Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Time-dependence Port #228

Merged
merged 5 commits into from
Sep 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 63 additions & 8 deletions pyqtorch/hamiltonians/evolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,18 @@
from pyqtorch.embed import Embedding
from pyqtorch.primitives import Primitive
from pyqtorch.quantum_operation import QuantumOperation
from pyqtorch.time_dependent.sesolve import sesolve
from pyqtorch.utils import (
ATOL,
Operator,
SolverType,
State,
StrEnum,
_round_operator,
expand_operator,
finitediff,
is_diag,
is_parametric,
)

BATCH_DIM = 2
Expand Down Expand Up @@ -141,8 +144,9 @@ def __init__(
generator: TGenerator,
time: Tensor | str,
qubit_support: Tuple[int, ...] | None = None,
generator_parametric: bool = False,
cache_length: int = 1,
steps: int = 100,
solver=SolverType.DP5_SE,
):
"""Initializes the HamiltonianEvolution.
Depending on the generator argument, set the type and set the right generator getter.
Expand All @@ -154,6 +158,9 @@ def __init__(
generator_parametric: Whether the generator is parametric or not.
vytautas-a marked this conversation as resolved.
Show resolved Hide resolved
"""

self.solver_type = solver
self.steps = steps

if isinstance(generator, Tensor):
if qubit_support is None:
raise ValueError(
Expand All @@ -178,7 +185,7 @@ def __init__(
"Taking support from generator and ignoring qubit_support input."
)
qubit_support = generator.qubit_support
if generator_parametric:
if is_parametric(generator):
generator = [generator]
self.generator_type = GeneratorType.PARAMETRIC_OPERATION
else:
Expand Down Expand Up @@ -315,6 +322,55 @@ def spectral_gap(self) -> Tensor:
spectral_gap = torch.unique(torch.abs(torch.tril(diffs)))
return spectral_gap[spectral_gap.nonzero()]

def _forward(
self,
state: Tensor,
values: dict[str, Tensor] | ParameterDict = dict(),
embedding: Embedding | None = None,
) -> State:
evolved_op = self.tensor(values, embedding)
return apply_operator(
state=state, operator=evolved_op, qubit_support=self.qubit_support
)

def _forward_time(
RolandMacDoland marked this conversation as resolved.
Show resolved Hide resolved
self,
state: Tensor,
values: dict[str, Tensor] | ParameterDict = dict(),
embedding: Embedding = Embedding(),
) -> State:
n_qubits = len(state.shape) - 1
batch_size = state.shape[-1]
t_grid = torch.linspace(0, float(self.time), self.steps)

values.update({embedding.tparam_name: torch.tensor(0.0)}) # type: ignore [dict-item]
embedded_params = embedding(values)

def Ht(t: torch.Tensor) -> torch.Tensor:
"""Accepts a value 't' for time and returns
a (2**n_qubits, 2**n_qubits) Hamiltonian evaluated at time 't'.
"""
# We use the origial embedded params and return a new dict
# where we reembedded all parameters depending on time with value 't'
reembedded_time_values = embedding.reembed_tparam(
embedded_params, torch.as_tensor(t)
)
return (
self.generator[0].tensor(reembedded_time_values, embedding).squeeze(2)
)

sol = sesolve(
Ht,
torch.flatten(state, start_dim=0, end_dim=-2),
t_grid,
self.solver_type,
)

# Retrieve the last state of shape (2**n_qubits, batch_size)
state = sol.states[-1]

return state.reshape([2] * n_qubits + [batch_size])

def forward(
self,
state: Tensor,
Expand All @@ -327,17 +383,16 @@ def forward(
Arguments:
state: Input state.
values: Values of parameters.
embedding: Embedding of parameters.

Returns:
The transformed state.
"""
if embedding is not None and getattr(embedding, "tparam_name", None):
vytautas-a marked this conversation as resolved.
Show resolved Hide resolved
return self._forward_time(state, values, embedding)

evolved_op = self.tensor(values, embedding)
return apply_operator(
state=state,
operator=evolved_op,
qubit_support=self.qubit_support,
)
else:
return self._forward(state, values, embedding)

def tensor(
self,
Expand Down
20 changes: 18 additions & 2 deletions pyqtorch/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,13 @@
from numpy import arange, argsort, array, delete, log2
from numpy import ndarray as NDArray
from torch import Tensor, moveaxis
from typing_extensions import TypeAlias

import pyqtorch as pyq
from pyqtorch.matrices import DEFAULT_MATRIX_DTYPE, DEFAULT_REAL_DTYPE, IMAT

State = Tensor
Operator = Tensor
State: TypeAlias = Tensor
Operator: TypeAlias = Tensor

ATOL = 1e-06
ATOL_embedding = 1e-03
Expand Down Expand Up @@ -741,3 +743,17 @@ class SolverType(StrEnum):

KRYLOV_SE = "krylov_se"
"""Uses Krylov Schrodinger equation solver"""


def is_parametric(operation: pyq.Sequence) -> bool:
RolandMacDoland marked this conversation as resolved.
Show resolved Hide resolved
from pyqtorch.primitives import Parametric

params = []
for m in operation.modules():
if isinstance(m, (pyq.Scale, Parametric)):
params.append(m.param_name)

res = False
if any(isinstance(p, str) for p in params):
res = True
return res
37 changes: 37 additions & 0 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@
from pytest import FixtureRequest
from torch import Tensor

from pyqtorch.composite import Add, Scale, Sequence
from pyqtorch.embed import ConcretizedCallable
from pyqtorch.noise import (
AmplitudeDamping,
BitFlip,
Expand Down Expand Up @@ -483,3 +485,38 @@ def hamiltonian_t(t: float, args: Any) -> qutip.Qobj:
)

return hamiltonian_t


@pytest.fixture
def tparam() -> str:
return "t"


@pytest.fixture
def sin(tparam: str) -> tuple[str, ConcretizedCallable]:
sin_t, sin_fn = "sin_x", ConcretizedCallable("sin", [tparam])
return sin_t, sin_fn


@pytest.fixture
def sq(tparam: str) -> tuple[str, ConcretizedCallable]:
t_sq, t_sq_fn = "t_sq", ConcretizedCallable("mul", [tparam, tparam])
return t_sq, t_sq_fn


@pytest.fixture
def hamevo_generator(
omega: float, param_x: float, param_y: float, sin: tuple, sq: tuple
) -> Sequence:
sin_t, _ = sin
t_sq, _ = sq
generator = Scale(
Add(
[
Scale(Scale(X(0), sin_t), "y"),
Scale(Scale(Y(1), t_sq), param_x),
]
),
omega,
)
return generator
46 changes: 43 additions & 3 deletions tests/test_analog.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from helpers import calc_mat_vec_wavefunction, random_pauli_hamiltonian

import pyqtorch as pyq
from pyqtorch.composite import Sequence
from pyqtorch.hamiltonians import GeneratorType
from pyqtorch.matrices import (
DEFAULT_MATRIX_DTYPE,
Expand All @@ -19,6 +20,7 @@
from pyqtorch.utils import (
ATOL,
RTOL,
SolverType,
is_normalized,
operator_kron,
overlap,
Expand Down Expand Up @@ -289,6 +291,46 @@ def test_hamevo_endianness_cnot() -> None:
assert torch.allclose(wf_cnot, wf_hamevo, rtol=RTOL, atol=ATOL)


@pytest.mark.parametrize("ode_solver", [SolverType.DP5_SE, SolverType.KRYLOV_SE])
def test_timedependent(
tparam: str,
param_y: float,
duration: float,
n_steps: int,
torch_hamiltonian: Callable,
hamevo_generator: Sequence,
sin: tuple,
sq: tuple,
ode_solver: SolverType,
) -> None:

psi_start = random_state(2)

# simulate with time-dependent solver
t_points = torch.linspace(0, duration, n_steps)
psi_solver = pyq.sesolve(
torch_hamiltonian, psi_start.reshape(-1, 1), t_points, ode_solver
).states[-1]

# simulate with HamiltonianEvolution
embedding = pyq.Embedding(
tparam_name=tparam,
var_to_call={sin[0]: sin[1], sq[0]: sq[1]},
)
hamiltonian_evolution = pyq.HamiltonianEvolution(
generator=hamevo_generator,
time=torch.as_tensor(duration),
steps=n_steps,
solver=ode_solver,
)
values = {"y": param_y}
psi_hamevo = hamiltonian_evolution(
state=psi_start, values=values, embedding=embedding
).reshape(-1, 1)

assert torch.allclose(psi_solver, psi_hamevo, rtol=RTOL, atol=ATOL)


@pytest.mark.parametrize("n_qubits", [2, 4, 6])
@pytest.mark.parametrize("batch_size", [1, 2])
def test_hamevo_parametric_gen(n_qubits: int, batch_size: int) -> None:
Expand All @@ -302,9 +344,7 @@ def test_hamevo_parametric_gen(n_qubits: int, batch_size: int) -> None:

param_list.append("t")

hamevo = pyq.HamiltonianEvolution(
generator, tparam, generator_parametric=True, cache_length=2
)
hamevo = pyq.HamiltonianEvolution(generator, tparam, cache_length=2)

assert hamevo.generator_type == GeneratorType.PARAMETRIC_OPERATION
assert len(hamevo._cache_hamiltonian_evo) == 0
Expand Down
1 change: 1 addition & 0 deletions tests/test_solvers.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ def test_sesolve(
qutip_hamiltonian: Callable,
ode_solver: SolverType,
) -> None:

psi0_qutip = qutip.basis(4, 0)

# simulate with torch-based solver
Expand Down
2 changes: 1 addition & 1 deletion tests/test_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -243,7 +243,7 @@ def test_hevo_pauli_tensor(
assert torch.allclose(psi_star, psi_expected, rtol=RTOL, atol=ATOL)
# Test the hamiltonian evolution
tparam = "t"
operator = HamiltonianEvolution(generator, tparam, generator_parametric=make_param)
operator = HamiltonianEvolution(generator, tparam)
if make_param:
assert operator.generator_type == GeneratorType.PARAMETRIC_OPERATION
else:
Expand Down