@@ -29,20 +29,20 @@ It is now possible to create an index of any numpy int/uint/float dtype using th
2929 pd.NumericIndex([1 , 2 , 3 ], dtype = " uint32" )
3030 pd.NumericIndex([1 , 2 , 3 ], dtype = " float32" )
3131
32- In order to maintain backwards compatibility, calls to the base :class: `Index ` will in
33- pandas 1.x. return :class: `Int64Index `, :class: `UInt64Index ` and :class: `Float64Index `, where relevant.
32+ In order to maintain backwards compatibility, calls to the base :class: `Index ` will currently
33+ return :class: `Int64Index `, :class: `UInt64Index ` and :class: `Float64Index `, where relevant.
3434For example, the code below returns an ``Int64Index `` with dtype ``int64 ``:
3535
3636.. code-block :: ipython
3737
3838 In [1]: pd.Index([1, 2, 3], dtype="int8")
3939 Int64Index([1, 2, 3], dtype='int64')
4040
41- but will in Pandas 2.0 return a :class: `NumericIndex ` with dtype ``int8 ``.
41+ but will in a future version return a :class: `NumericIndex ` with dtype ``int8 ``.
4242
43- More generally, for the duration of Pandas 1.x , all operations that until now have
43+ More generally, currently , all operations that until now have
4444returned :class: `Int64Index `, :class: `UInt64Index ` and :class: `Float64Index ` will
45- continue to so. This means, that in order to use ``NumericIndex `` in Pandas 1.x , you
45+ continue to so. This means, that in order to use ``NumericIndex `` in the current version , you
4646will have to call ``NumericIndex `` explicitly. For example the below series will have an ``Int64Index ``:
4747
4848.. code-block :: ipython
@@ -51,17 +51,17 @@ will have to call ``NumericIndex`` explicitly. For example the below series will
5151 In [3]: ser.index
5252 Int64Index([1, 2, 3], dtype='int64')
5353
54- Instead, if you want to use a ``NumericIndex `` in Pandas 1.x , you should do:
54+ Instead, if you want to use a ``NumericIndex ``, you should do:
5555
5656.. ipython :: python
5757
5858 idx = pd.NumericIndex([1 , 2 , 3 ], dtype = " int8" )
5959 ser = pd.Series([1 , 2 , 3 ], index = idx)
6060 ser.index
6161
62- In Pandas 2.0 , :class: `NumericIndex ` will become the default numeric index type and
62+ In a future version of Pandas , :class: `NumericIndex ` will become the default numeric index type and
6363``Int64Index ``, ``UInt64Index `` and ``Float64Index `` are therefore deprecated and will
64- be removed in pandas 2.0 , see :ref: `here <whatsnew_140.deprecations.int64_uint64_float64index >` for more.
64+ be removed in the future , see :ref: `here <whatsnew_140.deprecations.int64_uint64_float64index >` for more.
6565
6666See :ref: `here <advanced.numericindex >` for more about :class: `NumericIndex `.
6767
@@ -209,9 +209,9 @@ Deprecated Int64Index, UInt64Index & Float64Index
209209:class: `Int64Index `, :class: `UInt64Index ` and :class: `Float64Index ` have been deprecated
210210in favor of the new :class: `NumericIndex ` and will be removed in Pandas 2.0 (:issue: `43028 `).
211211
212- For the duration of Pandas 1.x , in order to maintain backward compatibility, calls to
212+ Currently , in order to maintain backward compatibility, calls to
213213:class: `Index ` will continue to return :class: `Int64Index `, :class: `UInt64Index ` and :class: `Float64Index `
214- when given numeric data, but in Pandas 2.0 , a :class: `NumericIndex ` will be returned.
214+ when given numeric data, but in the future , a :class: `NumericIndex ` will be returned.
215215
216216*Current behavior *:
217217
0 commit comments