Table of contents
- Description
- Fixed In Time RCF For Time-series Data Command Syntax
- Batch RCF for Non-time-series Data Command Syntax
- Example 1: Detecting events in New York City from taxi ridership data with time-series data
- Example 2: Detecting events in New York City from taxi ridership data with time-series data independently with each category
- Example 3: Detecting events in New York City from taxi ridership data with non-time-series data
- Example 4: Detecting events in New York City from taxi ridership data with non-time-series data independently with each category
ad
command applies Random Cut Forest (RCF) algorithm in the ml-commons plugin on the search result returned by a PPL command. Based on the input, the command uses two types of RCF algorithms: fixed in time RCF for processing time-series data, batch RCF for processing non-time-series data.ad <number_of_trees> <shingle_size> <sample_size> <output_after> <time_decay> <anomaly_rate> <time_field> <date_format> <time_zone>
- number_of_trees(integer): optional. Number of trees in the forest. The default value is 30.
- shingle_size(integer): optional. A shingle is a consecutive sequence of the most recent records. The default value is 8.
- sample_size(integer): optional. The sample size used by stream samplers in this forest. The default value is 256.
- output_after(integer): optional. The number of points required by stream samplers before results are returned. The default value is 32.
- time_decay(double): optional. The decay factor used by stream samplers in this forest. The default value is 0.0001.
- anomaly_rate(double): optional. The anomaly rate. The default value is 0.005.
- time_field(string): mandatory. It specifies the time field for RCF to use as time-series data.
- date_format(string): optional. It's used for formatting time_field field. The default formatting is "yyyy-MM-dd HH:mm:ss".
- time_zone(string): optional. It's used for setting time zone for time_field filed. The default time zone is UTC.
- category_field(string): optional. It specifies the category field used to group inputs. Each category will be independently predicted.
ad <number_of_trees> <sample_size> <output_after> <training_data_size> <anomaly_score_threshold>
- number_of_trees(integer): optional. Number of trees in the forest. The default value is 30.
- sample_size(integer): optional. Number of random samples given to each tree from the training data set. The default value is 256.
- output_after(integer): optional. The number of points required by stream samplers before results are returned. The default value is 32.
- training_data_size(integer): optional. The default value is the size of your training data set.
- anomaly_score_threshold(double): optional. The threshold of anomaly score. The default value is 1.0.
- category_field(string): optional. It specifies the category field used to group inputs. Each category will be independently predicted.
The example trains an RCF model and uses the model to detect anomalies in the time-series ridership data.
PPL query:
> source=nyc_taxi | fields value, timestamp | AD time_field='timestamp' | where value=10844.0 fetched rows / total rows = 1/1 +---------+---------------------+-------+---------------+ | value | timestamp | score | anomaly_grade | |---------+---------------------+-------+---------------| | 10844.0 | 2014-07-01 00:00:00 | 0.0 | 0.0 | +---------+---------------------+-------+---------------+
Example 2: Detecting events in New York City from taxi ridership data with time-series data independently with each category
The example trains an RCF model and uses the model to detect anomalies in the time-series ridership data with multiple category values.
PPL query:
> source=nyc_taxi | fields category, value, timestamp | AD time_field='timestamp' category_field='category' | where value=10844.0 or value=6526.0 fetched rows / total rows = 2/2 +----------+---------+---------------------+-------+---------------+ | category | value | timestamp | score | anomaly_grade | |----------+---------+---------------------+-------+---------------| | night | 10844.0 | 2014-07-01 00:00:00 | 0.0 | 0.0 | | day | 6526.0 | 2014-07-01 06:00:00 | 0.0 | 0.0 | +----------+---------+---------------------+-------+---------------+
The example trains an RCF model and uses the model to detect anomalies in the non-time-series ridership data.
PPL query:
> source=nyc_taxi | fields value | AD | where value=10844.0 fetched rows / total rows = 1/1 +---------+-------+-----------+ | value | score | anomalous | |---------+-------+-----------| | 10844.0 | 0.0 | False | +---------+-------+-----------+
Example 4: Detecting events in New York City from taxi ridership data with non-time-series data independently with each category
The example trains an RCF model and uses the model to detect anomalies in the non-time-series ridership data with multiple category values.
PPL query:
> source=nyc_taxi | fields category, value | AD category_field='category' | where value=10844.0 or value=6526.0 fetched rows / total rows = 2/2 +----------+---------+-------+-----------+ | category | value | score | anomalous | |----------+---------+-------+-----------| | night | 10844.0 | 0.0 | False | | day | 6526.0 | 0.0 | False | +----------+---------+-------+-----------+