@@ -167,7 +167,9 @@ def _has_infs(result) -> bool:
167167
168168
169169def _get_fill_value (
170- dtype : Dtype , fill_value : Any = None , fill_value_typ : Optional [str ] = None
170+ dtype : Dtype ,
171+ fill_value : Optional [Scalar ] = None ,
172+ fill_value_typ : Optional [str ] = None ,
171173):
172174 """ return the correct fill value for the dtype of the values """
173175 if fill_value is not None :
@@ -652,7 +654,7 @@ def _get_counts_nanvar(
652654 mask : Optional [np .ndarray ],
653655 axis : Optional [int ],
654656 ddof : int ,
655- dtype : Dtype = float ,
657+ dtype = float ,
656658) -> Tuple [Union [int , np .ndarray ], Union [int , np .ndarray ]]:
657659 """ Get the count of non-null values along an axis, accounting
658660 for degrees of freedom.
@@ -1135,7 +1137,7 @@ def nanprod(
11351137 skipna : bool = True ,
11361138 min_count : int = 0 ,
11371139 mask : Optional [np .ndarray ] = None ,
1138- ) -> Dtype :
1140+ ):
11391141 """
11401142 Parameters
11411143 ----------
@@ -1148,18 +1150,14 @@ def nanprod(
11481150
11491151 Returns
11501152 -------
1151- result : dtype
1153+ The product of all elements on a given axis. ( NaNs are treated as 1)
11521154
11531155 Examples
11541156 --------
11551157 >>> import pandas.core.nanops as nanops
11561158 >>> s = pd.Series([1, 2, 3, np.nan])
11571159 >>> nanops.nanprod(s)
11581160 6.0
1159-
1160- Returns
1161- -------
1162- The product of all elements on a given axis. ( NaNs are treated as 1)
11631161 """
11641162 mask = _maybe_get_mask (values , skipna , mask )
11651163
@@ -1305,8 +1303,9 @@ def nancorr(
13051303 return f (a , b )
13061304
13071305
1308- def get_corr_func (method : str ):
1309- if method in ["kendall" , "spearman" ]:
1306+ def get_corr_func (method ) -> Callable :
1307+ if method in ["kendall" , "spearman" , "pearson" ]:
1308+ import scipy .stats
13101309 from scipy .stats import kendalltau , spearmanr
13111310 elif callable (method ):
13121311 return method
0 commit comments