From 2cddbdb01c153d8e863bf3e77b3d63bfd5341a99 Mon Sep 17 00:00:00 2001 From: Alexander Motin Date: Thu, 5 Nov 2020 22:09:38 -0500 Subject: [PATCH] Reduce latency effects of non-interactive I/O. Investigating influence of scrub (especially sequential) on random read latency I've noticed that on some HDDs single 4KB read may take up to 4 seconds! Deeper investigation shown that many HDDs heavily prioritize sequential reads even when those are submitted with queue depth of 1. This patch addresses the latency from two sides: - by using _min_active queue depths for non-interactive requests while the interactive request(s) are active and few requests after; - by throttling it further if no interactive requests has completed while configured amount of non-interactive did. While there, I've also modified vdev_queue_class_to_issue() to give more chances to schedule at least _min_active requests to the lowest priorities. It should reduce starvation if several non-interactive processes are running same time with some interactive and I think should make possible setting of zfs_vdev_max_active to as low as 1. I've benchmarked this change with 4KB random reads from ZVOL with 16KB block size on newly written non-fragmented pool. On fragmented pool I also saw improvements, but not so dramatic. Below are log2 histograms of the random read latency in milliseconds for different devices: 4 2x mirror vdevs of SATA HDD WDC WD20EFRX-68EUZN0 before: 0, 0, 2, 1, 12, 21, 19, 18, 10, 15, 17, 21 after: 0, 0, 0, 24, 101, 195, 419, 250, 47, 4, 0, 0 , that means maximum latency reduction from 2s to 500ms. 4 2x mirror vdevs of SATA HDD WDC WD80EFZX-68UW8N0 before: 0, 0, 2, 31, 38, 28, 18, 12, 17, 20, 24, 10, 3 after: 0, 0, 55, 247, 455, 470, 412, 181, 36, 0, 0, 0, 0 , i.e. from 4s to 250ms. 1 SAS HDD SEAGATE ST14000NM0048 before: 0, 0, 29, 70, 107, 45, 27, 1, 0, 0, 1, 4, 19 after: 1, 29, 681, 1261, 676, 1633, 67, 1, 0, 0, 0, 0, 0 , i.e. from 4s to 125ms. 1 SAS SSD SEAGATE XS3840TE70014 before (microseconds): 0, 0, 0, 0, 0, 0, 0, 0, 70, 18343, 82548, 618 after: 0, 0, 0, 0, 0, 0, 0, 0, 283, 92351, 34844, 90 I've also measured scrub time during the test and on idle pools. On idle fragmented pool I've measured scrub getting few percent faster due to use of QD3 instead of QD2 before. On idle non-fragmented pool I've measured no difference. On busy non-fragmented pool I've measured scrub time increase about 1.5-1.7x, while IOPS increase reached 5-9x. Signed-off-by: Alexander Motin Sponsored-By: iXsystems, Inc. --- include/sys/vdev_impl.h | 3 + include/sys/zio_priority.h | 4 +- man/man5/zfs-module-parameters.5 | 32 +++++++++++ module/zfs/vdev_queue.c | 94 +++++++++++++++++++++++++------- 4 files changed, 113 insertions(+), 20 deletions(-) diff --git a/include/sys/vdev_impl.h b/include/sys/vdev_impl.h index 3c4c3fb5a279..e79323b20241 100644 --- a/include/sys/vdev_impl.h +++ b/include/sys/vdev_impl.h @@ -148,6 +148,9 @@ struct vdev_queue { avl_tree_t vq_write_offset_tree; avl_tree_t vq_trim_offset_tree; uint64_t vq_last_offset; + zio_priority_t vq_last_prio; /* Last sent I/O priority. */ + int32_t vq_ia_active; /* Active interactive I/Os. */ + int32_t vq_nia_credit; /* Non-interactive I/Os credit. */ hrtime_t vq_io_complete_ts; /* time last i/o completed */ hrtime_t vq_io_delta_ts; zio_t vq_io_search; /* used as local for stack reduction */ diff --git a/include/sys/zio_priority.h b/include/sys/zio_priority.h index 2d8e7fc36bae..9fb6f0a4cb2c 100644 --- a/include/sys/zio_priority.h +++ b/include/sys/zio_priority.h @@ -27,15 +27,17 @@ typedef enum zio_priority { ZIO_PRIORITY_SYNC_WRITE, /* ZIL */ ZIO_PRIORITY_ASYNC_READ, /* prefetch */ ZIO_PRIORITY_ASYNC_WRITE, /* spa_sync() */ + ZIO_PRIORITY_TRIM, /* trim I/O (discard) */ ZIO_PRIORITY_SCRUB, /* asynchronous scrub/resilver reads */ ZIO_PRIORITY_REMOVAL, /* reads/writes for vdev removal */ ZIO_PRIORITY_INITIALIZING, /* initializing I/O */ - ZIO_PRIORITY_TRIM, /* trim I/O (discard) */ ZIO_PRIORITY_REBUILD, /* reads/writes for vdev rebuild */ ZIO_PRIORITY_NUM_QUEUEABLE, ZIO_PRIORITY_NOW, /* non-queued i/os (e.g. free) */ } zio_priority_t; +#define ZIO_PRIORITY_MAX_INTERACTIVE ZIO_PRIORITY_TRIM + #ifdef __cplusplus } #endif diff --git a/man/man5/zfs-module-parameters.5 b/man/man5/zfs-module-parameters.5 index 469963750a05..0f134f2b46da 100644 --- a/man/man5/zfs-module-parameters.5 +++ b/man/man5/zfs-module-parameters.5 @@ -2165,6 +2165,38 @@ See the section "ZFS I/O SCHEDULER". Default value: \fB1\fR. .RE +.sp +.ne 2 +.na +\fBzfs_vdev_nia_delay\fR (int) +.ad +.RS 12n +To reduce effects of non-interactive I/O on interactive I/O latency +the first are limited to *_min_active while there are second active, +plus at least this number of I/Os after in case interactive return. +See the section "ZFS I/O SCHEDULER". +.sp +Default value: \fB5\fR. +.RE + +.sp +.ne 2 +.na +\fBzfs_vdev_nia_credit\fR (int) +.ad +.RS 12n +Some HDDs tend to prioritize sequential I/O so high, that concurrent +random I/O latency reaches several seconds. On some HDDs it happens +even if sequential I/Os are submitted one at a time, and so setting +*_max_active to 1 does not help. To handle this in case of scrub +and other non-interactive I/O this tunable limits the number of their +I/Os that can be sent until at least one interactive I/O completes +without the enforced wait, making the HDD to stop the spree. +See the section "ZFS I/O SCHEDULER". +.sp +Default value: \fB5\fR. +.RE + .sp .ne 2 .na diff --git a/module/zfs/vdev_queue.c b/module/zfs/vdev_queue.c index a8ef3d7474c9..52192786c7c9 100644 --- a/module/zfs/vdev_queue.c +++ b/module/zfs/vdev_queue.c @@ -151,7 +151,7 @@ uint32_t zfs_vdev_async_read_max_active = 3; uint32_t zfs_vdev_async_write_min_active = 2; uint32_t zfs_vdev_async_write_max_active = 10; uint32_t zfs_vdev_scrub_min_active = 1; -uint32_t zfs_vdev_scrub_max_active = 2; +uint32_t zfs_vdev_scrub_max_active = 3; uint32_t zfs_vdev_removal_min_active = 1; uint32_t zfs_vdev_removal_max_active = 2; uint32_t zfs_vdev_initializing_min_active = 1; @@ -171,6 +171,24 @@ uint32_t zfs_vdev_rebuild_max_active = 3; int zfs_vdev_async_write_active_min_dirty_percent = 30; int zfs_vdev_async_write_active_max_dirty_percent = 60; +/* + * To reduce effects of non-interactive I/O on interactive I/O latency + * the first are limited to *_min_active while there are second active, + * plus at least this number of I/Os after in case interactive return. + */ +int zfs_vdev_nia_delay = 5; + +/* + * Some HDDs tend to prioritize sequential I/O so high, that concurrent + * random I/O latency reaches several seconds. On some HDDs it happens + * even if sequential I/Os are submitted one at a time, and so setting + * *_max_active to 1 does not help. To handle this in case of scrub + * and other non-interactive I/O this tunable limits the number of their + * I/Os that can be sent until at least one interactive I/O completes + * without the enforced wait, making the HDD to stop the spree. + */ +int zfs_vdev_nia_credit = 5; + /* * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. * For read I/Os, we also aggregate across small adjacency gaps; for writes @@ -261,7 +279,7 @@ vdev_queue_timestamp_compare(const void *x1, const void *x2) } static int -vdev_queue_class_min_active(zio_priority_t p) +vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p) { switch (p) { case ZIO_PRIORITY_SYNC_READ: @@ -272,16 +290,22 @@ vdev_queue_class_min_active(zio_priority_t p) return (zfs_vdev_async_read_min_active); case ZIO_PRIORITY_ASYNC_WRITE: return (zfs_vdev_async_write_min_active); + case ZIO_PRIORITY_TRIM: + return (zfs_vdev_trim_min_active); case ZIO_PRIORITY_SCRUB: - return (zfs_vdev_scrub_min_active); +#define M(X) if (vq->vq_ia_active > 0) { \ + return (MIN(vq->vq_nia_credit, \ + zfs_vdev_##X##_min_active)); \ + } \ + return (zfs_vdev_##X##_min_active) + M(scrub); case ZIO_PRIORITY_REMOVAL: - return (zfs_vdev_removal_min_active); + M(removal); case ZIO_PRIORITY_INITIALIZING: - return (zfs_vdev_initializing_min_active); - case ZIO_PRIORITY_TRIM: - return (zfs_vdev_trim_min_active); + M(initializing); case ZIO_PRIORITY_REBUILD: - return (zfs_vdev_rebuild_min_active); + M(rebuild); +#undef M default: panic("invalid priority %u", p); return (0); @@ -337,7 +361,7 @@ vdev_queue_max_async_writes(spa_t *spa) } static int -vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) +vdev_queue_class_max_active(spa_t *spa, vdev_queue_t *vq, zio_priority_t p) { switch (p) { case ZIO_PRIORITY_SYNC_READ: @@ -348,16 +372,23 @@ vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) return (zfs_vdev_async_read_max_active); case ZIO_PRIORITY_ASYNC_WRITE: return (vdev_queue_max_async_writes(spa)); + case ZIO_PRIORITY_TRIM: + return (zfs_vdev_trim_max_active); case ZIO_PRIORITY_SCRUB: - return (zfs_vdev_scrub_max_active); +#define M(X) if (vq->vq_ia_active > 0) { \ + return (MIN(vq->vq_nia_credit, \ + zfs_vdev_##X##_min_active)); \ + } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) \ + return (zfs_vdev_##X##_min_active); \ + return (zfs_vdev_##X##_max_active); + M(scrub); case ZIO_PRIORITY_REMOVAL: - return (zfs_vdev_removal_max_active); + M(removal); case ZIO_PRIORITY_INITIALIZING: - return (zfs_vdev_initializing_max_active); - case ZIO_PRIORITY_TRIM: - return (zfs_vdev_trim_max_active); + M(initializing); case ZIO_PRIORITY_REBUILD: - return (zfs_vdev_rebuild_max_active); + M(rebuild); +#undef M default: panic("invalid priority %u", p); return (0); @@ -372,17 +403,22 @@ static zio_priority_t vdev_queue_class_to_issue(vdev_queue_t *vq) { spa_t *spa = vq->vq_vdev->vdev_spa; - zio_priority_t p; + zio_priority_t p, n; if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) return (ZIO_PRIORITY_NUM_QUEUEABLE); /* find a queue that has not reached its minimum # outstanding i/os */ - for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { + p = vq->vq_last_prio; + p = (p == ZIO_PRIORITY_NUM_QUEUEABLE - 1) ? 0 : p + 1; + for (n = ZIO_PRIORITY_NUM_QUEUEABLE; n > 0; n--) { if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && vq->vq_class[p].vqc_active < - vdev_queue_class_min_active(p)) + vdev_queue_class_min_active(vq, p)) { + vq->vq_last_prio = p; return (p); + } + p = (p == ZIO_PRIORITY_NUM_QUEUEABLE - 1) ? 0 : p + 1; } /* @@ -392,8 +428,10 @@ vdev_queue_class_to_issue(vdev_queue_t *vq) for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && vq->vq_class[p].vqc_active < - vdev_queue_class_max_active(spa, p)) + vdev_queue_class_max_active(spa, vq, p)) { + vq->vq_last_prio = p; return (p); + } } /* No eligible queued i/os */ @@ -502,6 +540,11 @@ vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) ASSERT(MUTEX_HELD(&vq->vq_lock)); ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); vq->vq_class[zio->io_priority].vqc_active++; + if (zio->io_priority <= ZIO_PRIORITY_MAX_INTERACTIVE) { + if (vq->vq_ia_active++ == 0) + vq->vq_nia_credit = 1; + } else if (vq->vq_ia_active > 0) + vq->vq_nia_credit--; avl_add(&vq->vq_active_tree, zio); if (shk->kstat != NULL) { @@ -520,6 +563,13 @@ vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) ASSERT(MUTEX_HELD(&vq->vq_lock)); ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); vq->vq_class[zio->io_priority].vqc_active--; + if (zio->io_priority <= ZIO_PRIORITY_MAX_INTERACTIVE) { + if (--vq->vq_ia_active == 0) + vq->vq_nia_credit = 0; + else + vq->vq_nia_credit = zfs_vdev_nia_credit; + } else if (vq->vq_ia_active == 0) + vq->vq_nia_credit++; avl_remove(&vq->vq_active_tree, zio); if (shk->kstat != NULL) { @@ -1065,6 +1115,12 @@ ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW, ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW, "Min active rebuild I/Os per vdev"); +ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, INT, ZMOD_RW, + "Number of non-interactive I/Os to allow in sequence"); + +ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, INT, ZMOD_RW, + "Number of non-interactive I/Os before _max_active"); + ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW, "Queue depth percentage for each top-level vdev"); /* END CSTYLED */