

Critical Observations: 

1. The function parse_ec_output demonstrates a specialised parsing routine tailored to the 

output format of EquivalentCircuits.jl. While this tight coupling is efficient, it may limit the 

module's flexibility with respect to changes in the output format of EquivalentCircuits.jl or 

the integration of other tools. 

2. The use of regular expressions in parse_ec_output is effective for the current expected 

format but might require adjustments if the output format becomes more complex or 

varied. This could introduce maintenance challenges, necessitating a more flexible parsing 

approach or better standardisation of output formats from EquivalentCircuits.jl. 

7 - julia_helpers.py 

Strengths: 

1. Integration with Julia: The module facilitates seamless integration with Julia, enabling the 

use of Julia's high-performance computational capabilities within a Python environment. 

This cross-language functionality is crucial for leveraging specialised Julia packages like 

EquivalentCircuits.jl. 

2. Simplification of Julia Installation: The install_julia function abstracts the complexity of 

setting up Julia, making it more accessible to users unfamiliar with Julia. 



Page 7 of 11 
 

Weaknesses: 

1. Dependency Management: The module assumes that Julia and its packages are not already 

installed or managed in a different environment, which might not align with the user's 

existing setup. 

2. Error Handling: There is a lack of detailed error handling and user feedback during the 

installation and setup process. Errors during package installation or Julia setup could lead 

to uninformative error messages for the end-user. 

Improvements: 

1. Enhanced Error Handling and Feedback: Implement more robust error handling 

mechanisms to provide clear and informative feedback to users during Julia installation 

and package setup. This could include checking for common issues and suggesting fixes. 

2. Flexible Julia Environment Management: Allow for more flexibility in managing Julia 

environments, such as detecting existing installations, working within virtual 

environments, or integrating with package managers like Conda. 

8 - cli_pyjulia.py 

Strengths: 

1. Flexibility: The CLI provides options to install dependencies in a specific Julia project, 

offering flexibility for users working with multiple Julia environments or projects. 

2. User Experience: The --quiet option to disable logging and options to control 

precompilation (--precompile and --no-precompile) enhance user experience by giving 

users control over the installation process. 

Weaknesses: 

1. Error Handling: The script lacks explicit error handling for the installation process. If the 

installation fails (due to network issues, incorrect Julia setup, etc.), the user might not 

receive clear guidance on troubleshooting. 

2. Documentation: While the CLI options are described, there's no documentation on the 

expected outcomes, potential errors, or how the install function interacts with Julia 

environments. This lack of information might confuse users unfamiliar with Julia or the 

specifics of the package's requirements. 

Improvements: 

1. Enhanced Error Handling: Implement error handling to catch and provide informative 

messages for common issues during the installation process, such as missing Julia 

installation, network problems, or permissions issues. 

2. Comprehensive Documentation: Expand the CLI documentation to include examples, 

common issues, and troubleshooting tips. Detailed docstrings for the install_cli function 

could also clarify its behaviour and requirements. 

3. Validation Checks: Introduce checks to validate the Julia environment before attempting 

installation, ensuring prerequisites are met and potentially guiding users through resolving 

common setup issues. 

4. Feedback Mechanism: Provide real-time feedback during the installation process, such as 

progress indicators or confirmation messages upon successful completion, to improve user 

engagement and confidence in the process. 

10 - Metrics Module: 

Metrics.py 

Strengths: 

1. Simplicity and Clarity: The functions are straightforward and easy to understand. Each 

function has a clear purpose, aligning with standard practices in model evaluation 

metrics. 



Page 8 of 11 
 

2. Documentation: The docstrings provide a clear description of what each function does, 

the expected input parameters, and the return values. This is beneficial for users and 

developers who may refer to this code for understanding or integration purposes. 

3. Handling of Complex Numbers: A notable feature is the handling of complex numbers 

in the input arrays. This capability is particularly useful in fields like signal processing 

or electrical engineering, where complex numbers are commonplace. 

4. General Applicability: These functions can be used in a wide range of applications, from 

simple regression problems to more complex analyses involving complex-valued data. 

The code does not make assumptions about the specific use case, enhancing its utility 

across different domains. 

5. Efficiency: The use of NumPy operations ensures that the computations are efficient 

and can handle large arrays effectively, leveraging NumPy's optimised C and Fortran 

code. 

Weaknesses: 

1. Division by Zero in MAPE: The mape_score function could potentially result in a division 

by zero if any of the y_true values are zero. This is a common issue with MAPE, and 

the function lacks a safeguard against this scenario. 

2. Generalisation of R2 Score: The R2 score calculation does not account for the potential 

issues that can arise with complex numbers, such as the interpretation of the sum of 

squares due to the absolute value operation. The R2 score's traditional interpretation 

may not directly translate to complex-valued data. 

3. Error Handling and Validation: There is no explicit input validation or error handling. 

For example, the functions do not check if the input arrays y_true and y_pred have 

the same shape, which is a prerequisite for these calculations. 

4. Handling of Edge Cases: None of the functions address potential edge cases or 

numerical stability issues explicitly. For instance, in the r2_score function, if the total 

sum of squares (sst) is very close to zero, the division could lead to numerical instability 

or a misleading R2 score. 

5. Limited Flexibility: The functions are designed with a specific formula and do not offer 

flexibility in terms of adjusting parameters or accommodating variations of these 

metrics that might be useful in specific contexts (e.g., weighted versions of these 

scores). 

Improvements: 

1. Enhance Documentation: Adding detailed docstrings for each function, explaining their 

parameters, return values, and potential errors, would significantly improve usability. 

2. Implement Error Handling: Including error handling mechanisms to catch and manage 

potential exceptions gracefully would enhance the robustness of the module. 

 

_generate_ecm_parallel_julia 

Strengths: 

1. Parallel Processing: Utilises Julia's multiprocessing capabilities, aiming to leverage 

parallel processing for efficiency gains in generating candidate circuits. 

2. Reproducibility: Attempts to set a random seed for reproducibility, which is crucial in 

scientific computations to ensure that results can be consistently replicated. 

Weaknesses: 

1. Multiprocessing with Random Seeds: The comment # FIXME: This doesn't work when 

multiprocessing, use @everywhere instead indicates an unresolved issue with setting 

random seeds in a multiprocessing environment. This could lead to inconsistencies in 

the results across different runs. 

2. Error Handling: No error handling is shown for the multiprocessing tasks. In a parallel 

processing environment, handling errors gracefully is crucial to ensure stability and 

reliability. 



Page 9 of 11 
 

3. JAX Utilisation: While JAX is mentioned in the context of JIT compilation, this sub-

routine does not demonstrate its use. Leveraging JAX's capabilities could potentially 

enhance performance further. 

Improvements: 

1. Resolve Multiprocessing Issue: Address the noted FIXME by implementing the 

suggested use of @everywhere to correctly initialise random seeds in each Julia 

process. This will ensure reproducibility across multiprocessing tasks. 

2. Integrate JAX for Performance: Consider integrating JAX for numerical computations 

within this function. JAX's JIT compilation can significantly speed up array operations, 

which are likely a core part of generating and evaluating circuits. 

3. Enhance Error Handling: Implement comprehensive error handling to manage potential 

failures in parallel tasks, ensuring the function can recover or gracefully exit upon 

encountering issues. 

4. Documentation: Expand the function's documentation to include more details about its 

parameters, expected behaviour, and any side effects, especially concerning 

multiprocessing. 

5. JAX's JIT Compilation for Efficiency: JAX's JIT compilation transforms functions to be 

compiled by XLA (Accelerated Linear Algebra), which can dramatically speed up 

execution, especially for operations on large arrays or complex numerical computations 

typical in circuit analysis. 

(Following on last pt. 5) Application to _generate_ecm_parallel_julia: 

1. Array Operations: If the generation and evaluation of circuits involve heavy array 

manipulations, JIT compiling these parts with JAX could reduce computation times. 

2. Batch Processing: JAX excels at vectorised operations. Rewriting parts of the circuit 

generation process to utilise batch operations could yield significant performance gains. 

3. Hybrid Approach: While the core parallel processing leverages Julia, computational 

bottlenecks within each process that involve intensive numerical operations could be 

targeted with JAX's JIT compilation for optimisation. 

11 -Models.py 

Strengths: 

1. Use of Probabilistic Programming: The code leverages Numpyro for Bayesian inference, 

which is a powerful approach for estimating the uncertainty in model parameters. This is 

particularly useful in complex systems like electronic circuits where there is inherent noise 

and uncertainty. 

2. Vectorisation with JAX: By importing JAX and using jax.numpy for operations, the code is 

positioned to take advantage of JAX's auto-differentiation and its ability to compile and 

optimise calculations for speed, particularly on GPU or TPU hardware. 

3. Modularity through Functions: The separation of the Bayesian model into two functions 

(circuit_regression and circuit_regression_wrapped) enhances code reusability and 

readability. It allows for flexibility in specifying different circuit models or functions without 

altering the core Bayesian inference logic. 

4. Explicit Priors Definition: The functions require a dictionary of prior distributions as an 

argument, allowing for explicit and flexible specification of priors for each model 

parameter. This is a key aspect of Bayesian analysis, providing a clear way to incorporate 

prior knowledge into the model. 

5. Complex Data Handling: The functions are designed to handle complex impedance data 

(Z: np.ndarray[complex]), which is common in electronic circuit analysis. This shows that 

the code is tailored for domain-specific applications, potentially making it a valuable tool 

for electrical engineers and researchers. 

Weaknesses: 

1. Performance Considerations: The line p = jnp.array([numpyro.sample(k, v) for k, v in 

priors.items()]) involves a Python list comprehension and a subsequent conversion to a 

JAX array. This pattern can be sub-optimal for performance, as it does not fully leverage 



Page 10 of 11 
 

JAX's JIT (Just-In-Time) compilation capabilities, which work best with pure JAX 

operations. 

2. Error Handling and Validation: The code lacks error handling and input validation. For 

instance, it does not check if the provided circuit string in circuit_regression corresponds 

to a valid circuit function or if the shapes of Z and freq arrays are compatible. 

3. Hardcoded Distribution Parameters: The observation model's noise parameters 

(sigma_real and sigma_imag) are sampled from an Exponential distribution with a 

hardcoded rate of 1.0. This may not be appropriate for all use cases, and the flexibility to 

specify these as part of the model's inputs could enhance the code's applicability. 

4. Documentation and Comments: While there are docstrings providing a high-level 

overview, the code could benefit from more detailed comments, especially explaining the 

Bayesian inference steps and the rationale behind certain design choices (e.g., the use of 

separate sigma_real and sigma_imag for modelling noise in the real and imaginary parts 

of Z). 

5. Dependency on External Utility Function: The function circuit_regression depends on 

utils.generate_circuit_fn(circuit), whose behaviour and implementation are not shown. 

This external dependency could affect the code's robustness and portability if not properly 

managed or documented. 

Improvements: 

1. User Documentation: Enhancing the documentation for these functions, including 

examples and explanations of Bayesian concepts, could make this part of the codebase 

more accessible. 

2. Error Handling: Implementing robust error handling and validation of inputs to the 

Bayesian models to prevent runtime errors and provide informative error messages. 

12 - Parser Module 

Strengths: 

1. Comprehensive Validation: The functions provide thorough validation of circuit strings 

and parameters, ensuring the integrity of ECM representations. 

2. Modularity: The modular design of parsing functions allows for easy extension and 

reuse throughout the codebase. 

Weaknesses: 

1. RegEx Dependency: Heavy reliance on regular expressions for parsing might make the 

code difficult to maintain or extend, especially for complex circuit structures. 

2. Error Messaging: While validation checks are in place, the error messages might not 

always provide clear guidance on how to correct invalid inputs. 

Improvements: 

1. Parser Flexibility: Enhancing the parser to handle a wider variety of circuit formats and 

potentially simplifying the parsing logic to reduce maintenance complexity. 

2. Improved Error Handling: Developing more descriptive error messages and guidance 

for common parsing errors to improve user experience. 

13 - Utility Functions 

Strengths: 

1. Utility Diversity: A wide range of utility functions supports different aspects of the 

package, enhancing code reusability and modularity. 

2. Support Functions: Functions like version assertions ensure compatibility and stability 

within the Julia and Python ecosystem used by AutoEIS. 

Weaknesses: 

1. Utility Overload: The large number of utility functions might overwhelm new 

contributors or users, potentially obscuring the core functionalities of the package. 



Page 11 of 11 
 

2. Documentation: Some utility functions might benefit from more detailed docstrings 

that explain their purpose, parameters, and return values in greater detail. 

Improvements: 

1. Utility Documentation: Expand the documentation within the utility module to provide 

clear, concise descriptions and usage examples for each function. 

2. Utility Consolidation: Evaluating the utility functions for opportunities to consolidate or 

refactor, reducing complexity and enhancing maintainability. 

14 - Versioning 

Strengths: 

1. Clear Versioning: Explicit versioning supports package stability and compatibility, 

especially when integrating with external Julia packages. 

Weaknesses: 

1. Hardcoded Versions: Hardcoded versions might require manual updates, which could 

be overlooked, leading to potential compatibility issues. 

Improvements: 

1. Dynamic Version Management: Implementing a more dynamic approach to version 

management, potentially using a versioning tool or script, could streamline updates 

and ensure consistency across dependencies. 

15 - Testing and Validation 

Strengths: 

1. Comprehensive Testing: The extensive testing suite covering a wide range of 

functionalities ensures the robustness and reliability of the package. 

2. Use of Pytest: Leveraging pytest for organising tests enhances the readability and 

maintainability of test cases. 

Weaknesses: 

1. Test Coverage: While extensive, the tests may not cover all edge cases or error 

conditions, which could lead to potential undetected bugs. 

2. Mocking External Dependencies: The tests appear to rely on actual data and package 

functionalities, which might benefit from mocking to isolate and test specific 

components more effectively. 

Improvements: 

1. Increase Test Coverage: Expanding the test suite to cover more edge cases, especially 

for error handling and failure modes, would further enhance the robustness. 

2. Mock External Dependencies: Implementing mocks for external dependencies and data 

could make tests more reliable and faster, isolating the functionality being tested. 


