#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads ONNX models and uses them to decode waves. You can use the following command to get the exported models: ./pruned_transducer_stateless2/export.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --lang-dir data/lang_char \ --epoch 20 \ --avg 10 \ --onnx 1 Usage of this script: ./pruned_transducer_stateless3/onnx_pretrained.py \ --encoder-model-filename ./pruned_transducer_stateless3/exp/encoder.onnx \ --decoder-model-filename ./pruned_transducer_stateless3/exp/decoder.onnx \ --joiner-model-filename ./pruned_transducer_stateless3/exp/joiner.onnx \ --joiner-encoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_encoder_proj.onnx \ --joiner-decoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_decoder_proj.onnx \ --tokens data/lang_char/tokens.txt \ /path/to/foo.wav \ /path/to/bar.wav We provide pretrained models at: https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2/tree/main/exp """ import argparse import logging import math from typing import List import k2 import kaldifeat import numpy as np from icefall import is_module_available if not is_module_available("onnxruntime"): raise ValueError("Please 'pip install onnxruntime' first.") import onnxruntime as ort import torch import torchaudio from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--encoder-model-filename", type=str, required=True, help="Path to the encoder onnx model. ", ) parser.add_argument( "--decoder-model-filename", type=str, required=True, help="Path to the decoder onnx model. ", ) parser.add_argument( "--joiner-model-filename", type=str, required=True, help="Path to the joiner onnx model. ", ) parser.add_argument( "--joiner-encoder-proj-model-filename", type=str, required=True, help="Path to the joiner encoder_proj onnx model. ", ) parser.add_argument( "--joiner-decoder-proj-model-filename", type=str, required=True, help="Path to the joiner decoder_proj onnx model. ", ) parser.add_argument( "--tokens", type=str, help="""Path to tokens.txt""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "--context-size", type=int, default=2, help="Context size of the decoder model", ) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def greedy_search( decoder: ort.InferenceSession, joiner: ort.InferenceSession, joiner_encoder_proj: ort.InferenceSession, joiner_decoder_proj: ort.InferenceSession, encoder_out: np.ndarray, encoder_out_lens: np.ndarray, context_size: int, ) -> List[List[int]]: """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. Args: decoder: The decoder model. joiner: The joiner model. joiner_encoder_proj: The joiner encoder projection model. joiner_decoder_proj: The joiner decoder projection model. encoder_out: A 3-D tensor of shape (N, T, C) encoder_out_lens: A 1-D tensor of shape (N,). context_size: The context size of the decoder model. Returns: Return the decoded results for each utterance. """ encoder_out = torch.from_numpy(encoder_out) encoder_out_lens = torch.from_numpy(encoder_out_lens) assert encoder_out.ndim == 3 assert encoder_out.size(0) >= 1, encoder_out.size(0) packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( input=encoder_out, lengths=encoder_out_lens.cpu(), batch_first=True, enforce_sorted=False, ) projected_encoder_out = joiner_encoder_proj.run( [joiner_encoder_proj.get_outputs()[0].name], {joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()}, )[0] blank_id = 0 # hard-code to 0 batch_size_list = packed_encoder_out.batch_sizes.tolist() N = encoder_out.size(0) assert torch.all(encoder_out_lens > 0), encoder_out_lens assert N == batch_size_list[0], (N, batch_size_list) hyps = [[blank_id] * context_size for _ in range(N)] decoder_input_nodes = decoder.get_inputs() decoder_output_nodes = decoder.get_outputs() joiner_input_nodes = joiner.get_inputs() joiner_output_nodes = joiner.get_outputs() decoder_input = torch.tensor( hyps, dtype=torch.int64, ) # (N, context_size) decoder_out = decoder.run( [decoder_output_nodes[0].name], { decoder_input_nodes[0].name: decoder_input.numpy(), }, )[0].squeeze(1) projected_decoder_out = joiner_decoder_proj.run( [joiner_decoder_proj.get_outputs()[0].name], {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, )[0] projected_decoder_out = torch.from_numpy(projected_decoder_out) offset = 0 for batch_size in batch_size_list: start = offset end = offset + batch_size current_encoder_out = projected_encoder_out[start:end] # current_encoder_out's shape: (batch_size, encoder_out_dim) offset = end projected_decoder_out = projected_decoder_out[:batch_size] logits = joiner.run( [joiner_output_nodes[0].name], { joiner_input_nodes[0].name: current_encoder_out, joiner_input_nodes[1].name: projected_decoder_out.numpy(), }, )[0] logits = torch.from_numpy(logits).squeeze(1).squeeze(1) # logits'shape (batch_size, vocab_size) assert logits.ndim == 2, logits.shape y = logits.argmax(dim=1).tolist() emitted = False for i, v in enumerate(y): if v != blank_id: hyps[i].append(v) emitted = True if emitted: # update decoder output decoder_input = [h[-context_size:] for h in hyps[:batch_size]] decoder_input = torch.tensor( decoder_input, dtype=torch.int64, ) decoder_out = decoder.run( [decoder_output_nodes[0].name], { decoder_input_nodes[0].name: decoder_input.numpy(), }, )[0].squeeze(1) projected_decoder_out = joiner_decoder_proj.run( [joiner_decoder_proj.get_outputs()[0].name], {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, )[0] projected_decoder_out = torch.from_numpy(projected_decoder_out) sorted_ans = [h[context_size:] for h in hyps] ans = [] unsorted_indices = packed_encoder_out.unsorted_indices.tolist() for i in range(N): ans.append(sorted_ans[unsorted_indices[i]]) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) session_opts = ort.SessionOptions() session_opts.inter_op_num_threads = 1 session_opts.intra_op_num_threads = 1 encoder = ort.InferenceSession( args.encoder_model_filename, sess_options=session_opts, ) decoder = ort.InferenceSession( args.decoder_model_filename, sess_options=session_opts, ) joiner = ort.InferenceSession( args.joiner_model_filename, sess_options=session_opts, ) joiner_encoder_proj = ort.InferenceSession( args.joiner_encoder_proj_model_filename, sess_options=session_opts, ) joiner_decoder_proj = ort.InferenceSession( args.joiner_decoder_proj_model_filename, sess_options=session_opts, ) logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = args.sample_rate opts.mel_opts.num_bins = 80 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {args.sound_files}") waves = read_sound_files( filenames=args.sound_files, expected_sample_rate=args.sample_rate, ) logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence( features, batch_first=True, padding_value=math.log(1e-10), ) feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64) encoder_input_nodes = encoder.get_inputs() encoder_out_nodes = encoder.get_outputs() encoder_out, encoder_out_lens = encoder.run( [encoder_out_nodes[0].name, encoder_out_nodes[1].name], { encoder_input_nodes[0].name: features.numpy(), encoder_input_nodes[1].name: feature_lengths.numpy(), }, ) hyps = greedy_search( decoder=decoder, joiner=joiner, joiner_encoder_proj=joiner_encoder_proj, joiner_decoder_proj=joiner_decoder_proj, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, context_size=args.context_size, ) symbol_table = k2.SymbolTable.from_file(args.tokens) s = "\n" for filename, hyp in zip(args.sound_files, hyps): words = "".join([symbol_table[i] for i in hyp]) s += f"{filename}:\n{words}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()