diff --git a/.gitignore b/.gitignore index 02d78242..d067f8e7 100644 --- a/.gitignore +++ b/.gitignore @@ -14,6 +14,7 @@ examples/data/cifar* data/plenoptic-test-files data/ssim_images data/ssim_analysis.mat +data/msssim_images data/cat7* data/elep* docs/_build diff --git a/examples/09_Original_MAD.ipynb b/examples/09_Original_MAD.ipynb index 065d4594..f742d686 100644 --- a/examples/09_Original_MAD.ipynb +++ b/examples/09_Original_MAD.ipynb @@ -70,16 +70,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/billbrod/Documents/plenoptic/plenoptic/metric/perceptual_distance.py:92: UserWarning: dynamic_range is 1 but image range falls outside [0, 1] img1: tensor([0.0039, 1.0000]), img2: tensor([-10.7873, 12.8881]). Continuing anyway...\n", + "/home/billbrod/Documents/plenoptic/plenoptic/metric/perceptual_distance.py:40: UserWarning: dynamic_range is 1 but image range falls outside [0, 1] img1: tensor([0.0039, 1.0000]), img2: tensor([-11.3368, 12.8298]). Continuing anyway...\n", " warnings.warn(\"dynamic_range is 1 but image range falls outside [0, 1]\"\n" ] }, { "data": { "text/plain": [ - "tensor([[0.0030],\n", - " [0.0014],\n", - " [0.0005]])" + "tensor([[0.0026],\n", + " [0.0013],\n", + " [0.0006]])" ] }, "execution_count": 3, @@ -135,11 +135,14 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "On device cpu\n" - ] + "data": { + "text/plain": [ + "'/home/billbrod/Documents/plenoptic/tests/../data/ssim_images'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -165,7 +168,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAIOCAYAAAAmx3/JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOwwAADsMBx2+oZAAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd7xlVX3///dHmH5nGJgZmlJsWH9C7CVGjS12YonGAgT9GeNXYxJjYvBrwa7RaIwFNTbEXrDXGFAwttgIREGlDWVgeh+G8vn+sffdvr2ez737DsPAvfv1fDx4sGaftddea59z77lnnc9nrchMAQAAAACA2e1mN3YHAAAAAADADY8JAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJgGmKiBMi4t93d90ebWVE3KZ47KsRcezuuA4AAAAAYHaKzLyx+3CjiYjjJL1Q0q0lbZJ0qqR/yswNN2a/RomIlHTbzPz1jd0XAAAAAMDMM9gIgIh4oaQ3SHqRpH0k3VvSYZK+GRFzi3P23nM9BAAAAABg9xnkBEBELJF0oqTnZ+bXMvPqzLxQ0p9JOlzS09t6r4iIT0fEKRGxSdJx7bFTrK1jIuKiiFgbES+NiAsj4iF2/ilt+fA2jP/YiLg4ItZExEusnXtGxPciYkNEXB4Rb68mIkaM5/SIeFZbPi4ivhsRb2nbOj8i7tseXxkRV3q6QEQ8KiJ+GhGb2sdfMaHtycZ3s4h4cUT8pn38kxGx37SfEAAAAADADW6QEwCS7itpvqTP+sHM3CLpK5IeaocfJ+nTkpZK+ojXj4g7SnqnpKdJOkhNJMHNp7j2H0q6naQHS3pZRNyhPX6tpL+VtFzSfdrHnzvNcY27l6SzJC2T9FFJH5d0D0m3UTO58faIGGvrbpV0TDu+R0n6q4g4uuf4ni/paEkPkHSwpPWS3rGLfQYAAAAA3ICGOgGwXNKazLxmxGOXt4+P+15mfi4zr8vM7RPqPlHSFzPzzMzcKellkqZaVOHEzNyemT+X9HNJR0pSZv44M7+fmde00QjvVvPBeldckJkfyMxrJX1C0iGSXpmZV2XmNyTtVDMZoMw8PTP/px3fWZI+ZtedanzPkfSSzLwkM6+S9ApJTyRVAgAAAABueob6QW2NpOURsfeISYCD2sfHrZyknYP98czcFhFrp7j2KitvkzQmSRFxhKR/kXR3SQvVPDc/nqKtyhVW3t72beKx8eveS9LrJd1Z0lxJ8yR9qq031fgOk3RqRFxnx66VdICkS3ex7wAAAACAG8BQIwC+J+kqSY/3g21Y/CMkfcsOT/aN/uWSbmHnL1ATdr8r3iXpl2pW+l8i6QRJsYttTcdHJX1B0iGZuY+kk+y6U41vpaRHZOZS+29+ZvLhHwAAAABuYgY5AZCZG9UsAvhvEfEnETEnIg6X9ElJl0j6cM+mPi3pMe0ie3PVhMDv6of2xWq2ItwSEbeX9Fe72M6uXHddZu6IiHtKeqo9NtX4TpL0mog4TJIiYkVEPG4P9RsAAAAAMA2DnACQpMx8o5pv2d+k5oP3D9R8o/3gNp+9TxvnqFkI7+Nqvi3fIulKNdEF0/X3aj58b5b0XjW5+3vCcyW9MiI2q8nx/+T4Az3G969qoge+0Z7/fTULEAIAAAAAbmIic6o169BXm0KwQU0Y/wU3dn92t9k+PgAAAACYzQYbAbC7RMRjImJhRCxSE03wP5IuvHF7tfvM9vEBAAAAwFAwAXD9PU7SZe1/t5X0lJxdYRWzfXwAAAAAMAikAAAAAAAAMABEAAAAAAAAMABMAJiIODwiMiK2RMSzb+z+4PqJiP+MiB0RceaN3RcAAAAAuLExATDa0sx8jyRFxNyI+HREXNhODjxwshMjYr+IODUitkbERRHx1N3duXai4rSI2BYRv4yIh0x4/G8jYlVEbIqI90fEvJ7tPioizoyIDe35/x4Riyepf1pErG6v8/OIeNz1HduIa5RjjYhjI+LH7fUviYg3RsTe449n5h9Les7u7hMAAAAAzER7fALAP6DNIGdKerqkVT3qvkPSTkkHSHqapHdFxJ2me8GI+GBEHFc8/DFJP5W0TNJLJH06Ila05z1c0oslPVjSYZJuJenEnpfdR9KrJR0s6Q6Sbi7pnyep/wJJB2XmEknPlnRKRBzU81qdXR2rpIWS/kbSckn3UjPmv5/u9QEAAABgCPbIBED7zfn/iYhfSfpVe+xfI2Jl++3tjyPi/lb/FRHxyYg4OSI2R8Q5EXF3e/yuEfHT9rFPRcQnIuLV9vijI+Jn7TfZ/xURd9nVvmfmzsx8a2aeKenaKca5SNITJL00M7e053xB0jOszvER8YuIWB8RX4+Iw6bTn4g4QtJdJb08M7dn5mfUbM33hLbKsZLel5nnZOZ6Sa+SdFzPsX40M7+Wmdvac98r6X6T1D8rM68Z/6ekOZIO2VNjzcx3ZeYZ7XN0qaSPTNZfAAAAABiyPRkBcLSab2nv2P77R5KOkrSfpI9K+lREzLf6j5X0cUlL1XyIfrvUhORLOlXSB9tzPybpT8dPiog/kPR+SX+p5lvjd0v6wngYfES8MyLeeYOMUDpC0jWZeZ4d+7mkO7XXfpykEyQ9XtIKSWe0/Z+OO0k6PzM3j7pG+/+fT3jsgIhYNs3rSNIfSTpnsgoR8aWI2CHpB5JOl/Tf7fE9MdZp9xcAAAAAhmpPTgC8LjPXZeZ2ScrMUzJzbWZek5lvljRP0u2s/pmZ+ZXMvFbShyUd2R6/t6S9Jb0tM6/OzM9K+qGd92xJ787MH2TmtZn5IUlXtecpM5+bmc+9gcY4JmnThGMbJY3n0T9HzX34RfvN+WslHTXNb8bH2jara0x8fLxc5vKPEhEPVRNN8LLJ6mXmo9u2HynpG5l5XfvQnhir9/d4SXeX9KZptA8AAAAAg7EnJwBW+j8i4u/b8PCNEbFBTf75cqvi+fbbJM1v1w84WNKlmZlF24dJemEb/r+hbfuQ9rwb2hZJSyYcWyJp/BvswyT9q/VrnaRQk2uviDjLHnuqpHfaOMajFqa6xsTHx8ub1VNE3FtNVMYTJ0QzjNROxHxV0sMi4rF7cKzj/T1a0uskPSIz1/QdJwAAAAAMyZ5ckK/7wN7m+/+DmkXbzsnM6yJivZoPiFO5XNLNIyJsEuAQSb9pyyslvSYzX7P7ut7beZL2jojbZuav2mNH6rdh6eN9+8iokzOzW6sgIj4o6fTM/OCEaudIulVELLbQ+CPVfGAff/xISZ+0x67IzLV9BtCmUHxB0vGZ+a0+55i9Jd26Le+JsSoi/kTNWgWPysz/mWZ/AQAAAGAwbqxtABdLukbSajUfmF+m3/+mt/I9NYvxPS8i9m5zze9pj79X0nMi4l7RWBTN9nbTCoF3ETHP1ieYGxHzI+L3Jisyc6ukz0p6ZXvd+0l6nJoUBkk6SdI/je8KEBH7RMSTptOX9hv5n0l6eduPP5V0F0mfaaucLOmZEXHHiFgq6f+qWS9hfCynR8QrinHeWdLXJD0/M784WT8i4vYR8YiIWBARcyLi6Wpy8L+9p8YaEX+sZuG/J2TmD+uWAAAAAAA31gTA19V80DxP0kWSdmhCikAlM3eqWVjumZI2qNme70tq8vyVmf8t6f9Xs2jgekm/lq2CHxEnRcRJ0+zvuZK2qwlf/3pbPqxt74SI+KrVfa6kBZKuVLPo3V9l5jlt306V9AZJH4+ITZLOlvSIafZFkp6iJt99vaTXqwnVX91e42uS3ijpNEkXq7m/L7dzD5H03aLdF6pZsO99EbGl/a9bVG/CvQtJr2jHuVrNloBPzsyf7KmxSnqpmtSRr1h/v1q0AwAAAACDFr+bSj8zRcQPJJ2UmR+4nu0cpubD/g5JL8rM9+6O/t1URMQtJH0yM+97Y/dlT4iIb6pZ/PGHmfngG7s/AAAAAHBjmpETABHxADUf1NdIepqacPNbZeblN2rHAAAAAAC4idqTiwDuTrdTs8jdIknnqwkL58M/AAAAAACFGRkBAAAAAAAApufGWgQQAAAAAADsQYObAGi3wXtWW35aRHxjD1//8IjIdsX6Z+/Ja09XRDyk7ed1EfGQG7s/AAAAAIBdN7gJAJeZH8nMh91Il1+ame8Z/0dELIyId0bEmojYGBHfmXhCRMyNiF9ExCXTuVBE3CoivhQRm9v23ziizm0jYkdEnDJ+LDP/IzPH1GwnOFn7D4yI46aoc1pErI6ITRHx84h43HTGAAAAAAC4fmbqIoCz0XvUPB93kLRO0lEj6rxI0mpJi/s2GhFzJX1T0jskPVnStZKOGFH1HZJ+NJ0OR8TRkvaXdF7778dLWpGZ7x5R/QWS/jczr4mIe0n6j4g4gsUbAQAAAGDPmPURABHx0Ij4Zfut+tslhT12XEScaf/OiHhuRPyq/bb8VRFx64j4r/ab60+2H6gVEcvbb9U3RMS6iDgjInbpfkbE7SU9VtKzM3N1Zl6bmT+eUOeWkp4u6XXTbP44SZdl5r9k5tbM3JGZZ01o+ymSNkj61jTb/rykayS9VtLfSLq1pA+MqpiZZ2XmNeP/lDRH0iHTvB4AAAAAYBfN6gmAiFgu6bOS/q+k5ZJ+I+l+U5z2cEl3k3RvSf+g5pv5p6v5sHpnSX/e1nuhpEskrZB0gKQT1HywVRvK/85pdPWeki6SdGIbov8/EfGECXX+rb3G9mm0q3YcF0bEV9u2T4+I/2/8wYhYIumVkv5umu2O820krpvw79/RTpjskPQDSadL+u9dvCYAAAAAYJpm9QSApEdKOiczP52ZV0t6q6RVU5zzxszclJnnSDpb0jcy8/zM3Cjpq5L+oK13taSDJB2WmVdn5hnZ7qmYmc/NzOdOo5+3UDO5sFHSwZKeJ+lDEXEHSYqIP5W0V2aeOo02ve2nSHpb2/aXJX1+PJJB0qskvS8zp7WuQOtoSXMlvUTNvb1A0vFV5cx8tJr0hUequa/X7cI1AQAAAAC7YLZPABwsaeX4P9oP6Cvr6pKkK6y8fcS/x9ryP0v6taRvRMT5EfHi69HP7WomFF6dmTsz89uSTpP0sIhYJOmNkv76erR9ZmZ+NTN3SnqTpGWS7hARR0l6iKS37ErDmXlqm+8/PvHx2SL/38+5OjO/qmZsj92V6wIAAAAApm+2LwJ4uSzPPCJCuynvPDM3q0kDeGFE3FnSf0bEjzJzunn0knTWiGPjofS3lXS4pDOa7muupH0iYpWke2fmhT3artIeHti2fXHb9pikvSLijpl5176dz8zT+9Y1e6tZMwAAAAAAsAfM9giAL0u6U0Q8PiL2VvMt+oG7o+GIeHRE3KadVNioZnX9XQ1p/46arfb+KSL2joj7SXqQpK+rSUM4RM2uAEdJepaaqISj1EYzRMSFk2zDd4qke0fEQyJiLzWL9a2R9As16xvc2to+Sc09e/gujmOkiLh9RDwiIhZExJyIeLqkP5L07d15HQAAAABAbVZHAGTmmoh4kpr89w9I+rCk7+6m5m8r6e1qFgFcL+mdmXmaJEXESe31n9Ozn1dHxOMk/bukF6tZEPCYzPxlW6VbtyAi1km6LjNXtf+eqyak//tF2+e2H7hPUrNl308kPbZNB9gpaZu1vUXSjsxc3esO9BeSXiHpjmomSn4l6cmZ+ZPdfB0AAAAAQCHadeuwh0TEYZLOlbRD0osy873Xs70/lPR/MvPPp6w8/bYfLOkzkuZJeuT4BAcAAAAAYOZhAgAAAAAAgAGY7WsAAAAAAAAAMQEAAAAAAMAgMAEAAAAAAMAAMAEAAAAAAMAAMAEAAAAAAMAA7N234pvf/OZuu4Drrrtuyvp96lwfV199dVe+5pprRl7Xj1977bUj68yZM6crL1y4sCtv3bp1ynbc3Llzu/LNbvbbeRWv732u+K4METGyn96+1/fy6tWru/LatWu78ubNm0e24/33dvxeeX8WLFjQla+66qquvHPnzpHH/R7Onz+/Kx9++OFd+bDDDuvKBx98cFeeN2/eyHP33nv0y9ev5fe8Gkt1rtd/5jOfOfoEAAAAAJghiAAAAAAAAGAAmAAAAAAAAGAAeqcAOA+f9nDxPnWqcp9rebkK//aQ+z6h+HvttVdXrtIWqnBx5+dWaQhe9v73uQ/eZ6+/Y8eOruwh9xdeeOHI/ng4/b777tuVPf3B79X27dtH9n/9+vUj+7Bt27aR7Xjo/oEHHtiVb3GLW3TlW97ylhqlSnnw/jiv4+e66lwAAAAAmK2IAAAAAAAAYACYAAAAAAAAYAB6pwD0CVN3fVIAqhX1nYfoV/3pk4ZQhfFXofVViLj3p6pfraLv+oy96qfvULBp06auXIXfe3i/pwB4eH+160EV3u+r/XvZr+s7BSxbtqwr77///l15yZIlXdnvrV/LVcc9pcLD/v15r1IJ/LiXqzQTAAAAAJiJiAAAAAAAAGAAmAAAAAAAAGAAdinGuc+q/n1Wzu+jCpX30HqvU/WhTxqCt+lh7R6a7iHiXr9PaoP3x0P6qza9HQ/R37BhQ1feuHFjV/Zw/SrU389ds2bNyDoe+u5h/H4fli5d2pXHxsZG1t9nn326sq/8v2LFipH1vQ99nqOqTvV8uWq3iLlz5055LgAAAADMRHzCAQAAAABgAJgAAAAAAABgAHqnAFSr3Fd2VwpAxftTrdg/Z86ckf2pyh5eXu0+UK3q7+14CL33zcPOPcXAQ829vtfxUP8tW7aMrOPWr18/sk1PE6hW7/exe3j/AQcc0JV9jB427zsOeNlD/f0eekqC8xSGKq3D+1kdr54vvyfV7gDsAgAAAABgNiECAAAAAACAAWACAAAAAACAAegd41yFrFeqEPrpqlbv99BuL1d98+NVaLe37yHrvmJ/lW7QZ3cAb6faBcBD8bdt29aVfYX8q666auS5nvKwbt26kef62Pfff/+u7GH8XsfD/g855JCR16rKlep59DB+36HAj3s/Fy1aNPJ4lX5Shfd7fVb+BwAAADBb8WkHAAAAAIABYAIAAAAAAIAB6J0CUIW1VyHTHsruZT+3WsW9Cu+v6lR98LSFajX4akeD6twqvNzD8r1cpU54WL637ykGXsdX9ffwfj93/vz5I/uw7777duX99ttvZH0fl6c/eH0P7/c2K9VroLo/1evEdxOoUhWqNA1/jXm5StmodkMAAAAAgJmOCAAAAAAAAAaACQAAAAAAAAagdwqA8/DsKmzbj1cr58+bN68re0h2FZY/XdXq7t5+FdJfha9XPATdQ/c9xL3qWxUev2XLlq7sOwJUIe4+xlve8pZdeWxsrCsvXry4K3s4vZ/rq+t7qP/SpUu78ubNm39/UPrde+v9rO6n1/FQfN+hwFMSvOwpCdVuEc7HWL0e+qS3AAAAAMBMxCccAAAAAAAGgAkAAAAAAAAGYJd2AajKzsO8vY6HrFeh2lVIdhWu34efW7Uz3dSDKuXBw/49pN/re5j9jh07urKH/W/dunXkdffZZ5+u7CH9fvzQQw/tyr5avped981D6/35qtIZqvQHP17t2uAr/HvfPN3A+9MnbcSvW/FrVa9hUgAAAAAAzCZ8wgEAAAAAYACYAAAAAAAAYAB6pwB4+Pf1WaXfz/XQ62r1eK9The5X4f3TDeGuwtS9zSrs30PlPby8CoP3Nr2OpwN4+x4Sv2zZsq68fPnyruzpAB5aX/HrVve/SknwHQT8teEpAF72+7NkyZKu7GkLPkYP9fcUAC/7c+T31u9/nzSTKpWAFAAAAAAAswmfcAAAAAAAGAAmAAAAAAAAGIBdSgFwHiZdhWRXof6uCkGveJh3Fa7vqjD+agX4irfjYe1VCoCHylc7GnidalX//fbbryt72L/vJuBt+vPVZ/eE6jnyXQzc2rVrp2zT78OCBQu6sof677vvviOPV8+v3+fp7ubgxz3V4vqktAAAAADATEEEAAAAAAAAA8AEAAAAAAAAA9A7BcBXjK/C4D2M3I9XqtX7q/BvXwG+T4h71b6r0hauT5qAj9377H2YP3/+yLKH9/u5Y2NjXdlXyPcQfV+xv9rRoOJpF9UuDO7KK6/syp624KkKnsLgdXwXAE9h8PH6GKerT8qJv8b6tAMAAAAAMx0RAAAAAAAADAATAAAAAAAADEDvFIAqhH66YdJe/9prr52yfQ/V9hBxP7daJd6Peyh4Va52CqiOV3WqtAgfi9f38H7fEcDreDu+gv22bdu68vbt20f2rUoB8FB/TyWozvW+VSv5r1ixoisvW7asK1cpDx7q78+vX2u6O0pUaR3O23fVtQAAAABgpiMCAAAAAACAAWACAAAAAACAAeidAlCFtVch2R6iP91Qag/hrlakr0L9vewh9H1W+/eyh6b7WLw/Xt/D+71O1YfNmzdPWcfD8rdu3Tqt/nuaQHV/+tzbhQsXjix7CoCnMPjK/wsWLOjKVSqH3+cqHaBPWP50U1R8Fwnn98efdwAAAACY6YgAAAAAAABgAJgAAAAAAABgAHqnAHg4uodVe+h1tVp+Vb9and7rX3311SPreJi6l311dz/ep5+uCuP3UPY+q9BX6QOLFi0aWd/vc7XTgd+TKiWhuodep8+q/h7e7yH61c4FHvbvZa9TPe/VeF2fnR36pAz0OdfvLQAAAADMdEQAAAAAAAAwAEwAAAAAAAAwAL1TAKow6UoVPu0h9FWYd58++CrxfXYE8Ov2SQHwUPw+/anG4tfyfnr/q50LPCTe68+fP39kHX9efMV+r+PtVyH9ixcvHtlOlV7h99b75vW9/9X9r8qVPmH8rrpX1e4VffoAAAAAADMFEQAAAAAAAAwAEwAAAAAAAAxA7xQAD/l2VVi1H69UOwL0WV2/CuHuo0ofqMLvp6vqZ7UbQhW+XqUJuOqeexi/83B9D9H3UH9fvd/74Od6uc8uDH363+d49VxXz1ef12ef4wAAAAAw0xEBAAAAAADAADABAAAAAADAAPROAajC2l0V7u6qlds9JN5V4fq+y4Af9xDuauV/H0uV2uAr5Luqnz5ev261wnx1r6r7Vq2iX43dV+Ovdh/wso+3Ct33sXiov+uzs0MVct8nlaPPDg7eZtX+1VdfPeW5pAAAAAAAmE2IAAAAAAAAYACYAAAAAAAAYAB6pwBU4dYeil+tcu/H+9SvwvWr8OxqZXsPa/fjVTi9q0LEq/quWtXfVWHqfn/8Wj6WagV+v5av5O/3sFqlv9pxoHpeXJUeUr0GqrSI66N6XU237P2pXgMAAAAAMBMRAQAAAAAAwAAwAQAAAAAAwAD0TgHos7J6VaeqX+0CUIW1uyo820PZq/arFIOqHTfd8Pg+K9VX9at74ikAVX+qOtMN9a/quOo5mu7OEX1SJ1xV39MBvOz1qzreDikAAAAAAGYTIgAAAAAAABgAJgAAAAAAABiA3ikA69ev78rVqukeSl2F1nsoexWyXqnSDbwdD9v2soe++7WqcPfphspX4fF9UgOmm0pQ9dnHVT0X1T3057TPfahC9Ksw+z7h/dOtU/W/en368Z07d46sc0PsUAAAAAAANwVEAAAAAAAAMABMAAAAAAAAMAC9UwCuuOKKrtxnNfV99923K3vYv4eR+3EvVzyEe968eV25WvHeVSvqz507d2Q71bl9wvX7pDNUIfrVfahC2f1afq6336cPVfh99dxV7Ve7PFS7Qrg+K/9X9atUlCo1wNNDqjrVDg4AAAAAMBMRAQAAAAAAwAAwAQAAAAAAwAD0TgH41a9+1ZU99N1Dpv34ypUru7KH6++///5d+ZBDDunKixYtGnldD8PukybgIfELFy4c2Yc+K/bPnz9/5PFqF4Mq9L0KL69SFarxVuH0VSi719+xY0dX9vD4alx+rq+WX+0+UN2Hqj9VCkCf57pP2L+r0hyq6043DQEAAAAAZgoiAAAAAAAAGAAmAAAAAAAAGIDeKQBPfOITu7KHSa9du7Yrr1u3riufe+65XXnOnDld2UP9ly1bNvL41q1bR17Lw/KrlfOr0Hrn9T1lwNMEfHcAb7MqV6H+HqbuoeZ+3So0vUq1qELr/fimTZu6cpUmUO0gUPXBn8c+Yf9VqH8fVUpCn7SCPveqTxkAAAAAZhMiAAAAAAAAGAAmAAAAAAAAGIDeKQAnnnhiV962bVtXXrVqVVe+/PLLu/Jpp53WlT01wMPmly5d2pU9pNzbr1aq93D0KqS/ShPwOt6Oh/0vWLBgZB+qNquwc1+FvgqJr9IEqnB0b9/D+72f69evH9m+n1ulTnjZ0y6qvlXtu2os1W4CPq6qnT67LfRJx6jar3aLAAAAAICZiAgAAAAAAAAGgAkAAAAAAAAGoHcKwJIlS7rywoULu/KKFSu68h3ucIeufMQRR3Tlc845pyufddZZXdlTA3bs2DHyuh6KX6UAeBh5FdLvZa9TrYRfpQz48SpE3MPO/Vp90gGmu9q/l6tdA3bu3NmVr7rqqpF9qHYoGBsbG1mu+u99qMquShlwfcL1q5SEqn6VYuD67CgBAAAAADMFn3AAAAAAABgAJgAAAAAAABiA3ikArgrt9vDyZcuWdeVDDz20K/tOAZdccklX3rBhQ1f23QF8Ffp58+aNvG6VGlClAFSr31eh5tV4vU0/3mfVfU958OOuWpG+WjnfecqG76rg/fE+bN26dWQ727dvH1nf++ApA9UuDFU4fZXmcH1W4J/uTgqOsH8AAAAAsxWfdgAAAAAAGAAmAAAAAAAAGIDeKQAeRu4rqPsK8+vXr+/KHgbv4dwHHHBAV95vv/26soeauyoU3MPvPezcj3vKQBWuX4XTV3Wq3QGqkHhf+d/r+H3rs7NAtROBpzz4uT5230nB63t4vIf3b968uSv78+KvAd8Jwq9bpWBU97kK16/urbs+aQKeAkDYPwAAAIAh4JMPAAAAAAADwAQAAAAAAAAD0DsFwFfs99BrD3H3XQC2bNkysh0PCz/44INH1vE2qxX7fXcAr1Ot9l/tGlCd66HsVZ0qTN3TH6oV/r0dr1+lDHjIepXO4OUqLWLRokVd2cP4vZ8eiu+7A3iaQHVdr1PtDlA9p9W9qq5Vlfvs5uB1/N5en7QCAAAAALgpI7DvT2kAACAASURBVAIAAAAAAIABYAIAAAAAAIAB6J0C4Dx82kP9fXeAKh1g06ZNXdlDvlesWDGyHefh4r7KfRXe76pw8WpV/z7h631Wqu+zyn2144CnBnjZz3VV+Hq1C8DY2NjIc/258z77zgUeNl+F3PvzWO0OUKVaVPdtd63YX/V5unUAAAAAYKYgAgAAAAAAgAFgAgAAAAAAgAHonQLgq8FXK8N7edu2bVOWPYy8CgV3VYi7pwN4O87D0T2M3MtViL6HrFfX8rFUYepV/6swe++zpwBUK+d7H1wVfu/tezs+Rq/vOxR4n70dr1PV92v5rgRe9j74uKr70Gc3Adcn9aC6nwAAAAAwExEBAAAAAADAADABAAAAAADAAPROAdi4cWNX9jB+XzF++/btXXnDhg0j61dh59WK+lWIvp/bZ2X4KkTcr+th5x6KX4XuVyHu1er91cr2VdlV4ejVdX1c1a4KfUL0fezevu8s4PW9TpXO4Pz143y81S4JXqdP2L/zsVeq5x0AAAAAZiIiAAAAAAAAGAAmAAAAAAAAGIDeKQDr1q3ryh7S72He1Wr/vjuAh217GLmvNu/h6x6G7eVq5fw+4eseRu5h/1UYfJ+V4f14Fcbv/anq90kl8LKHsldjrFbp9/B774/ff78P/hxVaRdVyoaXvQ/eNy97fb9v1Y4GPvaqP67qT59zAQAAAGAm4hMOAAAAAAADwAQAAAAAAAAD0DsF4Morr+zKHtLvYdtbt27tyh4+XYWmV+HcXq542L+Hr1erx1cpA1726/ZJJeizYn8Vmu7H/R5WfavqVOH9Xq7GUrXj/Z8/f/7I/lf32cdVpUtUuwZU6QlVWoGf623668qPVzsFeMpD1WcAAAAAmOmIAAAAAAAAYACYAAAAAAAAYAB2KQWgCjXfvn37bxu2sGoP4faV//14FZ7dZ3X96ri372Vvs1qRvqpf9dnD4KuV+avjHorv6RVe9joeHl+tou/pDB4S7/30nRo2btzYlbds2TKyn95OtUp/lUrgdbxv1XPh4/VrVeN11dh9xwd/7rwP1esQAAAAAGY6IgAAAAAAABgAJgAAAAAAABiA3ikAHp5dhUx7mLenA/hK8p4a4Me9HQ/59uv6cW+/Wg3e0w2qNj0M3lUrw3tIecX74+H6fcL4fVxerupXuyFU6Rg+dt+1wVMAPPXAz/XQen+uXRWu733zNqvnxeu4avcEb6dKPfD0DT9ejQUAAAAAZhMiAAAAAAAAGAAmAAAAAAAAGIDeKQBVSHZVx0PTPXR8bGysKy9cuLAre3h2FTbvqhQATyuowr+rlfm9TU8f8Hb8XG/TQ9C9jofTe8i6h9/7eKuwf78PVTpGdV1X7TLg1/Xx+v3057HPjgnVTgFVuoef69dy1T2vdlio+umqXQnYEQAAAADAbEIEAAAAAAAAA8AEAAAAAAAAA9A7BcBVYdtVuLWHWM+bN++3Fy9W2vfQdw9Tr8LdnYdte/i6l6u0Au+bh+i7PqvHezh6tXq/H6/KPvYqbcGfCy9v2rRp5HWrlATn98Gfx2oV/SpU3p/3ajeBPmOprlvtJtCn7PfTX1eO3QEAAAAAzCZEAAAAAAAAMABMAAAAAAAAMAC9UwA8ZHr9+vVd2UO4Pczew6p95f/FixePrOOr0DsP296yZcvI63oo+NKlS7uyr+TvYeRz5swZ2X4Vcu8h7tWOANUq/V72Oh5+X5X9/lTteJ+9zmWXXdaVfbx+/30XBh+Lh+h7edu2bSPP9Xvo/Fr+HPnz6P2vXht+/32MnqZRPXf+fFW7ElS7AwAAAADAbMInHwAAAAAABoAJAAAAAAAABqB3CoCHpleru3so9aJFi7qypwZ4nWoldi9Xq7h7GLmH+nsdDx2vVrN3Xt/D3T3s3EPNqxD0qv+uWtW/Kns7vlOAp074cb/nfq4/j9W1PDzen2tPJahW4+8TTl/tpOB983F5+94Hf778uPOxV7s/+HHSAQAAAADMVnzaAQAAAABgAJgAAAAAAABgAHqnAGzYsKEre7i1h0x7KPWKFStG1nd9VravQtw9BaAK8/b2q/D1qlytPF/1zVMGPLzf+b3yNqvV/r3sbVYpAB5CX+104CH9FR/7vHnzRvazquN98D5X6SF+3Nv3FAbXZ8cEV6V+eP0qFaVK3wAAAACAmYgIAAAAAAAABoAJAAAAAAAABqB3CsDmzZu78uLFi7uyh2r7au1VmHe10ruH0PvxKuTew7Y97N9TA7zPvlOAh6w7b9/D7/14lWLgoeNVaHq1wnwV9u/t+HX7hL77/alWy/d0AL+uP6eeFlGFxHs7Xsf75tf114mXPbXBrV+/viuvXr26K1dpIAsXLuzK/rxXu0JUx33sAAAAADDTEQEAAAAAAMAAMAEAAAAAAMAA9E4BqEKmPdzaw7mr0GsPTe8T7u5h4V7f2/RzPSx83bp1XXnJkiUjx+Jh6tWOAxs3buzKmzZt6sqetuCpCn6uh6Z7n/3+VGkFftzL3mYVpl7tRODn9lnlvkpb8DQKf94rPnbn98rvp4f9X3nllV35sssu68p+z8fGxrry8uXLu3KV5uApCf4aqFIqAAAAAGCmIwIAAAAAAIABYAIAAAAAAIAB6J0C4Cv/V2HhHgruId8eal6lAHjodVXfy34tb8fDwn0XAOf993Y8BN1D0zds2NCV16xZM7J+Fa7v98FX1/c61T3x457m4DyU3cdVreRfrerv99/rVKv3V+dW6QnVTg2rVq0aeXzlypVd2Z9Hf16q59HTE6oV/qv76f0EAAAAgNmECAAAAAAAAAaACQAAAAAAAAagdwpAn/B1DxevQqk9XNzDsPvsCODH+6x+7yHl1c4CHi6+devWruyr/a9du7YrezqA92e6q+t736oV8n2MVdqFH69C9/14n/D46lwfV5X+UO0+4McvvfTSrnzhhReObNN3XnDeZ09L8V0AfIz+uvUdAaqdGryfpAMAAAAAmE2IAAAAAAAAYACYAAAAAAAAYAB6pwD4Kusexr9gwYKuvHTp0q5crcDvof4ehl2tol+F7ler3zs/d/v27SOPezte58orr+zKHvbvffCQcm/H708V3u+h5lX4fbXKvavSBHwsVdi/978K9fddFbxNP+78XO+zp0v4TgqrV6/uyv7aqNIZ/PXm4f2u2knB70819iq1BAAAAABmOiIAAAAAAAAYACYAAAAAAAAYgN4pAB4a7auve0i2h3l7iLiHZFer5Ve7A3i4flXHw7mdH/fwb2/HUxX8uPfZQ9CrPnvZQ9M9DN770KdOxftQha/7c+T3yncf8Gt5HecpAx5O7zsjeGqA36u73e1uXdnvz9lnn92VPaWi2q3Aj1cpJL4LgN9bb8f74PfQ++zl6p4AAAAAwExEBAAAAAAAAAPABAAAAAAAAAPQOwXAw+n7hKx7aoCHiFcr//txDzX3a1Ur4Veh/q467iHiHl7uOxpUuwlUq9Y7DyP3sHMPU/dzfYzTXZHex+j30O+t1/H2q3F5SLxbvnx5V/bQet8xwdMEPJXA++D33/n98f44f969/SpFwtv08fo993bYEQAAAADAbEIEAAAAAAAAA8AEAAAAAAAAA9A7BaAKjfbw7yqM38sezu3h8V72On7u73Tcwra9D65asd/5WDzcvQo7r8Lsq+t6O94HT5Godkbwvvl1++wU4LsweLi783vodapxecj9smXLurKP8aKLLurKV1xxRVf28PvVq1d3ZU+v8P54fR+Lj937U6WBVPW9z35dfw1UrxkAAAAAmImIAAAAAAAAYACYAAAAAAAAYAB6pwB4aLrzsH/nYdse3l+FlzsPz65Wp99nn31Gnush5R7CXa30XqlSA/zcaix+XQ87d95mdX+8nSqdoUof8Pvg7fu4fCzeHw+/X7RoUVf2FfsPOeSQrrxp06aR17388su78tjY2Mj++P3xnQX8+fLn3UP6vZ9ernZS8PFW6QPVdQEAAABgpiMCAAAAAACAAWACAAAAAACAAeidAuCh1M7D0T18vVrhvwpxr8rVbgJVGLz3s+qz169WjPeQ8ir8vupn1beqD36up1T0CUHvs1K916nC/hcuXNiVq9B674+H/a9du7Yrb926deR1fbzeB7+upwl4ComH6FepCl6udgSoUgkqfeoAAAAAwEzBJxwAAAAAAAaACQAAAAAAAAagdwrAdMOhPQy7SgfwkGxfPd6P+6rs1Yr6Vah/tQK8j6XaEaBKK/CV8L2O99nL1U4Bmzdv7so+dk8B8ONVKkE1dh+X30Nf1X/x4sVd2XdV8Doe6u+r+l900UVdedu2bV15w4YNI/vg/VywYMHIsu/44M+RP+8e6l/tzlCt8O/PRZ/Xc3VvAQAAAGAmIgIAAAAAAIABYAIAAAAAAIAB6J0C4OHTVTi68zD4asX7KlS+T/sVD+3uEx5f8RXsq5Byb99D9z3NwVez9za3bNky8nif3RM8pL9KkfD6Huq/7777jiwvX768K3tYvq/qv3LlypH9r8L7PV3C++nXXbFiRVe+7LLLurKP3dus0kCc7yzg9T2los9rAAAAAABmEyIAAAAAAAAYACYAAAAAAAAYgF1KAfCQ9Yqvcl+lA3hYuB/3UO0qDN5D/b0d75u3WaUhVKHgHnbuK89XffZQ/2pV/CodwFX9dz52D7P3cHdPSfCQeA+/X7ZsWVfef//9u7KP9/zzz+/KPpYqRN/74/fW6y9durQrH3TQQV15/fr1GsX7U63e7/et2hHAX4fVLgmeznB9UlEAAAAA4KaGCAAAAAAAAAaACQAAAAAAAAagdwpAtWJ/FaLvIdnVuR5uXZ3rdTy83EPcfUV6r7Pffvt1ZQ/5rlID/FwPNff+eHqCh/Rv2rSpK3uovJe3b9/elQ888MCuvHHjxpHX8tB3D+P3cP199tmnK/tz4WkIP/3pT7uyp2YcfPDBXfmSSy7pyj/72c+68qpVq0Zey58vH6PfH7+fPl4Py1+7dm1X9ntepRj4PfH76a+TOXPmdGUP73fV68HbYacAAAAAALMJEQAAAAAAAAwAEwAAAAAAAAxA7xQAV62o72HbFQ+x7tO+8/B4D/P241W4vodzex+q1eMXLVrUlX1cHuq/Zs2aruxh8H5PvJ0VK1aM7JuHyvu1PCTeQ+gPPfTQrlyt/O8pAO7ss88e2X9Po/CwfH8uPJVjbGysK/vOAgcccMDIOn5PfOxe9ufFdwqowvj9NeCpAdXz68f93lY7C/R5rQIAAADATEEEAAAAAAAAA8AEAAAAAAAAA7BLKQAeVl2tqO/h9B7C7SHflemmCXgIt1/Xj1eru3vf/LiH0/sq/R4e72Hzfi1ftd7D+z1c31MDPJTd23e+8v+yZcu68tatW7uyh+hXffM6V1xxRVf2HQ383nrf/Fy/n54CcLvb3a4rexj/xRdf3JVXrlzZlT01oNrBwfvjrz2v77sk+PNYpXhUqlQRAAAAAJjpiAAAAAAAAGAAmAAAAAAAAGAAeqcAeCi18zDpKlzceTh61abX8RD9akV6533wEHEvu2p1+l//+tdd2cPp/boein/QQQd1ZQ/1X7duXVdetWpVV77NbW7TlZcsWdKVN2/e3JV9Z4H169eP7P8ll1wysv5FF100sk2/D35vfVzVbgi+qr+P14/7/a9W4/edDvxaHsbv1/WdF7yfVd/89ePPr1/L+1D1uU/KAAAAAADMFEQAAAAAAAAwAEwAAAAAAAAwAL1TADyUutoFwEOmfVV55+dWbXoId9WHKoTb+Ur+Xt/75uH9ngJw3nnnjTx3/vz5I6/rK977dS+//PKu7GH5HmruK957fU8Z2L59+8g+eAqAh/r7vfL6ixcv7srV6vp+/5cvX96VPez/sMMO68qXXnppV77yyiu7sqc/bNu2rStXof6eCuH9r9I9fFxedt5OtRuCYxcAAAAAALMVEQAAAAAAAAwAEwAAAAAAAAzALqUAeEh8Fcbv4fTVyv9+rpcrVeqBn+uh8lu3bh15fOPGjSPLXt/HWK1gf/HFF3fl1atXj+yzX9fD4M8+++yu7CkAXr/afcBX8q/q+E4EHtbuofL77LNPV/bUAH/uPLXh0EMP7cq+A8LKlSu78mWXXdaVqx0iPOzfy/468XH5c+1j97H4GP314Od6+94fL1e7TgAAAADATEcEAAAAAAAAA8AEAAAAAAAAA9A7BcBDrD1E3MPjnYd/V6v6V6us+/E+dTws3/vmIf0efu9lD7mv0hCq1eM3bdo0suxh5F6uQvc9DcFD9z08vrqfnj5Q9dnvg/f/wAMP7MqeAuA7C/iOBldccUVX9vB4H4s/Fz4WH7sfd1XKhr/2fAcBb6d6jvrsdODPkV8LAAAAAGYTIgAAAAAAABgAJgAAAAAAABiA3ikAHjJdrbjuvI6vsl7tAuD1q3Duqg9eZ8eOHV25Ck33djz03XkqQbWqfLXKvbdf7XTgq+u7sbGxruyh6T4uD6f3NAG/t0ceeWRX/uUvfznyWgcddFBXvvnNb96VfVwXXHBBV968eXNX9rH4/V+yZMnIvvmK/dX98XQDf76qlf/9eJUqUu0WUaUhkAIAAAAAYLYiAgAAAAAAgAFgAgAAAAAAgAHonQLgq7I7D732UPAq7N9Dsr1OlVbg51a7A1SrxHv7fl3vp6887ykD1Vj8ut43Txnw+h4G733zEHcve4j7vvvu25X9nqxZs6Yre2qAr+rvqQSHHHJIV/bx+qr+1Y4JPsaVK1d2ZR9jlZLgYfbeTrXzgj+PBxxwQFdesGBBV/Z76Pfc72G18r/fq+r1VqW0AAAAAMBMRwQAAAAAAAADwAQAAAAAAAAD0DsFoFod3UOsfXV3D8N2Vei+n+uq8Huv3yc1oOJ1qrBwv5aP18POPWXAVePya/m98pX/+6RF+HU9tH79+vVd2VMG1q1b15Uvv/zyruxh9t4H7//y5cu7sq/2733ze+Ih997P6jXjz3W12r+nFXg/q10AKt5mdc8BAAAAYDYhAgAAAAAAgAFgAgAAAAAAgAGIKlQfAAAAAADMHkQAAAAAAAAwAEwAAAAAAAAwAEwAAAAAAAAwAEwAAAAAAAAwAEwAAAAAAAAwAEwAAAAAAAAwAEwAAAAAAAAwAEwAAAAAAAAwAEwAAAAAAAAwAEwAALvg8Bd/OQ9/8Zfzxu4HAGB24H0FALAnMAEAAAAAAMAAMAEAALNcRBwaEVsiYq8buy8AgJsG3huAYWICAABmiYi4MCK2t3/Qjf93cGZenJljmXntLrR5ekRkRBw54fip7fEHtv9eGhHvj4hVEbE5Is6LiBdb/YyIrRP69g89+/CgiDgtIjZGxIUTHts/Ij4WEZe1j383Iu41oc7zI+KCiNgUEf8dEX843fsAADPVDfTecKeI+EZErIuIDRHx44h4pD1+Qvt7d0tEXBIRn7DHTo+IZ7XlB7bvD6dOaP/I9vjp0+jTUW0/trX/P2qSulsm/HdtRPxb+9jTJjy2re3L3drH/zYizm/fUy6LiLdExN7W9sT7/Q17LCLi1RFxafuedXpE3KnvGIHdgQkAAJhdHtP+QTf+32W7oc3zJB0z/o+IWCbpPpJWW523SBqTdAdJ+0h6rKRfT2jnyAl9e2PP62+V9H5JLxrx2JikH0m6m6T9JH1I0pcjYqzt670kvV7SE9t+vU/SqXzjBWBgdvd7wxclfVPSgZL2l/TXkjZJUkQcK+kZkh6SmWOS7i7pW5O0tVrSfdr3lnHHqnnv6SUi5kr6vKRTJO2r5r3g8+3x3+P3oh3Ddkmfah/7yITHnyvpfEk/aU//gqS7ZuYSSXeWdGQ7fuf3+2F2/EmSjpd0fzXvWd+T9OG+4wR2ByYAAGCWi4jD228v9o6I/dpvYx7TPjYWEb+OiGMmaeIjkp5sH5r/XNKpknZanXtI+mhmrs/M6zLzl5n56d3R/8z8YWZ+WM0fYBMfOz8z/yUzL8/MazPzPZLmSrpdW+VwSedk5o8zMyWdLGm5mj9YAWCwdvW9ISKWS7qlpPdm5s72v+9m5pltlXtI+npm/kaSMnNV+7u5slPS5yQ9pW1/L0lPVvPe09cDJe0t6a2ZeVVmvk1SSPrjHuc+QdKVks4oHj9W0snte4gy8zeZuaF9LCRdJ+k2Pft5S0lntu9d16qZsLhjz3OB3YIJAAAYkMxcp+bbh/dGxP5qvrn/WWaePMlpl0n6X0nj32Ico+aDtPu+pNdExF9ExG2n06eI+MOI2DB1zV5tHaVmAmA8+uCrkvaKiHu1f1QeL+lnklbtjusBwGwwzfeGtWp+x54SEUdHxAETHv++pGMi4kURcfeeEVcn67eRZg+XdLaa955ORHwpLLVsgjtJOmv8Q3rrrPb4VH7nA/6Eax4m6Y804T0vIp4aEZskrVETAfDuCad+JCJWt2kSnkL3cUm3jogjImJOe+2v9egjsNswAQAAs8vn2nzMDRHxuVEVMvMbakIdvyXpkZL+ske7J6v5g+72kpZm5vcmPP58Nd/WPE/S/7bfHD1iQp2fWN82RMTD2/6cmZlL+w9xtIhYoiaU8sTM3Nge3izpM5LOlHSVpJdLevaoP/QAYBbbbe8N7e/PB0m6UNKbJV0eEd8Zn/zNzFPUvCc8XNK3JV0ZEf84Wecy878k7RcRt9PoSWZl5qMz8/VFE2OSNk44tlHS4smu237Af4CalIFRjpF0RmZeMKEvH21TAI6QdJKkK+zhp6mJPjtM0mmSvh4R4+9xl6t5PzpXTdrBkyT97WR9BHY3JgAAYHY5OjOXtv8dPUm996jJXfxgZq7t0e5n1YRSPk8j8hUzc3tmvjYz7yZpmaRPSvpUROxn1e5qfVuamV/vPaopRMQCNTmp38/M19lDz5T0F2q+BZor6emSvhQRB++uawPADLBb3xsy85LMfF5m3lrNB92tsg/tbR79QyQtlfQcSa8an/SdxIfVvMc8SE2a2XRskbRkwrElaiaBJ/MMNSH5FxSPH6N6ckCZ+StJ50h6px37bvueuK19P9qgJudfkl6mJkXiEEnzJZ0o6T8jYuEU/QR2GyYAAGBg2nDM96j5Y+25ETFl7mJmblMTTv9XmmLBoszcJOm1khapyXe8QUXEPDX5o5fo97+xOkrSlzLzvHZtgq+p+Qbmvjd0vwBgJtmV9wZJysyVkt6hZuJg4mNXZ+an1ITj/97jE3xYzYJ7X2nfc6bjHEl3iYiwY3dpj0+m/IAfEfeTdLCkqdaz2VvSrSd5PNWsFSA170mfaCdQrsnMD6pZtJB1ALDHMAEAAMNzgpo/SI6X9M+STu6Zo3mCpAdk5oUTH4iIl0bEPSJibkTMl/QCNd96nHt9OxsRN2vbnNP8M+aPr+zc5lB+Wk0o5bGZed2E038k6VERcat2+6WHqgnZPPv69gsAZple7w0RsW9EnBgRt2l/Py9vz/l++/hxEfGoiFjcPv4INVFYP5js4u238A+Q9JJd6Pvpkq6V9NcRMS8intce/8/qhIi4r6Sbq139f4RjJX0mM38niiAintWuk6CIuKOkf1K7y0FEHBoR9xt/L4yIF6lZePa77ek/kvSkiDigvTfPUPPeNnHXHOAGwwQAAAxINPsY/52kY9oViN+g5g++amGlTmZeZqs8/97Dkj6gZkGkyyQ9VNKjMnOL1fl5/O7eym9t+3T/iNjy+012/kjNB/yvSDq0LY/vq3xfSY9Ws0DhBmt7PNzyZDWLLp2uZouqt0n6y8z85VTjBYChmOZ7w041Oe7/oeb36tlq1lg5rn18k5rJhIvVTAS/UdJfTfL+0WnXhBm5RWFEfDUiTijO2ynpaDXf6G9QMyFxdHtcEXFCRHx1wmnHSvrsxA/4bf35kv5Mo6MD7ifpfyJiq5r3pa+045WaNQfeJWm9pEsl/YmkR1g6xRsk/VzNYrQb1OT/P8F2FQBucME6SMD0Hf7iL6ckXfj6R8VUdQEAmArvKwCAPYEIAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJAAAAAAAABoAJgJ7arUeO3c1tnh4Rz9qdbY64xisi4pQb8hoAAAAAgJu+wUwARMSFEXFlRCyyY8+KiNP7nJ+Zj8jMUXuBzhoRMTciPt3eq4yIB054/EURcXZEbI6ICyLiRRMePyoizoiIjRFxSUS8dI8OAJNqn9ft7R7p6yPiyxFxyG5q9yFT1Dmhfc1saV8bn7DH7hQR34iIdRGxISJ+HBGPbB97YERcYnVPb1+bR05o/9RRr9lJ+hMR8YaIWNv+94aIGLn1Vlv3JRFxcURsioiPR8QSe/zmEfH5tv+XRMRzinaOafv4e5N+7c/eLyaM9Yi23dVt21+PiNv1GR/6i4h/mrg3dET8qjj2lN187eMiYtJ9sSf7+Wgfn+xnq5tkbn+WMiJOndD+ke3x06fR76Pafmxr/3/UFPWf0r6+t0bEbyLi/iPqvKztx0Ps2BsjYmX7c3dRTNj/OyLeExHnRsR1EXHcJNf/Vtv23n3HiMndWO8n03kdR8TjIuJn7etnTUT8Z0Tcsn3sFRFxddv/8f9678MeEY+J5u+hLRHxXxFxR3ssIuLVEXFpNH8PnR4Rd5qkrUn/dormb9Vft9f6WkQcbI8tjYgPRfP37ZUR8YoR7b+g/R2xtf05PKI9fsKE8W9vf5aW970PQzQD3jN6/Z3UvnbeHxGrovm7/ryIeLHVz/Y146+Rf+jZzwdFxGnta/rCos7I12X72FPb3/lbI+JzEbHfhHOnfE8Zcb3yfSAiHtA+9mo7dlxEXDth/A+0x0+L5u+zTRHx84h43IQ2V0TER9t7sD4iPjJVH/ekwUwAtPaS9IIbuxM3cWdKerqkVSMeC0nHSNpX0p9Iet6EX24flfQdSftJeoCk50bEY2/Y7mKaHpOZY5IOknSFpH+7oS8YTeTMMyQ9pL323SV9y6p8UdI3JR0oaX9Jfy1p0yRNnqfmdTje/jJJ95G0ehrderakoyUdos1n2wAAIABJREFUKekukh4j6S+Luse0/b+fpIMlLdDv3rdTJF0g6QBJj5L02oh4kDcQEftKOkHSOcU1XjSi/0slfUHS7dq2fyjp81MPDdP0HUn3jYi9JCkiDpI0R9IfTDh2m7Zub+0Hgev7Plv+fPT42ZpotaT7tD8z445V8zPVS0TMVfM6PEXNe8GHJH2+PT6q/kMlvUHSX0haLOmPJJ0/oc6tJT1J0uUTTn+fpNtn5hJJ95X0tIh4vD3+c0nPlfSTSfr7NDXPJ3a/Pf5+0prydRwRt5F0sqQXStpH0i0lvUPStXbOJzJzzP5b2ufiEXFbSR+R9Bw1v6e/KOkL9sHiSZKOl3R/NX8PfU/Shydpsvzbqf3A8VpJj2sfv0DSx+zct0haKOlwSfeU9IyI+Avr67MkPVPNe9OYpEdLWiNJmflaH7+an9PTM3NNn/swYDf19wyp399Jb1HzmriDmp+Rx0r69YR2jpzwM/LGntffKun9av62+T2TvS6jmSx7t5r3tgMkbZP0Tjt3yveUEdcr3wciYo6kf5X0gxEPf2/C+E+3x14g6aD2/enZkk5pn/dxn1XzWepQNe/db5qsj3va0CYA/lnS30fEyF/yEXHfiPhRO1vzo4i4rz3m36TcJiK+3dZbE7/7jcvtI+Kb0Xxbc25E/FnfzkXE8e2M1vpovu07rD3+roh404S6n4+Iv2vLB0fEZ9qZqAsi4q+ndVdambkzM9+amWfqd98kxx9/Y2b+JDOvycxz1fwReD+rcrikj2TmtZn5GzWTCeWsN248mblD0qcl+bcW8yLiTdF8031FRJwUEQvax5ZHxJei+QZyXTTfVtwsIj6s5pfbF6OeHb6HpK+3rwll5qrMfM94u2r+MHtv+/rbmZnfbV+DlY9IevL4G62kP5d0qqSd07gFx0p6c2ZekpmXSnqzpOOKuo+R9L7MXJmZW9S88Tw5IhZGxJikB0p6TWZenZk/V3Nfj5/QxuskvU3tG5yL5hupp7d1Opn5w8x8X2auy8yr1bxZ327CH724/n6k5g+D8W+x7y/pNEnnTjj2m8y8TOr1XvGaiPiumj9cbtV+k3B+/DZ66mkRcQdJJ6n5IDPy28cePx/lz1Zhp6TPSXpK2/5ekp6s5meqrwdK2lvSWzPzqsx8m5rJ4T8u6p8o6ZWZ+f3MvC4zL21/5tw7JP2jJvwMZ+a5mbnVDl2n5o/q8cffkZnfkrRj1IUjYh9JL5fU61sr7Jo9/H4i9XsdHyXpgsz8VjY2Z+ZnMvPi3TDkh0s6IzPPzMxr1Lwn3FzNh3ep+Zk9MzPPz8xr1UyW3XF0U5Im/9vp0ZI+lZnnZOZOSa+S9EftpJnUvD+9MTO3ZeaFaibNjpek9oPkyyX9bWb+b3sffpOZ6yZ2ICLGv+CZ1ZGuu8lN9j3D9Pk76R6SPpqZ69vfzb/MzE9fj/vSaf9++bBGfDDv8bp8mqQvZuZ32r+5Xirp8RGxuH28z3uKX2+q94EXSvqGpF9Oc4xntT//kpRqXhOHtNd8WFt+UWZubP8+/Ol02r+hDW0C4L8lnS7p7yc+EE14yZfV/JG+TNK/SPpy8cf2q9S8WPaVdAu1s97RpBd8U81s7v5q3pzeGRYaVokmdOQESY+XtELSGfrtLO/H1PwgR1t3X0kPk/Tx9gfpi2q+Cbm5pAdL+puIeHhxnbMi4qlT9adHf0PNLzj/RvOtko6JiDnRhCrfR9J/XN9rYfeLiIVq/mD6vh1+vaQj1LyB3UbN6+ll7WMvlHSJmtfmAWpeq5mZz5B0sdpvgorZ4e+reV28KCLubm9IkrRWzYzzKRFxdEQc0KP7l0n6XzU/A1LzR8vJE8b3h1O8Od5Jzc/MuJ9r8smqmFCeJ+m2dnzi43e2vtxTzTezJxVt/5ua+7l9kutLzSz3qsxcO0U9TEP7R/UP1Nxftf8/Q80f4X7sO1Lv94pnqPlGYLGab1zeJukRmblYzTfZP8vMX6j5BnH8G4ZRE9NT/XxM9rNVOVm//Wbo4ZLOVvMz1Wk/nL144omtO0k6KzPTjp2lET8/bX/uLmlFNCHMl0TE28c/CLZ1niTpqsz8yqiLRcSLI2KLmt8/i9S8v/b1Wknv0uiINuwme/j9ZNxUr+OfSLp9RLwlmnDksWmOabKfAen3f+f77/2PS7p1NGlcc9RMOH9tkram+ttp4rVk1xr1+Phjt2j/u3M0qTQXRMSJMfob5vur+bv1M5P0E7rJv2eMm/LvJDU/r6+JiL+IJqqltx5/Y01mqtfl7/x91k6K7ZR0RJ/3lBHK94Fovmg9XtIri3P/IJoves+LiJfGhPSB9vfEDjWvh9PVfM6UpHurmRD6UDRppj+KiAfoJmRoEwBS8wb0/IhYMeH4oyT9KjM/3H7D/TE1s0GPGdHG1ZIOk3RwZu6wb2MeLenCzPxA28ZP1fwyfVKPfj1H0usy8xftjNJrJR3VvjjPUDO7NJ7j8kQ1vwAuUzODtyIzX9l+O3S+pPeqnRmfKDPvkpnT+QOq8go1r58P2LEvtX3brubevS8zf7QbroXd53PtL+2Nkh6qJipmfELn2WpmZNdl5mY1r8Hx19HVasI8D2tnMs+Y8AGglJmnSHq+mj/Svi3pyoj4x/axlPQgSReq+Rb+8oj4To83o5PV/MF0e0lLM/N7E6555hRvjmPtPRi3UdLY+CTbBF+T9KyIOLydSf7H9vjC9j59V9JLI2J+RNxV0hPUhGSOfwB6p6TnZeZ1ExuOiD+VtFdmnjrxsQn1bqHmW9K/m6wedtm39ds/3O6v5nfuGROOfbst93mv+GD7jd010v9j783DNavKM+97ySAOoCIzFFVUQTGKlGhDBIwDigNxSDROsTV+mhjjRdoYlTZqG4ckn510J7ZTYptgHNqYRI2fYjRGMeKARMPQDFUFNVAlhWIAGURFXd8fe9fmV6/vfc7apwaw3vt3XVys8571rr2mZ611dt3Ps/Rjdf9yfVwp5V611k21VucKsgXz2cdctjVHmV+RtHf/h8a0Q6FqrWfWWv/YFDFpO+p/3nNK3v3V/avI09X14QmSVkh6rST1/6Lzh5rDNa+vx56SHqJORj357KmUUh6qTqG2o2Tps8gO3082M9887s9Cj1T34uEjkr5bSjln4kXAr5ZOhbD5vy/g+3PZwOck/WLp4hHsru4Fxu7q1311riznq/sD4HZ1Z8CXz9Gcuc5O/9TX8/j+j5zXqzsP3hu/P7uUsmfp3B5eiN8d0v//cZIepG4tebY66fUkz5f09/2/uIb5uVvuGRPMeU5St3d8UNLLJF3e/0H9hIk835ywkTOkpjPWXMw3L+faY+bcUyZp2AfeJul1Zt7/q7qXafupO9c9WxMuDbXWM/t6PVHSZ3HOO6Rv3xfUue/9qTpXubtNfI2ZewFQa/2/6hbbyTe7B0laP/HZenWbxySvUveW9eullMtKKZvlvoslnURjUSdlOaChaosl/Tm+d0P/jIP7jfHD6iafJD1Hd0rdFks6aOKZr1FnJNuFUsrL1G24T6q1/rD/bG91G9EbJe2hTvpyRinlpdurHmFBPLVftPdQt+h/sZRygLp/ibm3pG9gHv1T/7nUHeyukvTZ0snS5vqXkZ+h1vrBWuvp6vwlXyLpTdhINtZaX1ZrXaZuPt+mKX+UTPBRdZLjl2lu30rHrZL2ws97SbrVHEL/Sp0K5zx1ipfNh8TNAfueq07yuUHdW+YP4HcvVfevpfyXMUmDYuit6ny6Lf3Lys9Kemd/cAjbnn+VdGq/ju1ba10t6Svq/Dz3VncI2OzL2bJXbNicqJ2E/Znq5v2m0gVLO6q1YvPZx1y2NQfvV2c7j1InCx3DpO2o//mWKXk3q1r+V3+I/a66f/3aHMTwDZLeXzvpsqV2/Htf3h/MV8H+X5LeKel36p0SzbDtuUv2EzDnPK6dRPhXa637qvtj4RGSfh9ZPlJrvT/+e9RkGdOotV6p7g/mt6v7Y38fdf/aunndf726f5xZpK5v/kDS50unlNiC+c5OtdbPqZMv/4O6F4Hr1Nna5medpc4uVqtzy/w/+N1m+3trrfWm3s7+Qnfa3+Y63FvdS4rI/9u52+4ZYM5zUq319trFgThRnTLhI5L+rmwZcO8hEzbymQXUY5L55uVce8x8e8rAfPtAKeWXJO1Za/3byd9J3UvEWuva2rkZXKrORp8+Jd8dtdZPS3pcuTPu2e3q/kH4vf3vP6xujE+Z/P5dxcy9AOj5b5JerC2N71p1hytyqKSf8SupnZ/li2utB6kLHPbO/s3rBklfnDCW+9Zaf6uhThsk/ebEd+/Vv+WWukX96b0i4CTdKdPaoM7Pjd/bs9b6M8awLehfdpwt6TG11o341VJJP6m1/k3/hnOjupcW26UeYeuona/hR9XFejhVnW/67ZKOxTy6X+0CA6l2/pOvqLUuVRco5ndLKY/ZXNyI595Ra/07dZLh46b8foO6f+n+md9N5Pu+pE9L+i0t7AXAZeoCAG7mwTIB+vrF/7/VWpfUWg/p832r/0+11vX9vxbtW2s9Sd1h8Ov91x8j6Wmli7J7nTop35+WUt6uzoVgiaQv9b/7qKQD+7xLpMHd57OSPlFrfcsC2hna+Kq6IEgvVqfoUK31ZnX7woslXVtrXdvnbdkrtrCJWutnaq2PVfevnleqU2n9TL75mMs+5rOtCd6v7uXUub0tjeEyScdPqGWO1xT7qbXeqO6PEbaT6cdIOgv2sUjSR+ZQMewqaZn5HdlLnUz0b/tyN/9r6sbSEC06jOOu2k80Yh7X7l/UP6r5baOJWuvf11qPq7U+UN2ZconunGcnqAswuLE/D52jzmV0mjvovGen2sW6OKLWur+6s9+u6lweVDuFxXNrrQfUWo9Vd67fvP+sVCeddva3maep+0en88b2wwxzt98zxpyT+rr/oTo3q8Nan7FA5puXW5zPSilL1bldrmrYU8h8+8BjJD0U+88z1blQu2DLVVu620zC/emSKfUatd9vb2byBUCt9SpJf6st/+XtXHX+Jc8ppexaSnmmusX6k5PfL6U8o5fkStKN6gb1p33e5aWU55XOl2u3UsrDShe4Yz7eLem/lv6qmFLK/UrnG7m5zv+ublP93+qCPm32vfm6pFtKKa8updyrlLJLKeW4UsrD2ntki7bds5SyR//j7qWTNW+OPfBcdQvEY2snryOruizlOaUL5nOAOmO6ZCH1CNuX0vEUdYeSK2onW3qPpP9ZStmvz3Pw5n9JLKWcWbrgl0WdFOsn6ua81EV/XjrHs15QSnlSL1G8Ry8xO1bSBaWUB5TO9+vw/nf7qJMw/sy/mE/hNZJ+sc7zr4eGv1F36Dy4dFcqvULSOab+e5dSlvV9doy6t81v7PtMpZSj+7btXkr5NXWyr//Rf/0F6iLsntD/92/q/jXo99Ud4Bbhdy9S15cnSNpQuqsGPyPpy7XWhf4LWWig1nq7urH5XXUyzs2c33/GSM7Ne4UklVL2L911ZPeR9EN1/7pB2zmk+Aj6c9rHXLY1T3vXqgtY9vtz5TOcp87+z+r3i5f1n3/e5P9rdW53+/UvtF6uO/vqMer+INtsA9eqe6n+jr49v9n3QSldLI3fFm456G1uD3WHst36/eoe6taog1Du5j+mTtQ8fRPGsyP3EzLXPC6dj/KL8fyj1L1saNlb5qWUcmJ/3tpX0l+qe0m7OYjYhZKe0dv+PUopz1MnW56MsC7Nc3bq5/RxfR8f2j/rz/s/hNTvTQ/s6/IEda4Xb+775/vqzrqv6teIQ/rfT65Vz5f0N7WOc8OYZe6ue8YU7DmpdD7tD8M6+juSblL3B/pW0c/lPdTN+9LP492lpnn5QUm/VEo5re+DN0r6aO1ciaS59xQy3z7wOt0Zp+QEdbcuvUfd7QIqpTyh9HF3+vXjdepvYipdwPcnlO7vrt36s98jdKfbx8ckPaCU8vzeNp+uzi3gywvr0e1ArXUm/lMnmzodPy9SFzn4PHx2qqRvqJs035B0Kn53nqQX9em3qntzd6ukqyX9BvIdqS7Yx/XqAjh9XtIJpk5Dmf3Pz5N0qbornjZI+quJ/K9T97LhGROfH6ROIXCduhcSX9vcVnUSyw8g72WSnjtPP9WJ/5b0v1urznfvVvz3bnz30eo2vu/1dXmPOj/pu3z8t/V/i1/9ybr41Z+sd3U9xvzXj+3t/bjdou4P0Ofi93uoe8Gzpp+DV0g6q//dy/vv36bu7evr8L2nqAvcdJOk35vy3F9Wt+jd2Jd7qaQX9L+7jzrZ4bq+Xtf1c/ng/vePlLQRZW1hMxPP2SjpkX36NHWSftcXpbfjG/r/3iqp4Pe3SjqtTy9XtyF+X51s73cnyvov6uz9NnWb/0PneO5c9Z9s6/N7+7ttwuYOvavn0s74n7pbGKo6yePmz361/+w3J/I27RX9zweqOxR8r7eR8yQd0/9ud3X7xQ2SvjulTvPZh7WtybpMzq+J57xIW+6Fn5b0mjn6akXf7tvVBVtbgd+9RtKn8fNu6mSYN/X1f5ukPUy563Tn3nUPddLoG/q2r+rLLhPtm9yvHjml3CX973a9q+fZXP/9PO0ruuv2k6Z5rO7F0v+n7g+mW/vn/b+Sdut//wb97HnmVkn7NdrA+X27b1AnX77PRNvfoc494ObeRh6P379bjWcnda49l/R9dZ26dWoXfPdX1b04+76kiySdMVHPvdQpCm5Rd658/YQNHazO5/zwu3pO/bz9p7vhnjGtvInf8Zz0WnV2e7PuVIA8HHmnnT/+rP/dfGesR+pn1+bzRszL56hbB25T90f33vid3VPUKSumnpM0zz6g7h+B3oyf/0Td+nGbunXsjbpz/Tha3UuEW/p6XCjpaRPlnaZuT75V3cui0+7qOcv/Sl/JEMIIlpz9qe4E9MdPmksOFEIIITSRfSWEEMKOYCZdAEIIIYQQQgghhFkjLwBCCCGEEEIIIYQZIC8AQgghhBBCCCGEGSAvAEIIIYQQQgghhBkgLwAklVKWlFJqKeXWUspv3NX1CduWUsryfmx/Ukp50V1dn59nYis7N7GVbUdsZecmtrLtiK3s3MRWth2xlZ2bHWkreQGwJfevtf6l+2Up5QOllE2llJtLKavmGpz+ztY3l1K+VUr5XinlvFLKsdu6wv29outLKbeVUj5eStkbv9u7lPKx/nfrSynPGVHun5RSVpdSbimlXFlK+c/z5N+3lPKhvq03llI+uDXtMs+Y2tbS3UX93v53t5RSLurvw5Uk1VpX1Vrvqy3vag1bR2zlzu/GVsJcxFbu/G5sJcxFbOXO78ZWwlzEVu78bmxlAeywFwCllF131LO2I38kaUmtdS9JT5b05lLKiSbvMyS9UN09kHtL+qqk9y/koaWUqXc19gb6F5KeJ2l/dffAvhNZ3iHpR/3vnivpXSOM+jZJvyTpfuruI//zUsrD58j/UXX3cR4qaT9192eOZoFt3VXdPaK/2Nf3tZI+UkpZspA63NXEVmIrLcRWYiuKrTQRW4mtKLbSRGwltqLYShM/97ZSa91u/0mqkn5b0mpJa/vP/rxv/M2SviHpNOR/g6SPSPobSbdIukzSQ/H7h0j69/53fyfpbyW9Gb8/U9JFkm6S9BVJxzfWc0lf111HtO1ISZsk/ar5/aslfQQ/HyvpB/j5fpLe25fxLUlvlrSL60fz+R9K+hB+XqbOgPaUdJ8+vRy/f7+kP17gWH5C0ivM7x4nad0c9d+ubTX5L5H0KxOfnSfpRdtibi9+9Sfr4ld/cmpdF9i/sZXYyk5pK9v6v9hKbGVHtNXkz74SW4mt3A1sZVv/F1uJreyItpr8d4mt7AgFwFMlnSTpmP7nCyWdoO4t04ck/V0pZQ/kf7KkD0u6v7pBfLsklVJ2l/QxSef03/0/kp62+UullBWS/krSb0p6oLq3L58opdyz//07Syl827Qg+nK+L+lKdRPkXJP1w5KWlc6fYzd1b6X+Cb8/R9KPJR0uaYW6STnW3+NYSRdv/qHWerV6I+r/+3GtdRXyX9x/ZxSllHtJepi6BW4aJ0taKel9pZT/KKVcWEr5Rfz+HG3ftk7Wd//+c1ffuyuxldjKOYqttBBbia2co9hKC7GV2Mo5iq20EFuJrZyjWbGV7fl2Qd1bqkfPk+dGSQ/u02+Q9Dn87hhJt/fpR6h7G1Pw+/PVv1GT9C5Jb5ooe6WkX2yo5xKNeKMmaRdJp6qTbuxm8uyu7u1hVTeZ1ko6rP/d/pJ+KOleyP9sSV8Y+ZbpXyS9ZOKzb0l6pDopz3UTv3uxpPMWMI7vU7cYFPP7v+zb+f9I2k3Ss9S91dxnR7R14rPdJH1O0l9MKeM83b3/pSa2ElvZ6WxlW/8XW4mt7Ky2kn0ltmKeE1vZzv/FVmIrs2YrO0IBsIE/lFJ+r5RyRemCL9ykTm6xD7Jch/T3Je3R++McJOlbte+ZKWUvlvSKUspNm/+TtKj/3mhKKZ8uXSTGW0spz+Xvaq0/qbWeL+kQSb9lini9urdQiyTtIekPJH2+lHLvvq67SdqEuv6FOl8UlVJOnWiH+HMp5dT+GbdK2mviuXupkxzN9bsx/fDfJR2nTjpUTbbbJa2rtb631npHrfXD6sbmlB3U1s11vYc62dCPJL1sTDvvJsRWYiuxlTZiK7GV2EobsZXYSmyljdhKbGVmbGVHBLoYBqGUcpqkV0l6jKTLaq0/LaXcKKk0lLNJ0sGllIKBXSTp6j69QdJbaq1v2SaVrvUJ8+fSrup8O6ZxgqS/rbVu7H8+p5TyZ+reEm5Q95Zpn1rrj6c8+3x1kiJJXaCJWuv9J/Opk4w8GPmWSrqnpFWSfipp11LKEbXW1X2WB2uEzKSU8geSnqDureTNc2S9RF0Aji2a0f9/R7RVpZSizm9nf0lPrLXeMXfr7pbEVjpiK7GV+YitdMRWYivzEVvpiK3EVuYjttIRW5kBW9nR1wDuqU5ecr26wX69fvYtieOrkn4i6WWllF1LKU+R9J/w+/dIekkp5aTScZ9SypNKKXtui4qXUvYrpTyrlHLfUsoupZQz1ElD/sV85UJJzyil7F9KuUcp5Xnq3ixdVWvdJOmzkv60lLJX//tlZUs/lBY+KOmXSimnlVLuI+mNkj5aa72l1nqbukiXb+z74hRJT1Ef2bPceZfoEtPe/yrpOZJOr7X+xzz1+JikB5RSnt/3zdPVvW388o5oa//7d0k6WtIv1VpvH1n23ZHYSmwlttJGbCW2EltpI7YSW4mttBFbia3s3LZSt6N/gbq3Kofj513UBb64Wd0bslepi8Z4ev/7N0j6APIvEXxdJD1UXdTMW9VF1fyopNch/+PVTeSb+vL/Tn3URUnvlvRuU88tnmPy7Cvpi33ZN0u6VNKL8ftD+3od2v+8h7prLTb1+b8p6fHIfz91k2CjpO+pixb6LNePc9TrOZKuUXcNxj9K2hu/21vSx/vfXSPpOfjdaX3fO5+gqu5N2K347zX4/a3aMiLqaX2f3Crp3yZ+t13bqk62UyX9YKK+z534/nm6e/tqxlZiKzudrWzr/xRbia3spLaSfSW2Elu5a/5TbCW2MmO2UvoH/VxSSrlAnZH89VaWs1hdAI4fSHplrfU926J+d2dKKa+VdH2t9S/u6rpsb0opR6hbaHeX9NJa6zlbW+aSsz9VJWndHz+pRQ52lxNbWTixldkitrJwYitbR/aV2MrOSPaV2MrWEFvZPuyIGADbjF6GsVLSdyU9V9Lx2vKqigVRa12v7g3YzFBrffNdXYcdRe18iqb56ey0xFa2HbGVnZvYyrYjtrJzE1vZdsRWdm5iK9uO2Mr24efqBYCkIyV9RNJ9JK2R9PTa+WyEELYkthJCG7GVENqIrYTQRmwl3K35uXYBCOGu4udNqhlCCOHuTfaVEEIIO4IdfQtACCGEEEIIIYQQ7gJm7gVAKeW8UsqL+vRzSymf3cHP33ydxa2llN/Ykc8eSynl9L6ePy2lnH5X1yfsWGIr7cRWZpvYSjuxldkmttJObGW2ia20E1sZz8y9ACC11g/WWh93Fz3+/rXWv9z8Qynl3qWUd5ZSvltK+V4p5V8nv1BK2b2UckUpZeOYB5VSlpZSPllKuaUv/61T8hxRSvlBKeUDmz+rtX6u1npfdVdZzFX+I0spL5gnzxdKKdeXUm4upVxcuntRw88JsZUt8sRWgiW2skWe2EqwxFa2yBNbCZbYyhZ5YivbgJ+3IIA7M3+pbjyOlnSDpBOm5HmlpOsl7dlaaClld0n/rO6Oz2dK+omk5VOyvkPd1RPNlFKeKmk/Sav6n39Z0r7mqo7fkXR5rfXHpZSTJH2ulLI8QVHCAoithNBGbCWENmIrIbQRW9kJ2OkVAKWUx5ZSruzfUr1dUsHvXlBKOR8/11LKS0spq/u3T28qpSwrpXylfxP0kX6CqpSyT/+W6qZSyg2llC+VUhbUn6WUoyQ9WdJv1Fqvr7X+pNb6jYk8h0n6NUl/NLL4F0i6ttb6P2qtt9Vaf1BrvWSi7GdJuknSv4ws+x8l/VjSH0r6L5KWSZp6x2mt9ZJa6483/yhpN0mLRj4vbEdiK7GV0EZsJbYS2oitxFZCG7GV2MqOZKd+AVBK2UfSRyW9VtI+kq6WdMo8XztD0omSTpb0KnVvun5N3eAfJ+nZfb5XSNooaV9J+0t6jbqJotJJY945oqr/SdJ6SX9QOsnLpaWUX5nI87/6Z9w+olz17VhXSvl0X/Z5pZQHbf5lKWUvSW+U9Lsjy90Mr5H46cTPW9AvQD+QdIGk8yT92wKfGbYxsRVJsZXQQGxFUmwlNBBbkRRbCQ3EViTFVnYoO/ULAElPlHRZrfXva613SPozSdfN85231lpvrrVeJun/SvpsrXVNrfV7kj4taUWf7w5JB0paXGu9o9b6pdrfqVhrfWmt9aUj6nmIOmP9nqSDJL1M0vtKKUdLUinlaZJ2qbV+bESZLPtZkt78hVziAAAgAElEQVTWl/0pSf+4+c2gpDdJem+tdZSfTs9TJe0u6ffV9e1aSS90mWutZ6qTAz1RXb/+dAHPDNuH2EpsJbQRW4mthDZiK7GV0EZsJbayQ9nZXwAcJGnD5h/6Cb/BZ5ckfRvp26f8fN8+/d8lXSXps6WUNaWUs7einrerM9A311p/VGv9oqQvSHpcKeU+kt4q6aytKPv8Wuuna60/kvQnkh4o6ehSygmSTpf0PxdScK31Y7Xzn9m8kHy0Tven4XfuqLV+Wl3bnryQ54btQmwlthLaiK3EVkIbsZXYSmgjthJb2aHs7EEANwl+G6WUom3kx1FrvUWdrOYVpZTjJH2+lHJhrXWsX4okXTLls83SlCMkLZH0pa762l3S/Uop10k6uda6rqFsJyN6ZF/2NX3Z95W0SynlmFrrQ1orX2s9rzUv2FWdD064exBbia2ENmIrsZXQRmwlthLaiK3EVnYoO7sC4FOSji2l/HIpZVd1b6UO2BYFl1LOLKUc3hvp99RFq1yoRORf1V1d8V9LKbuWUk6R9ChJn1En61mkLsrmCZJepO4t3wnq3w6WUtYVf63FBySdXLo7MndRF/ziu5KuUOcvtAxlv1tdn52xwHZMpZRyVCnlCaWUe5VSdiul/JqkR0j64rZ8TtgqYiuxldBGbCW2EtqIrcRWQhuxldjKDmWnVgDUWr9bSnmGOn+Sv5b0fklf3kbFHyHp7eqCatwo6Z211i9IUinl3f3zX9JYzztKd8/k/5Z0troAG/+51npln2XwAyql3CDpp7XW6/qfd1cnkfmaKXtlP4Hfre4KjG9KenIvr/mRpO+j7Fsl/aDWen1TD7RTJL1B0jHqFp7Vkp5Za/3mNn5OWCCxldhKaCO2ElsJbcRWYiuhjdhKbGVHUzo3k7CjKKUslrRS0g8kvbLW+p6tLO9USb9da332vJnHl/0YSf8g6Z6Snrh5wQjSkrM/VSVp3R8/qcyXNyyM2EoIbcRWdg6yr2x/YishtBFb2bnJC4AQFkAOaiGEELYl2VdCCCHsCHb2GAAhhBBCCCGEEEJQXgCEEEIIIYQQQggzQV4AhBBCCCGEEEIIM0BeAIQQQgghhBBCCDNAXgCEEEIIIYQQQggzwK6tGV/1qlcN1wXc5z73GT6/173uNaRvvfXWIX3ve997SN/jHne+Z7j//e8/pNeuXTuk999//yH9gx/8YEjfcMMNU8v80Y9+NDXNOhxyyCFD+rrrhqsptddee019Fm9E+OEPfzikH/jAB06tw3/8x38M6e9+97tD+rDDDhvSP/7xj4f0d77znSF94IEHTv0u27vvvvsO6Qc84AFD+vvfH67C3KLf1q9fP6RvvPHGIf2tb31rSLOvbrvttqn14ee77LLLkL7llluG9AEHHDC1/ve73/2G9K673jm9+F3OH/LoRz96SLPPOX9YH+a56aabhvTVV189tfx99tlnSH/ve98b0ve85z2H9JIlS4b0lVdeOaTPPvvs5qjMb3/724eJ9NOf/nTe/C15tgbOwTvuuGNI/+QnP5laB/c5x5N2z/nC8l27dttttyHNseV3WWdCG2U9WQ7rOfk71oll0ZZpg7S1Uu6cArvvvvvUcphmfvYX20l7ZJuZ5ncXLVo0NU17ZP/yu5P9Mt9z2VdsC9NsC9v+vOc9r8le3vzmNw9fYr3dHGQePo95XJplujFgH/FZhGsQ4bO4vnA+cR3nurPHHntMrefNN988pLknsW6ci2yLazvTbu66/Nxfb7/99qnPJewr2iHh5+wTPtfNUcJ95aCDDhrS3Ef33HPPqc/ls5xNOrvi5+xzls/xZf4XvvCFzfvKWWedNQwQzzAsm2sx+4PjwDPYmjVrhvR+++03pHku4lmCz2Jb2U9cM3kG4/mH5wTOcT6XcO9mu7hu84y3ePHiIc2xZX6WyTbyrMJ+dufP+973vkOats41gGcktpHrENcG2jrnET9nftqlW+f5XfYh63/88ccPac4Tt2fTnthenkVZH57ZOO6cVzyDsZzf+73fa7aV888/f+oZzN16xvnr1sSt2W+4VtJGaSucd5yP7FeWz3X/2muvnVq+syeOJ9cGd1Z06zjHluvsL/zCLwxpnk2e8pSnDOlvfOMbQ/qKK64Y0h/60IeGNG2a5/GXv/zlQ/q9733vkOaZ6LLLLhvSj3vc44b0Zz/72SH94Ac/eEhzLl988cVT63/ooYcO6ZNPPnlIH3zwwUOa48J9gp+7M1TL+Zm4ffFFL3pRk61EARBCCCGEEEIIIcwAeQEQQgghhBBCCCHMAM0uAJQbUapCyZ5zDaAE/ZprrhnSe++995CmPIyy9hbZPyVMlE1QFkO5F2U3lGxRNkaZy6ZNm4Y0pTOUXbEfKLViuyipWrVq1ZCm/IkSE0K5FOtPCQ7bTkkN5TtsI2VJrg6sJ6UwlLBwvPhc1sfNjVNPPXVqHs4ZjgXrRqk/+5/1pDSH89ZJnb/97W9Pfe5CYT85+ZnL49Itz2LaSbbcc5mf/eSk9IR5xsqLnZyJ87elHyYlwqwrJXFcQzZu3Dg1P2VbtF/OYbaB5TtJONcH2iDhfKY0ja46lLsR118tbhUcP84P992txbl98NlOwsk8xEn03dzkPHBrK9Osp8vDMt0cd/bK9rJ/HJxPTLdIVp2rhZPBOzmqcw/ivkLcc507EdPsK5bPcwAl5u580LL2uD7hdznfuIe5Odayhk2D5yWeB9wZjOkNGzYMacqqWaaTx3ONYt+4Mxj7husq5d8sk8/lfs12UQrMOcgzGOcC5wvLp6R/3bp1U59FKTPHn2sD13n2Ce2P5RP2rZvLdMe4/vrrhzRti8/iHOQZhvXnWZr2ceSRRw5p7jV0qySsG+cVz8buDMbxcmcCtndb03KmGrtutpzZuD7yTMF56saWtuLOTi1nvxa3BeciOnavpXs35yPtjO169atfPaRpB3/0R380pL/0pS8Nac41/g3Hfn7yk588pE8//fQh/exnP3tI//qv//rU+rszM10bli9fPqTdOZm4vZ/zxLlaOBc7N+6tRAEQQgghhBBCCCHMAHkBEEIIIYQQQgghzADNLgCEkV0p6aHEgfIhyj4oo2WkS7oY8HMXuZQyLcrFKQtnRFNGYaV8hOVQekT5BSXuhNINysMo++fnTq5ISRXrSdkH284+ufTSS6d+zjIpkXFuFOwTyncoD6KkjX3C/nfRRVl/F+2WkiDmp4SMkjMnXWYdOBaUTbJulL1RruTkTfMxVuK5rVwAWmhxQ3C4SLlOpuzKdPI551bA/A4n1ZV8pF0nrXORW1kO0/wu57OL9uzkwHwubcRFMef8dM9yUYBborMzD/uXnzuXklbcLQLOJpifY8O0a0/LvHOfc1xZB641TgbP57oo6pxPrq/ZJy0uBmOj/bNMN5/cjQxsO8ukpN+5ozg3ECdTZR9Sykx5N+eDK5M4KbarA3GyeDefF2Ink9CVz7m2UfrONlH2z3Maz2aU2XN8KCNnOdw3eX445phjhjTPNqwP5eKsD+cU8zgb5Vxj22lbnBdsizt/ulsgaB90T3BuEW4ddtJe5zLGNvJczTlA2M/cO9heVx+Wz/Mkx9qdwTh2PH+6vwt43mP5HK8xuDNDy409bn659XRrblVxdXB7WIvriZOUk7HR5t3tJqwDz9fuuxdccMGQZltOO+20If3Nb35zSK9cuXJI086Y/znPec6QPvroo4f0Jz7xiSF9wgknDOmzzjpraj0J14YjjjhiSHOP4XrAsyT737l40j7cHt/iyuhu0GklCoAQQgghhBBCCGEGyAuAEEIIIYQQQghhBmh2AaB8iJIqJ4OnxIhyLEpGKE+ivIOSVyepoxSKEqNjjz12av0px6LbAqVTzMPP+SziIkCzfEpJKNdgHvYboXSGbaT0hFBuQjkIo85Snuf6kHV20kW6ANDVgtI1SgRZZ8oXKS2jbJbuGKwzpUuULLIP+Tm/yznsIgwzsqeL4juGFkn/WEloS/Ralukkwk7W5cp0sjEXLbblRgAnsXUyM8L8zDNpT5yTtGvK5py8k9+ljTAPbd/ZO+ck1xknZ6ZdMHo287MOYyWJlJc5dwAXqZ2fs98WcmsG+9RJ+lk/N5dd21x0fVeOk7WzHOe2QDjGhGPM9drtMc5WXIR80jJ+bDvnE22DezD7ls9lW2h/7rtcf9nPlALzcycXpl1xfXfjRZyUknPAraNMO1k587B/WiS306D81J0Z+Dn3X+cCybpTes0zg1vHOUe4TlL2T5wknnOfZwB+ztujnBsK28J13t1E4aL6O5cgFxWfNsRx5vxlHXirFM+BTLt2cSw433kjDOedu7mGLhXMQztje3mjFtvLcz77kM+i2ybnMNvCfYC3EvDGijGMPW+0fNftsS1uAs410N224urp1mV3FiAttwAQF4W+5QYBrjfuNhTnkvvEJz5xSPMWAPKpT31q6ueOL3zhC0P6Pe95z5B+/etfP6Qf9rCHDWmuVXQf4LrIsXA3JrXME+cO4G6mcbL/hZy/ogAIIYQQQgghhBBmgLwACCGEEEIIIYQQZoBmF4BVq1YN6cMOO2xIU0ZFCQKjr1MORNnHQQcdNKQpoaD8e9myZVPzMDokJYFOEkF5Cl0MKMugBItSDNafsitKpFg+5btOfkypoIsw7SQg7ENKp1hnF22V0hwn6Wc9OUaUIrNdTB9++OFT68CxYJRdV2feNMFbBihrpCyQErg1a9ZMbRfHmv3A71522WVDeiFRNSUvTXZsi6jQk7iI206i5uRDTtLPclrcBwjzt0i0XaRk5qcEbjIaLaWkLlou57CLrutcICjhonSM9uIknVwHmKZklH3BtrHvWKYbV5cmLZHOnSR4IbdmsO8oj3fSuRYpO+3WScHdd1kHlsP8dGljmU5qzHIoEXZ96m5xaLGDFnti2rkSuCja7uYMt1dxfjhXGcqImYc2wz5kPzOPWzM4L90tNc4lwc1D5zbDswj7s8UlYT545mFkaueOxDMY+4xrHfdZwjPYkiVLhjTbQfc6rnvsS7cPUUrLPDyD8Vksn2l3YxTLZ3vdrUxO4uxueHD7Devs2sL68Fk8Z/K5PPPQVjiPOB8PPPDAqXk4N9gP7nOeY7nmsQ50DeBZkXOD7gZsL897hx566JBevXr1kF7oGcy5Dm/NLQAt5Tg3Ac4Xd8MK4Zri3PWcG5Kby4Rj7ua7m/v83EnWeebinsFzN8eWbiIbN26cWmfC9Y/zhe06+eSTh/SXvvSlIf3lL395SL/rXe8a0v/8z/88pJ3LuLttyp3XOK+cy7jbs4mzddJyW9YkUQCEEEIIIYQQQggzQF4AhBBCCCGEEEIIM0CzCwAlDpQDUcbh5EyUO1CaRZkZI5FS8kRpCGUllCdRQkH5uiuTkg6WSUkS5bssn5HhH/SgBw1pSp4o32E/UK7GelJS5eQ1jNBLNwRKVZiHY3H11VcPaUZYdZF4V6xYMaQpb+PYnXjiiUPauUIcfPDBQ5rtpSyfErKlS5cO6auuumpqmZS3MaIs28s87E/KMwnnGMfLRVqeD9a3RVo/FidXGxv51tWB865F9kr7dhKylvoTJ0120VadxG7y+05aR9vk9ykZ5vyn5I7tp3sR57+Las/PiRsbd1MCXYFcRHPKrvlc96yWyPoLiTxLKA/lutwSgZi03Hzg6urcM5h2EcBZN64XziXDSSCdhNPJD11kcNKyHrjI0066SDknJdfMw33X3apAVwt3W4yTvrqbaVpgfj6L5xtXppuHrJsbr5abI+aD+z7nkZOf8nPndsQzGMvnmNAFj2sj93H2ASXu3KM5L9wNGFzHOEdYPs9aPIPxzMAxZHtZN9aB5ygn4eVZyN1Q4W4W4PrRcsMC3S6Yh+dejpGbmxxTzkGOC/uEZyeezVgmpf4cF9bfncFYH7aL52qewThGY3AR2reGluj6zr3KSehdmc5tyblFMc156m4HaDlfuPq78x7z8G9EjrObd3wu58JRRx01pK+88sohTdn/xz/+8SH91Kc+dUg//OEPH9LnnXfekD733HOH9MUXXzykn/zkJw9purzz7zPWmWsqb/Zge5nH3ULWsn+7/d7ti61EARBCCCGEEEIIIcwAeQEQQgghhBBCCCHMAM0uAJQsOIm+kz5QmsDItJSSUNLGiKCUTThJMWVjhFHiKT+jTM9FFHbSXJZzxRVXDGnejPDVr351SFOyxXZ97WtfG9KUlVBeRVkyYR9SIsV2UVrLiJmUjCxevHhIOznn8ccfP6Q5FpTVsZ6UQFMGxPqsX79+SHNeUXZDuT7HiGPK+lOmSPcNF3Wb48L87EOOyxhc5Fgn9+PnTh7m5Pct8v6WOrgI96QlQqmLROqiYHPeOfumjM1FHmeeyXGj/JJt4NyjfI2SL9q7k2FxfvK7XE8oZyXsFxdxnP1FuayTeNM2XXRzdzOEk5e1zLmF3ALgpIUugjbzc2z4bHfrA9cUPmvSZWQzdFti/1LCyzF2tss6u3ngXFgoTeb847O4xjlJoIvG7lwYnCsa5wrlnM69hPOGc5Ht4lg4KX6L25Bbz1qkkWwX28t2cezcrQ1MO/eHhcqa2Tc8g3E/dTeDME1XQbaDtsLzDNvt9gDu9YQRvVln2qhzhXEue1xjL7/88iHNG6MuvPDCIe3csi655JKp9eG6Qjk15wj3GNor7YbjRUm8u1WK3+W8Y/2Zn/3D79K22C6OI10/OE85Xiyf84R5eIsEz6Ucazff6ULC8xjrzHPdGNgfzmXNnYu4Jrp1wbkiOlcM57rnbgrg/ufKdHuMexbzt9xKwDY6VwJXpts7HW6tp1vPs571rCF90UUXTU27MyShTT/zmc8c0h/72MeG9PLly6eW71w5CO3PncXcjQmcY9wz3PmL5TB/K1EAhBBCCCGEEEIIM0BeAIQQQgghhBBCCDNAs2aA0gfKOyjZovSBUgbKjSjXP/bYY6eWySiQlCdRoka5ESVSfC6lHk4u7CSsTn7P9lICSWk6JaKU2/G5lJmx7SyHci/WjZ+76M6UtXPsKOtivzn3B8rG6MKwZs2aqc+lPIyyLifRZ59wvFhPRsTlHKO0jJIzJ+/luHD+UJrD/qQMa6GwPBepnJ87Cb2T1S40ovQkY2VypCUCO6HMzMnPXMRazjUXLX1S0k3bdxJ3zjHKtjgP3RgwP+WpXB8o83K4edAyhzi3KT2l3JQ23jJObKObEy2RheeCNu9ulmCaawfb6eTfhHmc60lLtHbnqkFcmRwD4uY428i56CSZbBdpuRWEuCjUnNNcN1lPJ11kftoMv+uku84FwOVx0cmdm4pziXFzgH3ixq7FxsbAseWZgf3KswHXK567aHO8FYif062A48k1l26btEtnu0726tZnd/MG28VzFM8YdDlkPWmL7CvWh/ndmunODGwv60C4JvN85W4WYBt5ZnO3PnGseV7i51xLON/d+kG5PsvkOsS1gePIcxrnCSOns0/IQs9gbr1rcbNze4Bza3auX2PT7uYVtxY7NzDnJuluKOB33d5J3HzhWI1d74477rghTXeiRYsWDenTTz99SL/kJS+Zmmcsb3vb24b0SSedNKR5OwDnpnMBoDsybcu5xo3dg935a2tdMKMACCGEEEIIIYQQZoC8AAghhBBCCCGEEGaAZhcAyrkvvfTSIc3oppSGUL5FaRnlFJSPtNws4CSHlK1Quk+5Ect08irWmdIsysVZfyfD5HOd3JmSM+Zh+ZThUaZDORahjJlyffYh68Z2UVrE/qHUkBI7jruThrMcJy1iPyxdunRIU9JM6RrlQS46MetDuZrrZ7aLtzBQljQGJ+8ZKyl2MlayLeXY077rpLdjJV5Oxu5uBGB+Z3OMWj5XZG1KEzkfKAFldGjagpNVsX7M7250IPzcSdHdPOC659yRnDuPs9OWyLmsg5OsufLngmPIsXFSeeIkkJwj/JzrkRtXJ/9064tb15w7B6WdTprqJOsuQrC7YcOtK87NyN2Iw37jPGupj5O1Okljy80FLr+Luk8bcHUgrq+Yn89lv3G+uRs+WmS203BnMEZiZ99w32TUetaX64+T0zsJsttbeY5y5zp3BuP5jZ9fd911Q5qyWtfflMpzPLneuFsv2EaekZzcnW2hCxjPSJx3lAjzfOXWbY6R6x+W4+Ys5cvsQ5bPOnPseIbnXOIccM/lPst5wjrQHYB1oIvKGFok/c5tzEX+d64q/K7bw1vSbl1z9sfxdO567hzo1iN3Iw7H2d0cw88drBvPXJT38wz+tKc9bUh//OMfH9LsN9rBtddeO7UccuaZZw5puvvQjt3NZlw7+bcU3RA4XizTRfJnv7lztbsBiMQFIIQQQgghhBBCCFPJC4AQQgghhBBCCGEGaHYBYGR+ShkolaBUl1IJylAoK6JEjVIMyqiuvvrqIU2ph4tuSRmEi2hK6biTflGWQXkH60wJE9vI6KxOmkxJzerVq4c0I8cyDyVnlJMxciXzM4+TPbGf2V7KUyh/ofyeaReNe+XKlUOa8kXedMD2OgkLXR4oOWL9KWOiNIfzyvXDEUccMbV8yt7G0BJJvIWWyN0u7aRfTp67NbRIaV2kZBfptCW6upuztBVpy3nC9Yf24qIQu2c7lwa6tFBOx7XFReDlesV+YXu4dvFzF4XduScQt1YQdxvE1kah5bOJk7nRJimL41xgmnVifvaXm2vOtpyE3snXiZOmcuxd/ZluuXnD5efnLkoxpYv83M2nlrWEfeikss5Fwu33zM8xbbkJo8W9x92w4CSc7E/nNuLmz3xw32S73ZmEfUDcGYz1ogve2rVrhzTPYIz67WzI9RnXMXdLBvuVUba5p7sI3XQZcK6a7B+eZ9hG5mHfsp50t2QeN5c5F1w0fucCxz7nWsj68FmURLNdHHee8ZwrD+eDc4WgjToXTrcu0v2Tc2ahZzDuw25uOjt3a1PLusC53LLeuTNby404bm9z7SUtZRLnZub+xmI5PI+fcMIJQ/qoo44a0suWLZuan39LnXLKKUOa40vXIrrt8u8P/o3F9Y/lvO997xvS/JuA7jXHHHPMkObfJbTRlvOXcxF0e4P7PLcAhBBCCCGEEEIIYV7yAiCEEEIIIYQQQpgBml0ANm7cOKQPO+ywIU05CKUSlAlRFsX8TrbJcii/Z3RZykRcVFjKYig1p4SMEiamKVsilIww6j5lKC7ysYvkeOqppw7pSy65ZEizjcy/fPnyIU2JGuXrlNw7uQ9lMZSqUM7CPqcUkHOAbhqUqnBcOKZHH330kKYEjmn2M+E4sm6MTEtZEvuc+dleRqBlnSkdH0OLLMrJqJ1Ulzj5uZMZuue2uAmMjfzvZGxOquTsw0nOOW4cK8r5KXWUtpR8cW6zrk5+7yLzOmkg7ZRrHdcT1+/sC9bTuQAw7aTiTLvntkRhdzc0LCTyP3GyWj6Pazr7xd1M4KIm87turjm3EuL6yPW7+66bQ05eznTLzSEuQr6z0Rap/1jGugdx3N18dVGWOb6cV27OtKzB7sYO7rX8LiPyu0jhtNsxMDI/JbOsF/c4J193ZzB+zvMe5ffuDMZnce/m+HDv5nrI9Y1rN2X5nAssn+cQnp34XOJuJnrwgx88pHku4hnAjbNzRWKfu7WBrgrOFjnXeCsB9zWWQ3ty7eWYujOYs0XK+zkf6J7QcgajXVLqzX5bqK3wvEnc+cfJ9d05yrkiOvfPFhepsftqiyul2wudTL1lz+Oc4ljxuZwjlNMz8j/7jfOF84Lj/+EPf3hIc+3h30Ns11Of+tQh/Y53vGNIv/zlL59aZ64l/JyuB7xZgK4zxLlvELffu7M9bcu5Ci2EKABCCCGEEEIIIYQZIC8AQgghhBBCCCGEGaDZBYCSIUqwXHRISk8oXaMcxEWCZfn8nNIQlklZhosSz2iiLMdF5KbEh5FUKX/hs5wMzMktKeOgXOnYY48d0rxh4fDDD5+3DnS7oJsDYd3Y/+wTtpfSPka7/frXvz6kKethmZQpsm8pM2N96LZAWQyjbTppFMtkHvYtpUJ0GaCUjrJDF4l8Pji2LbJr1te1ryV6v4twzXa0yP7d504y62RLLbhIyU5yRjujDIzlUJY2+R3ON85J1tvJBJ3Uv0WSxXnl3BVoO8zDue2iTLOPxt7u0BLpuCXC7ELkaC23lRCu4y6SP9dBlu9k85Qfck4R2pZbF5jH1Z953Jwjzh2lJe3KYZ849xriynQuR5x/Y9cD7v0cXydTpj24NG2jxSXGyYFdhHS3VvFs4aKAj4Euh5SEEue+wFucGH2bsnx3FuIZg/BWAncG45ziXuzOYC5iP8977vzD+dKyB/O57E9Kgbne8Jzj3JW4v/C7rAPHxd1QwbMfP+eZ9qqrrhrSXLe4d3BcCG3Ifc46s3y3Vu25555T89Cmef5nn3MfZNsXegbjvHBnGCebd/uEw9k/y3c25NwEXD3Huve5ejrXAOeCynnKOcKzOdtOeby7rYvjzDnCterzn//8kObfH7TFc889d0hzvr/2ta8d0o9//OOH9GMf+9ghzb+3zjjjjCHNeeduZuOc5RmTtOzTLTdEuJvWnCtBK1EAhBBCCCGEEEIIM0BeAIQQQgghhBBCCDNAswsAo4y6SNQusiTlZC6SLnGyGJbp5EaUQTgXACfZIawzo9RSxkYJC6NeMlo+JSmMfEsJCyU1jPJKuRQlIJSZcVzYP841gOPFyKtsLyUvV1xxxZCmrId5WH+6KnCsKd8hTjpDWT7HzkVopUSN7WXdKG/iXKWMiVLthd4C0CL7d9JYJ6ttkTRSsuWinDuZGdMtEiMnUXOSeVd/FzHVSYopwWIb55Idcx5ybnDOt0TgpXyNaeIk1W7N5LzlfKPkjmsU0yzfyfhacOsncfJwJ1lrhbbNeeSiKXPtczh5HceeacoPnYuFk+lxXXZuEq6PWvY559bj3GWcy8PYW0HcGtAim2+RJbr6OBk/bYb7MfvfuQq5G93QDzMAACAASURBVA1cW1rWXedyQ1kz55grfwy8rYZ9wHXDraHcB7nuuXNRy7rv5OLuxgM+i+VwDAnXbbaX5bgz2Pr164c0z2Dc33mG4XgyD6P9O/cO1oFz2d3gwXnNqPhsL/uN4+72Dp6H3U0UPFO5tYr5+SyukVwLWQ7zs72cJ27d4tix/9muMTi3vJYbeFwdW85sLtK+c+VqOWu4m5LcPuTq7246Yvksx50POZ7Mz7qxTM4dro9sI/9eofsy/+ZYs2bN1DwPfehDh/Sb3vSmIX3yyScPad60Rheopz3taVPrzzWDn7u0cz9q2fvdDTT83Lns0BYX4i4TBUAIIYQQQgghhDAD5AVACCGEEEIIIYQwAzS7ADAyKqUGlG4w7aL6U+pDiRxlXZRku6i2lBtRgsVI8hdccMHU51IWQ3nVokWLhjQlMtdff/2QpsSHMidKQCi1Yh7KWdhe9hXrTxkNJS8uujD7k3I11o3R713kdLaXbaFkjuPCucE87lmUtvB2CY4j05R9sy0u6jbrf+KJJw5pujOwP/ld1sdJOOfDyelbIuc7yWxLlP4W2ZuT67dE+3fPohSKnzv5LMtsqQ9lY06W5qL7T9bD9Tu/757h2sa5Tek+01yvKOdycmb2qXPtcO4ATnbWcpOEm38tLg9jXQ+kLe2QZbn2O7kiPydOksk55eaak8o7ma+ThTM/Jb9unrnvOnm/k9BzP3brQUv06JbbP5x83JXjpJRc69kWtwc4qb9znXCwbi4aPseaY8E8tHO3N7fUZxqUdnP8ndsB68vP2WeUBfNMwn2ceQjl2dxzeX772te+NqR5/mEf8NYh3nRAWL6rP+eLO4NRNk/74FjxrMhxpvsny+RYuJuwnHsm5x3XD44p5xTbxbrx3Mg2sj7O3ZX5+VymuZexn9lG9gNdWR/0oAcN6dWrVw9png/53QMPPHBq/cfg9kB3FmhxZXNrHD93snB3vnJluv3c1ZnnCFe+u4nCudUyzbWBdWN7OV+4Jrr+5NyhbXGt37Bhw5DmfGeeSy65ZEg//OEPH9KnnHLK1Do/4hGPGNJLly4d0uxbN8ed2xNxNzVsDc71kX27EFuJAiCEEEIIIYQQQpgB8gIghBBCCCGEEEKYAZpdAChdpPSLEgcnP6NcY9WqVUOakjbKKRjt0UWbp0Scsh5G2ud3KcehSwJl/5SAUJLCelK2RKkbZWyUaTFKP/OzP1kfpinvcFGoXRRt9gnbTpkI27J8+fIhzXHk2DFN2RjlPvwuZUn8LmV7rAOjvx555JFTy+ENC5xjHGtG8Lzmmmumlk/XAMoLmaasbgysV0sU7BZZrZN1tUiAnHy5JTq2k6gxP+emky+7aLdOQs62UI7F8l0/T0qznO04OR3zMw/lbve///2HtJP3Mz/bQHt0aScnJ066R8a6o7j52nIzxEKi0Lo1gusa12Ln2sQ1xUW/577lovdT6ur2NufC4lxBmJ/zhu3iuu8iCjsZoIuizs/d+JGWeeDWHrc2cLxoG+wfZyfu9gvn+uLWOece4iSxzs2E88dJul3dnGvDGDhfuOaw73n+4Xxh3S+//PIhzfMPueqqq4Y0JdkcN+dGw7MZv8u+pD3xhiDOKfarcxV0ZzCuK5SjO7m7uymmJYq3c1FruaWFz+K5hdBu3M0Ybv/juHPsON+59vA8xnFhOTxTsR/cLVE8A7N8ugZw3vJsTHeMMdBW3H4w1n3SyePdHHFj0nIGI+5c7/Yntw+13IDANYNnMNqTc4Fz+0pLpHq2nXPE1XPFihVDmnOTNkRbp9Sffc76cG/men1X4eZhi3tLK1EAhBBCCCGEEEIIM0BeAIQQQgghhBBCCDNAswuAi5hK6YaTIlK68YAHPGBIU3pEORPlF5RhU5JCaYuTeVJW5CLeU9pCyQXby/yUn7F8StQYufL4448f0pRCsc7sEz6L5bPPXaRRQpkLJWROZk8pCWVXrI9z/aCLBOvG8aJUiC4SzMM6sP6U8NHdgJIzjgvnEvMfd9xxQ5qyPeLkxmNoiSjbIi1skdC31MHJyZ2kzUXmdxKvsfXh2Dqc7K3FFWJS8sv2uxsXuJ645zmpspNZukjk/NxJhp00sEWK76R+Ld9tuamCOOlkK26NYJvZ165/uZfQhp0NuXGljJjPdXPWuYu4m1q4tnLs3XfZJ2NvbnBjORa3JhHWzUnomXYuAPxuS1T/lltEiMvv+pC4mwI4ju6mBn6+0NtleCZxUmB3Mwb7mPsvXW24jvHMwDnL+eiiYzPNM4yzOZ7BCPduzheWyTQl67TjY489dkjzLEF4ZmAfsn/ceLpzgut/jiPPt+42DxeB30VF57M4r51LCOcy20ib420trD/nBqX77E/O96OOOmpIc3xpiyyfa/kY3BrqcHujG8MW106u+7SJlnNXiysJ6+P2D9afZTq3KHfjkHOZczdxtbiZccy5Jrm9lud95qcbED+npJ92w7+3uPbQzu4OtLiWLET2T6IACCGEEEIIIYQQZoC8AAghhBBCCCGEEGaAZhcAykooDaFcgxHUGY2R0oqNGzcOaUo6KBOiTOTqq68e0pQ5UXJPqc23vvWtIe2ixFMGRunowQcfPPW7lIFRZuak6ZRFsU8o16D0y0lBKbWhZIv972SPbC/7mVIuQhk/x/Tb3/721M/Zlk2bNk19FseU9XdRPinNcS4YrCflf5TFsM9ddGfOSUrXOC4Llc3yOS0R6Fuip7fIW52838nD+Vwn7WVbtkY+S1x9OL/GRqMnc7luuH53MlQnW+X8oTzOSZXZj07m7CSALX3dcpOEy99yI4BznWhxd5kLSjy5hrIvnKuGk66yzczDtJvL7Hc+i3PKSda5ZzjXCCfZc9LxFlcQ0uIK4nBrjJP3t0S2Zl85dxdnGy1j5PqT33WSXld/J9F38veWGxAWckPGJIxU7/qbexkj/HMuM4o7I2Wz3ewb3ghAKTPL5zjQ1ZF9xvMVzxV0x+P+zj7jGYzPZTnsH7aLbo+sJ+XC7gzG8eT5s2Wesg6UxLMtLJ9nJ9oN87u9jXm4l7H/OQe47rK9/C7X47FnMNfnrkzOAZ6fF3oGc7bNPYBlc+642wGcG6OrY0s5La6dTpbv6uD2PHdrDueyc11zrqBuXXbru2svbwtx+yvnC+eIc99xabd2ujPwjsSdp5yrNOdVbgEIIYQQQgghhBDCVPICIIQQQgghhBBCmAGaXQCWLVs2pCn7WL9+/ZCmFIMyMCe7oySJ0nTK2BjJkdEe6UpAeQflEZSMUHpC+Qtl55RLuQjTlGJQ4sXPXZRvSmqYn5J45qdkjhIp5qGMje2lBIvSFrbXyX1Yf/a5k9zS3YASL/Y5JTt003BRiCnjZx3YV6wPJW2ch8zP/qTckdI+zr2FSJolH+V1rHTayd2djMrlcVL/Fsmvi1JLXDTaFvm5k9K2RD11/TYZRbalv9gGF2WceVx+J5VzUu4WCaBr81h5pOtfJ1FvcVNpGY+5cJJWN4/oGuTmrJuPzp2DedwtA9xjnLuBk+i3RI8mThJPXP+0pMeW49xRnAx6a9xdWmzVuVW13HDiIoJzf3X7nHNncLcT8dxAWqKST4P7F9tEGbw7g7n+djcccd/kGYx7PfdxdxuRi37OM5i7Fci5xbD/Ws5gTHPusEyOFceZ0mSuPe7mB3eDAPNwjNx6wLnMM5uTBTOPc2HhODoXDLoAcP7QNZJnJPYny+GzeDZjfzr3BJazUNcZJ79nmmU7m3TzxcnjnbzfzeuWs5ZbN1tcO12dOUc4Z93fKK5M57LccsuLu72EtuVujmnZF9lG2hy/687YY93ntgaOo9vbnB24cWklCoAQQgghhBBCCGEGyAuAEEIIIYQQQghhBmh2AaCknHIZSiUoGaI0i5FCKSE7//zzhzSj+lOGRAmIixjNqKSsJ6PFEj6LZbKeLuopZWB0W6CMjXWjbIXtWrly5ZA+/PDDh/SaNWuGNKVQlAHxJgK2lxIWSrZaIpNTrsa2sE847pTMcQ5Q+kXpD1m+fPmQvvzyy6eW6aLRss68heHEE08c0hdddNGQZnspO6SMjf1G6WOLPHsaLRG6nYy4Re7eIvN15ThJrpO3uwiuLupsC24OOjlki4TPRaCdfIZzyeA648py9XYS6RYJthvXlsj8W8PYqP4t83Ihck3OtZY6ub3HSZzd+Dm3GBfV38lqiZNwcm5REu2kya6vWySKLX3SIntscQdw7XVp992W2w1a3Fec/TipLz/n3sA0x4ifc83jc3mecGO60GjTLNs9n+cB7qE8S3B/v/DCC4c0zzmUzFKSyzrQJvhduu9R8s3+YH7WzdWf7g88D/AM5mTwtD+6Ga5bt25I86x47bXXTn0W1yqeY92tRuznFrceni3Z/+wfrgfMTztgG53r2dKlS4c0b3ngGYzl8HPOX471ihUrhvRll1029bm0v5Z2LVSK7aKmOxt264uTwTspe4vLJ/M4ibu7MYXPYp+xXS17Nf++YRs5Pq7fWKZzu2FbWqT7dMN1rnfsE+eC4/akFtcPdzbeHu4A7kw7Nt3ixjIXUQCEEEIIIYQQQggzQF4AhBBCCCGEEEIIM0CzCwAlQE564iLVU1pBNwHKwJxsk5JyctBBBw1pSrYonaLM27kkUGbGNOvjIsMfddRRQ5pydEa8d3K4hzzkIUOa/Xn88ccPaUo66BpwzTXXDGn2oZP4uPGixItyGboDcBxZJmU97CvnFsEx4ucuyjLrRkkYJUGUbbFPOI6U71AWyDbuu+++U8tklOMxOPlZS9rJqJ3U1UnOiJNsuQj3pEUW7L7bUg5x9W+JWD/XbQUu6q7Lw7LGSv1dHjJW0u8k266csc9tkZ+79Na6AIyNVO/SrJOLlEyYhzbB/Yb7kLNXd9ODixjv5qmz47EuAG7+tUTX35qbBcbKJFvm7th1gvldJH/uH07u2rJfuro5aT5tY+ztHdPq4mTKbBP3TY4/zz+8YYdwLnM/JZTl81zHfnJnMEr9aXOU8TsXRbb9yCOPHNI8g7ln0TXymGOOmVrmEUccMaQ5bjwPMIo++5Dl0O7deNEliOcTjp2TVjt5P8fXRf7n55zvLJOybHcDAuHNXO4MxjnszmBsy6ZNm6Y+az7czV3sY3djlVuP3H7QcsuLi67v+tK5jLS4cI49UzhJuXPzdHuhuyGGdXOuX87tlG10bhek5QYuNx/czVkt50e3pre45Y7dh9xZLC4AIYQQQgghhBBCmEpeAIQQQgghhBBCCDNAswvAjTfeOKQpd3ARVp3Un1IPypkoFXORninXoHSGsjHnekB5EqPoU4ZEaYiLSumk6awb5WeMeE+ZOt0EXJR21u1BD3rQkKb8hXIv9ic/dxJXSvoZ3ZfjS+mJk8uwf9j/dH9g3Zzcx0WF5dxwY+EkwOxDyu1Yf0r7nNxxDE6u6OTSrC/7np+76N6OFumwk35xTFpcD1pk79tKLtzy3Uk5lus71xcuKnlLnzpZppPljY16vq3yuM+dvH+sW0srLpK1k7k5KftYaZ6TGfJZXLNa5PFOrtjiRuKiI4+dNyyzZW65ue7miuv/lrFvsd0W15qWdbHFHcq5rDipr7sdgHAcXQTxlhslpsH90e0T3Fu5p9M1kvnZDtqiu9mFfcCzH88VLuo3z4SMus/9knXgGYx15nmP+Xlu5BnssMMOG9J0RWQ5Lko7+3zZsmVT8/B8wvMP28Xx57mFfUhJOseX7eKYuts2WAe6P7go8xwj9if7hDcdMD/b4urPOrszGMeFZ7CFustceumlUz93/c11hPOuJRr/WJc7t7e5tjp7bZHEt5wV3XPdWaDl5hV3y5U7N3K9cXsSbcilXfluzXUS+pbbn9xe23J+bInqz89Z/5bvthIFQAghhBBCCCGEMAPkBUAIIYQQQgghhDADNLsAUAJEOQKjsF555ZVD2kX4p9yaMi3K0SnT4eeUM1FCT+kGZT2M+EpZEWVdjMy/bt26IU3pD6UVlIZQtnLAAQdoGszDaLGMbkqXBNaT0jKWwz6hjI11YD+zfyjDYz9TOsjv8rYFygjdGLFdLtotZYScVxwvjhFlNxxf9g/lbYx2y+e6yK2EkhpKB8dA1wfiZNSUTzoJk0s7KD1yEmRXjpPbOlmU+y5pkfaSlmj/LfLlyd+5tvEZjhYXABfZveV2hxZ3A/ddR8sNCk7q51wAWqTirdBVyT2b9XM3lzgJvZMoujzc21okti6Pm6e0Iecu4nBzws1vJyfcmijRTh7f4voz1u2JuDo7Nxs3L7kXtqSdex73MFdPzqVt4QLA/c7ZhLuFh/VyNzpxXnN/5F7POrB8dwbjOY23BnB/57low4YNU5/rouITd6MB28ho8+wrnp14nnEyfsrEeWbjmZbnAPYPP3cSc+ZhH3Ks+V2ef3gbgts7OX8p0Wf9OUa0S44F5wP7jfXnGYy22HIGW7JkydQ883HZZZcNadb9UY961JC+5JJLhjT/XmG/0lbZPufi5WThbKtLu7MWx9a5cbS4iDq3hZZzFOeLO8u526bc2ce5bLm9pOWcQjtzrjzM4/q85baClr3f9afrH3cu4zx0rsQLOX9FARBCCCGEEEIIIcwAeQEQQgghhBBCCCHMAM0uAJRqUk5BSTnl6Pz88ssvH9KUS1F+T9mHkwxRQkYZEqVfLgouy6GUx0l8KAlj9H5KLihZ5y0DdIugHJ2yD0b1v+qqq4Y05SlLly6d+jklXpRsUbrPdlG+Q0k/XSpc212Ufo4X5V6UszOyK6EEkWNN6SD7mX3LOUM5HPuZ5XC+0cXj6KOPHtJ0W2A/s8wxrFmzZki3RILnuHH+Ovkkx4q0SGmdBN7d0uDkWCzHSdFcxHMnX3ay7xY3ASe7mizLSYOZdhFXW2Rz7gaTlr5oidJPXPtd+S3Rh8e6Hiwk8j9Zu3btkHb15ue0Vc47ypG5H1BG3HIThZOmM8113N0m4KS97tYA0nJrhcONJddT7p3EzSEnt3R1a3HfacGNl6tbixtCi+sO54xbk7hG0uZ5TuK+6+ScY6A83o0J5x3d65zLGfdQ9ofrA9oW5xHPQu4M5s54TlpPuT7PErQ/7pFcGw4//PAhzfMJn8UzAPdslk/3TDfO7E+ezVgO5wLPVxwj7sFsF9cJnm3cTQTOJYT9z3L4XDdn2f+cAzxfsZ9ZPl1HeZbmOdndxsUxHQOfyXqde+65U/OvXLlySLOfOLY8a7PPnHTc3XbFNO3V3dDlXAb4XXe7AvOPlaY7168WV8gWyTpxc5M25/KzfLfeOPdV54bg8rsx5Vi4fdTtx65/Ws59C4n8T6IACCGEEEIIIYQQZoC8AAghhBBCCCGEEGaAZheAX/mVXxnSlFJTrkEuuOCCIU05y+LFi4c0XQYoK1q/fv2QphSDsjTK0Sn7oMSdMhRKSVgHSjooiackifJrSrb4XUrg2D/ObYESMsraKbVyMjn2Jz+/8cYbh7ST81HW7qSIHFPWk22kHJF97qK/su0cO9afMl7K5FwEY8rVWA6lOZRqsczVq1cPaScFpSRrDGeeeeaQplyHfUnJ3tVXXz2kOd85zqwL+5X9QZz02UUrdbAvnRTKuQw4N4Sxsn8nxXZMSqdapPUu2jPzuNsUCD9viQ7spLwt0vqWGxHGPqvFRcKlWyTqk5xxxhlTy+JaxjWXLgNsM+e7i5TtIgS3RJ53Un+mx+ZpiSLs8rjo+i7Ntri561x5OC7sZ/eslhs13NxtcdNo+Xysm41zj2G7WuScTkLb0ifz8cQnPnFIc4+mfXCf5a1MHFueuyjh5h7DvYrt5lrPOvC5lPGzP5jmXs+6cV90tzXxvOdc5tz5hPXkGsPzJ89gPD9wDN3tQqwbbZ35+Vx3BuNaxTKdmy3bznMs7dWNF+evu9HAncHcjRkuij3PkHR95Rxjv7G9Y6DbKNv0kIc8ZEg/+tGPHtJvectbptaFtxAwzXZwzhI+l21yMn7nJsBzoEvT5lr2GCc7d2uWW+/cHsO11d2YwjK53ri/29y+5VwSOAfdOcWdfdwe7G5H4Rwfuw+1uGa2nOkWQhQAIYQQQgghhBDCDJAXACGEEEIIIYQQwgzQ7ALw/Oc/f0gzkielD4ykSckT05THU6JBaTolWy4qO+U1rIOTl59yyilDmlHXnQSdEil3K4GLXsv8lL+4KJmU7Bx77LFDmlKxVatWDWnK4Sh1YzmUklBCRhke28Kxo5zMyTNZDutwxBFHDGnKeugawPIpo2GdGb3Wyd4ozWF+ul2wDynV4hzjdzleC43W/MpXvnJIcx6xDziXv/KVrwxpyjldNFo3j5yE3kUhdxJ1Jxtzsn/nbjA28r2TlpGxkfLnegbr1OIC4CTYTt7nJGhjpf7E9alja9wBWvq3RVo+F694xSuGNCWqjKZNW/na1742pGkrhHuDq6sbP5d2rh0uzbF3LjIuQjNpeRbnK+W5Tmbv3A1cfZwNcK107lhu3oydxw5XjuvPsetQi/0zD9dCd0vHQmWbZ5111pDmesU0zzbnn3/+kOY5inOE5xbuJdxvnKsUzzmUMnPPYx+sWLFiSHPPZR4+l+uBk9zzHMI8lEe7M5iLqH/UUUcNaZ4f6KrH8wPPOSzH3bzhJNc8V7esYRxTnot4/uHZj/VklHy6TDlZNvNzbXZnsEMOOWRIuzMY6+nOYM7FeD5Yr4c+9KFD+otf/OKQ/sxnPjOk6RbM89s73vGOIc1zq5Pouxs53K0B/C7XjpbPOW5Mu/Obu+GGY057cusg551zf+Lnbu1j2rkAcC64v73c2ZX97263aLmdyp113Y0AY2/uabmlyrmQuT2mlSgAQgghhBBCCCGEGSAvAEIIIYQQQgghhBmg2QWA8nhKQChZOOmkk4b0oYceOqQ3bdo0pCm1YbRVSp4oUWN0VkqJWD6lU8uWLRvSlIlQpk7ZBGUiThZOCfq+++47pCnlocSLMie2xUXwZBsp5aKsh+2lXIaR7Tku7BO2kTIdSrkokeFY8HOONdvOPJTrOlkM5VDsKz6XMiC6dXAsmIdSRpbPvmKd6VLh3EBY/zGwHRxnzh26Shx++OFDmpGbmWY7OIaE8iT2d4uU2UnXmR4bqdxFVycu0rqTSToXlrluCnCyMyfj5TNclGNnC5x7lKQ6CZeLGOukYy3RxN1NCWOj+hM351qeOxdc49h3tEPax9KlS4c03ZZoK1xTWtxiXJR+Zx8teZwLQEtUfxexmGU6GTmf5ea9i9btyneuX7QN5w7g5k3LOjH2hokWdwBXTourjJN0E87blqjPY6AM20W/5/nqsMMOG9KUrzPNiPEcf44t20RJNl0R3RmP7eZ5g3D8eRbinkfXACfFdjcjuDMY1xt3BuO5gu2iKwS/yzMJz0LuvMQzLW3F2SLrT/hdnl1d5Hf2G/vKuYTQlYBj4c5gPItwHDlveRMT68/bBxZ6BiNnn332kP6Hf/iHIc2bzb785S8PabbvxBNPHNLnnXfekOYYutseOL84bu68wDzOnYX5ea5vOb+1RNFn2kn9W9ZWd1Z0txW5W23cbW+0aed6x3Hket3i1uVc3VjO2LPx1rhsupsUWm7dmosoAEIIIYQQQgghhBkgLwBCCCGEEEIIIYQZoFlfQ9kEpcyUpFDSv2TJkqnlrF+/fmqZl19++ZCmhJoyF0YWdTJ4J81xEhZKZxilnTIkF5WSUjTKUyh/YlsoCaM8hZF7+VzKzFgO20LZm5NKs56Uh7F/KN9au3bt1PpccsklQ5pyOPYh+8rVn9IiJ2lju5yUlW2k/MVFwmb/sF3sf/aJk3nOR4usm3WnW8OiRYuGNOcjbYtzjRJq9nFL5H8nX26RLDucPKwlgraLKE+bYzkumuuk1KpFAsz5757Bue0iXXM9dNGnWyLNO7meixK7NZHUW1wAnGzZSfoWgmsD1wuum3TZoryYdsN1hLbCNdq5KrVE4Hf2QfvjHubyEK4NbrxdhGDOYxf5mGln086euPc4ibu7SaXFHcPh5kZL5H8nz3RtdP3sxtpFy2aa64WTc84H6+Lkp5Rzc9+nHVCuT7k7zwZOCs6zH/chyuA5f93NRO52GbrvcF/kGsDnMg/PGyyTbeEZjP3D/ZUuD3yWi8zP/nE32Tj3Rs5HrhOsD9ct9g/rTzjWPAtRVs7+5J5FWE/OZXerFMeU892dw3kGo4su+4QS8IXyhCc8Yd48/BuC8O8M1n3jxo1Dmq4w7nYytol7D8fE3STm5P0tNze1RIZ333VnYecexvXJnS2dfXBd4Xc5B7mv0w6YZr8xv3OFcDffuHMZcXt5y1i4GxncGbjFla5lH50kCoAQQgghhBBCCGEGyAuAEEIIIYQQQghhBmh2AVi3bt2QPvjgg4f0FVdcMaSdFIrSL0amZQRayl8oC2c5lM4QyiAYLZ9yOJZJOQUj61L65SK4UuLDOjv5BT+nHIvRXxnlmvJ7Jx3db7/9hjT7nJH/Gb2UkjD2A/uTY0FJCiMGsw7O/cHJEdnnlO5SYkWczJbtpdyHz2L9nSTWuQlQbkdJ5Bgol+L8peyO9XVSdsqiODfZB8RJWp2k38n+nczMSaFcnhZJFcfKuek4maGTBU9GDnZyK0JpuZOH87suQjI/p92xTNcvTqbWIk9mOWNvFmhhW7kbTOJsxbkSMQ+hnJRj6fqo5RaAltstnAzTSSCdZI/j7WSSXCcoL6V9cJ65mwKc+0CLXNRJ4t2tB859zpXTssa4z8euPS7dElnZrdm0ebaXa3/LjRrT4J7hXN6crbC/KXem6wxt0c0jN+9YH54PuTbyuyyTey4l/c5dkfl5BnBjxXMU68OzB2/lueqqq6Z+l/PauYhSyr58+fKpedx8ZH04v+gOwPzsT+dWwPnAOehuW2hZz5wLJ6XYhOPlbnciPLMt1AVgzZo1Q5o3x4yFN5tR9s951BKNn/bE/O4WAH7eIjV3693W4MpsOQuwLc7liesT3budTbMczlmOBdcz1oFnxZ7MfwAAIABJREFUAuJc9dw5wJ2n+KyWW7daXNGI6/OtdbuMAiCEEEIIIYQQQpgB8gIghBBCCCGEEEKYAZq1IpRrUH5BCQJlEJSrUcbDzylFc5IzysycbJNpJ5OjbIISoyuvvHJIUwbGNKPfU75OSYqLiMu2sI2sG90BKPXm5+xnF9mV7gzscyeBozsDJWd0B6CkiTgZI79LmRwlTZSlsf50u2BfMUr/UUcdNaQZ5dP1m5tLzMN+4LMoRxwDIysT5w7A8eQ85bzmnHJlOkkr+7LFNcDJAF301LFR1N3NDM41oEUq7W4WmPw+aZE7ct46+2VdaXctrhotsmU3Bi1yaScp43edVNzlGSvTngtGJCccW+e6w35nnbjuONcIrolufrVI/1qi/LrvurnMdYptp5TWtYX5KUfneuPkws6G3JxrcVmhfbsxdWtYC24OtNwWMtYFwMlvW24BcLcwjMFJ4jm2LJtrEeeUi77dEkW6Re7MM4brY66rlGvz9iimeUsU90LOI0rQeU4jfC7rz77l+sEzhrvdguded3uC2y/cGcz1IXG3hfB8Rekz2865wc/ZD+wfuiHwDEbJNd1CnUsp+9CdwehGwTPtGLZG9k/oFkNXXc73lr9RuHbTdjl33HnMnaN4HnHn9G2Fc0d2bkBcY9wtE24dZFucLJ/ziDbqXDCdW4Rz7XNrm0u7s1vLLSgOt2aM3SPnIgqAEEIIIYQQQghhBsgLgBBCCCGEEEIIYQZodgGg5ILSfUqDKM9kfiebYB5KlSi7odyBEi/Kw1ykYco4KC+nlIcSHMrRL7vssiFNeZKTZbiosJR9OImPS/O7lHg5lwdKXnhTAOVkixYtGtKUEFH6RWmWi8zN/uTYsY0cL95QwJsaXARrN9+c9M5FyKaMn3K1FStWDGm2l/I5zudtgYt4zj7gM93tCpxrzhXDyfVdnpbI8S2ytJZ57SRMnONjI9zPJbF1NuuiqXL+0NY43wjnqnM5cW1ztESsJ+52gBaJ91icPHwhEWmdDJBzn/1I+6c9UdLqbvVgvVtkemMj9br55CToLo+L/M9+cHsJ+8dFnudznUzd2YmTLjrJJMt0sv+xtkFc/7REqnay0LGuOKx/yxqxUNhnzq3PuXqwb5zLAPdx5uFzuafzLMH2uTMYpbqUaHPf59q7cuXKIU1pvXOd4b7IsxDnAuvDcXMuOzz7EZbDMwP7nGcPdzbjczl3OKbsH44jx4LrHOvGdZFR7Bl1nWPNecX1lW4XbAvHi+WwzpTx0+WLN1VxbrBd7IftiZOOO5diupiw3YT53c1CLetLy1lgW97MMw3nmupcfJyrUItbFMvnmkS74bP4N6hzlXa3B7nP3Z7U4mY29mzVcqZ1e/bWjnsUACGEEEIIIYQQwgyQFwAhhBBCCCGEEMIM0OwCQFnMV77ylSFNuQalHqtWrRrSlAk5yRll2JRCUbZN2RjlHSyTki3Khygho7Rp2bJlQ5pSLsq3WH/KLyhlp1SI9aeMbfHixUOakeIp32LdKMtn/Rlhle1lHsqGKANjtHxKwijZYR6OI2VMlM4wcr6Td1NitX79+iHNtjtJG+vP+UaXDX6XfcJ5wjGiiwfnoZNnjYFjyLSTSTIP7YxpJ18eG5HdSXUpMXJRuZ182UVPZT2dDMzJpVz9ncTeRbmebAPr6p7t5gClfi46uIsOzGexfi7txptrC9NOIubkYi23CRAXAX1r5NvSlrbtbIX9Tptw9uTmppNYOnkjy2Qe7gdujXB1cFJstp37kHsW006i6CIos0znvkLG3obgpNVj7dCNi4tIzXMA1313GwLL4V7i1kjScgsRx9rdvjIGzhG64Dk3Gu7LhPXiXGD57hYenmHYryzTnWdchHy6EnA9YDlOBk8pO897HNvVq1dPrT/PljwzsM7uXMebsNgu9ifHnO11ZznOI+bh2ca5K7EtLecD5mff8llsr5PIs57uhinmp11edNFFQ5pnMLdmLxQn0Wf/rVu3bmp+tsm5krS4ErlbmThP3RnMSe4Xst9ua5zLEevvXEedKyHzcF5wbtLOnIu2c/10Zy53C4ezy5YbKtxNIM71w+2vbi93bgKtRAEQQgghhBBCCCHMAHkBEEIIIYQQQgghzADNGmdKdyh92LBhw5CmFIPyBcopKCuijI1lUspw4IEHTv2c8hHK9V30VNaNsg9K/5yMlJIwJy1jVFDKiShRo+yfEiLWh3WgNMTJHtnPlMyxDpT0U3LGMteuXTukKes5+OCDhzRdBpykkXIv9v8+++wzpDmXnIST32WariL8nHWmhJb15FxiP3AOOCnSGPh8Jz+lNMjd5ECpo5MPtUj0XR5HS+R/N39dHZxU3EmwWr7rJE9zSaHcs9k2F03cSfRbbjWgZM3NMRedm3VwckYn9XdjOTZ6rJMZby2U0nLta5HKu75wUnOXpsSP9udkjC6SsasPx49rjbMn7oUumrKbc0527nCS0pZbQZytu7T7rovq3nJDgesTjmlLOWPnFZ/rJP1OgtricjMN7issz0nEnSSX9eXeQ3krx4cR4F2U6rFnMOeG4G5LYFtYf3fWcrcOMdo8y3HrTYt7m3MP4vmWfUs3B5bP/Bwv9i3PLYRzinOZ6w1vSWAetotjyvMk5xtdU7k+8VzH/uT5kzc60Q2B9SQLPYM5l0DuNxxnnivdbWYuGr+T+rubjFok3+6MwDT7fkeyNWcw557Iecf+4drm5qD7W4TrJe3P7THu5hPCPLRj5/LX4kJGXL+5277IQm52igIghBBCCCGEEEKYAfICIIQQQgghhBBCmAGa9TUXX3zxkKbcndINpilhoVyDEhZKgyjNoVTbSS8pCaNEihFrWT7lGpQbMT+fRenPkiVLhjRlJZRIXXrppUOa/UM5HPOzT5zUlH1IaRllKFddddWQPuyww4Y0+5CyGEq/2IeU6rGvWAdG5HQSS6bZV2wX3UAo33ESR9bNuYpQ3sZ5SLcLzhM+10V9pWRxDJQtsY85p1y0fxeVm33AvndSRNIiY3dScSerdZLWlgj/Y28BaHEBcOvQ5M8uMr+7XcC557TI+9hfbI+L4O7kX6yDu/mgJaKuk521SBJb5GVj3QqkLdd9F53XSfOc7M5JMp3kkDbqIv666PpcW91exXGirbe4hbioySzTydpb5pZjrAuOu+ViIbLEzTi7JW5cuF6yn8fezsA5zXZxzvC5TI+9aWM+KHfnHurk/Wwrpf5sN/dT7lstsn+uh/vtt9+Q3rRp05Bmf7i5z/zuDEYZP/do1v/yyy8f0jz/ML+7OYjj71yI2BZ3CxL7zUW2dzec0NaZh33O+jsXE+LOcu7WC67HPKNyvOjOSfved999hzT7k7c+cZ5wXjG/uw1qDHQBYf9xDvIs7G6jcTeaOHeQFpvnmLt92z2X65pzr9reuHOTO6dwLnPdZB72odv7acct7nxcI935oGV/cvXhvHLnZ3fjg3M/dXPGuWC6/ayVKABCCCGEEEIIIYQZIC8AQgghhBBCCCGEGaDZBYDSCkq2KNGhHJ3ye0qhnMSa5bB8SpUov2D5q1atGtKUeVP2RrkJpfJ8LmUWLJ/R/o888sghTVkU3QQYqZUSECdboSyJUFaycuXKqfmdWwH7nBITRvJ3UcopnaEkhdIvSsVctOFFixYNacrA+FyOEecDI7EyD2U0lGqxT5jHSdU51mwLXQkoRRsDx8FFNmfdXb2c/N7Jjh1OkutcAFzUeRf52snYWqTJrj5O3u/kWExPyoXd71zkWdenLeW4fnFyPVeHlnnrItC3yN6d20KLHM31z0JkzrQxN1+cXK7F3cJJlt3tE1w3uY6w/BYXHDfHnazdSbddVP+WaMruc9d25/riIiI7G2U/OylzC2Ndcfi5Wy+dhJa4qP4trjjONpxbxxi4z3J/ZJu4v3M/pTuLixJPCTdl7czDOvA8cOWVVw5p7qEuMjwl/e6GJsr76f7AsxbPKjxv8Mzgbopw66qDsnLONZ6d+Fx3juKa526ccGsM+6RFts5+5hnMRVTn+keXTKadSyz7xNmQW5t5OwPP3tviDMY566K4t5zB3PmHaSfFd+cFJ/UnzjXEuaJtD9z67lwqaPfsZ37OcXHnDo6/c61lfucy4lx83N7W4tbqbhBwZwJ3dnNni7GumQtxA4kCIIQQQgghhBBCmAHyAiCEEEIIIYQQQpgBmrVolCzceOONQ5pSDMqfKIui7IPSIxdR30m4KeOgHGvx4sVT60M5EyUafC6jxV577bVDmrI61u3qq68e0pTVUfbBZ/G7lJo76aKLfn/AAQcMacrt2CdsL5/Fzykho6sC81NKR7cOyrScOwalSCzftYt5WE+2i3WmzIgyL8oXKb1jPV1EX85bwjxjcDc80IbYDsp+KD1iP/Hzlmj/Tt7qPm+JnO4ksMRFW3XyNidNdv3G8XQ3LDA9+R0n3W2RdVPuxjnD9Y395WTdLrJ4y9i0jIeTzzsZtZNLOzna2Ijyc0F5IHFz3N1q4KIIOxm5c69xbhstEfi5Xrj6t9huS2TiFrtxkZidW1JL2uHmFm3GzVE3p53dOlcLPtet9dwbiIvwzfxcs5lmPdle1pPzbaH2w75x0mvWy90c5M5gzO/mMr+7du3aIX344YdPrQ/l/e4Mxr2bt/ZwHHjWonuCi/TN+cJ28bktNs0y2ZaWG4vceZhrlZNE042C51KevdnPPCNxvNifbCPHl2XyvMr8PONxjvG7PKOyvcSt3zx/ujV1DK7dLJt97yTobIezZ+Lc2IhzmXQyb+em5dz+FupiJHn3T6Y5/nTp5l7ONKX77HPOX7aXds/nco5wfCfPe5vh2uBcfFwdnPyeuH235UYcd/Z0a7C7OWpriQIghBBCCCGEEEKYAfICIIQQQgghhBBCmAGatSKUdFAmRLkG5fRO2rls2bIhTfkFpSFOduUiwFMixVsAWD4lFMzDyKhOekRpFiUaTPNZrA/bwnIon2NU1Q0bNgxpSkNcBGA+10kmWU/2m3ProNSfMjbK2yg5cy4ebDtl8SeccIKm4aR6Tn7sXDzYdkrp2Lf77bffkHZRiPndMTj5upPZc2xd5HEXyZg4+RnLd/JGjq2LdOpuq+B6wOc62ZKTwDtpMuvvPmfdJiMr82c3Nk7+5SSDlL6x3i5qsJOROVmYk4E7edlYFwsXkXYsLa4pc+HGwEkaXUR39otzDXGyf7ffuPnror67tc+5J7gxG3uzh5P6O1tx9uTsxEUqd7cMuD3JRSx288bJ+Bl9nnAP41hwX+E6wTpzLrlbVtyZgLho025dHAOfycj8LiK5k7fSZdLJdtlu7rN8LufId77znan53RmMeXheImyLk6+7PJwLbDvr8+1vf3tIU+LOswrhd9lXnOOsm4sw7txxeNai3NlJ1d2tSRw7yqB5/lmxYsWQZv9wXCjddrZO9w0X3Z5nLZ63acc8T7JPOC5jaFl3CM/FXAtabl9yezjhusP8zvWA5bubC7imODe2ltsB3P7BPuF8ZH668PJM5NLuVhDWmW1hv/HvEt4U59x63M1ADnc+cjc7uX52tww4dwC3Nzh3WneDwEKIAiCEEEIIIYQQQpgB8gIghBBCCCGEEEKYARZ0CwClCZRvMQ+lYoSyIsqHKKFghH/KJigBoWTIRV2nxIhSCZbjItyynpRmMdIp5SxMU2L31a9+dUgfeuihQ5rSFka1pdSDch9KcAjbThke63DppZcOaY4X+8RF/XWSSRfFmePC2wr233//Ic3+5LizvQcddNDU8lkfF0l/5cqVU8th/VlP9hvdMVavXq2FQPtwcl5KfVoigjLt3EpclG0nP3MRdp3ciLbl3BacvN/JYZ0LgIs6yzxO6j0pWW6RvjtJr7t1gGm2mfJBJxt3/etk/05m7uRuxK1vLRHunasJGSuzm8TtK6xfy80YXDu4FnPsnTtZS7R2F4nZyTldXzh5oHsWcXVgmrbubMWtGS7NNrJMJwt2Ua6dSwXT7mYdFxGe9uncCtxa69a2sVGWnduPe5aLWj0fzkWR5xnW3blm8SzhXF6Yh+1zN+9QCsy+5D7Lcpjf2ZyTDlMW7uY783Afp8SddsA+dPsC68M5zrMiv8s6rFmzZkjTPcG5JXH+sg4tLlfsc7adLrrsf84ld0OWO4Ox7XQ3uPjii4e0O8vRxZJnYN5CtWrVKi2EljOY229oB2wT08zj5iBx0n2e61i+O0c5Wr7LuePWJvf3HN1l3G1I7kYA5udcdmc81rnFrYBziucDjpG7IcbZk9t7nGucc7Vwe8//3969tGqbneXef9ZHUKTU1H5flU1FoQxK3KMiLCQgCGLPpk0bwvsR3o4du2moPdGeuDqikkZEjGZTWlWpbVJVKU3Il1irtS5+eZj/qjGfhNWZx9Ea3PO6xzXGOc6xuSf/8xwntwZYrhBVdRI6eL9GAEzTNE3TNE3TNE3THdD+ATBN0zRN0zRN0zRNd0DHIQCiEh9++OFVFnMys73It1hRZRIvzMLnK8NqYZiGAIh5i/GLMInDie6/+OKLV1lUTKzE9ov4iOaIaIh0iMuI1BTq6POGFYjJ2U5xPjEzbViZksX8fEbpG6I52tOxsD0i94YMqMp2KlomWiTmJwZZmXVF5rStCNyDqlDrQlcr66x+XfVog8oyWpisc8tyZQC3neJbJ+86CQGozLTVX5+5H6EuvNey436SVV0Vfl94WaFalWW41sbqS723ni/kubB066+whVPV9wuNdR7YpspgXyhfZWKv/enk9oUKmajMvjVHT95b2ftrfvh5+XThhxX6U3P9JJNxrYv1XWVfPFtUGI+qGz4s6wMVHlLhA3XTS60pt5H1VdZ9s2N7BvOcU2ECrvt1q4bnmZNM654BxM7NDF83TL366qtX2ZBGEfqTWzVOxq1upNIftYN7nvbXdzxv+LyyDeLLvssztu2pNcw5YSiu5xyRbs9g77777lWu87brsWdpffyZZ565sQ36nnbWhp4hrf82qrW1wpmU/avbYmq9cJwrROrkDKYvaNdaZyukxufLJo7t9773vRvbbOiPfdTXHM+Ts5nvtf3as0IJ6jdBnZ8rXPIkRNexqLVenaD4J+GSNXYnZ6ZTjQCYpmmapmmapmmapjug/QNgmqZpmqZpmqZpmu6AjkMARDFEicT+xbrEw0SYnnrqqatsxknxkUL3RR9E3cSExGj8XCyjsFBRDzOUir195zvfucoi8aL74naFbSo/F28Ti7Kd9tFwDPsoUmP7baf9dRx/7Md+7CqLb9kXUb3Ccgvj1Ze05yOPPHLjd8WPbLP12DaxJHEy+2U7HS992OdvI+vW3n6uPfRr7W0ISGUmLrytMqFr18I/TzJ3i3VV/frjSbbxyrB68t3Cee9/rjKgi77ZZ8dA3/Mdzk3HVWTNtaJwb8feNjiW2t15rSrTvOheoXjKNhTa/CCZ/5U+W2uxfqR9K7TM52vM9K9av2puqZoflcm/MvsWklmhDTUPat74+cltAlVPYf/avNaDsqGhVu5/NR9cryvzu+9yDzjJ/F/zR987Ce2qzwvd/jg5fz2DuXZpA8fNtV57i4JrS88/2tsxd1/2ee3kGabCKQprrxsK9BH9rsLqKqSjQmfsr/YsdNszqp+7PrlW6491+5Xj5XlYubbVeaIwYvtr+w0bUY61NrePyj3Lvc9+6Z/aXF/Sz2+jOlPXvu08d92xvRWaXKi/Z78Kczq5maZuKyjkXr8oH9cH/W79drEv9t021E0nFTrj5++9995V1j7a33GxL9qtQnb8bu1DtYbZd+v0ecel9sL6vXISxlRhkHVGO9UIgGmapmmapmmapmm6A9o/AKZpmqZpmqZpmqbpDuiBWDQxBZEhMQURDdEE8RERCj+vzOOiRJZFKwrBEkUTCbINlTH1W9/61lUW2fG9Zt03c36FMBTCYjvFcXxe7Mb2iPWYNdfs+o6dOIvjKPasHCPtY7bbuvXAsfDmApEgMTPxe1EtP9ffbEMhzeKOYlLayjEtP/w4FTZaeHxlLj3JAnqS7VZ/KSS6snVX5u7KrGzZ9xb6Vci10p6FL/v5/YiX76sQAOeg7TjJkl63OIhnFf5aGHhhnKqysxciVmFQ5UMVsvSjDAGo2wgKgayMwif4W62/hbiXvxd2d3LrRc3dykJe/a16ykdP/LjeZftP8EPngAhnhTHZtsIntad7f7VBmzi3y2fqVqEKnVCVmdt6yn9uo1pDaq90PH1e2/vd8hfH3/ot67OeAfzcc4X7bIVZOc7u3b7Xc4Vlv+t5r27GqFtX6jxQ7feM5C1FIs4VhuAZTJ9VZWfPTn7umdbz4cMPP3yV9RNxZ+eu4+LZT3tav3X6Xc/J2tnwT+t50DNYhdzUGq3NbJc6CZ2qs4pn+bpJQ53sK/arbp/wc8OC9RflHKo1o26Uqf2jsvpbp/O1wrRqr7Kd+pqq+V1rurat2zBObqurcPMKk3N8KzSgQmtPbh+4XyMApmmapmmapmmapukOaP8AmKZpmqZpmqZpmqY7oGMWrbI9im6Ij5g9tTAzkRRxo8IbxcDEUPzuM888c5XFRLxxwLaJblQmStGNV1555Sp/5jOfubEe3yUO4jMiQSKTqlB2cWptWNmsn3322avsOIrGiaFoB/sooqb9vW3B9linyFnddOB42Ud9rFDnwv+Uz+sDIlOFO95GYnSFn2m/yj6qKjN4ZVv1GW3pfCp07bbouuXKBKvvVzb6Qq4LRz0JDbh37wdtUehxZXOv8VB+tzKFayPXhApjqEz2yvoLGbX+QvRUjWsha7XmnEp7VfiEfbMPJ2ES6iSMprBz14KaH6UKAXBsan7or4Wpq/KnWj8qfKfCWipcxO8W4m7bXK+tU7/XJhVioMomFRpQoU4nflKqNfJBMjTfr7r9xf3O/b1ulKns3p6jymfd3/UjsWbPA5WNvbLBW3/Zz5uDzJDvvLGs/FwcuULdKgyqMqdXuMmTTz55lUXctb/v9Vam559//ip7VnAt1A7W6XxyXOqGgsqiXmuw9dsv96ya3579PINpN/3kNrK+Wq8dW8N2a0+r80xlxbesj9S6b/kkPFP/rTrff//9q6x/GQJQe4aqs0OF0tW5tMLb3F/rZqCSvlm3LWnD+j1Rv2vrt2CNUZ2b6rxSYZq1z1Wo7INoBMA0TdM0TdM0TdM03QHtHwDTNE3TNE3TNE3TdAd0HAJQWfoLgxA5e+KJJ65y4dHiQ4Uyi/WIkoievP3221dZrMfMpSIjZtEXSbFOkTMRLHE1cbv/+q//urF+cZBCtnxGxKcwYNujChVyXMSrtK3j9dBDD13l7373uzfW7zPaTezNNmgrkTzfa7ZY2yYa53cLS9YHtK3+5hjpJw+SVfP+uu2rY1hIUoUJnCDChag5JuUXttn2FIZk/ZWNvuZTZT8/UaH+hTjf/7cThLmy5Rf+VTc9nNwUUKhtIfB+Xgid64lrlGtmIcTlo5Vtvcqn8n2Wy6aObeHcqrL6n2QaLmmLytRbaH1lwnc+1f5n2feehBhUGwprr/EuvL/QattQ7a/5cKIK3anQjEKAy69OMoirk/b/KG6XqfAnbel8MgRP/NvnHcPyO1HmCqf68MMPr7Khdu6F2tV2uqbZR8MHXA8ra3lh+cr21HnSeVlnMM9yFbbg/mp7DKt03fYGAev3XOS7PLcU2m5fXPMdX99VNyyIj1tnrX+i/s6tOhPqMw8aOlPhJhUeWp/r47ZXe1Toic/7uWuE+7Nnc8u2TRtXRv0K0/F555a+X/tfhcXUOlF7WIUY1D7qXHGt8vk6s1Sd+lqFmmpzfx/4ee2vzg/nq/bXnran2lY3hVUI5alGAEzTNE3TNE3TNE3THdD+ATBN0zRN0zRN0zRNd0DHIQCiCWI8jz/++FWuTPuiEmJLYlriEdYv1iDmJAYhjvP973//xmdEat59992rLJ4kgqXMkirqYWiA/RL3sl+i8uIdb7311lV+8cUXb/yufRR5Ea8RN6msv5bFayxX9tLKVqkMSXjttdeushlo/a5o1Ouvv36VReMMPbCPjrWIo30/yRpemZD1jdvIsa1s7oVA+t0TTLkyr1bWdp/Xvxxnv1uZoUX/fK++r88W4lzjU3az/Sd48f31qsrWWqrwgapTuRYVWn+CMFeYhz7sHPHmFL9byGWh37a5kPOTLOn3q7B/32G7Cycs1F9VCEChfI6BPluquVuYpOusc7Hmlt8tXzkZG9vpun9yo0Fh0K7jJ/j9iX+fZEEuRLjCj7S565P2V+4ldUvFye0o6kGxZs8hrlfi4s73wsJtV63RyrlvG+yHdjVkr9DVurXHemq9te/its459zPlnm6d3nz09NNPX+W6majOV9/73vdufJf214bapEIb6saoWucc9w8++OAqexuXY1eYu23Tr7S57fR8WyEGtQ5V2OSDnsFObuCpMDt1cuOSfqH/Op9sg5+L6zu2jlXdhGCYg++1TsvOywpVqPGp8ayznJ+fnL/qpqeTkKoKUfO9zrkKGdCGtS/WeuA88Heh4eDaxDG1zdq5zsMVdnmyf9+vEQDTNE3TNE3TNE3TdAe0fwBM0zRN0zRN0zRN0x3QcQiAeIrIiDjQc889d5VFGUQlRFIeeeSRqyyqVBkexZDE3ipkQFRFNKuyv4pxKEMbxCy8ceDRRx+9yiJbP/3TP31jGyq7uN81470ISGU1feGFF25sp+8VqbEN4nMiZD4v3i+WX7h2IbHiXmJMjte///u/X2V9xrE2w23ddCBaVG1z3N94442r/Oyzz957EFUmT1UIaWG7lfXZZypkoLLziiQ5JoXPWU8h/frvya0djnllfy3s+0EyufsO+1a+oQqvrmythaPdNiRB3zbsRZu6Rvm8yJrtdA05QZvLpoWfn6r8y89rnGs8TjD4mk+Vpdg6KxzAZ+xLYaSGbdQtONXfE4zcNlTm4EJfy0ddr+s2hMpMXLd2eD6wPRUqoyosyT3D+j2vaGfRG4tlAAAgAElEQVTHvbDsaoMqf679/jaq/dQ196mnnrrKleHf5w2185xQZzDXdM8D5fva2O+K5BaObB8Na7JtnkPExa3HECfbUAi47RHn1Z51BnvppZeusvPedlY4gHbzDGZ/7aO+rG9UuJlz2j46p51D4suekWyPGdLrloEKO60QEsMxHlSewSr0SzvV3uvzFVbk84XBVwiL636tlXWLk+PmeOprzmn3G9tmufaM2pNObgRQdb5wvOomjTpf1LmxwtVUhTnax8L7XWP0WcdUfyjb1i1M+kOd87Xzg4SWjQCYpmmapmmapmmapjug/QNgmqZpmqZpmqZpmu6AjkMARBbEfkSYCmMUcVBieqKtlf3XTPJiLoXXib+Iq9k22y9iIt4hOuO7tIPP+C7bIJr+2GOPXeVXXnnlKtv3n/iJn7jKIlI+I84nliZ6Yju1YYUGiNZXtmyzlIqKGcphPbbf0Il33nnnKosjijT5Xu1vWTSusmWL14hMax/tpk/eRvpg4WSFCBeKVsjZSSb8wrQtOz6FcmnvwjYrQ7DtKVy72mnbTjKdftQzJ4iuzziWlX31tnhyZUVWhbl++OGHV1m7uPYq++j6I3JXt4FUOFXhaD+sat13vT7x5WpThc6Ub1YIRIUVOBdrflfG7UIsVeGK9qtCWU6y01fYhdKPaz3wc8fUfp3MK1VZogsTd29znthOddsM/ydtrvGq89DHyXa51zuXXXMr+7mfixFrvwpTEKd3ra8xF7l3n9Xf61ajyrLt+NtOfVOE3jb4LsM2X3311Rvr9Axme3xGO3ietM2uvZ6LPIdoQ5+p8DbPPJX5XT+p0AbPbPbLPaVC9WyzNq99TT/UbnVzk325jWrvch1x3tQtJtq7wh5PbgGoME/bViGTdfavmyJc+7Sxdq29sKQv1B5cZ6sKXavQyZNbG2ovqfc6Fn5X+9sGn/f3imHZ1uPY1fnR+eHc1fddP+y7Y1f798lNVvdrBMA0TdM0TdM0TdM03QHtHwDTNE3TNE3TNE3TdAd0HAJQ2YhFSUQWxGsq2/hJVupvfetbN77Lsli7SIdYjAiF+LoYps/bZtvjTQSF8lmPNhH1EDkTW/G7YiKiS2Jplc1ebMibCESqxE0q26n2sZ3igtrK8Af7IgrjGPn5W2+9dZUrM6YY4QnCLd7kWIj4aM9CGW+jyv5uP8SBtLEqVOkk86pjeHLjgN/VNtajPRxzfcFQmAofsJ5CyJS+WSEg1a/7VSi0/Sk8uZAs31fZdX1e+V374xiL6Yr0VZiH9ehz9ku7V3iJz9f8+lHeAqCtK0u1a1aNc90CUNhj9aFCVSqzdo1HYaQVqmT9qvBJv+u+a3+1Z60rJfvoWmlfnPfW7xyoUJNCO09uZ9B33W/c5wqNrDWpbFvlk5ssfhSqEBPXltorK/TEego/Neyo5od+oU953rP9noX0owqL0ZZ1rqgQTp9xfrz55ptX+SSs0nZ6hrRfosA+73sNLayQHcfUemync67Q9goNq5tinDc1P6y/9mA/r5unKrSzsqXfRhWWU0i2tqy90XFwPa1yoftlp7opy3psf90CVDeg1NlJld1cQ0/WzRMcvW6VqhtrKlRInYRplD9W3/1d5Vmkbtqy/a6pdeNH7W0VFlGhZbsFYJqmaZqmaZqmaZqmG7V/AEzTNE3TNE3TNE3THdBxCIBZScUsCn147733rrLoRmX0FkMyq/wnPvGJqyz+Ku7g508++eRVfvjhh6+yyIhIR2H8J1naxYZsj7YqLPuhhx66yoWciQGJqmh/8RHRLOsR56tsrma3FM8zDEEk5f3337/K9l1kyrEwNOCf/umfrrJj4XhV9ujCQh9//PGr/MYbb9z4Xvuo/bXzs88+e5VFH28jfURbOg7aqTKAF3JatwAUll74ltLezmPrce4WNl7hD1U+wcy124MgT4Wm1zjZN9Exx6kQtEK7nOOF5X32s5+98bvf/OY3r3Jlgy1Usnyl7Ksf1Jid4Nunqkzyla298HjtVVmzC9Wu2zlqDpW/n9wG4TNlx1K1ocK39NfKol82qfAH133XVvc856X7ayHxtRbWPvfII4/c2M66yUSVneuWh9uil/X8SRs+Tt6S455VYWZmevfzQuu1mZi6ZzAR9zqDOT6GBmhjEXTbpuoMUOiwdqjwSftu2yqTf53xbL++WWEUrs/OUT93vAzf8FynDEdVrp2ewbTz1772tavsGaxCcessos1dA2ybqL1+5Rg5jt6QVX38ONmuOoNVWIz+UmFjdVuFa1CtKbXH6guWbUOFWNpm67dcZ2f9os5gruMn61ftJRU+aEhNhYxXaGqdg+yjvykdL33jl37pl66yNvnKV75ylStsRb9ynahzid91fvveuj2h/GS3AEzTNE3TNE3TNE3TdKP2D4BpmqZpmqZpmqZpugM6ZtEKc6os1oU1FK4mlmFWf7NbPvXUU1dZXKoyPYuSFM75ve997yqLHomMWKcZ9ZVISmFy4lXiO+IjIi9iYIXvWL91mq1SBEuE5bvf/e6N37XvttmsuY8++uhVFkPR5vqD4yjuY38tFx6rne37a6+9dpVffPHFG7+rHcyUKrpWeNBtVBltK7t04Zn21XErRK2QvWpbIar1eWW41q6FIJ/gSfar1glVuNr9KlsUqlUhP5YLTy48TtzReS1+qU9q65OsyM6XyipbflmoWeGS1bYHyXpeIS+FT1ZW65MbCGpvqPW0MHvfVVmKyzcLjazxOMlY7Hf1Ib9b/nqCrxdOW+FzJ7d5FBpZ4QMiumKwpQpFOlkjyyaqbt0oG942Q/ZNqmz/jm2horU+VD2GyBkK98QTT1xl9/QKCbPOQsfF7z1febuMbRbdV3UGc364DutT+oXf9fyjrWo/dn1yjakM//Zd+9h3x87zaoXdeIaxbeLpzq0K4Sz/LQzaM7khmdrW9cO9z3HRbv7WuI1qX6o9RhvXLSmOmzb2mZp/9TvpRNZZmeE9Uzu2tqHCwCq0wTl3Eiqtam2t224qlLVC+Crcq0I5DS/Wnu4lrgf6Zt1eU2GUFfLg2NWe4TPa3HW0QjYfJLRsBMA0TdM0TdM0TdM03QHtHwDTNE3TNE3TNE3TdAd0zAyIkohciOuIjosmlETICmU3K7tYu/iI2JhZQ81eK84iqiQaIg4i7iUGJmIiQi+qIpqlCuuy/sKSC2VXIi8iWKL7okKiKsqxE3WyzZ/85Cev8rvvvnuVzfL6wQcf3NgeMTn7bthI4a5+9+mnn77KokX6gFlwrdMwE3Eix86wgtuosP8T1Kqw45MM4I6/qrlYGFghc4UEFvZmPYWln2DflRm1spnfj+2e3BbgOma5kLVCyAsDd97ZT9ci/dZ6xEQdY9vj85Uht7IDF/J8koW7/OBUlWW5xrZ8vHy55lBJ2xVCX3O6bFHr+EmGZteJepfj4fr4UXPi/6rsWX2xzRW2UDYvBFUZHuMzos/OB9sgtmkbyqfLnjVGdeND2aow5AcNAaibgCqD+QkS6hmmzmDPPffcVfYM5vOewRwr91nt7dnPc5pnMG3/4z/+41dZLNw1U39xvVWeUZV+V/OywjlrD/Z84q1Y4u4l3+VYO6betuCcsI+Orzb0Vpq6AcjznrZ1jfQmkJqL+oDv8rvup37++uuv3/thZdv161qbKgyzzgjWablCxSqc7OS2JlXrkWeBmtO1XlcoT4V912+Ik3OBbTi5Acg+1o1UlY3/05/+9FV27Xn77bevsr9X9Fl/0/gu54q/XfQZVWHxFZppCIC2qhCAkzDI+zUCYJqmaZqmaZqmaZrugPYPgGmapmmapmmapmm6AzoOARAHER965plnrrL4lplURcLEI8TvxT7Ea8TLRVjEhMTSxClE7kUuxMLFQaxTlFKcSdxOREMUQ2REpONTn/rUVRap0VZiKGJ1YmBmwfW7Il7f/va3r7J9F5kTy3dMxWu050/+5E9eZZE5x9GMwdrwq1/96o11akM/ty+Ou3bTZwyLcBztuzic9RQaZz23UWX3riz3+ns9U+h7oWtiXYXVVpt/mCy19flJCEBluD+xYYUw3P+3smNhfJXVu7BJMS8/F3N1Xtgf1w3902cKi3XMKqu6c8G2VQjASfiA760x/ij5jhMk23JlaHat1Hb233FyDXL9tQ0n2ajLjoVn2uby0cIz64abQhTr5oYKDyrEvex/EgJQ9dsefbqQW3Fn7VmhFo51ZeMv9Ll8vWxSPlCo7G3k2LrvV5ike5m3Qzhurkvup9rm/fffv8raWLv6Xm1pG/zcM5jIunuu89h6KkO39vac4+eGM/hd63cNqDOqZyGf92xmeJd+6lhYj/tC7ceuVRVK8M4771xl+2VZaQfbWRnVXQv1Jc9gnjmsXz/xXX7X3xF148PHqcKNKsywssrX836uXxSaXqG3FSZQ+/PJWasyzNfNKFWu8M8KS6tyhczV+atu+tI+tUbrL4bpeDOY69a//uu/XmV/H/g7z7HWZ70pxfEquzl3bUPdeFY3DFmu0JJTjQCYpmmapmmapmmapjug/QNgmqZpmqZpmqZpmu6AjllfMQXxhW984xtXufALEQpRGBEZsS5RJdE/21CZFq1fDKwwPdssmvXYY49dZbEeUSXrF5eyzb63snmLkohOVfZJbVXYtPY3HMB3+Yx1ihSKpYlq2peTPlYmd8fC9xqaUdnXn3jiiatc2YNFi/SNuknB7+rnD6rKSF7YbiFnJ/WcPK8qM7g6wc/KB6s91ccKTyi8uFC9j1Jli1cVwqFviHMVWu+4Oo/EIF1bqj2V7V8U0/WwsOVCygo3LIyv/ObEn+5X3WhRqgzKJ5mVT7LoV0hK+b7fdQ+orO/6wcntHyXHtdZZ98vCDE/mn6p1q7KlV/hGhay4vmurupmjbukonPbk+ZNwl5MbUZTvqvXy41ShRl//+tevsucZzxKOm2EW5ZuFo9eao797k454f9nbM4lnHs9gYtaeW+oMVjcr1ZnKUAht6FnU58Xsfa/v8nPDYB0Xx1T/sg0VauOZx7Fw7ApfVo6FdjDMpPYF2+kcrds27Lv2qfY4jrfRyT7heBpuoi3rdhafsZ76bq2VqvbPkxvVPI9U/XWTVJVPbtY5uQFBnZxLKzSrflN6G4b2dz65TijDxE9ujrEN/p7Qf2xzndcs140A2qpubXqQm5fUCIBpmqZpmqZpmqZpugPaPwCmaZqmaZqmaZqm6Q7oOARAZEHESKTnp37qp66yyJPol9iS9YgyiFCIbL388stXWbRMLMP6lWiTmLqZVEUuRCYL5RLXEAERabNO8RSR+zfeeOMqi8/ZNt8r/lcZ+7W5KJ1tqIz39leURyxfdEZ7igGJOlu/fbSd2sR2OhaOtf5jNl1RNOvxVgWRIPFC8chC1D5O9ulE+nthwYW7V+brwsZOkKHbZp0tdP0kM2ohdqqy5heG9yAZt09Qef3Bsvid2WOds96O4Vqhz5ffVAZY/fwkW25lha+MunWzQuF9DxICUNnsC7fUvrXeOR7ly/qUoV/6kf3RdifhJpWdXL9x3bmt/1ZIhvtxIdc+fxKGcNtMzxUqo00cd/cJ9xWfcdztV42R71LlM363sP8qVzhJzZlq28ep1lN9yrNHZcLX9z0/+IzrjGetp5566iqb5d592fHUR9x/HWfPOWK12snzp+cQbW9fPG/UGUz/evvtt6+y51jPWtpTv64zmPYUlXee2R77rj1rT7E97iO2p0LDrN82100Qftex0IaenSr8TTvoJ3Wjk+vZbXQSDmn/ak10r65M9ZZrza29tEKwah2p/axujSik3L44VlWnvxXqxp3ay2ufUHVri77mOqevPfroo1fZ+WF4urfJuX7omzV39UHnjX23X7a/zm6u5RVOqk5Czh7k/DUCYJqmaZqmaZqmaZrugPYPgGmapmmapmmapmm6AzoOAfjud797lcXsxWVEesS8xS8qY7EoQyHZ4hpiKJV1UWTEjKZibOJVokfWbz2+S+RCpEZsxfdqH+sUYdFWoiTiRKJftkfsTcTOesTMxOZFs3zmP//zP6+ymFyFWjhe1unY2V/H680337yx/qeffvoqi8s4XpXp1bH+1re+dZUffvjhqyz6I0on4nMbVQbak+crW35lNq9MrSdhCIWWqZOQAdtQ+FnpJMyhMuX7zEch1IUnFx7n/NXHClXVh/UxUbNCmAsL8xnf6/xyHahsz4V+q3pemxaS+KOU9Rb+rY84Zq5xhRzWGlFZkNXJLQuFzNZtAn639hXbeRIiIjZdGftVZao+yeJsewrVdP7Ytgonc66fhKnUXKpQmcrurP0rHMB3nWCYJ+N1G4m3uj86boazeB54//33r7JjW+EyIr+uOY6P+2PZ0jOAoYLe4OP8FrF1zonh6gv2xbXBfrmn+y7XVZ/XVq4rzlft7Dj7vGNkm50T2tay9XjjgGdI+6IKldY+hmPoj4Z1OL7ud9rKcanQPkMqnPeeP7Vt3f5xG+k7hdkXEm/Z91foRt00oyoEoPZS7VfhnNWXCoWq956EVdbtNRVKoE2cH7Vn+F3XLTP8f+5zn7vKn//856+yIc5/+Zd/eZW//OUvX+W6jcR5UHb294ohVq4T9tf5p/1r/6jntW3ZsM43pxoBME3TNE3TNE3TNE13QPsHwDRN0zRN0zRN0zTdAR2HAIgJiW4YGiDuLiIlPiJWJB4mtiJ+JgLy1ltvXWXxLSUSUeiaSJXPmKn7hRdeuMreRGBog+ii8vnXXnvtKos8+d3CG8ViCisXSbFOER/xKm9DsH5RrkJQxcMKMxIhUhUyoE18l+iViI99tE77WGiR/qaf6NvlV7dRIf0lUb7CyWo8C7sSHyqMvzK1FipduJrjb/kkA63j7PpRqPdt23/vXocAWNZvRRz1B9HNWrvEwlzHCtEvPNzn66YV61eFndW4Vjb0euYk0/mpamxrLbD/2qhCBiqUy3G1zx988MGN7Sl88iTkpTBlVeEftR6coKwV5lDfrZs6av2wzaLb+qs4p35p+IrnA9t5guJX5nrLJ7eUFMLu59qnbFXzwXrEu2+jOoOJVYuIe+Zxfpyg3a7FTz755FU2DLD6oT2s3/Z8+9vfvsquq56dHn/88avsedI67a/zz8/fe++9G79rnbUv1BlMn3ItMdxAWWfNiVqTlGEUqlBv55Ohtc4h26PPajfXXc9dFQZi2TZof/2kQiROwghvkv5etwtVlvsac6X9rEd7+Hn1qfbVCi2r20cqc752rT3VNutffl77h/vNye1AtrN81t80v/mbv3lj21yTSq+88spV1ibuT3WLlp87Pwxdco3UVhU2dLIP1Xj5TPnAg9x+NQJgmqZpmqZpmqZpmu6A9g+AaZqmaZqmaZqmaboDOuZrxAtE6MW6zKwuWi+6JsYhWmEoQWH2oiGiVqKdIriVJbrQFlFzcSmRCzPxVgZl+2jbzHL/4osvXmVREt8rFvP888/f+C7RFrErkaavfe1rV1nMzzY4jn/3d393lbWbGJjttA320b5/+tOfvsriR4ZdiOSJvIgWWac3FNiXGsfCvMVRDTl50Gznhd6Wv5w8X1hfPaP9KlOr/iJ+WJlFq/7K/mtZ2zt39f3K/ut64Hed36JTju29ez+4zogqa0fXhFdfffXGNv3CL/zCVRa7NcxHhFXsT1tUVmptap/9XHsVKl4otH2sbPSVufzEJ05unrhf5b/O88Ihyx8LpbSsf53cmKL/ihc7t2rNqtsUKpuvqpsuTm4uOMlO7Xtdxy3XDSQiwjVf3Qs9N7jW17vck+r2IOfzCTZ7gtzWjQAVvuF3bX/VU2FyHyfH0NtGnNdmtfYM5pqo7Q1lqjOY+6PPu465/npGss2OmzZwDTAk0Ge0sWebuhVGTN2+G8Zodm/rrHXS8MnCmv3cs4fnItv80ksvXWXX9n/7t3+7ys4t9+k6Qzi+9t1zkbZyjmq3upnE/hrK8eyzz15l/VB72mbb5r7pGexBsOZ79/pGoToLWa5n9IX6rtJ++kLZwN83FcLk+uIzFepXqL/+7vi7t+kLzhX91L7U+cV5Yx/1KbP0/8Vf/MVV/o3f+I2r/Id/+If3bpJ7wJ/8yZ9c5c9+9rNX2TXMtjkv9WtDwLWzZwXPz+5V7mfWWTfcnIRTVyhM3WpzqhEA0zRN0zRN0zRN03QHtH8ATNM0TdM0TdM0TdMd0HEIgCiJiI54jciCGRjFR0Qf3n333ass2lSZJUUxRE8KHfW7ohuFHIqu2R5RUN9bme0rG6YIln0UizGEQbTF9z7zzDNXWTREezpGIj7/+I//eJXFXxy7wlzEoZ977rkbn3/55ZevsvhLoZH6j/11HEWOzOBpG0RnKjOtSLZ9UdpBVOg2qmzRhfBWqMGDhiDcu/eD2FihsT5T86kyXPu5GJv1a2PHUPxMdNF5Kb5amHWh1fePm6FJfr/wOPXNb37zxj6Ic4nNFS5dWWhtq/NFu9h/y46HdRYuVpnOK3P5iR+owtg/Sq6hFcZRIWR+XsindqwwBn3HsSyssuxS4QyOR9na9ouLnmSzrltbaq7bZtdcQ2W0bYUuWacosGNqX2q/rDVAn3btrpsqaoy0v3Pg5HaQCtMo/6mQjcqKfhvpC2K1tcf8x3/8x1X27GE/PDO45jpu1u/4lG/Wvu/csp7Kxu4ZwOfdo12Ha97bBtfbugWpQgUdZ89Xjq34vec6Qw++/vWvX2VDydyD3Gscrzqf6O+f+tSnbmx/nQm0lTa37F7u52ZF1w76hu+yPXX7h981lOA2qnXQdVZbnmRTr1uH6nYI/cu9rcK3HP8KT6oxrJAB11wxe+eZ9nZs9V+fcc+wHvvoevPzP//zV9nfVV/60peu8q//+q9fZcNBfv/3f/8q/9zP/dyN79JuX/ziF6+yv+d+7/d+7yp/9atfvcq/9Vu/dWPbaows100ajkXdNuY8qHNT+UCFWj7I74URANM0TdM0TdM0TdN0B7R/AEzTNE3TNE3TNE3THdBxCIDZWcXUxatE5cURxJkK2xQPKzRXjMqs72Z4LEzHeiqTqhluRUxE3F9//fWrLO5lnWJL4nAidpUR8sknn7zK4mGiVmIoopG+txA4+yW2qX3EWQpFE98SsRbLF6sza7F4oWNnX8TbPvjggxvr1Cf1JcfCdupjhZhXpvAHVeFkjol2Ley4wkpu24Z6V2HN9bxl7VcZ/vV369QfLYsTOod8r/NP6b/37v3guqTvOUdsn3KuuQ6IDzo2J6iv/mk4j74trmfZsRSFto+2p54XqdWm5Sul8qFTOce0XYV3aPd65kQnz7smFvKpKgSgEHH7Xti/7605qrRhYZJKnysE0n7ZtrqZxHlfGe9tZ62Foqau9T4jgqo/FDLpu3xGW51kXPaZCiUoH3vQzOaua64JtstnDL107xM/dTxdTx1zfdP91JuJxHb9rnZ1n9DvfL5CmRxnbw5yv/FsaT0VWlgZ3i2LUHsLUu1V1q/dSt684Fwpu1WImWfXp5566iq7d+ozjrt99HnXA3Fq7el7badnOW+60Q+tvzKen9jwJpWd6vdBjX/h/bUHVJ0n4VsVHlY39uh31q+NDfFxXda/HIcKwVK+V7/wfPS5z33uKutTnnccc9et2sO8GUP5+8PfTOqtt966yt688Wu/9mtX2f4awv72229fZe3seuM8OLm1wXWibg+qs9XJWf1UIwCmaZqmaZqmaZqm6Q5o/wCYpmmapmmapmmapjug4xAAURLRhEJnC0MVExLzFksr7F9URdyksquLj4ihiLkU3ma2aVF52yNyb4bKd9555yqLeph9UvTEd4mYVPZ2cTgRHD8XWxHBEjcxy+cbb7xxlR0jcbLCVyvjamXDtH5t6Hf1B3Ey8Sbl+Iq0FSIjfiRCpA3rpoCPU+Fe6gQVLyRMnaDMhRFX5utCkqxH+7333ntX2fXAeSmirt/5LsdWpNSwGOeTfu2Yi4XeL5HLypBbWGmh3PqVa4s+LD7q55UhvjKvV0Zl32v7HTPniOVCFau/tqEyr5+qQkkKQa4wgROsWp/Vd3xX3TJRt3bYHlUIqpi1a+jJjRG+13nmOiVKWRix+6ttcO2r8B3npTbUDhX+UPOkUErbXxn4VYUoKcfa+VM47cntKPqe/arnHzScy3NIYdInGcz1BUMrXBOcK4bg6V+eW6yz1n3Hueaxvuk65nnPfcL6xYv1X8fBc9HP/MzPXOUKx3GsfMay8882e1Z0rjh2+ot911/cLx3HCkOokLTaXxzTWgtdhyp81Xe5t560wRBX/apuDvk4uZ7WfLN/FWZxW9XeeLJ/2B7LtQ87Dt5WJAavP7q2fv7zn7/K2tt5L3L/u7/7u1fZ+eo804bOD38P+RvIc+Pf/M3fXOWyv2Hf9tez26/+6q9e5TrLO2/Kf+s3jeNbN2bos37XOWT55Jx121u6TjUCYJqmaZqmaZqmaZrugPYPgGmapmmapmmapmm6AzoOARBTEJ0TdyjEq7B2URXxBbEVsTTxiEI4RcpFm/yuGLC4iSiMzxRCb399XlxDDExU5Z//+Z+v8tNPP32VxVbEXLSz2JtIjViJ9dhmMSCzuYooi6VpQ8t+10z+IinidqJCYmzidp/5zGeussiOdep7+qRjoV899thjN5YdC79rmMlHoeQfpco0q+xThQDom3WrQ2X+tE7RrEKWCy0TS3Qe6OMiXhWC47zXT22bfmSmZ6Xv+7xo8v23N9gO56k+Vpmr9Q1Vtxp4u4R47SOPPHKVDdtxzXHO2gfnY+Hhtr9CUFwH7KPyu/arwhB+WATNdpzc4KJNHYNCuwvttT/aRZRP/7A9dWuC7bR+fdy1ybnivNTHbZsqXN+1ocKiLNs236VfajfbXLdKaBPtr6/ou+4rzh9Rb8e6sixXtv8KaynkVgy27FPrrs/UnHyQbM337jU6rp9WRnqlDVxD9Qv9qzLnO7Z1m5LjbP36bJ3r3AN8V61dttlxq5DJ11577Sp7/tHvvGMPsLQAAAxOSURBVPHKeeDc8oYj5XrguHh2qpAuP3c9cH44bwyR0J6eP+s8o20No7C/lX1e+bn7rHi/N1Poe/bdftVNPx+nusWksvTrL6pCZ2pNqXfVTVMVYuJ8cj2q8C1vJ/N51yN9p85B+ruZ8//2b//2Kv/sz/7sVTYs6Wtf+9pVdk4YwvmVr3zlKp+EWnziE5+4yr/92799lf1t9Oyzz15lw3r0O+e3Gf6dN84V9xvXP+eu81J/q/N8/XassJgKDagQu4UATNM0TdM0TdM0TdN0o/YPgGmapmmapmmapmm6AzoOARBbESUSTRBHELUSVRHhLAzarO+Vydj2iGOJAtsGcRyxIlEMM+GLjIiuiYhbv2hOYUsiL2LTtsGMu7ZZLM3Pxa7EVkQEDYt4/vnnr7KYp/1VZsgXLRJp9r3iNfqJNz441iI1b7755lV2fMWVDJcQFdMm9S79UJuLAamTzOIf9z3fX4izuFdlly60rFR4lfXos2JgJxmOK9t/9Uucs+aH7bGsXzj/fMb23I9giV6dZH93DPQTfbUyZrt2OXdstxi4a4hy3aubBUS+HDPH3noq++1JeIn2cW4Wzngq+2A/9R37LI5X7S5svnB021DZo31GH9efaj6J0tY41VjWrSfuhZYLXaxM64W42+YK4Sv/qOzItsHPRcadV3UTwUm2/1ojK0xRFcJpf+v2Du1Za2Eh7B8n26vfle+7v2s/9/rKNO16ZXvLF7SrPusY+l3PVNrJ9dC+1K1Dng3cn/TxutVBTNlxc39ybS97WqfvcrwMhfB8UmNnPaLb1uO8McxBLFs7OKb2t8IZbI9nJM9gNb9tm/PJ9li/IZm3PevcJN/pGNaNSPpX3b5VZ7lSnQOV81j/rdtZ6vYX5bscE89RzkvLddOFeL/6xje+ceO79Bd9/OSM8PLLL1/lf/mXf7nKX/jCF66y4cL+pvyDP/iDq/wP//APV/lXfuVXrrI+/uUvf/kq6w+e9Zxz+nv5j3Jd9HxTt4BVSFvd+FF72KlGAEzTNE3TNE3TNE3THdD+ATBN0zRN0zRN0zRNd0DHIQCVuVY8U2xQbEmsvbIUK+sRDfJdIhGVNVT0x/abfVTMQvSnMtCKz9k2kTafF/cSbbJtYjTi+pWR2v5avziR+LGfi4eZYfPFF1+8sV8idpUhX6xLnMWMr/ZFpEmExTp9/rnnnrvKjpE+pkSRxPbM2ilKZRus03puI32tslEXglyfV2b322b+tB7nmfYoZLnGuVBm36UPWq75Jx5o25xnPlNo/L17naW/MrtXOMFDDz10lcW5xFad14XB1W0KhXYV0u44OTZ1Y4v1aKNC9Cpj8o8yBMDxFButkAPRVW2tHe2/7dYfHVfrt87qj21wDGo+2bYTW/vdQt9ts5/XrQc1t2r9EHs8CVXQnq6zzhPXYm3ifuAYVWZux7TWWtvpWcF9pfyqMi6X39ftA9ZZPnAb1fe0cSHfZWPPYNbvecOzkGhs3Z7ju+y3dq3QAFU3P1S4geuqz2uf8l8zgNvHCkvSbpUN3Gfsi202Q7pl9xTHQl+rM6dt8HxoXzxrVWiJe4eZ1lWtE0p/sA2uT/bL8235xsep9jdtU+uI5brNrM4OqsLp6tYLy3XuqnAGVWuffmT5ZI3zvYYD1C0f9t1n3AN85pd/+ZevsqEK3jjw0ksvXeU/+7M/u8p//dd/fZX//M///CobqvLee+/d2AbntPNe37es6sxc4emuW5XhX5WP1V7+IPvKCIBpmqZpmqZpmqZpugPaPwCmaZqmaZqmaZqm6Q7oOARAvEBsQpTLz0XQzYwteiIaVCiaWJTZG0WJrMey2IryXaIblQm/EBwR+kKwRDR8r2iOdhP9sj2F42oH6xebF3+x/SK33g5gfw2XEJ2xPaI/zzzzzI2fF4Zd4RJicj4vulbZfQtHtV+V6V1/EF26jQonK9y28J4KGSjUtT63frHUwoUr9EF8VlWG5mpPZRKvLLuOg/Xo79bpON+794Nz0PniOz75yU9e5bfffvveTTIEwFAd+2C4UyGs2qhuFqiM/Y6NY1k3GujbddOBOgkBUI7HbcNR7t37wbFybmsX63X90mcr43rdeqGqz5X53/rrBozKNl9Z4k/mbtm3wup8XozROrVn+Y3tdH1///33b2yPCK97jHJfcf2om1KcDxXWYdk+OucL6XbtqblU67TjW9hm+cltZLu0WYXOuW7qF56R3KP9rm30DGYIoT4ivuy6V6EV2rVuh6j9XXm2rKzrFULluwoTdx0qzLcycdcZrDL8a2ef8UxY5x/XNm9oss2uB/qGY+Qe51nd/noOrGz/yvWgwnL1Jd9bYZ4fp7oppPyo5nbtgVV/reN+V3vXTUbVzlrflTbWR2p+19nM9tR+YF98pkIVKnTqd37nd65y3VzwR3/0R1f5iSeeuMqGpxh2+eqrr95Yp+vf448/fpXdY9wva+xqL3c9cL+x/pO9vPaS+n3xIBoBME3TNE3TNE3TNE13QPsHwDRN0zRN0zRN0zTdAR2HAIh4VTZscSOzx4sGiaE89thjV1lESpRERK0yfYtiiHyLy4hRiYMURipiZ1nsX1mPqIffFVsRoyo8Tyz5rbfeurFOEaJf/MVfvMpm5S0sWwzzlVdeucriO9pNfMf+VhZi++s4Ol721+++8MILV1nMRaxOVEzsRh+wneJz2lBb6au27TaybqXPVhbyynpr/8SBCpMsNNvvFqZcKKVrgHYt9PYEoS5U17bZBss15vejiIYp6duGnDgHDV8SgxMvq+zv9vO///u/r3JlbrXPNQYVYuG8EMXUdpYLxy0UvXDNWk8eRIYe1XwT8y1k2f44ZrVGiMAWblk2cizdk6y/wsZqrqiaf77XcXW/OfmuWHOFctWe6ns9B+ij3sRTdtBvnJ/OjboJQlWYQ2VcrjA2ZT01P2vdqrDDmre3kX5qeKC+7Dh4m0+dwbypxxBLbeC+6TppP+y3z4hwG9anPQprL8S2QtHcnyr0zvOb60TtVe4F+rVrvu0UR3ae+d66pcjPHUfXMNvm5/q79RiqVrck+LntMYu6fXzqqaeusvO7blOqsMO6saJCjG8jx1bV74bK9u86VeFAFT5UqizxJ+t4nTt8r/XXXHGvLaT85ZdfvsqGezlWhjz+8R//8VX+0z/906vsbzv1xhtvXOXyBcNH/uqv/uoqOy/1kS996UtX2fnnWUzfrN+LdZ6os6vrsXPRdbRCzupmIOdKnfkr5ORUIwCmaZqmaZqmaZqm6Q5o/wCYpmmapmmapmmapjug4xCAysYpylDZkUVtC+cVNyp8R+xD/EUMRWRExEdEQ9RGifiIhhSKIXIhDvn973//KhdCLZpjX8RdlYhS4ZCvvfbaVdbmPi9uZ9vEySrTup/rD5VJWmRapEkUsDJMK7EkMTz7aPsLmSvUSds6FpU9+ONUiGe9/wSjLozf7zrOlYG22naCJFUbCnurzMr1rmpn+XvdJnDaDue1SJw+pq86r8W8qh2uIZWBt9pTtwaU37qm+Xlhi7fFxQrHfhDsTLl22P8KYbGf5aeu+5VVt25QqDAadZKlv+b0yVzxGf3j5EaRmjcnoTmq/NIwAcu1f9Q88RlRzco2XfbU1wv7r1tQyp5l2/IffbiyX/+wt2Xcu/eD60n5e+HWnn8qvNGQPZFc22u4g+c0EdvKMC/ae3ILSYX4+F1t7NnJtlVYgWuJ41ahppWJ22cMq1R1a4P9dd+pdd42OG9ct5xnzlFVn3sOryzkdQuANq8boAqX9xltpb/dRhVeVe+sdfC287bmfK1HZZu6caDCz/y8zmz23d9J/i7xXfqpZ23PQf4ms++Om9/9zne+c5UNl3nppZeu8he+8IWr/Pd///dX2XDkL37xize22RswtI+/LerGtrq9xLnluNStOVU+OX+Vv1W47smZ4KM0AmCapmmapmmapmma7oD2D4BpmqZpmqZpmqZpugP6Hz9sFudpuot64v/7X//73r179977///nD8dAT9M0TdO97SvTNE3T/xvtHwDTNE3TNE3TNE3TdAe0EIBpmqZpmqZpmqZpugPaPwCmaZqmaZqmaZqm6Q5o/wCYpmmapmmapmmapjug/QNgmqZpmqZpmqZpmu6A9g+AaZqmaZqmaZqmaboD2j8ApmmapmmapmmapukOaP8AmKZpmqZpmqZpmqY7oP0DYJqmaZqmaZqmaZrugP4PphakF2VWxsMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAIOCAYAAAAmx3/JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOwwAADsMBx2+oZAAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd7xlV13///eHZPqdPpMGaRBCCV8SKdKkSQ01UgSlReCHgBQVQQyCiQgCiiJNBCmG0JFIbyIBgvQWE4GAYZIJySTT+2RSPr8/9r6bdy7nM3ffyWQm9+7X8/GYx6y799prr73Pufecs87ns1ZkpgAAAAAAwMx2swPdAQAAAAAAcONjAAAAAAAAgAFgAAAAAAAAgAFgAAAAAAAAgAFgAAAAAAAAgAFgAAAAAAAAgAFgAAAAAAAAgAFgAAAAAAAAgAFgAAAAAAAAgAFgAGCKIuK0iPjXfV23R1sZEccV+z4bEU/bF+cBAAAAAMxMkZkHug8HTEScKulFkm4laYuksyX9RWZuOpD9GiUiUtKtM/PnB7ovAAAAAIDpZ7ARABHxIkmvlfRiSYsl3V3S0ZK+GBGzi2MO3n89BAAAAABg3xnkAEBELJJ0hqTnZ+bnMvPqzFwl6XclHSPpyW290yPioxFxVkRskXRqu+0sa+upEXFxRKyPiJdHxKqIeKAdf1ZbPqYN439aRFwSEesi4mXWzm9GxDciYlNEXB4Rb64GIkZczzkR8cy2fGpEfD0i/rFt66KIuGe7fXVEXOnpAhHx8Ij4QURsafefPqHtPV3fzSLipRHxf+3+D0fEsik/IAAAAACAG90gBwAk3VPSXEkf842ZuU3SZyQ9yDY/WtJHJS2R9D6vHxG3l/RWSU+SdLiaSIKbT3Lu35J0G0kPkPSKiLhdu/1aSX8iaYWke7T7nzvF6xp3N0nnSVou6f2SPijprpKOUzO48eaIGGvrbpf01Pb6Hi7pORFxSs/re76kUyTdV9IRkjZKeste9hkAAAAAcCMa6gDACknrMvOaEfsub/eP+0Zm/kdmXpeZOyfUfZykT2bmuZm5W9IrJE02qcIZmbkzM38k6UeSTpSkzPxeZn4zM69poxH+Rc0H673xi8x8d2ZeK+lDko6U9NeZeVVmfkHSbjWDAcrMczLzf9rrO0/SB+y8k13fsyW9LDMvzcyrJJ0u6XGkSgAAAADATc9QP6itk7QiIg4eMQhweLt/3Oo9tHOE78/MHRGxfpJzr7HyDkljkhQRx0v6B0l3kTRfzWPzvUnaqlxh5Z1t3yZuGz/v3SS9RtIdJM2WNEfSR9p6k13f0ZLOjojrbNu1kg6V9Mu97DsAAAAA4EYw1AiAb0i6StJjfGMbFn+ypC/Z5j19o3+5pFvY8fPUhN3vjX+W9BM1M/0vknSapNjLtqbi/ZI+IenIzFws6W123smub7WkkzNzif2bm5l8+AcAAACAm5hBDgBk5mY1kwC+KSIeGhGzIuIYSR+WdKmk9/Zs6qOSHtlOsjdbTQj83n5oX6hmKcJtEXFbSc/Zy3b25rwbMnNXRPympN+3fZNd39skvSoijpakiFgZEY/eT/0GAAAAAEzBIAcAJCkzX6fmW/a/V/PB+1tqvtF+QJvP3qeNC9RMhPdBNd+Wb5N0pZrogqn6MzUfvrdKeoea3P394bmS/joitqrJ8f/w+I4e1/dPaqIHvtAe/001ExACAAAAAG5iInOyOevQV5tCsElNGP8vDnR/9rWZfn0AAAAAMJMNNgJgX4mIR0bE/IhYoCaa4H8krTqwvdp3Zvr1AQAAAMBQMABwwz1a0mXtv1tLemLOrLCKmX59AAAAADAIpAAAAAAAADAARAAAAAAAADAADACYiDgmIjIitkXEsw50f3DDRMR/RcSuiDj3QPcFAAAAAA40BgBGW5KZb5ekiJgdER+NiFXt4MD99nRgRCyLiLMjYntEXBwRv7+vO9cOVHw5InZExE8i4oET9v9JRKyJiC0R8a6ImNOz3YdHxLkRsak9/l8jYuEe6n85Ita25/lRRDz6hl7biHOU1xoRT4uI77XnvzQiXhcRB4/vz8zflvTsfd0nAAAAAJiO9vsAgH9Am0bOlfRkSWt61H2LpN2SDpX0JEn/HBEnTPWEEfGeiDi12P0BST+QtFzSyyR9NCJWtsc9RNJLJT1A0tGSbinpjJ6nXSzpbyQdIel2km4u6e/2UP+Fkg7PzEWSniXprIg4vOe5Ont7rZLmS/pjSSsk3U3NNf/ZVM8PAAAAAEOwXwYA2m/O/ygifibpZ+22f4qI1e23t9+LiHtb/dMj4sMRcWZEbI2ICyLiLrb/ThHxg3bfRyLiQxHxN7b/ERHxw/ab7P+OiDvubd8zc3dmviEzz5V07STXuUDSYyW9PDO3tcd8QtJTrM7TI+LHEbExIj4fEUdPpT8RcbykO0n6q8zcmZn/rmZpvse2VZ4m6Z2ZeUFmbpT0Skmn9rzW92fm5zJzR3vsOyTdaw/1z8vMa8Z/lDRL0pH761oz858z82vtY/RLSe/bU38BAAAAYMj2ZwTAKWq+pb19+/N3JJ0kaZmk90v6SETMtfqPkvRBSUvUfIh+s9SE5Es6W9J72mM/IOl3xg+KiN+Q9C5Jf6jmW+N/kfSJ8TD4iHhrRLz1RrlC6XhJ12TmhbbtR5JOaM/9aEmnSXqMpJWSvtb2fypOkHRRZm4ddY72/x9N2HdoRCyf4nkk6T6SLthThYj4VETskvQtSedI+m67fX9c65T7CwAAAABDtT8HAP42Mzdk5k5JysyzMnN9Zl6Tma+XNEfSbaz+uZn5mcy8VtJ7JZ3Ybr+7pIMlvTEzr87Mj0n6th33LEn/kpnfysxrM/PfJF3VHqfMfG5mPvdGusYxSVsmbNssaTyP/tlq7sOP22/OXy3ppCl+Mz7WtlmdY+L+8XKZyz9KRDxITTTBK/ZULzMf0bb9MElfyMzr2l3741q9v0+XdBdJfz+F9gEAAABgMPbnAMBq/yEi/qwND98cEZvU5J+vsCqeb79D0tx2/oAjJP0yM7No+2hJL2rD/ze1bR/ZHndj2yZp0YRtiySNf4N9tKR/sn5tkBRqcu0VEefZvt+X9Fa7jvGohcnOMXH/eHmreoqIu6uJynjchGiGkdqBmM9KenBEPGo/Xut4f0+R9LeSTs7MdX2vEwAAAACGZH9OyNd9YG/z/V+iZtK2CzLzuojYqOYD4mQul3TziAgbBDhS0v+15dWSXpWZr9p3Xe/tQkkHR8StM/Nn7bYT9auw9PG+vW/UwZnZzVUQEe+RdE5mvmdCtQsk3TIiFlpo/IlqPrCP7z9R0odt3xWZub7PBbQpFJ+Q9PTM/FKfY8zBkm7VlvfHtSoiHqpmroKHZ+b/TLG/AAAAADAYB2oZwIWSrpG0Vs0H5lfo17/prXxDzWR8z4uIg9tc89+0/e+Q9OyIuFs0FkSzvN2UQuBdRMyx+QlmR8TciPi1wYrM3C7pY5L+uj3vvSQ9Wk0KgyS9TdJfjK8KEBGLI+LxU+lL+438DyX9VduP35F0R0n/3lY5U9IzIuL2EbFE0l+qmS9h/FrOiYjTi+u8g6TPSXp+Zn5yT/2IiNtGxMkRMS8iZkXEk9Xk4H9lf11rRPy2mon/HpuZ365bAgAAAAAcqAGAz6v5oHmhpIsl7dKEFIFKZu5WM7HcMyRtUrM836fU5PkrM78r6f9TM2ngRkk/l82CHxFvi4i3TbG/P5W0U034+ufb8tFte6dFxGet7nMlzZN0pZpJ756TmRe0fTtb0mslfTAitkg6X9LJU+yLJD1RTb77RkmvUROqv7Y9x+ckvU7SlyVdoub+/pUde6SkrxftvkjNhH3vjIht7b9uUr0J9y4knd5e51o1SwI+ITO/v7+uVdLL1aSOfMb6+9miHQAAAAAYtLh+Kv30FBHfkvS2zHz3DWznaDUf9ndJenFmvmNf9O+mIiJuIenDmXnPA92X/SEivqhm8sdvZ+YDDnR/AAAAAOBAmpYDABFxXzUf1NdJepKacPNbZublB7RjAAAAAADcRO3PSQD3pduomeRugaSL1ISF8+EfAAAAAIDCtIwAAAAAAAAAU3OgJgEEAAAAAAD70eAGANpl8J7Zlp8UEV/Yz+c/JiKynbH+Wfvz3FMVEQ9s+3ldRDzwQPcHAAAAALD3BjcA4DLzfZn54AN0+iWZ+fbxHyJifkS8NSLWRcTmiPjqxAMiYnZE/DgiLp3KiSLilhHxqYjY2rb/uhF1bh0RuyLirPFtmfmfmTmmZjnBPbV/v4g4dZI6X46ItRGxJSJ+FBGPnso1AAAAAABumOk6CeBM9HY1j8ftJG2QdNKIOi+WtFbSwr6NRsRsSV+U9BZJT5B0raTjR1R9i6TvTKXDEXGKpEMkXdj+/BhJKzPzX0ZUf6Gk/83MayLibpL+MyKOZ/JGAAAAANg/ZnwEQEQ8KCJ+0n6r/mZJYftOjYhz7eeMiOdGxM/ab8tfGRG3ioj/br+5/nD7gVoRsaL9Vn1TRGyIiK9FxF7dz4i4raRHSXpWZq7NzGsz83sT6hwr6cmS/naKzZ8q6bLM/IfM3J6ZuzLzvAltP1HSJklfmmLbH5d0jaRXS/pjSbeS9O5RFTPzvMy8ZvxHSbMkHTnF8wEAAAAA9tKMHgCIiBWSPibpLyWtkPR/ku41yWEPkXRnSXeX9BI138w/Wc2H1TtI+r223oskXSpppaRDJZ2m5oOt2lD+t06hq78p6WJJZ7Qh+v8TEY+dUOdN7Tl2TqFdtdexKiI+27Z9TkT8v/GdEbFI0l9L+tMptjvOl5G4bsLP19MOmOyS9C1J50j67l6eEwAAAAAwRTN6AEDSwyRdkJkfzcyrJb1B0ppJjnldZm7JzAsknS/pC5l5UWZulvRZSb/R1rta0uGSjs7MqzPza9muqZiZz83M506hn7dQM7iwWdIRkp4n6d8i4naSFBG/I+mgzDx7Cm1620+U9Ma27U9L+vh4JIOkV0p6Z2ZOaV6B1imSZkt6mZp7+wtJT68qZ+Yj1KQvPEzNfb1uL84JAAAAANgLM30A4AhJq8d/aD+gr66rS5KusPLOET+PteW/k/RzSV+IiIsi4qU3oJ871Qwo/E1m7s7Mr0j6sqQHR8QCSa+T9IIb0Pa5mfnZzNwt6e8lLZd0u4g4SdIDJf3j3jScmWe3+f7jAx8fK/L//ZirM/Ozaq7tUXtzXgAAAADA1M30SQAvl+WZR0RoH+WdZ+ZWNWkAL4qIO0j6r4j4TmZONY9eks4bsW08lP7Wko6R9LWm+5otaXFErJF098xc1aPtKu3hfm3bl7Rtj0k6KCJun5l36tv5zDynb11zsJo5AwAAAAAA+8FMjwD4tKQTIuIxEXGwmm/RD9sXDUfEIyLiuHZQYbOa2fX3NqT9q2qW2vuLiDg4Iu4l6f6SPq8mDeFINasCnCTpmWqiEk5SG80QEav2sAzfWZLuHhEPjIiD1EzWt07Sj9XMb3Ara/ttau7ZQ/byOkaKiNtGxMkRMS8iZkXEkyXdR9JX9uV5AAAAAAC1GR0BkJnrIuLxavLf3y3pvZK+vo+av7WkN6uZBHCjpLdm5pclKSLe1p7/2T37eXVEPFrSv0p6qZoJAZ+amT9pq3TzFkTEBknXZeaa9ufZakL6v1m0/dP2A/fb1CzZ931Jj2rTAXZL2mFtb5O0KzPX9roD/YWk0yXdXs1Ayc8kPSEzv7+PzwMAAAAAKEQ7bx32k4g4WtJPJe2S9OLMfMcNbO+3JP1RZv7epJWn3vYDJP27pDmSHjY+wAEAAAAAmH4YAAAAAAAAYABm+hwAAAAAAABADAAAAAAAADAIDAAAAAAAADAADAAAAAAAADAADAAAAAAAADAAB/et+PrXv75bLuC6666btH6fOjfE1Vdf3ZWvueaakef17ddee+3IOrNmzerK8+fP78rbt2+ftB03e/bsrnyzm/1qXMXre58rvipDRIzsp7fv9b28du3arrx+/fquvHXr1pHteP+9Hb9X3p958+Z15auuuqor7969e+R2v4dz587tysccc0xXPvroo7vyEUcc0ZXnzJkz8tiDDx799PVz+T2vrqU61us/4xnPGH0AAAAAAEwTRAAAAAAAADAADAAAAAAAADAAvVMAnIdPe7h4nzpVuc+5vFyFf3vIfZ9Q/IMOOqgrV2kLVbi482OrNAQve//73Afvs9fftWtXV/aQ+1WrVo3sj4fTL126tCt7+oPfq507d47s/8aNG0f2YceOHSPb8dD9ww47rCvf4ha36MrHHnusRqlSHrw/zuv4sa46FgAAAABmKiIAAAAAAAAYAAYAAAAAAAAYgN4pAH3C1F2fFIBqRn3nIfpVf/qkIVRh/FVofRUi7v2p6lez6Ls+117101co2LJlS1euwu89vN9TADy8v1r1oArv99n+vezn9ZUCli9f3pUPOeSQrrxo0aKu7PfWz+Wq7Z5S4WH//rhXqQS+3ctVmgkAAAAATEdEAAAAAAAAMAAMAAAAAAAAMAB7FePcZ1b/PjPn91GFyntovdep+tAnDcHb9LB2D033EHGv3ye1wfvjIf1Vm96Oh+hv2rSpK2/evLkre7h+Fervx65bt25kHQ999zB+vw9LlizpymNjYyPrL168uCv7zP8rV64cWd/70OcxqupUj5erVouYPXv2pMcCAAAAwHTEJxwAAAAAAAaAAQAAAAAAAAagdwpANct9ZV+lAFS8P9WM/bNmzRrZn6rs4eXV6gPVrP7ejofQe9887NxTDDzU3Ot7HQ/137Zt28g6buPGjSPb9DSBavZ+v3YP7z/00EO7sl+jh837igNe9lB/v4eekuA8haFK6/B+Vturx8vvSbU6AKsAAAAAAJhJiAAAAAAAAGAAGAAAAAAAAGAAesc4VyHrlSqEfqqq2fs9tNvLVd98exXa7e17yLrP2F+lG/RZHcDbqVYB8FD8HTt2dGWfIf+qq64aeaynPGzYsGHksX7thxxySFf2MH6v42H/Rx555MhzVeVK9Th6GL+vUODbvZ8LFiwYub1KP6nC+70+M/8DAAAAmKn4tAMAAAAAwAAwAAAAAAAAwAD0TgGowtqrkGkPZfeyH1vN4l6F91d1qj542kI1G3y1okF1bBVe7mH5Xq5SJzws39v3FAOv47P6e3i/Hzt37tyRfVi6dGlXXrZs2cj6fl2e/uD1Pbzf26xUz4Hq/lTPE19NoEpVqNI0/Dnm5Splo1oNAQAAAACmOyIAAAAAAAAYAAYAAAAAAAAYgN4pAM7Ds6uwbd9ezZw/Z86cruwh2VVY/lRVs7t7+1VIfxW+XvEQdA/d9xD3qm9VePy2bdu6sq8IUIW4+zUee+yxXXlsbKwrL1y4sCt7OL0f67Pre6j/kiVLuvLWrVt//aJ0/Xvr/azup9fxUHxfocBTErzsKQnVahHOr7F6PvRJbwEAAACA6YhPOAAAAAAADAADAAAAAAAADMBerQJQlZ2HeXsdD1mvQrWrkOwqXL8PP7ZqZ6qpB1XKg4f9e0i/1/cw+127dnVlD/vfvn37yPMuXry4K3tIv28/6qijurLPlu9l533z0Hp/vKp0hir9wbdXqzb4DP/eN0838P70SRvx81b8XNVzmBQAAAAAADMJn3AAAAAAABgABgAAAAAAABiA3ikAHv59Q2bp92M99LqaPd7rVKH7VXj/VEO4qzB1b7MK+/dQeQ8vr8LgvU2v4+kA3r6HxC9fvrwrr1ixoit7OoCH1lf8vNX9r1ISfAUBf254CoCX/f4sWrSoK3vagl+jh/p7CoCX/THye+v3v0+aSZVKQAoAAAAAgJmETzgAAAAAAAwAAwAAAAAAAAzAXqUAOA+TrkKyq1B/V4WgVzzMuwrXd1UYfzUDfMXb8bD2KgXAQ+WrFQ28TjWr/7Jly7qyh/37agLepj9efVZPqB4jX8XArV+/ftI2/T7MmzevK3uo/9KlS0durx5fv89TXc3Bt3uqxQ1JaQEAAACA6YIIAAAAAAAABoABAAAAAAAABqB3CoDPGF+FwXsYuW+vVLP3V+HfPgN8nxD3qn1XpS3ckDQBv3bvs/dh7ty5I8se3u/Hjo2NdWWfId9D9H3G/mpFg4qnXVSrMLgrr7yyK3vagqcqeAqD1/FVADyFwa/Xr3Gq+qSc+HOsTzsAAAAAMN0RAQAAAAAAwAAwAAAAAAAAwAD0TgGoQuinGibt9a+99tpJ2/dQbQ8R92OrWeJ9u4eCV+VqpYBqe1WnSovwa/H6Ht7vKwJ4HW/HZ7DfsWNHV965c+fIvlUpAB7q76kE1bHet2om/5UrV3bl5cuXd+Uq5cFD/f3x9XNNdUWJKq3DefuuOhcAAAAATHdEAAAAAAAAMAAMAAAAAAAAMAC9UwCqsPYqJNtD9KcaSu0h3NWM9FWov5c9hL7PbP9e9tB0vxbvj9f38H6vU/Vh69atk9bxsPzt27dPqf+eJlDdnz73dv78+SPLngLgKQw+8/+8efO6cpXK4fe5SgfoE5Y/1RQVX0XC+f3xxx0AAAAApjsiAAAAAAAAGAAGAAAAAAAAGIDeKQAeju5h1R56Xc2WX9WvZqf3+ldfffXIOh6m7mWf3d239+mnq8L4PZS9zyz0VfrAggULRtb3+1ytdOD3pEpJqO6h1+kzq7+H93uIfrVygYf9e9nrVI97db2uz8oOfVIG+hzr9xYAAAAApjsiAAAAAAAAGAAGAAAAAAAAGIDeKQBVmHSlCp/2EPoqzLtPH3yW+D4rAvh5+6QAeCh+n/5U1+Ln8n56/6uVCzwk3uvPnTt3ZB1/XHzGfq/j7Vch/QsXLhzZTpVe4ffW++b1vf/V/a/KlT5h/K66V9XqFX36AAAAAADTBREAAAAAAAAMAAMAAAAAAAAMQO8UAA/5dlVYtW+vVCsC9Jldvwrh7qNKH6jC76eq6me1GkIVvl6lCbjqnnsYv/NwfQ/R91B/n73f++DHernPKgx9+t9ne/VYV49Xn+dnn+0AAAAAMN0RAQAAAAAAwAAwAAAAAAAAwAD0TgGowtpdFe7uqpnbPSTeVeH6vsqAb/cQ7mrmf7+WKrXBZ8h3VT/9ev281Qzz1b2q7ls1i3517T4bf7X6gJf9eqvQfb8WD/V3fVZ2qELu+6Ry9FnBwdus2r/66qsnPZYUAAAAAAAzCREAAAAAAAAMAAMAAAAAAAAMQO8UgCrc2kPxq1nufXuf+lW4fhWeXc1s72Htvr0Kp3dViHhV31Wz+rsqTN3vj5/Lr6Wagd/P5TP5+z2sZumvVhyoHhdXpYdUz4EqLeKGqJ5XUy17f6rnAAAAAABMR0QAAAAAAAAwAAwAAAAAAAAwAL1TAPrMrF7VqepXqwBUYe2uCs/2UPaq/SrFoGrHTTU8vs9M9VX96p54CkDVn6rOVEP9qzqueoymunJEn9QJV9X3dAAve/2qjrdDCgAAAACAmYQIAAAAAAAABoABAAAAAAAABqB3CsDGjRu7cjVruodSV6H1HspehaxXqnQDb8fDtr3soe9+rircfaqh8lV4fJ/UgKmmElR99uuqHovqHvpj2uc+VCH6VZh9n/D+qdap+l89P3377t27R9a5MVYoAAAAAICbAiIAAAAAAAAYAAYAAAAAAAAYgN4pAFdccUVX7jOb+tKlS7uyh/17GLlv93LFQ7jnzJnTlasZ7101o/7s2bNHtlMd2ydcv086QxWiX92HKpTdz+XHevt9+lCF31ePXdV+tcpDtSqE6zPzf1W/SkWpUgM8PaSqU63gAAAAAADTEREAAAAAAAAMAAMAAAAAAAAMQO8UgJ/97Gdd2UPfPWTat69evbore7j+IYcc0pWPPPLIrrxgwYKR5/Uw7D5pAh4SP3/+/JF96DNj/9y5c0dur1YxqELfq/DyKlWhut4qnL4KZff6u3bt6soeHl9dlx/rs+VXqw9U96HqT5UC0Oex7hP276o0h+q8U01DAAAAAIDpgggAAAAAAAAGgAEAAAAAAAAGoHcKwOMe97iu7GHS69ev78obNmzoyj/96U+78qxZs7qyh/ovX7585Pbt27ePPJeH5Vcz51eh9c7re8qApwn46gDeZlWuQv09TN1Dzf28VWh6lWpRhdb79i1btnTlKk2gWkGg6oM/jn3C/qtQ/z6qlIQ+aQV97lWfMgAAAADMJEQAAAAAAAAwAAwAAAAAAAAwAL1TAM4444yuvGPHjq68Zs2arnz55Zd35S9/+ctd2VMDPGx+yZIlXdlDyr39aqZ6D0evQvqrNAGv4+142P+8efNG9qFqswo791noq5D4Kk2gCkf39j283/u5cePGke37sVXqhJc97aLqW9W+q66lWk3Ar6tqp89qC33SMar2q9UiAAAAAGA6IgIAAAAAAIABYAAAAAAAAIAB6J0CsGjRoq48f/78rrxy5cqufLvb3a4rH3/88V35ggsu6MrnnXdeV/bUgF27do08r4fiVykAHkZehfR72etUM+FXKQO+vQoR97BzP1efdICpzvbv5WrVgN27d3flq666amQfqhUKxsbGRpar/nsfqrKrUgZcn3D9KiWhql+lGLg+K0oAAAAAwHTBJxwAAAAAAAaAAQAAAAAAAAagdwqAq0K7Pbx8+fLlXfmoo47qyr5SwKWXXtqVN23a1JV9dQCfhX7OnDkjz1ulBlQpANXs91WoeXW93qZv7zPrvqc8+HZXzUhfzZzvPGXDV1Xw/ngftm/fPrKdnTt3jqzvffCUgWoVhiqcvkpzuCEz8E91JQVH2D8AAACAmYpPOwAAAAAADAADAAAAAAAADEDvFAAPI/cZ1H2G+Y0bN3ZlD4P3cO5DDz20Ky9btqwre6i5q0LBPfzew859u6cMVOH6VTh9VadaHaAKifeZ/72O37c+KwtUKxF4yoMf69fuKyl4fQ+P9/D+rVu3dmV/XPw54CtB+HmrFIzqPlfh+tW9dTckTcBTAAj7BwAAADAEfPIBAAAAAGAAGAAAAAAAAGAAeqcA+Iz9HnrtIe6+CsC2bdtGtuNh4UccccTIOt5mNWO/rw7gdarZ/qtVA6pjPZS9qlOFqXv6QzXDv7fj9auUAQ9Zr9IZvFylRSxYsKArexi/99ND8X11AE8TqM7rdarVAarHtLpX1bmqcp/VHLyO39sbklYAAAAAAARFcqoAACAASURBVDdlRAAAAAAAADAADAAAAAAAADAAvVMAnIdPe6i/rw5QpQNs2bKlK3vI98qVK0e24zxc3Ge5r8L7XRUuXs3q3yd8vc9M9X1mua9WHPDUAC/7sa4KX69WARgbGxt5rD923mdfucDD5quQe38cq9UBqlSL6r7tqxn7qz5PtQ4AAAAATBdEAAAAAAAAMAAMAAAAAAAAMAC9UwB8NvhqZngv79ixY9Kyh5FXoeCuCnH3dABvx3k4uoeRe7kK0feQ9epcfi1VmHrV/yrM3vvsKQDVzPneB1eF33v73o5fo9f3FQq8z96O16nq+7l8VQIvex/8uqr70Gc1Adcn9aC6nwAAAAAwHREBAAAAAADAADAAAAAAAADAAPROAdi8eXNX9jB+nzF+586dXXnTpk0j61dh59WM+lWIvh/bZ2b4KkTcz+th5x6KX4XuVyHu1ez91cz2VdlV4ejVef26qlUV+oTo+7V7+76ygNf3OlU6g/Pnj/PrrVZJ8Dp9wv6dX3uletwBAAAAYDoiAgAAAAAAgAFgAAAAAAAAgAHonQKwYcOGruwh/R7mXc3276sDeNi2h5H7bPMevu5h2F6uZs7vE77uYeQe9l+FwfeZGd63V2H83p+qfp9UAi97KHt1jdUs/R5+7/3x++/3wR+jKu2iStnwsvfB++Zlr+/3rVrRwK+96o+r+tPnWAAAAACYjviEAwAAAADAADAAAAAAAADAAPROAbjyyiu7sof0e9j29u3bu7KHT1eh6VU4t5crHvbv4evV7PFVyoCX/bx9Ugn6zNhfhab7dr+HVd+qOlV4v5era6na8f7PnTt3ZP+r++zXVaVLVKsGVOkJVVqBH+tt+vPKt1crBXjKQ9VnAAAAAJjuiAAAAAAAAGAAGAAAAAAAAGAA9ioFoAo137lz568atrBqD+H2mf99exWe3Wd2/Wq7t+9lb7Oakb6qX/XZw+Crmfmr7R6K7+kVXvY6Hh5fzaLv6QweEu/99JUaNm/e3JW3bds2sp/eTjVLf5VK4HW8b9Vj4dfr56qu11XX7is++GPnfaiehwAAAAAw3REBAAAAAADAADAAAAAAAADAAPROAfDw7Cpk2sO8PR3AZ5L31ADf7u14yLef17d7+9Vs8J5uULXpYfCumhneQ8or3h8P1+8Txu/X5eWqfrUaQpWO4dfuqzZ4CoCnHvixHlrvj7WrwvW9b95m9bh4HVetnuDtVKkHnr7h26trAQAAAICZhAgAAAAAAAAGgAEAAAAAAAAGoHcKQBWSXdXx0HQPHR8bG+vK8+fP78oenl2FzbsqBcDTCqrw72pmfm/T0we8HT/W2/QQdK/j4fQesu7h9369Vdi/34cqHaM6r6tWGfDz+vX6/fTHsc+KCdVKAVW6hx/r53LVPa9WWKj66apVCVgRAAAAAMBMQgQAAAAAAAADwAAAAAAAAAAD0DsFwFVh21W4tYdYz5kz51cnL2ba99B3D1Ovwt2dh217+LqXq7QC75uH6Ls+s8d7OHo1e79vr8p+7VXagj8WXt6yZcvI81YpCc7vgz+O1Sz6Vai8P+7VagJ9rqU6b7WaQJ+y309/XjlWBwAAAAAwkxABAAAAAADAADAAAAAAAADAAPROAfCQ6Y0bN3ZlD+H2MHsPq/aZ/xcuXDiyjs9C7zxse9u2bSPP66HgS5Ys6co+k7+Hkc+aNWtk+1XIvYe4VysCVLP0e9nrePh9Vfb7U7XjffY6l112WVf26/X776sw+LV4iL6Xd+zYMfJYv4fOz+WPkT+O3v/queH336/R0zSqx84fr2pVgmp1AAAAAACYSfjkAwAAAADAADAAAAAAAADAAPROAfDQ9Gp2dw+lXrBgQVf21ACvU83E7uVqFncPI/dQf6/joePVbPbO63u4u4ede6h5FYJe9d9Vs/pXZW/HVwrw1Anf7vfcj/XHsTqXh8f7Y+2pBNVs/H3C6auVFLxvfl3evvfBHy/f7vzaq9UffDvpAAAAAABmKj7tAAAAAAAwAAwAAAAAAAAwAL1TADZt2tSVPdzaQ6Y9lHrlypUj67s+M9tXIe6eAlCFeXv7Vfh6Va5mnq/65ikDHt7v/F55m9Vs/172NqsUAA+hr1Y68JD+il/7nDlzRvazquN98D5X6SG+3dv3FAbXZ8UEV6V+eP0qFaVK3wAAAACA6YgIAAAAAAAABoABAAAAAAAABqB3CsDWrVu78sKFC7uyh2r7bO1VmHc107uH0Pv2KuTew7Y97N9TA7zPvlKAh6w7b9/D7317lWLgoeNVaHo1w3wV9u/t+Hn7hL77/almy/d0AD+vP6aeFlGFxHs7Xsf75uf154mXPbXBbdy4sSuvXbu2K1dpIPPnz+/K/rhXq0JU2/3aAQAAAGC6IwIAAAAAAIABYAAAAAAAAIAB6J0CUIVMe7i1h3NXodcemt4n3N3Dwr2+t+nHelj4hg0buvKiRYtGXouHqVcrDmzevLkrb9mypSt72oKnKvixHpruffb7U6UV+HYve5tVmHq1EoEf22eW+yptwdMo/HGv+LU7v1d+Pz3s/8orr+zKl112WVf2ez42NtaVV6xY0ZWrNAdPSfDnQJVSAQAAAADTHREAAAAAAAAMAAMAAAAAAAAMQO8UAJ/5vwoL91BwD/n2UPMqBcBDr6v6XvZzeTseFu6rADjvv7fjIegemr5p06auvG7dupH1q3B9vw8+u77Xqe6Jb/c0B+eh7H5d1Uz+1az+fv+9TjV7f3VslZ5QrdSwZs2akdtXr17dlf1x9Melehw9PaGa4b+6n95PAAAAAJhJiAAAAAAAAGAAGAAAAAAAAGAAeqcA9Alf93DxKpTaw8U9DLvPigC+vc/s9x5SXq0s4OHi27dv78o+2//69eu7sqcDeH+mOru+962aId+vsUq78O1V6L5v7xMeXx3r11WlP1SrD/j2X/7yl1151apVI9v0lRec99nTUnwVAL9Gf976igDVSg3eT9IBAAAAAMwkRAAAAAAAADAADAAAAAAAADAAvVMAfJZ1D+OfN29eV16yZElXrmbg91B/D8OuZtGvQver2e+dH7tz586R270dr3PllVd2ZQ/79z54SLm34/enCu/3UPMq/L6a5d5VaQJ+LVXYv/e/CvX3VRW8Td/u/Fjvs6dL+EoKa9eu7cr+3KjSGfz55uH9rlpJwe9Pde1VagkAAAAATHdEAAAAAAAAMAAMAAAAAAAAMAC9UwA8NNpnX/eQbA/z9hBxD8muZsuvVgfwcP2qjodzO9/u4d/ejqcq+Hbvs4egV332soemexi896FPnYr3oQpf98fI75WvPuDn8jrOUwY8nN5XRvDUAL9Xd77znbuy35/zzz+/K3tKRbVagW+vUkh8FQC/t96O98HvoffZy9U9AQAAAIDpiAgAAAAAAAAGgAEAAAAAAAAGoHcKgIfT9wlZ99QADxGvZv737R5q7ueqZsKvQv1dtd1DxD283Fc0qFYTqGatdx5G7mHnHqbux/o1TnVGer9Gv4d+b72Ot19dl4fEuxUrVnRlD633FRM8TcBTCbwPfv+d3x/vj/PH3duvUiS8Tb9ev+feDisCAAAAAJhJiAAAAAAAAGAAGAAAAAAAAGAAeqcAVKHRHv5dhfF72cO5PTzey17Hj71exy1s2/vgqhn7nV+Lh7tXYedVmH11Xm/H++ApEtXKCN43P2+flQJ8FQYPd3d+D71OdV0ecr98+fKu7Nd48cUXd+UrrriiK3v4/dq1a7uyp1d4f7y+X4tfu/enSgOp6nuf/bz+HKieMwAAAAAwHREBAAAAAADAADAAAAAAAADAAPROAfDQdOdh/87Dtj28vwovdx6eXc1Ov3jx4pHHeki5h3BXM71XqtQAP7a6Fj+vh507b7O6P95Olc5QpQ/4ffD2/br8Wrw/Hn6/YMGCruwz9h955JFdecuWLSPPe/nll3flsbGxkf3x++MrC/jj5Y+7h/R7P71craTg11ulD1TnBQAAAIDpjggAAAAAAAAGgAEAAAAAAAAGoHcKgIdSOw9H9/D1aob/KsS9KlerCVRh8N7Pqs9ev5ox3kPKq/D7qp9V36o++LGeUtEnBL3PTPVepwr7nz9/fleuQuu9Px72v379+q68ffv2kef16/U++Hk9TcBTSDxEv0pV8HK1IkCVSlDpUwcAAAAApgs+4QAAAAAAMAAMAAAAAAAAMAC9UwCmGg7tYdhVOoCHZPvs8b7dZ2WvZtSvQv2rGeD9WqoVAaq0Ap8J3+t4n71crRSwdevWruzX7ikAvr1KJaiu3a/L76HP6r9w4cKu7KsqeB0P9fdZ/S+++OKuvGPHjq68adOmkX3wfs6bN29k2Vd88MfIH3cP9a9WZ6hm+PfHos/zubq3AAAAADAdEQEAAAAAAMAAMAAAAAAAAMAA9E4B8PDpKhzdeRh8NeN9FSrfp/2Kh3b3CY+v+Az2VUi5t++h+57m4LPZe5vbtm0bub3P6gke0l+lSHh9D/VfunTpyPKKFSu6sofl+6z+q1evHtn/Krzf0yW8n37elStXduXLLrusK/u1e5tVGojzlQW8vqdU9HkOAAAAAMBMQgQAAAAAAAADwAAAAAAAAAADsFcpAB6yXvFZ7qt0AA8L9+0eql2FwXuov7fjffM2qzSEKhTcw8595vmqzx7qX82KX6UDuKr/zq/dw+w93N1TEjwk3sPvly9f3pUPOeSQruzXe9FFF3Vlv5YqRN/74/fW6y9ZsqQrH3744V1548aNGsX7U83e7/etWhHAn4fVKgmeznBDUlEAAAAA4KaGCAAAAAAAAAaAAQAAAAAAAAagdwpANWN/FaLvIdnVsR5uXR3rdTy83EPcfUZ6r7Ns2bKu7CHfVWqAH+uh5t4fT0/wkP4tW7Z0ZQ+V9/LOnTu78mGHHdaVN2/ePPJcHvruYfwerr948eKu7I+FpyH84Ac/6MqemnHEEUd05UsvvbQr//CHP+zKa9asGXkuf7z8Gv3++P306/Ww/PXr13dlv+dVioHfE7+f/jyZNWtWV/bwflc9H7wdVgoAAAAAMJMQAQAAAAAAwAAwAAAAAAAAwAD0TgFw1Yz6HrZd8RDrPu07D4/3MG/fXoXrezi396GaPX7BggVd2a/LQ/3XrVvXlT0M3u+Jt7Ny5cqRffNQeT+Xh8R7CP1RRx3VlauZ/z0FwJ1//vkj++9pFB6W74+Fp3KMjY11ZV9Z4NBDDx1Zx++JX7uX/XHxlQKqMH5/DnhqQPX4+na/t9XKAn2eqwAAAAAwXRABAAAAAADAADAAAAAAAADAAOxVCoCHVVcz6ns4vYdwe8h3ZappAh7C7ef17dXs7t433+7h9D5Lv4fHe9i8n8tnrffwfg/X99QAD2X39p3P/L98+fKuvH379q7sIfpV37zOFVdc0ZV9RQO/t943P9bvp6cA3OY2t+nKHsZ/ySWXdOXVq1d3ZU8NqFZw8P74c8/r+yoJ/jhWKR6VKlUEAAAAAKY7IgAAAAAAABgABgAAAAAAABiA3ikAHkrtPEy6Chd3Ho5etel1PES/mpHeeR88RNzLrpqd/uc//3lX9nB6P6+H4h9++OFd2UP9N2zY0JXXrFnTlY877riuvGjRoq68devWruwrC2zcuHFk/y+99NKR9S+++OKRbfp98Hvr11WthuCz+vv1+na//9Vs/L7SgZ/Lw/j9vL7ygvez6ps/f/zx9XN5H6o+90kZAAAAAIDpgggAAAAAAAAGgAEAAAAAAAAGoHcKgIdSV6sAeMi0zyrv/NiqTQ/hrvpQhXA7n8nf63vfPLzfUwAuvPDCkcfOnTt35Hl9xns/7+WXX96VPSzfQ819xnuv7ykDO3fuHNkHTwHwUH+/V15/4cKFXbmaXd/v/4oVK7qyh/0fffTRXfmXv/xlV77yyiu7sqc/7NixoytXof6eCuH9r9I9/Lq87LydajUExyoAAAAAAGYqIgAAAAAAABgABgAAAAAAABiAvUoB8JD4Kozfw+mrmf/9WC9XqtQDP9ZD5bdv3z5y++bNm0eWvb5fYzWD/SWXXNKV165dO7LPfl4Pgz///PO7sqcAeP1q9QGfyb+q4ysReFi7h8ovXry4K3tqgD92ntpw1FFHdWVfAWH16tVd+bLLLuvK1QoRHvbvZX+e+HX5Y+3X7tfi1+jPBz/W2/f+eLladQIAAAAApjsiAAAAAAAAGAAGAAAAAAAAGIDeKQAeYu0h4h4e7zz8u5rVv5pl3bf3qeNh+d43D+n38Hsve8h9lYZQzR6/ZcuWkWUPI/dyFbrvaQgeuu/h8dX99PSBqs9+H7z/hx12WFf2FABfWcBXNLjiiiu6sofH+7X4Y+HX4tfu212VsuHPPV9BwNupHqM+Kx34Y+TnAgAAAICZhAgAAAAAAAAGgAEAAAAAAAAGoHcKgIdMVzOuO6/js6xXqwB4/Sqcu+qD19m1a1dXrkLTvR0PfXeeSlDNKl/Ncu/tVysd+Oz6bmxsrCt7aLpfl4fTe5qA39sTTzyxK//kJz8Zea7DDz+8K9/85jfvyn5dv/jFL7ry1q1bu7Jfi9//RYsWjeybz9hf3R9PN/DHq5r537dXqSLVahFVGgIpAAAAAABmKiIAAAAAAAAYAAYAAAAAAAAYgN4pAD4ru/PQaw8Fr8L+PSTb61RpBX5stTpANUu8t+/n9X76zPOeMlBdi5/X++YpA17fw+C9bx7i7mUPcV+6dGlX9nuybt26ruypAT6rv6cSHHnkkV3Zr9dn9a9WTPBrXL16dVf2a6xSEjzM3tupVl7wx/HQQw/tyvPmzevKfg/9nvs9rGb+93tVPd+qlBYAAAAAmO6IAAAAAAAAYAAYAAAAAAAAYAB6pwBUs6N7iLXP7u5h2K4K3fdjXRV+7/X7pAZUvE4VFu7n8uv1sHNPGXDVdfm5/F75zP990iL8vB5av3Hjxq7sKQMbNmzoypdffnlX9jB774P3f8WKFV3ZZ/v3vvk98ZB772f1nPHHuprt39MKvJ/VKgAVb7O65wAAAAAwkxABAAAAAADAADAAAAAAAADAAEQVqg8AAAAAAGYOIgAAAAAAABgABgAAAAAAABgABgAAAAAAABgABgAAAAAAABgABgAAAAAAABgABgAAAAAAABgABgAAAAAAABgABgAAAAAAABgABgAAAAAAABgABgCAvXDMSz+dx7z003mg+wEAmBl4XQEA7A8MAAAAAAAAMAAMAADADBcRR0XEtog46ED3BQBw08BrAzBMDAAAwAwREasiYmf7hm783xGZeUlmjmXmtXvR5jkRkRFx4oTtZ7fb79f+vCQi3hURayJia0RcGBEvtfoZEdsn9O0lPftw/4j4ckRsjohVE/YdEhEfiIjL2v1fj4i7Tajz/Ij4RURsiYjvRsRvTfU+AMB0dSO9NpwQEV+IiA0RsSkivhcRD7P9p7V/d7dFxKUR8SHbd05EPLMt3699fTh7QvsnttvPmUKfTmr7saP9/6Q91D0mIj4TERvb1603R8TBtv/tEfHTiLguIk6dcGxExN9ExC/b151zIuIE2/+6iFjdvuZcHBGn2b7jI+LjEbG2vXefj4jb9L1GYF9gAAAAZpZHtm/oxv9dtg/avFDSU8d/iIjlku4haa3V+UdJY5JuJ2mxpEdJ+vmEdk6c0LfX9Tz/dknvkvTiEfvGJH1H0p0lLZP0b5I+HRFjbV/vJuk1kh7X9uudks7mGy8AA7OvXxs+KemLkg6TdIikF0jaIkkR8TRJT5H0wMwck3QXSV/aQ1trJd2jfW0Z9zQ1rz29RMRsSR+XdJakpWpeCz7ebh/lrZKulHS4pJMk3VfSc23/j9qfvz/i2MdLerqke6t53fmGpPfa/ndKum1mLpJ0T0lPiojHtPuWSPqEpNtIOlTSt9t+A/sNAwAAMMO133RkRBwcEcvab2Me2e4bi4ifR8RT99DE+yQ9wT40/56ksyXttjp3lfT+zNyYmddl5k8y86P7ov+Z+e3MfK+ki0bsuygz/yEzL8/MazPz7ZJmq3lzJUnHSLogM7+XmSnpTEkr1LxhBYDB2tvXhohYIelYSe/IzN3tv69n5rltlbtK+nxm/p8kZeaa9m9zZbek/5D0xLb9gyQ9Qc1rT1/3k3SwpDdk5lWZ+UZJIem3i/rHSvpwZu7KzDWSPiep+xY/M9+SmV+StKs49tz29edaNYMOt7djf5qZ263+dZKOa/d9OzPfmZkbMvNqNYPnt5kw+AHcqBgAAIABycwNar65eEdEHKLmzccPM/PMPRx2maT/lfTg9uenqvkg7b4p6VUR8QcRceup9CkifisiNk3lmD20dZKaAYDx6IPPSjooIu7Wvql8uqQfSlqzL84HADPBFF8b1qv5G3tWRJwSEYdO2P9NSU+NiBdHxF16RlydqV9Fmj1E0vlqXns6EfGpsNSyCU6QdF470DvuPNmH+gneIOmJETE/Im4u6WQ1gwB9fFDSrdpw/llqohWud2xEvDQitkm6VNICSe8v2rqPpDWZub7nuYEbjAEAAJhZ/qPNx9wUEf8xqkJmfkHSR9SEZD5M0h/2aPdMNW/obitpSWZ+Y8L+56v5tuZ5kv63/ebo5Al1vm992xQRD2n7c25mLul/iaNFxCI1YZhnZObmdvNWSf8u6VxJV0n6K0nPmvAmEQBmun322tD+/by/pFWSXi/p8oj46vjgb2aepeY14SGSviLpyoj48z11LjP/W9KyNh9+1CCzMvMRmfmaookxSZsnbNssaWFR/6tqBge2qPmQ/l01UQh9XK7mNeWnknaqSQn4kwl9fU177jupeV2a2DdFxC0kvUXSn/Y8L7BPMAAAADPLKZm5pP13yh7qvV3SHSS9p+c3Dx9TE0r5PF0/11GSlJk7M/PVmXlnScslfVjSRyJimVW7k/VtSWZ+vvdVTSIi5qnJSf1mZv6t7XqGpD9Q80ZvtqQnS/pURByxr84NANPAPn1tyMxLM/N5mXkrSUermavlTNv/vsx8oJqc92dLeuX4oO8evFfNa8z91aSZTcU2SYsmbFukZhD4eiLiZmq+sf+Ymm/nV6iZN+C1Pc/1CjVpDkdKmivpDEn/FRHzvVI2fqBmkOCMCX1YKekLkt6amR/oeV5gn2AAAAAGpg3HfLuaN2vPjYjjJjsmM3eoCad/jkYMAEyou0XSq9W8sTr2Bnd4EhExR803N5fq17+xOknSpzLzwnZugs+p+fbmnjd2vwBgOtmb1wZJyszVar7JvsOIfVdn5kfUhOP/2v4J3qtm4r3PtK85U3GBpDtGRNi2O7bbJ1om6ShJb27nC1gv6d1qoh76OEnSh9pBkGsy8z1qBhBuX9Q/WNKtxn+IiKVqPvx/IjNf1fOcwD7DAAAADM9pklJNvuffSTqzZ47maZLum5mrJu6IiJdHxF0jYnZEzJX0Qkmb1IRI3iARcbO2zVnNjzF3fGbnNv/yo2q+YXlaZl434fDvSHp4RNyyXbrpQZKOV5NfCgD4lV6vDRGxNCLOiIjj2r/PK9pjvtnuPzUiHh4RC9v9J6uJwvrWnk6emb9QMxv/y/ai7+dIulbSCyJiTkQ8r93+XyPOs07SLyQ9p50AcYmaPP7z7BrHX8tC0qz2dWf8c9N3JD0+Ig5tr+8pal6fft7+/IftPYqI+E1Jf6R2FYQ2Ve3zkr6emdV8BsCNigEAABiQiLizmnzDp7azF79WzRu+Sd+IZOZlNsvzr+1W8w3KOjUTNz1I0sMzc5vV+VFcfx3qN7R9unc7WVLlPmo+4H9Gzbc2O9V8eyI13+Q/Qs0EhZus7Xu3+89UM2HTOWpyPd8o6Q8z8yeTXS8ADMUUXxt2q1lh5T/V/F09X80cK6e2+7eoGUy4RM1A8OskPWcPrx+ddk6YkUsURsRnI+K04rjdkk5RM3/AJjUDEqe02xURp0XEZ+2Qx0h6qJolCH8u6WpdP4//C2pea+6pJipip5rXIqm5Nz9SM6Hspva4x2bm+GS2vyPp/9SkH5wl6U3tv/F9d5X0BxNeD4+a7N4A+0owDxIwdce89NMpSate8/CYrC4AAJPhdQUAsD8QAQAAAAAAwAAwAAAAAAAAwAAwAAAAAAAAwAAwAAAAAAAAwAAwAAAAAAAAwAAwANBTu/TI0/Zxm+dExDP3ZZsjznF6RJx1Y54DAAAAAHDTN5gBgIhYFRFXRsQC2/bMiDinz/GZeXJm/tuN1sGbgIiYHREfbe9VRsT9Jux/cUScHxFbI+IXEfHiCftPioivRcTmiLg0Il6+Xy8Ae9Q+rjvb9WY3RsSnI+LIfdTuAyepc1r7nNnWPjc+ZPtOiIgvRMSGiNgUEd+LiIe1++4XEZda3XPa5+aJE9o/e9Rzdg/9iYh4bUSsb/+9NiJGLr3V1n1ZRFwSEVsi4oMRscj23zwiPt72/9KIeLbtO77dt7bd//mIuI3tnxMR/xgRl7WPyVsjYpbtX9Ze2/aIuDgifr/P9aG/iPiLCWtDKyJ+Vmx74j4+96kRscd1sff0+9Hu39PvVjfI3P4uZUScPaH9E9vt50yh3ye1/djR/n/SHupum/Dv2oh404h6r2j78Wt/S9rfg7V+r3q8Xp0eEVdPOPct+14jru9AvX5M5XkbEY+OiB+2f6fXRcR/RcSx7b5Rz4dN6iki3h4RP42I6yLi1BH7/yQi1rTnfldEzGm3HzXidyAj4kXFeSKK16aIWBERX2+3b4qIb0TEvSYc+zcR8cto3oedExEn2P45bd+2tH39U9t394j4Yvt3Zm1EfCQiDu97f4YibvqvF73eI0XEkva5sCaa9/QXRsRLrX5G877Dn7cv6dnP+0fEl9vn4KoR+49p9++IiJ9Uv/8R8aW2HwdP2P7CaF7ztkfEjyPi+En6M7ut5+8lJ3tvdod227qIyAntzYmId0bznmxr+zfn5AnnK1+bbioGMwDQOkjSCw90J27izpX0ZElrRuwLSU+VtFTSQyU9b8IfuPdL+qqkZZLuK+m5EfGoG7e7anm69QAAIABJREFUmKJHZuaYpMMlXSHp196I72vRRM48RdID23PfRdKXrMonJX1R0mGSDpH0Aklb9tDkhWqeh+PtL5d0D0lrp9CtZ0k6RdKJku4o6ZGS/rCo+9S2//eSdISkebr+fTtL0i8kHSrp4ZJeHRH3b/ctkfQJSbdp939b0sft2JequR93kHS8pDtJ+kvb/xZJu9tjnyTpn/0NHfaJr0q6Z0QcJEntm95Zkn5jwrbj2rq9tW/Ib+jrbPn70eN3a6K1ku7R/s6Me5qa36leImK2mufwWWpeC/5N0sfb7b8mM8fG/7XXsFPSRya0eStJj5d0eXHa10r68Yjte3q9kqQP+fkz86I9Xx0msd9fP1qTPm8j4jhJZ0p6kaTFko5V8/fzWjtm4vNhyRT68CNJz5X0/Yk7IuIhav6WP0DS0ZJuKekMScrMSyb8Dvw/SddJ+vfiPHt6bdom6emSVqr53XutpE/aB6THt/vvreZ92DckvdfaPl3Srds+3l/SSyLioe2+pZLeLumYdv9WSe+e9K4Mz0399ULq9x7pHyWNSbqdmt+XR0n6+YR2Tpzw+/K6nuffLuldkl5c7P+ApB9IWi7pZZI+GhErvUJEPEnNfdWE7c+U9Aw177XGJD1C0rpJ+vNi/fr7w8nem10t6cPtuSY6WNJqNZ9zFqt5z/bhiDjG6kz22nTgZeYg/klapeYP9AZJS9ptz5R0jtW5p6TvSNrc/n9P23eOpGe25eMkfaWtt07Ni8p4vduqebO2QdJPJf3uHvrUtdn+/HQ1b3I2Svq8pKPb7f8s6e8nHPtxSX/alo9Q82KyVs0HkRdYvdMlnbUX9+tSSfebpM4bJb3Jft4h6fb280ck/cWBfuxvjH9H//mn8ug//1Qe6H5M8TFdpeaDwvjPD5N0of08R9LfS7pEzZu7t0ma1+5bIelTkja1z+2vqRlAfK+aNzM71bw5ecmI875Z0huKPq2QlOO/kyP230/SpfbzOZJe0T4/D2q3Pa/9HZn0OWvt/LekZ9nPz5D0zaLuRyW92H6+p6RdkuareQFKSStt/9slvbdoa1lbf3n783clPd72/76k1W15gZoP/8fb/vdKes2Bfi7NpH+SZrd/u+7c/vy7at74fmXCtp9PeA7s6bXiVZK+3v5eHCfpVEkXqXlT/Qs1gzm3a59H17a/O5tG9G2y34/yd8v6Mv66db/2d+Rtkv6o3XaQpF+2v1Pn9LxfD26PCdt2iaSH9jj2ae19iAnbP6fm79Eq2d8ou9ffkPQHks4t2v21333t5Wvfgfx3U35dmfjYaP+9fvR63kp6nKQf7qH/++T5oOaN/akTtr1f0qvt5wdIWlMc/1eSvryH9nu9NrX375Ht34dD2m1/LunDVucESbvs58skPdh+fqWkDxb9uJOkrQf6eXdT+6eb8OuFtTfpeyRJ50s6ZQ/XmZKOu4H36oGSVk3YdrykqyQttG1fk/Rs+3mxmkGMu7f9ONie86slPWAKfThWzeeqk2XvJUfUu957M9t+nKTscZ7zJD12xPbe70v397+hRQB8V80vx59N3BERyyR9Ws2H2uWS/kHSpyeMOI97paQvqBkxvYXaUfBo0gu+qObF4BBJT5T01oi4/WQdi4hHSzpN0mPUjO5+Tc0omdr/nxDRhYEtVfMm7IPtaOEn1YxO31zNC88ftyPSo85zXuyDMOK2L/eWdIFtfoOkp0bErDaU5h6S/vOGngv7XkTMl/QESd+0za9R88f5JDV/9G6u5oVEar5VuVTNc/NQNc/VzMynqHnD98isR4i/qeZ58eKIuMv4KHlrvZpR57Mi4pSIOLRH9y+T9L9qfgekZqT7zAnX91ux5/DOE9T8zoz7UbutEhPKc9R8kxLF/jsU7dxHzRvD9Xto+xYRsVjNY3FNZvq3s5P1E1OUmbslfUvNY6P2/6+peaPv274q9X6teIqab/IWqhmYfaOkkzNzoZo3gz/MzB9Lerakb2T9beRkvx97+t2qnKlffTv0EDVvBC/zChHxKQ8HneAESedl++6mdZ76PS+fJulMPzYiHi/pqsz8zMTK7fW8Wc0b2Jy4v4dHtuGdF0TEc/bieIywn18/xk32vP2+pNtGk1J1/4gYm+I17ek5P5lRryeHTnz/2L5veqqaqJmptHW9362IOE/Nh8FPSPrXzLyy3fVBSbdqw5tnqfl9+1x7zFI1kRt9X/fuo+u/v4Nu8q8X4yZ9j6Tmd/dVEfEHEXHr/neg1/urPTlB0kWZudW2TXwevlrNgMXEb89v0f67Q0SsjiYN4IxJoibepObvzc5J+jXqvVkv7evy8Zpmvy9DGwCQmhek508MN1ETTvKzzHxvZl6TmR+Q9BM1I6wTXa0mROqIzNyVmeM5OY9QM9r17raNH6j5Zv7xPfr1bEl/m5k/zsxr1PwCnBQRR6v545JqPnBLzUj3NzLzMkl3VfPt419n5u5sQhzfoWbw4ddk5h0z8/09+jOZ09U8fzxE7FNt33aquXfvzMzv7INzYd/5j/YP92ZJD5L0d1L3xuRZkv4kMze0f5xfrV89j65W8+bh6My8OjO/NuEDQCkzz5L0fDVv2r4i6cqI+PN2X6oJRVwl6fWSLo+Ir/Z4QTpTzQef26r5dvQbE8557iQvkGPtPRi3WdLY+CDbBJ+T9Mxo8tYWq/mWRZLmt/fp65JeHhFzI+JOkh6rJjrgeiLiFmpCUv/UNn9O0gsjYmVEHKYmvFv6VXTBxFSIzWreJGDf+op+9ebt3mr+5n5twravtOU+rxXvycwL2r/l16j5lvMOETEvMy/PzF5vFCb7/djT79Ye2vxvScvaQdpRbwyVmY/IzNcUTUz83ZF6PC/b17L7yj78RMRCNX9nqtS8F0j6VmZ+b09t///svXnYnlV57n0uBcQBZ5Q5gUAMYRQUqEWxKmrVWltrB4fq0drWWr92b2vr1Cq1anu497d3B+un7W7riLu6i7Uba2utBie0giISQiATJEwigxBFRVjfH/f93vzy8Jzvu+43IYE85+84cmTlftez7jVda633yXldy/ARdf9rtq+kX5P0plLKLy2inHAnO33/mGOheduffZ6s7ouHj0j6dinlvRNfBPx86Xzn5/58Fp+fb84vxLT9RLqrTZyq7guQ/zOyrG32plrrsZIerE4xRp/wq/t/r1V3DnuBpP+Kclm3ufRd7LaUcqy6s7KTcM8698j9YoJ5z0jq9o0Pqfty9eJSyroCP/aer03YyzOkpvPVfMy7f5RSHqfO3XKae9FB/d9PV+dK8xOSfknTZfoqpfyMOhXEx6b9HPmmnc2a6L9o+5Ck99VaLxn7+V3JzH0BUGu9SN0vqpPf9B4g6fKJZ5er20wm+X11/1P3n/3/LPxK/3yJpJNpMOqkO/s1VG2JpD/H527o33Fgv1H+b3UTXeoW/Q/hcwdMvPMN6jaZu4VSyqvUbcDPrrX+oH/2cHW/zLxF0t6SDpb0jFLKK++ueoRF8bx+4d5b3cJ/Tv+L577qfuk8H/PoX/vnUnfQWyfpU6WUDWP/p6TW+qFa69PU+V29QtIfYzPZUmt9Va11mbr5/F1N+aVkgrMkPaVvwwcWyDuNreoOUHM8WNJWcyj9O3UqnFXqvuGdOzTOBZR5kTqZ2WZ131p/ED+TJPVfOH5K0rv6A8Acb1PnC3eBOunnP6k7LF87pY5z9bxFYUfzOUmn9uvYvrXWy9SNxxP6Z0frTn/Olr1i81yi1vpddf9b+gp1v8B/oj+UNbGQfcxnW/PwAXW28xOS5j0cTWGx8/Il6iT8G/HsDHXuMpsmM5dSDlD3BcAbR9ZPklRrvbjWelWt9fb+l8c/V/cFdVg8u2T/APPO21rrl2utP19r3VfdL2FP0rbz5yO11ofiz09MlrFIpu0n0l1t4qWS/rHWunVkWXfZm/r/fPqwpNeVOwO+vUndfwodrG6M/kjSZ3rFxlaUx7K3qWPpYil8UtLv1Fo/P089Z5l77H4B5j0j1VpvrbW+vdZ6ojplwkckfbSv/xwnTNjLvy2iHpPY/aP/n/x3qZt7P5ry2bn/xX9HrfWmft94jzp3pG0onSL7HbrzP1WmMs/ZbEH6+n5Anavmq8Z89p7AzH0B0PNmdf8jQAO8St3hihyizs9sG2qt19Raf63WeoC64Czv6hfNzZLOmTCYB9VaW6SHmyX9xsRn798fXKTuF5Cf6/8X5WTdGUBms6SNE5/bp9Z6F4PYEfRfdrxOnQ8Of8k5TNLttdb3999yblH3pcXdUo+wffSH4rPU+ZOdqi6Wxa2SjsI8ekjtghap1npLrfV3a62HqQsW8+pSylPnihvx3ttqrR9VJxm+i0y+1rpZ3TexTkI/l+976g4pv6nFfQGwWl2QpTmOk5Fv1VrvqLW+uda6tNZ6UJ/vyv6Paq2X9/97tG+t9WR1/q7/Off5Xnr5KUn/XGt920TZt/a/3B3Y9+31ks6vtd6hzgdujwk1hK1n2C7OVed3+GvqFB2qtd6sbl/4NUlX4RfXlr1i8rD+b7XW09X9L+gl6lRad8m3EPPZx0K2NcEH1AU0+5felsawWtKxE2qZY7XwvJwmfX6qpN8uXSTqa9T94vKRXsVwkrr+urj/2Z9LOqnP2+LqMEnVtu42YZHsqv1DI+Zt7dSHZ2lhW9gRTNtPrq2QE5dS7q/uf+QXuk2qeW/q2VPd+Uvq3C/+of/S8Ee11veqc1VdWWu9UZ1CwJbdny8/LemPa62L2VdnhXv8fjHmjNTX/e3q4g4d2vqORbJa0mG9+muOuXn4YHWBbP+hX/PnFMRbSilPVKds+aG27QfXJ0eoC2j5+b6ssyTt3+8fS6X5z2YL0e9/f6vuP1ufX2u9bczn7wnM5BcAtdZ1kv5B234z9C+SlpdSXlhK2aOU8guSVqpTC2xDKeUFvWRE6gL2VXWSnbP7Ml5SOj/4PUspjy+lHNlQrXdLen3pI3yXUh5SOt/IuTp/Xd0m+78k/Vutdc7/5j/VfXP22lLK/Usp9y3d9RWPb++Rbdp2v1LK3v0/9yqdrHku9sCL1C0Sp9e7RlO+tMtSXlhKuU//vwK/oO4wGu5hlI6fVnc4WNP/wvk3kv5nKeVRfZ4D5/4nsZTynFLK4f1c+I66g98dfXHX6s4DyLR3vayU8uxSyj793PhJdf5eXymlPKx0PlyH9z97pLpgmF925YE3SDpt2v8eNvB+dYfQA/v/afxdSe819X94KWVZ32cr1fnwvaXvM5VSjuzbtlcp5cXq5Gn/o//Zg9UF9PxirfUu/+s19/6+7FMk/aG6Lyjn/ifgLElvKaU8sHTXPf20FveFR5iHWuut6mLEvFqdlHOOL/TPGM25ea+QOv/A0l1P9kB1wY+2alvbOaiYCPoL2cd8trVAezeqk+Mv5n/XV6mz/9/u94u5//n4jPtAKeUJ6r5w/+jEj56q7he04/s/V6n7Uv2v1B1el+Jnb1Knljm+1np7X+58+9VP9/1XSiknqdvvGeU5LJKduX+Q+eZt6fySfw3vX6Huy4aWvWRB+vV9b3VfIu3Zz7W5M/T7Jf1qKWVlKeWh6qKCv3eiiJ9Rd178rObH7k2lu6rv1L4u9y/dF2WP1p32/lVJL+jXnPuUUl6i7guCdSj7D3q7WKHul9W5sg9UZ8PvrLW+e1zvzBb31P1iCvaMVEr5w9L9fjI3r39HXZDOtY1lW/q5t7e6uVd6W9lLkmoX0+gCSW/un/+Mui+Q/1Hd2nCA7lzz5/4D8UR1rmDfU/e72+/3e95B6lyPpvXlReq+UJ4r6+Xq+u94SZsbzmalb8Ne/b/3Lv3Vnj3/nzoXs5/q58Pk5+3edI+h3gMiEe6MP7prBNuD1QVRWYVnp0o6X90kPF/SqfjZKt0ZTfkd6r692yppvbaN2PoYdQE/rlP3v3mfUXdgmVanocz+3y+R9E11fr+bJf3dRP4/VPdlwwsmnh+gTiFwjboN5stzbdVE5Ft137K9aIF+qhN/lvY/26hOnrwVf96Nzz5Fd0Y6vUbdgeABu3rs744/9+RozQuM7Vy05VvULZAvws/3VvcFz4Z+Dq5Rf6OEOj/CTerkx1sk/SE+99PqAjndJOk1U977s+q+Jb+xL/eb6qMoq/vG+X192Vv7efNhda4v0vRbAF5u2scIt09UJ5t0fVF6O76h//MObRvVfKukJ/bp5eo2xe+pk+69eqKs/6LO3r+r7gDwOPzspb0NfXfCbg7pf/6kvu3f69/xoomyH67OLeC7fR+/cFfPo931j6Q/6cfqBDz7+f7Zb0zkbdor+n/vrztvjbmp//nK/md7qdsvbpD07Sl1Wsg+rG1N1mXSlibeM3kjziclvWGevnps3+5b1QVfeyx+9gZJn5zI/x6ZmzEm8m3SxC0A+NnLNHELgObfrz6sbg/equ5/0X57offv6j/35H1Fu27/aJq36r5I+r+6031qk7pr8vbsf36G7np+2ao7I+gvNOdXTZlrT8bPX92/+2Z1sZHuN/H5f1P3P+uT5W6zV2mevUndlx/f6Pv/BvW+6BNj8Ffq/qf/5t42n4mf30+dS9vNfV1fjZ+9uW/TNv2zq+fdPfWP7oH7xbTyJn7GM9IfqLPhm/vyVmnb2wmmnVv+bNqcnfKeJ0+xlVX4+dL+fbeqO/e4NX+pcAtA/+zB6tTFt6j7PelNsA9bL931LLnQ2Wzu3fyzqf/Zkv7f35/4LNfDTVM+v3RXz1v+meu0EMIIlr7uE52F/+mz71nf6IUQQrhXkn0lhBDCzmAmXQBCCCGEEEIIIYRZI18AhBBCCCGEEEIIM0C+AAghhBBCCCGEEGaAfAEQQgghhBBCCCHMAPkCYIJSytJSSi2lbC2l/Pqurk9YPKWU9aWUH5ZSPrir67I7ElvZfYit3L3EVnYfYit3L7GV3YfYyt1LbGX3YVfYSr4A8Dy01vrX7oe9wfHP7aWUv5wn/38tpVxTSrm5lPJ3E/dJjqKU8tRSyiWllO+VUj5bSlmCn/18KeVL/c9WjSz3paWU8/s6bimlvKOUssc8+e9bSnlrKeWqUsotpZSv93fg7jBKKcf3dfpe//fx+NnvlVIu6t+9sZTye/xsrXWZumuJwt1LbCW2EtqIrcRWQhuxldhKaCO2ElsZzS75AmC+Qbq3UGt90NwfSfupu8/yo9PyllKeIel1kp6q7v7IwyT90WLeW0p5pKSzJP2hujvCz5P0D8hyg6Q/k/Sniyj+AeruNH+kpJP7+r5mnvx/JOkJkn5M3d2cL1F3L+YoSimrSilPnvJ8L0kfl/RBSQ9Tdx/2x/vnUndf7i/3P3umpFeVUn5x7PvvycRWYisktuKJrcRWSGzFE1uJrZDYiie2Elshu5Wt1Fp3yh9JVdJvSbpM0sb+2Z9L2izpZknnS3oi8p8h6SOS3i/pFkmrJT0OPz9B0tf7n31U3aR6K37+HEkXSLpJ0pckHdtYz6V9XfcY0baXStogqZifnynp7fj3UyVdg3+vkPTv6oxhraSfn+ddvy7pS/j3A9UZ84qJfC+XtGo7x+zVkv6v+dnDJG2VtMz8/D7qFpH1kq7vx/LhJu8qSU+e8vzpkq5kv0q6QtIzTTl/IekvJ56dIemDO3o+L3nt2XXJa8+uO7rcvs6xlTv/HVvZNu+9zlbuzj+xldjK7mQr2VdiKxNlxFZ2wZ/YSmxlFmxlZysAnqfum5qV/b+/Kul4dd8MnSnpo6WUvZH/uZL+t6SHSvpnSe+Uhm9aPibpvf1nPyzpZ+Y+VEp5rKS/k/Qbkh4h6T2S/nlOxlJKeVcp5V07sF0vlfT+2o/gFI6S9A38+xuSHl1KeUQp5YHqjOlMSY+S9IuS3lVKWXnXYu5aVq31u+om7VHb14SpPEndQjaNYyT9SNLP9VKhS0spv4Wf/z/qxvs0SQdIulHSX418/1GSLpzo1ws1pa2llCLpifPU995GbKUjttJGbCW2EltpI7YSW4mttBFbia3EVtq419nKzv4C4E9qrTfUWm+VpFrrB2ut19daf1Rr/X8l3U/SY5D/C7XWf6m13i7pA5KO65+fImkPSX9Ra72t1nqWpP/E535d0ntqrV+ptd5ea32fpB/0n1Ot9ZW11lfuiAaVzp/lNHVyD8eDJH0H/55L76Pum79Ntda/7/vh65L+UdILGsuaK2+fsXWfj1LKr0h6nKT/brIcJOkhkpZLOlTSz0k6o5Ryev/zV0h6Y611S631B+q+2fq5kXKqMW09Q918/vsR5d+Tia10xFbaiK3EVmIrbcRWYiuxlTZiK7GV2Eob9zpb2dlfAGzmP0oprymlrCmlfKeUcpO6AXokslyD9Pck7d0PyAGSrpz4poVlL5H0u6WUm+b+SDq4/9xoSimfLHcGz3jRxI9fos7wN85TxFZ1PidzzKVv6et68kRdXyRpv1LKIXjvVlPWXHm3LKZt0yilPE/Sn0j6yVrrt022W/u/31JrvbXWeqG6bz+f1T9fIuljaNMaSbdLenT/Drb3VEln49nr+jKa2lpKeZU635pn98a7OxBb6YitxFYWIrbSEVuJrSxEbKUjthJbWYjYSkdsZTe1lZ0d3GIwgFLKEyX9vjr/ktW11jtKKTeqC5SwEFdLOrCUUmBUB6uTlkidcb2t1vq2HVLpWn9ynh//shYOYLFa3beBH+n/fZyka2ut15dSNks6p9Z6uvnsg6aU9dK5f5ROkrNMO0hKUkp5pqS/UTc5vzlP1gv7v7moTS5wv1Jr/eK0D9dah+ibpYv+eUatddVEttXqFkaO87GCNKd03/y9TtKTaq1b5qnvvY3YSkdsJbayELGVjthKbGUhYisdsZXYykLEVjpiK7uprezKawD3UeeTcZ2kPUopb9Jdvz1xnKvu25lXlVL2KKX8tKST8PO/kfSKUsrJpeOBpZRnl1J2tOzkCZIOlImmCd4v6VdLKStLd+3EH6jzB5KksyUtL6W8pJSyZ//n8aWUI01ZH5N0dCnl+aXzP3qTOr+TS/o63bd/voek+5RS9i6l7Ik6byqlvMy05ymSPiTp+bXW/5yWZ45a63pJn5f0xlLK/fr6/mLfHkl6t6S3lf7Kj1LKvv04jWGVunH+7f4dr+qff6Yv80Xqrs04vda6YWTZ9yZiKx2xFc8qxVak2Mp7+5/FVjyrFFuRYivv7X8WW/GsUmxFiq28t/9ZbMWzSvc2W6k7Kdqgum9bDse/76su8MXN6r4h+31JmyQ9rU6JhqiJaJfq/D0uUCe7+Kj6qyaQ/5nqgnbc1Jf/UUn79D97t6R3m3pu854F2vQeSR+Y8vyQvl6H4NmrJV3bt/fvJd0PP3uMpE+oW1yuVzdhjp/nvU+TdIk6WcsqSUvxs5f19eef9/Y/20udHGWFKfez6ha5rfjzSfz8k5LegH8fKOlf+3wbJP0Gfnafvs1r+3euFyKLTrx3laZE1ex/9lh1EVdvlfQ1SY/FzzZKum2ivu+e+Pw282hH/dkJ0ZpjK7GV3cJW7s4/sZXYyu5kK9lXYiuxlV3/J7YSW5kFWyn9S+/1lFK+oq4z/347y1mibhJ8X9Lv1Vr/ZkfU755AKeVUSb9Va/2lXV2XnUEpZa06o/9IrfVXdmTZS1/3iSpJm/702S0SsHsUsZWFia0EKbbSQmxlx5F9JbayO5F9ZTqxlYWJrdz97OwYADuMUspp6ib+t9UFoThW3bc720Wt9XJJey+Y8V5IrfULkr6wq+uxs6i1PmbhXLs/sZXxxFZmk9jKeGIrs0lsZTyxldkktjKe2Mrdz732CwB1MpSPSHqgOjnHz9Var961VQrhHklsJYQ2YishtBFbCaGN2Eq4x7HbuACEsDO5N0s1Qwgh3PPIvhJCCGFnsCtvAQghhBBCCCGEEMJOYua+ACilrCqlvLxPv6iU8qmd/P6lpZRaStlaSvn1nfnusZRSntbX845SytN2dX3CziW20k5sZbaJrbQTW5ltYivtxFZmm9hKO7GV8czcFwCk1vqhWuvTd9HrH1pr/eu5f5RSHlBKeVcp5dullO+UUj43+YFSyl6llDWllC1jXlRKOayUcnYp5Za+/HdMyXNEKeX7pZQPzj2rtX661vogSVcsUP6T3V2dyPPZUsp1pZSbSynfWMQdm2EXElvZJk9sJVhiK9vkia0ES2xlmzyxlWCJrWyTJ7ayA7g3BwHc3fhrdeNxpKQbJB0/Jc/vqbt7c5/WQkspe0n6d0l/JekXJN0uafmUrH+l7h7SZkopz5P0KEmX9v/+WUn71lrfMyX770i6uNb6o1LKyZI+XUpZnkAoYRHEVkJoI7YSQhuxlRDaiK3sBuz2CoBSyumllEv6b6neKangZy8rpXwB/66llFeWUi7rv33641LKslLKl/pvgj7ST1CVUh7Zf0t1UynlhlLK50spi+rPUsoKSc+V9Ou11utqrbfXWs+fyHOopBdL+pORxb9M0lW11v9Ra/1urfX7tdYLJ8r+RUk3SfqPkWV/XNKPJL1d0n+RtEzS1HtNa60X1lp/NPdPSXtKOnjk+8LdSGwlthLaiK3EVkIbsZXYSmgjthJb2Zns1l8AlFIeKeksSX8g6ZGS1kv68QU+9gxJJ0o6RdLvq/um68XqBv9oSb/U5/tdSVsk7Svp0ZLeoG6iqHTSmHeNqOpJki6X9Eelk7x8s5Ty/Ik8f9m/49YR5apvx6ZSyif7sleVUo6Z+2Ep5cGS3iLp1SPLnYPXSNwx8e9t6Beg70v6iqRVks5b5DvDDia2Iim2EhqIrUiKrYQGYiuSYiuhgdiKpNjKTmW3/gJA0rMkra61/p9a622S/kzSNQt85h211ptrraslXSTpU7XWDbXW70j6pKTH9vluk7S/pCW11ttqrZ+v/Z2KtdZX1lpfOaKeB6kz1u9IOkDSqyS9r5RypCSVUn5G0n1rrR8bUSbL/kVJf9GX/QlJH5/7ZlDSH0v621rrKD+dnudJ2kvSG9X17UZJv+Iy11qfo04O9Cx1/XrHIt6lzNm3AAAgAElEQVQZ7h5iK7GV0EZsJbYS2oitxFZCG7GV2MpOZXf/AuAASZvn/tFP+M0+uyTpWqRvnfLvB/Xp/yZpnaRPlVI2lFJetx31vFWdgb611vrDWus5kj4r6emllAdKeoek396Osr9Qa/1krfWHkv67pEdIOrKUcrykp0n6n4spuNb6sdr5z8wtJGfV6f40/MxttdZPqmvbcxfz3nC3EFuJrYQ2YiuxldBGbCW2EtqIrcRWdiq7exDAqwW/jVJK0Q7y46i13qJOVvO7pZSjJX2mlPLVWutYvxRJunDKszlpyhGSlkr6fFd97SXpIaWUaySdUmvd1FC2kxE9uS/7ir7sB0m6byllZa31hNbK11pXteYFe6jzwQn3DGIrsZXQRmwlthLaiK3EVkIbsZXYyk5ld1cAfELSUaWUny2l7KHuW6n9dkTBpZTnlFIO7430O+qiVS5WIvI5dVdXvL6Uskcp5ccl/YSkf1Mn6zlYXZTN4yW9XN23fMer/3awlLKp+GstPijplNLdkXlfdcEvvi1pjTp/oWUo+93q+uwZi2zHVEopK0opP1lKuX8pZc9SyoslPUnSOTvyPWG7iK3EVkIbsZXYSmgjthJbCW3EVmIrO5XdWgFQa/12KeUF6vxJ/l7SByR9cQcVf4Skd6oLqnGjpHfVWj8rSaWUd/fvf0VjPW8r3T2T/0vS69QF2PjlWuslfZbBD6iUcoOkO2qt1/T/3kudRObLpuy1/QR+t7orML4m6bm9vOaHkr6HsrdK+n6t9bqmHminSDpD0kp1C89lkn6h1vq1HfyesEhiK7GV0EZsJbYS2oitxFZCG7GV2MrOpnRuJmFnUUpZImmtpO9L+r1a699sZ3mnSvqtWusvLZh5fNlPlfSPku4n6VlzC0aQlr7uE1WSNv3ps8tCecPiiK2E0EZsZfcg+8rdT2wlhDZiK7s3+QIghEWQg1oIIYQdSfaVEEIIO4PdPQZACCGEEEIIIYQQlC8AQgghhBBCCCGEmSBfAIQQQgghhBBCCDNAvgAIIYQQQgghhBBmgHwBEEIIIYQQQgghzAB7tGZ8+9vfPlwX8IMf/GB4fr/73W9If+97wxWNeshDHjI1Tyl3Bre9+uqrh/RDH/rQIX3llVdOzb9169Yh/eAHP3hq+vrrrx/S97///Yf0VVddNTX/AQccoGn88Ic/HNLf/va3pz4/8sgjh/SmTZuG9D777DOkb7jhhiHN/nnUox41tUy28eabbx7Sj3jEI4b0fe9736lptpf1YTl77bXXkGb/77HHnVPhwAMPHNK33377kN6yZcuQfvjDHz6kv/vd7w5p9u2NN96oadznPnd+7/SABzxgSJ9wwglTy2ea9eR7WU/OGb6LfbvffvsN6TvuuGNqmQ972MOG9Itf/OLmqMyvf/3rB1th2Y6WPGzTWH70ox9NTfMGEPYf08zDvn/gAx84pNlnbAvL4TjsueeeU5/zs7fddtuQdm1n3ZiHc1za1kbcrSe0U2ezZO+99x5VJ85z9gvXUj5n+9nXBx988JA+5JBDhvT+++8/pLneMs1+J25+cDw4Tu6zzP/CF76wacK+9a1vHTqM4+TmINvA9zHt5rWbX9///venlj85j6bVk+9i+d/5zneGNPckrmUsn/OJZbIc1tONK9vl2uv6imk3rlxDaRvcwzjvuWY4mJ/9wPeyfFdn2hj3sH333XdIc3/ie/ku2iT7gf3Md7k5yfK5N7NPXv7ylzcv7G9+85uHxnI8ORduvfXWIc0zGOvIevFsw3PLtddeO7UOt9xyy9TyuVeyTK5dPD/wvMezEOtPuCa7M9hll102pB/0oAcN6ZtuumlIs994pmKZrAPT7B+uh26+88xJu2F+ns34WfYt1zD2P+vDOcv1ifWnrXDt4dgtX758SHOM2J8sn+1iHdgWzj2uGY9+9KM1DZaz2DPYO9/5zgXPYG6fcHla0m5t5fxq2fOZ5hrEcaNtuTnuzlEcE44n3+XmlFs32RaOG9c+rpu0vwsuuGBI0244777+9a8Pac6vZzzjGUOae+SZZ545pE888cQhvWbNmiF92mmnDelzzz13ap1p64cffviQft7znjekly1bNrXO3M+4TrNMN9bbc/464YQTmmwlCoAQQgghhBBCCGEGyBcAIYQQQgghhBDCDNDsAkC5BuXllNdRVrJhw4YhTanqFVdcMaQpW+VnKdOjROqkk04a0pSnsEzWh3IQSlIo0aDc5JGPfOSQprSCUqhrrrlmSF966aVDmv3D+l933XVT60xJG6VclPUcdNBBQ/pb3/rWkKYMiFIV9jnfS0neUUcdNaSPOOKIIU2pGOvP9lK+Q9k3679x48ap5Vx++eVD+uijjx7SxxxzzJDm2FEqRnkTpZ2U1lLSTzi+7E+6mVCCw7467LDDppa5EM4FwcnPXR4nLWt5L9OUbxEnMWKasi4n0W6pg3uvk5C59zr4LtqutO340gb5fPPmzUOa/U7ZlpO1Ofmwk24yD9covpfl077ossR1tWXOTfbLtDxO2trikrEYKI0kzjXEzVk3351c0Um1uQ5ynLjmsh/5Wc4VtsvNcZbj8reMGevpynF1cDJYJyOlSwLLpCST+wT7hDhbZ/87uyV8F+2EEmru965PWtxgnG1zvvFdxI3LGOg+wv3UuQfyXMR1g65/7vzGcwhl3o997GOHNNvE/ZT1cRJ6prn2ctxoW3zOM8natWuHNNdnls/zA8eQz92cZZk8i7r1lnXj+YR9yDMM05wXlA7zvdwXWCbHne/lusUz1ZIlS4b00qVLhzTnGPcm7l+cMxxfdwbj3OCexXnItnNcdjTufEXcGtHiOuXg+DhXvBZXR841tze4Mt1ZgGknRyfurMjfk5xLGG3rvPPOG9KU5fP3y+c///lDmpJ72hnn73/8x38Mac5llvn0pz99SH/gAx8Y0pTx053ouOOOG9Knn376kKb7EXHj6M4NHBfOE+cm0PKuVqIACCGEEEIIIYQQZoB8ARBCCCGEEEIIIcwAzS4ALjI2JdMusihlV4yiyHJc5FXKINatWzekKVGjfIuR5ykDoyyNcnonw2TaySEpeaHkntIsvpfvclH0WX/mZ19R1k6ZFmWYrD/lXsxPqRjbcuGFFw5pypXYb5THcw4wD+U+HHdGMmcEYErL2J90JeAc4HPOGcpUOX8oiWT/ULpGqaS7xWAhWiRhxMmBxroAuEihLfVpke47SVjLDQyunJa6Obm2yzMpl+LcoJSRtsA2ODkoy6E98rMu2q+T1rn3cv2kXXBNo1yMbXHzyY2Nk8w7VwInAWyJ+D6Jkx+yLDf+LhJ+iyyuRR7Ptrm9gXuei0jPMinhdeu7u3mDsA5Out8Sndr1P+eTk6+zz1nPlltHXLTpFlcF9iGl4dwPOC7O3YBwrN2NDC196MbF2dgYuB9xLeL+S5twUeJ5HmA5bszZN3Tx4xmMrg/OvZFR33nLgFsPCevGtnD82Q88U/GsxXe58wP3COZ3knjnxsXPOvdSnhU573iOIjzbsO2sj7s9iv3PM4+L9s/5zrGmywb7kGNHGT/nJM9gLJ/nQKbZ3jE4W205R7n8Lt2Cu41m7PnH3VDi1mh3FuBa33IDQosrGqFNcM3gPOUaTTs4+eSThzTnEaP087aKM844Y0hzPnKe0n2AbgJk/fr1Q5pz8ElPetKQ5u89XFe49nCMuK5wD+B+6WT/7rYht5e4W4vmIwqAEEIIIYQQQghhBsgXACGEEEIIIYQQwgzQrNmkNIHR+ynvoRyBUiLKeChjowyFsrEVK1YMaUpGKIul5IISFieDZ90o3aAMnjInSjIpdWTkR0axpPSEfcJ6UsbBPnEyYEpJ2P+U17Df+F7X/2w7JTIuqjClP49//OOHNCV8fC/7h/OE8jZK11y0W44jn7sotS5CMyWILIfRaCm3o/SH9VwsTtLvpNnbg5OltUSyHeuG4ORkTs5EXORxF9XdRU8lLIe2K227hjDN9YHzjfOKc4ZrF/NwfaD9skzOJfYR5z+lmJRrUj7K/E562iI3dBJ7N2ZunCg7c5+dD7r6cB1huUw7iTX7xc3BFvvgu1gm3+XWGr6L6y/nLPcJzlNKIFskqM4tjTjpu7Ndziemnf05eTTl185FjX3L5+w3jiPHhXmcfHlsBGWmnTuJ60/WjfbP/qEUdKyL2LS6UMLtzmCsC+cXZbWsI9c6Sl05npy/PHsQ1sdJjZ27nzubcb7wFqEvf/nLQ5pzgfl5BqMNsU/cWuKk1RxPdzsA+4F9yPnCMxjHgmdR2gHHnX3Luc+9hv3pbslwNwXQhlh/ng/desw5zjlD91XOMZ7BXJ3HMFbG784/O+pGAPaTu2XE1d+t1xwf7knOjc+tX84FgHAddxJ0nq1YT9o3o/fTlYvzmm4iK1euHNIXXHDB1DRdmrgmve1tbxvSZ5555tS60c4Y4Z+/ax566KFDmmsM7Z44Nzzn6uTcAVx+ty8uhigAQgghhBBCCCGEGSBfAIQQQgghhBBCCDNAswsAZVSUD1EGQRnShg0bhjSjvjO/i3RN6Rflai6iIuVDlNocdNBBQ5oSFhfl10W4pVSM6WXLlk2tA+U4lMGzfEpVKNVjGykhYz84KTKlJ5RaUQZ00UUXTa0npTx8ftxxx019L2U37BNKyCjf4txgmv3GcWefUObi3Ewoo6G0iH3OOlNm5sZ3MVHNpfFR7neUC4CjRe7FtjopPtOUro3tJ1e+iwDO+Ui7d9HPKUWTtpUvcn3g2HBdcu920j1Khjknuaaxj5ycmWsO1yi+i/VkO7lWuIj97DumiZMksu1O6u/KnA/2nYso3SLJHCup47hyDeV6zXK4LrsbAbjusM5sI8thfVw9XWR24qSszhXE3Vrh5Npsi7OHlsj/nDec65RVss/Zb5zfzn2AsF3sW3dzAW2Sedza6WyJ7XKR9J1LwkJw/2Wf8SzB99Otj7fbcN2gzXFPZJlcc7i/cxwo8+Uc4Xvd+Y3w3Mi2cA3nWeiII44Y0pQXs560afYJzxu0XdbfuSKyD5mfcLxoBzxjuLlAe6UEmfVxrpr8LMeX/enOlqwbbYL52Q8847FuPL9xTCn7p7ulW18XezZyN4uMdb9pkfq3pJ3Llovu3oLbk507oGs7P+tk5841xK37XD/4uyPdkVkmI/Cznt/4xjem1pnQphmx/6yzzhrSz372s4f0mjVrpr6Xvy8yTTvjXOYc49rpzh+0IeZxZ2A+55xpcetsJQqAEEIIIYQQQghhBsgXACGEEEIIIYQQwgzQrBlwElNKfSiVoHSRkgVKJZzsjlISFzmY0VOdjJbwOSUpTrZECchll102tRzW88ADDxzSlJa5qOPsB0rXnOyREimydOnSIb169eohTZkWpciU9Rx11FFDmu268sorp9bTRcelrIsRyzlGfM7+YXvZFvYJca4TTsbPceHztWvXDmlKkTiXFhuB1kVqdSwmevpCtESFd+91snEXKZd27KRKrnwXJZXlOEkx28X1ZtJWnHSac49yTUq7mMdF4+caQlvjGkJbZpku4riThbnxo13wsy5CuXOrIU5e5uq5GCjPpcyX5Tq3jZYIu06CzjTlvy4a/OTNEtPqxvXF7Zdc+5zElnOfZbrbClrWD2c3rt8Ix579wHqy3yhPZz3drRg8Nzj5pBs7t5a0wPHlHHDRtYl7F/d7jtdYt7Bp0H4J9266VbozGGXhLoq0c09xsn/WgfVkW9nHdP3jmLubULhfs/6cg9zrWTeehdguvov5OS/Yds4Ftot9znJoK2494G1E7B/OI57BaDccU0ZR57mF8n4+Z93Y/+xz7onMw7q5MvlZ7oP87MUXXzz1s5xL3HPH4NxNtuf2JWe3LTcFOKm8W7tZN9bfnanc7UDOxcS5UjLNPnRz3+0ZlPqzDrzhje7I7jzpXLo5Ly688MIhTXdz2iVdop///OcP6RNPPHFIn3322UOatw9ceumlQ5rznXbJ9cy5q3Hd4nN3nnJ94ubGYogCIIQQQgghhBBCmAHyBUAIIYQQQgghhDADNLsAULpDidS11147pClToJyJMiQXQXTLli1DmpFjKadgfndrAKUVlJRSKsF6UuZCacXVV189pCklcbIYSqTYXqadrJX1Yf+w/pRIUeLDKJmUtLGelOCceuqpU9/FMaWUjnk4LszP91LmQjk95w/lQRxTvot9wvGlm4CT0VAmR9gnHFMX/ZhzYAwuSqeTe7kI3S5CrJNvuQiixNXBRRF2tEQodXVwUdRZB8L57mTftEXOr8l/s36cP2wD5zPnCfM7CbmTP7s5yXKcfJB14zrgJImsj4s866Tfzv3D1dNFRm+F48Z3UPruIqizT/lufpblU5rM9cvdhsL1iH3N6NWuT538k+sj4Rxnmmso5xPLbImu7saM/cn9xrmasB+c651zT+Bc5GedxHysq4mLuk047sS5HbrbCtycdPu6c6MYA8fHncFcX/KztA/modsdJeXMw3HjHOEezXHmXGadXYR/9h/bxfq4WwncuY51cOsY6+xuNWKZrDNl/1xjOGc5/pQXc945lxRnc64/mXbrCuvPd/G5uymA50PmYd/yTEXYt9xbuabSfYB9O4aW/Y3wOecg54jbD528393I4tz7OD4tbo/EfZbwXWwj57i7gYHj5m6p4TpIN2t+llJ559LEchjVn+sB7YluBXRfftzjHjekuXbTZZluBe62EKbdzRXu1h9384abn5xjzh2u5fajVqIACCGEEEIIIYQQZoB8ARBCCCGEEEIIIcwA4zUD2lYORFnDunXrhvShhx46pCmrXr58+ZB20gpCGTZlN5R0UBJGWQnlQ5RQUJZByQvzUApFSQpdDyi5oATOyXoYoXLNmjVD2sn5KE+hTJX9T/je4447bmp+jhdlWi4SM/uBcn3KBdnPlOpxLCjrotSGdaOkhlJZvpdjRwkwJUcsh3WgdI0SHLaFckcnpRpDi3yrRX5PeaOLhL6jGHsrgXN5cG2hPbVErHXyPNoE5ynLlHxEa5a7ZMmSIc05xrnnokMzv4vY7CLckxZXENfXXJc4hynvZP1b5k1LtPUWF5f5oGsQP881iGmuUy6ytrv1gbS4obh2uhsqnFsMy3cSdMIx5vgx7dxiXNR64tyGiBsLzmmuSe5WDNoJx4vrMtvVsgY4WqIju+cuErazk7Hj2OJWNaY8ujWxX3nzDt3leK6gBJZnMBdxnbJd9jFt0Z3B+Fm3Zro5S9viOYFnDM5B5uEcpK3QjZG3O7FuLIfnTNox13PHsmXLhjTnNWX8xO01nI/8LM9UlFnTRlmOc59yEnDWh7cDsM+Zh/XhuzjWPIPxXZRuu1skxuDOWsS5abk1yLk7uD25Je3WBRcN3r3XuSG4tYw24W4qIyyTeWj3fBfno4N1OP7444c05xHnDn+n5Dxyv88xz9e+9rUhfcEFFwzp9evXD2m6pHDd4u+s/F2H9edaS5ugvXL+EHczhXPH3JHnrygAQgghhBBCCCGEGSBfAIQQQgghhBBCCDNAswuAkzA56Qyl+5RRUapN2S2lFXQHoDyM8jbKKZw0kvIn5meZlDZdddVVQ5qyEpZDiYmTzlBKQvcHlk/5HD9LeTzlNatXrx7Sxx577JBmX1E+QvkZ+4TyeBctnBIv9g/lJuwfjumGDRuG9CGHHDKkL7300iFNyRnnAOvDPqSciK4BlOlQ0uZk95yTlALyvS7K7hhaZP/ESXKd7Me9y0mJxuKkRE6W1uKS4GRvXDNol26uubk8X3R8507C55SLcf47lwHCeeKigxMnD3fyc9bBRbJnW/jctcXdpuDmjbt5okV2PR/OxcjZnrMtd0sK54i7EYFwPFrmtZN/tsjsW1w7XCRxN+dc/VtuC3Fzi/3Geeak/i56P/M7KauDNuP6h3V2LiSu39z40jbcDQV8zrnnIjcv1rWMfcCx4nOmuT/yDEZ3Re6D7gzGOcU91Llx0ObcWsR+4hmDZzzONXezAOX6zlWTZzD2CcvnZ3n24BmP5zf2G/NzrtGF00Vgd2uSiyTOecp5x7Mi3T3oksaxc33FOcv1mH3O+tB9ku9yUfLZhzzrujPYYiKbT9a3RaLfEpXduUU5F053C8BYNwFHS/1d2u2RTLMtTmY/3+1L03Culj/2Yz82pJ2LqJPTcx06/PDDhzRtgrbOde7jH//4kH7CE54wpM8666whzb49/fTTp5bJ9dLZrjs/sr3u/MX51uK210oUACGEEEIIIYQQwgyQLwBCCCGEEEIIIYQZoFlfQ3kBZT+Ub1GS5CRPlGBRokEJECVbLJ91YB5KWyjLYH6+18naGWWSUILOtlDiRWkT05SHXXHFFUOa8ngnoed7GWWSkhdKQ0488cQhTSndCSecMKR5U4OT6rFPKBdkfVwdmGZ7WyQyP/7jPz71vZSiUXLE6JxujrF89jkjAFPOx7FghOQxOLnqWJyE10mHnfyMuCijLfnd8xa3BSdpb5HY810uGi3rwDVA2ja6Ne2R+TifHS1yb3cbAeWvnB8uAjPtiPVkmm4vTkra4gLA/GNvB9jeKLRO6u9cZ7hnsG3sO/Yv2+yi1jNN3K0Mrm4tknIn1+a65urfIjslLRGF3S0R7BP2m5PQu7a79cPV30kd2ScuvxtT59rgXFZcfzr3CtaN/elsY7EuAGwr9zjurWy3k/xSAktZrZOUc390UffZB1yjOP7uDMb+poSX8Ozhom/zXMqo8nS35P7OfqN8mVJ5npGYny4V7EPesMD+ofSZ/UC7d3J3uiGw7Rwvt4+yvTxHcRxZ/5UrVw5p9jnz0A6OOOKIIc054N7Lfli7du2Qpgse5+fGjRu1GLgPjz2DtaytHDe3NziXyRb3zJabAlpcp8bWwZ0n3U0znOPOdYJ2Q3eT0047bUjzvH/yyScPaboOc+6z/rRRnuvdzRiEdnzOOecM6SOPPHJIc/3genPSSScNac4Z7jHOLY39yTzsc+cm5/baxbhgRgEQQgghhBBCCCHMAPkCIIQQQgghhBBCmAGaXQAoGaIkibIGJ4WlLI7pxzzmMUOakiHnbkAoN+J7KYWl9IgyYL6LElwni6H0xEUXZTmUM11yySVDmhL0G2+8cWqZBx988NQ6UIZCVwXKPij7pzSEshgnOaOsi2m2i5IzSn84XpwblAJyPrAcSsgo22NEWSd/Z7RbSrsJpTkcd85nJ+dyLiELwf4jTobrpMbERZR10b1dxNoW+VmLlLkFFw3c1Y1j4sphHkp7aeuTc4G2Q5cQlssxc1L5llsQnMSbLkvO9YJ9wbY52T/la86tosXFouXmBndDw2Jk/8RJ0Pk+ro/M3+L+0iIFJ3xvS7RdJ8FzduZkfS6is3NtcDLVsXVgmrblIvw7nJ2MlZqy/1tuE3DrAe2cc8b1j3PpYT+zbk5iTLdA57rk5KgLwfZRJs21he9xduOiZvNMQvvgu9gmNx+dvHzsGYxj5W584ZnBncEoI2bkeZ5haGf77bffkObYch2mCwPnI8vkvOZZhX3lzs9uDWDf0k2DfcVxd7dFcHw5Lqw/56lbq9gu7kesP8eF7rHuZi5+li4VY+A5lLi90Z2pmMfd0tPiMuBcp1rOYy2y/JYzocOtra581p/nLpZD++DveTyb0XZZzwsuuGBIO1vhekD74LrMPufvYRxTzl/+7kXb4vmR6yXr4/qhZT9uOX/RprfnTD5JFAAhhBBCCCGEEMIMkC8AQgghhBBCCCGEGaDZBYASB0oiKN2g3JJyIMpxmIdR1ikBclGKKaFghHknq2SZlHowD+VelEg5eRilZU4GzyivjBpJKIVheym7Yv0pT6EEhPIqym5c1F/KriivYcRMyic57mwX2875QDcHvovtdVHymYfjzqi8jEhMySLleS3RtSlNZDlsO2VAY3CRYB1OkkucHLZFWs92uzKdLK1F9k7GRpF3kjMn42aa0kWWw7GVfAR+ysic7M/JvVuiwhNKXjlXOedp+7Q7pinpZD1dJHtHixSdjJWBt+IiX7u5xmjdrs3uZgWudxwz5uFaRjiHWiLYO9xNBM7uW25oaLFLJ311N7i48luekxYJKnGuYlyXmXayfz53rg0t7glOguo+yz2P88q5sY2B65pzkWOfORc89gfPUawv5bNsE+vO/dHtEzyH8PzAPqYsn3VwZzCeqbiuss487zHy/Hy3xczBqOV8L58TtpFl8rPu9hJXjtvzWA7TfC8jrbv54GTKzMPPutsTWlwG3BrMfY1R4DnPud6PgXu7a6vb591+2OLu5m4ZaTmDtUjEnTuAc4lucRlwrqmsD9cAzi+muT7ydxGOJ/dmd6bgeZ+/B7CeLMdF2qe7CW+T4O8oT3jCE4Y011S6nrDtzp3duSa2sCvPX1EAhBBCCCGEEEIIM0C+AAghhBBCCCGEEGaAZhcAysgpk2TkeUooKOmhRINSFUqeKItifsqEmJ8SDcrbKDFiOZRoMLo7ZS6Ugjt5MOvv5KiUqlA65ST6lPdT2sI2sp/Z/4wAzDyU5lAGTzkLpTnMwzJd9GAnq+QcYFvoauGiI1PmwvnD8int49xgRFHCcaH7Bt1Pli9fPqTZhy3y/Wm0SLlaZOPERTknTtrrpPVODuckTGMlv64c53rg6s/8nLOcg07CJ20rQXQ3erREc+dcdZI+1oO2RpcopunGQNuh3bEcprm+Mb094+fmlpOttoz3fND1iH3nbtJwz4mzMzf23D+4xnEOcuyZZv4WGb+Tl/OzblyZx7kZMb8r30lfnYzb0eJ64NY5Vx8n6ae8mGtAi524Gw3G3lbgbkzgZ+nuyD11R8AbkbiGcM+iixzPbKwv5z7Hx92MwT7mnk4pLe2Y5bPvOSbuJiOePVw9nZsAzwPOJZPyddoHzyd8L90N2J98F9cPvotj5OyA5xPnMsB+4zjSfcztNYR7jdsv+Jx14DjybMZ+cDd20aZ5Lt2wYcOQ5m1QdEtZLG4vcrJ5t5GfKrsAACAASURBVEa7c1HLWu/WYjL2Zh6Hu7nI7YUtUnO3H3D9dWuuu0mM9kq74frubltg+SyTv6txrrGevImAbi7ud0E+b/m9p6XfWm4VcnnYdjL2xoe7vHv0J0IIIYQQQgghhHCvI18AhBBCCCGEEEIIM0CzCwClBps2bRrSxxxzzJCmfMtF26Y8ycnsKXc499xzh/RRRx01pCmvYxRZVybfS1k+y3FyCqYpc6L8iZIXSk8oY6QchO4GLsrkRRddNKQpFVu3bt3U9zK9du3aIU15G6UzrA/rSQkOJY2Uz1EaR/kfZU+UNLvbIiijYX9S3sZxoQyPEiIn4SbsH8rhGC2Uch+6bIzBybpctM+xsnn3vEVi1BLx1bkPuDpTFsXnTnLmIqe7enKcnXzZrTeT73N9xLnhXCOcNI1t4Pxh2kmY+Zy2zz5lHVrcAVxfj5U8kxaXh7FuLdK2klmW5Vyq2E63jjhJPPuR6xrzcy1zc43POW9YHycD5Lrv5nuLW4y7tYJzzq31LfPAPXfRo0nLOuRuQ3CR/GkzzO8kmc5+HGwv28g+pA2wTErG3W03PGc4qf1CcK6tX79+SB977LFDmhJbtoNrKOvI+c787L/zzjtvSK9YsWLqu5yE3kV95xmM7XISbZbDKOFOZk+ZL9/rblBie7mu8qzL56wD68n681zBerJ/mN/dtsC20z7cbVy0G+cK41y6WD5tjvXhOZ9usG5N4vhy3eUZjLJ/2vdiz2DEnUmIm4OkZd1k3Z17WItr6dh12a0pzm3BuWG6tLvxo8X9qcX1gFH6OS+ce4pz7yYuqj/L5FpIG3WuHBxT537mbojanvOXcydzLqqtRAEQQgghhBBCCCHMAPkCIIQQQgghhBBCmAEWdQsAZS6rV68e0pQjUEpEGQSlPpS/UnJBuQNlGZSxMQ/TlFhS3kGpEqUblMDxXZRTsJ7Mz+eURVEqTzky68Y8lHJRYkK5zJYtW4Y0JTKU3VDS5uQgjKLP9lIyx/IpL2QfMqK+k9ZSvnXQQQcNafYV54brcxf900mDKaNhuyg7pDyI76Jsz8nkFoKSQCeZbYkU6vK7zzqZtpO0EyehJnxXS0Ry9y4nP3NSfdoEP+ukl5PSZJfP9buzHc5DzivakYuQ655zLXKSMtdfbJeTY/O5a29LpNqW54uRoLEfuWdQcsg09x6mneSQ7ee7+FnnVuBk3g7m51iyfzlXuJ5yn3Bjw/HmnHCuB3zeMsbEuf44lyMXOdtJYt1cd/LlFtcX58bENHHySbaX9Xc2zLFzrgeck2zjGLhv0lYuvvjiqfmd9J2yduZxEel5PqEdMA/Lp2sA91naMevPcx3fRZifdsPy3RmM5bu6uYj6nCN0V+JaQtgnTvrM+jt3UfYD0yyfbaQdMA/bxXMd+8TZccsZjO3i3OdzlsPfI3gjANtI9wr2yRhYx+05gxHnrsjPttwsxLRbL1pcsNze4M5CLqI+cW43HAfWzblOOHdqd95nmn1Im+b8pds30/w9g+/ijSVsC+2Gbkx8F2F/8szhzuct56+WSP7ORp3LVCtRAIQQQgghhBBCCDNAvgAIIYQQQgghhBBmgGYXAMojKB+hpIeSKsqtKYNg9HjKPhhdn7IoSpUoUWN9KC1zkgtK3ZyUz0U/p9SD76WcnhKTDRs2aBqU+1CKxjpTUsP+cfJGyl8oo6LMhZKqQw89dEizTyjHoiTFuSc4qQqlcWwvpTxsi5PKckxdVGHWk/Vn/1x55ZVDmnI4Jz2nRJfjuyNokfe4KKlO4t3iGuAiobdEOXf9RJw0mTj3ARd920XZdzI5115pWxt30it3Wwff4ST9tCMXyd9Jkl1+tsGNvZNpEzdmLe4ALdK0lgi/8+FkgBxnjg37i/3IfYJuWi0RjtnvXCv5rhY3Gro/OTcgSgtd9GK2y91O4caJMH+L7L+FFrce1p97tnN3cXbioj47KW5LlOWWtc3Zv3NTdPXnfGb9W9xJpkGXOvYfz2Dcr7nnsl48A7AddH/j/OW8ZjsoQee7CPuVaybTLJN9yb5nn9H9kPa6ZMmSIU03B3criDs3ctzcLSosh+uTu9WF/cP9gmcqnj1YH44p6+b2Rde3XCOJc3WkjP76668f0s5WWH+WyTMY2+LWM/4ewbk9BheJ3a2Vrk3ud4KWfZVjxbNDy5rl9hu3po+9VYq07B9urrnft1ryM819kS5V3D84v/h7GO2Ja6RzRaNduttliNtviPtdzfWPmyfEuUu4z+YWgBBCCCGEEEIIIUwlXwCEEEIIIYQQQggzQLMLAKFUgtImPqdki3IySokoB2L0RroPrFixYkhT1sUyKXNihFVKRihjo6yI5TOPk+/xOaVKru2E8nhK913kTcpHli9fPqQpeWFfUe7DOh955JFTy2yRqVJucsABB0wt30VBptTG3SDA+UOJGmU0lO63SF44T5wbAmXCRxxxxJBet27dkGa7xuBksk4u7drhIm47WZGTkLXIhVuimLqI2y04uW2LpM1J/R2TdXOfZ1/QNl0/ci65iOYuqq+TMLvnztXBSVLdc9dfTo7m5qhzBxgrN5zE3WLi5jj7uiXiNm2L+TlOfO7ck1wUeo4T5dSkRYLKsXfreIvccqwbhrP7Fgm9k3ayzi3R+517jHNLIi1SXNdXxI2ji3jt1jM3f1zE/DFw7rC+PFOxj90ZjNHsubdSQs9zxcqVK4f0+vXrhzTbxPc6lwFK7lk+zyf8LMtnOWzL9pzB6MLAvnW3q7B/uP7zbMPx5xpDtws3d/icZ1eWybOZi/zPOc5x4ZmHUmnWn2vw2DMY63/55ZdPrQNdX/kudwZbrLuMs3MXKZ39R8a6ZBLn3rg9a5Zbf90e424icPuQc7F1ew9xc9+5mLB8Z8dOus/fgZybMuX9fM7+dC4ALTdVEXdedbScv9yaNNa9ZT6iAAghhBBCCCGEEGaAfAEQQgghhBBCCCHMAM0uAJRmUU5B2QQlPZRPU/5EeTZlNyyfkhFKiSjBcvJsykGuuOKKIU0Xg2XLlk39LGVXLhLljTfeOKQp47/sssuGNG8EoOSMsje2kZI89i0jylLy4iSilHVR7u5k/GyLkzezPynho2yM8h22d8uWLVPLpAyMEhy2i7IxRtnlbRGUNDkJl7u5gO9lfTima9asmVrmQji5lJNmOVmRi/zp5LCuDk466mRLTnrr3suxIk4K5aT+LZFsXR4XoVnykWdZlpN1u0jk7vYQJ8t3Uu6WsXTywRY3Cdde179ujrqbHlqkjfPh5IGubU6i6m5rYJ2c1Jx5uNZwzCg/dO5hTqbMMl20YOJuKGjBzfUWWtwBWm4OaYnk3xIZ2tmSW1PdHHAR3t2tMy4KPOvPMwH3Hu43lFzzXW6vWgjWke0bewbjmcpF+2eZPLPx7ORuvaC0nu86+OCDp5bDvqHUnP3k3E55nuEZjO/i2YnuErQtPue7XFR/zguWQ4k+x4tzkzcW0e2R5bg6cEw51jx3ufMSy2Td3A04zM/zEm9eaHGBYvm0V563eQbjmK5du3ZqmQvRsvY5ubtz+3F7CXHnNNoHP8v3unOEW2fd2tRyc4Fz3XBngZbzGOvGddC5RTo3Ac47rgdsY8stIs7dw7lUuFuI3BwgLS60LVJ/tz/RFca5OMYFIIQQQgghhBBCCFPJFwAhhBBCCCGEEMIM0OwCQJk3pUdOMkl5z+rVq6fmd5IUJxO58sorh/R+++03tT6UX1AST8ncN77xjSHNCLSU6FNmwXZRIk5pCCVtlGtQBk8oYaFcjRIvSgjZJ5Tlc1yYny4PlOOwHLbFRURnRFZK6Vy0TfYzJWEusi7lOKw/XQzoquAklps3bx7STg7F8brqqqum5mdb2Lc7AifHGivBcnI1J3tzUjHaFseNz1uikDupVYu8vcUVoqVPXBTyyX+7PqLsrMUFoCUaeoukuiXSbksfEef+0eJKMTbt5GutcK61SA65pjhppJPQuyjIHA+3XvC9LZGh3dzn/uek9dvj8tEirXdzi7h1xaWdPbTUpyXCtJuvLdGUCceR89XtVc5W3Vx3Nwm1yIcXwknBuXZxvnMvu/jii6c+J24ecW+gWyXPD2y3u1GI43z++ecPaZ7BKO93dsyzjTuDcTwpg3dugJSds2+Z5lzg+daNC10h6D7A8edZjv3PuvHcy/XDuUnyXewHd4sFy6FLAs9gHBe+i+POerq9kv3P/Bxflr+jz2At66mTYbdI6Fv2Xueq5OzY3Yzizg4t+7xzQ3BnuZazAMtkWziebBfr7FxtaAfuVh4+Z/1dVH+m3VrvzpYOd+4jzg2sxTWA64qbh4txLYsCIIQQQgghhBBCmAHyBUAIIYQQQgghhDADNGvRKHFgxE5KExjdlPIhSscZjZaRVymbd1HFKXegdINyI5ZDeRUlJpR7sRzK1RyUPFFexTqwnitXrhzSTgJCKTvbTrk7ZS4tkWbZdnfbAuG7WCYlWJTUUO7DSK3MTxcMtpH1oTyIY0SpEOVn7AfK1egGQveQa6+9dkiz/zl2Ti7KCMZjcDKesZJqF82dOOmXq4+zG9IS0dTVwZUzViLVEgHc9c+k/NpJ6Jz020WJde9wUu6WdrZInluet0SnbZEzunnpos26PK24PiKuvziX3U0Xrl/cnKW0l+ud6yPi3EWc7NHNrRYXAEdLRH3i+nas3W/PODp5bMstIsTJeNmfTh7t6sM8/Kyrm5OUOmntYuF+xzMP5xr3Ryd353nASUhdf7CP2Tcsh1G8ub+7PY+yeTe/XJ3pusi6LV++fOq7OCYuGj/bxedsF882rDPXEr7L3WDFd7kI/+72mfXr10+tmzuDOQk76+xuSeBZkfXkmZ9z7LrrrtM0Wtyq6HIyhhZZtZsL7jzYct5wrmWuv90ZrMV1iribb1rW3JbzSMuayzpz73QuyJy/Lqq/uxnBuWY51wkXUZ+f5XvdOLrzVMve7NY8rmFufjKPm6txAQghhBBCCCGEEMJU8gVACCGEEEIIIYQwAzS7AFBiREkHJRGUTFPuQEkSy6GU3UkuKHegiwFlRawP5VKUilF2RSkaI//TVYHSdEaRZZ0pV/vWt741pCmjcjInplkfvpf1ufrqq4c0pVyUu/NdlL9QfuTkqOxnRt1neyn3orSM7gbMQ0kKXQNc5FgXfZfls26UE3GOce5RVkfXFT6/5JJLhjTn2GKhC0VLxHQn63LS9bFRpF20WCeTbYkMPjbyPXER0ltkymNlzZOfcfV2MuSWaPktLhMt0fudhH5s3cbWvyXN9aHFfaUVrhct5TpbGesy4Vw+iLM5J8l0ZVJa6OaKczvZHkkmabHpFrno2Dnt2ttSf5ducb9x5be4crgI2c7lz90YxP3P3TgwBp4xnLyVeQjPSLyZiGcP1te5NDr3Op67nESc0lu+ly5+LIey4LFnMJbf4urBsxbPBmwLy2e7WB83RziP3FrCfnZumO6WAXdLF9dtnqPcGYxjxDTL5/yhzTEP+5l9SDcBnnV39BmMtzyxv1373PrL9cXdFDR2jXPnLrc2uRsV3L7i1vGWdAtOxu/Odawn+9C5PxB3BnEuf7Rj4lwJ3Lrs+nPs+cudY1ya9XF1a/lsK1EAhBBCCCGEEEIIM0C+AAghhBBCCCGEEGaAZi0xpdeUflFqxTyU8VB+QbkU81O6wTyU6FPCTVgHynooIWOZlDydcMIJQ3rjxo1D2kmtGG2TkWPZXkoxmJ9SFcqf2EZ+1knjKDGh3IvStYsvvnhIH3XUUVPz05WA/cZ3Ofk1JVZ0K3DQPYSSMMrGKPNjf1IqxL6inIhpziu2ke9i365YsWLqZ+lWMAa6p7D/nMSLLiNOUuxkV8TJc9k3LRFlnTTZRVhtke22yOSdfNlJwN1nJ6V3bg6zDS6CqiuXaSc9dvJOR4tcfywtN0O03FTREiF8rJRQ2tYOna3wOdd0F03ZyTNd/ZjfReh25Y+9JcLZkJNPEuem4+Zci7zU4aSLTvru7MHR8tkWdw+35rl5yXlMWSWfO+k+x477JXER8917x8C9yUnKWS/nFsf9l1JwPud5jHl4BnN2yTMGZedurz/uuOOG9ObNm4e0O4NxHPgu5uG4Odtle90ZjO1lG4m7hYHurkccccSQdq6OlDiz/50EmX3I97q9lhH12XaOEc/2PDNzjtEVgmdOdwbjOZlzgH3Lmxr4nGejMfCMzzMg28Rz2kEHHTSk3Zndufq49Y75OT7uthh3xuNn3VmuxQVurBuYi7Tv3BDcek3cHkkbcucp52LI8XIyfndTh6ube1dLX5EWF2DnEuLcz9zNS4s5f0UBEEIIIYQQQgghzAD5AiCEEEIIIYQQQpgBml0AKMuh7GDTpk1DmlIMSi6uv/76IU25ESVblGFT+kB5P6UwlBVRMsK6uQj2lLhTBsTyWTdKLpif5VC+xc9SWsY8hHVm/v33339IU2LCSKqUpVGO9ZjHPGZIUyrGcaSciBIcPqckj2NBuQnHnWnKsNgnfBflhZwzfH7YYYcNacp0KFdz7gysD2VplGQ694TFQlcSJyHnc+dOwflLiZqTIjqJmouUzTxst5OZOek+87s8LdHDnYS3xU1gPjmck7gTfobzh7bp5Mm0a0q1XPtdXVuisDsJmusj5nHyMpenRVa4Pe4JkrRhw4YhPVZex3nn9hU3N12ZLVI+zglKNd066GzRRUFuiXhP3DhxLDlHKTt2c6hFWt/iauGklMzjJJ9uDrSsqcTld3JUzhnXdhcln2cdF31+sS4AjL5OWB7b4WTttBW3xxC6K3Jecx45dydKuJmfEnfuyyyf9SRsF89gnGt0IeSYOHcyjg/LZznM71wn2P/Lli2bWgdG+Odc4zjyOc9vLso57ZtnCMr1OdY8//As7VxEly5dOqQ593ke5viyLRxTnj+5z9IVjP252P3lkEMOGdI8h/I2LcLfYxy0j+OPP35IOzn3WHk/bcXdONDiGtCC2+c5L5ybEXH7mdsv3e1XTq7v9lrnPsDfjVgf53rnZP9ubXD7onOJbemHFkm/Sy/m5iUSBUAIIYQQQgghhDAD5AuAEEIIIYQQQghhBmh2ATjllFOGNKUVlF9Q+rxu3bohTWk6ZUiUVzl5POUgBx988JCmLI2yogMOOGBIUzpFSRDlMpRjPfrRj55aZ77LRQ53kfNZH7aFch8+Z0RcyqtaZGNr1qyZmocyMErImIdjyrGgPIxtZP1ZNxcRlzJ7ysk4ZygV47so9acEh5F1+V7KuZxMysl02D9uTi7Ec5/73KnPKQPknL3sssuGNPuAUn/KISmRo2SP7eD8dZJiJ2l3twBwjrCe7OOWMp2EvCXKeQuTUmD3eY4vJZ1OnuUi3jq3Byf9bpH6tzDWraAlSrp73pJeDM985jOnlkVZMG2F6wXbzDlIG+Y85XrdchtGy+0RHGP33ElB3Xxy0nQnuXfSQjePXXtdXzl3LxfV2Nkx87S4CjlJP2lx6yBufjv3GK4RTube0vYW15qFeOpTnzr1OfdfytfpXuPsg1HZ3fpDaTf3ZZ6LuH7SdZH1OfDAA4c09yeef3gm5H7N/LQbnn/cGYz1YT15huHzo48+ekjz7MQ8rA/nCM+97B/u/XzuzmCcUzzb8LMcR54D2Cdck+jOSTk7z2acJ3wX+8GdwbhmuLnnziWE49hye8402D7uMbwR6zd/8zeHNM+5hGet/fbbb0jTbig7b7ndybkbOXcy5uFz9iXr2bKfuTWOabd/tOwlLWWyDuxDd+OQc4twMn6en9lvLWcc4twfWm6sIc4VtcU1c0fK/kkUACGEEEIIIYQQwgyQLwBCCCGEEEIIIYQZoNkF4M1vfvOQZiRNSh8oJTrnnHOGtIvyS9mNi3LP55RKH3rooVPrwPIpv6dMzslE+F4nu+JnKcumRIPSHEpW6WJAqRhlb5RyUXJEic8nPvGJIU2pE2UuHCP2AyPOU9rCKKxO2kI5n5M6c4wogeK7nNya5VD2yz5nnosuumhI84YC9gmlayyT88pFG6ZsbwxvfOMbhzTlk3RlYPqLX/zi1DqShz3sYUOadXdRWzmGlOA52bSLNOuizjopmpP2jo2u7uSoLVLayc8yn5P00vadVMtFj2XfOamZq19LhH/SEhXe0eIO0OIaQFrkgPPxmte8ZkjTVmi3tJVzzz13SLt9wt1W4vraSfRdukXq7yIQu3XT9Z2zRaZpN25PbXExcPV0NsC1h7Jj2pibN64OjpZbIdx603J7gnNVcG135XBM3U0Hi5U1v/a1rx3S3EO5Z3Df575C23Jzn2mWz37lTQSU9DuXOp55ODfZNzxf0aZZZ+bh/HL7Ivcknkt5Q8j69euHNM8APIMxP8+K//7v/z6knWsDz1Qsh+sZ6+z6nLjzgZP6s87uDDZ2T2Q53/zmN4c011263LK9dO3iu9xtC9wHxnD22WcP6fe9731D+iUvecnU9Otf//ohffrppw/pCy+8cEh/5jOfGdJuzrq1jO4aHHOOD8vkeZ9zivmZh+VzfNwa5FwAOC9cHrc+tkjWnRuYG2e+152tnGsq38W9jXAPaznftbjkOVyfbI8b7PbewhQFQAghhBBCCCGEMAPkC4AQQgghhBBCCGEGaHYBoNyB8h5G9WeUfsrXr7jiiiF9/vnnD2knWaa0hTLsww8/fEhTdkNcREXKtFzkWMqQ6DJAGQrbRSgZofSL+SkTYRRRPnfSH8rVKCejTIRRMiknonSf+fmcY0TpPvuEn6VUiPIdSv74WboenHfeeUN6xYoVQ7pFAs52cUwpe+OccZFVnSuKk3OPgf1HaRbH7cgjjxzSy5cvH9Jr164d0qtXrx7SlM5RtuTmjpN2umjmlEi5dIscueWWAeLcO5wdO6mpk6LN9zP3edq7c7EgbD/HgHI9J/t1MjLXX84uWtwHxkb1d+4ZY987H1x/2XeU5HLdP+yww4Y0beWSSy4Z0pTJst4tkfxdlP6WyP8uj3O1cWPv5O5OXs48zl6Jk/OyfOcu4WT/dJlz7gDE9fP23PjR4n7k0i3yVRedmvm5rzvZ/2JdAFz0eLr4LVu2bEgvWbJkSNPlkK5zTpLN8imJ5xnPRU53awjPQu4GJZ4nXWRw7qPEncFYJsec+zThOsQ0XQl4zmGZ7Dd+lvVhn3Ct4jmKn6W0nvAMxr5if9JFgrdKUdpOd9oW9x3Wzd0mwHe13ALAucQ1if05BrbjpS996YL5X/GKVwxpnvs+/OEPD2nagdvz+ZxrgVuXeUbguDHt5hTPliyH73JnP44t28X3ck3n+PC5cw2g+w5xLoNcM7h/sBzOcdaZc8rdauLWevaV21PdLVpjb6AZe/uT6xNHiyvdJFEAhBBCCCGEEEIIM0C+AAghhBBCCCGEEGaAZhcAF2mRMiRKECiRovyJciPK2ikrofz+2GOPHdKUp1B64iJpUr7HerItW7duHdIuQiXlJpSMsF0rV64c0pR0UDLHCPmUdbHOLvo15SDsB0rrWTeWz/qzT6655poh7eSidBMglOFxvFg3fpblU/ZPqRj7gePlbnNgfr6X40IJEfuEkqYWGfoYXF8SzndKFDlW7BuOlZP7UQrFucC57FwiXNpJlh0ueirf2yLjpy1S/uSk8fNFCW+5jYByOs4Z1olj5iRufM56O3cIJz/fHheAFlrkzy3vdTK+xeDawLWesl2uC27d5JhxjCmrdGPQ4ibQkt/ZE/M4mT1pkalzL3TuK7StFptm3TgWTsbIPG7vcf3m3uuet7gAuPRY2aYrp+UGAfYD5+QY3Dru3k83Gu6blOJfeeWVQ5pnIdZ96dKlQ5p7LvO46OTuDEab4F7MMjlH2Gf8LN39eK7geylT37Bhw5B2ZzCuH1xX2P/cd7k3c16wH/hZjhHr78bRuWmwDhxf7v3uJiO68fKcwXHkeO2///5TnzM/+5NnP44vXRK4V7K97oaTMXBtbYHuMoz2/8pXvnJIP+tZzxrSnF+07Sc96UlDmnOK7eDewzF0rqNsC894tAO+i+PPd7n9iePAdrnbDVgOP8t+cC5w7AfOd84LdzbnPHUuCTxzMY9zPXFus+686s44Y2+/Ii3uAC0upIv5fSUKgBBCCCGEEEIIYQbIFwAhhBBCCCGEEMIM0OwCsHHjxiF9xBFHDGnKnyhDYnRTSlso16AUjZIhSjspNackhTJvln/11VcPaUrXnMSZUDLCtpxwwglDmrJKymsYRZ9SDErOKJ1yUegJZSuU57EcRr1k1H32D8tx0lf2G6O5cozcmFIG5m4ZoKSG48jyWR/2MyWlTLPOzE8JDtvOcWE5fM7+ZLvG4KRtlCexL53skW40lHM6SbxLuwi0tAPOC+YnTqLuJNEtcmcne2T5Tv7UEpV/sh7OVYDzmX3hPuukZs5NgPOwRTbeIjdmusVVY6ybAGmJqLsYFwDKBmmT7F+uxW4u0G45lrQzJ0t00j83Ti124MbVvYvluEj7bu9hv42NguxuBGjB3SLiXBjYFjd3neuLw9lJi/uR+yxxfeLWEdq/G8fFupZxLjsJPfdWvpPzji5n3FcoF6ec253faJfMTwk95fcuGjz7nusB23LccccNafYry9y0adOQ5tzncydrdi5drCfrxvzsH/YDpfuUdLv1me4GlDtTJs73uj2bayTPjXwvn/OMzXnlor0zTRcS5ue7nNuIuy2Ec3KxZ7AXvvCFQ/rMM89cMP9nP/vZIf2UpzxlSLO/Ke/neZ9uzVx/OQ4cH3fzDWXw7LMWt03OBXcjgDvXsA5sL/NwfFrk7lzjOC+cSxXr4FyuCevD33XczQUcF77XuRa5/d7hzrctt9G04Nz23O8OrUQBEEIIIYQQQgghzAD5AiCEEEIIIYQQQpgBmjV/lHt95StfGdLLli0b0pSQUaZOaRMlVZTOEMoy1q1bN6QpVWJ0fUpbKPtnfSgbo9SGcjjKRBj1lJ+l1IPSLycVo3SDEn1KTCj3okTmsMMOG9KUuxPKVTF7hwAAIABJREFU7Sgb4rtcJGb2AyVqlNewb9neLVu2DGnnvsE5w35mmWwXpVFMcxxZB8rYKCGi7IZt5Ls4XhxfyonYD2OgW4yL/usk5MxP+RNdJVyZLlK5k1u2SJ6Y30l+W6KoO7kz56OLgOqk8ewHJ4ua/LyTYfHzbBvnFdPONcDdAjA2WnlL37XcFLA9sjOWzzJ3ZOR/3mLios07W3Eycq59buw59938cvLvFrcbZ0NuzrG9bp3gGk04X5mfc5FrHPdXVzcncXc3WLhy2BbXLuf604KTlLJv3e0+LePoZLwuD+3ErW2L3Vd4jmK7OZe5J7objtg3POewTRwfvpf7KT/LPZ2yf7ef8l20V+7vfO5c/NzNHpzjHAfKy5mfZzCW76LlM83+oU2wr9wZjC4DTsbv1iG+l2ctnmN5Dmd9+C6eV9ifPIOxvSyf7+X+yDrz3E53DErVOTd4pnWuGQtBF4C//du/HdK/+qu/OqTPP//8IU37/Kd/+qchfdpppw3pn/qpnxrSX/rSl4Y056brb/YZ+5797W5x4jxl2t2CxfXAnYuJc0tj2t2U5dwTuD6xf9z6686rbCPT7kzr7J7nBudu51wP3LrfcnuN2xdbzlAtbnsufytRAIQQQgghhBBCCDNAvgAIIYQQQgghhBBmgGYXAMovKLOgrNpJGSgDo+SCkhFKsyhdowyMsglGc3WSJLonUDbBPJT+UJLECOxOWkbJCN0ZKI+n9J39QNcGSuYokaLUxskM2UbWh/V0EV9ZJmX87HPW08mJKNs78MADhzRlPS5qKseCfe6iJrMtdAOhbIxyKErLKOWhXIb9zPqMjYo9rWziXENYR3cTBevopJHESf2dBLlFquQimzv3AZfH9Y+7EaAlireTqE3790L1cPJwroH8LMfASd9osy2yeSetc7Jr5z6xPTcCuDo7FwNXh8W8w0X+d1F+ncSPEkvnMuCkjm6uOZxkr0UWzudsr7MJdwuAk/23RKF3722RPbqbDvgu1ofPmR7rUuJudnEuDMS1peVWE2d73COJk8GOwa13PAu5Wwh4gwD3IY4V902WQ5k6+4Bl8gxDGTRdMtlP3MfdGYz7HOc760+7X7JkyZB2ZzBG5ucNTXRd5FnFjTNthW1ku2hz7E+eV537IfucZ2zn0sR+o7sg5zgj9vPsxPnDczj72c0lukiwz1kO1yRnczyb8Sy6mMjmkvSc5zxnSDv3WZ6deX786le/OqT/9V//dUjznLty5cohzbGlDXGsXGT+Fqk/y+FzyuC57jjJegtufrGNxO0T7uYxd15gOc6Nhv3PecT5RXcWt684dyym3VnG3SDXcvbZnluY2BY3pnEBCCGEEEIIIYQQwlTyBUAIIYQQQgghhDADNGucKU+iBIESLEoxnJyF+Z1sl/InRpplHSi1ofzCRSqnDIhlukjdlNSwXazn0UcfPbUOlJKwTLadEinWk9IsugNQNsY0y6Q8hXJlyo+c7JSyPeanfI7SOEpzKA+irI7Q9YDvIps3b55af8rPnDSYUELGucd5yzFlW9ifHJcxsGyW5yJxU2rHz/I5x83JwB0t0c+JixjtIpe23A7AdIscviU6OfuTdZ6UOLtos0625VwdaNfu1oAWtx1XVyfB5rvcrQSc53yXk+u33CZA2EZ3A8JiXAC4FnC+c13mONM+nNyZ9XAS0pYI8M69hvJGV76TRnIOuQjEXOPcu5w9EXfLB+cN+9mV4+aH6zeW6WyvRa7IPKw/5zrLpC2xP52U2e2XTqLrZKpMU07t9qfF7iucF87tw40n89NuXB9zjvAMwDrQvcbdtMC2MpI8ZepuvnB8OIYsf8WKFUPauZswP8txkdnpzkBZOyXITLvo4aw/7ZjziGmOC/PzPMbI/5yzHF/erEL7oFzfuUbys+5WAp5pWL67VYH15xxjORwLvov9MAaOm3Pv4PvpfkqXDp7BuVdx/Antxp3ZOG6cI+5s4tzVnJ0t1m1iEueG2GJb7pYSPne3objbltw64W4K4Hi5G4bcuYywH7jmcV6PPX85V1yH22+ci2ArUQCEEEIIIYQQQggzQL4ACCGEEEIIIYQQZoBmFwBGEKWcmxFBKUWjXJ9yIH6W0gfmdxE2nSSMsjtKcygZoeSeMjbKvykfcXJxPmedWQfKlhhFn3IQSo74nHI71p91owyMEiW6NlCewnqyH1hnykpcBGBKc1gfSqYoIeNYXHzxxUOafe7kxM7tglx//fVDmrcPOFkVpUusA10G2G+LkdRI20qPnDyTfcxxcFG8W2RgDhel333WvctJwlr6ycmiWiTwYyODt+Z3MjvXnpYo6S7KbYtsmeW4OjhZeovUf6wEm7gI69tTprStDbNtTipP2aark4ta7yK6c33hvuJcPvguJzsmzM81lO+lhJNrLu3MRSB2bjEt4+HcepxcscU1p8V2nftAi3sMcTectKxVrJtzE3B1dm4Crq/c/BwDz1GcO4w8z32FZzMn3ee85r5FuTj7g+sY38t3cd/nZynzZn7uxbQPjqFz1WSd2Uba0MaNGzUNnrW4frI+fC/PdTxT0b2U5yvOO/YVzxjc790e5Fy9mOb5hxHt2ZZLLrlkSHMsnN04NwHWjb8X8BzoJMucn/xdgJJ9d4vTGL75zW8Oac4F1pdz53Of+9yQvvzyy4c0XXKdDJ5neWfnzvXSuVg6N0SWw3nBtXJHuQC4Mt3ayjniPuvcIvlZ56bFueD6x7lCONcMdxuXm3dcD0jLLUwcX/c7jcPd3DP2d4FJogAIIYQQQgghhBBmgHwBEEIIIYQQQgghzADNLgCULVGKRhkNpTCUglPGceONNw5pyiMox3LSLyepdTJJyuMpS6NMh5IRyj4oSaKEiBIvysAoIWQd+FnC8ikHoYyDfUWZOPuN0XQ5RhwXyr0owWI/UwbPPE6KT5kO6+naQokaJXMcX3fTgZP+ME1JIecG20K3BdaBzzlvKRsaA+vC97Ot7FcX2dxJ1NnHLRIgFymUsiInXXeyJScDJ04W5dwBiKuPkxc7twLJt9m1n/ONn+Wcd7cguHFqiaTu2ubk8K4+TtLpoo+3yPjdHNpeaTPXjpZ+55i5Oeja4yTltDmOGddTlulkj2w/5yPr7/qoxe3GSRfdeJAWWX6LjN/ZnKubc00hzt3A9SFxsnzuAS4CO/vc2ZhbF5wMlmnn5rAYqaa07fylpJz7h7vhgW2lGw3rRdcAts9F92Yfu0jclFPz7MQ54uS/7gzGswFdiGjHrBsl5YRSebdm8BzFPme/sV2caxwXd6sRoQuDuyXI3VLCddSteTwrsu3OVZbzgTgZOseC/e+i53NucK3l88WewXg7xJo1a4Y0z7l0WVi9evXUd7JNrDtvFmDd3T48dv90Nwi4/W+xbkXz4aT7TjbPunFOuXMWcS4DtAPmce4DTNMWuZ4Rd0Zz636LmwA/69wTxt7I5MadLGYORAEQQgghhBBCCCHMAPkCIIQQQgghhBBCmAGaXQAop3eSzM2bNw9pRvikVIJSJcqEiIvWTi699NIhTakH5deUfbho7KzPoYceOqQZLZTSDX6WkjBGC2UdKMugjM2VQ/mLk1RRVkJZEuXrS5YsGdJXXHHF1HJYB7pgcBwpVWH/XHPNNVPzsK82bNgwpA8//PAhzT6hxMdFEaV8jn1FGRslWXTNoPyP0iVK3VxE4sVKNTlu7GPagZNhtsjvXURZJw1yMi3i5GouQreT5bdI90mLO4CTbjuZ+KQ0y8l7+XkXmZftce9g/VykdraN6xI/62Rq7tYAJ7lz84n5XXtd+u6C62+LpNzJ450rjOsjd4MA12gnLWxxwXGyeTeXnXyP9WyxLTc/XNrZU4uLgXMHcP3spKCuTHfOcBJqvtdJL3lWcGuhc5VhmU4K6tYOZ8NjoNua61fuiZzLHB/uPc7FhPuyk9Bzf6cMmns010N3ww3dG3n7AM9gLIfjTHk83Qwpp6dtOSk+60ZYjnP1cpJxnqnoNutcXFk3yuYJZfws00nGGfn/6KOPnlom+4H2QTi+PC/RTYNjx3XdRfWnyzCl+fzdYbHS9i9/+ctDmnOE/f31r399SB900EFD2t1awLM2+4PjRtya6NZuJ0F3bn9OEn934/YPzln2OW3LnYFpQ/ysc9NyfcVxceesltuW3Nm7xeWhxfXDnb/cGuNcTltcA+YjCoAQQgghhBBCCGEGyBcAIYQQQgghhBDCDNDsAkDpCeXuX/3qV6fmX7t27ZCmlIHROSkBOeWUU4Y0JdwXXnjhkKZMxMnSKK2g5IISHxddn1J5lkOpEqUelApSesfnfNe3vvWtBetPGQclR5SisUzKrihXolyQsnb2IaVcLpIwnzups4uCSgki3RPYn072zLGj1I0uDHRJoByRUMrDcti3bJdzGRgD5WwuAj1lTu7mBLa1RZrdEunb5Wc/OekR6++kyS0SWOLKdDIz5uF8Z3pSIuwkdE6S5caDY0Z75HMn6XduEu4WgJbI6K5fnOyMaSeXdtJpJ7lz9W+FcmHi2k9cvVsiFjt7apHuE7cmtkS8J879wfVpi4yf7eV4O4n+2GjHzgWA9sC0s++WOc3nLTcFuFsbnFzX5XdR3Xl2cVJyZyeLletyjaML2/r166e+k/JsrkV0D6T9HXfccUOaZ4OLL754SPNs4G44chL3ww47bEjzjMe1lHXmmOy7775Ty+Qaxf2dzylN5nvZFjcmHH+3/vNWAo4/zwEsx0mK3c0Ibn9h//CswDnA8wzPSPvvv/+Qdmse5yzPbzzvHXPMMUOaZ37XFp6TeS5lPziXgTHwjEz3009/+tNDmnbr3G35+wrnC10xWA7XBdJyu06LyxDf5W75IGNd+tyNVO7WHKY5VrQ52grhc7bLuYbzXSyfz4mzb3eThjsDE7ffMN1ye427ecjdMMT6uNvBFkMUACGEEEIIIYQQwgyQLwBCCCGEEEIIIYQZoNkFgFHfKSVy0dQpeaL8ntIHSi6+9KUvDWnKa1j+PvvsM7U+lEhRgkMJBeX3jBhPaQulTUxffvnlQ5oSQkpMKGehrIeSGkappYSF/eYimzsZ/GWXXTak2V5G0KW8idIoyrEoC6QMjzItSlUoS6LUzbkwOLmSi9jPfmN+9hulMBwLJ4uhvIZyJRf9mHNvDC4yJ+e7uwnBSYA45i4yrpMROykXy6G9Oumzi5TspO4uWilxsnQnOXMuAC7C9ORnnAzZyb+Yh2sL56GLwO+iiTOPk/e5WwOcXLpFsuZucWDayZZp+zsy4rCbj2yP61PaBPtxPneQaeXwXdxj3A0bzpXAzX0XdbjFlaclorC75YLpFncZZyctt3+01KEl4rWTwXJdZHR15udewnc5GTfnDOcS0xxHzhknO3WRqp09j4F7N88/lOJT0s89kZHVuVayn84777yp+Sm/5x7N/uZ6SLk428ozGM9C7DOOFceBZxKXh+sz28X1mWcS5ndyZNaN7WW7WDfncsj8HCOWyfMGz1Rck2gHnFM84xFK/Z3bF+vPsea5lHbGecjndIVwkmvOSbff0UZZnzHQBZZnZJ793TxlHvYT7Yx1bDmPca65W23YN85FiuW49ZFrU8u5kfVhuzi2tA/Oa85fzhfmcfuQG3N3/mIduIa53xVc291+434ncOcA5uHe4PZFdxOEux2nxY1wrNvvJFEAhBBCCCGEEEIIM0C+AAghhBBCCCGEEGaAZi0aJRqM/EnpF+UOlCRRxkOZCyUalFlQYkS5H2UlrI+LTEupBGUWlL5TlsF3URbjov/yXZS58L2UcjnJFmUxdDHgrQSUjbnbDZzkjBIoF3WdEVzZLpZDWRXfy/4kvGGBLhWUCvE5x53jsnLlyiG9adOmIc2+pasC+4fvYrtchHOO0ebNm+/SphZaJJ4t0X85ryl7pMyJc9NFgmceJ1ty0lt3iwHHh/Iz4qRNTsrMMmlPtHXmaYlGO/nvFjcJ1q9FRu1ubiBO+u0k1S2R9p1MzeHmuZOTu2jrTobqJIbz4drj3AFctGu3RnMOcq1pmftOpufmE+2eZbbcdDL2xgF3mwVtxUWnd3bWcgsHP+vs2M1j1w/Mz/2PY8Hx4ji6fdfNH9dGJ7ltcXdxrjLuXezDMXAMly1bNvU5x4FnM7ens77sJ8pt6Q5AyS/7nuPGvdjZDc8MLIefZZnO3Ytzwd3awzMA38XziXNRdGdOvotuBSyT8Gzj+oTnDeeKxDOYc9tk/d0ZzLlesq84B44++ughzTMYXU3pbsA28uzKOvB8424y4Q0XY6BNPuUpTxnStAnWke1gvdgmugawj///9u5l57brKvv92reAIsUkPiyfHTuOjYJFIAoCUUHaoo4oUeAe+GoUAGkXuBKoIKQvNQpRCElIFGLH52NsB4dQQOIKvl3K0M9L7395zNdbuzKfp9TXXGP20XvrrR/mq39r3bN8rdHawPWu9rP67aLvVwinbatzWq19hhZZj/bRd5yXPlMhNXVDiPWUDev8ZTtr/6iwi9r7a00vnQmRrNsB6ix25oao+vysRgBM0zRN0zRN0zRN0xVofwCYpmmapmmapmmapivQ6RCA55577iibzVV8odAs0ZCHHnroKIul1e0Ab7/99lE2c2yhKmIuDz/88FEWNxHHEsGpWwPENSpsQeRFDEU0R2RdrM6+iISJY9l36xHxsp2VsVakzZAH0SjtKe5lG0Sa9AHtI85XuHKFjTzxxBNH2VsnrN/2aAf9Rz/Ux6zzhRdeuLGdt0Fq7v1e4aSVLVof1JfrBobKMloYcSFPNQ8qrMBn6naAMzqTPbyQ5ULI7kVB61YGy87fQp7vDS34tSoE4kzm2cJxK/v4mb7Ue1V9t8qFw39eBM26KqN+2aVQQcep7FiZfStD+plbAArZs511Y8aZct0QU2tA4ZN120aFJRWCWiEbZ3y6kPtae5T9qts4SpVhum4dqZtbClmu0IMau0sk8u3+ruqsIjruvl9hjI6VZwCRaM9Rhcx+8YtfPMqOj+cH18+6IajC5HxeRN82VAZ7z2YVRuG+ICrv5/qg9dge5VnF8IHCmg0N8KaAM2cww2+tXxtWaOqTTz55lEXxHS/PaZXJ3XOg4VmGpnoGq3l/ib7xjW8cZc+89lV/1K5+bjiAY6XtbW+FgJy5cchx08YV5lRzxT2j6i9fc3ycK9qh5rFtOBNuYLluQqtbW7RDYf+F7lfYk3KMtFvdalPje+a3QO2FtffXOWkhANM0TdM0TdM0TdM03aj9AWCapmmapmmapmmarkCnQwBEyETWRRB+4zd+4yiLNXzlK1+58RlR9sIaxGtee+21G58XxxJRq8zVYuG2R1RI/EWMyrYVoia2ImolHmSIgchIZdgU76gM1r7X9ttHkTxxr7t3795Yp5i99rFO0ShDG8Tsfb4Q1AceeODGz82+atvE0uqWAf1Q3NFQFPv19NNPH2XRx0tUaFOhrj4vamUm4ELXKiNoZSx23og0VjbawsAra2shVWdw7cJkK+N5ZVK9N/yhwgZ8t2uaiFiF8/gOn3dc66aSwrz0YRFcMTvbb9sqBOAMTlfZs22D43omrOCsak7oj4WXi96KLlZ25MrCe+ZWhrJRhRKUP565GaP8/cxc8ZkKryl8veaGzxT2fyaTcdmwsHL923F3TbXNosba0323wrBUZeAuvz9zm0PdHHGJ3K+1ge1yj7Mt7u/OCeupTNb279133z3KzhvXKMfBflu/89vzg+2xTp+xbYUO17h5VnTfL3+psFblu1xjbb/jYll/90yiPH/W2cbzleclz8yOi/NJu4nCu6bWd/UH21ChOc5p++v+a1jBbW8B8LfF66+/fuMz2slx++Y3v3mUvYFKf7FP2qPCKSoMzDOYv1Eq9Miyvux5rPZObVK3JjlXPvnkk6N85ra3Cm06k8nfWyy0g3PFz52vrmf2/czcVfq4a5VzTj/R32sPqN86tTdUGOGlZ7GzGgEwTdM0TdM0TdM0TVeg/QFgmqZpmqZpmqZpmq5Ap0MAlNhKZVwWuRCdEQcR9RE3KbymMGXx2sIbRXMKLRRB95kPP/zwKNt3+2L7RYtE+sVHxLrEa7SbSIr1eKtC4YqiJJUt/bHHHjvK4kRiN8pbFUTXRN1+9atf3VhPjaPlysQsHmaIQaGMojmFSmp/0SjtUEjeZ6kyFhc+q//aJ5+pTKGFk1Y4QGFUlc3csvL5yqDsGNqGCh84k/280Kmyz5077f9+rh8Wxnu/mwZ+rcp6rgoZvDSrv/23bZXl1nJlo78UkS7/uI3qBg7bXWh6hZ6oCkOpTL01Btr30hsXyk9tT82V2s8q3KDCAWreVJjAGRSxwjTcL2su1a0KNcdcI6s9fte5XXvkpQinOpOVuebhbaUN6p11A5Gfe7OAz9hX6yzfd1+p9dpy7XOi/tbpGbKymXtGMnyubsZw33UPq1AFzwYVwlm37xQG/eijj97YBs+ffvfBBx+8sQ22zXBdz2CVFV1V9nlRb8dI+2h/Qwk8g2krw1E9Nxp6oH0ukfYzrNM+uTbpj/q7Y6LtHUPP77UH+Ix+dybEqPZzbekaWrce6COGt/p7xfAX9yHtYz0V2uQz1qM9nZfWr+oWKtcY9wDrqdtF6vylfN4zvGXbUD5Q54YzoYN140DdKHWbEMwRANM0TdM0TdM0TdN0BdofAKZpmqZpmqZpmqbpCnQ6BECsRFReTEEUXBTDslnlz2BXPiMaJCohIv7iiy8eZTEw2y8WVRmUxVZE5cWrxKJspziIn6uXX375KItUiQeJ4/h5YVqWtXllyBbT0Z72scIEbI9YjDZXjql4jbZyXGynYRF+1+cNl7Avlc1T29rmusHhEtkncSNxHfGhM5heZQOvrKrly3XDRqFohXj7eSHahd7XDQWFXBdmVuE+92KY1Q7nSyFZNR6FResz1R/n75kxKDyxMuirM5ngVSHtdWuAfS/89X6qGxRqP3D8KqRGVVjF2fCRz2qbOoPmVYiFc8L1usJrqp3VrzO3CdT4VRhTlWvNs373ksqQXVmctX/NB1W3FVSo05k+lsoPP2+25jt3Pr1nfeELXzjKFXZV6KrhbxU6ZHs959T883z11FNPHWXPCe6Ltqf80XXb/tqeQpZtf6G0YueusXWTi+uQtqowB9d5+648k7iPfvzxx0fZM7Ohl3Wm8jyjHSrLfKHelWm9zmZ1C4efnzmDuf5VGN1nyfAIw1z0Nd+vjb2VxLO5qhA6227ZcXNdM6S1svHXHlu/XZxz+pFlfd/v1u8VQwYKg68wM+u07DMVmuq76mziXKxQAp/RPrX2+F59oG4MUnUOr3CGChU7c8vOmXCG+2kEwDRN0zRN0zRN0zRdgfYHgGmapmmapmmapmm6Ap3mayozsaiEmTdFLh5//PEbvyuyIO4lvlNZtX/xi18cZfEREROxFSVGYyZQ2yCiKIohfmYbxLgNSTCT/Ntvv31jndpQRMrPX3nllaOsPb2hwOdFs/xcWzleIinaRLTPOsXPxJtEuUSUxK1EEB0vbzcwi6xjoW3tl4id7S/UUF8ydMXP9cNLVLc6nLnFojJT65varLLaV6b9yjZe4TuFxhfmVBmXC18+k+m0sqifQUfv925lvWJYlbnVOgutrOzmZzLAnsnkbz/1c+eamb0rFKTCtQpHu/TGiPup0NvCkc/4S6n8oFD5kmtEIXhnMqFX+E7NIct1e0b1pdpTmYPPZPhXFcJQISh+XmEzZ3TG/8pPyrZnwhnO3PhQcqwvUa13Z0JSPIcU5qsN3NP1Bes067ttsH5vRyp81v1P2+hH9tfzgG1wrGy/CK/nhwoHsX590/Ob2entY4VD1u0JtfebId/6veHId3lWsb/20T3e86rrjedP2+Yz2labV1b3CpdQnpm0g+Gol6jOP4YjVGiytlf6oOude6xzSHtU+HLZu8JNKnzWPd/69R1/D3lm8XeM59UKT3F+15pe9q+Qz1rPbKc2qVvdCpu3/dZTe4bvLV/WPs457az/Ol721/bXenDmPHib89cIgGmapmmapmmapmm6Au0PANM0TdM0TdM0TdN0BTodAmC2SpGRZ5999iibMV7k5QyabIZKkZrKsC1eVZlmxVlE1/xcREOcwnfZNtEN6xFnsf2GDJREQLSPdha7EcHyuyIp2ufNN988ynfv3j3Kle3d/r7wwgtHWUTfPpr197333ruxDaJ6dXOEfXnrrbeOsjZ/7bXXbnzesALHsTJ72n5vtTBjrH25RL5f/y28urL5FjpVGLzzrDJri0U5R0XI/G75eOHL4pOWReZqPShkSxxLOxR+5uf31lsqNLEQ/VKhwfpeYdRnstpXKIhzX98WefW7zh2xyEKeC9+9NEv6vXJsfYd2t92V5b7Q63rm7A0SN6nGuNbT8k3nn3PlzM0ehbWf8WOfryzLJdcqVRnY1ZnbRepmjlJl4y6833Zq88rSXqF0hWGe6eNtM5sbFue89txVGeMrxESbWaf7QYVh6guW3dP9vG5X8YxU89is5RXCUCi7Zw/lelU3sxgC6efOXX3EdxmKaPiA541qgzZ5/vnnj7Kov23zXCf2bdscF+3snHB8Pe/pPx988MFRdk4YnuD+UqGXjpG+/eCDDx7ld999985t9PDDDx9l/cLfMZbdA0v6nbZ3zAvzruz02sC5ov0M16g1y/Fx/PUj9wbbXPPDOWp7KqS09mlVIVsVenfp+UL/sg21VlVoY4WKVaiFvxVcq954440b2+PaUDcaqNrnLj2f3qsRANM0TdM0TdM0TdN0BdofAKZpmqZpmqZpmqbpCnSaRRNhMQOqmJlYwxe+8IWjLKIvZiEWJZbxzDPPHGUxeNH0yiQvZmGGfBGWJ5988iiLyFRWVcMERHDEgLRPYcriHSI7lZFbfEsbVoZeUSHRlj/4gz84yh999NFRdozsi7YSCyycXpubDVNEyfaLuomTiRYZAuBYaBOxLdtW2Kx4v+Oo/V9++eUb23ySzAOwAAAgAElEQVSJKiupqqyehfRomzOZ7LVHZUYV2So8sJCtQvpFpJxbPl94rvXrI5X9vDDue/GzQtn9vG5oKNtZLoSrsK3KRl/YuGPjXBBDFdf0ecfG+p1H1eYziF7d1nAbVeb/GufKfq9q3lQYzZmbKFThePpZ+btzxXKFydW8PIPcn8G4Va0xlfndcbH+esZ+uTZUSIjlaqf1uEc6T9znKvzIvU372K9qT90UoB2s/xL5PTHpwog9DxT26nnA+kXKRVor27zrjO/y7OR+aqZ1fV+bVViTe7ffrVA353ftYcp2akPb5tnGz+tM8q1vfesoi7WLoTu3PEO4ttsX54r99Ryuj9dcd5/WT21nhYTUrU/6g3Zw3CtsSGzaPl4i7apf1C0yZ1Rrn+EL2sl1x+e1jTZwHOqGnwoP87v6i7+ZXPvqN4rrmj5Yt6ScOY+dCTnzPFKZ7etsXPXrO7VPV/32y7FwTrhOfP/73z/KFQZSfa/QMv32zO1ECwGYpmmapmmapmmapulG7Q8A0zRN0zRN0zRN03QFOh0CINpSuGyhFX7XDJXi7oXmiYFZvyiUCEWhM+I4P/jBD258xkyOtk2URLz2K1/5ylF+//33b2ybmIh2qwz5ZvGtLK/2pZBVkRHbLNImVmcGV20okiJaZv2vvvrqUS5sWFywbhP4l3/5l6MsVuUYiUzpG8oQEn3v3uzwv5aIo4iadr5EjrO+UFnufaYyevtM4e6VIb0wJ8v2teoUSfJ5kSdRNMenMOsz2JLv+jwZxu/3f5X9XnSvfLu+6xhUFu4z6LoYrUhfZTRX+pmYnWX9tW4rKD8uJP820tbWZYiX9q2QjDNZcisMo+ZNvasyIpft7IvrcmH/qsJx7GPtzVVPqdpg+7VhZRKv7Oo1rwqtr/XDNriXOGdsW60ltrnCYM6UK9zIcmUE/yxVdv26ocPPXaPF+B2fMzf11ByqkJdqw+uvv36UKzN8hcY5nl/60peOsuGK+m+FcXie0Xf83BBUQ0e1Sb2rbiUQrfY87NnDeaYdPE9qk5///Oc3Pl9rg2dLzz/Om7qtwvGtdctzpuNVaLj2N7z3tmcw97HC/s/cxuGcqPOSY1v4d+1JPuMe7vhbts2etQx5sj0+4zpVNqlzlP2qMMoq11ppPbUfOI51PqjQQcu1B9Re7lzxd+E777xzlD2L1fncNrjWugdUeLTlCler88dZjQCYpmmapmmapmmapivQ/gAwTdM0TdM0TdM0TVeg0yEAItlKnEL0QbRJmXle3EjEQRxdFEOM3M9F2qznDEIhPiJqY3ZckRrbYB/FOLSJWI/Yh8hI4ff2UQRH7EOMxj6KvovE+4x4ijjLU089dZS1QyFTFZpRCKR9EV3StiWRP8dRG3q7xHPPPXeUxZ5F+0TvrNPnL1GhSuXL4oSqMrVaLvSocOQK2bGeyjRbc0Wc0LmiLxdiW8iW0t/PoLqFEd/vfdXPwtHKjtqlsH+lv1W2YjFEUckKHbH9roF+rip775kMzGdw8rPfrwzdrhGus+Uvlc23MurXdyusoPyrMvX6Xv2jkL2qv2ylH7jHVIb8WidK1lO377jf1I0slaH5TJbusq1910+cMzVPKuPymdAPVSEA5Z+3lVh1ocB1HtOWnuVcu7W9mLrjZoii64nrkn7hHmp7PAPYlwrxs1+2zTF3f/W79sss/cqs8e7Hjq22sj2FSvtezxh1M4sYv+EGnjPPhPjUrQfa3/mqDSu0qG468PMK8zR81bHTnv4uqBsNLlHd4OT7rVt7VGZ715QK36rzWIVU1a1M+pHvcs7ZZm88018qNEs/qlAeVb856jaruulE/6p5XyE71Wal3RyXusXgzO0vFSLjeNW+Yqh33cTjeun+7TN19vy8e8wIgGmapmmapmmapmm6Au0PANM0TdM0TdM0TdN0BTodAiCm8OCDDx5lUT6RGpGOQs1FIkSwRPrFbsR6RM7Mxl/YmOiidYqSWH9hToXs+F6xN5GOM/iWz9etCnWDgG32mTfffPMoFwIljmU77a8okpkx9QFRrpdeeukoi5m98sorR1ms0bGobM2F7Nh30RkxIOuvcAztXNjWZ8n2VrZ126Ifnckcq2y79RQ+Wxh4YeM1JoWNW09lK7VtjqHolONQuPAZBPzefxc+5XwRF7PPZ5B++2Cf9f/K6vu1r33tKGu7N95448b3FvZft4EUNucYWLb9Ne9s/23mi/Zyz6j9o8KQztySceamiMqoXnY8E9pSmafLr0vVhsoEXAhkyTYUJilqKkru/qptXWfL5hV+VDcOPPzww0fZvuszNT9r/TtzE0SFtJ3JeK3OjPVN0jYPPPDAUbavrmP2yTaaLd+2OJ6eK+o2F88MTz/99FE2JMEzg2cDQyNtp3ukZ4MKy3CsrLOyaVuuW3Zqn7YNnp1EhA1FdJ30piTHyLJ7jbb1vc4Jx9FnPON5NrZ+QyArTEo717lIe3rWqVtQbEOdM9RtQ8xso37tuPmMOL02rpAOpd/5fK1B+kWdheoWA99V4VKOv2Po8/W7p8Ifzzyj6rx65vylv9S4uBYWKm893tKmHVxH//RP//Qo+/vS3ys1V2o/qN8WdSuMtq3fAj5j2Xed1QiAaZqmaZqmaZqmaboC7Q8A0zRN0zRN0zRN03QFOs2iiVa8/vrrR/k3f/M3j7JYg6iKOFkhQ+J7ogyiIaIVZhb94IMPjrKhBKI/tq1wr8pGbHZTEZ/KrGumet9laIMoknYwREKcTBxOrK5CBsRHbL9oi++1/bbTNoi6mdXW+v2uuKiIqBluRXPslxjTI488cpS1T+Hj+oAIke/1c33AOsWMLlFl+6wMq76/MPO6BUAMqfDWQpAre3WhSoWZO/62uTKPV9ucK4XGFWJ7BhO/t97KkFxZmn1H9a1ugDBExbmsH7pO1hhUdt1CW1X5YqHCdYtKodC3UYWG6AuF+apCDlXhkIXp+XndCOB4115SGYLP3CxQt0RUNmXxa79boVBn5pP1uC7bX1X1VHbtykJt/e4Nzhl1Zg2oz2uMzqyRNdZl21oLP0u267XXXjvK7tH6o4h47XeOZ/lIZVR/6KGHjvK77757lD1L2Dbb7xrrGaaesZ1i5M4h11XPpfqd5xPXN/cwbxHy3OKZzXXIdxWG65nEOWqbfZfjZd/rRipt6D7imc16DMcwHKDOxo6j4Wza37OlPlDhw5X5/fNizXfufNqPCn23XcozfmWVdxys50yI0ZlbkGo9qv2/bk7Tx21n3XZTe16Fcl16o5Mq3L1uVajQTJ/Rx90z/L3iPPY3iqj/o48+epT9rem6qx3si+ulbXDs6jzh59ZTtzmcCYm9n0YATNM0TdM0TdM0TdMVaH8AmKZpmqZpmqZpmqYr0K3S0X71q189ymJm4hFi8JWlUfxC9EEsSqzoP/7jP46y+JMohmiIGJLIjrhMoSRiIj4jRvPYY4/d+LntEfey72JUPv/lL3/5KItyibYo+yI6U2XbKRon6lRZgsV0xP/EX8TJfvaznx1lURjbI7YiJudYfPTRR0fZkBBtoh0KdfO7Ztm1beI4jsUlKoS0EOTKalxlx6G+W+0p+d1CiQqxtVwZ9wvlq0zrlRm6vns//KzGQNV8UdqxcFnlvHC90tbOF31SdM81UDsWLn0m+7Btqwy2dSNAjf1twgHO3Hrh+J3JZu93a96U6iaNWt/1p5r3vrcQzprrFQpRiKvocOHrquxffakbIMrml95EUBmsRZmdJ7bBPb4y+Z/x6TMhXGduBKjPbxsCoD3M7v7JJ58cZW/8EU23364trj+F03sO8V2GENo/8Xj3ZcfHkCjnlj5i/Z7BxGHFc/1cW/3yl788yo6nn3tOsE79rm4O8pxZoUWq5px99Nyo9FlDBrS/52RvkPG9nveUZyTleVU02XKFJLg3+bxrVYXUec68RHUO8axXN1HUWcB92LbXTUy1Xhf+XaFZqm7+0cYVDueY1B5T+41zsW6IOXNjivL5ugFIuW5VmEaFaX79618/yq4B/mb99re/fWOd5Sd1o4/rmZ/r+45Xhdn6Xcfl/8vz1wiAaZqmaZqmaZqmaboC7Q8A0zRN0zRN0zRN03QFulUIgIi4iFdl2xRnEqMx06LPiGUUKi2yJdpiPWIchbKLoVT2SbEMMXVxH5GOQiCtR4TPdoqlVVbYQn8cF/soMinWXsi4GTO1+XPPPXeUH3jggaPsmNoeQwAefvjhoywiI3JWtyGIlhVWLTqqrRwv7SAqpJ3Fp3z+EhWCVVnuCyc/g4pW9lQ/L6zPuXUG4y9Eu0IDzmQ/178Kjy6culC0e1XPVdZ5yxVaUPiXmJf9MfuxSJlriPNXf661SIzW9lRW+8KAC/eubL+FSN8GbfYd2qLapH3137p9Qlu4T1i2TsONbEOFYJV/VIZg7V64aGGhZ24Csb81xjXXVY19+dmZMKa6jcS26dN1I4o4srYtpN+xKyy//Lt8vXDXMzcp3Fbar85g9tW2iPF7RhKx1q6GEhTm697qe21bZUjXr7VTheBoe/tb2bErLMax8gwmGu7Zw1BWz2nW4/7685///M5N8rvarc63nm2U5zfrMbxCGQ6g3eoWBs9g+oxrpHa279bjuBgi4d7nuNu2Ct+4RIZT1M08rl/6iGNlPRXCWbi465f9q3XhTHb3M+u1636FDJwJKa3wNu1W31XV5hoLfbP2qloP7KPY/1NPPXWUDT3Xr/3d6W8C26Nt/Q1a4W3arUJnztzE49mtQjnr99z9NAJgmqZpmqZpmqZpmq5A+wPANE3TNE3TNE3TNF2BTocAiEKZCfb9998/yr/1W791lN99992bXwi6IV4jgiVGbjbayqpaWeLFoup2AOsU46gM8GJRovIffPDBURZVEeUStxPN0ib2V7RInKjQmcqcbdmstoWz1M0C4k2FBNkvscDCu0XOtIMITqFIhZcWwikyV2EatkGbXKJCtgqTFaO6FKstZKu+WzhW6X7Z9X8t/ehMGyrModpWNwWcybh8b71nMLVCXvUNES77r5/bVueOqG1lrq42uDY6v8TUyv9tp2WfqWzllZX4Un+6V2duAVDl+7UOWn9lZa7sudql1lPlWuYzddvKmVtBVGHndWOGZcdbP66QmJJ9KVy7Qn8Kca21WFvV7TV1m0X5fc2rmg8VAlDhAIVwWvZdl8is/mLqnj1efPHFoyyOXuEO2tUzkr7jmapuV/BdPu9aJ2ZtCGGFejzyyCNH2XEzhME92jYUTm8oljcgOCae6yqszvXG83CFuilDC8vOru0VLuj51nH08wq10R9ct9y/vAmr8OvqY81F982a935XP7lEFR5WYVf6qfOgwoK195ks+hUeV3tenXnrDKZdfVdlkj8Tdlo3u9S+db8z2E11luq8aoiJfuFvU9tvaPI777xzYzvfeuutG99VNj8zRy0Xul/hmJfeMFRhh2c1AmCapmmapmmapmmarkD7A8A0TdM0TdM0TdM0XYFOhwCIXYk4iNO/8cYbR1nsR2xC9MRyYXEiJr5XzKmQa7EYMbDKKv47v/M7R/mnP/3pURY9EdkSUawsnyL3Yii2pzK42rZCUv7rv/7rKItyiW8ZXuHNC7ZZ7Em0xTp/9KMfHeW6ocAxdewcC+t03G2DtjV0orJqinZVlmDLYkaOqXibGakv0aUoTmVHrmyrlQG8MlkXMlRtPoOxqsJqC/+td1VG2fIpx/wMQn0/VVv1DeeUvud8ca6ZDVtkVz+vDNXKNvhe7VKIcWWM9V2FPxfueyYT8VmJUlbISGVcrtAF1+vyR+txbyuMUTtWO+vGBd/r2ud6dKn/1hzSRwvDrTCPzxNmVO+qvdNxN6zO/dL57bwqHLL8XhUSXeExl65h5W/as9r2WXI9sT73Kc9gZ/ZKx79C9ipDd2HN+sWZM5h2/eY3v3mUf/KTnxxlfce2eXaqzPki957BDAk0RKvCUyq7uutHZfrW3w0xMOTTdzmPtbOhtc4V95QKK9Nuzks/d3xts+c97WM9+on9KgS//ES/vW0Ypntj3ZLiMxVOVnZ1Parba+xTnZHqFoAzyHet466/hZ1bf52pbJt2KB/5PHtYrYn+vhT1912G9dj3v//7vz/K/u5x3ngOqKz7dXuQPmB/XUfrtqiaQ3XOqLP3QgCmaZqmaZqmaZqmafpM7Q8A0zRN0zRN0zRN03QFOh0CUIi+yIVIhGhFIeVmaayM/Q8//PBRFncQPREPE/cx9KBQFXEfkTORp8q4bJ0+88tf/vIoi3LdvXv3KJuxVqRWzMg2mF1fLErbFib33HPP3dh+2/bMM88cZTOivvnmm3dukkiz9egn2tlMxU8++eRR9raFn/3sZ0dZW+lX4o6F/Svb43iJ3ehvZhfVDpfo0qz7hdue+fzzZGE/ExpQn6vC2M6grnULh0iba0ndgFHZd+/caTy55rVzSpRRxNSyvvTee+8dZbND68OV1b8yjvsukTiRYO1VddZY1vPa9Ewm4tuoEDbXQfHcuiXDMSss/9JbONSZWxb038oYX0h5zZXKTKzsl+td9bGyO1cITr3L9jgH3OOdP7bNuSGi7RpdSKblmkuWRX19vlDZ+vxS7L8+11aXyD5V3c4Vbeke7blIfN3vul65F4s1+7xj61xxvXKfrVsdfvzjHx9lzz/KMakzmGdL109RYNdP7Wk7bYPnOuusEELr9Bzr546F73IuenZyXCqEtnzWM7Y4te91//LWiTo7ueZ5BqtbA3xeu9kv22Z40CXyzFDrmp+739hXP6+Qw6q/wubqti515plShTbVTS32pfrl+NS5q757JhO+bTbk173EOeSNc/5G+cd//Mej7Hi98sorR9nfHHV7gn732GOPHWV903CiCimufV372waf155nQkJuoxEA0zRN0zRN0zRN03QF2h8ApmmapmmapmmapukKdDoEQCzGsniPyJDojLi7qGZlZTdLqhiHOEshcGIuhXCLTVS2UtE4s8WKpIhC+V4z84uiiVf5XdsvAiJiIlokjvPEE0/c2H6fESV54YUXbnyX7XEcxcb+7d/+7cbv+oyfi8toB+1/JsO5uJ22Ei+0Hn2s8FgRscJdb5utudD9kmNVqG5lTT6DwRcydAZRK2zMzwt5sp32q9YS5+ul2abvFwpRtrOt+ptzobB/sUnrca1zXpxB9PVtnxcTdW20fttfY6CNCuX2u/qQz1Q4wG3CUe4N1/i17L99M0TH7/qMc9u1Tzu67tvnjz766Mb21Bwq29Xc0q9VffdM6I/P1A0hZ8KJVCHuvtc2l23Fgl1/KxNzZV2vDOyqbhyoNaxCbioc4PNgvJUd/BLVDUrW7d7tOOvX7o9i/NbpOuOY2Pa6daYy5Ctt5rqq//pdnylkVrk26l9i/+VT9uX999+/sX73Ldek2ues3zAEx8IwDT83RMZ+1bx0XKzH0AZ9ps5OnidsW92U5PzThmfOYLV32LZLVMh6nRm0sfPgzHnMz+u72u/MeezMTTPKOVFZ5W2P+5BtFn3XhrX3XBo2Ztv0owrN+PrXv36U3Vfcb/78z//8KLtm/Ou//uuN7TGc2t9zhlY7z3yXc90wNn/LVkiQqr2hQvjqnFg+c1YjAKZpmqZpmqZpmqbpCrQ/AEzTNE3TNE3TNE3TFeh0CMAZBPnVV189yuIahaeKO4hfiKWJtrz88stH2SyQYlqFIT3++OM3tqfwYjNRmoVVRM2slKIzohj/8z//c5TF4M3Mb3ZZkRSzVWpzbaVEzhwXUR4zZv7hH/7hUdYm3/72t4/yL37xi6NcGJ7tr+yfhXKJItkv3+tYiM6I++if+oCotn5lX5TjWHb+LBV6q23OILmF5/q85cqarY31C+eH9vC7Z8IjfK/PF2Ym+idq5fjUbRhncGHn0J07nw4VEeeqLMDeRuH7fvd3f/coi5G57hn+I/bnu+yn64l9sM9+rn/q8xViUNnQC2OvTPOFPFY9Z1V4o+Okn9bzFfZQoQ7awjFzXRNf15cNVXH8Knyi7FXtVBUK4zyuPazWG1VouuW6eePDDz88ytrTkDnXaEPa/LxCttzPtIM+7RyrEJq6haFuB6kzSoVvVJhNhRJoq0tU4Sb29e233z7K4tmVfd29UuxfXFxf+NGPfnSUX3rppaNs6FPNA89Ltc9pP9vjGcPn3aM9ayn74n7jucLPtY/1u95oW8elMqHbfvv4jW9848Y2fO973zvKhst4rva97gv6qetN3eRVqL9zVPRZebbUx7WV+69tKxTec7IhLZfI/dwxqUz+fl7nJVU3iam6garCmrWTn9feUDi9flftdA+rsucU54rhEvqy7XHN8Lv6l/PSsr/nvvvd7x7lv/qrvzrK2uSv//qvj7LzRpuYyd810j5aZ4UIOhfrd7DnT9cSfbLmpXNI1dmqzhNnNQJgmqZpmqZpmqZpmq5A+wPANE3TNE3TNE3TNF2BTjMDYitisSILlbVXDEIURjxFLE5UQpzlmWeeOcoff/zxURY3qYy1Zmy0DbZNzMlnRJXE2N54442jLAIiIiPGb1nkpVAS8Q4z6j/44IN3bpL2FFURpxcz+4d/+IcbvytO5lgrUSFt/tWvfvUoa0MxoAqR0CY+I6IrjiMeVmEjjkVlz7T9oteF43yWCon3PYWNXarKnut7C6EutLcyzdovy9pbP3JMxAkrO/4Z/PoMIuUY3rnz6Xl3JvO/co6LJrpGOV8qQ25le7atomOVsbcwZOssG9VafQbvr6zwqrKz30/6SN1K4hrtfPbzQm8tn8marW8W2l12OZOtubJj2359q8LVai4W9u/nzhX9sm5VqXXL0DjLrun2Rdsq7eAa4HyoEKUzoRaV7d8x8plCmct/zmTvrnG/RO6notcVuuE7HU/3WdeTup3Fvj777LNH+d133z3KhuwUDuv6qb8710XrbZvjJp5rGIrv1dfcS/SjCsWwbdrQ0BbPirat9j9DJCy7d9ge22+dlVG/cGd9UDso52hlzLedn+cMdia0yPPtbW9iqnCp8ndVa0qV62YB21C3ZNg2x//MrTOOuXPIeuyjc8XzmGuJ869+r7iWVEjpk08+eZQNd9Zn9Wux/5/+9Kc39sVs/8q9p36vGH5mO71lQGlPx7duD6ubylSFRNe5qca6zhb1+f00AmCapmmapmmapmmarkD7A8A0TdM0TdM0TdM0XYFOhwCIeoj9iBC+9957N34uUiPeIU5fmYxFRsSizM4qUiWmJT4isvXII48cZbG0wnf8XIxGREO0SHRG7EqMQxRKvN/6RUxEhatthSKJrdiGytL+0UcfHeWnnnrqKGsr+/78888fZfEtx0hc0PANfUNc0Fse7Jd9Fy0zxKCyuGoTMSDxRUNFbpNV86xsS2WmrrFVZ7DrwlULZS682GfK98V/K5TEOl0nKpN7ZbutmzdEme/c+fQcFGXT92xfZdfX/50v5Ve1pomLicqJ8XvLgOUK7ahbLSoruTZ1LK3/DFJ2G+xMiZ+W7XxHze1LwxLO3FggPlm3dqgKASh/qrA3P69bPqpfhcwW7ixOrQ9VKEHV41iIl57JnF/j6HxwX3fsPBNYT2X+r3VXu53JuFx4Zt06oepGhs+StvTM4P4lDitm6ni+8sorR9kzWO2VnsEcW88k7unu+84h12X3etfeOoPZNjPq19nANd89xrGqDOyGHNoe6zwThmKbLYs+G0pZYba2rfZRz7T6hvPbc519tP3aypBbZR8NNfUM5rjXODo/RM/9HXHbMMwzN6bUXlfrdd2+pGoPqHX8zD505haT8inPyO4xftfbNur2nfodI7qvrTzX1DpU+5m/gfSpus1DX/P3h6HPyt8W/nZxj/EmKP3R8bVffrdCRVxvys5n9o/yn9uEYI4AmKZpmqZpmqZpmqYr0P4AME3TNE3TNE3TNE1XoNOMs3iBiInol8+IGIk1iPpUBlHRXlEP8QtRNPF+cQpRNBEZy2KP9uU///M/j7K4hjjI448/fpRFW8SxRGTEQcQbC1GsbL3aWayr0HpRpEJExZvFAgut/e3f/u0b22z9+oAYmyEbYjGF5ft8hQxUluPKMOwzlkXgboufncH1z6DiZ5Aex6dQ1MKuHKvKgu3YavvK4GpGWdE755m4lO9yXdF3zGrs+Pgu1wnXknslPup3xMXELCtbfqF4lZFbzM7PC+Gq8bMN1qNdbH/hnZYrk71tsw362Rks/X4qjNH3ifjpL5WxuuQaqu/YZ+dEoaM1j1WNn/tWYbJ1Y4RyzdLf3fP03bKnZeeDc1FbOS/9XDuU3/h53brhPmH7a49UNT+V7bENvsv6DXko9LLGrp6v9n+W7J9npEJdK5TEfdCzk+tGZaF3rtgGwwFsp+8qLNtx8L36mmuOWLPrqs/4uWe52pPqXOT8KHtav+co56Vrj76mjzintVuFbolZ23fnoiF5riXug7XH6cs+b5s9dxXy7j7l3i+S7lriuNw2DLNCmJR2qpsWak+uOVyhIdZfbdCW1lNncP3rzTffvLFtjpu/VxwHsXnPcvVdz+aua87LCp97+eWXj/IPf/jDo+xZ3j3Mz8t/HaMKkfmTP/mTo+w8rt8N9qtuOrBtlus3q3YrG/q8vn8mdOJMOMm9GgEwTdM0TdM0TdM0TVeg/QFgmqZpmqZpmqZpmq5Ap/kakZG33nrrKIvriLmIh4lZiPi98cYbR1kkorKzWr/4SyHc4iCiWWJUIpnWIzpVKJptEIETnxTpMEOvyIiZWn1e+4gfiQfZfjGRyr7su3ymshqLmf3RH/3Rjc+YtVOESLTonXfeufFdhhsUPlVoi2iZ/qOtHGtRPVEecbu6PeESVebYysZfIQB1C8CZTO2FIJctK2OxKJeYnhiVYTHO0cqsLcplPY6P4SzKsfJ556htvnPn0+uJGfULA/d556nPWBbDKrzWuSC+5vytzLb6sD6vHW1P+ZPjUcirOuOjdUvEWbk3VPZc12Vt6vjVnK9M+/bHtaBCTNCJ1k0AAAzESURBVArN83Prr/ABce0Kq6ibHpS+4l6r3QpLLLzbd7lfav9qm35ZYUP6ir4r8mm59ubyk8Lsy84VAlU3TVSYgzoTPnWbUJk7dz4dMukZzDWn1us6U1mPY6JtPNtoD+vX932Xn3te8ruWbb8+WH7nHm07/dw1wH3FzOb23TZU+KFtEH32XeV3dUNWyXGv2x/cUyzrG35ue1xTXcPrdhvHwrF2DdBPtK321w6OnWuSa9Ul8v11g4vz0HfWuav2/zO3fVi/tq9wowo98beFa6K/LazT/dX11DGxTvcSbwup2z/87muvvXaUa19x/7Odfu537969e2MblPPgz/7sz47ySy+9dON3f/CDHxzlV1999SjbL5/Xr/29a9mxrlttnCsVAncmBFO/rXDMsxoBME3TNE3TNE3TNE1XoP0BYJqmaZqmaZqmaZquQKdDAMRtRXd+9atfHeXK3in6ILYiZiayJaJmPWIuohViLuJ7hUIV9mZGfXEQMTARLJ/XJj/5yU+OsqiHYQXibSJY2rnQn8p6aRsKdSwMyNCAynxqG0T3K6RCNLwyZoocPfPMM0fZ8AcRHHEi/a1uIhDPq/AHsRuRM997iQo/LfzsTAhA4WeXtsfv6l91K0JlhhbbrAy6fi7iVWhn4dpmuHXMC3e9N+NurT+FaIpeubaUD1dm6S9/+ctH2fVHWzjf64aGulnA5ytDte3XDpVhtsJUnHeVcfq22c1/LdcRbWqftXuFxVR4Q2V0t+z8sD/1jL5WWa3rZowK5bHOwh6tx7XMNohG+swZTPnMM84Tfct9yDG1Htsm9u93KwyhbuCofUs5Hyq8QttWiIHjZbnQY/uurS5R3UzkHufn9vXMLTn6qeuV/fYMViEU9tuQK9vm2clx8zypndx7XANqPdd3bH/dnmE4gJ87n7Sz80C7VShlhQ1pE+2g39VtGHVjUZ2BK5TMM9gTTzxxlD2/eVb0XX5eoQGOad0K4V6un7ufXqIKh611oUJmfb7mtqqzVoVk1k1GFQpjG5xb+q/29rfU66+/fpT1o/pcv7BsOLhzwn598sknR1mb+BvIelxD/e31/e9//yjrsz7vGVXf+c53vnOUf+/3fu/GevwtaF9cL/3d4BxyvrpOqML+K/N/7Td1W9ptb8n4tUYATNM0TdM0TdM0TdMVaH8AmKZpmqZpmqZpmqYr0Gl+oJBpMQ7xjsqEL5IiZiFOUTiQuJHYR6FE4jJit7bH7OG2TaSjsFMxFLF/cY1C90XRzIyqTZR4kJhWZYc8g8S++OKLN7ZHFMbviqc4LiKrZvt//PHHb2x/IZ/eIFCo07PPPnvjey2L2lh/3ZhQSOa92eTPqlC+M5mgK5P1Gey/6qxwA23m+Fe2fz+vsAXlM85XEcvCefW7up2jMPl7s9Hb/zNIoeNuH1zr9CsxS+3lPHIsz2SjrxAepV1sc4UwWE9l7K8MyD5fGPhtpC84Dy3Xmq6t/bxQbW1dWHtlg1Y+Y9sqBKDQ0ZrfPq/vVr9sv/u0bTjjT9ZZaK/PlB+LoxoG43ywj+4NFV5R7bRcIVYVxqNNaowq43LNJce0bla5bahMzXFDCOtWEddH998KKXK9dv/VL1x/KqO6fuFZy7lr2XlfmcQr9MfwhApNcqycK9rtzO0Q+lHtuxVCZNlQSj/XVkofsM3ayv3IGwRcD8Sa3csqS7tIt+dP26NtDW2wHnF27akPO//c7y9RzUntVHvX593TPkuuBa6hzrm6YUN7a2OfqTVRO3zve987yvr7mX3REIO6BchxE78X6dd/badzQv3lX/7lUf7xj398lP3d4Npm+w0jrZABfbBC2O1jhfnVjR9VT52la991TTpzm9P9NAJgmqZpmqZpmqZpmq5A+wPANE3TNE3TNE3TNF2BTocAiB2ID4me+Ixomeis2I8oiViGaIvYhLiD6IaYkwiTKKIY25NPPnmUzXSqChcVTxIDM3OlmI7PaysxF9FIMRTLhXKJN4ouvfDCC0dZ2xqSoG2ff/75oyxe8+GHHx5l++hYW/7a1752lPUB3yWGLRJm20QNzRyrHcSHbYP4kX3Xb0VqbJtjJL56iQprL4y/kOpCgCrzdaFEhcNV9nARNVVYcPl7ZdytvtQ88732V/+qDOZ37nzaNwwP0RaGlhjGor74xS8eZeembTK7tYhsZQR3rav5UjYqbNnvVghAYatnxuzM52el3zlva8zrpgjbXba+1y9+rUvDdCqM5sztC865M2E0tTbUWlJIt+0ptPPMPDGsy71BuV67Z6i67abw7sIn63aUypaufQrRt55C/S37jG0+s7ZdIutz3bDttsUxN7yxzmDup55trFO/8Lvuy55nrMe93vY4/hXmUqhxrW91s4l9Fxd2LdF/a5wrW7fynKm/2wbXuYceeujG93qmPXMTxaOPPnqUa957FjJUxDHy/KxN3PsMVdA+1qltXQ/q5ib78sgjj9z5vCqb1RhqpwrBqn2y5nbd8lI3GXl2cM2qsCjfWyEAjrlnmQqlcz3QT92nrcc2/P7v//5R9ha1CnP84z/+4xvb/+///u831v+3f/u3R/nv/u7vjvJ3v/vdo+ytYs516zGcxT7W76q6faf2KtfLOtNVyHDtJerznr9GAEzTNE3TNE3TNE3TFWh/AJimaZqmaZqmaZqmK9DpEACxbXH6Qol8vjI037179yiLaivxPZGLp59++iiLdIigi5SLRYlZWI+YlmiF7Rdhqaz71i96Uplvv/SlLx1lbSiWbP1idT4vsvXUU08dZbFkx+W///u/j/IPf/jDo2x2ThGWl19++SiLclUffVeFIYhAiZkVymibC9sUk3rwwQePstlxRctsm+NbKPxnqVBjVbhq+ZHtKgT2TNbhyhBfbdCWlfW0+lLIcqHP+lphb35XH9F37q2/siWLobrOGPohvijuWBn4tZ3oZmWVtZ+V6Vp/KtTPOei4WtafC5EtXFYVLnkbiem5LtgO9xjxQ9fBunFCP60wtsrQXjbS7mfCUCpbfmGAjn3NlRpjn6+bYMTHfUbbOk+cW77L0D776zjWnqd8vjIcV1b3CnMo9FnEuTDeWocKX3XtqJtjao28RNrbPd19v7Dder/YueOvXZ0rrgnis9Zft/+ICzuGniV8vvaSQrRr79TfK3Si9n33ggp7cy+wL45X7anuTXVTjv31pgP74lmrMrm7Dtlm56VzXblnGfphX+pc4tnb8BDP/9ZZe9Ylsq+qbqtw/CuMsc7+trHCNus2Efcw63cc6uyv72izwtGVfbe/hvJ4ptA3fZdr97e+9a2j7Dx2nF999dWj7N7/F3/xF0f5O9/5zlH2/K7v/83f/M1Rfuutt46yZ7p/+qd/urEe56XrirZyTJ0rtX8bFuOeUSFn5WOuWxUaddsQsps0AmCapmmapmmapmmarkD7A8A0TdM0TdM0TdM0XYFO85tmchR3EMkWixJVEX2oTIiiVu+///5RLuRVZMj2iHmLEIrpibNYj8iLaIuYnG0WmVPWL/YmdiMaorSb/bXOymwtqvLxxx8fZbEry5Ud2XaK+2hnwxbErcTSHDtxaJ9xjJRYo2Mhdijeqx1EH/1c9Mrvinwq33WJKjOnviPqUyqMv7KTF45dKFo9U9l5qw1lv8IeC60uJLr65efV/nvbUXNHZM01zXL1udohxlc4ru0Rr63s5tYvMli3pZzJPHtGrgMVjnIbFSJeWb/tT6FzlZm/wioqQ/uZjNFKG5XqmfLRWifOrDH1/Jmsw+WXosnOGfcn0VTHq240cM/TPoU62n59sbD/wn7PZJlXZR/PPeV7Z9bgz5JnsMLm9eva010fCv/1DFbYa53BXDMrpKOyn+sLda7QloV667MVHlY3GdV6rm3rNg/b41nLM0yFvDhezkvb47mobnaoNcbxcj+qM5h2M3TG0FTnvX13f3TNsF/axzboA4899tiNbfss1Vmrbk6ovaTCJ1WFCZRq/a39Rv9yrjv+2t7fHL7LeVahfvpahR7YHsOD/K6/PwytrpDKf/7nfz7Kb7755lF+5ZVXjrK/zyzbfv3IWzgMN/B3kr9NbVuFXdpHy5Xtv8LYLj03VZ3qNmexEQDTNE3TNE3TNE3TdAXaHwCmaZqmaZqmaZqm6Qr0f51Bkadp+rTu/q///X/u3Llz5+f/z/99O55zmqZpmtD2lWmapun/D+0PANM0TdM0TdM0TdN0BVoIwDRN0zRN0zRN0zRdgfYHgGmapmmapmmapmm6Au0PANM0TdM0TdM0TdN0BdofAKZpmqZpmqZpmqbpCrQ/AEzTNE3TNE3TNE3TFWh/AJimaZqmaZqmaZqmK9D+ADBN0zRN0zRN0zRNV6D9AWCapmmapmmapmmarkD/L9XprJTutnfGAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -193,8 +196,8 @@ { "data": { "text/plain": [ - "{'L128': {'FIX_MSE': 128,\n", - " 'FIX_SSIM': 0.7735827815185419,\n", + "{'L128': {'FIX_MSE': 127.99999999999999,\n", + " 'FIX_SSIM': 0.8183184633106257,\n", " 'mse_fixmse_maxssim': array([128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", @@ -205,26 +208,26 @@ " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128.]),\n", - " 'ssim_fixmse_maxssim': array([0.78662261, 0.80209889, 0.82022919, 0.84059707, 0.86155803,\n", - " 0.88088954, 0.89727039, 0.91051589, 0.92100997, 0.92940474,\n", - " 0.9362193 , 0.94185083, 0.94659523, 0.95063439, 0.95413286,\n", - " 0.95719831, 0.95990341, 0.9623143 , 0.96447601, 0.9664242 ,\n", - " 0.96819031, 0.96980086, 0.97127809, 0.97264031, 0.97390206,\n", - " 0.97507535, 0.97616991, 0.97719364, 0.97815312, 0.97905376,\n", - " 0.97990006, 0.98069591, 0.98144479, 0.98214989, 0.98281421,\n", - " 0.98344056, 0.98403163, 0.98458993, 0.98511783, 0.98561751,\n", - " 0.98609098, 0.98654006, 0.98696643, 0.98737158, 0.98775684,\n", - " 0.98812343, 0.98847241, 0.98880476, 0.98912134, 0.98942293,\n", - " 0.98971023, 0.98998388, 0.99024446, 0.99049253, 0.99072857,\n", - " 0.99095307, 0.99116648, 0.99136922, 0.99156172, 0.99174435,\n", - " 0.99191752, 0.99208158, 0.99223692, 0.99238388, 0.99252281,\n", - " 0.99265406, 0.99277796, 0.99289483, 0.99300498, 0.99310872,\n", - " 0.99320635, 0.99329817, 0.99338446, 0.99346551, 0.99354157,\n", - " 0.99361291, 0.99367977, 0.99374241, 0.99380104, 0.99385588,\n", - " 0.99390716, 0.99395508, 0.99399982, 0.99404157, 0.99408051,\n", - " 0.99411681, 0.99415062, 0.9941821 , 0.99421139, 0.99423862,\n", - " 0.99426393, 0.99428744, 0.99430925, 0.99432948, 0.99434822,\n", - " 0.99436559, 0.99438166, 0.99439652, 0.99441024, 0.99442292]),\n", + " 'ssim_fixmse_maxssim': array([0.82669306, 0.83641599, 0.84768936, 0.86021352, 0.87332037,\n", + " 0.8861153 , 0.89794336, 0.90864194, 0.91828312, 0.9270046 ,\n", + " 0.93495769, 0.94226293, 0.94896492, 0.95506452, 0.9605342 ,\n", + " 0.96533558, 0.96945409, 0.97290935, 0.97575609, 0.97807185,\n", + " 0.97994388, 0.98145704, 0.98268627, 0.98369369, 0.98452855,\n", + " 0.98522884, 0.98582351, 0.98633451, 0.98677852, 0.98716831,\n", + " 0.98751374, 0.98782249, 0.98810062, 0.98835294, 0.98858334,\n", + " 0.98879493, 0.98899028, 0.98917148, 0.98934029, 0.98949816,\n", + " 0.9896463 , 0.98978576, 0.98991742, 0.99004203, 0.99016023,\n", + " 0.99027259, 0.99037961, 0.9904817 , 0.99057924, 0.99067257,\n", + " 0.99076198, 0.99084774, 0.99093007, 0.9910092 , 0.99108531,\n", + " 0.99115858, 0.99122917, 0.99129722, 0.99136287, 0.99142623,\n", + " 0.99148744, 0.99154658, 0.99160377, 0.99165909, 0.99171263,\n", + " 0.99176448, 0.9918147 , 0.99186338, 0.99191058, 0.99195637,\n", + " 0.99200081, 0.99204396, 0.99208587, 0.99212661, 0.99216622,\n", + " 0.99220476, 0.99224226, 0.99227877, 0.99231435, 0.99234902,\n", + " 0.99238284, 0.99241583, 0.99244804, 0.99247949, 0.99251023,\n", + " 0.99254029, 0.99256969, 0.99259847, 0.99262665, 0.99265426,\n", + " 0.99268134, 0.99270789, 0.99273395, 0.99275955, 0.99278469,\n", + " 0.99280941, 0.99283372, 0.99285765, 0.9928812 , 0.99290441]),\n", " 'mse_fixmse_minssim': array([128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", @@ -235,120 +238,120 @@ " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128., 128., 128., 128., 128., 128., 128., 128., 128., 128., 128.,\n", " 128.]),\n", - " 'ssim_fixmse_minssim': array([0.76177023, 0.75174074, 0.74281362, 0.7345279 , 0.72659961,\n", - " 0.71888015, 0.71133438, 0.70402473, 0.69708094, 0.69065122,\n", - " 0.68485275, 0.67973971, 0.6752977 , 0.67146344, 0.66815475,\n", - " 0.6652925 , 0.66280891, 0.66064725, 0.65875972, 0.65710576,\n", - " 0.65565102, 0.65436667, 0.65322864, 0.65221692, 0.65131489,\n", - " 0.65050865, 0.64978656, 0.64913878, 0.64855688, 0.64803365,\n", - " 0.64756278, 0.64713876, 0.64675673, 0.64641237, 0.64610182,\n", - " 0.64582164, 0.64556875, 0.64534039, 0.64513407, 0.64494759,\n", - " 0.64477896, 0.64462639, 0.64448828, 0.64436322, 0.64424991,\n", - " 0.64414722, 0.6440541 , 0.64396964, 0.643893 , 0.64382344,\n", - " 0.64376028, 0.64370292, 0.64365082, 0.64360347, 0.64356044,\n", - " 0.64352133, 0.64348577, 0.64345343, 0.64342402, 0.64339727,\n", - " 0.64337293, 0.64335079, 0.64333065, 0.64331233, 0.64329566,\n", - " 0.64328049, 0.64326669, 0.64325414, 0.64324272, 0.64323234,\n", - " 0.6432229 , 0.64321432, 0.64320652, 0.64319943, 0.643193 ,\n", - " 0.64318716, 0.64318185, 0.64317705, 0.64317269, 0.64316875,\n", - " 0.64316518, 0.64316195, 0.64315903, 0.6431564 , 0.64315403,\n", - " 0.64315189, 0.64314998, 0.64314826, 0.64314671, 0.64314534,\n", - " 0.64314411, 0.64314302, 0.64314205, 0.64314119, 0.64314044,\n", - " 0.64313978, 0.6431392 , 0.64313871, 0.64313828, 0.64313791]),\n", - " 'maxssim': 0.9944229185693149,\n", - " 'minssim': 0.6431379137832185,\n", - " 'mse_fixssim_minmse': array([127.44616484, 126.93449484, 126.43093603, 125.93530494,\n", - " 125.44742256, 124.96711445, 124.49421062, 124.02854549,\n", - " 123.56995773, 123.11829015, 122.67338962, 122.23510691,\n", - " 121.80329666, 121.37781721, 120.95853053, 120.54530213,\n", - " 120.13800095, 119.73649929, 119.3406727 , 118.95039989,\n", - " 118.56556269, 118.18604589, 117.81173723, 117.4425273 ,\n", - " 117.07830944, 116.7189797 , 116.36443675, 116.01458182,\n", - " 115.66931862, 115.32855326, 114.99219424, 114.66015232,\n", - " 114.33234051, 114.00867398, 113.68907001, 113.37344795,\n", - " 113.06172914, 112.75383686, 112.44969631, 112.1492345 ,\n", - " 111.85238027, 111.55906419, 111.26921853, 110.98277723,\n", - " 110.69967582, 110.41985143, 110.14324268, 109.86978971,\n", - " 109.59943409, 109.3321188 , 109.0677882 , 108.80638799,\n", - " 108.54786516, 108.29216796, 108.03924588, 107.78904963,\n", - " 107.54153106, 107.29664317, 107.05434008, 106.81457696,\n", - " 106.57731006, 106.34249664, 106.11009496, 105.88006426,\n", - " 105.6523647 , 105.42695739, 105.20380433, 104.98286838,\n", - " 104.76411326, 104.54750353, 104.33300454, 104.12058244,\n", - " 103.91020414, 103.70183731, 103.49545032, 103.29101228,\n", - " 103.08849297, 102.88786286, 102.68909306, 102.49215533,\n", - " 102.29702206, 102.10366622, 101.91206141, 101.72218178,\n", - " 101.53400204, 101.34749746, 101.16264385, 100.97941753,\n", - " 100.79779533, 100.61775457, 100.43927305, 100.26232907,\n", - " 100.08690134, 99.91296906, 99.74051185, 99.56950974,\n", - " 99.39994319, 99.23179307, 99.06504063, 98.89966751]),\n", - " 'ssim_fixssim_minmse': array([0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278,\n", - " 0.77358278, 0.77358278, 0.77358278, 0.77358278, 0.77358278]),\n", - " 'mse_fixssim_maxmse': array([ 133.36840117, 139.73263466, 147.22175529, 156.0532816 ,\n", - " 166.5477139 , 179.16700042, 194.01703577, 211.59734443,\n", - " 222.02963577, 233.22301044, 245.49919496, 258.84818457,\n", - " 273.28476987, 281.27944929, 289.37643047, 297.86125826,\n", - " 306.66423243, 315.77540779, 325.22393292, 335.01074814,\n", - " 345.13131378, 355.54326801, 366.32613042, 377.50772143,\n", - " 389.05491287, 401.02519201, 413.3662292 , 426.08687181,\n", - " 439.20348458, 452.7286325 , 466.6625399 , 480.81891963,\n", - " 494.84566849, 509.25930839, 524.12191354, 539.41296938,\n", - " 555.18146183, 571.42478708, 588.11678544, 605.3031113 ,\n", - " 623.05484382, 641.05207887, 659.50018495, 678.53215955,\n", - " 698.22118414, 718.48989604, 739.34852136, 760.86799808,\n", - " 783.217974 , 806.14137656, 830.01894603, 854.79217185,\n", - " 880.51013716, 907.2634161 , 934.76597602, 949.32601575,\n", - " 963.64354121, 978.04663559, 992.79116712, 1007.80307773,\n", - " 1023.12528618, 1038.72773177, 1054.68558136, 1070.86384953,\n", - " 1087.44896245, 1104.16862446, 1121.34497292, 1138.92025887,\n", - " 1156.87843045, 1175.25935827, 1194.03920573, 1213.23325103,\n", - " 1232.87581071, 1252.95779925, 1273.36744538, 1294.32164924,\n", - " 1315.74240127, 1337.60425841, 1359.78124008, 1382.43583488,\n", - " 1405.58690221, 1416.59652056, 1428.27162639, 1440.05942681,\n", - " 1451.99800406, 1464.04617657, 1476.1875303 , 1488.44040392,\n", - " 1500.72913376, 1513.05167229, 1525.47326013, 1537.94550723,\n", - " 1550.51142151, 1563.15111224, 1575.76685302, 1581.30640425,\n", - " 1587.49531914, 1593.80004188, 1600.11640698, 1606.44535689]),\n", - " 'ssim_fixssim_maxmse': array([0.77360243, 0.77358968, 0.77359766, 0.77363698, 0.7736888 ,\n", - " 0.773727 , 0.77379725, 0.773898 , 0.77378393, 0.77382653,\n", - " 0.77384454, 0.77387588, 0.77390504, 0.77374714, 0.7737538 ,\n", - " 0.77374931, 0.77375292, 0.77375798, 0.7737619 , 0.77376753,\n", - " 0.77376893, 0.77378622, 0.7737914 , 0.77379057, 0.77379401,\n", - " 0.77379086, 0.77379598, 0.77380018, 0.77380172, 0.77379832,\n", - " 0.77379471, 0.77379756, 0.77384212, 0.77385021, 0.77384536,\n", - " 0.77383408, 0.77382531, 0.77382238, 0.77381277, 0.77380568,\n", - " 0.7737949 , 0.77382691, 0.77383388, 0.77383155, 0.77383203,\n", - " 0.77384508, 0.77384595, 0.77384982, 0.77384352, 0.77386479,\n", - " 0.77386214, 0.77386667, 0.7738763 , 0.77387259, 0.77388375,\n", - " 0.77375405, 0.77374643, 0.77376391, 0.77376573, 0.77376711,\n", - " 0.77376323, 0.77376017, 0.77374811, 0.77375467, 0.77374082,\n", - " 0.773749 , 0.77373224, 0.77370932, 0.77368712, 0.77365904,\n", - " 0.77363196, 0.77360681, 0.77357806, 0.77355111, 0.77352533,\n", - " 0.77348049, 0.77343453, 0.77339346, 0.77335441, 0.77331693,\n", - " 0.77327246, 0.77337758, 0.77338328, 0.77338866, 0.77338461,\n", - " 0.77337887, 0.77337017, 0.77335676, 0.77335169, 0.77334979,\n", - " 0.77333996, 0.77333099, 0.77331435, 0.77329225, 0.77328026,\n", - " 0.77339417, 0.77340812, 0.77340467, 0.77340076, 0.77339659]),\n", - " 'minmse': 98.89966750759348,\n", - " 'maxmse': 1606.4453568897088,\n", + " 'ssim_fixmse_minssim': array([0.81069721, 0.80415136, 0.79827382, 0.7927989 , 0.78758476,\n", + " 0.7825861 , 0.77782948, 0.77338629, 0.76933555, 0.7657286 ,\n", + " 0.76258054, 0.75987991, 0.75759382, 0.75567185, 0.75405628,\n", + " 0.7526936 , 0.75154034, 0.75056265, 0.74973342, 0.74902986,\n", + " 0.74843227, 0.74792359, 0.7474892 , 0.74711674, 0.74679588,\n", + " 0.74651809, 0.74627635, 0.74606493, 0.74587912, 0.74571508,\n", + " 0.74556965, 0.74544023, 0.74532467, 0.74522116, 0.74512817,\n", + " 0.74504441, 0.74496878, 0.74490032, 0.74483822, 0.74478177,\n", + " 0.74473035, 0.74468342, 0.74464051, 0.74460123, 0.7445652 ,\n", + " 0.74453212, 0.74450172, 0.74447375, 0.74444799, 0.74442426,\n", + " 0.74440239, 0.74438221, 0.7443636 , 0.74434643, 0.74433057,\n", + " 0.74431594, 0.74430244, 0.74428997, 0.74427846, 0.74426784,\n", + " 0.74425803, 0.74424898, 0.74424062, 0.74423291, 0.74422579,\n", + " 0.74421923, 0.74421317, 0.74420758, 0.74420242, 0.74419767,\n", + " 0.74419328, 0.74418924, 0.74418551, 0.74418208, 0.74417891,\n", + " 0.74417599, 0.74417331, 0.74417083, 0.74416855, 0.74416646,\n", + " 0.74416453, 0.74416275, 0.74416112, 0.74415963, 0.74415825,\n", + " 0.74415699, 0.74415583, 0.74415477, 0.7441538 , 0.74415291,\n", + " 0.7441521 , 0.74415135, 0.74415068, 0.74415006, 0.7441495 ,\n", + " 0.74414899, 0.74414853, 0.74414811, 0.74414773, 0.74414739]),\n", + " 'maxssim': 0.99290440833461,\n", + " 'minssim': 0.7441473913547447,\n", + " 'mse_fixssim_minmse': array([127.62569966, 127.25907758, 126.89830629, 126.5432421 ,\n", + " 126.19375253, 125.84970824, 125.51098323, 125.17745477,\n", + " 124.84900331, 124.5255124 , 124.2068686 , 123.89296145,\n", + " 123.58368333, 123.27892946, 122.97859775, 122.68258882,\n", + " 122.39080584, 122.10315454, 121.81954311, 121.53988213,\n", + " 121.26408454, 120.99206555, 120.72374258, 120.45903523,\n", + " 120.19786522, 119.94015629, 119.68583422, 119.43482671,\n", + " 119.18706338, 118.94247568, 118.70099686, 118.46256195,\n", + " 118.22710767, 117.99457239, 117.76489611, 117.53802042,\n", + " 117.31388843, 117.09244474, 116.87363542, 116.65740794,\n", + " 116.44371116, 116.23249528, 116.02371179, 115.81731348,\n", + " 115.61325436, 115.41148964, 115.21197571, 115.01467011,\n", + " 114.81953145, 114.62651948, 114.43559495, 114.24671966,\n", + " 114.0598564 , 113.87496892, 113.69202191, 113.510981 ,\n", + " 113.33181268, 113.15448433, 112.97896417, 112.80522123,\n", + " 112.63322535, 112.46294714, 112.29435797, 112.12742994,\n", + " 111.96213588, 111.79844929, 111.63634436, 111.47579594,\n", + " 111.31677951, 111.15927119, 111.00324769, 110.8486863 ,\n", + " 110.6955649 , 110.54386192, 110.39355633, 110.24462762,\n", + " 110.09705579, 109.95082136, 109.8059053 , 109.66228908,\n", + " 109.5199546 , 109.37888422, 109.23906072, 109.10046731,\n", + " 108.96308761, 108.82690563, 108.69190575, 108.55807275,\n", + " 108.42539176, 108.29384826, 108.16342808, 108.03411739,\n", + " 107.90590266, 107.77877069, 107.6527086 , 107.52770378,\n", + " 107.40374392, 107.280817 , 107.15891125, 107.03801519]),\n", + " 'ssim_fixssim_minmse': array([0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846,\n", + " 0.81831846, 0.81831846, 0.81831846, 0.81831846, 0.81831846]),\n", + " 'mse_fixssim_maxmse': array([ 131.81989257, 136.34348117, 141.63201819, 147.93891278,\n", + " 155.38338115, 164.2072263 , 174.58969259, 180.77038681,\n", + " 187.35687873, 194.48181227, 198.57370304, 202.66885863,\n", + " 206.95343129, 211.44231618, 216.13691245, 221.02634466,\n", + " 226.11581241, 231.45406809, 237.02262995, 242.83028251,\n", + " 248.81360619, 255.03345526, 261.46183743, 268.20589445,\n", + " 271.92855589, 275.50581231, 279.16591822, 282.90724991,\n", + " 286.73714745, 290.64830841, 294.64536986, 298.72977854,\n", + " 302.9070491 , 307.17661949, 311.52367919, 315.9615864 ,\n", + " 320.49015071, 325.12141654, 329.86378322, 334.71438487,\n", + " 339.66399361, 344.73644098, 349.93210914, 355.25219363,\n", + " 360.69572122, 366.26837608, 371.96846258, 377.80329199,\n", + " 383.77938626, 389.88638347, 396.14353339, 402.54835547,\n", + " 409.12344679, 415.86473831, 422.7769448 , 429.86538679,\n", + " 437.11955142, 444.55628708, 452.18579893, 460.02165701,\n", + " 468.0649593 , 476.29650757, 484.7347087 , 493.40456576,\n", + " 502.30552879, 511.44021594, 520.83114704, 530.48547572,\n", + " 540.40541267, 550.59925317, 561.07367344, 571.86215993,\n", + " 582.96345493, 594.39243813, 606.16232589, 618.28830266,\n", + " 630.7534013 , 643.57218989, 656.77008653, 670.38608448,\n", + " 684.42229927, 698.90648368, 713.75502045, 729.09525608,\n", + " 744.89191175, 761.03686543, 777.65684378, 794.83179371,\n", + " 812.49479186, 830.66898008, 849.46972268, 868.84766347,\n", + " 888.75751215, 909.25712128, 930.36668338, 952.1656941 ,\n", + " 974.65873922, 997.87604088, 1021.77859313, 1046.42121422]),\n", + " 'ssim_fixssim_maxmse': array([0.81838315, 0.81837394, 0.81840433, 0.81841667, 0.8184811 ,\n", + " 0.81854265, 0.81865555, 0.8185667 , 0.81860168, 0.8186602 ,\n", + " 0.81849321, 0.81849264, 0.81849454, 0.81849667, 0.81850134,\n", + " 0.81850698, 0.81852163, 0.8185241 , 0.81853312, 0.81854646,\n", + " 0.81856169, 0.81858209, 0.81861676, 0.8186252 , 0.8184758 ,\n", + " 0.81848028, 0.81848157, 0.81848229, 0.8184804 , 0.81848067,\n", + " 0.81848019, 0.81847912, 0.81847739, 0.81847648, 0.81848131,\n", + " 0.81848611, 0.81848742, 0.81848633, 0.81848348, 0.81848151,\n", + " 0.81848324, 0.81848096, 0.81847737, 0.81847369, 0.81847083,\n", + " 0.81846829, 0.81846601, 0.81846364, 0.81846065, 0.81845897,\n", + " 0.81845727, 0.8184584 , 0.81845481, 0.81845096, 0.81844714,\n", + " 0.81844336, 0.81844286, 0.81844313, 0.8184418 , 0.81843787,\n", + " 0.81843385, 0.81843244, 0.81843006, 0.81842643, 0.81842301,\n", + " 0.81842012, 0.8184164 , 0.81841261, 0.81841113, 0.81841123,\n", + " 0.81841167, 0.81840845, 0.81840571, 0.81840289, 0.81840006,\n", + " 0.81839648, 0.81839794, 0.81840175, 0.81840656, 0.81840632,\n", + " 0.8184053 , 0.8184015 , 0.81841222, 0.8184118 , 0.81841594,\n", + " 0.81844041, 0.81845594, 0.81846008, 0.81847317, 0.81848535,\n", + " 0.81848382, 0.81848619, 0.81849768, 0.81851117, 0.81852665,\n", + " 0.81853106, 0.81853637, 0.81854015, 0.81854653, 0.81855083]),\n", + " 'minmse': 107.03801518643529,\n", + " 'maxmse': 1046.4212142210524,\n", " 'noise_level': 128,\n", " 'original_image': 'samp6'}}" ] diff --git a/plenoptic/metric/__init__.py b/plenoptic/metric/__init__.py index 15ea58dc..322d7c17 100644 --- a/plenoptic/metric/__init__.py +++ b/plenoptic/metric/__init__.py @@ -1,4 +1,4 @@ -from .perceptual_distance import ssim, nlpd, nspd, ssim_map +from .perceptual_distance import ssim, ms_ssim, nlpd, nspd, ssim_map from .model_metric import model_metric from .naive import mse from .classes import NLP diff --git a/plenoptic/metric/perceptual_distance.py b/plenoptic/metric/perceptual_distance.py index 372e044c..55a6e204 100644 --- a/plenoptic/metric/perceptual_distance.py +++ b/plenoptic/metric/perceptual_distance.py @@ -90,21 +90,16 @@ def _ssim_parts(img1, img2, dynamic_range): C1 = (0.01 * dynamic_range) ** 2 C2 = (0.03 * dynamic_range) ** 2 - v1 = 2.0 * sigma12 + C2 - v2 = sigma1_sq + sigma2_sq + C2 - - # SSIM consists of a luminance component, a contrast component, and a - # structure component. This is the contrast component, which is used to - # compute MS-SSIM This is the contrast component, which is used to compute - # MS-SSIM. - contrast_map = v1 / v2 + # SSIM is the product of a luminance component, a contrast component, and a + # structure component. The contrast-structure component has to be separated + # when computing MS-SSIM. + luminance_map = (2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1) + contrast_structure_map = (2.0 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) + map_ssim = luminance_map * contrast_structure_map # the weight used for stability - weight = torch.log(torch.matmul((1+(sigma1_sq/C2)), (1+(sigma2_sq/C2)))) - - ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) - ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * contrast_map - return ssim_map, contrast_map, weight + weight = torch.log((1 + sigma1_sq/C2) * (1 + sigma2_sq/C2)) + return map_ssim, contrast_structure_map, weight def ssim(img1, img2, weighted=False, dynamic_range=1): @@ -113,7 +108,7 @@ def ssim(img1, img2, weighted=False, dynamic_range=1): As described in [1]_, the structural similarity index (SSIM) is a perceptual distance metric, giving the distance between two images. SSIM is based on three comparison measurements between the two images: luminance, - contrast, and structure. All of these are computed in windows across the + contrast, and structure. All of these are computed convolutionally across the images. See the references for more information. This implementation follows the original implementation, as found at [2]_, @@ -151,8 +146,8 @@ def ssim(img1, img2, weighted=False, dynamic_range=1): Returns ------ mssim : torch.Tensor - 2d tensor containing the mean SSIM for each image, averaged over the - whole image + 2d tensor of shape (batch, channel) containing the mean SSIM for each + image, averaged over the whole image Notes ----- @@ -169,7 +164,7 @@ def ssim(img1, img2, weighted=False, dynamic_range=1): ---------- .. [1] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error measurement to structural similarity" - IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. + IEEE Transactions on Image Processing, vol. 13, no. 1, Jan. 2004. .. [2] [matlab code](https://www.cns.nyu.edu/~lcv/ssim/ssim_index.m) .. [3] [project page](https://www.cns.nyu.edu/~lcv/ssim/) .. [4] Wang, Z., & Simoncelli, E. P. (2008). Maximum differentiation (MAD) @@ -186,6 +181,10 @@ def ssim(img1, img2, weighted=False, dynamic_range=1): else: mssim = (map_ssim*weight).sum((-1, -2)) / weight.sum((-1, -2)) + if min(img1.shape[2], img1.shape[3]) < 11: + warnings.warn("SSIM uses 11x11 convolutional kernel, but the height and/or " + "the width of the input image is smaller than 11, so the " + "kernel size is set to be the minimum of these two numbers.") return mssim @@ -195,7 +194,7 @@ def ssim_map(img1, img2, dynamic_range=1): As described in [1]_, the structural similarity index (SSIM) is a perceptual distance metric, giving the distance between two images. SSIM is based on three comparison measurements between the two images: luminance, - contrast, and structure. All of these are computed in windows across the + contrast, and structure. All of these are computed convolutionally across the images. See the references for more information. This implementation follows the original implementation, as found at [2]_, @@ -238,7 +237,7 @@ def ssim_map(img1, img2, dynamic_range=1): ---------- .. [1] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error measurement to structural similarity" - IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. + IEEE Transactions on Image Processing, vol. 13, no. 1, Jan. 2004. .. [2] [matlab code](https://www.cns.nyu.edu/~lcv/ssim/ssim_index.m) .. [3] [project page](https://www.cns.nyu.edu/~lcv/ssim/) .. [4] Wang, Z., & Simoncelli, E. P. (2008). Maximum differentiation (MAD) @@ -247,9 +246,97 @@ def ssim_map(img1, img2, dynamic_range=1): http://dx.doi.org/10.1167/8.12.8 """ + if min(img1.shape[2], img1.shape[3]) < 11: + warnings.warn("SSIM uses 11x11 convolutional kernel, but the height and/or " + "the width of the input image is smaller than 11, so the " + "kernel size is set to be the minimum of these two numbers.") return _ssim_parts(img1, img2, dynamic_range)[0] +def ms_ssim(img1, img2, dynamic_range=1, power_factors=None): + r"""Multiscale structural similarity index (MS-SSIM) + + As described in [1]_, multiscale structural similarity index (MS-SSIM) is + an improvement upon structural similarity index (SSIM) that takes into + account the perceptual distance between two images on different scales. + + SSIM is based on three comparison measurements between the two images: + luminance, contrast, and structure. All of these are computed convolutionally + across the images, producing three maps instead of scalars. The SSIM map is + the elementwise product of these three maps. See `metric.ssim` and + `metric.ssim_map` for a full description of SSIM. + + To get images of different scales, average pooling operations with kernel + size 2 are performed recursively on the input images. The product of + contrast map and structure map (the "contrast-structure map") is computed + for all but the coarsest scales, and the overall SSIM map is only computed + for the coarsest scale. Their mean values are raised to exponents and + multiplied to produce MS-SSIM: + .. math:: + MSSSIM = {SSIM}_M^{a_M} \prod_{i=1}^{M-1} ({CS}_i)^{a_i} + Here :math: `M` is the number of scales, :math: `{CS}_i` is the mean value + of the contrast-structure map for the i'th finest scale, and :math: `{SSIM}_M` + is the mean value of the SSIM map for the coarsest scale. If at least one + of these terms are negative, the value of MS-SSIM is zero. The values of + :math: `a_i, i=1,...,M` are taken from the argument `power_factors`. + + Parameters + ---------- + img1 : torch.Tensor + 4d tensor with first image to compare + img2 : torch.Tensor + 4d tensor with second image to compare. Must have the same height and + width (last two dimensions) as `img1` + dynamic_range : int, optional. + dynamic range of the images. Note we assume that both images have the + same dynamic range. 1, the default, is appropriate for float images + between 0 and 1, as is common in synthesis. 2 is appropriate for float + images between -1 and 1, and 255 is appropriate for standard 8-bit + integer images. We'll raise a warning if it looks like your value is + not appropriate for `img1` or `img2`, but will calculate it anyway. + power_factors : 1D array, optional. + power exponents for the mean values of maps, for different scales (from + fine to coarse). The length of this array determines the number of scales. + By default, this is set to [0.0448, 0.2856, 0.3001, 0.2363, 0.1333], + which is what psychophysical experiments in [1]_ found. + + Returns + ------ + msssim : torch.Tensor + 2d tensor of shape (batch, channel) containing the MS-SSIM for each image + + References + ---------- + .. [1] Wang, Zhou, Eero P. Simoncelli, and Alan C. Bovik. "Multiscale + structural similarity for image quality assessment." The Thrity-Seventh + Asilomar Conference on Signals, Systems & Computers, 2003. Vol. 2. IEEE, 2003. + + """ + if power_factors is None: + power_factors = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333] + + def downsample(img): + img = F.pad(img, (0, img.shape[3] % 2, 0, img.shape[2] % 2), mode="replicate") + img = F.avg_pool2d(img, kernel_size=2) + return img + + msssim = 1 + for i in range(len(power_factors) - 1): + _, contrast_structure_map, _ = _ssim_parts(img1, img2, dynamic_range) + msssim *= F.relu(contrast_structure_map.mean((-1, -2))).pow(power_factors[i]) + img1 = downsample(img1) + img2 = downsample(img2) + map_ssim, _, _ = _ssim_parts(img1, img2, dynamic_range) + msssim *= F.relu(map_ssim.mean((-1, -2))).pow(power_factors[-1]) + + if min(img1.shape[2], img1.shape[3]) < 11: + warnings.warn("SSIM uses 11x11 convolutional kernel, but for some scales " + "of the input image, the height and/or the width is smaller " + "than 11, so the kernel size in SSIM is set to be the " + "minimum of these two numbers for these scales.") + return msssim + + def normalized_laplacian_pyramid(im): """computes the normalized Laplacian Pyramid using pre-optimized parameters @@ -273,7 +360,8 @@ def normalized_laplacian_pyramid(im): padd = 2 normalized_laplacian_activations = [] for N_b in range(0, N_scales): - filt = torch.tensor(spatialpooling_filters[N_b], dtype=torch.float32, device=im.device).unsqueeze(0).unsqueeze(0) + filt = torch.tensor(spatialpooling_filters[N_b], dtype=torch.float32, + device=im.device).unsqueeze(0).unsqueeze(0) filtered_activations = F.conv2d(torch.abs(laplacian_activations[N_b]), filt, padding=padd, groups=channel) normalized_laplacian_activations.append(laplacian_activations[N_b] / (sigmas[N_b] + filtered_activations)) @@ -314,7 +402,8 @@ def nlpd(IM_1, IM_2): References ---------- - .. [1] Laparra, V., Ballé, J., Berardino, A. and Simoncelli, E.P., 2016. Perceptual image quality assessment using a normalized Laplacian pyramid. Electronic Imaging, 2016(16), pp.1-6. + .. [1] Laparra, V., Ballé, J., Berardino, A. and Simoncelli, E.P., 2016. Perceptual image quality + assessment using a normalized Laplacian pyramid. Electronic Imaging, 2016(16), pp.1-6. """ y = normalized_laplacian_pyramid(torch.cat((IM_1, IM_2), 0)) diff --git a/tests/test_plenoptic.py b/tests/test_plenoptic.py index 3d8a4288..8e86e46b 100644 --- a/tests/test_plenoptic.py +++ b/tests/test_plenoptic.py @@ -14,7 +14,7 @@ # If you add anything here, remember to update the docstring in osf_download! OSF_URL = {'plenoptic-test-files.tar.gz': 'q9kn8', 'ssim_images.tar.gz': 'j65tw', - 'ssim_analysis.mat': 'ndtc7', 'MAD_results.tar.gz': 'jwcsr'} + 'ssim_analysis.mat': 'ndtc7', 'msssim_images.tar.gz': '5fuba', 'MAD_results.tar.gz': 'jwcsr'} def osf_download(filename): @@ -28,7 +28,7 @@ def osf_download(filename): Parameters ---------- filename : {'plenoptic-test-files.tar.gz', 'ssim_images.tar.gz', - 'ssim_analysis.mat', 'MAD_results.tar.gz'} + 'ssim_analysis.mat', 'msssim_images.tar.gz', 'MAD_results.tar.gz'} Which file to download. Returns @@ -74,6 +74,11 @@ def ssim_images(): return osf_download('ssim_images.tar.gz') +@pytest.fixture() +def msssim_images(): + return osf_download('msssim_images.tar.gz') + + @pytest.fixture() def ssim_analysis(): ssim_analysis = osf_download('ssim_analysis.mat') @@ -168,7 +173,11 @@ def test_ssim(self, einstein_img, curie_img, weighted): curie_img.requires_grad_() assert po.metric.ssim(einstein_img, curie_img, weighted=weighted).requires_grad - @pytest.mark.parametrize('func_name', ['noise', 'mse', 'ssim']) + def test_msssim(self, einstein_img, curie_img): + curie_img.requires_grad_() + assert po.metric.ms_ssim(einstein_img, curie_img).requires_grad + + @pytest.mark.parametrize('func_name', ['noise', 'mse', 'ssim', 'ms-ssim']) @pytest.mark.parametrize('size_A', [1, 3]) @pytest.mark.parametrize('size_B', [1, 2, 3]) def test_batch_handling(self, einstein_img, curie_img, func_name, size_A, size_B): @@ -176,12 +185,13 @@ def test_batch_handling(self, einstein_img, curie_img, func_name, size_A, size_B func = po.add_noise A = einstein_img.repeat(size_A, 1, 1, 1) B = size_B * [4] - elif func_name == 'mse': - func = po.metric.mse - A = einstein_img.repeat(size_A, 1, 1, 1) - B = curie_img.repeat(size_B, 1, 1, 1) - elif func_name == 'ssim': - func = po.metric.ssim + else: + if func_name == 'mse': + func = po.metric.mse + elif func_name == 'ssim': + func = po.metric.ssim + elif func_name == 'ms-ssim': + func = po.metric.ms_ssim A = einstein_img.repeat(size_A, 1, 1, 1) B = curie_img.repeat(size_B, 1, 1, 1) if size_A != size_B and size_A != 1 and size_B != 1: @@ -238,6 +248,16 @@ def test_ssim_analysis(self, weighted, other_img, ssim_images, print(plen_val-mat_val, plen_val, mat_val) assert torch.allclose(plen_val, mat_val.view_as(plen_val), atol=1e-5) + def test_msssim_analysis(self, msssim_images): + # True values are defined by https://ece.uwaterloo.ca/~z70wang/research/iwssim/msssim.zip + true_values = torch.tensor([1.0000000, 0.9112161, 0.7699084, 0.8785111, 0.9488805], device=DEVICE) + computed_values = torch.zeros_like(true_values) + base_img = po.load_images(op.join(msssim_images, "samp0.tiff")).to(DEVICE) + for i in range(len(true_values)): + other_img = po.load_images(op.join(msssim_images, f"samp{i}.tiff")).to(DEVICE) + computed_values[i] = po.metric.ms_ssim(base_img, other_img) + assert torch.allclose(true_values, computed_values) + def test_nlpd(self, einstein_img, curie_img): curie_img.requires_grad_() assert po.metric.nlpd(einstein_img, curie_img).requires_grad