Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add 2 citations and remove 1 citation #105

Merged
merged 1 commit into from
Jun 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions LIST_OF_CITATIONS.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. B.G. Carvalho. Evaluating machine learning techniques for detection of flow instability events in offshore oil wells. Universidade Federal do Espírito Santo. Master's degree dissertation. 2021. https://github.com/petrobras/3W/raw/main/docs/master_degree_dissertation_bruno_carvalho.pdf.

1. E. M. Turan, J. Jäschke. Classification of undesirable events in oil well operation. 23rd International Conference on Process Control. 2021. https://doi.org/10.1109/PC52310.2021.9447527.
1. E.M. Turan, J. Jäschke. Classification of undesirable events in oil well operation. 23rd International Conference on Process Control. 2021. https://doi.org/10.1109/PC52310.2021.9447527.

1. I.S. Figueirêdo, T.F. Carvalho, W.J.D Silva, L.L.N. Guarieiro, E.G.S. Nascimento. Detecting Interesting and Anomalous Patterns In Multivariate Time-Series Data in an Offshore Platform Using Unsupervised Learning. OTC Offshore Technology Conference. 2021. https://doi.org/10.4043/31297-MS.

Expand Down Expand Up @@ -113,7 +113,7 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. Y.S.A. ElWahab, M.M. Nasr, F.K.A. Sheref. An intelligent oil accident predicting and classifying system using deep learning techniques. Indonesian Journal of Electrical Engineering and Computer Science. 2023. https://doi.org/10.11591/ijeecs.v29.i1.pp460-471.

1. I.S. Figueirêdo. Uma nova abordagem de inteligência artificial baseada em autoaprendizagem profunda para manutenção preditiva em um ambiente de produção de petróleo e gás offshore. Centro Universitário Senai Cimatec. Doctoral thesis. 2023. http://repositoriosenaiba.fieb.org.br/handle/fieb/1730.
1. I.S. Figueirêdo. Uma nova abordagem de inteligência artificial baseada em autoaprendizagem profunda para manutenção preditiva em um ambiente de produção de petróleo e gás offshore. Centro Universitário Senai Cimatec. Doctoral thesis. 2023. https://github.com/petrobras/3W/raw/main/docs/doctoral_thesis_ilan_figueiredo.pdf.

1. L.V. Magnusson, J.R. Olsson, C. Tran. Recurrent Neural Networks for Oil Well Event Prediction. IEEE Intelligent Systems. 2023. https://doi.org/10.1109/MIS.2023.3252446.

Expand All @@ -123,7 +123,7 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. R. Salles, J. Lima, R. Coutinho, E. Pacitti, F. Masseglia, R. Akbarinia, C. Chen, J. Garibaldi, F. Porto, E. Ogasawara. SoftED: Metrics for Soft Evaluation of Time Series Event Detection. arXiv. 2023. https://doi.org/10.48550/arXiv.2304.00439.

1. A.J.M. Junior. Integração humano-máquina para o monitoramento de processos industriais baseado em dados. Universidade Federal do Rio de Janeiro. Doctoral thesis. 2023. https://github.com/petrobras/3W/raw/main/docs/doctoral_thesis_afranio_junior.
1. A.J.M. Junior. Integração humano-máquina para o monitoramento de processos industriais baseado em dados. Universidade Federal do Rio de Janeiro. Doctoral thesis. 2023. https://github.com/petrobras/3W/raw/main/docs/doctoral_thesis_afranio_junior.pdf.

1. B. Chen, X. Zeng, W. Zhang, L. Fan, S. Cao, J. Zhou. Knowledge sharing-based multi-block federated learning for few-shot oil layer identification. Energy. 2023. https://doi.org/10.1016/j.energy.2023.128406.

Expand Down Expand Up @@ -167,6 +167,6 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. A. Melo, M.M. Câmara, J.C. Pinto. Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey. Processes. 2024. https://doi.org/10.3390/pr12020251.

Preprint articles
1. A.P.F. Machado. Methodologies to Improve One-Class Classifier Performance Applied to Multivariate Time Series. Universidade Federal do Espírito Santo. Doctoral thesis. 2024. https://github.com/petrobras/3W/raw/main/docs/doctoral_thesis_andre_machado.pdf.

1. R. Schena, J.C. Netto, J.L. Carbonera, M. Abel. A Methodology for Synthetic Failure Data Generation in Digital Twins for Data-Driven Prognostics and Health Management (PHM) Models. Social Science Research Network. 2023. https://dx.doi.org/10.2139/ssrn.4334023.
1. E.M. Turan. Advances in Optimisation and Machine Learning for Process Systems Engineering. Norwegian University of Science and Technology. Doctoral thesis. 2024. https://github.com/petrobras/3W/raw/main/docs/doctoral_thesis_evren_turan.pdf.
Binary file added docs/doctoral_thesis_andre_machado.pdf
Binary file not shown.
Binary file added docs/doctoral_thesis_evren_turan.pdf
Binary file not shown.
Binary file added docs/doctoral_thesis_ilan_figueiredo.pdf
Binary file not shown.
Loading