diff --git a/pandas/tests/test_common.py b/pandas/tests/test_common.py index 1ea3b32713ca4..e28aca3e5ef3a 100644 --- a/pandas/tests/test_common.py +++ b/pandas/tests/test_common.py @@ -803,7 +803,7 @@ def test_1d_bool(self): self.assert_(np.array_equal(result, expected)) result = com.take_1d(arr, [0, 2, -1]) - self.assert_(result.dtype == np.object_) + self.assertEqual(result.dtype, np.object_) def test_2d_bool(self): arr = np.array([[0, 1, 0], @@ -819,7 +819,7 @@ def test_2d_bool(self): self.assert_(np.array_equal(result, expected)) result = com.take_nd(arr, [0, 2, -1]) - self.assert_(result.dtype == np.object_) + self.assertEqual(result.dtype, np.object_) def test_2d_float32(self): arr = np.random.randn(4, 3).astype(np.float32) diff --git a/pandas/tests/test_expressions.py b/pandas/tests/test_expressions.py index 7d392586c159b..2b539b3386226 100644 --- a/pandas/tests/test_expressions.py +++ b/pandas/tests/test_expressions.py @@ -238,19 +238,19 @@ def test_invalid(self): # no op result = expr._can_use_numexpr(operator.add, None, self.frame, self.frame, 'evaluate') - self.assert_(result == False) + self.assertFalse(result) # mixed result = expr._can_use_numexpr(operator.add, '+', self.mixed, self.frame, 'evaluate') - self.assert_(result == False) + self.assertFalse(result) # min elements result = expr._can_use_numexpr(operator.add, '+', self.frame2, self.frame2, 'evaluate') - self.assert_(result == False) + self.assertFalse(result) # ok, we only check on first part of expression result = expr._can_use_numexpr(operator.add, '+', self.frame, self.frame2, 'evaluate') - self.assert_(result == True) + self.assertTrue(result) def test_binary_ops(self): @@ -265,14 +265,14 @@ def testit(): op = getattr(operator, op, None) if op is not None: result = expr._can_use_numexpr(op, op_str, f, f, 'evaluate') - self.assert_(result == (not f._is_mixed_type)) + self.assertNotEqual(result, f._is_mixed_type) result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) assert_array_equal(result,expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, 'evaluate') - self.assert_(result == False) + self.assertFalse(result) expr.set_use_numexpr(False) @@ -300,14 +300,14 @@ def testit(): op = getattr(operator,op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') - self.assert_(result == (not f11._is_mixed_type)) + self.assertNotEqual(result, f11._is_mixed_type) result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) assert_array_equal(result,expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') - self.assert_(result == False) + self.assertFalse(result) expr.set_use_numexpr(False) testit() diff --git a/pandas/tests/test_format.py b/pandas/tests/test_format.py index bf71f2e3b1431..cca2083339398 100644 --- a/pandas/tests/test_format.py +++ b/pandas/tests/test_format.py @@ -290,7 +290,7 @@ def test_to_string_repr_unicode(self): except: pass if not line.startswith('dtype:'): - self.assert_(len(line) == line_len) + self.assertEqual(len(line), line_len) # it works even if sys.stdin in None _stdin= sys.stdin @@ -731,7 +731,7 @@ def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split('\n') - self.assert_(len(lines[1]) == len(lines[2])) + self.assertEqual(len(lines[1]), len(lines[2])) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({u('c/\u03c3'): Series({'test': np.NaN})}) @@ -915,7 +915,7 @@ def test_long_series(self): import re str_rep = str(s) nmatches = len(re.findall('dtype',str_rep)) - self.assert_(nmatches == 1) + self.assertEqual(nmatches, 1) def test_index_with_nan(self): # GH 2850 diff --git a/pandas/tests/test_frame.py b/pandas/tests/test_frame.py index 210e56e453b8f..3fae4ee683e86 100644 --- a/pandas/tests/test_frame.py +++ b/pandas/tests/test_frame.py @@ -285,7 +285,7 @@ def test_getitem_boolean(self): assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: - self.assert_(bif[c].dtype == df[c].dtype) + self.assertEqual(bif[c].dtype, df[c].dtype) def test_getitem_boolean_casting(self): @@ -436,7 +436,7 @@ def test_setitem(self): # with a dtype for dtype in ['int32','int64','float32','float64']: self.frame[dtype] = np.array(arr,dtype=dtype) - self.assert_(self.frame[dtype].dtype.name == dtype) + self.assertEqual(self.frame[dtype].dtype.name, dtype) # dtype changing GH4204 df = DataFrame([[0,0]]) @@ -511,13 +511,13 @@ def test_setitem_boolean(self): def test_setitem_cast(self): self.frame['D'] = self.frame['D'].astype('i8') - self.assert_(self.frame['D'].dtype == np.int64) + self.assertEqual(self.frame['D'].dtype, np.int64) # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) self.frame['B'] = 0 - self.assert_(self.frame['B'].dtype == np.int64) + self.assertEqual(self.frame['B'].dtype, np.int64) # cast if pass array of course self.frame['B'] = np.arange(len(self.frame)) @@ -525,18 +525,18 @@ def test_setitem_cast(self): self.frame['foo'] = 'bar' self.frame['foo'] = 0 - self.assert_(self.frame['foo'].dtype == np.int64) + self.assertEqual(self.frame['foo'].dtype, np.int64) self.frame['foo'] = 'bar' self.frame['foo'] = 2.5 - self.assert_(self.frame['foo'].dtype == np.float64) + self.assertEqual(self.frame['foo'].dtype, np.float64) self.frame['something'] = 0 - self.assert_(self.frame['something'].dtype == np.int64) + self.assertEqual(self.frame['something'].dtype, np.int64) self.frame['something'] = 2 - self.assert_(self.frame['something'].dtype == np.int64) + self.assertEqual(self.frame['something'].dtype, np.int64) self.frame['something'] = 2.5 - self.assert_(self.frame['something'].dtype == np.float64) + self.assertEqual(self.frame['something'].dtype, np.float64) def test_setitem_boolean_column(self): expected = self.frame.copy() @@ -626,7 +626,7 @@ def test_setitem_ambig(self): dm[2] = uncoercable_series self.assertEqual(len(dm.columns), 3) # self.assert_(dm.objects is not None) - self.assert_(dm[2].dtype == np.object_) + self.assertEqual(dm[2].dtype, np.object_) def test_setitem_clear_caches(self): # GH #304 @@ -837,7 +837,7 @@ def test_setitem_fancy_2d(self): def test_fancy_getitem_slice_mixed(self): sliced = self.mixed_frame.ix[:, -3:] - self.assert_(sliced['D'].dtype == np.float64) + self.assertEqual(sliced['D'].dtype, np.float64) # get view with single block sliced = self.frame.ix[:, -3:] @@ -1474,7 +1474,7 @@ def test_getitem_list_duplicates(self): df.columns.name = 'foo' result = df[['B', 'C']] - self.assert_(result.columns.name == 'foo') + self.assertEqual(result.columns.name, 'foo') expected = df.ix[:, 2:] assert_frame_equal(result, expected) @@ -1515,7 +1515,7 @@ def testit(df): df['mask'] = df.lookup(df.index, 'mask_' + df['label']) exp_mask = alt(df, df.index, 'mask_' + df['label']) assert_almost_equal(df['mask'], exp_mask) - self.assert_(df['mask'].dtype == np.bool_) + self.assertEqual(df['mask'].dtype, np.bool_) with tm.assertRaises(KeyError): self.frame.lookup(['xyz'], ['A']) @@ -1536,7 +1536,7 @@ def test_set_value_resize(self): res = self.frame.set_value('foobar', 'B', 0) self.assert_(res is self.frame) - self.assert_(res.index[-1] == 'foobar') + self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res.get_value('foobar', 'B'), 0) self.frame.loc['foobar','qux'] = 0 @@ -1544,11 +1544,11 @@ def test_set_value_resize(self): res = self.frame.copy() res3 = res.set_value('foobar', 'baz', 'sam') - self.assert_(res3['baz'].dtype == np.object_) + self.assertEqual(res3['baz'].dtype, np.object_) res = self.frame.copy() res3 = res.set_value('foobar', 'baz', True) - self.assert_(res3['baz'].dtype == np.object_) + self.assertEqual(res3['baz'].dtype, np.object_) res = self.frame.copy() res3 = res.set_value('foobar', 'baz', 5) @@ -2135,10 +2135,10 @@ def test_column_contains_typeerror(self): def test_constructor(self): df = DataFrame() - self.assert_(len(df.index) == 0) + self.assertEqual(len(df.index), 0) df = DataFrame(data={}) - self.assert_(len(df.index) == 0) + self.assertEqual(len(df.index), 0) def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() @@ -2150,7 +2150,7 @@ def test_constructor_mixed(self): def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) - self.assert_(foo['a'].dtype == object) + self.assertEqual(foo['a'].dtype, object) # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4,2))) @@ -2178,13 +2178,13 @@ def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) self.assert_(df.ix[1, 0] is None) - self.assert_(df.ix[0, 1] == '2') + self.assertEqual(df.ix[0, 1], '2') def test_constructor_list_frames(self): # GH 3243 result = DataFrame([DataFrame([])]) - self.assert_(result.shape == (1,0)) + self.assertEqual(result.shape, (1,0)) result = DataFrame([DataFrame(dict(A = lrange(5)))]) tm.assert_isinstance(result.iloc[0,0], DataFrame) @@ -2257,7 +2257,7 @@ def test_constructor_overflow_int64(self): dtype=np.uint64) result = DataFrame({'a': values}) - self.assert_(result['a'].dtype == object) + self.assertEqual(result['a'].dtype, object) # #2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), @@ -2267,7 +2267,7 @@ def test_constructor_overflow_int64(self): data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) - self.assert_(df_crawls['uid'].dtype == object) + self.assertEqual(df_crawls['uid'].dtype, object) def test_constructor_ordereddict(self): import random @@ -2426,13 +2426,13 @@ def test_constructor_dict_cast(self): } frame = DataFrame(test_data, dtype=float) self.assertEqual(len(frame), 3) - self.assert_(frame['B'].dtype == np.float64) - self.assert_(frame['A'].dtype == np.float64) + self.assertEqual(frame['B'].dtype, np.float64) + self.assertEqual(frame['A'].dtype, np.float64) frame = DataFrame(test_data) self.assertEqual(len(frame), 3) - self.assert_(frame['B'].dtype == np.object_) - self.assert_(frame['A'].dtype == np.float64) + self.assertEqual(frame['B'].dtype, np.object_) + self.assertEqual(frame['A'].dtype, np.float64) # can't cast to float test_data = { @@ -2441,8 +2441,8 @@ def test_constructor_dict_cast(self): } frame = DataFrame(test_data, dtype=float) self.assertEqual(len(frame), 20) - self.assert_(frame['A'].dtype == np.object_) - self.assert_(frame['B'].dtype == np.float64) + self.assertEqual(frame['A'].dtype, np.object_) + self.assertEqual(frame['B'].dtype, np.float64) def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} @@ -2478,7 +2478,7 @@ def _check_basic_constructor(self, empty): # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) - self.assert_(frame.values.dtype == np.int64) + self.assertEqual(frame.values.dtype, np.int64) # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' @@ -2506,10 +2506,10 @@ def _check_basic_constructor(self, empty): # 0-length axis frame = DataFrame(empty((0, 3))) - self.assert_(len(frame.index) == 0) + self.assertEqual(len(frame.index), 0) frame = DataFrame(empty((3, 0))) - self.assert_(len(frame.columns) == 0) + self.assertEqual(len(frame.columns), 0) def test_constructor_ndarray(self): mat = np.zeros((2, 3), dtype=float) @@ -2547,7 +2547,7 @@ def test_constructor_maskedarray_nonfloat(self): # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) - self.assert_(frame.values.dtype == np.float64) + self.assertEqual(frame.values.dtype, np.float64) # Check non-masked values mat2 = ma.copy(mat) @@ -2569,7 +2569,7 @@ def test_constructor_maskedarray_nonfloat(self): # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) - self.assert_(frame.values.dtype == np.int64) + self.assertEqual(frame.values.dtype, np.int64) # Check non-masked values mat2 = ma.copy(mat) @@ -2591,7 +2591,7 @@ def test_constructor_maskedarray_nonfloat(self): # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) - self.assert_(frame.values.dtype == object) + self.assertEqual(frame.values.dtype, object) # Check non-masked values mat2 = ma.copy(mat) @@ -2649,26 +2649,26 @@ def test_constructor_corner(self): # empty but with specified dtype df = DataFrame(index=lrange(10), columns=['a', 'b'], dtype=object) - self.assert_(df.values.dtype == np.object_) + self.assertEqual(df.values.dtype, np.object_) # does not error but ends up float df = DataFrame(index=lrange(10), columns=['a', 'b'], dtype=int) - self.assert_(df.values.dtype == np.object_) + self.assertEqual(df.values.dtype, np.object_) # #1783 empty dtype object df = DataFrame({}, columns=['foo', 'bar']) - self.assert_(df.values.dtype == np.object_) + self.assertEqual(df.values.dtype, np.object_) def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) - self.assert_(df['int'].dtype == np.int64) - self.assert_(df['bool'].dtype == np.bool_) - self.assert_(df['float'].dtype == np.float64) - self.assert_(df['complex'].dtype == np.complex128) - self.assert_(df['object'].dtype == np.object_) + self.assertEqual(df['int'].dtype, np.int64) + self.assertEqual(df['bool'].dtype, np.bool_) + self.assertEqual(df['float'].dtype, np.float64) + self.assertEqual(df['complex'].dtype, np.complex128) + self.assertEqual(df['object'].dtype, np.object_) def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) @@ -2683,7 +2683,7 @@ def test_constructor_DataFrame(self): assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) - self.assert_(df_casted.values.dtype == np.int64) + self.assertEqual(df_casted.values.dtype, np.int64) def test_constructor_more(self): # used to be in test_matrix.py @@ -2725,7 +2725,7 @@ def test_constructor_more(self): index=np.arange(10)) self.assertEqual(len(dm.columns), 2) - self.assert_(dm.values.dtype == np.float64) + self.assertEqual(dm.values.dtype, np.float64) def test_constructor_empty_list(self): df = DataFrame([], index=[]) @@ -2737,7 +2737,7 @@ def test_constructor_list_of_lists(self): l = [[1, 'a'], [2, 'b']] df = DataFrame(data=l, columns=["num", "str"]) self.assert_(com.is_integer_dtype(df['num'])) - self.assert_(df['str'].dtype == np.object_) + self.assertEqual(df['str'].dtype, np.object_) # GH 4851 # list of 0-dim ndarrays @@ -2936,7 +2936,7 @@ def test_constructor_orient(self): def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) - self.assert_(df.columns[0] == 'x') + self.assertEqual(df.columns[0], 'x') self.assert_(df.index.equals(a.index)) # ndarray like @@ -2956,7 +2956,7 @@ def test_constructor_Series_named(self): # #2234 a = Series([], name='x') df = DataFrame(a) - self.assert_(df.columns[0] == 'x') + self.assertEqual(df.columns[0], 'x') # series with name and w/o s1 = Series(arr,name='x') @@ -2980,12 +2980,12 @@ def test_constructor_Series_differently_indexed(self): df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) - self.assert_(df1.columns[0] == 'x') + self.assertEqual(df1.columns[0], 'x') assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) - self.assert_(df2.columns[0] == 0) + self.assertEqual(df2.columns[0], 0) self.assert_(df2.index.equals(other_index)) assert_frame_equal(df2, exp2) @@ -3402,7 +3402,7 @@ def test_constructor_with_datetimes(self): ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) - self.assert_(datetime_s.dtype == 'M8[ns]') + self.assertEqual(datetime_s.dtype, 'M8[ns]') df = DataFrame({'datetime_s':datetime_s}) result = df.get_dtype_counts() expected = Series({ datetime64name : 1 }) @@ -3526,16 +3526,16 @@ def test_operators_timedelta64(self): # min result = diffs.min() - self.assert_(result[0] == diffs.ix[0,'A']) - self.assert_(result[1] == diffs.ix[0,'B']) + self.assertEqual(result[0], diffs.ix[0,'A']) + self.assertEqual(result[1], diffs.ix[0,'B']) result = diffs.min(axis=1) self.assert_((result == diffs.ix[0,'B']).all() == True) # max result = diffs.max() - self.assert_(result[0] == diffs.ix[2,'A']) - self.assert_(result[1] == diffs.ix[2,'B']) + self.assertEqual(result[0], diffs.ix[2,'A']) + self.assertEqual(result[1], diffs.ix[2,'B']) result = diffs.max(axis=1) self.assert_((result == diffs['A']).all() == True) @@ -3585,7 +3585,7 @@ def test_operators_timedelta64(self): df = DataFrame({'time' : date_range('20130102',periods=5), 'time2' : date_range('20130105',periods=5) }) df['off1'] = df['time2']-df['time'] - self.assert_(df['off1'].dtype == 'timedelta64[ns]') + self.assertEqual(df['off1'].dtype, 'timedelta64[ns]') df['off2'] = df['time']-df['time2'] df._consolidate_inplace() @@ -3620,7 +3620,7 @@ def test_astype(self): # mixed casting def _check_cast(df, v): - self.assert_(list(set([ s.dtype.name for _, s in compat.iteritems(df) ]))[0] == v) + self.assertEqual(list(set([ s.dtype.name for _, s in compat.iteritems(df) ]))[0], v) mn = self.all_mixed._get_numeric_data().copy() mn['little_float'] = np.array(12345.,dtype='float16') @@ -3741,10 +3741,10 @@ def test_to_records_dt64(self): df = DataFrame([["one", "two", "three"], ["four", "five", "six"]], index=pan.date_range("2012-01-01", "2012-01-02")) - self.assert_(df.to_records()['index'][0] == df.index[0]) + self.assertEqual(df.to_records()['index'][0], df.index[0]) rs = df.to_records(convert_datetime64=False) - self.assert_(rs['index'][0] == df.index.values[0]) + self.assertEqual(rs['index'][0], df.index.values[0]) def test_to_records_with_multindex(self): # GH3189 @@ -3872,10 +3872,10 @@ def test_from_records_decimal(self): tuples = [(Decimal('1.5'),), (Decimal('2.5'),), (None,)] df = DataFrame.from_records(tuples, columns=['a']) - self.assert_(df['a'].dtype == object) + self.assertEqual(df['a'].dtype, object) df = DataFrame.from_records(tuples, columns=['a'], coerce_float=True) - self.assert_(df['a'].dtype == np.float64) + self.assertEqual(df['a'].dtype, np.float64) self.assert_(np.isnan(df['a'].values[-1])) def test_from_records_duplicates(self): @@ -3896,12 +3896,12 @@ def create_dict(order_id): documents.append({'order_id': 10, 'quantity': 5}) result = DataFrame.from_records(documents, index='order_id') - self.assert_(result.index.name == 'order_id') + self.assertEqual(result.index.name, 'order_id') # MultiIndex result = DataFrame.from_records(documents, index=['order_id', 'quantity']) - self.assert_(result.index.names == ('order_id', 'quantity')) + self.assertEqual(result.index.names, ('order_id', 'quantity')) def test_from_records_misc_brokenness(self): # #2179 @@ -4017,7 +4017,7 @@ def test_join_str_datetime(self): tst = A.join(C, on='aa') - self.assert_(len(tst.columns) == 3) + self.assertEqual(len(tst.columns), 3) def test_from_records_sequencelike(self): df = DataFrame({'A' : np.array(np.random.randn(6), dtype = np.float64), @@ -4405,7 +4405,7 @@ def test_pop(self): self.frame['foo'] = 'bar' foo = self.frame.pop('foo') self.assert_('foo' not in self.frame) - # TODO self.assert_(self.frame.columns.name == 'baz') + # TODO self.assertEqual(self.frame.columns.name, 'baz') def test_pop_non_unique_cols(self): df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]}) @@ -4655,14 +4655,14 @@ def _check_bin_op(op): result = op(df1, df2) expected = DataFrame(op(df1.values, df2.values), index=df1.index, columns=df1.columns) - self.assert_(result.values.dtype == np.bool_) + self.assertEqual(result.values.dtype, np.bool_) assert_frame_equal(result, expected) def _check_unary_op(op): result = op(df1) expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns) - self.assert_(result.values.dtype == np.bool_) + self.assertEqual(result.values.dtype, np.bool_) assert_frame_equal(result, expected) df1 = {'a': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}, @@ -4703,7 +4703,7 @@ def test_logical_typeerror(self): def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({'a': [np.nan, False]}) - self.assert_(d['a'].dtype == np.object_) + self.assertEqual(d['a'].dtype, np.object_) self.assert_(d['a'][1] is False) def test_constructor_with_nas(self): @@ -4775,10 +4775,10 @@ def test_first_last_valid(self): frame = DataFrame({'foo': mat}, index=self.frame.index) index = frame.first_valid_index() - self.assert_(index == frame.index[5]) + self.assertEqual(index, frame.index[5]) index = frame.last_valid_index() - self.assert_(index == frame.index[-6]) + self.assertEqual(index, frame.index[-6]) def test_arith_flex_frame(self): ops = ['add', 'sub', 'mul', 'div', 'truediv', 'pow', 'floordiv', 'mod'] @@ -5321,7 +5321,7 @@ def test_boolean_comparison(self): assert_array_equal(result,expected.values) self.assertRaises(ValueError, lambda : df == b_c) - self.assert_((df.values == b_c) is False) + self.assertFalse((df.values == b_c)) # with alignment df = DataFrame(np.arange(6).reshape((3,2)),columns=list('AB'),index=list('abc')) @@ -5843,7 +5843,7 @@ def _make_frame(names=None): exp.index = [] self.assert_(recons.columns.equals(exp.columns)) - self.assert_(len(recons) == 0) + self.assertEqual(len(recons), 0) def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) @@ -5854,7 +5854,7 @@ def test_to_csv_float32_nanrep(self): with open(path) as f: lines = f.readlines() - self.assert_(lines[1].split(',')[2] == '999') + self.assertEqual(lines[1].split(',')[2], '999') def test_to_csv_withcommas(self): @@ -6127,7 +6127,7 @@ def test_info_wide(self): set_option('display.max_info_columns', 101) io = StringIO() df.info(buf=io) - self.assert_(rs == xp) + self.assertEqual(rs, xp) reset_option('display.max_info_columns') def test_info_duplicate_columns(self): @@ -6166,7 +6166,7 @@ def test_convert_objects(self): oops = self.mixed_frame.T.T converted = oops.convert_objects() assert_frame_equal(converted, self.mixed_frame) - self.assert_(converted['A'].dtype == np.float64) + self.assertEqual(converted['A'].dtype, np.float64) # force numeric conversion self.mixed_frame['H'] = '1.' @@ -6178,19 +6178,19 @@ def test_convert_objects(self): self.mixed_frame['K'] = '1' self.mixed_frame.ix[0:5,['J','K']] = 'garbled' converted = self.mixed_frame.convert_objects(convert_numeric=True) - self.assert_(converted['H'].dtype == 'float64') - self.assert_(converted['I'].dtype == 'int64') - self.assert_(converted['J'].dtype == 'float64') - self.assert_(converted['K'].dtype == 'float64') - self.assert_(len(converted['J'].dropna()) == l-5) - self.assert_(len(converted['K'].dropna()) == l-5) + self.assertEqual(converted['H'].dtype, 'float64') + self.assertEqual(converted['I'].dtype, 'int64') + self.assertEqual(converted['J'].dtype, 'float64') + self.assertEqual(converted['K'].dtype, 'float64') + self.assertEqual(len(converted['J'].dropna()), l-5) + self.assertEqual(len(converted['K'].dropna()), l-5) # via astype converted = self.mixed_frame.copy() converted['H'] = converted['H'].astype('float64') converted['I'] = converted['I'].astype('int64') - self.assert_(converted['H'].dtype == 'float64') - self.assert_(converted['I'].dtype == 'int64') + self.assertEqual(converted['H'].dtype, 'float64') + self.assertEqual(converted['I'].dtype, 'int64') # via astype, but errors converted = self.mixed_frame.copy() @@ -6371,14 +6371,14 @@ def test_at_time_between_time_datetimeindex(self): expected2 = df.ix[ainds] assert_frame_equal(result, expected) assert_frame_equal(result, expected2) - self.assert_(len(result) == 4) + self.assertEqual(len(result), 4) result = df.between_time(bkey.start, bkey.stop) expected = df.ix[bkey] expected2 = df.ix[binds] assert_frame_equal(result, expected) assert_frame_equal(result, expected2) - self.assert_(len(result) == 12) + self.assertEqual(len(result), 12) result = df.copy() result.ix[akey] = 0 @@ -6520,8 +6520,8 @@ def test_corr_nooverlap(self): rs = df.corr(meth) self.assert_(isnull(rs.ix['A', 'B'])) self.assert_(isnull(rs.ix['B', 'A'])) - self.assert_(rs.ix['A', 'A'] == 1) - self.assert_(rs.ix['B', 'B'] == 1) + self.assertEqual(rs.ix['A', 'A'], 1) + self.assertEqual(rs.ix['B', 'B'], 1) def test_corr_constant(self): _skip_if_no_scipy() @@ -8063,7 +8063,7 @@ def test_xs(self): } frame = DataFrame(test_data) xs = frame.xs('1') - self.assert_(xs.dtype == np.object_) + self.assertEqual(xs.dtype, np.object_) self.assertEqual(xs['A'], 1) self.assertEqual(xs['B'], '1') @@ -8191,7 +8191,7 @@ def test_reindex(self): for col, series in compat.iteritems(newFrame): self.assert_(tm.equalContents(series.index, newFrame.index)) emptyFrame = self.frame.reindex(Index([])) - self.assert_(len(emptyFrame.index) == 0) + self.assertEqual(len(emptyFrame.index), 0) # Cython code should be unit-tested directly nonContigFrame = self.frame.reindex(self.ts1.index[::2]) @@ -8234,7 +8234,7 @@ def test_reindex(self): # copy with no axes result = self.frame.reindex() assert_frame_equal(result,self.frame) - self.assert_((result is self.frame) == False) + self.assertFalse(result is self.frame) def test_reindex_name_remains(self): s = Series(random.rand(10)) @@ -8242,27 +8242,27 @@ def test_reindex_name_remains(self): i = Series(np.arange(10), name='iname') df = df.reindex(i) - self.assert_(df.index.name == 'iname') + self.assertEqual(df.index.name, 'iname') df = df.reindex(Index(np.arange(10), name='tmpname')) - self.assert_(df.index.name == 'tmpname') + self.assertEqual(df.index.name, 'tmpname') s = Series(random.rand(10)) df = DataFrame(s.T, index=np.arange(len(s))) i = Series(np.arange(10), name='iname') df = df.reindex(columns=i) - self.assert_(df.columns.name == 'iname') + self.assertEqual(df.columns.name, 'iname') def test_reindex_int(self): smaller = self.intframe.reindex(self.intframe.index[::2]) - self.assert_(smaller['A'].dtype == np.int64) + self.assertEqual(smaller['A'].dtype, np.int64) bigger = smaller.reindex(self.intframe.index) - self.assert_(bigger['A'].dtype == np.float64) + self.assertEqual(bigger['A'].dtype, np.float64) smaller = self.intframe.reindex(columns=['A', 'B']) - self.assert_(smaller['A'].dtype == np.int64) + self.assertEqual(smaller['A'].dtype, np.int64) def test_reindex_like(self): other = self.frame.reindex(index=self.frame.index[:10], @@ -8292,8 +8292,8 @@ def test_reindex_axes(self): index_freq = df.reindex(index=time_freq).index.freq both_freq = df.reindex(index=time_freq, columns=some_cols).index.freq seq_freq = df.reindex(index=time_freq).reindex(columns=some_cols).index.freq - self.assert_(index_freq == both_freq) - self.assert_(index_freq == seq_freq) + self.assertEqual(index_freq, both_freq) + self.assertEqual(index_freq, seq_freq) def test_reindex_fill_value(self): df = DataFrame(np.random.randn(10, 4)) @@ -8623,7 +8623,7 @@ def _check_set(df, cond, check_dtypes = True): for k, v in compat.iteritems(df.dtypes): if issubclass(v.type,np.integer) and not cond[k].all(): v = np.dtype('float64') - self.assert_(dfi[k].dtype == v) + self.assertEqual(dfi[k].dtype, v) for df in [ default_frame, self.mixed_frame, self.mixed_float, self.mixed_int ]: @@ -8747,7 +8747,7 @@ def test_transpose(self): mixed_T = mixed.T for col, s in compat.iteritems(mixed_T): - self.assert_(s.dtype == np.object_) + self.assertEqual(s.dtype, np.object_) def test_transpose_get_view(self): dft = self.frame.T @@ -8877,7 +8877,7 @@ def test_diff_mixed_dtype(self): df['A'] = np.array([1, 2, 3, 4, 5], dtype=object) result = df.diff() - self.assert_(result[0].dtype == np.float64) + self.assertEqual(result[0].dtype, np.float64) def test_diff_neg_n(self): rs = self.tsframe.diff(-1) @@ -8935,7 +8935,7 @@ def test_shift(self): # shift by DateOffset shiftedFrame = self.tsframe.shift(5, freq=datetools.BDay()) - self.assert_(len(shiftedFrame) == len(self.tsframe)) + self.assertEqual(len(shiftedFrame), len(self.tsframe)) shiftedFrame2 = self.tsframe.shift(5, freq='B') assert_frame_equal(shiftedFrame, shiftedFrame2) @@ -9336,11 +9336,11 @@ def test_applymap(self): # GH 2909, object conversion to float in constructor? df = DataFrame(data=[1,'a']) result = df.applymap(lambda x: x) - self.assert_(result.dtypes[0] == object) + self.assertEqual(result.dtypes[0], object) df = DataFrame(data=[1.,'a']) result = df.applymap(lambda x: x) - self.assert_(result.dtypes[0] == object) + self.assertEqual(result.dtypes[0], object) # GH2786 df = DataFrame(np.random.random((3,4))) @@ -10076,11 +10076,11 @@ def test_bool_describe_in_mixed_frame(self): bool_describe = df.describe()['bool_data'] # Both the min and the max values should stay booleans - self.assert_(bool_describe['min'].dtype == np.bool_) - self.assert_(bool_describe['max'].dtype == np.bool_) + self.assertEqual(bool_describe['min'].dtype, np.bool_) + self.assertEqual(bool_describe['max'].dtype, np.bool_) - self.assert_(bool_describe['min'] == False) - self.assert_(bool_describe['max'] == True) + self.assertFalse(bool_describe['min']) + self.assertTrue(bool_describe['max']) # For numeric operations, like mean or median, the values True/False are cast to # the integer values 1 and 0 @@ -10144,7 +10144,7 @@ def test_stat_operators_attempt_obj_array(self): for df in [df1, df2]: for meth in methods: - self.assert_(df.values.dtype == np.object_) + self.assertEqual(df.values.dtype, np.object_) result = getattr(df, meth)(1) expected = getattr(df.astype('f8'), meth)(1) assert_series_equal(result, expected) @@ -10331,8 +10331,8 @@ def wrapper(x): # check dtypes if check_dtype: lcd_dtype = frame.values.dtype - self.assert_(lcd_dtype == result0.dtype) - self.assert_(lcd_dtype == result1.dtype) + self.assertEqual(lcd_dtype, result0.dtype) + self.assertEqual(lcd_dtype, result1.dtype) # result = f(axis=1) # comp = frame.apply(alternative, axis=1).reindex(result.index) @@ -10745,11 +10745,11 @@ def test_reindex_boolean(self): columns=[0, 2]) reindexed = frame.reindex(np.arange(10)) - self.assert_(reindexed.values.dtype == np.object_) + self.assertEqual(reindexed.values.dtype, np.object_) self.assert_(isnull(reindexed[0][1])) reindexed = frame.reindex(columns=lrange(3)) - self.assert_(reindexed.values.dtype == np.object_) + self.assertEqual(reindexed.values.dtype, np.object_) self.assert_(isnull(reindexed[1]).all()) def test_reindex_objects(self): @@ -10768,7 +10768,7 @@ def test_reindex_corner(self): # ints are weird smaller = self.intframe.reindex(columns=['A', 'B', 'E']) - self.assert_(smaller['E'].dtype == np.float64) + self.assertEqual(smaller['E'].dtype, np.float64) def test_reindex_axis(self): cols = ['A', 'B', 'E'] @@ -11031,10 +11031,10 @@ def test_reset_index_right_dtype(self): df = DataFrame(s1) resetted = s1.reset_index() - self.assert_(resetted['time'].dtype == np.float64) + self.assertEqual(resetted['time'].dtype, np.float64) resetted = df.reset_index() - self.assert_(resetted['time'].dtype == np.float64) + self.assertEqual(resetted['time'].dtype, np.float64) def test_reset_index_multiindex_col(self): vals = np.random.randn(3, 3).astype(object) @@ -11098,41 +11098,41 @@ def test_as_matrix_numeric_cols(self): self.frame['foo'] = 'bar' values = self.frame.as_matrix(['A', 'B', 'C', 'D']) - self.assert_(values.dtype == np.float64) + self.assertEqual(values.dtype, np.float64) def test_as_matrix_lcd(self): # mixed lcd values = self.mixed_float.as_matrix(['A', 'B', 'C', 'D']) - self.assert_(values.dtype == np.float64) + self.assertEqual(values.dtype, np.float64) values = self.mixed_float.as_matrix(['A', 'B', 'C' ]) - self.assert_(values.dtype == np.float32) + self.assertEqual(values.dtype, np.float32) values = self.mixed_float.as_matrix(['C']) - self.assert_(values.dtype == np.float16) + self.assertEqual(values.dtype, np.float16) values = self.mixed_int.as_matrix(['A','B','C','D']) - self.assert_(values.dtype == np.int64) + self.assertEqual(values.dtype, np.int64) values = self.mixed_int.as_matrix(['A','D']) - self.assert_(values.dtype == np.int64) + self.assertEqual(values.dtype, np.int64) # guess all ints are cast to uints.... values = self.mixed_int.as_matrix(['A','B','C']) - self.assert_(values.dtype == np.int64) + self.assertEqual(values.dtype, np.int64) values = self.mixed_int.as_matrix(['A','C']) - self.assert_(values.dtype == np.int32) + self.assertEqual(values.dtype, np.int32) values = self.mixed_int.as_matrix(['C','D']) - self.assert_(values.dtype == np.int64) + self.assertEqual(values.dtype, np.int64) values = self.mixed_int.as_matrix(['A']) - self.assert_(values.dtype == np.int32) + self.assertEqual(values.dtype, np.int32) values = self.mixed_int.as_matrix(['C']) - self.assert_(values.dtype == np.uint8) + self.assertEqual(values.dtype, np.uint8) def test_constructor_with_convert(self): # this is actually mostly a test of lib.maybe_convert_objects @@ -11214,8 +11214,8 @@ def test_construction_with_mixed(self): # mixed-type frames self.mixed_frame['datetime'] = datetime.now() self.mixed_frame['timedelta'] = timedelta(days=1,seconds=1) - self.assert_(self.mixed_frame['datetime'].dtype == 'M8[ns]') - self.assert_(self.mixed_frame['timedelta'].dtype == 'm8[ns]') + self.assertEqual(self.mixed_frame['datetime'].dtype, 'M8[ns]') + self.assertEqual(self.mixed_frame['timedelta'].dtype, 'm8[ns]') result = self.mixed_frame.get_dtype_counts().order() expected = Series({ 'float64' : 4, 'object' : 1, @@ -11313,7 +11313,7 @@ def test_columns_with_dups(self): df = pan.concat([ df_float, df_int, df_bool, df_object, df_dt ], axis=1) result = df._data._set_ref_locs() - self.assert_(len(result) == len(df.columns)) + self.assertEqual(len(result), len(df.columns)) # testing iget for i in range(len(df.columns)): @@ -11357,7 +11357,7 @@ def test_cast_internals(self): def test_consolidate(self): self.frame['E'] = 7. consolidated = self.frame.consolidate() - self.assert_(len(consolidated._data.blocks) == 1) + self.assertEqual(len(consolidated._data.blocks), 1) # Ensure copy, do I want this? recons = consolidated.consolidate() @@ -11365,9 +11365,9 @@ def test_consolidate(self): assert_frame_equal(recons, consolidated) self.frame['F'] = 8. - self.assert_(len(self.frame._data.blocks) == 3) + self.assertEqual(len(self.frame._data.blocks), 3) self.frame.consolidate(inplace=True) - self.assert_(len(self.frame._data.blocks) == 1) + self.assertEqual(len(self.frame._data.blocks), 1) def test_consolidate_inplace(self): frame = self.frame.copy() @@ -11472,7 +11472,7 @@ def test_boolean_indexing_mixed(self): def test_sum_bools(self): df = DataFrame(index=lrange(1), columns=lrange(10)) bools = isnull(df) - self.assert_(bools.sum(axis=1)[0] == 10) + self.assertEqual(bools.sum(axis=1)[0], 10) def test_fillna_col_reordering(self): idx = lrange(20) @@ -11480,7 +11480,7 @@ def test_fillna_col_reordering(self): data = np.random.rand(20, 5) df = DataFrame(index=lrange(20), columns=cols, data=data) filled = df.fillna(method='ffill') - self.assert_(df.columns.tolist() == filled.columns.tolist()) + self.assertEqual(df.columns.tolist(), filled.columns.tolist()) def test_take(self): diff --git a/pandas/tests/test_generic.py b/pandas/tests/test_generic.py index 60c51c09915f3..eb7f178df39d8 100644 --- a/pandas/tests/test_generic.py +++ b/pandas/tests/test_generic.py @@ -229,7 +229,7 @@ def check_metadata(self, x, y=None): if y is None: self.assert_(v is None) else: - self.assert_(v == getattr(y,m,None)) + self.assertEqual(v, getattr(y,m,None)) def test_metadata_propagation(self): # check that the metadata matches up on the resulting ops diff --git a/pandas/tests/test_groupby.py b/pandas/tests/test_groupby.py index 6a80c9f053c71..64a5d981f6cf6 100644 --- a/pandas/tests/test_groupby.py +++ b/pandas/tests/test_groupby.py @@ -197,9 +197,9 @@ def test_first_last_nth_dtypes(self): idx = lrange(10) idx.append(9) s = Series(data=lrange(11), index=idx, name='IntCol') - self.assert_(s.dtype == 'int64') + self.assertEqual(s.dtype, 'int64') f = s.groupby(level=0).first() - self.assert_(f.dtype == 'int64') + self.assertEqual(f.dtype, 'int64') def test_grouper_index_types(self): # related GH5375 @@ -954,7 +954,7 @@ def test_frame_groupby(self): # iterate for weekday, group in grouped: - self.assert_(group.index[0].weekday() == weekday) + self.assertEqual(group.index[0].weekday(), weekday) # groups / group_indices groups = grouped.groups @@ -998,26 +998,26 @@ def test_frame_set_name_single(self): grouped = self.df.groupby('A') result = grouped.mean() - self.assert_(result.index.name == 'A') + self.assertEqual(result.index.name, 'A') result = self.df.groupby('A', as_index=False).mean() - self.assert_(result.index.name != 'A') + self.assertNotEqual(result.index.name, 'A') result = grouped.agg(np.mean) - self.assert_(result.index.name == 'A') + self.assertEqual(result.index.name, 'A') result = grouped.agg({'C': np.mean, 'D': np.std}) - self.assert_(result.index.name == 'A') + self.assertEqual(result.index.name, 'A') result = grouped['C'].mean() - self.assert_(result.index.name == 'A') + self.assertEqual(result.index.name, 'A') result = grouped['C'].agg(np.mean) - self.assert_(result.index.name == 'A') + self.assertEqual(result.index.name, 'A') result = grouped['C'].agg([np.mean, np.std]) - self.assert_(result.index.name == 'A') + self.assertEqual(result.index.name, 'A') result = grouped['C'].agg({'foo': np.mean, 'bar': np.std}) - self.assert_(result.index.name == 'A') + self.assertEqual(result.index.name, 'A') def test_multi_iter(self): s = Series(np.arange(6)) @@ -1033,8 +1033,8 @@ def test_multi_iter(self): ('b', '2', s[[3, 5]])] for i, ((one, two), three) in enumerate(iterated): e1, e2, e3 = expected[i] - self.assert_(e1 == one) - self.assert_(e2 == two) + self.assertEqual(e1, one) + self.assertEqual(e2, two) assert_series_equal(three, e3) def test_multi_iter_frame(self): @@ -1056,8 +1056,8 @@ def test_multi_iter_frame(self): ('b', '2', df.ix[idx[[1]]])] for i, ((one, two), three) in enumerate(iterated): e1, e2, e3 = expected[i] - self.assert_(e1 == one) - self.assert_(e2 == two) + self.assertEqual(e1, one) + self.assertEqual(e2, two) assert_frame_equal(three, e3) # don't iterate through groups with no data @@ -1567,8 +1567,8 @@ def test_groupby_level(self): expected0 = expected0.reindex(frame.index.levels[0]) expected1 = expected1.reindex(frame.index.levels[1]) - self.assert_(result0.index.name == 'first') - self.assert_(result1.index.name == 'second') + self.assertEqual(result0.index.name, 'first') + self.assertEqual(result1.index.name, 'second') assert_frame_equal(result0, expected0) assert_frame_equal(result1, expected1) @@ -1622,12 +1622,12 @@ def test_groupby_level_apply(self): frame = self.mframe result = frame.groupby(level=0).count() - self.assert_(result.index.name == 'first') + self.assertEqual(result.index.name, 'first') result = frame.groupby(level=1).count() - self.assert_(result.index.name == 'second') + self.assertEqual(result.index.name, 'second') result = frame['A'].groupby(level=0).count() - self.assert_(result.index.name == 'first') + self.assertEqual(result.index.name, 'first') def test_groupby_level_mapper(self): frame = self.mframe @@ -2001,7 +2001,7 @@ def f(group): grouped = df.groupby('c') result = grouped.apply(f) - self.assert_(result['d'].dtype == np.float64) + self.assertEqual(result['d'].dtype, np.float64) for key, group in grouped: res = f(group) @@ -2084,11 +2084,11 @@ def convert_force_pure(x): grouped = s.groupby(labels) result = grouped.agg(convert_fast) - self.assert_(result.dtype == np.object_) + self.assertEqual(result.dtype, np.object_) tm.assert_isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) - self.assert_(result.dtype == np.object_) + self.assertEqual(result.dtype, np.object_) tm.assert_isinstance(result[0], Decimal) def test_apply_with_mixed_dtype(self): @@ -2227,7 +2227,7 @@ def test_int32_overflow(self): left = df.groupby(['A', 'B', 'C', 'D']).sum() right = df.groupby(['D', 'C', 'B', 'A']).sum() - self.assert_(len(left) == len(right)) + self.assertEqual(len(left), len(right)) def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), @@ -2257,8 +2257,9 @@ def test_int64_overflow(self): expected = df.groupby(tups).sum()['values'] for k, v in compat.iteritems(expected): - self.assert_(left[k] == right[k[::-1]] == v) - self.assert_(len(left) == len(right)) + self.assertEqual(left[k], right[k[::-1]]) + self.assertEqual(left[k], v) + self.assertEqual(len(left), len(right)) def test_groupby_sort_multi(self): df = DataFrame({'a': ['foo', 'bar', 'baz'], @@ -2550,7 +2551,7 @@ def test_no_dummy_key_names(self): result = self.df.groupby([self.df['A'].values, self.df['B'].values]).sum() - self.assert_(result.index.names == (None, None)) + self.assertEqual(result.index.names, (None, None)) def test_groupby_categorical(self): levels = ['foo', 'bar', 'baz', 'qux'] @@ -2567,7 +2568,7 @@ def test_groupby_categorical(self): expected.index.name = 'myfactor' assert_frame_equal(result, expected) - self.assert_(result.index.name == cats.name) + self.assertEqual(result.index.name, cats.name) grouped = data.groupby(cats) desc_result = grouped.describe()