|
| 1 | +//! A hash set without `Drop`, that uses [`FxHasher`] to hash keys, and stores data in arena allocator. |
| 2 | +//! |
| 3 | +//! See [`HashSet`] for more details. |
| 4 | +//! |
| 5 | +//! [`FxHasher`]: rustc_hash::FxHasher |
| 6 | +
|
| 7 | +// All methods which just delegate to `hashbrown::HashSet` methods marked `#[inline(always)]` |
| 8 | +#![expect(clippy::inline_always)] |
| 9 | + |
| 10 | +use std::{ |
| 11 | + hash::Hash, |
| 12 | + mem::ManuallyDrop, |
| 13 | + ops::{Deref, DerefMut}, |
| 14 | +}; |
| 15 | + |
| 16 | +use bumpalo::Bump; |
| 17 | +use rustc_hash::FxBuildHasher; |
| 18 | + |
| 19 | +// Re-export additional types from `hashbrown` |
| 20 | +pub use hashbrown::hash_set::{ |
| 21 | + Difference, Drain, Entry, ExtractIf, Intersection, IntoIter, Iter, SymmetricDifference, Union, |
| 22 | +}; |
| 23 | + |
| 24 | +use crate::{Allocator, HashMap}; |
| 25 | + |
| 26 | +type FxHashSet<'alloc, T> = hashbrown::HashSet<T, FxBuildHasher, &'alloc Bump>; |
| 27 | + |
| 28 | +/// A hash set without `Drop`, that uses [`FxHasher`] to hash keys, and stores data in arena allocator. |
| 29 | +/// |
| 30 | +/// Just a thin wrapper around [`hashbrown::HashSet`], which disables the `Drop` implementation. |
| 31 | +/// |
| 32 | +/// All APIs are the same, except create a [`HashSet`] with |
| 33 | +/// either [`new_in`](HashSet::new_in) or [`with_capacity_in`](HashSet::with_capacity_in). |
| 34 | +/// |
| 35 | +/// # No `Drop`s |
| 36 | +/// |
| 37 | +/// Objects allocated into Oxc memory arenas are never [`Dropped`](Drop). Memory is released in bulk |
| 38 | +/// when the allocator is dropped, without dropping the individual objects in the arena. |
| 39 | +/// |
| 40 | +/// Therefore, it would produce a memory leak if you allocated [`Drop`] types into the arena |
| 41 | +/// which own memory allocations outside the arena. |
| 42 | +/// |
| 43 | +/// Static checks make this impossible to do. [`HashSet::new_in`] and all other methods which create |
| 44 | +/// a [`HashSet`] will refuse to compile if the key is a [`Drop`] type. |
| 45 | +/// |
| 46 | +/// [`FxHasher`]: rustc_hash::FxHasher |
| 47 | +#[derive(Debug)] |
| 48 | +pub struct HashSet<'alloc, T>(ManuallyDrop<FxHashSet<'alloc, T>>); |
| 49 | + |
| 50 | +/// SAFETY: Same as `HashMap`. See `HashMap`'s doc comment for details. |
| 51 | +unsafe impl<T: Sync> Sync for HashSet<'_, T> {} |
| 52 | + |
| 53 | +// TODO: `IntoIter` and other consuming iterators provided by `hashbrown` are `Drop`. |
| 54 | +// Wrap them in `ManuallyDrop` to prevent that. |
| 55 | + |
| 56 | +impl<'alloc, T> HashSet<'alloc, T> { |
| 57 | + /// Const assertion that `T` is not `Drop`. |
| 58 | + /// Must be referenced in all methods which create a `HashSet`. |
| 59 | + const ASSERT_T_IS_NOT_DROP: () = { |
| 60 | + assert!(!std::mem::needs_drop::<T>(), "Cannot create a HashSet<T> where T is a Drop type"); |
| 61 | + }; |
| 62 | + |
| 63 | + /// Creates an empty [`HashSet`]. It will be allocated with the given allocator. |
| 64 | + /// |
| 65 | + /// The hash set is initially created with a capacity of 0, so it will not allocate |
| 66 | + /// until it is first inserted into. |
| 67 | + #[inline(always)] |
| 68 | + pub fn new_in(allocator: &'alloc Allocator) -> Self { |
| 69 | + const { Self::ASSERT_T_IS_NOT_DROP }; |
| 70 | + |
| 71 | + let inner = FxHashSet::with_hasher_in(FxBuildHasher, allocator.bump()); |
| 72 | + Self(ManuallyDrop::new(inner)) |
| 73 | + } |
| 74 | + |
| 75 | + /// Creates an empty [`HashSet`] with the specified capacity. It will be allocated with the given allocator. |
| 76 | + /// |
| 77 | + /// The hash set will be able to hold at least capacity elements without reallocating. |
| 78 | + /// If capacity is 0, the hash set will not allocate. |
| 79 | + #[inline(always)] |
| 80 | + pub fn with_capacity_in(capacity: usize, allocator: &'alloc Allocator) -> Self { |
| 81 | + const { Self::ASSERT_T_IS_NOT_DROP }; |
| 82 | + |
| 83 | + let inner = |
| 84 | + FxHashSet::with_capacity_and_hasher_in(capacity, FxBuildHasher, allocator.bump()); |
| 85 | + Self(ManuallyDrop::new(inner)) |
| 86 | + } |
| 87 | + |
| 88 | + /// Create a new [`HashSet`] whose elements are taken from an iterator and allocated in the given `allocator`. |
| 89 | + /// |
| 90 | + /// This is behaviorially identical to [`FromIterator::from_iter`]. |
| 91 | + #[inline] |
| 92 | + pub fn from_iter_in<I: IntoIterator<Item = T>>(iter: I, allocator: &'alloc Allocator) -> Self |
| 93 | + where |
| 94 | + T: Eq + Hash, |
| 95 | + { |
| 96 | + const { Self::ASSERT_T_IS_NOT_DROP }; |
| 97 | + |
| 98 | + let iter = iter.into_iter(); |
| 99 | + |
| 100 | + // Use the iterator's lower size bound. |
| 101 | + // This follows `hashbrown::HashSet`'s `from_iter` implementation. |
| 102 | + // |
| 103 | + // This is a trade-off: |
| 104 | + // * Negative: If lower bound is too low, the `HashSet` may have to grow and reallocate during `for_each` loop. |
| 105 | + // * Positive: Avoids potential large over-allocation for iterators where upper bound may be a large over-estimate |
| 106 | + // e.g. filter iterators. |
| 107 | + let capacity = iter.size_hint().0; |
| 108 | + let set = FxHashSet::with_capacity_and_hasher_in(capacity, FxBuildHasher, allocator.bump()); |
| 109 | + // Wrap in `ManuallyDrop` *before* calling `for_each`, so compiler doesn't insert unnecessary code |
| 110 | + // to drop the `FxHashSet` in case of a panic in iterator's `next` method |
| 111 | + let mut set = ManuallyDrop::new(set); |
| 112 | + |
| 113 | + iter.for_each(|v| { |
| 114 | + set.insert(v); |
| 115 | + }); |
| 116 | + |
| 117 | + Self(set) |
| 118 | + } |
| 119 | + |
| 120 | + /// Calling this method produces a compile-time panic. |
| 121 | + /// |
| 122 | + /// This method would be unsound, because [`HashSet`] is `Sync`, and the underlying allocator |
| 123 | + /// (`bumpalo::Bump`) is not `Sync`. |
| 124 | + /// |
| 125 | + /// This method exists only to block access as much as possible to the underlying |
| 126 | + /// `hashbrown::HashSet::allocator` method. That method can still be accessed via explicit `Deref` |
| 127 | + /// (`hash_set.deref().allocator()`), but that's unsound. |
| 128 | + /// |
| 129 | + /// We'll prevent access to it completely and remove this method as soon as we can. |
| 130 | + // TODO: Do that! |
| 131 | + #[expect(clippy::unused_self)] |
| 132 | + pub fn allocator(&self) -> &'alloc Bump { |
| 133 | + const { panic!("This method cannot be called") }; |
| 134 | + unreachable!(); |
| 135 | + } |
| 136 | +} |
| 137 | + |
| 138 | +// Provide access to all `hashbrown::HashSet`'s methods via deref |
| 139 | +impl<'alloc, T> Deref for HashSet<'alloc, T> { |
| 140 | + type Target = FxHashSet<'alloc, T>; |
| 141 | + |
| 142 | + #[inline] |
| 143 | + fn deref(&self) -> &Self::Target { |
| 144 | + &self.0 |
| 145 | + } |
| 146 | +} |
| 147 | + |
| 148 | +impl<'alloc, T> DerefMut for HashSet<'alloc, T> { |
| 149 | + #[inline] |
| 150 | + fn deref_mut(&mut self) -> &mut FxHashSet<'alloc, T> { |
| 151 | + &mut self.0 |
| 152 | + } |
| 153 | +} |
| 154 | + |
| 155 | +impl<'alloc, T> IntoIterator for HashSet<'alloc, T> { |
| 156 | + type IntoIter = IntoIter<T, &'alloc Bump>; |
| 157 | + type Item = T; |
| 158 | + |
| 159 | + /// Creates a consuming iterator, that is, one that moves each value out of the set |
| 160 | + /// in arbitrary order. |
| 161 | + /// |
| 162 | + /// The set cannot be used after calling this. |
| 163 | + #[inline(always)] |
| 164 | + fn into_iter(self) -> Self::IntoIter { |
| 165 | + let inner = ManuallyDrop::into_inner(self.0); |
| 166 | + // TODO: `hashbrown::hash_set::IntoIter` is `Drop`. |
| 167 | + // Wrap it in `ManuallyDrop` to prevent that. |
| 168 | + inner.into_iter() |
| 169 | + } |
| 170 | +} |
| 171 | + |
| 172 | +impl<'alloc, 'i, T> IntoIterator for &'i HashSet<'alloc, T> { |
| 173 | + type IntoIter = <&'i FxHashSet<'alloc, T> as IntoIterator>::IntoIter; |
| 174 | + type Item = &'i T; |
| 175 | + |
| 176 | + /// Creates an iterator over the values of a `HashSet` in arbitrary order. |
| 177 | + /// |
| 178 | + /// The iterator element type is `&'a T`. |
| 179 | + /// |
| 180 | + /// Return the same [`Iter`] struct as by the `iter` method on [`HashSet`]. |
| 181 | + #[inline(always)] |
| 182 | + fn into_iter(self) -> Self::IntoIter { |
| 183 | + self.0.iter() |
| 184 | + } |
| 185 | +} |
| 186 | + |
| 187 | +impl<T> PartialEq for HashSet<'_, T> |
| 188 | +where |
| 189 | + T: Eq + Hash, |
| 190 | +{ |
| 191 | + #[inline(always)] |
| 192 | + fn eq(&self, other: &Self) -> bool { |
| 193 | + self.0.eq(&other.0) |
| 194 | + } |
| 195 | +} |
| 196 | + |
| 197 | +impl<T> Eq for HashSet<'_, T> where T: Eq + Hash {} |
| 198 | + |
| 199 | +// Note: `Index` and `Extend` are implemented via `Deref` |
| 200 | + |
| 201 | +/// Convert `HashMap<T, ()>` to `HashSet<T>`. |
| 202 | +/// |
| 203 | +/// This conversion is zero cost, as `HashSet<T>` is just a wrapper around `HashMap<T, ()>`. |
| 204 | +impl<'alloc, T> From<HashMap<'alloc, T, ()>> for HashSet<'alloc, T> { |
| 205 | + #[inline(always)] |
| 206 | + fn from(map: HashMap<'alloc, T, ()>) -> Self { |
| 207 | + let inner_map = ManuallyDrop::into_inner(map.0); |
| 208 | + let inner_set = hashbrown::HashSet::from(inner_map); |
| 209 | + Self(ManuallyDrop::new(inner_set)) |
| 210 | + } |
| 211 | +} |
0 commit comments