Skip to content

Commit

Permalink
Fix docs in data_formats section (#961)
Browse files Browse the repository at this point in the history
  • Loading branch information
cih9088 authored Apr 20, 2023
1 parent 5095007 commit ff3a45d
Show file tree
Hide file tree
Showing 3 changed files with 49 additions and 45 deletions.
2 changes: 1 addition & 1 deletion docs/source/docs/data-formats/datumaro_format.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ with different tasks and formats, we provide a novel Datumaro format with `.json
extensions.

A variety of metadata can be stored in the datumaro format. First of all, `dm_format_version` field
is provided for backward compatibility to help with data version tracing.And various metadata can be
is provided for backward compatibility to help with data version tracing and various metadata can be
added to the `info` field. For example, you can record task types such as detection and segmentation,
or record data creation time. Labels and attributes can be saved in the `categories` field, and mask
colormap information can be saved. In addition, in the datumaro format, in order to respond to
Expand Down
18 changes: 10 additions & 8 deletions docs/source/docs/data-formats/media_formats.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,9 @@ To create an unlabelled dataset from an arbitrary directory with images use
`image_dir` and `image_zip` formats:

``` bash
datum create -o <project/dir>
datum import -p <project/dir> -f image_dir <directory/path/>
cd </path/to/project>
datum project create
datum project import -f image_dir </path/to/directory/containing/images>
```

or, if you work with Datumaro API:
Expand All @@ -20,8 +21,8 @@ or, if you work with Datumaro API:
```python
from datumaro.project import Project

project = Project.init()
project.import_source('source1', format='image_dir', url='directory/path/')
project = Project.init('/path/to/project')
project.import_source('source1', format='image_dir', url='/path/to/directory/containing/images')
dataset = project.working_tree.make_dataset()
```

Expand All @@ -30,7 +31,7 @@ or, if you work with Datumaro API:
```python
from datumaro import Dataset

dataset = Dataset.import_from('directory/path/', 'image_dir')
dataset = Dataset.import_from('/path/to/directory/containing/images', 'image_dir')
```

This will search for images in the directory recursively and add
Expand All @@ -57,14 +58,15 @@ Alternatively, you can use the `video_frames` format directly:
> splitting the video into frames by any method.
``` bash
datum create -o <project/dir>
datum import -p <project/dir> -f video_frames <video/path.avi>
cd </path/to/project>
datum project create
datum project import -f video_frames </path/to/video>
```

```python
from datumaro import Dataset

dataset = Dataset.import_from('video.mp4', 'video_frames')
dataset = Dataset.import_from('/path/to/video', 'video_frames')
```

Datumaro supports the following video formats:
Expand Down
74 changes: 38 additions & 36 deletions docs/source/docs/data-formats/supported_formats.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,45 +4,45 @@ List of supported formats:
- ADE20k (v2017) (import-only)
- [Format specification](https://www.kaggle.com/soumikrakshit/ade20k)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/ade20k2017_dataset)
- [Format documentation](/docs/explanation/formats/ade20k2017)
- [Format documentation](../explanation/formats/ade20k2017)
- ADE20k (v2020) (import-only)
- [Format specification](https://groups.csail.mit.edu/vision/datasets/ADE20K/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/ade20k2020_dataset)
- [Format documentation](/docs/explanation/formats/ade20k2020)
- [Format documentation](../explanation/formats/ade20k2020)
- Align CelebA (`classification`, `landmarks`) (import-only)
- [Format specification](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/align_celeba_dataset)
- [Format documentation](/docs/explanation/formats/align_celeba)
- [Format documentation](../explanation/formats/align_celeba)
- BraTS (`segmentation`) (import-only)
- [Format specification](https://www.med.upenn.edu/sbia/brats2018/data.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/brats_dataset)
- [Format documentation](/docs/explanation/formats/brats)
- [Format documentation](../explanation/formats/brats)
- BraTS Numpy (`detection`, `segmentation`) (import-only)
- [Format specification](https://www.med.upenn.edu/sbia/brats2018/data.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/brats_numpy_dataset)
- [Format documentation](/docs/explanation/formats/brats_numpy)
- [Format documentation](../explanation/formats/brats_numpy)
- CamVid (`segmentation`)
- [Format specification](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/camvid_dataset)
- CelebA (`classification`, `detection`, `landmarks`) (import-only)
- [Format specification](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/celeba_dataset)
- [Format documentation](/docs/explanation/formats/celeba)
- [Format documentation](../explanation/formats/celeba)
- CIFAR-10/100 (`classification` (python version))
- [Format specification](https://www.cs.toronto.edu/~kriz/cifar.html)
- [Dataset example CIFAR-10](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/cifar10_dataset)
- [Dataset example CIFAR-100](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/cifar100_dataset)
- [Format documentation](/docs/explanation/formats/cifar)
- [Format documentation](../explanation/formats/cifar)
- Cityscapes (`segmentation`)
- [Format specification](https://www.cityscapes-dataset.com/dataset-overview/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/cityscapes_dataset)
- [Format documentation](/docs/explanation/formats/cityscapes)
- [Format documentation](../explanation/formats/cityscapes)
- Common Semantic Segmentation (`segmentation`)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/common_semantic_segmentation_dataset)
- [Format documentation](/docs/explanation/formats/common_semantic_segmentation)
- [Format documentation](../explanation/formats/common_semantic_segmentation)
- Common Super Resolution
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/common_super_resolution_dataset)
- [Format documentation](/docs/explanation/formats/common_super_resolution)
- [Format documentation](../explanation/formats/common_super_resolution)
- CVAT (`for images`, `for video` (import-only))
- [Format specification](https://opencv.github.io/cvat/docs/manual/advanced/xml_format)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/cvat_dataset)
Expand All @@ -53,45 +53,45 @@ List of supported formats:
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/imagenet_dataset)
- [Dataset example (txt for classification)](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/imagenet_txt_dataset)
- Detection format is the same as in PASCAL VOC
- [Format documentation](/docs/explanation/formats/imagenet)
- [Format documentation](../explanation/formats/imagenet)
- KITTI (`segmentation`, `detection`)
- [Format specification](http://www.cvlibs.net/datasets/kitti/index.php)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/kitti_dataset)
- [Format documentation](/docs/explanation/formats/kitti)
- [Format documentation](../explanation/formats/kitti)
- KITTI 3D (`raw`/`tracklets`/`velodyne points`)
- [Format specification](http://www.cvlibs.net/datasets/kitti/raw_data.php)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/kitti_dataset/kitti_raw)
- [Format documentation](/docs/explanation/formats/kitti_raw)
- [Format documentation](../explanation/formats/kitti_raw)
- Kinetics 400/600/700
- [Format specification](https://www.deepmind.com/open-source/kinetics)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/kinetics_dataset)
- [Format documentation](/docs/explanation/formats/kinetics)
- [Format documentation](../explanation/formats/kinetics)
- LabelMe (`labels`, `boxes`, `masks`)
- [Format specification](http://labelme.csail.mit.edu/Release3.0)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/labelme_dataset)
- LFW (`classification`, `person re-identification`, `landmarks`)
- [Format specification](http://vis-www.cs.umass.edu/lfw/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/lfw_dataset)
- [Format documentation](/docs/explanation/formats/lfw)
- [Format documentation](../explanation/formats/lfw)
- Mapillary Vistas (import-only)
- [Format specification](https://www.mapillary.com/dataset/vistas)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/mapillary_vistas_dataset)
- [Format documentation](/docs/explanation/formats/mapillary_vistas)
- [Format documentation](../explanation/formats/mapillary_vistas)
- Market-1501 (`person re-identification`)
- [Format specification](https://www.aitribune.com/dataset/2018051063)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/market1501_dataset)
- MARS (import-only)
- [Format specification](https://zheng-lab.cecs.anu.edu.au/Project/project_mars.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/mars_dataset)
- [Format documentation](/docs/explanation/formats/mars)
- [Format documentation](../explanation/formats/mars)
- MNIST (`classification`)
- [Format specification](http://yann.lecun.com/exdb/mnist/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/mnist_dataset)
- [Format documentation](/docs/explanation/formats/mnist)
- [Format documentation](../explanation/formats/mnist)
- MNIST in CSV (`classification`)
- [Format specification](https://pjreddie.com/projects/mnist-in-csv/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/mnist_csv_dataset)
- [Format documentation](/docs/explanation/formats/mnist)
- [Format documentation](../explanation/formats/mnist)
- MOT sequences
- [Format specification](https://arxiv.org/pdf/1906.04567.pdf)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/mot_dataset)
Expand All @@ -101,65 +101,65 @@ List of supported formats:
- MPII Human Pose Dataset (`detection`, `pose estimation`) (import-only)
- [Format specification](http://human-pose.mpi-inf.mpg.de)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/mpii_dataset)
- [Format documentation](/docs/explanation/formats/mpii)
- [Format documentation](../explanation/formats/mpii)
- MPII Human Pose Dataset (JSON) (`detection`, `pose estimation`) (import-only)
- [Format specification](http://human-pose.mpi-inf.mpg.de)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/mpii_json_dataset)
- [Format documentation](/docs/explanation/formats/mpii_json)
- [Format documentation](../explanation/formats/mpii_json)
- MS COCO (`image_info`, `instances`, `person_keypoints`, `captions`, `labels`,`panoptic`, `stuff`)
- [Format specification](http://cocodataset.org/#format-data)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/coco_dataset)
- `labels` are our extension - like `instances` with only `category_id`
- [Format documentation](/docs/explanation/formats/coco)
- [Format documentation](../explanation/formats/coco)
- NYU Depth Dataset V2 (`depth estimation`) (import-only)
- [Format specification](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/nyu_depth_v2_dataset)
- [Format documentation](/docs/explanation/formats/nyu_depth_v2)
- [Format documentation](../explanation/formats/nyu_depth_v2)
- Open Images (`classification`, `detection`, `segmentation`)
- [Format specification](https://storage.googleapis.com/openimages/web/download.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/open_images_dataset)
- [Format documentation](/docs/explanation/formats/open_images)
- [Format documentation](../explanation/formats/open_images)
- PASCAL VOC (`classification`, `detection`, `segmentation` (class, instances),
`action_classification`, `person_layout`)
- [Format specification](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/voc_dataset)
- [Format documentation](/docs/explanation/formats/pascal_voc)
- [Format documentation](../explanation/formats/pascal_voc)
- Supervisely (`pointcloud`)
- [Format specification](https://docs.supervise.ly/data-organization/00_ann_format_navi)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/sly_pointcloud_dataset)
- [Format documentation](/docs/explanation/formats/sly_pointcloud)
- [Format documentation](../explanation/formats/sly_pointcloud)
- SYNTHIA (`segmentation`) (import-only)
- [Format specification](https://synthia-dataset.net/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/synthia_dataset)
- [Format documentation](/docs/explanation/formats/synthia)
- [Format documentation](../explanation/formats/synthia)
- TF Detection API (`bboxes`, `masks`)
- Format specifications: [bboxes](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md),
[masks](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/instance_segmentation.md)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/tf_detection_api_dataset)
- VGGFace2 (`landmarks`, `bboxes`)
- [Format specification](https://github.com/ox-vgg/vgg_face2)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/vgg_face2_dataset)
- [Format documentation](/docs/explanation/formats/vgg_face2)
- [Format documentation](../explanation/formats/vgg_face2)
- VoTT CSV (`detection`) (import-only)
- [Format specification](https://github.com/microsoft/VoTT)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/vott_csv_dataset)
- [Format documentation](/docs/explanation/formats/vott_csv)
- [Format documentation](../explanation/formats/vott_csv)
- VoTT JSON (`detection`) (import-only)
- [Format specification](https://github.com/microsoft/VoTT)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/vott_json_dataset)
- [Format documentation](/docs/explanation/formats/vott_json)
- [Format documentation](../explanation/formats/vott_json)
- WIDER Face (`bboxes`)
- [Format specification](http://shuoyang1213.me/WIDERFACE/)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/widerface_dataset)
- [Format documentation](/docs/explanation/formats/wider_face)
- [Format documentation](../explanation/formats/wider_face)
- YOLO (`bboxes`)
- [Format specification](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data)
- [Dataset example](https://github.com/openvinotoolkit/datumaro/tree/develop/tests/assets/yolo_dataset)
- [Format documentation](/docs/explanation/formats/yolo)
- [Format documentation](../explanation/formats/yolo)
- YOLO-Ultralytics (`bboxes`)
- [Format specification](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml)
- [Dataset example](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml)
- [Format documentation](/docs/explanation/formats/yolo)
- [Format documentation](../explanation/formats/yolo_ultralytics)

## Supported annotation types

Expand All @@ -173,6 +173,8 @@ List of supported formats:
- 3D cuboids
- Super Resolution Annotation
- Depth Annotation
- Ellipses
- Hash Keys

Datumaro does not separate datasets by tasks like classification, detection
etc. Instead, datasets can have any annotations. When a dataset is exported
Expand All @@ -185,9 +187,9 @@ To do this, use `dataset_meta.json`.

```json
{
"label_map": {"0": "background", "1": "car", "2": "person"},
"segmentation_colors": [[0, 0, 0], [255, 0, 0], [0, 0, 255]],
"background_label": "0"
"label_map": {"0": "background", "1": "car", "2": "person"},
"segmentation_colors": [[0, 0, 0], [255, 0, 0], [0, 0, 255]],
"background_label": "0"
}
```

Expand Down

0 comments on commit ff3a45d

Please sign in to comment.